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Combinatorial Structure of the Deterministic Seriation
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Abstract

Seriation methods order a set of descriptions given some criterion (e.g., unimodal-
ity or minimum distance between similarity scores). Seriation is thus inherently a
problem of finding the optimal solution among a set of permutations of objects. In
this short technical note, we review the combinatorial structure of the classical seri-
ation problem, which seeks a single solution out of a set of objects. We then extend
those results to the iterative frequency seriation approach introduced by Lipo et al.
(1997), which finds optimal subsets of objects which each satisfy the unimodality
criterion within each subset. The number of possible solutions across multiple so-
lution subsets is larger than n!, which underscores the need to find new algorithms
and heuristics to assist in the deterministic frequency seriation problem.

Keywords: seriation, combinatorics

1. Single Seriation Combinatorics

Seriation, whether employing class frequencies or simple occurrence to order
assemblages, yields solutions which are permutations of the set of assemblages. Be-
cause we cannot determine the “polarity” of a seriation solution—which ends rep-
resent early and late—from the class data alone, a unique seriation solution is thus
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formally a pair of mirror-image permutations:

{a, d, b, c, e} ≡ {e, c, b, d, a} (1)

This means that a set of n assemblages can yield n!/2 distinct solutions, regard-
less of whether solutions are composed of ordered similarity matrices or“Fordian”
frequency curves. With small numbers of assemblages, enumeration and testing of
all possible solutions is easy, even without parallel testing across many processors.
The ability to test solutions by enumeration quickly breaks downwith only a modest
number of assemblages. Table 1 gives the number of unique solutions for selected
problem sizes between 4 and 100 assemblages, and estimates of processing time to
enumerate and test all solutions, assuming a cluster of 64 cores, and 0.005 seconds
per solution test.1 With 10 assemblages, we can test all solutions quickly enough
that even a serial algorithm on a single core will be adequate to find the global best
solution in a matter of hours, with parallelism improving this to real time responses.

A typical characteristic of many combinatorial algorithms is that small changes
in problem size can have massive changes in processing time. 13 assemblages will
turn out to be the practical limit for direct enumeration, even given parallel process-
ing with circa-2012 technology, with total processing time of nearly 3 days running
64 cores at full capacity.2 Problems involving 14 and 15 assemblages reach the point
where large clusters requiremore than amonth and 19months respectively, to solve.
Beyond 15 assemblages, a “combinatorial explosion” sets in, with 20 assemblages re-
quiring more than 3 million years, before solution times quickly exceed the lifetime
of the universe.

In short, top-down enumerative methods are feasible for small sets of assem-
blages, and given widespread availability of multiple core computers, seriation pack-
ages should employ enumeration for small problems, or to build and test smaller
parts of larger seriation solutions.

1These assumptions concerning per-trial processing time and parallelism are arbitrary but within
reach of social scientists given Amazon’s EC2 cloud computing infrastructure, without requiring for-
mal “supercomputer” access. Modification by a factor of 10 has little effect on the results, perhaps
shifting feasibility upward slightly before combinatorial explosion occurs.

2Realistically, almost nobody would contemplate doing this, given the expense of the computing
time relative to the value of guaranteeing the optimal solution, but the hypothetical example demon-
strates that such solutions are feasible.
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N Seriation Solutions Seconds Years
4 12 0.00094 3e-11
6 3.6e+02 0.028 8.9e-10
8 2e+04 1.6 5e-08
10 1.8e+06 1.4e+02 4.5e-06
12 2.4e+08 1.9e+04 0.00059
13 3.1e+09 2.4e+05 0.0077
14 4.4e+10 3.4e+06 0.11
15 6.5e+11 5.1e+07 1.6
16 1e+13 8.2e+08 26
20 1.2e+18 9.5e+13 3e+06
40 4.1e+47 3.2e+43 1e+36
60 4.2e+81 3.3e+77 1e+70
80 3.6e+118 2.8e+114 8.9e+106
100 4.7e+157 3.6e+153 1.2e+146

Table 1: Number of unique seriation solutions and parallel processing time for sets of assemblages
4 < n < 100, testing solutions across 64 cores, assuming 5ms per trial

2. Deterministic Seriation with Multiple Solution Groups

In an earlier paper (Lipo et al., 1997), we introduced an iterative method for
finding deterministic solutions to the frequency seriation problem by partitioning
assemblages into subsets, each of which meets the unimodal ordering principle,
within tolerance limits governed by sample size. Lipo (2001) extended and refined
the method in his dissertation research. Our initial work on the method employed
a combination of automated calculations (e.g., bootstrap significance tests for pair-
wise orderings), and manual sorting of assemblages into groups and specific posi-
tions (using an Excel macro package available at http://lipolab.org/seriation.
html). Figure 1 is an example of seriation with multiple solution groups, from Lipo’s
dissertation research in the Lower Mississippi Valley.

Our initial work suggests assemblages seriate together into groups reflecting
variation in the intensity of cultural transmission among assemblages, over their du-
ration of accumulation. In most cases, solution groups tend to be spatiotemporally
compact, and form clusters when mapped on the landscape, although long-distance
connections between past communities can also yield patterns which aremore com-
plex and less cohensive when mapped. Madsen’s dissertation research is aimed at
tying the properties seriation solution groups to their causes in regional patterns of
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Figure 1: Example of a deterministic frequency seriation with assemblages partitioned into multiple
subsets or solution groups. From Lipo (2001), Figure 4.4.
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interaction and the dynamics of specific cultural transmission models.

# of Solution Groups (m) 20 40 60
3 5.8e+08 2e+18 7.1e+27
4 4.5e+10 5e+22 5.5e+34
6 4.3e+12 1.8e+28 6.8e+43
8 1.5e+13 3.2e+31 3.8e+49
10 5.9e+12 2.4e+33 2.7e+53
15 2.9e+34 2.2e+58
20 1.6e+32 1.7e+59
25 3.7e+57
30 9.6e+53

Table 2: Number of ways to form m subsets (seriation solutions) from 20, 40, and 60 assemblages

In this section, the goal is to understand the complexity of the multiple seriation
groups problem, constructing reasonable upper bounds for a given problem size,
even if some problems encountered in real analyses do not approach the worst case.
From a combinatorial standpoint, seriation with multiple solution groups has the
following structure. We begin with n assemblages in total, and seek a solution or
solutions whereby we end up withm solution groups, wherem < n. Each solution
must have at least one assemblage, and in practice will often have 3 or more (single-
tons may indicate assemblages which simply do not “fit” with anything else in the
data set). The number of ways that n objects can be partitioned intom non-empty
subsets (or solution groups) is given by the Stirling numbers of the second kind,
which are given by the recursion equation:{n

m

}
= m
{n − 1
m

}
+

{n − 1
m − 1

}
(2)

Table 2 gives the number of ways to form a specific number of subsets (or seriation
solution groups) from sets of assemblages ranging from 20 to 60. Each column runs
from 3 solution groups to half of the number of assemblages, since the number of
possible subsets is maximized just before n/2 and declines thereafter (Figure 2).

We can immediately see that there are an enormous number of possible subsets
for any assemblage size. There are fewer subsets, of course, than complete permuta-
tions of the set of assemblages since subsets are unordered (i.e., {nm} < n! for allm).
However, in the multiple seriation group problem, the problem size is larger than
the corresponding Stirling number because we do not know in advance how many
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Figure 2: Number of Unique Solution Sets for 40 Assemblages When Partitioned Into m Solution
Groups

groups (subsets) a set of assemblages will seriate into. Thus, the total number of
unique subsets which might contain the optimal solution is the total of the number
of subsets, across all subset sizes:

n∑
i=1

{n
i

}
(3)

This result is still smaller than the total permutations for a set of n assemblages. For
example, given 40 assemblages, n! = 8.159 × 1047, whereas the total from Equation
3 for 40 assemblages is 1.575 × 1035.

Another factor to consider is that each of these unique subsets resulting from a
partition of n assemblages into seriation groups is still unordered. For example, if
we partition 10 assemblages into 3 solution groups, there are 9330 unique ways of
assigning the 10 assemblages to the 3 solution groups. Each group within a partition
will have ni members, where

∑
ni = n. The number of unique seriations for each of

the 3 solution groups is ni!/2, but we cannot assume that solution groups will have
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a balanced or equal number of assemblages (as Figure 1 does). Partitions such as:

{1, 2, 3, 4, 5, 6}{7, 8}{9, 10}

are common in seriating real assemblages (Lipo, 2001).
Since the factorial function grows so quickly, the computational cost of deter-

mining the correct permutation within a given seriation solution group is controlled
by the size of the largest subset, especially if the other subsets are relatively small, as
in the previous example. At worst, for a solution set withm solution groups,m − 1
solution groups will contain 1 assemblage each, and the last solution group will con-
sist of the remaining n −m − 1 assemblages. This means, of course, that the worst
case would involve consideration of on the order of (n−m−1)! permutations within
each solution group, for each of the subsets given by Equation 3. This yields:

n∑
m=1

{n
m

}
(n −m − 1)! (4)

Table 3 gives the total number of possible solutions for assemblages ranging from 4
to 100, where solutions may fall into multiple seriation groups of any size.

N Total Solutions Seconds Years
4 15 0.0012 3.7e-11
6 4.7e+02 0.037 1.2e-09
8 5.2e+04 4 1.3e-07
10 1.5e+07 1.1e+03 3.6e-05
12 8.5e+09 6.6e+05 0.021
13 2.6e+11 2e+07 0.64
14 8.9e+12 7e+08 22
15 3.5e+14 2.8e+10 8.7e+02
16 1.6e+16 1.2e+12 3.9e+04
20 1.7e+23 1.3e+19 4.2e+11
40 9e+65 7e+61 2.2e+54
60 5.1e+116 4e+112 1.3e+105
80 5.1e+172 4e+168 1.3e+161
100 4.4e+232 3.4e+228 1.1e+221

Table 3: Number of total solutions with multiple seriation groups and processing time for sets of
assemblages 4 < n < 100, testing solutions across 64 cores
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3. Discussion

Clearly, in the worst case, the combinatorial complexity of the multiple seri-
ation groups problem is much worse than even the straight factorial case involved
in single solution permutations. The feasibility of parallelized enumerative methods
still explodes after 13 assemblages, but much more steeply. The goal of a new algo-
rithm for deterministic multiple group seriations is, therefore, to employ heuristics
to drastically reduce the size of the solution space. Vast amounts of the solution
space involve partial orders which violate unimodality, but of course we cannot eas-
ily identify those regions of solution space a priori without testing possibilities. But
given small partial solutions which do meet the seriation model, we can easily test
solutions which are “adjacent” to the partial solutions, suggesting that agglomerative
heuristics may be the best approach to finding a computationally feasible method.
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