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ABSTRACT

CLASSIFICATION OF ARBITRARY MOTION INTO A CANONICAL BASIS

by

Michael Moger

University of New Hampshire

December 2018

The Empatica E4 wristwatch utilizes four sensors to capture medical data from its user

- an accelerometer, a plethysmograph, an electro-dermal activity sensor, and an infrared

thermophile. Utilizing these sensors, the device can provide detection-based feedback for

patients suffering from various ailments. However, each sensor is coupled with the other

readings, so any raw data will have a degree of noise accompanying the actual signal. After

detailing a conceptual and programming knowledge of various industry-standard data pro-

cessing techniques, we follow the appropriate steps to take in order to clean up a noisy E4

data signal, starting with supervised basis signals and ending with unsupervised, random

samples. We conclude with a discussion of how one can decompose arbitrary motions into a

canonical basis for proper data analysis, providing insight based on our results.
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Introduction

Reducing motion artifacts in medical data is necessary to clean up an otherwise noisy

signal so doctors and patients can correctly analyze and interpret their results. In the

development of the Empatica E4 wristwatch, it has been found that the combination of an

accelerometer (ACC), a plethysmograph (PPG), an electro-dermal activity (EDA) sensor,

and an infrared thermophile (TEMP) is very effective at collecting and analyzing medical

data for uses such as seizure and fall detection.

Chapter 0 is broken up into two main sections. In section 0.1, we consider the power of the

E4 by outlining the capabilities and drawbacks of the device, followed by suggestions on how

to fix some of its major issues. We will also highlight the current research being performed

with similar devices as a means for comparison and motivation. Since the method of data

acquisition is crucial to understanding our approach of the problem, section 0.2 lays out

exactly that. Each of the three Euclidean dimensions is isolated, as well as combinations of

two directions (flip, spin, or roll), into a control set of data.

Chapter 1 serves two purposes; the first of which is to provide researchers with a list/proxy

for the industry-standard data processing techniques, and the second is to demonstrate the

computation necessary to apply these methods. In it, we will explore windowing (such as

Gaussian or Kaiser functions), spectral methods (such as the FFT or DWT), dynamical

systems theory (such as k-NN or SVD), and various filtering algorithms (such as Savitzky-

Golay or Matching Pursuit) in extensive conceptual and implementary detail.

Chapter 2 is where we apply the aforementioned techniques on data collected from the

1



E4, starting with the control set. As an added measure, the control set was constructed from

the best data collection that was discussed in Chapter 0. From smoothing - including trying

out different windows/pre-processing - to filtering, the results from control data serve as a

benchmark for an ideal analysis.

Chapter 3 is posed, primarily, as a test to replicate the entire process in Chapter 2

(same variables and same filtering coefficients, adjusted for data size) on randomly collected

data. We investigate varying levels of randomness, finishing with a discussion on some of

the limitations of the proposed solution.

2



Chapter 0

Preliminaries

This chapter will serve as a brief but complete description of the device that was used

for data collection. Please note that the Empatica E4 is a research device that is constantly

being updated, so some of this information may change in future revisions.

0.1 Empatica E4 Overview

The E4 is a wrist-worn medical device from Empatica that offers real time computerized

biofeedback thanks to its four powerful sensors [1]. The real productivity in the sensors

come from the E4’s built-in feature set: combining off-the-shelf components with proprietary

design and options for storage and analysis of end user data. As opposed to older methods

of physiological data collection, the E4 has all of its sensors integrated into the band, a

design choice that benefits from being both seamless and inconspicuous. Users (researchers,

patients, and doctors alike) have the option of either transmitting their data in real time via a

Bluetooth interface or storing their sessions in the device’s internal flash memory. Regardless

of data acquisition, user data can be viewed online (or on mobile) with zoom and compare

options. For researchers and developers, the Empatica API allows for further desktop and

mobile integration of the E4 into their respective infrastructures [1].

Boasting a form-fitting design (weighing in at 25g, 110-190mm wrist measurement, with

3



dimensions: 44x40x16mm) with impressive specifications (20-36 hr battery life, 60+ hrs

of flash memory, splash resistance, and an official medical device certification) [1], the E4

defines what it means to be a powerful and easy-to-use health monitoring device. A long

press of the devices’ lone button serves as the on/off switch, while a short press marks a

certain timestamp in the data with a tag. These tags are ideally useful for determining

changes in activity, such as when used to indicate periods of sleep, exercise, or leisure.

Despite all of the power inside of the E4, there are certain flaws in the design. The

PPG sensor notably uses a proprietary artifact removal technique based on a combination

of wavelengths (instead of the common technique of exploiting a single wavelength with

ACC data), meaning that the signal users see is already pre-filtered and split into different

components of data that a PPG normally gives. On the flip side, the 3-axis accelerometer

signal arrives unfiltered, which is perplexing since a single sensor is simply not able to

accurately track the motion of a rigid body [3, 5]. Their Embrace watch, marketed specifically

as a device to aid seizure-prone individuals, includes a gyroscope as a secondary motion-

tracker (angular velocity). However, since I performed all of my testing on the E4, this

paper will highlight the process of filtering out excess noise from the ACC signal, and to

reinforce/introduce the prevailing theme, finding the best possible way to clean up a noisy,

coupled system [3-6].

0.2 Data Acquisition Method

Due to variable coupling, motion bias was always a huge threat to data collection. For

this reason, initial testing of the device was done during sleep to mitigate motion bias.

Periods of little-to-no movement permitted access to some of the more interesting aspects of

EDA data, specifically when researching a phenomena known as ”sleep storms”. Tags were

recorded (to the best of my ability) whenever I awoke or was stirring in bed, unable to fall

asleep. From these collections, motion certainly did not seem to be an issue.
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The next step in the data acquisition process was to consider a user who would want to

track their data throughout the day which requires a much more efficient knowledge of the

dynamical system present in the E4. To achieve this, we would need an extensive amount

of sample data in a Euclidean coordinate system. The goal was to create a library of known

samples and use these to test out algorithms to properly filter out the noise. Since we have

an idea of what the signal should look like - based on the x, y, and z directions in which

the motion was recorded - this makes the process of locating an efficient basis easier. This

eventually lead to the decision to record six (6) types of data: roll (xy), flip (yz), spin (xy),

back/forth (x), left/right (y), and up/down (z), with more focus given to actions involving

two directions.

As with most data collection sprees, the initial batch was poor. The problem was the

method; not only was it non-fluid motion but I was always directly touching the watch,

causing some latency issues. After some thought, I came upon an arcane solution thanks to

the help of three household objects: a ruler, a drumstick, and some duct tape. I taped the

wrist-side of the watch to the ruler and then liberally applied tape to the drumstick until

there was enough where the device would fit securely through. After choosing the principle

axes, the data came flowing in.

index signal
1-3 bf
4-6 flip
7-9 lr
10-12 roll
13-15 spin
16-18 ud

Table 1: Index for collected samples, initial

Let’s take a look at some sample data, in particular a sleep cycle I created early on in

the project, lasting about 7 hours. Using the Empatica web-app, which provides storage

and some initial data cleansing up front, we can view the data. As touched on briefly, the

PPG signal is converted into three separate readings: blood volume pulse, heart rate, and

5



inter-beat interval. Since this is sample taken while asleep, the accelerometer is notably

stagnant, but what is remarkable about the sample is the EDA spike about an hour before

awakening, known as a ”sleep storm.” Should a similar spike be combined with an oscillating

of falling ACC level, this would be indicative of seizure [2].

Figure 1: Sleep sample accelerometer reading

Figure 2: Sleep sample heart rate reading

Figure 3: Sleep sample EDA reading

Figure 4: Sleep sample temperature reading

6



Chapter 1

Data Processing Techniques

The first step of any analysis with data is clean-up. In fact, data pre-processing can

take up to 80% of a project’s timeline (which certainly proves true in practice). This is a

process that involves a lot of trial-and-error, some luck, and a keen eye for discrepancies

in the data. Data collected from the E4 could be categorized as either signal processing or

time series analysis, and since this paper will not be going into detail about the forecasting

techniques of the latter, we’ll focus on the former. Signal processing is a common tool used

for continuous or discrete data that can come from many sources, such as the medical data

we’ll be investigating soon, or sound waves found in audio production [7]. The following

sections will serve as a guide, in both theory and computation, to standard practices when

working with different types of data.

1.1 Window Functions

By definition, a window function is a function that is zero-valued outside of a chosen

interval. These special functions are important because when convoluted with a given signal,

the overlapping result is a view of the data ”through the window.” This idea has been applied

to many different disciplines, including spectral analysis, bandwidth, and filter design. Each

window has different properties, so it is crucial to understand the intricacies of each type

7



before attempting to apply them to data. In all of the functions, let N represent the width

(in samples) of a discrete-time window function w, then:

w[n], 0 ≤ n ≤ N − 1

For ease of comprehension, our study will focus on three main categories of window functions,

starting with polynomial ones.

1.1.1 Different Window Types

Polynomial windows are functions that originate from B-spline forms, of which are ma-

nipulations of the rectangular window, defined as w(n) = 1. The rectangular window, while

the simplest, is useful in zeroing out all but N values of a signal (i.e. a boolean process) and

serves as the basis for understanding all of the other functions.

If we combine two N
2 -width rectangular windows, we would arrive at the triangular win-

dow, defined as:

w(n) = 1−
∣∣∣∣∣ n−

N−1
2

L
2

∣∣∣∣∣, for L = N , N + 1, or N − 1.

Another polynomial window to explore is the Welch function, of which has a single

parabolic section, and is defined as:

w(n) = 1−
(
n− N−1

2
N−1

2

)2

.

Cosine window functions have the benefit of already being common signals, as the the

general cosine, or Hamming, window is defined as:

w(n) = α− βcos
( 2πn
N − 1

)
,where α and β are real coefficients between 0 and 1.

8



American mathematician Richard W. Hamming is credited in the naming due to his

particular choice for α = 0.54 and β = 1 − α = 0.46, of which minimizes the nearest side

lobe of the signal. Its counterpart, the Hann window, is similar in construction, but instead

chooses α = β = 0.5, giving the following definition:

w(n) = 0.5
(

1− cos
( 2πn
N − 1

))
= hav

( 2πn
N − 1

)
,where hav is the haversine function.

Higher-order cosine windows are a series representation of the generalized Hamming

window.

w(n) =
K∑
k=0

cos

(
2πkn
N

)
.

Since w(n) of this form will only have 2k + 1 non-zero discrete Fourier transform (DFT)

components, these windows are ideal for a scenario requiring windowing by convolution in the

frequency domain [REF]. Blackman, Nuttall, Flat Top, and Rife-Vincent (plus other hybrid

types) windows are all variants of this type, with the key difference being the coefficient

values and number of terms in the series. Again, now we will perform some visualization

routines with the cosine windows.

Even better than cosine windows are ones that you can adjust. These window functions

form a range of options of smoothing in the frequency domain, all starting with the most

common one, the Gaussian (or Normal distribution) window:

w(n) = e−
1
2(n−(N−1)/2

σ(N−1)/2 )2
, σ ≤ 0.5.

1.1.2 Convolution and Resampling

In all of the above examples, we use one unified approach in application: convolution.

A convolution of two vectors, u and v, represents the area of overlap under the points as v

slides across u. This process is equivalent to multiplying polynomials whose coefficients are

the elements of u and v.

9



1 f unc t i on w = conv (u , v , shape )

2 % Inputs :

3 % u , v − Vectors to be convoluted .

4 % shape − Subsect ion , s p e c i f i e d as f u l l , same , or v a l i d .

5 %

6 % Outputs :

7 % w − Output o f the convo lut ion o f u and v .

Code Listing 1.1: Convolution Matlab function

Let’s plot a number of different window functions of length 25:

Figure 1.1: Visualization of each window function for n=25

And now we can apply these to a random input signal via convolution. This acts as a

smoother or de-noiser for the accelerometer peaks.
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Figure 1.2: Application of convolution with input signal

For each polynomial multiplication or convolution, the length of the input signal is in-

creased by n− 1 where n is the window size. This is important to note, as it slightly shifts

our signal view of focus. We can mitigate any latency issues by resampling the signal into

the original window size. Details about resampling can be found with Matlab’s resample, as

listed below:

1 f unc t i on y = resample (x , p , q )

2 % Inputs :

3 % x − Input s i gna l , e i t h e r vec to r or matrix .

4 % p , q − Resampling f a c t o r s . P o s i t i v e i n t s .

5 %

6 % Options :
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7 % n − Neighborhood term number f o r nn i n t e r p o l a t i o n .

8 % Length o f f i l t e r i s p ropo r t i ona l f o r n .

9 % beta − Shape parameter o f Kaiser window used to des ign the f i l t e r .

10 % b − FIR f i l t e r c o e f f i c i e n t s . Has odd length and l i n e a r phase .

11 % method − I n t e r p o l a t i o n method . Defau l t i s l i n e a r ; opt ions in c lude

12 % pchip and s p l i n e .

13 %

14 % Outputs :

15 % y − Resampled s i g n a l . I f x has l ength N, y has l ength N ∗ (p/q ) .

Code Listing 1.2: Resample Matlab function

1.2 Spectral Methods

Time-frequency data, commonly found in the medical world, is simplest when there is

a periodicity present. However, that seldom occurs in the entire spectra, so we attempt to

find areas that are more-easily explained via frequency inspection. The general approach to

analyzing this type of data is with spectral methods, two of which we will explore in depth:

the classical Fourier series and the more modern wavelet.

1.2.1 Fourier

If you’ve taken one course in applied mathematics or linear algebra, there’s no doubt that

a very popular (and powerful) concept was introduced: the Fourier series and it’s associated

transform. An integral transform that dates back to the 1820’s, the idea is to take a time-

dependent function and express it in terms of it’s frequency spectrum. Here’s the definition

plus the inverse transform:

f̂(z) =
∫ ∞
−∞

f(t)e−2πiztdt =⇒ f(t) =
∫ ∞
−∞

f̂(z)e2πitzdz,
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where z ∈ R denotes frequency and t denotes time for an integrable function f : R 7→ C.

There is a limiting case with this however, and it deals with Heisenberg’s uncertainty

principle. Notably, one cannot have absolute precision on both frequency and temporal

domains. Classical Fourier transform allows for a measurement with zero bandwidth that

equates with an exact size for frequency, but at the cost of not knowing when that particular

frequency occurred. In essence, it’s a trade-off between time and frequency. A specific case

of this comes up later, in our discussion of the spectrogram and using the short-time Fourier

transform (STFT) to generate it.

Even though data collection in continuous in nature, discrete means are necessary to

properly compute Fourier transforms with Matlab or some other program. Luckily, the FT

is easily made discrete by the following definition:

Xk =
N−1∑
n=0

xne
−2πikn/N , k ∈ Z.

The usual domain is [0, N − 1] due to periodicity, but others include [−N
2 ,

N
2 − 1] for N

even or [−N−1
2 , N−1

2 ] for N odd. However, a traditional discrete Fourier transform (DFT)

is a monster of a calculation - O(n2), so the best way to compute a FT is with the famous

fast Fourier transform (FFT). Originally invented by Gauss in the early 1800’s, then later

rediscovered and developed by James Cooley and John Tukey in 1965, the FFT splits a DFT

calculation into 2 (or more) problems. Variants of the algorithm include ones by Bluestein

and Rader, both of which use a convolution-based approach. As part of the FFTPACK, the

FFT algorithm has been precisely tuned and optimized toO(nlog(n)) calculation time, where

n is the sample size. This huge computational improvement has signified the importance of

the algorithm.
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1.2.2 Wavelets

For decades, Fourier analysis has dominated the applied mathematics world, and for

good reason too. It’s a stones-throw away from simple series that evolves into a method that

supplies an overload of computational might for such a straightforward theory. However,

what happens if we want a more precise time-domain measurement? Fourier, again, is limited

by it’s choice of frequency precision. Enter wavelets, which take advantage of the uncertainty

principle’s intermediary clause. A wavelet transform allows for a rough estimate of both time

and frequency domains, simultaneously. Due to this advantage, they have steadily grown

in popularity as a method for signal processing (especially for image compression and filter

design) since their discovery by Haar in 1909.

ψ(t) denotes the ”Mother wavelet” such that ψ(t) ∈ L1(R)∩L2(R), ie. ψ(t) is absolutely

and square integrable: ∫ ∞
−∞
|ψ(t)|dt <∞,

∫ ∞
−∞
|ψ(t)|2dt <∞.

Being in this space guarantees zero mean and squared norm of one for the Mother wavelet.

For a wavelet to be usable in either a continuous or discrete transform, a scaling factor is

necessary. Let (a, b) ∈ R, then

ψa,b(t) = 1√
a
ψ

(
t− b
a

)
.

It is also possible to define a wavelet in terms of a ”Father wavelet,” usually denoted as the

scaling function φ(t).

Like window functions, there are multiple types of wavelets that can be used for analysis,

the first of which is the Haar wavelet. Here’s the definition:

ψ(t) =


1, 0 ≤ t < 1

2

−1, 1
2 ≤ t < 1

0, otherwise
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with scaling function

φ(t) =


1, 0 ≤ t < 1

0, elsewhere.

This particular function, while being the simplest and also discontinuous (hence non-differentiable),

is historically important as being the first wavelet - though Haar did not refer to it as such.

Cases that utilize the Haar wavelet include signals with sudden transitions or binary outputs.

Despite the additional benefits of having dual-precision on both the frequency and time

domains, wavelets were not used in any low-level method aside from matching pursuit (which

utilizes wavelet-packet and sinusoidal bases to represent any input signal based on a redun-

dant dictionary). Instead, our matching pursuit implementation will be using a custom

dictionary built by collecting samples on the E4. We will then compare our results using

custom dictionary and the default dictionary, testing for accuracy and ease of understanding.

1.3 Algorithms and the ML Connection

Alongside window functions, we will be investigating some data analysis algorithms to

aid us in cleansing, filtering, and finding the best possible basis for any input. In addition,

we’ll start to make the connection to machine-learning techniques from the world of Data

Science, as this paper’s main goal is quite similar to problems found in that realm.

1.3.1 Savitzky-Golay

By definition, the Savitzky-Golay filter for one-dimensional data (xj, yj) where j = 1, ..., n

is:

Yj =
m−1

2∑
i=−m−1

2

Ciyj+i for m− 1
2 ≤ j ≤ n− m− 1

2 ,

where Ci are the set of m convolution coefficients. Essentially, SG is a digital filter that can

be applied to smooth a set of data (ie. increasing the signal-to-noise ratio without reaching

distortion). To do so, this process utilizes convolution, or fitting of adjacent data points with
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polynomials in a least-squares method. If the data are uniformly spaced, then the least-

squares equations can be solved analytically with a single set of convolution coefficients, Cj.

In turn, these coefficients provide the best estimate of a smoothed signal from the original

data [8].

Quick Matlab snippet outlining the built-in sgolayfilt function:

1 f unc t i on y = s g o l a y f i l t (x , order , framelen , weights , dim)

2 % Inputs :

3 % x − S igna l to be proce s sed .

4 % order − Polynomial order . Must be l e s s than the frame length .

5 % framelen − Frame length . Must be odd .

6 % weights − Weighting vec to r o f r ea l , p o s i t i v e weights used during

7 % l e a s t squares .

8 % dim − Dimension along which the f i l t e r ope ra t e s . I f dim i s not

9 % s p e c i f i e d , the f i l t e r ope ra t e s on dim 1 f o r column vectors ,

10 % and dim 2 f o r row vec to r s .

11 %

12 % Outputs :

13 % y − F i l t e r e d data ob j e c t .

Code Listing 1.3: Savitzky-Golay Matlab function

Savitsky-Golay was chosen out of others in the family of low-pass filters due it’s partic-

ular property of maintaining more high-frequency components of a given signal [8], which

is something we desire here given that accelerometers have defining peaks we’d like to keep

intact. Details outlining a comparison between window smoothing and Savitzky-Golay fil-

tering will be provided in Chapter 2. Overall, the two are quite similar, but give separate

edge-defining characteristics.

1.3.2 Singular Value Decomposition

To continue with the analysis, after smoothing comes finding the best possible coordinate

system for the data. Once discovered, these coordinates give an accurate picture of the
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motion the watch (and presumably, the user) is undergoing. In order to provide a worthwhile

measurement for future results, it is crucial to find such a basis. The best way to do so is

with the singular value decomposition (SVD). This transform takes a matrix M ∈ Rm,n and

decomposes it into two unitary matrices, U and V , plus a square matrix, Σ, containing the

singular values of M . Pictorially, this looks like the following:

Figure 1.3: 2x2 example of SVD decomposition of a real, square matrix

The basic idea behind the singular value decomposition is a coordinate transform along

the primary basis functions hidden in the raw data. We start in a standard Euclidean space

with unit vectors e1 = (1, 0) and e2 = (0, 1) for R2. Decomposition of a matrix M from

(e1, e2) to (σ1, σ2) entails an initial rotation, scaling along the coordinate axes, and a final

rotation [11].

1 f unc t i on [U, S ,V] = svd (A)

2 % Inputs :

3 % A − Matrix to be decomposed . Must be square or r e c t angu l a r .

4 %

5 % Choice−Value :

6 % ’ econ ’ − Apply an economy−s i z e decompos it ion .

7 % i f m > n , only the f i r s t n c o l s o f U are computed , S i s nxn

8 % i f m = n , svd (A, ’ econ ’ ) == svd (A)

9 % i f m < n , only the f i r s t n c o l s o f V are computed , S i s mxm
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10 % 0 − Apply a s l i g h t l y d i f f e r e n t economy−s i z e d decomp .

11 % i f m > n , svd (A, 0 ) == svd (A, ’ econ ’ )

12 % i f m <= n , svd (A, 0 ) == svd (A)

13 %

14 % Outputs :

15 % U − Le f t s i n g u l a r v e c to r s in the form o f a mxm uni tary matrix .

16 % Cols o f U corre spond ing to non−zero s i n g u l a r va lue s form a

17 % s e t o f orthonormal b a s i s v e c t o r s f o r range (A) .

18 % S − Square matrix with s i n g u l a r va lue s on the d iagona l .

19 % V − Right s i n g u l a r v e c t o r s in the form o f a nxn un i tary matrix .

20 % Cols o f V which do not correspond to non−zero s i n g u l a r va lue s

21 % form a s e t o f orthonormal b a s i s v e c t o r s f o r n u l l (A) .

Code Listing 1.4: SVD Matlab function

For a square, symmetric, and positive definite matrix M , eig(M) = svd(M), where

eig(M) is the Eigen-decomposition (Mv = λv) for M . The difference between these decom-

positions is in the mapping: Eigen goes from a vector space to itself and SVD goes from a

vector space to another vector space, generally one with a different dimensionality. Given

our problem space - a set of non-orthogonal, non-linear dynamics that approximate human

motion - we benefit greatly from SVD to be able to map collected samples into a localized

coordinate system for analysis.
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For completeness, here is the mxn singular value decomposition for a matrix A [11].

A = UΣV T

=




· · · · · ·

u1 ur ur+1 um

col(A) null(A)

σ1 0
. . .

σr

0
. . .

0 0









vT1

vTr

vTr+1

vTn

row(A)

null(A)

1.3.3 Matching Pursuit

Matching pursuit (or MP for short) is a sparse-approximation algorithm for classification

of a signal via an input dictionary. The most useful implementation of such a method is for

approximating the motions of a non-linear dynamical system in terms of a known, usually

redundant, basis. This easily analogizes to the very active field of data science and machine-

learning algorithms for predictive analytics in the form of a ”supervised learning” exercise

[9, 10]. Instead of a signal as the function to-be-determined, we have some matrix containing

features and their values attempting to shed insight on a response, using different functions

and logic to calculate a prediction.

For MP of a function f(t) in a Hilbert space H and dictionary D with N components,

the setup is as follows:

f(t) ≈ f̂N(t) =
N∑
n=1

anφn(t),

where an is the amplitude of each component φn ∈ D. To start out, we need to construct the

dictionary for which we compare an input signal. For this, we’ll use wmpdictionary through

Matlab’s Wavelet toobox [7].

1 f unc t i on mpdict = wmpdictionary (N, ’Name ’ , ’ Value ’ )
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2 % Inputs :

3 % N − Length o f input s i g n a l .

4 %

5 % Name−Value p a i r s :

6 % ’ l s t c p t ’ − A c e l l array o f c e l l a r rays with v a l i d sub−d i c t i o n a r i e s .

7 % Valid ones in c lude : { ’ wavelet fami ly ’ , N} , ’ dct ’ , ’ s in ’ , ’ cos ’ , ’

poly ’ ,

8 % ’ RnIdent ’ ( s h i f t e d Kronecker de l t a ) . Defau l t i s {{ ’ sym4 ’ , 5} ,

9 % { ’wpsym4 ’ , 5} , ’ dct ’ , ’ s in ’ } .

10 % ’ addbeg ’ − Prepended sub−d i c t i o n a r y (MxN matrix ) .

11 % ’ addend ’ − Appended sub−d i c t i o n a r y (MxN matrix ) .

12 %

13 % Outputs :

14 % mpdict − Dict ionary s i g n a l f o r spar s e approximation .

Code Listing 1.5: MP Dictionary Matlab function

For simplified cases, the dictionary chosen replicates the signal you’re trying to approx-

imate, ie a smooth continuous input would be represented best with a Fourier basis, while

one would use a Wavelet basis for smooth input with isolated discontinuities. However, with

real-world data, it can be sparsely represented by any basis, so we would want to construct

a dictionary using vectors which span different bases. This leads to a set of atoms which are

not linearly independent, so the MP solution of an input is not unique - there may be other

combinations of dictionary atoms which sparsely represent the signal.To avoid this issue, we

introduce the idea of redundancy (dictionary atoms form a linearly independent set) such

that x can be expanded by a set of atom vectors that adapt to the time-frequency or time-

scale characteristics of x. This restriction, along with the notion of completeness (dictionary

atoms span the entire signal space) allow us to utilize MP effectively. The challenge is how

to choose the optimal N -term expansion of x in a given dictionary. With this in mind, let’s

consider the base matching pursuit algorithm.

Let φ = {φk} be a dictionary of unit-norm atoms and f an input signal. Define R0f = f
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as the starting residual. Select the atom from φ such that the inner product is maximized.

Denote that atom as φp. Update the residual by subtracting the orthogonal projection of

R0f onto the space spanned by φp: R1f = R0f−〈R0f, φp〉φp. Iterate for each atom, as such:

Rn+1f = Rnf − 〈Rnf, φk〉φk

and stop once the norm of the residual and f converge to 0 [7, 8].

Here is the base algorithm using the Wavelet toolbox’s wmpalg:

1 f unc t i on [ y f i t ,R, c o e f f , iopt , qual ] = wmpalg ( ’ mpalg ’ ,Y, mpdict , ’Name ’ , ’ Value ’ )

2 % Inputs :

3 % ’ mpalg ’ − Algorithm type ( bas ic , orthogonal , or weak ) .

4 % Y − S igna l f o r matching pur su i t ( vec to r ) .

5 % mpdict − MP dic t i onary , cons t ruc ted v ia wmpdictionary .

6 %

7 % Name−Value p a i r s :

8 % ’ itermax ’ − I n t eg e r f i x i n g the max number o f i t e r a t i o n s .

9 % Defau l t i s 25 .

10 % ’ maxerr ’ − Ce l l array with the norm and max r e l a t i v e e r r o r (%) .

11 % Norms are ’L1 ’ , ’ L2 ’ , or ’ Linf ’ . Rel e r r i s 100 ∗ | |R | | / | |Y | | .

12 % ’ typeplot ’ − Type o f p l o t to produce . Options are ’ none ’ , ’ one ’ ,

13 % ’ movie ’ , or ’ s tepwise ’

14 % ’ stepp lo t ’ − Number o f i t e r a t i o n s between p l o t s ( f o r movie or s tep ) .

15 %

16 % Outputs :

17 % y f i t − Adaptive greedy approximation o f Y

18 % R − Res idua l a f t e r MP terminate s .

19 % c o e f f − Expansion c o e f f i c i e n t s in mpdict . Dic t ionary atoms

20 % weighted by c o e f f y i e l d y f i t .

21 % iopt − Column i n d i c e s o f the s e l e c t e d mpdict atoms .

22 % qual − Proport ion o f r e t a in ed s i g n a l energy f o r each i t e r a t i o n

23 % in MP. q k = | | a k | | ˆ 2 / | |Y | | ˆ 2 , where a k i s the vec to r o f
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24 % expansion c o e f f s a f t e r the kth step .

Code Listing 1.6: Matching Pursuit Matlab function

Utilization of MP as a classification method requires a precise definition of the type of

algorithm, of which there are three to choose from [7]. 1) Basic: dictionary atoms are not

mutually orthogonal vectors, so subtracting subsequent residuals from the priors can mix

non-orthogonal components to the span. 2) Orthogonal: the residual is always orthogonal to

the span of the atoms already selected. Therefore, convergence is guaranteed in d steps equal

to the dimensionality of the signal. 3) Weak orthogonal: for computational efficiency, it uses

a weaker maximization criteria for the inner product, such that |〈x, φp〉| ≥ αmaxk |〈x, φk〉|

where α ∈ (0, 1].

To quantify the fit of a matched pursuit, we can utilize the output metrics, just like with

machine learning for predictive analytics. Using wmpalg allows us the following options:

• Residuals plot of observed - predicted vs observed; how far off are we?

• Quality of fit how it adapts to training; does it generalize?

• Feature importances dictionary atom weight; which features are important?

These concepts may require some background knowledge about statistical learning, which

can be found in the wonderfully written and presented ”Introduction to Statistical Learning”

by Hastie and Tibshirani. The text covers the beginnings of machine learning and data

science through linear algebra-based statistical models. In short, we are attempting to put

some measure on the goodness of fit of our matching pursuit model, which will be trained

on data from a specific basis [9, 10].
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Chapter 2

Applying Dynamic Data Analysis on

E4 Data

2.1 Pre-conditioned Data

Now that we’ve shown a suite of possible methods for data processing, it’s time to apply

them directly on data collected from the E4. To recap, we’re going to start with a pre-

conditioned set in which we used the best possible acquisition scenario: isolating the three-

dimensional Euclidean coordinates, along with combinations of two directions (flip, spin, and

roll). From there, the first step of analysis should always be clean-up.

2.1.1 Smoothing and Filtering

Based on our discussion in chapter 1, we are going to employ a Gaussian window function

of length 11 to smooth the accelerometer data. The choice of window size comes from an

observation of the periodicity in random data.
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Figure 2.1: Smoothing an accelerometer data signal with a Gaussian window function

1 obj = E4 se s s i on ( ’ xy 7 ’ ) ; % i n i t i a t e csv read

2 x = obj .ACC. data ; % grab the ACC data

3 f o r i = 1 :3

4 G = gausswin (11) ; % choose an 11 po int window

5 g a u s s F i l t = G/sum(G) ; % normal ize

6 SV( : , i ) = conv ( x ( : , i ) , g a u s s F i l t ) ; % convo lute with Gaussian

Code Listing 2.1: Gaussian window smoothing code

Now we will compare the Gaussian smoothing with a Savitzky-Golay filter, using a third-

order spline polynomial and a frame size of 15.

1 sV = s g o l a y f i l t (x , 3 , 1 5 ) ;

Code Listing 2.2: Savitzky-Golay filtering
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Figure 2.2: Smoothing an accelerometer signal with Savitzky-Golay filtering

As you can see, the two smoothing filters give a very similar result, the main distinction

being found in the peaks. Recall that Savitzky-Golay preserves high frequencies as a defining

property, and thus will be used in all future analyses. Here’s a direct comparison of the x-axis

of each method used above:
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Figure 2.3: Close-up of smoothing with x-axis only

2.1.2 Neighborhood Search

After smoothing the data, we would like to identify the best possible coordinate system for

the motions at play. The best way to do so is with the SVD, which we discussed previously.

As with our smoothing options, there are a few ways to set up this particular SVD after

constructing a sequence of groups containing nearby data points. To do so, we will utilize the

k-nearest neighbors search algorithm (with Matlab’s built-in knnsearch function) to create

a matrix M containing a starting point plus its 24 closest neighbors. For more information

about knnsearch, see below for a brief description of the function. We will be using the

Euclidean distance in the following code snippets.

1 f unc t i on IDX = knnsearch (X,Y, ’Name ’ , ’ Value ’ )

2 % Inputs :

3 % X − Matrix o f po in t s or to−be nea r e s t ne ighbors .

4 % Y − Matrix o f query po in t s .

5 %

6 % Name−Value p a i r s :

7 % ’k ’ − S p e c i f y i n g the number o f ne ighbors to be found in X f o r

8 % each po int in Y. Defau l t i s 1 .
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9 % ’NSMethod ’ − Search method . Ei ther kdtree or exhaust ive .

10 % Kdtree only v a l i d f o r the f o l l o w i n g d i s t anc e met r i c s :

11 % ’ euc l idean ’ , ’ c i t yb lock ’ , ’ minkowski ’ , or ’ chebychev ’ .

12 % ’ Distance ’ − S p e c i f i e s the d i s t anc e metr ic . Defau l t i s ’ euc l idean ’ .

13 % see ” help knnsearch f o r the f u l l Name−Value pa i r l i s t .

14 %

15 % Outputs :

16 % IDX − I n d i c e s in X denot ing the l o ca t ed nea r e s t ne ighbors .

Code Listing 2.3: k-NN Search Matlab function

The figure below simply shows a random data set, assuming motion in two directions so

that we expect a circular pattern to appear if scaled down to R2.

Figure 2.4: Geometry of the problem

To apply SVD on this data, M , let xj, xj+1, and xcenter be the starting point, next nearest

neighbor, and the center point of that knn cluster, respectively. To find the centroid of M ,

we take the average and create an appropriately-sized matrix where each row is the center,

subtracting it from M to get a matrix, M2, of 25 nearby vectors that are now centered

around the origin. Now we apply SVD on M2 to find it’s singular values and associated

vectors. Next, we project out the third dimension and multiply M2 by v such that v(:, 3) = 0.

To return to a 3-space, we apply the inverse transform (namely, vT ) to M2∗vT [11]. Finally,
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the data needs to be relocated to it’s original position, so we’ll add the center back to each

vector in the final matrix. This script repeats for each vector in the smoothed data, until

a local SVD is generated for the jth row, each of which has an associated matrix of nearest

neighbors. The code snippet below demonstrates this option for SVD on nearest neighbors

after we apply a smoothing filter.

Assume these variables in each of the SVD options below:

1 obj = E4 se s s i on ( ’ s e s s i o n ’ ) ; % i n i t i a t e s e s s i o n csv read

2 i f e x i s t ( ’ x ’ , ’ var ’ ) == 0 % check i f we can repeat the proce s s

3 x = obj .ACC. data ; % grab the ACC data

4 e l s e x = MN; % as s i gn x to be the r ec ent coord sys

5 sV = s g o l a y f i l t (x , 3 , 1 5 ) ; % run Savitzky−Goly f i l t e r to smooth ACC

6 t t = 1 : 7 0 0 ; d = length ( t t ) ; % por t i on o f data that f i t s bes t

7 p lo t3 ( x ( tt , 1 ) , x ( tt , 2 ) , x ( tt , 3 ) ) % smoothed ACC data

8 Mnew = ze ro s (d , 3 ) ; y = ze ro s (25 ,3 ) ; % next M matrix and a s s o c i a t e d tangents

9 S = ze ro s (1 , d ) ; T = ze ro s (1 , d ) ; % matr i ce s to hold s i n g u l a r va lue s

Code Listing 2.4: Variables for 3-D SVD options

It should be noted that the goal here is to localize to the underlying motion present in

each session, so just doing one pass through is not enough. The ’if exist’ portion of the

code allows for us to apply the algorithm multiple times until we are confident that the best

possible coordinate system has been found.

1 f o r j = 1 : d

2 X = sV( j , : ) ; % s t a r t i n g po int f o r the search

3 idx = knnsearch (sV ,X, ’ k ’ ,25) ; % sea r che s f o r 25 nea r e s t ne ighbors

4 M = sV( idx ( 1 : 2 5 ) , : ) ; % nea r e s t ne ighbor smoothed value

5 cente r = sum(M) /numel (M) ; % cen t ro id

6 N = ones (25 ,1 ) ∗ cente r ; % matrix o f c en t r o id po in t s

7 M2 = M−N; % M matrix minus i t s c en t e r

8 [ u , s , v ] = svd (M2, 0 ) ; % svd to f i n d best coord system

9 v2 = v ; v2 ( : , 3 ) = 0 ; % p r o j e c t i n g out the 3 rd dimension

10 M3 = M2∗v2 ; % coord inate trans form
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11 M4 = M3∗v2 ’ ; % r o t a t i o n back to 3d ( us ing v ’ )

12 M5 = M4+N; % put back c en t r o id

13 Mnew( j : j +24 , : ) = M5; % matrix o f M5’ s

14 MN = Mnew( 1 : d , : ) ; % cut o f f the end

Code Listing 2.5: Local 3-D SVD using the centroid

2.1.3 Applying SVD to each motion

Finally, we will visually compare each of the local SVD options to coax out that ”best”

coordinate system that describes the underlying motion beneath the noise. Do note that

each of these used the spin data, so we expected a circular motion localized to the xy-plane.

Savitzky-Golay filtering was applied to smooth out the signal prior to analysis. The light

blue depicts the smoothed ACC data, while the black dots are the actual motion, given by

the SVD output. Sequentially, with each pass through the process, the localized dynamical

system becomes more visible and apparent.

Figure 2.5: Spin SVD using a cen-
troid of points, step 1

Figure 2.6: Spin SVD using a cen-
troid of points, step 2

29



Figure 2.7: Spin SVD using a cen-
troid of points, step 3

Figure 2.8: Spin SVD using a cen-
troid of points, step 4

As you can see, with each new application of the algorithm, the actual underlying

motion starts to poke through. Further passes yield similar results to step 4, but just

slightly smoother, so we will stop at that point and assert the following: ∏∞x SVDx(signal) =

actual motion, such that an infinite number of ”local coordinate checks” produces the actual

motion that is being collected by the accelerometer. Now, we will explore the other canonical

motions and find out if this dynamic is present under those as well.

The xz-plane depicts a rolling motion. The reason for the bending and twisting of the

dynamic comes from the data-collection phase, where the apparatus was not completely

stabilized. In future revisions/research, a more exact and true apparatus will be used to

nullify the y-component to depict a better roll.

Figure 2.9: Roll SVD using a cen-
troid of points, step 1

Figure 2.10: Roll SVD using a cen-
troid of points, step 2
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Figure 2.11: Roll SVD using a cen-
troid of points, step 3

Figure 2.12: Roll SVD using a cen-
troid of points, step 4

The same bending and twisting logic also applies to the yz-plane flipping motion. In

both cases, we can clearly see 2d rotation in the major axes of each motion.

Figure 2.13: Flip SVD using a cen-
troid of points, step 1

Figure 2.14: Flip SVD using a cen-
troid of points, step 2

Figure 2.15: Flip SVD using a cen-
troid of points, step 3

Figure 2.16: Flip SVD using a cen-
troid of points, step 4
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For the lateral motions (up-down, back-forth, left-right), a 2d SVD is utilized, with one

dimension removed and another being projected out as we apply iterative transformations to

the input signal. To choose the appropriate dimension to nullify we calculate the minimum

variance of the input signal and remove that column - thus stabilizing the dynamic.

1 obj = E4 se s s i on ( ’ s e s s i o n ’ ) ; % i n i t i a t e s e s s i o n csv read

2 x = obj .ACC. data ; v = min ( var ( x ) ) ; % grab the data , c a l c u l a t e min var iance

3 f o r k = 1 :3

4 i f var ( x ( : , k ) ) == v % check i f c o l has min var iance

5 x ( : , k ) = [ ] ; % remove c o l i f t h i s i s the case

6 sV = s g o l a y f i l t (x , 3 , 1 5 ) ; % run Savitzky−Goly f i l t e r to smooth ACC

7 t t = 1 : 7 0 0 ; d = length ( t t ) ; % por t i on o f data that f i t s bes t

8 p lo t ( x ( tt , 1 ) , x ( tt , 2 ) ) % smoothed ACC data

9 Mnew = ze ro s (d , 2 ) ; y = ze ro s (25 ,2 ) ; % next M matrix and a s s o c i a t e d tangents

10 S = ze ro s (1 , d ) ; T = ze ro s (1 , d ) ; % matr i ce s to hold s i n g u l a r va lue s

11 . . . %cont inue with c en t r o id method on 2 dimensions

Code Listing 2.6: Variables for 2-D SVD options

Each lateral plane depicts a different motion. The z-plane equates to up-down, y-plane

is left-right, and x-plane is back-forth. For brevity, we will only include the first and final

iterative SVD result.

Up-down:

Figure 2.17: Up-down SVD using a
centroid of points, step 1

Figure 2.18: Up-down SVD using a
centroid of points, step 4
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Back-forth:

Figure 2.19: Back-forth SVD using a
centroid of points, step 1

Figure 2.20: Back-forth SVD using a
centroid of points, step 4

Left-right:

Figure 2.21: Left-right SVD using a
centroid of points, step 1

Figure 2.22: Left-right SVD using a
centroid of points, step 4

2.1.4 Creating a Dictionary

A few more steps before designing the dictionary - first we have to account for randomness

in the data-collection process by including interaction terms between the major axes of

motion. Note that the neighborhood search SVD process removed some components of

the motion via mapping down to a smaller dimensionality. To do so, we’ll apply matrix

multiplication first, then our NS-SVD scheme on the output (to maintain independence).

Second, we normalize each component with signali
‖signali‖ , i ∈ signal, giving us our final set of
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atoms.

index signal index signal index signal index signal
1-3 bf 19-21 bflr 37-39 udflip 55-57 fliproll
4-6 flip 22-24 bfud 40-42 udroll 58-60 flipspin
7-9 lr 25-27 lrud 43-45 udspin 61-63 rollspin
10-12 roll 28-30 bfflip 46-48 lrflip 63-66 all
13-15 spin 31-33 bfroll 49-51 lrroll
16-18 ud 34-36 bfspin 52-54 lrspin

Table 2.1: Index for collected samples, final

As a sanity check, we can compute the row-reduced echelon form of our matrix. This is

immediately analogous to solving a system of linear equations with the goal of maintaining

dimensionality of the original matrix, namely in the form of rank(A). Once we are certain

of linear independence among the dictionary atoms, we can run wmpdictionary and start

the process of signal classification via matching pursuit.

If we plot the resulting dictionary from wmpdictionary, it looks like this:

Figure 2.23: Plot of SVD-generated dictionary for Matching Pursuit

This plot doesn’t hold any meaningful significance except to show some redundancy and
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complexity of the input dictionary, plus perhaps some sense of fulfillment from all of the

data collection process to make it to this point.

2.2 Supervised Learning

With the dictionary created, we’re going to start applying matching pursuit on some

data. Following along with some machine-learning concepts, we always begin by seeing how

a model fits to training data. So let’s use a sample of the signals used to create the dictionary,

expecting the prediction to perfectly accurate. As a reminder to the reader, these samples

will have already been cleaned with Savitzky-Golay. Here’s the rolling dictionary:

Figure 2.24: Supervised sample for MP

This process to apply matching pursuit on sample data first normalizes, then uses a cutoff

point in the data to detect any points where we lose clarity (such as where x, y, z = −2),
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and then resamples the signal to fit inside an appropriate length for fitting. We set the

max number of iterations to 25 in order to mimic our original basis (without the additional

interaction terms). Code snippet for our falling motion is below.

1 obj = E4 se s s i on ( ’ r o l l s v d ’ ) ; % i n i t i a t e s e s s i o n csv read

2 x = obj .ACC. data ; % grab the sample

3 x = x/sum( x ) ; % normal ize the sample

4 d = length ( t t ) ; % por t i on that f i t s bes t

5 cut = f i n d ( x ( 1 : end , 2 ) == −2.000) ; % f i n d the c u t o f f po int

6 y = resample (x , d , cut−1) ; % resample ( s i gna l , length , c u t o f f )

7 y = y ( tt , : ) ; % cut o f f the end

8 [ y f i t , res , c o e f f , idx , qual ] = wmpalg ( ’WMP’ ,y , xx , ’ typep lo t ’ , ’ one ’ , ’ s t e p p l o t ’ , 2 ) ;

Code Listing 2.7: Matching Pursuit code
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Figure 2.25: MP results for normalized rolling signal

2.2.1 Classification of a Known Input

Before we get into some results with the matching pursuit output plots, let’s discuss the

pieces of wmpalg. Our goal was to determine which dictionary atoms are contributing to the

input signal - the first and most direct path to that answer is through the atom coefficients.

These coefficients can be thought of as the most influential basis signal(s) to classify an
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input. Connected to the coefficients is the index selector, which chooses which coefficient(s)

to base the matched pursuit signal on.

We can also investigate the quality of the fit, or more precisely, the correlation between

the signal and the dictionary atoms as you increase the number of iterations. This is easiest

to understand when viewing the plots output from matching pursuit. Lastly, and perhaps,

the most crucial component for analysis is the residual plot, which compares the observed

values with the offset between actual and predicted. Along with quality, it can verify whether

the model fits appropriately (given any assumptions made) [9, 10].

Plotting these residual plots is quite easy using Python packages, as seen here:

1 import pandas as pd

2 import seaborn as sb

3 import matp lo t l i b . pyplot as p l t

4

5 raw = pd . r ead c sv ( ’ data . csv ’ )

6 r e s = pd . r ead c sv ( ’ r e s i d u a l s . csv ’ )

7

8 f i g = p l t . f i g u r e ( )

9 ax = sb . r e g p l o t ( x=r e s . x , y=raw . x )

10 ax . s e t x l a b e l ( ’ Res idual va lue s ’ )

11 ax . s e t y l a b e l ( ’Raw data ’ )

12 ax . s e t t i t l e ( ’ Res idua l p l o t ’ )

13 f i g . s a v e f i g ( ” r e s i d u a l p l o t . png” )

Code Listing 2.8: Plotting residuals

As expected, the results for matching pursuit on a known sample are perfectly accurate,

with atoms 10-12 chosen for classification (precisely the ones used to create the rolling

sub-dictionary). Looking at the output coefficients and quality shows that MP sparsely

represented the input signal perfectly in 2 iterations, estimating y = 0.1084φ12 +0.0205φ10 +

0.0001φ11.

38



atom weight cumulative quality of fit
12 0.024282 0.9658
10 -0.0047335 1
11 0.0019433 1
33 0.0015364 1
44 -0.0036901 1
39 0.019895 1
28 0.0056626 1
56 -0.010656 1
20 0.0040329 1
42 0.0078637 1
47 0.0046697 1
51 -0.0069905 1
57 -0.0046011 1
5 0.0043878 1
64 -0.0040896 1
26 -0.0062983 1
60 -0.0064075 1
55 0.00204 1
35 0.0028547 1
27 0.0057625 1
41 0.0017381 1
66 0.0053186 1
38 -0.0017064 1
23 -0.0025586 1
52 -0.0014733 1

Table 2.2: MP metrics for supervised rolling data

As such, the residuals are diminished and dispersed randomly around x = 0. This is the

property we want, as it indicates that our model assumption is correct and that the fit is

accurate. Note the scale on the x-axis is 1e−15, which is essentially 0 due to floating point

precision.
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Figure 2.26: Normalized rolling signal residual plot

As we just saw, decomposing pre-determined motions using a basis of well-defined motions

with lower dimensionality than the original data-space is quite intuitive. But what about

arbitrary, random motions? Is the process as intuitive and simplistic? Let’s find out.
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Chapter 3

How to Decompose Arbitrary

Motions Into a Canonical Basis

This final chapter will serve as a collection of all challenges and issues of applying some of

the processes we’ve discussed on truly random data. The structure will be similar to that of

chapter two, though a conscious choice was made here to focus on results and visualization

rather than the mathematical details - as they were explored extensively in previous sections.

3.1 Semi-Supervised Learning

In chapter 2, we utilized a training set which was used in the creation of our basis

dictionary, and the results showed, giving us a proof-of-concept to scale this to more random

data. We’ll start small a signal that aims to emulate walking, spinning, and falling - though

not quite the same data as what was used for the dictionary. In machine-learning terms,

this is called semi-supervised learning. The idea here is that the new sample is not an exact

replica of the training data, but an approximation of what would happen if you pasted

certain atoms next to each other [9, 10]. If MP is successful here, it shows that our method

generalizes well to data it hasn’t necessarily seen, but has an idea of what labels to expect.
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3.1.1 Data Exploration

Figure 3.1: Pseudo-random sample accelerometer reading (falling)

The portion at x = [0, 300) is a walking sequence, followed by a quick spin at x =

(300, 400), and finally a fall to the floor at x = (400, 500). This leaves x = (500, 583] to

involve getting up and removing the E4. For our MP implementation, we include a routine

to identify and remove data following cutoff points. From there, we resample the data to

maintain an equal length to the dictionary. Using this signal, let’s perform some cleansing

and filtering to get a real sense of the accelerometer behavior. We’ll apply the same Savitsky-

Golay filter and explore the iterative SVD to determine a proxy for the underlying motion.
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Figure 3.2: Savitsky-Golay filtering of falling data

Figure 3.3: Falling SVD using a cen-
troid of points, step 1

Figure 3.4: Falling SVD using a cen-
troid of points, step 4

If we rotate the angle on the final image, we can clearly see a circle forming around the

time of a spin and fall taking place - a definite indication that we will be able to detect that
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signal from a portion of the input dictionary. It is also interesting how the walking portion

of the sample nearly matches that of the left-right and back-forth dictionary signals.

Figure 3.5: Different angle of step 4 above

3.1.2 Classification of a Semi-Random Input

As with our supervised learning example in the previous chapter, the steps to apply

matching pursuit are the same, so we can jump straight to the plots and output.
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Figure 3.6: MP results for normalized falling signal

Top five atoms chosen for classification: 2 (bf), 42 (ud-roll), 62 (rollspin), 64 (all), and 38

(udflip), which represent some of the interactions present in the data - especially the back-

forth and spinning motions. What is likely occurring here is due to the actual dynamics

of the falling and standing up portion of the signal: the combined terms are hinting at

additional factors being a necessary component of signal classification. Per the coefficients
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and quality table, our falling signal was approximated up to 90% in 8 iterations.

atom weight cumulative quality of fit
2 0.024282 0.81357
42 -0.0047335 0.84114
62 0.0019433 0.85573
64 0.0015364 0.8637
38 -0.0036901 0.87063
7 0.019895 0.88117
44 0.0056626 0.89169
48 -0.010656 0.90111
41 0.0040329 0.90885
40 0.0078637 0.91394
56 0.0046697 0.91928
47 -0.0069905 0.92491
46 -0.0046011 0.92899
28 0.0043878 0.93264
43 -0.0040896 0.93388
49 -0.0062983 0.93755
26 -0.0064075 0.9397
65 0.00204 0.94137
63 0.0028547 0.94241
32 0.0057625 0.94477
34 0.0017381 0.94561
17 0.0053186 0.94762
55 -0.0017064 0.94829
50 -0.0025586 0.94913
53 -0.0014733 0.94968

Table 3.1: MP metrics for semi-supervised falling data

Again, we have residuals which are diminished and dispersed randomly around x = 0

(aside from 2 outliers); a clear sign of an accurate fit.
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Figure 3.7: Normalized falling signal residual plot

3.2 Unsupervised Learning

Now with a solid grasp of generalization achieved, let’s move on to the real test: com-

pletely unlabeled, random input. We’ll apply the same exact process, with the caveat of not

knowing the true dynamic of motion. Instead, we’ll attempt to infer behavior based on the

basis dictionary signals we created, verifying with matching pursuit.
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3.2.1 Data Exploration

Figure 3.8: Random input signal

Taking an educated guess at this data, I’d suggest that the portion from x = [0, 250) is a

combination of coupled lateral motions. Whether these manifest as well-defined spins or flips

is hard to discern. From x = (250, 550), some interesting behavior develops; a steep rise in

left-right motion, followed by near-stagnation of all axes. This could be indicative of a reflex

causing a sudden movement, then silence. And finally, for x = (500, 700], all signals perk

up (yz being stronger, perhaps a flip with some back-forth artifacts?) before returning to a

constant state. Let’s explore the data some more to see if certain patterns make themselves

clear.
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Figure 3.9: Random input signal, filtered

After applying Savitsky-Golay, it seems that the x = (500, 700] portion is more indicative

of a spin with heavy up-down artifacts, due to the relative mirroring of the x and y signals

at the tail-end of the sample.
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Figure 3.10: Random SVD using a
centroid of points, step 1

Figure 3.11: Random SVD using a
centroid of points, step 4

Nothing obvious here, but suppose we rotate it like we did with the semi-supervised

sample. This gives the data more perspective, and could explain the late spike in the z-

component (the portion of the image toward the left-hand side).

Figure 3.12: Different angle of step 4 above
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Nonetheless, the sample remains unlabeled. For future research, a video recording of

each sample for manual tagging would be greatly beneficial for random input signals. This

would give us an important benchmark in how matching pursuit performs, without needing

the guesswork.

3.2.2 Classification of a Random Input

Figure 3.13: MP results for normalized random signal
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Top five atoms chosen for classification: 25 (lr-ud), 47 (lr-flip), 43 (ud-spin), 44 (ud-

spin), and 64 (all), which represent a lot of the interactions in the data. This is telling

because we are not aware of the true labels here, and it is real-world data we’re attempting

to describe with a sparse dictionary. In terms of coefficients and quality, our random signal

was approximated up to 68% in 25 iterations. If we increased the number of iterations, the

variance in the input could be explained, however at the expense of interpretability.

atom weight cumulative quality of fit
25 3.0199E-06 0.26976
47 2.4879E-06 0.34218
43 5.2201E-06 0.4237
44 -2.2532E-06 0.46024
64 -2.3684E-06 0.48875
41 2.8208E-06 0.50688
63 3.9229E-06 0.51932
50 3.6866E-06 0.52872
55 -1.3833E-06 0.5409
66 -4.0142E-06 0.55382
62 4.359E-06 0.56733
14 -4.2519E-06 0.57844
46 4.2165E-06 0.60309
34 1.263E-06 0.60866
17 3.5364E-06 0.61852
52 -2.2609E-06 0.63277
40 -4.1962E-06 0.64107
22 3.302E-06 0.64839
49 3.7426E-06 0.66053
19 -2.5989E-06 0.67125
29 2.6658E-06 0.67727
12 -1.1614E-06 0.68112
20 -1.1902E-06 0.68418
28 -1.2972E-06 0.68681
60 6.6311E-07 0.68795

Table 3.2: MP metrics for unsupervised random data

Since we have a slightly misclassified signal, our residual plot should be slightly off as

well. Despite still being somewhat randomly dispersed around x = 0, there is a definite

trend of larger values (likely contributing to spikes in the data) of having larger residuals.
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In statistics, we would interpret this residual trend as a sign of needing additional factors in

our model.

Figure 3.14: Normalized random signal residual plot

For completeness, here is matching pursuit on a random input using all of the atoms in

our dictionary (setting itermax to be 66). The additional factors will help fill in gaps in the

original prediction and enhance the residual plot and quality (up to 80%), but will not affect

the top five contributing atoms, as the iteration process is optimize to always choose the

best atom (one that maximize |〈x, φk〉| and minimize ‖f −Dk‖2) in sequence until either a)

convergence is achieved, b) itermax is reached, or c) there are no more atoms to use.
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Figure 3.15: MP results for normalized random signal using all atoms of our custom dictio-
nary

3.3 Limiting Factors

Given the promising results on a totally random input with both the dictionary we created

and the default for wmpalg, I’d like to pose two questions. 1) Is our dictionary complete

and/or redundant enough to generalize to all cases? 2) Is our dictionary sparse enough so

that atom coefficients are uniquely identifiable?

These questions seem to highlight a divide between accuracy and interpretability [10].
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On one hand, if we use the most robust dictionary possible, we’d expect nearly perfect

classification accuracy. But on the other, if we keep the dictionary small, we’d expect

nearly perfect precision in the atoms chosen for each assignment. Suppose we were to use

a default library of basis functions instead of building our own. Would the results perform

exceptionally better? At what potential cost? Let us consider this using our unsupervised,

random sample.

Figure 3.16: MP results for normalized random signal with default dictionary
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Per the coefficients and quality table, our random signal was approximated up to 93%

in 25 iterations, quite a few iterations less than our test with the entirety of our custom

dictionary.

atom weight cumulative quality of fit
18 6.7742E-06 0.2227
2106 8.2557E-06 0.53328
20 3.8668E-06 0.6573
22 1.3428E-06 0.70004
1406 4.507E-06 0.73116
11 -2.5954E-06 0.76035
41 -2.0216E-06 0.78336
24 -1.7507E-06 0.80066
82 1.59E-06 0.81751
1411 2.4026E-06 0.83508
10 -2.4215E-06 0.86113
1437 8.8946E-07 0.8722
46 1.2764E-06 0.88072
89 -1.181E-06 0.88958
12 -1.2379E-06 0.89741
59 -1.0928E-06 0.90432
1 -1.1983E-06 0.91141
42 -1.0434E-06 0.91623
94 -8.0068E-07 0.91991
1447 8.9412E-07 0.92403
751 -7.8209E-07 0.92756
117 -7.1627E-07 0.93053
362 6.861E-07 0.93326
325 -6.6001E-07 0.93579
163 6.2429E-07 0.93805

Table 3.3: MP metrics for unsupervised random data (default dictionary)

With a better fit, we would also expect a more randomly dispersed set of residuals, as

seen here.
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Figure 3.17: Normalized random signal residual plot with default dictionary

As shown from the two results, the default dictionary performs better in terms of quality

of fit and percentage points, but lacks the precision that a specifically constructed basis

provides. In short, we would lose a significant chunk of interpretability in the model if we

blindly utilize the default basis. Of course, the wmpdictionary default is an orthogonal basis,

which already is a huge leap from our non-orthogonal basis used in the paper [7, 8, 11]. For

this method to become more robust to any accelerometer input, many more samples would

need to be collected, normalized, and applied to the analysis.

Since the techniques presented in this paper were dependent on manual data collection

(somewhat mitigated by isolating axes), optimized questions, future research, and more data

(that is video-tagged and labeled) is absolutely necessary to achieve the goal of applying
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real-time detection algorithms on raw accelerometer data. Some code for a streamed data

(which still has some latency) has been developed, but our focus was to present a method

for classification of pre-collected samples.

Other sources of limitations include the prevailing sense of scale used. All dictionary

atoms were either collected at a fixed length, or resampled to meet that length. This meant

that all matching pursuit calls had to be on the same scale, without adjusting for phase space.

Ideally, one could pull out specific portions of an input signal to assign a single classification

for that snippet (repeating this process over different window lengths), but nothing of the

sort was developed for this research. This concept is closely related to the idea of ”Frames”.

3.4 Summary and Conclusion

To summarize our matching pursuit task, we have the input conditions and output results

tables:

Data Type Label Source Expectation
Supervised Labels known Single basis signal Perfect metrics

Semi-supervised Labels recognized Approximate con-
cat of basis signals

Correct atoms,
quick convergence

Unsupervised No labels Completely random None
Unsupervised (default) No labels Completely random Better accuracy

over custom dictio-
nary

Table 3.4: Summary of conditions for MP alg on each learning method
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Data Type Accuracy Convergence Notes
Supervised Correct atoms, per-

fect metrics
Immediate, within
2 iterations

Proof-of-concept

Semi-supervised Mostly correct
atoms (bf, spin)

90% within 8 itera-
tions

Shows general-
ization to similar
data

Unsupervised Based on observa-
tional guess, atoms
are in the right ball-
park

Slow, 68% after full
bout

Additional general-
ization, shows some
weaknesses

Unsupervised (default) No idea Faster, 90% fit after
20 iterations

Accuracy at the
expense of inter-
pretability

Table 3.5: Summary of results for MP alg on each learning method

In conclusion, we have outlined a successful method for data collection, filtering/cleans-

ing, classification, and verification of results using raw accelerometer signals from a medical

watch. From this, we have come up with matching pursuit models that are 70-95% accurate

on incoming raw data. Much of this success is due to the emphasis placed upon building a

suite of standard practices and applications for data analysis, along with extensive searches

for the best possible coordinate system for the dynamics (through a long process of trial-

and-error during the acquisition phase). We have leveraged statistical learning and data

science techniques through different learning methods, model metrics, and discussions about

accuracy versus interpretability.
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