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ABSTRACT  

PHYLOGENETIC FOCUSING REVEALS THE EVOLUTION OF EUMETAZOAN 

OPSINS 

By 

Curtis Provencher 

University of New Hampshire 

 

 Phylogenetic analyses of gene trees commonly begin by searching large 

molecular datasets from the taxa of interest using some known query sequence. Resulting 

sequences that exceed some threshold are then concatenated, aligned, and analyzed 

phylogenetically. This approach has revealed much about the evolutionary history of 

gene families, but several problems are apparent. Here we apply a new approach that we 

call Phylogenetic Focusing that circumvents some issues related to global search 

strategies. Our approach first circumscribes the largest possible orthogroup containing the 

gene family of interest and then proceeds to focus in on the gene family of interest based 

on iterative rounds of phylogenetic analyses. We demonstrate this approach by using the 

phylogeny of eumetazoan rhodopsin class GPCRs to focus in on a clade containing 

melatonin receptors, opsins, and other genes. Our results clarify the evolutionary history 

of eumetazoan rhodopsin class GPCRs, the subclade containing opsins, and provide new 

hypotheses on the functional significance of these genes in cnidarians.
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INTRODUCTION 

Light detection in most animals is mediated by the visual pigment protein, opsin 

(Ovchinnikov 1982; Shichida and Imai 1998; Hardie and Raghu 2001; Arendt 2003). 

Opsins are a member of the rhodopsin class G-protein protein coupled receptor (GPCR) 

superfamily and are characterized by having seven transmembrane helices and a lysine 

residue at position 296 in reference to the bovine rhodopsin sequence (Nathans and 

Hogness 1983; Hargrave and McDowell 1992; Yokoyama 2000). Lysine 296 serves as 

the binding site for a light sensitive chromophore which, when bound, forms a Schiff-

base linkage triggering a phototransduction cascade (Land and Nilsson 2002; Terakita 

2005).  Opsins play a key role in the ability to sense light, so understanding the 

evolutionary history of these proteins is vital to our understanding of the evolution of 

photoreception and vision in animals. 

Opsins have been classified into three major groups: ciliary (c-opsin, used mostly 

in vertebrate eyes), rhabdomeric (r-opsin, used in the eyes of arthropods, cephalopods 

and other protostomes), and Go-coupled/RGR/RRH (photoisomerases and related 

proteins) (Zucker et al. 1985; Arendt et al. 2004; Shichida and Matsuyama 2009). 

However, studies investigating opsins outside of model organisms have identified new 

subfamiles such as cnidopsin, pteropsin, chaopsin, and xenopsin, making opsin 

classification and evolution difficult to elucidate (Plachetzki et al. 2007; Verlarde et al. 

2005; Picciani et al. 2018). Studies have shown that the last common ancestor of Bilateria 

most likely possessed opsins from all three of the major groups (Porter et al. 2011; 

Ramirez et al. 2016). Yet we know that animals such as cnidarians and other groups that 

predate Bilateria also display photosensitive behaviors controlled through the usage of 
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opsins (Singer et al. 1963; Plachetzki et al. 2012; Schnitzler et al. 2012). In 2011, 

Sweeney et al. found that spectral changes in the water caused by lunar phases is 

correlated to the mass spawning events seen in coral reefs. Plachetzki et al. in 2012 

described how the hydrozoan, Hydra magnipapillata, uses opsin-based phototransduction 

to regulate the firing of the cnidarian specific cnidocyte cells.  Cnidarian opsins have 

been a topic of debate since their discovery (Plachetzki et al. 2007; Suga et al. 2008). 

Cnidarians are the evolutionary sister to bilaterians, so their opsin complement has a 

direct bearing on our understanding of the evolution of opsins, and phototransduction in 

animals (Plachetzki et al. 2007). However, comprehensive studies that address what types 

of opsins are present in cnidarians have often resulted in poorly supported results based 

on only a few cnidarian sequences derived from a poor sample of extant taxonomic 

diversity. Thus, taxon sampling has been a critical impediment in understanding the opsin 

complement of cnidarians (Dunn et al. 2008; Pick et al. 2010). In order to fill this gap, 

genome scale datasets from a comprehensive sample of cnidarian taxa is required.  

Recent studies have proposed multiple hypotheses regarding opsin evolution 

(Suga et al. 2008; Feuda et al. 2012; Hering and Mayer 2014; Ramirez et al. 2016; 

Picciani et al. 2018). While most studies have employed canonical phylogenetic methods 

based on maximum likelihood and Bayesian approaches, little agreement on the structure 

of the animal opsin phylogeny has resulted. This confusion can be linked to several 

critical aspects of previous analyses that often differ. First, many studies lack a large 

enough sample of cnidarian and early branching metazoan taxa to draw generalizable 

conclusions, potentially missing important aspects of early opsin evolution. For instance, 

the first study of cnidarian opsin phylogeny was based on only two genome sequences 
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(Plachetzki et al. 2007).  Therefore, there is a clear need for studies to increase the 

number of genome scale datasets from early branching taxa, including cnidarians, to 

address opsin evolution and the origins of metazoan phototransduction. Additionally, the 

production of a growing number of genome scale datasets inevitably leads to the 

description of new opsin sequences and clades. However the classification of new data as 

opsins can often be misleading due to biases in the way the data are handled and 

confusion on the existence of consistently supported subclades of metazoan opsins 

(Ramirez et al. 2016; Vöcking et al. 2017). 

 Lastly, hand-curated opsin datasets may be useful for data exploration, but they 

are not exhaustive and fail to capture the totality of opsin loci present in genome scale 

datasets. To improve our understanding of opsin evolution we cannot rely on phylogenies 

built from a few opsin sequences that have been screened for certain diagnostic features. 

Lysine 296 (K296) is the classic diagnostic feature used to determine whether a newly 

found rhodopsin class GPCR is actually an opsin (Tsukamoto and Terakita 2010; Oakley 

and Speiser 2015). As common as it is to rely on K296 for opsin identification, this 

practice discards potential in-group opsins that may lack the K296 residue, but are still 

part of the opsin lineage. Such loci, if present, are part of the story of opsin evolution but 

are generally not included in analyses.  

To circumvent these issues, we have created a methodology termed phylogenetic 

focusing, in which we circumscribe the largest possible orthogroup of a gene family of 

interest and, through exhaustive rounds of phylogenetic analyses, focus in on the clade of 

interest (See Figure 1 for pipeline). First we employ a global search strategy to identify 

rhodopsin class GPCRs, instead of using preexisting opsin datasets. Curated opsin data 
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Figure 1. Phylogenetic focusing pipeline. The diagram depicts how the phylogenetic 
focusing process works starting from “Data Selection” and ending with “Final Opsin 
Clade Analyses”. Green arrows denote when bait and anchor sequences are added into 
the dataset and the red arrow denotes when bait sequences only are added into the dataset. 
Each phase is discussed in detail in the methods section.  
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sets are often incomplete and regularly apply stringent filtering methods to ease the 

computational burden. Conversely, we start with the largest possible set of GPCR blast 

hits from our taxa and focus in on the monophyletic opsin clade through iterative rounds 

of phylogenetic focusing. This allows for opsin sequences to be identified in taxa that 

have and have not been screened before, for which we have no preconceived notions. 

To assist with identification of the opsin clade from the GPCR family, we have 

gathered a set of well-characterized human and invertebrate GPCRs we refer to as 

“anchor” sequences. Our clade of interest is the alpha class of rhodopsin-like GPCRs, so 

our anchors fall into the gamma, beta, and delta classes. The anchors are added to certain 

datasets just prior to alignment and tree building, which allows us to extract sequences 

with similar motifs but may be distantly related phylogenetically. Unlike previous opsin 

studies the addition of anchors allows for us to truly take the largest possible orthogroup 

from the rhodopsin class GPCR family.  

 Sequence alignment is a vital part of the phylogenetic process and can be difficult 

with an abundance of data. We implement two different alignment approaches depending 

on the amount of data present in the current dataset. In the early phases of phylogenetic 

focusing, MAFFT v7.305b (Katoh et al. 2013) is used to align sequences due to its 

accuracy and computational efficiency with a high volume of data. PASTA (Mirarab et 

al. 2015) is used to align downstream datasets once the clade of interest has been 

identified via phylogenetic focusing. PASTA is a stepwise alignment program that is a 

highly accurate progressive extension of MAFFT, but is far too computationally 

expensive to work on alignments with more than ~1,000 sequences.  
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 Here we use a large set of cnidarian data, along with data from bilaterians, 

ctenophores, sponges, and placozoans, to clarify the evolution of eumetazoan alpha-

rhodopsin class GPCRs. By utilizing our new methodology with genomic and 

transcriptomic data from 95 taxa, we were able to uncover the largest and least biased 

representation of metazoan opsin evolution to date. We found strong support for a 

monophyletic cnidopsin clade, or cnidarian specific opsins, whose existence was 

previously a topic of debate. We find that the previously described cnidarian opsin class, 

cnidopsin, (Plachetzki 2007; 2010; 2012) is present in every major class of cnidarians, 

absent only from the parasitic myxozoan subclade. Additionally, we uncovered two 

clades of anthozoan specific opsins that appear to be unstable in the phylogeny. One 

clade appears to be an r-type ortholog present in anthozoans and the other is a larger 

hexacoral-specific clade that switches topology with adjustments in model selection of 

the sequences present in the dataset. Furthermore, the newly erected clade xenopsin 

(Ramirez et al. 2016; Vöcking et al. 2017) present in cnidarians, mollusks and other 

lophotrochozoans was not recovered as a well-supported monophyletic clade. Instead, we 

found that these previously reported xenopsin sequences fall into almost every clade of 

our final opsin phylogeny, indicating the striking polyphyly of this proposed group and 

likely phylogenetic error in previous analyses. This finding highlights the importance of 

exhaustive phylogenetic approaches that provide a realistic reflection of extant taxonomic 

diversity when trying to classify groups of proteins from genome-scale datasets across 

animals. Our findings are applicable to the phylogenetic analysis of any gene family.  
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METHODS 

1. Data Selection  

Genomic or transcriptomic data was collected from 60 cnidarian species to include 

taxa from every major lineage in the phylum including: Hydrozoa, Scyphozoa, Cubozoa, 

Staurozoa, Hexacorallia, Octocorallia, and Endocnidozoa. This data set was curated from 

Kayal et al. (2017), representing the current largest set of cnidarian sequence data. The 

genomes or transcriptomes of four ctenophores, four sponges, three xenacoelomorphs, 

one placozoan, four deuterostomes, and nine protostomes were also included into the data 

set, bringing the total taxon count to 95 species (See Figure 2 for species tree). Our 

dataset is unique in that it is very well sampled from early branching metazoans, which 

allows us to better understand the genes that were present before the evolution of opsins.   

Well-characterized ciliary, rhabdomeric, and Go-coupled/RGR opsin sequences from 

taxa with fully annotated genomes were chosen as query sequences for the BLASTp 

search. Also, we chose a set of more distantly related alpha, beta, gamma, and delta 

rhodopsin class GPCRs as sequences we termed “anchors”. These sequences were not 

used in the blast search, but were used later in the pipeline to root phylogenies and to help 

focus in on the alpha rhodopsin class GPCRs, which contains our focal opsin clade of 

interest. Accession numbers and additional information on the query and anchor 

sequences are in Table 1.  

	
Data Preparation 

 Sequence data was converted into protein space and special stop codon characters 

were removed. Sequence headers were then modified to match the following format: 

“>Genus_#” such as “>Nematostella_1”, with the number	corresponding to a specific 
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Figure 2. Species tree rooted with ctenophores depicting the relationship of all 95 taxa 
included in our analyses. Branch color denotes the taxonomic group. Genera are given at 
tips. For cases where two or more taxa from the same genus were included in the 
analyses (Hydra, Hydractinia, Myxobolus, Montastrea, Haliclystus, and Eunicella) only 
one branch was used to represent the genus.  
 
 
 
 
 
 
 
 
 
 

Focusing in on cnidarian phototransduction
Curtis Provencher, John Chan, Jennifer Spillane, David Plachetzki

the University of New Hampshire, Durham, NH, USA 
@plachetzki www.unh.edu/plachetzki david.plachetzki@unh.edu 

Abstract:
All modes of animal vision depend on opsin proteins of the G protein coupled
receptor (GPCR) class. Opsins are present across animals and cnidarian
opsins were first described more than a decade ago. After much progress,
fundamental questions stemming from the paucity of opsin data representing
the major lineages of Cnidaria persist. Recent phylogenomic analyses have
clarified cnidarian relationships and provide a comprehensive set of genome-
scale datasets that could ameliorate these issues. Here we describe a new
bioinformatic approach called Phylogenetic Focusing that progressively
circumscribes complete orthologous clades of interest within their larger
gene families. We applied phylogenetic focusing to a selection of 60
cnidarian and 25 outgroup genome-scale datasets and find that the GPCR
neighborhood within which opsins reside is populated by several, previously
undescribed clades of non-bilaterian GPCRs including major radiations in
sponges, ctenophores and cnidarians. This finding challenges the view that
melatonin receptors are the close evolutionary sister to opsins and highlights
a hidden diversity of GPCRs in the close vicinity of opsins. In addition,
cnidarians are inferred to have inherited the full complement of opsin types
but have lost several of them in a lineage specific manner, leaving
anthozoans as the cnidarian clade that best represents the ancestral
cnidarian opsin palate. Finally, the rate of opsin gene duplication and loss is
significantly higher for many cnidarian taxa as compared to other animals,
indicating a tumultuous evolutionary history for cnidarian opsins. Our
analysis also clarifies several features of the global metazoan opsin
phylogeny. Studies of gene expression and behavior support a model for
cnidopsin mediated phototransduction that is similar to the ciliary cascade,
but with opposite polarity.
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Name Used NCBI Name  
NCBI 
ACCESSION 

Homo_Encephalopsin opsin-3 [Homo sapiens] NP_055137.2 

Homo_RGR_61744454 RPE-retinal G protein-coupled receptor isoform 2 [Homo sapiens] NP_001012738.1 

Homo_rhodopsin rhodopsin [Homo sapien] NP_000530.1 

Homo_Long_wave_sensitive_opsin 
RecName: Full=Long-wave-sensitive opsin 1; AltName: Full=Red cone 
photoreceptor pigment; AltName: Full=Red-sensitive opsin; Short=ROP P04000.1 

Homo_RRH visual pigment-like receptor peropsin [Homo sapiens] NP_006574.1 

Homo_OPN4 (melanopsin) Opsin 4 [Homo sapiens] AAI13559.1 

Drosophila_Rh1_opsin neither inactivation nor afterpotential E [Drosophila melanogaster] NP_524407.1 

Gallus_melanopsin melanopsin [Gallus gallus] NP_001038118.1 

Mus_rhodopsin rhodopsin [Mus musculus] AAA63392.1 

Gallus_pinopsin opsin [Gallus gallus] AAB47565.1 

Platyneries_Go_coupled_opsin2 Go coupled opsin 2 [Platynereis dumerilii] AKS48307.1 

Manduca_rhodopsin 
RecName: Full=Opsin-3; Short=MANOP3; AltName: Full=Rhodopsin 3, 
short-wavelength; AltName: Full=Rhodopsin P450 O96107.1 

Xenopus_rhodopsin RecName: Full=Rhodopsin P29403.1 

Euprymna_rhodopsin opsin [Euprymna scolopes] ACB05673.1 

Platynereis_ciliary ciliary opsin [Platynereis dumerilii] AAV63834.1 

Helobdella_opsinB opsin B [Helobdella robusta] AID66634.1 

Octopus_rhodopsin_P313562 RecName: Full=Rhodopsin P31356.2 

Homo_melatoninR melatonin receptor type 1A [Homo sapiens] NP_005949.1 

Platynereis_melatoninR melatonin receptor [Platynereis dumerilii] AIT11923.1 

Homo_GPR50 GPR50 protein [Homo Sapien] AAI03697.1 

Homo_Histamine_1_receptor histamine H1 receptor [Homo sapiens] NP_000852.1 

Homo_GPR21 probable G-protein coupled receptor 21 [Homo sapiens] NP_005285.1 

Homo_GPR52 G-protein coupled receptor 52 [Homo sapiens] NP_005675.3 

Homo_dopamine_receptor D(2) dopamine receptor isoform long [Homo sapiens] NP_000786.1 

Homo_orexin_receptor_1 orexin receptor type 1 [Homo sapiens] NP_001516.2 

Homo_RFamide_receptor pyroglutamylated RFamide peptide receptor [Homo sapiens] NP_937822.2 

Homo_neurokinin_receptor neurokinin A receptor [Homo sapiens] AAC31760.1 

Homo_neuropeptide_FF_receptor neuropeptide FF receptor 2 isoform 1 [Homo sapiens] NP_004876.2 

Homo_galanin_receptor galanin receptor type 3 [Homo sapiens] NP_003605.1 

Homo_mu_opioid_receptor_variant mu opioid receptor variant MOR-1R [Homo sapiens] AAK74189.1 

Homo_somatostatin_receptor somatostatin receptor [Homo sapiens] AAA20828.1 

Table 1. List of bait and anchor sequences used. NCBI names and accession numbers are included  
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protein from that species FASTA formatted file. In the case of two or more species from 

the same genus, the first letter or two from the species name will be added, as such: 

“>Hydra_m_1” or “>Hydra_vi_1”.  

 

3. Phylogenetic Focusing (Pipeline in Figure 1.) 

To obtain opsin orthologs from each taxon, BLASTp searches were done using the 

chosen opsin query sequences as baits, an E-value cutoff of 1e-5, and keeping up to 50 

target sequences. Hit sequences were written to new FASTA files for each taxon and put 

through CD-HIT v4.6 (Fu et al. 2012), removing sequences with 98% or higher 

redundancy to others in the set. This was done because much of our data were 

transcriptomes that were previously assembled with Trinity (Grabherr et al. 2011). Such 

datasets often include pseudoreplicates derived from the assembly process. Our use of 

CD-HIT v4.6 (Fu et al. 2012) in this way removes such pseudoreplicates. Query (opsins) 

and anchor sequences (distantly related alpha, beta, gamma, and delta rhodopsin class 

GPCRs) were then concatenated into the global FASTA file and aligned using MAFFT 

v7.305b (Katoh et al. 2013). Alignments were converted to phylip format and analyzed 

phylogenetically using RAxML v8.2.10 (Stamatakis 2014) with the PROTGAMMALGF 

setting, as LG+GAMMA has been shown as the best model for opsin gene trees when 

there is not enough data to inform a GTR model (Feuda et al. 2102; Ramirez et al. 2016). 

This procedure produced a rooted phylogenetic tree containing anchors, query sequences, 

and putative opsins for each of 95 taxa. The resulting 95 maximum likelihood (ML) trees 

were then put through a custom R script that works in three steps. The first tree is rooted 

with the clade containing the most recent common ancestor of the beta, gamma, and delta  
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	Figure 3. Example of what 
occurs during the Tree Editor 
phase of the phylogenetic 
focusing pipeline. This is 
done for each taxon, and this 
example is using Hydractinia 
polyclina. The red tips 
represent the beta, gamma, 
and delta anchor sequences, 
blue tips represent melatonin 
receptors, and green tips are 
the opsin bait sequences. A. 
The clade containing the 
most recent common ancestor 
(MRCA) of the beta, gamma, 
and delta anchor sequences is 
identified (red star) and used 
to root the tree. B. The clade 
containing the MRCA of 
melatonin receptors and 
opsin sequences is identified 
(blue star). C. The clade 
identified in step B is pruned 
off and used for downstream 
analyses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A.

B.

C.
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rhodopsin class GPCR anchor sequences. Next, the clade containing the most recent 

common ancestor of opsins and melatonin receptors (an alpha anchor) is identified, 

pruned off, exported, and the next gene tree is imported. Melatonin receptors are 

commonly used as the outgroup to opsins (Feuda et al 2014; Hering and Mayer 2014). 

See figure 3 for a visual representation of what occurs in the tree editor script. In essence, 

this is phylogenetic focusing; progressively discarding sequences, as one gets closer to 

the focal gene family. Many of the sequences that were discarded may appear to be 

closely related through sequence similarity, but are phylogenetically quite distantly 

related. This allows us to zoom in on the clade and sequences of interest.  

 In total, 3,899 sequences made it through the R script from the 95 taxa and were 

concatenated together, forming what we termed the “total tree” data set. Query and 

anchor sequences were added into this data set. Alignment was then done using MAFFT 

v7.305b (Katoh et al. 2013) and gap sites were masked out using trimAl v1.4 (Capella-

Gutiérrez et al. 2009) with the gap threshold set to 0.2. The alignment was then converted 

to phylip format and analyzed phylogenetically using RAxML v8.2.10 (Stamatakis 2014) 

with the PROTGAMMAGTR model. The GTR, or general time reversible, model has 

been shown to be the model that best estimates opsin evolution, but only when enough 

data is provided (Gatto et al. 2007). Without enough data to inform the model analyses 

can become over-parameterized, leading to erroneous phylogenetic signal.  

 Phylogenetic focusing continues by identifying the clade of interest (opsin and 

outgroup) from the first concatenated tree. The ML “total tree” (Figure 4) was rooted the 

same way as each taxon’s gene tree, with the clade containing the most recent common 

ancestor of the beta, gamma, and delta rhodopsin class GPCR anchor sequences. Rooting  
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Figure 4. Maximum likelihood phylogeny formed in RAxML under the GTR model 
from the “Total Tree” dataset, which is the concatenation of all 95 species gene trees 
output from the R Tree Editor script. Branch color denotes the phylum or class of the taxa 
each gene was identified from. The tree is rooted with the clade containing our anchor 
sequences with the rest of the clades consisting of alpha rhodopsin class GPCRs.  
Melatonin receptors and Dopamine + Histamine receptors make up a monophyletic clade 
which is sister to the “Opsin and Outgroup” clade, which is pruned off for further 
analyses. 
 
  

Melatonin 
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this way resulted in a monophyletic clade of alpha rhodopsin class GPCRs such as 

melatonin, histamine, and dopamine receptors as sister to a clade containing opsins. 

Canonical opsins fell out as sisters to a group of sequences we abbreviated as paraopsin. 

The monophyletic clade containing opsins plus paraopsin (1,049 sequences) was pruned 

off making the “opsin + outgroup” dataset. At this point filtering was necessary to 

remove sequences that were short, spurious, pseudogenized, or poorly assembled. 

Sequences within the first cut were pulled from the original FASTA files, concatenated 

with the opsin queries, aligned in MAFFT v7.305b (Katoh et al. 2013), and gap sites 

were masked using trimAl v1.4 (Capella-Gutiérrez et al. 2009). From here, sequences 

with less than 150 residues were removed for not providing enough informative 

information after trimming (182 sequences removed). The remaining 867 sequences were 

again pulled from the original FASTA files, concatenated with the opsin queries, aligned 

in MAFFT v7.305b (Katoh et al. 2013), and trimAl v1.4 (Capella-Gutiérrez et al. 2009) 

was used to mask out gap sites and then remove spurious sequences with the resoverlap 

and seqoverlap thresholds set at 0.55 and 55, respectively. These parameters were 

determined empirically. 844 sequences passed this threshold and were re-aligned in 

MAFFT v7.305b (Katoh et al. 2013). Lastly, we removed sequences with long insertions 

that disrupted the alignment. SEAveiw v4 (Gouy et al. 2010) was used to view the 

alignment and identify sequences with insertions greater than 25 amino acids to be 

removed. All but 7 of the 34 sequences removed in this step came from taxa with fully 

sequenced genomes leading us to believe most of these insertions were probably read-

throughs from pseudogenes. 
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With the “opsin + outgroup” data set filtered, we began the next round of 

phylogenetic focusing, pruning off the monophyletic opsin clade. This FASTA file, 

including only those sequences in the monophyletic opsin clade plus its monophyletic 

sister clade, was aligned using PASTA (Mirarab et al. 2015) and gap sites were masked 

using PASTA’s run_seqtools package. The alignment was converted to phylip format and 

initial phylogenetic analyses were conducted using RAxML v8.2.10 (Stamatakis 2014) 

using the GTR model (Figure 5). The monophyletic paraopsin clade containing sequences 

from Porifera and Placozoa was used to root the tree allowing for the monophyletic opsin 

clade to be easily identified and pruned off. 368 sequences were retrieved including the 

opsin query sequences creating the initial “opsin clade” dataset and PASTA (Mirarab et 

al. 2015) was used for alignment. From here, the opsin data set underwent a filtering 

strategy commonly used for opsin identification. All sequences were checked for a lysine 

present at the retinal-binding site analogous to position 296 of bovine rhodopsin sequence 

(Nathans and Hogness 1983; Palczewski et al. 2000). Lacking a lysine means the 

chromophore will be unable to form a covalent bond to the opsin rendering this protein 

non-photoreceptive. Only 18 of the 368 sequences lacked K296 and were removed from 

the initial opsin dataset creating the “must_have_K” opsin data set.  

 The final opsin "must_have_K" data set consisted of 350 sequences with 

representatives from every group tested except Placozoa and Porifera, which we infer 

were lost from these taxa (Plachetzki et al. 2007; Feuda et al. 2012). Sequences were 

aligned using PASTA (Mirarab et al. 2015) and trees were made using the 

PROTGAMMAGTR and PROTGAMMAAUTO settings with 20 random start positions 

in RAxML v8.2.10 (Stamatakis 2014). Additionally, IQtree 1.6.0 (Wang et al. 2018) was  
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Figure 5. Maximum likelihood phylogeny formed using the GTR model in RAxML from 
the filtered “Opsin and Outgroup” dataset. Branch color denotes the phylum or class of 
the taxa each gene was identified from. STO (Sister To Opsins) is a monophyletic clade 
containing Placopsins (Feuda et al. 2012) that was used to root the tree. Placopsins are 
commonly used to root opsin phylogenies but due to out search procedure we have 
uncovered a large clade of sequences from Placozoa, Ctenophora, Porifera, and Cnidaria 
that for the most part, have not been described before. This clade lacks any human 
sequences and contains few from other bilaterians. The monophyletic opsin clade is 
pruned off for further analyses.    

 Opsin

 Paraopsin
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implemented because of its ability to create ML trees while considering site 

heterogeneity. IQtree 1.6.0 (Wang et al. 2018) was run using the GTR20, GTR20+C20, 

and GTR20+C60 models. The GTR20 model alone is a general time reversible model 

with 190 rate parameters. Adding +C20 and +C60 provides 20 and 60-profile mixture 

models, respectively, as variants of the CAT model for ML trees. These models deal with 

site-specific rate heterogeneity by allowing each position in the alignment to fall into 20 

(+C20) or 60 (C60) categories of rate heterogeneity. All IQtree 1.6.0 (Wang et al. 2018) 

runs were done using –alrt 1000, which specifies 1000 replicates to perform SH-like 

approximate likelihood ratio test (SH-alrt), which is a single branch stability test (Wang 

et al. 2018).  

General time reversible models, as empirical models, will always provide a strong 

model fit to the data (Feuda et al. 2012). However, these models fail when taxon 

sampling is low, causing model parameters to be incorrectly estimated. ModelFinder 

(Kalyaanamoorthy et al. 2017) was also used, as implemented in IQtree 1.6.0 (Wang et 

al. 2018) to find the best fitting fixed model according to the –Log likelihood, Akaike 

information criterion (AIC), the corrected AIC (AICc), and Bayesian information 

criterion (BIC). From the 546 fixed models tested, the LG+F+R8 model was chosen as 

the best fit. LG+F+R8 incorporates the LG model of amino acid substitution with a 

probability-distribution-free model of rate heterogeneity across sites. The benefit to this 

approach is that the distribution of rates-of-change across sites may take any shape, 

implying that estimates of rates and weights should be more accurate than those obtained 

under a gamma distribution. This model is more parameter rich than the gamma model 

potentially causing issues if not enough data is supplied. We estimated the phylogeny of 
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the "must_have_K" dataset under the LG+F+R8 model in IQtree 1.6.0 (Wang et al. 2018) 

with alrt support and bootstrapping (Hoang et al. 2018). We also estimated the phylogeny 

of the "must_have_K" dataset using Phylobayes MPI (Lartillot et al. 2013), which utilizes 

the GTR-CAT+ Γ. 

 

4. Additional Data Sets 

Cnidarians such as the cubozan Tripedalia cystophora and the hydrozoans 

Cladonema radiatum and Podocoryna carnea have been studied for possessing eyespots 

and genes involved in their development and photosensitivity have been identified (Suga 

et al. 2008; Koyanagi et al. 2008; Bielecki et al. 2014). We did not uncover any of the 

cubozoan ocular genes, most likely due to the poor quality of the transcriptomes used. 

However, in order to understand where these genes fall on the opsin phylogeny we made 

an additional data set using our opsin "must_have_K" set and including 36 published 

genes from the three taxa just mentioned. This dataset was called the “ocular” set and was 

aligned in PASTA (Mirarab et al. 2015) and a phylogeny was build using the 

GTR20+C20 model in IQTree 1.6.0 (Wang et al. 2018).  

We failed to recover the xenopsin clade (Ramirez et al. 2016; Vöcking et al. 2017) in 

any of our analyses under any of our models. To explore this finding in greater depth we 

also build an additional dataset that concatenated 56 previously described xenopsin 

sequences from Vöcking et al. 2017 and Ramirez et al. 2016 to the "must_have_K" 

dataset. These sequences are derived from the lophotrochozoan Lottia gigantea and the 

anthozoan Nematostella vectensis. This “xenopsin” data set was treated the same way as 

the ocular with regards to alignment and tree building. 
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RESULTS 

1. Initial Search and filtering  

46,366 sequences were obtained from the initial blast search, averaging about 488 

per taxon. CD-HIT v4.6 (Fu et al. 2012) removed roughly 85% of these sequences 

bringing the total count to 6,355. These sequences represent a non-redundant set of the 

alpha rhodopsin class GPCRs present in each taxon. Due to the repeating transmembrane 

domain motif and relatively short length, it is likely that some distantly related GPCRs 

were also identified as blast hits. It is important to remove as many of these distant 

GPCRs as possible before concatenating the data sets together for the best possible 

alignment. To achieve this, gene trees were made for each taxon and an R script was used 

to root each tree with a set of human sequences termed “anchors” which fall outside of 

the alpha class of rhodopsin-like GPCRs. The sequences that fell in between the anchors 

and melatonin receptors were not kept, as melatonin receptors are an accepted outgroup 

to opsins. An average of 65% of the sequences (3,868 in total) generated after the initial 

search and filtering steps were included in the “opsin + melatonin receptor” clade and 

were kept for further analysis. See Table 2 for further information on how many 

sequences were kept for each taxon throughout the analyses.  

 

Total Tree 

To remove any distantly related GPCR hits that managed to pass through filtering, 

the anchor sequences were included into the “total tree” dataset. Rooting with the anchors 

results in a topology that is similar to that of other GPCR evolution studies (Stevens et al. 

2013). 89.8% of the remaining sequences (3502/3899) fell into a clade consisting of  
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Taxa 
# of initial blast 
search hits 

# seqs after 
cdhit 

# seqs after R 
tree editor  

# seqs in 
first cut  

# seqs in 
opsin clade  

# seqs in opsinclade 
musthavK 

Abylopsis 208 44 37 12 0 0 

Acanthoscurria 311 27 20 4 2 2 

Acropora 857 130 95 14 13 13 

Aegina 50 11 9 2 0 0 

Agalma 797 97 42 27 12 10 

Aiptasia 850 130 87 14 8 8 

Alatina 744 79 41 10 0 0 

Amphimedon 274 78 78 78 0 0 

Anemonia 79 17 11 3 0 0 

Anthopleura 847 102 15 14 11 11 

Atolla 208 30 24 9 0 0 

Aurelia 822 87 42 3 2 2 

Bolocera 146 28 18 1 0 0 

Brachionus 405 49 13 12 2 2 

Calvadosia 420 46 46 13 1 1 

Capitella 823 156 30 13 9 9 

Cassiopea 375 52 48 9 0 0 

Cerianthus 44 11 10 4 0 0 

Chironex 647 51 34 8 0 0 

Chrysaora 275 35 12 5 0 0 

Clytia 497 49 43 1 1 1 

Coeloplana 670 72 72 13 1 1 

Convolutriloba 531 56 42 14 5 5 

Corallium 823 87 29 9 5 5 

Corynactis 850 87 75 12 11 11 

Craseoa 484 87 72 16 3 1 

Craspedacusta 795 93 57 21 10 10 

Crassostrea 826 95 53 18 13 13 

Craterolophus 126 14 11 4 0 0 

Ctenactis 378 51 47 3 1 1 

Cyanea 3 2 0 0 0 0 
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Daphnia 849 76 55 40 36 36 

Drosophila 814 69 41 9 7 7 

Ectopleura 661 77 60 16 0 0 

Edwardsiella 738 103 9 2 2 2 

Eunicella_c 622 89 63 11 0 0 

Eunicella_v 339 49 32 2 0 0 

Favia 435 59 39 5 2 2 

Gorgonia 798 101 81 19 4 4 

Grantia 17 1 1 1 0 0 

Haliclystus_a 365 36 36 13 3 3 

Haliclystus_s 305 42 28 8 1 1 

Homo 828 91 53 11 11 11 

Hormathia 102 19 11 1 0 0 

Hydractinia_p 759 89 65 9 3 1 

Hydractinia_s 496 77 5 0 0 0 

Hydra_m 578 70 36 20 18 17 

Hydra_o 130 21 19 7 1 1 

Hydra_vi 125 24 18 2 0 0 

Hydra_vu 740 117 41 24 11 8 

Kudoa 1 1 1 1 0 0 

Lampea 145 17 9 5 2 2 

Leptogorgia 320 46 1 0 0 0 

Leucernaria 789 77 25 15 3 2 

Lingula 827 114 30 27 17 16 

Lobactis 533 71 47 2 1 1 

Lottia 823 115 62 25 14 14 

Madracis 831 144 49 8 3 3 

Meara 341 52 33 4 0 0 

Metridium 109 17 17 1 0 0 

Mnemiopsis 447 76 74 17 2 2 

Montastraea_c 762 114 114 19 1 1 

Montastraea_f 222 48 24 1 0 0 

Myxobolus_c 18 3 3 3 0 0 
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Myxobolus_p 32 4 4 4 0 0 

Namomia 258 39 35 16 4 2 

Nematostella 858 173 173 28 21 20 

Nephthyigorgia 34 6 5 0 0 0 

Notospermus 826 90 27 12 6 5 

Periphylla 83 18 9 3 0 0 

Phoronis 807 82 55 17 7 7 

Physalia 524 71 19 7 4 3 

Pinctata 801 118 19 15 4 3 

Plakina 119 14 14 10 0 0 

Platygyra 377 69 26 9 1 1 

Pleraplysilla 71 5 5 5 0 0 

Pocillopora 572 103 18 3 1 1 

Podocoryna 440 63 56 11 2 2 

Polypodium 353 36 36 12 3 3 

Porites 432 82 82 6 0 0 

Protopalythoa 529 79 41 11 1 1 

Renilla 775 102 102 23 2 2 

Rhodactis 849 97 70 14 12 12 

Ricordea 821 114 65 11 4 4 

Saccoglossus 830 172 78 9 5 5 

Seriatopora 347 61 46 7 1 1 

Stomolophus 735 76 55 15 0 0 

Strongylocentrotus 840 180 127 12 5 5 

Taeniopygia 826 112 61 18 14 14 

Trichoplax 831 141 94 31 0 0 

Tripedalia 14 2 2 1 0 0 

Turritopsis 404 52 34 8 0 0 

Vallicula 637 84 83 18 2 2 

Xenoturbella 307 52 32 2 0 0 

TOTAL 46366 6355 3868 1032 351 333 
Table 2. Counts for the number of sequences retained for each taxon during every round of phylogenetic 
focusing  
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opsins, melatonin receptors, and histamine + dopamine receptors. These are all alpha 

class rhodopsin-like GPCRs, which is a positive sign for our search and filtering strategy. 

Melatonin receptors plus histamine+dopamine receptors form a monophyletic clade that 

falls out as sister to a clade consisting of canonical opsins (Figure 4). As we are interested 

in opsin evolution, we did little to further investigate the sequences within the melatonin 

clade or histamine + dopamine clade. Further research into these sequences may shed 

light on the evolution of alpha rhodopsin class GPCRs. 

 

First Cut (Opsin + Outgroup) 

Focusing in on the opsin clade brings us to the “opsin + outgroup” dataset, 

consisting of an orthologous clade of opsins plus its evolutionary sister, an additional 

orthologous clade of opsins that has not been previously described. This group, which we 

call Paraopsins, is bounded by copious sequence representation from ctenophores, 

sponges, cnidarians, but very few from Bilateria (Figure 5). This clade that is the sister to 

opsins will be referred to as Paraopsins from here forward. This Paraopsin clade contains 

the placopsin sequences from Trichoplax adhaerens that were identified by Feuda et al. 

2012, and a large group of sequences from the sponge Amphimedon queenslandica that 

were also described in the supplement by Srivastava et al. 2010. Additionally, this clade 

contains very few echinoderm and protostome sequences and only three chordate 

sequences from the zebra finch, Taeniopygia guttata. The single Drosophila 

melanogaster sequence present in the Paraopsin clade was identified as the Leucine-rich 

repeat-containing GPCR 1 (Lgr1) protein in FlyBase. Lgr1 is a known rhodopsin-like 

GPCR transmembrane receptor that binds glycoprotein hormones like follicle-stimulating 
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hormone, luteinizing hormone, and thyroid-stimulating hormone, but this assignment was 

based on blast similarity, not phylogenetic analysis (Rocco et al. 2016). Some of the 

Paraopsin sequences possess a lysine at position 296 in accordance with the bovine 

rhodopsin sequences (Nathans and Hogness 1983; Palczewski et al. 2000). This suggests 

that some of these Paraopsin proteins are indeed phototactic and exist outside of the 

monophyletic opsin clade, and that the lysine at this position has independently evolved 

on at least two occasions, multiple times. The vast majority of residues in position 296 of 

Paraopsins are not lysines. It is possible that selected Paraopsin sequences could 

represent independent origins of opsin-like photosensitivity.  

 The opsin and Paraopsin dataset contained 1,032 sequences excluding baits. Now 

that focused into the alpha class of rhodopsin-like GPCRs we no longer require the 

anchor sequences for filtering. Instead, filtering at this phase is done based on sequence 

and alignment quality. First, sequences that lack a sufficient span of informative data 

were removed. Sequences were aligned, gap sites masked out, and sequences with less 

than 150 amino acids worth of data were removed. The remaining 867 sequences were 

realigned and the alignment was then checked for spurious sequences using the  

–seqoverlap and –resoverlap settings set to 55 and 0.55, respectively, which removed 23 

sequences. Finally, sequences with insertions greater than 25 amino acids in length that 

did not align to any other sequences were removed. This step removed 34 sequences, 27 

of which came from taxa with fully sequenced genomes, leading us to believe these are 

likely read throughs from pseudogenes (see methods). These filtering steps removed 239 

sequences in total and greatly improved the alignment quality. Traditional methods of 

alignment scores could not be used to compare pre and post filtering alignments because 
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sequence composition was not the same, so we used the amount of gap characters as a 

proxy for alignment quality. The initial “opsin + outgroup” alignment consisted of 40.8% 

gap characters (# of gap chars/ # of gap chars + # of AAs), but after filtering the amount 

of gap regions decreased significantly to 20.4%.   

 Once all filtering was complete, the final set of 810 sequences was aligned and 

ML trees were made using the PROTGAMMAGTR model in RAxML v8.2.10 

(Stamatakis 2014). Rooting this tree with Paraopsins resulted in a monophyletic clade of 

368 sequences including the opsin baits, which were pruned off for the next analysis.  

 

Opsin Tree Analyses 

 To ensure the sequences that made it into the opsin data set were photoreceptive, 

the alignment was screened for a lysine at position 296 in accordance to the bovine 

rhodopsin sequence. Screening for lysine 296 is a common practice in opsin 

phylogenetics, as the lysine is needed for the chromophore to bind triggering a 

phototransduction cascade (Terakita 2005). Only 18 sequences lacked a lysine in this 

position and were removed from further analyses. The small number of sequences 

lacking lysine 296 is a positive sign for our search and filtering procedure showing that 

the vast majority of sequences that made it into the opsin clade are true photoreceptive 

opsins. 

 Choosing the best fitting model for amino acid evolution is a crucial and difficult 

step in the phylogenetic process. Modeling amino acid evolution correctly depends on the 

type of sequence data being analyzed, the amount of data provided, and how distantly 

related the sequences are in both a molecular and temporal sense. Multiple tree building 
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approaches were taken with the final dataset of 350 sequences to test the effects of model 

selection, rate heterogeneity, and compositional bias on the topology and support of the 

opsin phylogeny. RAxML v8.2.10 (Stamatakis 2014) was implemented using the 

PROTGAMMAAUTO and PROTGAMMAGTR models with 20 ML searches on 20 

randomized stepwise addition parsimony trees and 1,000 bootstrap iterations. Both 

models recovered the same opsin topology and received low gamma based likelihood 

scores, indicating a good fit. Bootstrap support was low at certain internal nodes 

separating the opsin classes. Although bootstrap support for internal nodes was low, 

support for nodes with c-opsin, r-opsin, Go-coupled/RGR, and cnidopsin is relatively 

high. These bootstrapping results support the placement of sequences within their 

respective monophyletic clade, but do not provide strong support for the evolutionary 

relationships among opsin type.  

IQTree 1.6.0 (Wang et al. 2018) was implemented in the tree building process for 

additional support and to help account for site-specific rate heterogeneity in a ML 

framework. Trees were built using the GTR20, GTR20+C20, and GTR20+C60 in IQTree 

1.6.0 (Wang et al. 2018), each with 1,000 replicates of SH-like approximate likelihood 

ratio test (SH-alrt), which is a single branch stability test. The GTR20 model resulted in a 

slightly different topology from the other tree building methods, which is unusual, as the 

GTR20 model should be making similar estimations as the PROTGAMMAGTR model 

from RAxML v8.2.10 (Stamatakis 2014). However this model did receive the highest 

AIC, AICc, BIC, and –log likelihood scores out of all the analyses run, leading us to 

believe it is a poor fit. Adding +C20 and +C60 provides 20 and 60-profile mixture 

models, respectively, as variants of the CAT model for ML trees. This allows a GTR 
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model to be used that can account for rate heterogeneity to different capacities. Trees 

built from these models both resulted in the same topology (Figure 6) with very high alrt 

support for internal and external nodes. GTR20+C60 did have slightly better AIC, AICc, 

BIC, and –Log likelihood scores, but both were significantly better than GTR20 alone. 

1,000 bootstrap iterations were done using IQTree 1.6.0 (Wang et al. 2018) for the 

GTR20+C20 tree and scores were much higher than the bootstrapping performed in 

RAxML v8.2.10 (Stamatakis 2014). Additionally, ModelFinder was implemented 

through IQTree 1.6.0 (Wang et al. 2018) to test over 500 different substitution model 

variations to find the one that was best fit for our opsin data set. Based on AIC, AICc, 

BIC, and –Log likelihood scores, LG+F+R8 was chosen as the best fitting model for 

having the lowest scores. LG+F+R8 incorporates the LG model of amino acid 

substitution with a probability-distribution-free model of rate heterogeneity across sites. 

The benefit to this approach is that the distribution of rates-of-change across sites may 

take any shape, implying that estimates of rates and weights should be more accurate than 

those obtained under a gamma distribution. The resulting tree produced the same 

topology as the RAxML v8.2.10 (Stamatakis 2014) runs and the GTR20+C20 and +C60 

runs.  

PhyloBayes MPI (Lartillot et al. 2013) was the last program used for tree building 

to provide a Bayesian Markov chain Monte Carlo (MCMC) approach that uses non-

parametric methods for modeling among-site variation. Two PhyloBayes MPI (Lartillot 

et al. 2013) chains were run in tandem using 24 cores each for over 50 days to achieve 

the best possible convergence in tree space. Each chain generated over 60,000 trees. A 

burn-in of 1,000 trees and sub-sampling every 10 trees was done when comparing the 



	 28	

 
Figure 6. Phylogeny from the opsin clade data set consisting of 350 sequences all 
possessing K296, formed in IQTree with the GTR20+C20 model. The same topology 
resulted from using the following models: GTR20+C60, LG+F+R8 (best model identified 
through ModelTest), PROTGAMMAAUTO in RAxML, and PROTGAMMAGTR in 
RAxML. This is the topology referred to as “Topology 1” in the results section and is the 
most supported from this dataset. Branch color denotes the phylum or class of the taxa 
each gene was identified from. 
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discrepancies across all bipartitions. The maximum and mean differences across the 

2,600 bipartitions were 0.1517 and 0.0074, respectively, and a consensus tree was 

obtained. A maximum difference less that 0.3 is considered acceptable and less than 0.1 

is a good run (Lartillot et al. 2013). Taking this into consideration, our run was clearly in 

the acceptable range with the chains almost reaching convergence. The PhyloBayes MPI 

(Lartillot et al. 2013) consensus tree recovered strong support for the c-opsin, r-opsin, 

Go-coupled/RGR opsin, and cnidopsin clades, similar as all previous analyses. However, 

the anthozoan r-type opsin clade was split with a quarter of the sequences staying as 

anthozoan r-type and another group of sequences falling out with the ctenopsins and the 

xenacoelomorph opsins. 

NoTung-2.9 (Stolzer et al. 2012) was used as a gene tree-species tree 

reconciliation method to gain additional support for rooting the opsin phylogeny with 

ctenophore opsins. By providing NoTung-2.9 (Stolzer et al. 2012) our opsin gene tree 

(Figure 6) and the species tree made up of the taxon datasets included in our analysis 

(Figure 1), the software identified the best location to root the tree based on the most 

parsimonious evolutionary route. Not surprisingly, NoTung-2.9 (Stolzer et al. 2012) 

identified ctenophores to be the outgroup for our opsin phylogeny providing the most 

parsimonious tree, which is a positive sign as the opsin clade in the “opsin and outgroup” 

tree was also rooted by the ctenophore opsins. 

 

Additional Datasets 

 Studies investigating the biochemical function of ocular genes in cnidarians who 

possess eyes have uncovered the function of multiple genes involved in their 
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development (Suga et al 2008; Bielecki et al. 2014; Liegertová et al. 2015). These genes 

have been studied in cnidarians like the cubozoan, Tripedalia cystophora, and the 

hydrozoan, Cladonema radiatum. Transciptomes from these two species were included in 

our analyses, but due to poor quality of the cubozoan transcriptomes we did not uncover 

any of their opsins or ocular genes. However, to discover where these genes fall on our 

opsin phylogeny we have made an additional dataset consisting of the 350 sequences 

from our opsin phylogeny and 36 ocular genes with known biochemical function from 

the cubozoans Carybdea rastonii and Tripedalia cystophora and the hydrozoans 

Podocoryna carnea and Cladonema radiatum (Suga et al. 2008; Bielecki et al. 2014; 

Liegertová et al. 2015). See Table 3 for source information on sequences included in the 

additional datasets. Trees were formed using the PROTGAMMAGTR model in RAxML 

v8.2.10 (Stamatakis 2014) and the GTR20+C20 model in IQTree 1.6.0 (Wang et al. 

2018) as previously described. The strategies resulted in slightly different topologies but 

the ocular genes included preformed the same way for both analyses, falling out into the 

cnidopsin clade with other taxa from Acraspeda. 

 Xenopsins were first documented by Ramirez et al. 2016 in a variety of 

lophotrochozoans and a few cnidarians as a monophyletic clade of opsins being sister to 

Go-coupled/RGR opsins. Since then additional researchers have continued to identify and 

classify new xenopsins in cnidarians and lophotrochozoans (Vöcking et al. 2017; Picciani 

et al. 2018). However the classification of xenopsins is purely phylogenetic and has not 

been based on any functional or biochemical criteria. We did not recover a monophyletic 

group that corresponded to xenopsin in any of our analyses of opsin phylogeny, under 

any model. In order to test the existence of xenopsins, we constructed an additional 
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Sequence included Dataset  
Accession 
number  Publication 

Carybdea rastonii cubop mRNA for opsin, complete cds 
Cnidarian 
Ocular AB435549.1 

Koyanagi et al. 
2008 

Podocoryna carnea PcopC mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332435.1 

Koyanagi et al. 
2008 

tr|A0A059UAP3|A0A059UAP3_TRICY Lens eye opsin (Fragment) 
OS=Tripedalia cystophora OX=6141 PE=2 SV=1 

Cnidarian 
Ocular A0A059UAP3 

Bielecki et al. 
2014 

tr|A0A059NTG3|A0A059NTG3_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op4 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTG3 

Liegertová et 
al. 2015 

tr|A0A059NTG8|A0A059NTG8_TRICY C-like opsin (Fragment) 
OS=Tripedalia cystophora OX=6141 GN=op8 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTG8 

Liegertová et 
al. 2015 

tr|A0A059NTG7|A0A059NTG7_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op13 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTG7 

Liegertová et 
al. 2015 

tr|A0A059NTD7|A0A059NTD7_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op5 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTD7 

Liegertová et 
al. 2015 

tr|A0A059NTD1|A0A059NTD1_TRICY C-like opsin (Fragment) 
OS=Tripedalia cystophora OX=6141 GN=op17 PE=3 

Cnidarian 
Ocular A0A059NTD1 

Liegertová et 
al. 2015 

tr|A0A059NTG2|A0A059NTG2_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op9 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTG2 

Liegertová et 
al. 2015 

tr|A0A059NTD5|A0A059NTD5_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op15 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTD5 

Liegertová et 
al. 2015 

tr|A0A059NTC7|A0A059NTC7_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op6 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTC7 

Liegertová et 
al. 2015 

tr|A0A059NTC8|A0A059NTC8_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op1 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTC8 

Liegertová et 
al. 2015 

tr|A0A059NTC5|A0A059NTC5_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op16 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTC5 

Liegertová et 
al. 2015 

tr|A0A059NTD2|A0A059NTD2_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op12 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTD2 

Liegertová et 
al. 2015 

tr|A0A059NTG9|A0A059NTG9_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op3 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTG9 

Liegertová et 
al. 2015 

tr|A0A059NTD6|A0A059NTD6_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op10 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTD6 

Liegertová et 
al. 2015 

tr|A0A059NTD4|A0A059NTD4_TRICY C-like opsin OS=Tripedalia 
cystophora OX=6141 GN=op2 PE=3 SV=1 

Cnidarian 
Ocular A0A059NTD4 

Liegertová et 
al. 2015 

Cladonema radiatum CropB1 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332416.1 

Suga et al. 
2008 

Cladonema radiatum CropB4 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332417.1 

Suga et al. 
2008 

Cladonema radiatum CropM mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332418.1 

Suga et al. 
2008 

Cladonema radiatum CropO mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332419.1 

Suga et al. 
2008 

Cladonema radiatum CropC mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332420.1  

Suga et al. 
2008 

Cladonema radiatum CropE mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332421.1 

Suga et al. 
2008 

Cladonema radiatum CropD mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332422.1 

Suga et al. 
2008 

Cladonema radiatum CropH mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332423.1 

Suga et al. 
2008 
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Cladonema radiatum CropI mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332424.1 

Suga et al. 
2008 

Cladonema radiatum CropL mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332425.1 

Suga et al. 
2008 

Cladonema radiatum CropF mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332426.1 

Suga et al. 
2008 

Cladonema radiatum CropG1 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332427.1 

Suga et al. 
2008 

Cladonema radiatum CropG2 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332428.1 

Suga et al. 
2008 

Cladonema radiatum CropN1 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332429.1 

Suga et al. 
2008 

Cladonema radiatum CropN2 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332430.1 

Suga et al. 
2008 

Cladonema radiatum CropK1 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332431.1 

Suga et al. 
2008 

Cladonema radiatum CropK2 mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332432.1 

Suga et al. 
2008 

Cladonema radiatum CropJ mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332433.1 

Suga et al. 
2008 

Podocoryna carnea PcopB mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332434.1 

Suga et al. 
2008 

Podocoryna carnea PcopC mRNA for opsin, complete cds 
Cnidarian 
Ocular AB332435.1  

Suga et al. 
2008 

Lottia gigantea, Uncharacterized protein Xenopsin V3Z0E3 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V3ZDT4 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V3ZSU7 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V3ZWI5 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4A259 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4A6Q4 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4AAH1 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4AS98 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4AUU9 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4B0S4 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4C2D5 
Ramirez et al. 
2016 

Lottia gigantea, Uncharacterized protein Xenopsin V4CNF1 
Ramirez et al. 
2016 

Lottia gigantea, hypothetical protein LOTGIDRAFT_72363 Xenopsin XP_009051341.1 
Ramirez et al. 
2016 

Nematostella vectensis, Predicted Protein Xenopsin A7RSR1 
Ramirez et al. 
2016 
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Nematostella vectensis, Predicted Protein Xenopsin A7SQJ5 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMW6 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMW7 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMX0 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMX1 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMX2 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMX3 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMX5 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMX6 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMX7 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMY1 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMY6 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMY7 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMY8 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMZ0 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMZ1 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMZ2 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMZ3 
Ramirez et al. 
2016 

Nematostella vectensis, Opsin Xenopsin A9UMZ5 
Ramirez et al. 
2016 

Nematostella vectensis A7RTL7 Xenopsin A7RTL7 
Vocking et al. 
2017 

Nematostella vectensis A7RVG8 Xenopsin A7RVG8 
Vocking et al. 
2017 

Nematostella vectensis A7RVG9 Xenopsin A7RVG9 
Vocking et al. 
2017 

Nematostella vectensis A7S8K8 Xenopsin A7S8K8 
Vocking et al. 
2017 

Nematostella vectensis A7SN09 Xenopsin A7SN09 
Vocking et al. 
2017 

Nematostella vectensis A7SN10 Xenopsin A7SN10 
Vocking et al. 
2017 

Nematostella vectensis A7SN12 Xenopsin A7SN12 
Vocking et al. 
2017 
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Nematostella vectensis A9UMY0 Xenopsin A9UMY0 
Vocking et al. 
2017 

Nematostella vectensis A9UMY1 Xenopsin A9UMY1 
Vocking et al. 
2017 

Nematostella vectensis A9UMY2 Xenopsin A9UMY2 
Vocking et al. 
2017 

Nematostella vectensis A9UMY6 Xenopsin A9UMY6 
Vocking et al. 
2017 

Nematostella vectensis A9UMY7 Xenopsin A9UMY7 
Vocking et al. 
2017 

Nematostella vectensis A9UMY8 Xenopsin A9UMY8 
Vocking et al. 
2017 

Nematostella vectensis A9UMY9 Xenopsin A9UMY9 
Vocking et al. 
2017 

Nematostella vectensis A9UMZ0 Xenopsin A9UMZ0 
Vocking et al. 
2017 

Nematostella vectensis A9UMZ1 Xenopsin A9UMZ1 
Vocking et al. 
2017 

Nematostella vectensis A9UMZ2 Xenopsin A9UMZ2 
Vocking et al. 
2017 

Nematostella vectensis A9UMZ3 Xenopsin A9UMZ3 
Vocking et al. 
2017 

Nematostella vectensis A9UMZ4 Xenopsin A9UMZ4 
Vocking et al. 
2017 

Nematostella vectensis A9UMZ5 Xenopsin A9UMZ5 
Vocking et al. 
2017 

Nematostella vectensis A9UMZ6 Xenopsin A9UMZ6 
Vocking et al. 
2017 

Nematostella vectensis opsin A9UMX9 Xenopsin A9UMX9 
Vocking et al. 
2017 

Nematostella vectensis opsin A9UMY4 Xenopsin A9UMY4 
Vocking et al. 
2017 

Nematostella vectensis XP 001627311.1 Xenopsin XP_1627311.1 
Vocking et al. 
2017 

Nematostella vectensis XP 001631194.1 Xenopsin XP_1631194.1 
Vocking et al. 
2017 

Nematostella vectensis XP 001636803.1 Xenopsin XP_1636803.1 
Vocking et al. 
2017 

Table 3. Source information for the sequences included into the published xenopsin dataset and the 
cnidarian ocular gene data set. 
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dataset from our existing opsin sequences (Figure 6) and included 56 published xenopsins 

from Ramirez et al. 2016 and Vöcking et al. 2017 (xenopsins identified by Vöcking in 

Nematostella vectensis and xenopsins identified by Ramirez in Lottia gigantea and 

Nematostella vectensis were included). Trees were formed using the 

PROTGAMMAGTR model in RAxML v8.2.10 (Stamatakis 2014) and the GTR20+C20 

model in IQTree 1.6.0 (Wang et al. 2018) as previously described. Both strategies 

resulted in the same topology. Lottia gigantea xenopsins from Ramirez fell out into the r-

opsin and Go-coulped/RGR clade, and the Nematostella vectensis sequences fell into the 

cnidopsin and anthozoan specific opsin clades of our phylogeny. Sequences from 

Vöcking fell exclusively into the anthozoan specific opsin clades described previously, 

not into cnidopsin. See Figure 7 to see where all the published sequences from the 

additional data sets fell on our opsin phylogeny. 
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Figure 7. Opsin phylogeny with colored dots representing where the published cnidarian 
ocular genes (pink), and xenopsins from Ramirez et al. 2016 (green) and Vöcking et al. 
2017 (yellow) fell on the phylogeny.  
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DISCUSSION 

Taxon	Specific	Search	Procedure		

Our	taxon	specific	filtering	strategy	is	novel	and	should	be	considered	for	

future	phylogenomic	studies.	A	BLAST	search	is	a	good	start	to	the	phylogenetic	

process	for	gathering	data	of	interest,	but	depending	on	the	quality	of	the	genome	or	

transcriptome	being	blasting	against	the	initial	results	can	vary.	For	example,	if	one	

is	to	do	a	BLAST	search	for	the	20	top	opsin	hits	against	the	human	genome	they	are	

likely	to	identify	all	the	opsin	genes	and	a	few	other	alpha	rhodopsin	class	GPCRs	

due	to	the	high	quality	of	the	genome.	Yet	if	this	same	search	is	done	against	a	

poorly	assembled	transcriptome	of	a	cnidarian	they	might	be	lucky	to	find	20	GPCRs	

of	any	type.	By	isolating	the	melatonin	+	opsin	clade	for	each	taxon	we	are	making	

this	search	issue	more	manageable	by	removing	unwanted,	distantly	related	

sequences	before	they	become	an	issue	in	larger	gene	trees.	The	drawback	to	this	

strategy	is	when	melatonin	receptors	fall	out	with	or	next	to	the	anchor	sequences	

(beta,	gamma,	and	delta	rhodopsin	class	GPCRS).	This	results	in	no	sequences	being	

filtered	out,	but	can	also	be	a	sign	of	a	large	radiation	of	genes	in	between	melatonin	

and	opsins	and	a	loss	of	other	rhodopsin	class	GPCRs.	This	is	the	case	for	the	

sponges	Amphimedon	queenslandica,	Pleraplysilla	spinifera,	and	Plakina	jani,	the	

ctenophores	Grantia	compressa,	Coeloplana	astericola,	and	Mnemiopsis	leidyi,	the	

staurozoans	Haliclystus	auricular	and	Calvadosia	cruxmelitensis,	the	anthozoans	

Metridium	senile,	Montastraea	cavemosa,	Nematostella	vectensis,	Porites	asteroidses,	

and	Renilla	reniformis,	and	all	the	endocnidozoans	tested.	
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First	Cut	(Opsin	and	Outgroup)	

We have uncovered a large GPCR radiation in understudied organisms that is the 

true sister group to opsins (Paraopsins). Some of these proteins have been discussed 

before, such as the placopsins from Feuda et al. 2012, and LGR1 protein in Drosophila 

melanogaster. While little research has investigated the role of placopsins, the 

glycoprotein hormone ligand receptor LGR1 has been shown to play a key role fly 

development (Vandersmissen et al. 2014). While it is likely other genes within the 

Paraopsin clade are also glycoprotein receptors, the radiation of these proteins has 

occurred in entire phyla, such as Porifera and Ctenophora, and has never been discussed. 

Uncovering the radiation of this large group of GPCRs as the sister to opsins would likely 

have occurred decades ago if this radiation occurred in Bilateria. Sponges have been 

screened previously for opsins but all past studies have never found evidence for 

Poriferan opsins (Plachetzki et al. 2007; Suga et al. 2008; Feuda et al. 2012). However 

we know they possess phototactic abilities in larval form and have been shown to express 

other photopigments such as cryptochromes (Rivera et al. 2012). Paraopsin proteins may 

be photoreceptive, as some possess the diagnostic K296, and play a role in the way some 

animals detect light, but because these sequences are present in early branching animals 

that few spend time researching, they have gone undetected. Further research must be 

done into these Paraopsin proteins to determine their structure and function but until then 

little is known regarding these genes.  
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Opsin	Tree	Analyses	

	 Opsin	phylogenies	often	start	with	genes	of	interest	and	are	screened	for	

Lysine	296	to	ensure	the	genes	are	able	to	bind	a	chromophore	and	are	in	fact	an	

opsin.	While	this	is	informative,	the	data	omitted	are	still	part	of	the	evolutionary	

history	of	opsins.	Following	the	establishment	of	an	orthologous	clade	of	opsins,	we	

employed	this	filtering	tactic	in	our	analysis,	but	this	was	only	done	after	the	group	

had	already	been	established,	in	contrast	to	previous	studies	investigating	opsin	

evolution	(Plachetzki	et	al.	2007;	2010;	2012;	Suga	et	al.	2008;	Porter	et	al.	2011;	

Feuda	et	al.	2012;	Hering	and	Mayer	2014;	Ramirez	et	al.	2016;	Vöcking	et	al.	2017).	

This	approach	allowed	us	to	retrieve	a	set	of	opsin	sequences	using	formal	

estimations	of	monophyly	in	an	unbiased	fashion.	Once	we	reached	the	step	of	

screening	for	K296	we	only	found	18	sequences	out	of	368	that	lacked	the	lysine.	

Out	of	these	18	sequences	all	but	2	came	from	cnidarians,	with	most	the	

representatives	being	hydrozoans.	All	these	sequences	fell	out	into	in	the	cnidopsin	

clade,	which	brings	up	a	few	possible	hypotheses.	Hydrozoans	have	undergone	gene	

duplication	events	exploring	the	opsin	landscape	more	so	than	the	other	cnidarian	

classes,	making	these	more	recent	innovations.	Or	these	genes	are	artifacts	from	a	

gene	duplication	that	occurred	before	the	split	of	Hydrozoa	from	Acraspeda	and	

they	have	become	pseudogenized	in	Acraspeda.	Although	the	genes	lack	K296,	they	

are	expressed	in	these	taxa,	as	evidenced	from	the	fact	that	they	are	derived	from	

transcriptomes.	Thus,	these	newly	discovered	K296-less	opsins	could	be	used	for	

some	function	other	than	light	detection.		



	 40	

	 The	final	opsin	dataset	underwent	exhaustive	analyses	utilizing	three	

different	phylogenetic	programs	and	was	tested	under	multiple	A.A.	substitution	

models	in	each.	We	have	taken	the	most	exhaustive	approach	to	date	to	identify	the	

best	fitting	model	and	the	true	opsin	topology	(See	Table	4)	(Plachetzki	et	al.	2007;		

	Suga et al. 2008; Porter et al. 2011; Hering and Mayer 2014; Ramirez et al. 2016; 

Vöcking et al. 2017). IQTree 1.6.0 (Wang et al. 2018) was found to be the program with 

the best AIC, BIC, log likelihood, and bootstrap scores resulting from the models tested. 

Particularly the GTR20+C60 and LG+F+R8 were the best, which previous studies have 

also found that the GTR and LG models often estimate opsin substitution rates the best 

(Feuda et al. 2012; Ramirez et al. 2016; Picciani et al 2018). The amount of data provided 

to a GTR model can be a concern if there is not enough to inform the 190 rates in the 

matrix. Recovering the same topology with a GTR model as a precomputed fixed 

substitution model is a positive sign that the GTR model is informed and the more 

complex model is reliable for our opsin dataset. While it appears most researchers are in 

agreement regarding the best fitting model for opsin evolution, the conflict with opsin 

phylogenetics appears to be more about taxon selection and opsin identification. 

Researchers must include a large enough sample of taxa from every eumetazoan group in 

order to capture the entire evolutionary history of this protein family. We note that this is 

computationally challenging but it can be done and will become easier in time.     

 

Opsin Clade Topology  

In our analyses of the final dataset (both ML and BI) we recovered the three 

major bilaterian subgroups such as c-opsin, r-opsin, and Go-coupled/RGRs. We also 
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Program: RAxML IQTree 
PhyloBayes 
MPI 

Models: PROTGAMMAGTR GTR20 CAT-GTR 

 
PROTGAMMAAUTO GTR20+C20 

 
  

GTR20+C60 
 

  

LG+F+R8 
(ModelFinder) 

 Table 4. All the models variations tested with the opsin clade must have K data set under 
the program used. See Methods for further details on each model and program 
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recovered a cnidarian specific group of opsins with representatives from all major 

cnidarian classes. This clade has been documented previously as cnidopsin (or cnidarian 

xenopsins) (Plachetzki et al. 2007; Ramirez et al. 2016; Vöcking et al. 2017; Picciani et 

al. 2018) and its existence has been debated, but with increased cnidarian data we find 

strong support for a monophyletic cnidopsin clade. Cnidopsin contains 38 sequences 

from Hexacorallia and seven from Octocorallia (Anthozoa), two sequences from 

Endocnidozoa, 51 from Hydrozoa, seven from Staurozoa, two from Scyphozoa, but none 

from Cubozoa. Cubozoan opsins have been documented previously (Bielecki et al. 2014; 

Liegertová et al. 2015) from taxa we included in our analyses such as Tripedalia 

cystophora. However using our methodology, there is no way to account for poor 

genome/transcriptome quality. Cubozoan sequences were present in the initial opsin and 

outgroup dataset, but they were lost in the filtering steps for lacking enough informative 

data, due to poor quality input data. 

A clade consisting of seven ctenophore sequences, one sequence from the 

endocnidozoan, Polypodium hydriforme, and two from the xenacoelomorph, 

Convolutriloba macropyga, was also recovered. Ctenophore opsins, or “ctenopsin” have 

been documented before and fell out as the sister clade to cnidopsin (Hering and Mayer 

2014). We have also found support for ctenopsin being the sister to cnidopsin. However, 

this finding suggests that ctenophores and xenacoelomorphs share a type of ancient opsin 

that has only been retained in endocnidozoans, or that the xenacoelomorph and 

endocnidozoan sequences fell out with ctenopsin due to long branch effects, a common 

artifact of phylogenetic estimation. We also find support that the ctenophore opsins are 

the root of the opsin phylogeny through reconciled tree analysis in NoTung-2.9 (Stolzer 
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et al. 2012). Additionally, in the “opsin and outgroup” tree, ctenopsins were included in 

the opsin ingroup but also fell out as the root for opsins in that analysis. Rooting with 

ctenophore opsins results in cnidopin being sister to Bilaterian ciliary opsins, and Go-

coupled/RGR opsins being sister to Bilaterian rhabdomeric + anthozoan specific opsins.  

The anthozoan specific opsins that fall outside of the cnidopsin clade were the 

only unstable group in our analysis, as the only clade to move depending on the model. 

Anthozoan specific opsins have also been documented before (Plachetzki et al. 2007; 

Feuda et al. 2012; Ramirez et al. 2016) but normally only from Nematostella vectensis 

and usually as two separate clades. Anthozoan opsins 1 have been reported as the 

outgroup to all opsins and anthozoan opsins 2 as the sister to ciliary opsins, consistent 

with their membership in cnidopsin (Plachetzki, 2007; Hering and Mayer 2014; Vöcking 

et al. 2017). In all the analyses except PhyloBayes MPI (Lartillot et al. 2013), which was 

unresolved, we recovered a monophyletic clade of anthozoan specific opsins as the sister 

to rhabdomeric opsins. Additionally, this clade can be split into two groups, the first 

being specific to hexacorals containing sequences from Nematostella, Aiptasia, 

Anthopleura, Edwardsiella, Protopalythoa, Acropora, Corynactis, Rhodactis, Ricordea, 

Seriatopora, Montastrea, and Platygyra. The second group contains representatives from 

the octocorals Corallium and Gorgonia, and sequences from the hexacorals Corynactis, 

Madracis, Nematostella, Aiptasia, Anthopleura, Rhodactis, Favia, Ctenactis, and 

Lobactis. Usually anthozoan specific opsin clades only contain sequences data for a few 

hexacorals, but including abundant data for both hexacorals and octocorals allows for a 

monophyletic anthozoan opsin clade with many representatives to be identified as the 

sister to bilaterian r-opsins. The placement of this monophyletic clade is supported by 
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high alrt and bootstrap support, but the internal node splitting the two groups just 

discussed is low. However, in the PhyloBayes MPI (Lartillot et al. 2013) analyses, these 

two groups are split, leaving the octocoral+hexacoral group as the sister to bilaterian r-

type opsins and moving the hexacoral only group as sister to cnidopsin (Figure 8). We are 

unable to determine with certainty where the hexacoral specific clade falls on the 

phylogeny, but their function should be investigated to uncover what role they play in 

anthozoan sensory perception.  

 

Medusozoa Ocular Genes  

 The first additional dataset consisted of the 350 opsin genes identified through 

phylogenetic focusing plus 36 genes from the cubozoans Carybdea rastonii and 

Tripedalia cystophora and the hydrozoans Podocoryna carnea and Cladonema radiatum 

(Suga et al. 2008; Bielecki et al. 2014; Liegertová et al. 2015). We did not capture any 

cubozoan genes through our pipeline but were still curious to see where the previously 

described genes involved in cnidarian eye development fell on the phylogeny. All the 

cubozoan ocular genes fell out with the opsin genes from Acraspeda (Staurozoa, 

Cubozoa, and Scyphozoa) that were identified through our phylogenetic focusing 

pipeline. Similarly all the hydrozoan ocular genes fell out with the hydrozoan opsin 

genes. Both analyses show that the medusozoan ocular genes fall out with cnidopsin, 

providing strong support that the genes identified through phylogenetic focusing are also 

involved in cnidarian phototransduction, eye development, and potentially other sensory 

functions. Further investigation into these cnidopsin genes may provide insight into how 

other cnidarians use them for various sensory behaviors.  
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Figure 8. Opsin phylogeny from PhyloBayes MPI resulting in a different topology that splits the 
anthozoan specific opsins. Relationship of ciliary+cnidopsin+Anthozoan II is unresolved, but we 
do find support for the Go-coupled/RGR+rhabdomeric opsins.  
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No support for the Xenopsin clade 

 The last additional data set created included our opsin "must_have_K" data plus 

56 xenopsins identified from Ramirez et al. (2016) and Vöcking et al. (2017). Adding 

xenopsins to our data and rooting with ctenophore opsins resulted in a different topology 

but the same clades were retained. Interestingly the xenopsins from Vöcking et al. (2017) 

were placed into nearly every clade. Xenopsins from Nematostella vectensis fell into the 

anthozoan specific clades, while the Ramirez et al. (2016) xenopsins from Nematostella 

vectensis fell out into cnidopsins. Lastly, the Ramirez et al. (2016) xenopsins from Lottia 

gigantea fell into the bilaterian r-opsin and Go-coupled/RGR opsin clades (Figure 7). 

These results highlight the confusion of opsin evolution and classification and the lack of 

support for the so-called xenopsins. With increasing amounts of sequence data new opsin 

sequences are being identified in a variety of different organisms and often given a name 

before thorough phylogenetic analysis is applied. This situation is compounded in gene 

families like opsin, which are short, highly diverse, and often under different selective 

regimes.  

 

Opsin Phylogeny sensitivity 

 Our multiple analyses to form an accurate opsin phylogeny has shed light on how 

sensitive the topology is to change with the addition or removal of sequences. Once the 

opsin clade was isolated from the “opsin and outgroup” dataset we began an exhaustive 

approach to uncover the true topology, but it was soon noticed that different topologies 

would often result from the different data sets tested, such as the “opsin clade”, 

“must_have_K”, “opsin and ocular”, and “published xenopsin” data sets discussed 
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previously. While the topology of the tree changed between datasets, the sequences 

within each clade were retained allowing for a good sense of what opsins are present in 

different animal classes.    

 The anthozoan specific opsins seem to be the most unstable class of opsins, with 

the hexacoral specific clade being even more unpredictable than the hexacoral+octocoral 

clade, which consistently falls out as the sister to r-opsins. These results are similar to 

those of Feuda et al. (2012) where they recovered three cnidarian specific clades, one as 

sister to c-opins (most likely our cnidopsin clade), one as sister to r-opsins (most likely 

our Hexacoral+Octocoral clade), and one as sister to Go/RGR opsins (most likely our 

unstable Hexacoral specific clade). However these analyses fall short with regards to 

cnidarian taxon sampling, and only screened the genomes of the hydrozoan Hydra 

magnipapillata and hexacoral Nematostella vectensis. By including a significantly larger 

sample of cnidarians from all major classes we were able to uncover that the cnidopsin 

clade is a true class of cnidarian specific opsins. Hering and Mayer (2014) also reported 

cnidopsin as the sister to c-opsins, and our topology is further supported from the 

findings of Plachetzki et al. (2007) and Porter et al. (2011) with cnidopins being sister to 

c-opsins, and r-opsins being sister to Go/RGR opsins. 
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