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tHe Potential for aBiotic metHane in arctic 
Gas Hydrates 
Joel E. Johnson1, Kate Alyse Waghorn2, Jürgen Mienert2, and Stefan Bünz2

1Department of Earth Sciences, University of New Hampshire, Durham, NH USA
2CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of 
Geology, UiT The Arctic University of Norway, Tromsø, Norway

Most methane enclosed in gas hydrates is biotic in origin, formed by 
microbial degradation of sedimentary organic matter. Increasingly, 
there is evidence that substantial gas hydrate may also be sourced from 
thermogenic decomposition of organic matter and subsequent migration 
of this gas into the gas hydrate stability zone.  In addition, there is a third 
potential source of methane that does not involve organic matter at all—
abiotic methane, which can be generated by magmatic processes or gas-
water-rock reactions in the crust and upper mantle. 

Abiotic Methane in Slow and Ultraslow Spreading Environments

The Earth produces abiotic methane in a variety of geologic settings and 
at a range of temperatures and pressures from chemical reactions that 
do not directly involve organic matter.  Experimental studies and field 
observations in modern slow and ultraslow spreading mid-ocean ridge 
environments have shown that serpentinization reactions occur during the 
high temperature (>200 °C) hydrothermal alteration of ultramafic rocks, 
resulting in significant hydrogen production.  The hydrogen produced 
during serpentinization can react with CO or CO2, via Fischer-Tropsch Type 
Reactions, to produce abiotic methane.  

During the last 25 years, studies at modern ultramafic-hosted seafloor 
hydrothermal vents along the Mid-Atlantic Ridge provide clear evidence 
for high hydrogen and methane concentrations. Serpentinization in 
slow and ultraslow spreading ridge environments is focused along large 
detachment faults that can exhume deeper crustal and upper mantle rocks 
and accommodate a significant portion of the extension along magma-
limited ridge segments. Such  detachments are often well developed at 
the inside corners of ridge-transform intersections and are believed to be 
active for 1 to 4 million years, limiting active serpentinization and abiotic 
methane venting to the youngest crust near the ridge axis.  

In the north Atlantic and Arctic ocean basins, spreading ridge rates are 
transitional from slow to ultraslow spreading (Figure 1).  As spreading rates 
decrease, extension is accommodated mainly by detachment faulting, 
with minimal volcanism. Low-angle detachment faults and exhumed 
serpentinized peridotites have been observed and sampled on Gakkel 
Ridge; serpentinite and peridotite have been sampled on Lena Trough 
and Molloy Ridge; and black smokers and vent fauna have been observed 
at the junction of the Mohns and Knipovich Ridges, near exhumed 
detachment surfaces. Bottom simulating reflectors (BSRs), identified in 
seismic sections above interpreted serpentinized ultramafic diapirs, also 
exist on the sediment-covered eastern flank of Knipovich Ridge. These 
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observations establish the possibility of methane delivery for gas hydrates 
from an abiotic, serpentinized mantle source throughout sediment-
covered portions of the Arctic Ocean ultraslow spreading ridge system.

Sediment-Covered Ultraslow Ridges in Fram Strait

The potential for gas hydrate systems to be charged by serpentinized 
mantle sources of methane is high in Fram Strait, where young portions of 
ultraslow spreading ridge flanks are sediment covered and lie within the 
gas hydrate stability zone.  Water mass transport through Fram Strait since 
the early Miocene created an environment for the formation of sediment 
drifts.  These drift deposits grow during northern hemisphere glaciations 
and are sustained throughout the ultraslow separation of Greenland and 
Svalbard. 

The most well known gas hydrate-bearing drift in the Fram Strait is the 
Vestnesa Ridge. It is a >100-km-long and 50-km wide sediment drift 
between the northwest Svalbard margin and the Molloy Transform fault 
(Figure 1). It contains a gas hydrate reservoir and active free gas system 
that creates vents that release gas through the seafloor and into the ocean. 
Isotope measurements of gas from hydrates at this location are indicative 
of biotic sources (thermogenic methane). Abiotic sources are not present, 
likely due to the old age (10-20 million years old) of the crust beneath the 
drift.  

Just south of the Molloy Transform fault, however, on significantly younger 
crust (0-10 million years old), an offset portion of the Vestnesa drift shows 
an equally well-established gas hydrate system. Its underlying crustal 
structure suggests that, in addition to biotic gases, abiotic gases formed by 

Figure 1. Arctic Ocean Bathymetry (IBCAO Version 3.0).  Labels identify the slow to ultraslow spreading ridges that extend northward 
from Iceland; KbR-Kolbeinsey Ridge, MhR-Mohns Ridge, KR-Knipovich Ridge, MR-Molloy Ridge, LT-Lena Trough, and GR-Gakkel Ridge.  
Black box outlines the study area near the Vestnesa Ridge, described below and in Figures 2 and 3.  
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serpentinization also charge this gas hydrate system (Figures 2 and 3).

Abiotic Methane Window

In a 2015 paper, we presented the concept of an abiotic methane window 
for ocean basins characterized by ultraslow spreading. The extent of the 
abiotic methane window depends on the age of the oceanic crust, typical 
activity along detachment faults, and the optimum temperature range for 
serpentinization reactions (Figure 3).  

Active detachment faults that accommodate the majority of plate 
motion in ultraslow spreading environments are a key component of 
this conceptual model. Such faults exhume ultramafic mantle rocks and 

Figure 2. Location map (left) and  interpreted  seismic section (middle) of the gas hydrate system, including (from bottom to top) gas migration 
blank areas, the BSR, faults, and depressions at the seabed, across the crest of the  offset Vestnesa drift south of the Molloy transform fault.

Figure 3.  Conceptual diagram of an abiotic methane window for serpentinized ocean crust in a 
sediment-covered ultraslow spreading ridge environment (modified after Johnson et al., 2015).  
Abiotic charged gas hydrate is most likely to form in sediments that cover ultraslow spreading 
ridges early, near the ridge axis, when detachment faults are active, and the temperature 
regime is optimized for serpentinization.  Progressive translation of gas hydrated drifts into 
deeper water with continued ultraslow spreading, increases the stability of the gas hydrate 
system, contributing to its potential longevity.

SOURCES AND SUGGESTED 
READING

Bünz, S., Polyanov, S., 
Vadakkepuliyambatta, S., 
Consolaro, C., and Mienert, J., 
2012.  Active gas venting through 
hydrate-bearing sediments on 
the Vestnesa Ridge, offshore 
W-Svalbard: Marine Geology, v. 
332–334, p. 189–197, doi: 10.1016 / 
j. margeo.2012.09.012.

Dick, J.B.H., Lin, J., and Schouten, 
H., 2003.  An ultraslow-spreading 
class of ocean ridge: Nature, 
v. 426, p. 405–412, doi:10.1038/
nature02128.

Etiope, G. and Sherwood Lollar, B., 
2013.  Abiotic methane on Earth. 
Reviews of Geophysics 51(2): 276-
299.  doi:10/1002/rog.20011.

M. Jakobsson, J. Backman, B. 
Rudels, J. Nycander, M. Frank, L. 
Mayer, W. Jokat, F. Sangiorgi, M. 
O'Regan, H. Brinkhuis, J. King, K. 
Moran, 2007.  The Early Miocene 
onset of a ventilated circulation 
regime in the Arctic Ocean.  
Nature, 447 (2007), pp. 986–990  
doi: 10.1038/nature05924.

Johnson, J.E., Mienert, J., Plaza-
Faverola, A., Vadakkepuliyambatta, 
S., Knies, J., Bünz, S., Andreassen, 
K., and Ferré, B., 2015. Abiotic 



12

provide conduits for seawater, thereby promoting serpentinization.  
With continued seafloor spreading, these faults become less active and 
more mineralized—and therefore less permeable—as new detachments 
form closer to the ridge.  Typical activity along spreading ridge 
detachments ranges from 1-4 million years, restricting the most effective 
serpentinization to the youngest and warmest crust closest to the ridge 
axis.  In the case where sediment drifts in Fram Strait offset along mid-
ocean ridge transform faults, early abiotic gas charge could contribute to 
early gas hydrate formation.

Future Directions

Realizing the proportion of abiotic and biotic gases stored as gas and gas 
hydrate on sedimented, ultraslow spreading ridge flanks throughout the 
Arctic will require: (1) seismic reflection reconnaissance surveys to map 
the gas hydrate and free gas systems that likely exist within the largely 
underexplored Arctic and subarctic seafloor environments; and (2) future 
scientific drilling to directly sample, quantify, and isotopically characterize 
the gases in these likely mixed biotic and abiotic gas hydrate systems.
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