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University of Louisiana at Lafayette, Lafayette, Louisiana, USA, 3Jonah Ventures, Manhattan, Kansas, USA, 4Department of
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Abstract How climate and rising carbon dioxide concentrations (pCO2) have influenced competition
between C3 and C4 plants over the last 50 years is a critical uncertainty in climate change research. Here
we used carbon isotope (δ13C) values of the saprotrophic lawn fungus Amanita thiersii to integrate the signal
of C3 and C4 carbon in samples collected between 1982 and 2009 from the Midwestern USA. We then
calculated 13C fractionation (Δ) to assess the balance between C3 and C4 photosynthesis as influenced by
mean annual temperature (MAT), mean annual precipitation over a 30 year period (MAP-30), and pCO2.
Sporocarp Δ correlated negatively with MAT (�1.74‰ °C�1, 79% of variance) and positively with MAP
(9.52‰m�1, 15% of variance), reflecting the relative productivity of C3 and C4 grasses in lawns. In addition,
Δ values correlated positively with pCO2 (0.072‰ppm�1, 5% of variance). Reduced photorespiration with
rising pCO2 accounted for 20% of this increased Δ, but the remaining 80% is consistent with increased
assimilation of C3-derived carbon by Amanita thiersii resulting from increased productivity of C3 grasses with
rising pCO2. Between 1982 and 2009, pCO2 rose by 46 ppm and the relative contribution of C3
photosynthesis to Amanita thiersii carbon increased 18.5%. The δ13C value of Amanita thiersii may integrate
both lawn maintenance practices and the physiological responses of turf grasses to rising
CO2 concentrations.

1. Introduction

Fundamental differences between the C3 and C4 modes of photosynthesis account for the higher 13C:12C
ratios (expressed as δ13C values) observed in C4 plants than in C3 plants. These fundamental differences also
explain the differential responses of C4 and C3 grasslands to changes in atmospheric carbon dioxide levels
(pCO2), temperature, precipitation, and nutrient availability. In mixed communities, the competitive balance
between C3 and C4 grasses should accordingly be sensitive to climate change and ongoing increases in pCO2.
Researchers have used δ13C values in grazers to examine the balance between C3 and C4 grasses in paleon-
tological studies stretching back 5–8Ma [Cerling et al., 1997] and have done similar studies in modern grass-
lands [Auerswald et al., 2012], although data are needed on responses to the sharply rising pCO2 of the last
50 years [Lattanzi, 2010].

Grasses lack the long-term record of environmental responses that have been used so successfully in tree
ring research. One approach to overcome this limitation used native prairie soils themselves as integrators
of the productivity of C3 versus C4 plants [von Fischer et al., 2008]; another promising approach is to use
herbarium specimens as recorders of environmental information during the season of collection
[McLauchlan et al., 2010], although phylogenetic variability and the variable response to climate result
in a noisy signal. Herbarium specimens of saprotrophic fungi may also provide a long-term record of
environmental change since these fungi rely on plant cellulose as their primary source of energy
and carbon.

One such fungus, Amanita thiersii, forms sporocarps in Midwestern lawns and is expanding its range rapidly
[Wolfe et al., 2012]. Lawns are the single largest irrigated crop in the U.S. and covered between 100,000 and
160,000 km2 in 2005 (Figure 1) [Steinberg, 2006]. The δ13C values of Amanita thiersii indicated that it can
assimilate carbon derived from both C3 and C4 photosynthetic pathways [Wolfe et al., 2012]. Here we will
use isotopic patterns in Amanita thiersii to integrate local productivity of C3 versus C4 grasses and relate that
productivity to climatic factors and pCO2.
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Numerous factors can influence the bal-
ance of C3 and C4 photosynthesis at a
site. Both temperature and precipitation
have been linked to the relative propor-
tions of C3 and C4 photosynthesis across
large spatial scales [Tieszen et al., 1997;
von Fischer et al., 2008]. However,
agricultural maize production can also
influence large-scale patterns of C4
photosynthesis. The relative propor-
tions of C3 and C4 photosynthesis were
quantified spatially by Still et al. [2009]
in a global data set of the relative pro-
portions of C4 photosynthesis (fC4) at 1°
resolution. Within the central United
States the choice of lawn grasses
depends on the climatic zone, with
more C3 grasses selected in cooler
regions and more C4 grasses selected
in warmer regions [Milesi et al., 2005].
Temperature is generally considered
the dominant control on the abundance
of C3 versus C4 grasses in natural habi-
tats, with different studies using day-
time summer maximum temperature,
minimum growing season temperature,
or mean annual temperature as the
metric best correlating with the propor-
tions of C3 versus C4 plants [Ehleringer
et al., 1997]. The proportion of annual
precipitation falling in summer in nat-
ural grasslands is also positively corre-
lated with C4 abundance [Paruelo and
Lauenroth, 1996].

The Suess effect, the decrease in δ13C of
atmospheric CO2 caused by the burning
of fossil fuels since the start of the
Industrial Revolution, also influences
δ13C patterns. The δ13C of atmospheric
CO2 has decreased by about 1.7‰ since
1850, while pCO2 has risen from

285 ppm to ~400 ppm [Hua et al., 2013; McCarroll and Loader, 2004]. One approach to remove the influence
of the Suess effect is to calculate the 13C discrimination (Δ) of the tissue in question relative to the δ13C of
atmospheric CO2 [Köhler et al., 2010]. This approach allowed Schubert and Jahren [2012] to show that 13C
discrimination increased in C3 plants with increasing pCO2 in elevated CO2 experiments. However, long-term
records of Δ from spring-harvested, seminatural grasslands at Rothamsted (all C3 plants) indicated no shift in
Δ from 1857 to 2007 [Köhler et al., 2010].

Wolfe et al. [2012] compared δ13C and δ15N measurements on 49 archived specimens of Amanita thiersii
against similar measurements from grassland Hygrocybe and from a worldwide survey of fungi to prove that
Amanita thiersiiwas saprotrophic, rather than ectomycorrhizal. Here we have reanalyzed the isotopic data set
of Amanita thiersii presented in Wolfe et al. [2012] against site information on mean annual temperature,
mean annual precipitation, pCO2, and the regionally estimated proportion of C4 photosynthesis (fC4) to

a.

b.

Figure 1. Fraction of USA surface area covered by lawns. From http://eoi-
mages.gsfc.nasa.gov/images/imagerecords/6000/6019/frac_turf-
grass_lrg.jpg. (a) United States. (b) Sampling area in south central USA.
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study whether this fungus may inte-
grate information on the competitive
balance between C3 versus C4 grasses
from the lawns where it was collected.
We hypothesized the following:

1. δ13C of Amanita thiersii integrates
the relative proportions of C3 and
C4 vegetation at the specific loca-
tions where it is collected; accord-
ingly, Δ should correlate strongly
with measures that either reflect or
influence the balance of C3 and C4
vegetation such as fC4, temperature,
and precipitation.

2. Because pCO2 has increased over
time, Δ of Amanita thiersii will also
increase over time [Schubert and
Jahren, 2012].

2. Materials and Methods

InWolfe et al. [2012], gill tissue was sub-
sampled from 48 herbarium specimens
of Amanita thiersii collected at 26 differ-
ent locations between 1982 and 2009 in
southeastern and south central USA.
Locations were between 29°N and
40°N and 86°W and 100°W. Samples
were analyzed for %C, %N, δ13C, and
δ15N as detailed in Wolfe et al. [2012].
We analyzed the underlying data set
from Wolfe et al. [2012] (as provided by
B. Wolfe) using multiple regressions as
provided in the statistical software JMP
(SAS Institute, Cary, North Carolina,
USA). One outlier sample collected in
1952 was not used in the analyses.

Mean annual temperature (MAT) and
mean annual precipitation (MAP) during

the year of collection were determined with the Daymet Single Pixel Extraction tool using the latitude and
longitude of sample sites (daymet.ornl.gov). In addition, mean annual temperature (MAT-30), mean annual
precipitation (MAP-30), and mean temperature for the warmest month (WMT-30) and coldest month
(CMT-30) for each location were derived from the 1961–1990 averages available from the Climate Research
Unit (http://www.cru.uea.ac.uk), as described in New et al. [2002]. Yearly values of δ13CO2 and pCO2 were
derived from McCarroll and Loader [2004], Keeling et al. [2009], Hua et al. [2013], and the publicly available
database of the U.S. Earth Systems Research Laboratory (https://www.esrl.noaa.gov/gmd/ccgg/trends/data.
html). From 1982 to 2009 the δ13C value of atmospheric CO2 declined from �7.48‰ to �8.24‰ because
of the addition of fossil fuel-derived CO2 to the atmosphere (the Suess effect). The Suess effect was quantified
as the difference between the δ13C value of atmospheric CO2 in the year of collection and the preindustrial
value of �6.4‰. We calculated the 13C fractionation (Δ) from atmospheric CO2 to Amanita thiersii as
Δ= (δ13CCO2� δ13CAmanita)/(1 + δ13CAmanita). To test if large-scale estimates of C4 photosynthesis were useful
predictors of the Δ values calculated for Amanita thiersii, we used C4 photosynthesis estimates from Still et al.
[2009] that gave the fraction of C4 photosynthesis at 1° resolution (fC4-1°). We also used the Still et al. [2009]

a.

b.

Figure 2. Collection locations are plotted by latitude (°N) and longitude
(°W, given a negative sign) versus (a) mean annual temperature, MAT,
and (b) mean annual precipitation, MAP. Colored isopleths are 1°C for
temperature (from 11°C to 22°C) and 200mm for precipitation (from
900mm to 1800mm). Isopleths for 2002 are shown.
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data set to calculate the fraction of C4 photosynthesis at a resolution of 3 × 3° (fC4-9°). Our stepwise regression
models of Δ included these nine factors: fC4-1°, fC4-9°, CMT-30, WMT-30, MAT, MAT-30, MAP, MAP-30, and
pCO2. Model retention was determined by comparing values of the Akaike information criteria that were
corrected for sample size (AICc). The model was then rerun as a linear regression with location as a
random effect.

We searched for comparable data in the literature to estimate the effects of climate or pCO2 on Δ. We used
the equation Δ= (δ13CCO2� δ13Csubstrate)/(1 + δ13Csubstrate). If studies presented data on the relative propor-
tion of C3 or C4 vegetation rather than Δ, we assumed that ΔC3�ΔC4 = 14.4‰.

Table 1. Data on Annual pCO2, the Suess Effect, Mean Annual Temperature (MAT), Mean Annual Precipitation (MAP),
and δ13Ca

Date (n)
pCO2
(ppm)

Suess
Effect (‰)

Lat
(°N)

Long
(°W)

MAT
(°C)

MAT-30
(°C)

MAP
(mm)

MAP-30
(mm)

δ13C ± se
(‰)

11/9/1952 312.80 �0.46 30.61 96.36 20.57 20.0 836 991 �9.17
20/8/1982 341.13 �1.08 33.38 91.05 17.52 17.3 1345 1342 �14.00
15/7/1989 352.91 �1.28 35.66 97.47 15.64 15.6 938 851 �11.67
3/10/1990 (4) 354.19 �1.31 35.67 97.48 15.91 15.6 971 851 �10.67 ± 0.34
6/9/1991 355.59 �1.34 35.66 97.47 15.72 15.6 969 851 �13.57
8/9/1992 (2) 356.37 �1.37 37.73 89.21 13.57 13.2 122 1144 �20.83 ± 0.05
17/10/1999 368.31 �1.56 29.96 90.22 20.51 20.3 174 1589 �11.15
30/10/2000 369.48 �1.59 35.63 97.47 15.95 15.6 968 851 �12.56
7/6/2001 371.02 �1.62 35.63 97.47 15.89 15.6 951 851 �14.74
22/8/2001 371.02 �1.62 35.65 97.47 15.90 15.6 948 851 �11.97
15/9/2001 371.02 �1.62 35.02 97.38 16.33 16.0 1040 852 �14.08
2/9/2002 373.10 �1.65 35.78 97.70 15.85 15.7 926 816 �13.98
29/7/2003 375.64 �1.67 39.55 88.25 11.90 11.4 1072 994 �20.71
1/8/2003 (2) 375.64 �1.67 39.25 88.16 12.21 11.7 1087 1021 �21.29 ± 0.03
27/6/2004 377.38 �1.70 35.79 97.68 15.80 15.7 893 816 �11.18
28/6/2004 (2) 377.38 �1.70 38.53 90.45 13.42 13.1 1113 952 �21.49 ± 0.02
17/8/2004 377.38 �1.70 35.79 97.68 15.80 15.7 894 816 �10.69
18/7/2005 (2) 379.67 �1.73 37.30 89.52 14.18 14.1 1202 1184 �18.19 ± 0.33
4/7/2007 (4) 383.55 �1.78 38.97 95.25 13.17 13.3 988 992 �20.26 ± 0.37
22/7/2007 383.55 �1.78 39.55 88.25 12.22 11.4 1039 994 �22.08
10/9/2007 383.55 �1.78 39.16 86.52 12.02 11.7 1277 1095 �24.05
19/7/2008 385.34 �1.81 39.55 88.25 12.19 11.4 1086 994 �21.12
11/9/2008 (7) 385.34 �1.81 38.58 95.45 13.45 13.1 998 952 �19.98 ± 0.20
16/9/2008 (4) 385.34 �1.81 38.96 95.26 13.06 13.3 1000 992 �21.46 ± 0.16
22/7/2009 (4) 387.23 �1.83 38.85 95.31 13.07 13.3 976 992 �21.51 ± 0.14
29/8/2009 (2) 387.23 �1.83 29.41 95.12 21.02 20.5 1414 1138 �10.22 ± 0.04

aSite location is given as latitude (Lat) and longitude (Long). Date of collection (day/month/year) and n are given in the
first column. Standard errors (se) are given for n> 1. Seuss effect values are calculated fromMcCarroll and Loader [2004]
and Hua et al. [2013] using a baseline year of 1850.

Table 2. AICc and Correlations (r2) of Different Stepwise Regression Models of Δa

Model n r2 AICc

MAT 1 0.739 221.3
MAT-30 1 0.722 224.3
MAT and MAP-30 2 0.875 188.3
MAT and WMT-30 2 0.864 192.3
pCO2, MAT, and MAP-30 3 0.915 172.2
pCO2, MAP-30, and WMT-30 3 0.907 176.6
pCO2, MAT, MAP-30, and WMT-30 4 0.917 173.7
pCO2, MAT, MAP-30, and fC4-1° 4 0.917 174.0
pCO2, MAT, MAP-30, WMT-30, and fC4-9° 5 0.919 175.5
pCO2, MAT, MAP-30, WMT-30, and MAT-30 5 0.918 176.1

aThe two models of lowest AICc are shown for each level. Variables included in models included pCO2, MAT, MAP,
MAT-30, MAP-30, WMT-30, CMT-30, fC4-1°, and fC4-9°. n = 48. AICc values within 2 of the lowest value are in bold.
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3. Results

In Figure 2, we have plotted sample locations and indicated the annual temperature and precipitation for
2002 to illustrate the broad gradients in temperature and precipitation across the region where Amanita
thiersii was found. Data on δ13C, pCO2, the Suess effect, MAT, and MAP are presented in Table 1 by location
and year. Latitude and longitude of sampling locations are also given. Sample data (%N, %C, C:N ratio, δ15N,
and δ13C) and the percentage of site productivity attributed to C4 plants are given in supporting information

Table S1. Overall, the 48 samples aver-
aged 10.17 ± 1.20 for %N, 40.24 ± 1.97
for %C, 4.01 ± 0.53 for C:N ratio, 10.07 ±
1.59 for δ15N, and �17.65 ± 4.48‰ for
δ13C (±standard deviation).

Results from the stepwise multiple
regression on Δ values are given in
Table 2. In the stepwise multiple regres-
sion, lowest values of AICc were with a
three-parameter model that included
MAT, MAP-30, and pCO2 (AICc = 172.2)
and a four-factor model that included
MAT, MAP-30, pCO2, and WMT-30
(AICc = 173.7). However, WMT-30 and
MAT were highly correlated (r2 = 0.988).
The three-factor model explained 91%
of the variance in δ13C. Residuals from
this regression were correlated within a
site, so location was added as a random
factor. This increased the explained
variance to 97% (Table 3). Sporocarp Δ
correlated negatively with MAT
(�1.93‰ °C�1, 77% of variance), posi-
tively with MAP (0.10‰ cm�1, 15%
of variance), and positively with pCO2

(5% of variance, 0.072‰ppm�1). The
coefficient of 0.072‰ppm�1 for pCO2

was much higher than the theoretical
value of 0.014‰ppm�1 calculated from
Schubert and Jahren [2015] for C3 plants.
Leverage plots of our three main factors
against 13C discrimination are given in
Figure 3.

In Table 4, we compared our coefficients
of the effects of pCO2, temperature, and
precipitation on Δ from estimates

Table 3. The Three-Term Regression Model of Δ Values in Amanita thiersii That Maximized AICca

Term %Variance Estimate ± se p

Intercept -- �1.39 ± 10.33 0.8939
MAT (°C) 79.3 �1.74 ± 0.15 <0.0001
MAP-30 (m) 15.4 9.52 ± 2.28 0.001
pCO2 5.2 0.072 ± 0.025 0.0071

aAdjusted r2 is 0.970, n = 48, p< 0.0001, with the adjusted r2 of the fixed effects at 0.910. Location contributed 68% to
random effects. “%Variance” is the percentage of variance attributed to the given factor for the regression model run
without random effects.

Figure 3. Leverage plots of the three independent variables versus 13C
discrimination (Δ) residuals. (a) Mean annual temperature. (b) Mean
annual precipitation. (c) pCO2.
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derived frompreviously publishedwork in elevated CO2 experiments, archived long-term studies, and studies
of controls over either C3 and C4 plants or C3- and C4-derived soils. Our calculations are presented in
supporting information Table S4. Coefficient estimates were higher in our study than in other work (Table 4).

4. Discussion

Carbon from Amanita thiersii reflected an overall balance between C3 and C4 photosynthesis over long per-
iods at a site (Table 3). In our regression, the strong correlation of Δ with mean annual temperature presum-
ably reflects an underlying correlation between MAT and the dominance of C4 grasses [Tieszen et al., 1997],
but we assume that this pattern in turn reflects human selection for turf grass species that are C3 or C4
[Milesi et al., 2005] and subsequent competition among planted and local species, rather than competition
within natural vegetation. High temperatures during the growing season rather than mean annual tempera-
tures appear to control C3 versus C4 grass distributions in studies of natural grasslands; for example, the best
single predictor of %C4 in soil organic matter in the A horizon was the high monthly temperature for April
through August [von Fischer et al., 2008]. However, mean annual temperature will correlate closely in most
cases with the high monthly temperature [Ehleringer et al., 1997] and in the current study the correlation
between mean annual temperature and the mean temperature of the warmest summer month (WMT-30)
correlated very closely, with r=0.994. Growing season temperatures will also largely control the choice of
C3 and C4 turf species for a specific location [Bertrand et al., 2013], in addition to other factors such as freezing
tolerance [Dionne et al., 2010].

As in studies focusing on natural vegetation [von Fischer et al., 2008], MAP was a significant factor influencing
Δ. Lawn turf grasses are selected for their drought tolerance [Bonos and Huff, 2013], with C4 grasses more
drought tolerant than C3 grasses. Thus, regional shifts in MAP should increase the proportion in lawns of
C4 grasses of low Δ. Prior conditions, as potentially indicated by fC4, did not significantly influence Δ, perhaps
implying that Amanita thiersii carbon is drawn primarily from recent photosynthate. However, the C4 distribu-
tion in Still et al. [2009] was driven by climate plus the economic incentives to growmaize, an annual C4 crop,
in regions where the C4 perennial grasses used in lawns would overwinter poorly. Thus, it is not surprising
that temperature and precipitation were better predictors of Δ in our study than large-scale estimates of
C4 distribution that included maize cultivation.

We point out that in the regression model, MAT and MAP-30 were selected, rather than MAT-30 and MAP.
MAP correlated strongly with MAP-30 (r= 0.898), but we assume that MAP-30 is a better representation of

Table 4. Estimated Effects of pCO2, MAT, and MAP on Δ Calculated From Prior Studiesa

pCO2
(‰ ppm�1)

Temperature
(‰ °C�1)

Precipitation
(‰ m�1) Study Notes

0.0064 �0.10b 0.31c Kö C3 grassland, summer/fall, 1875–2007
0.0015 (ns) �0.11d 1.17e Kö C3 grassland, spring, 1857–2007
0.014 -- -- SJ elevated CO2 studies, C3 plants
0.072 �1.74 9.52 Ho current study
-- �0.75f -- PL USA climate gradients, C3/C4 vegetation
-- �0.49g, 0.78h -- vF USA climate gradients, C3/C4 A horizon roots
-- �0.65i -- Au Mongolian sheep wool from C3/C4 pastures

aIn some studies, parameters were referenced relative to the proportional shift in C3 versus C4 plant productivity or
soil. We have converted those data to reflect shifts in Δ by assuming that C3 plants average 14.4‰ higher in Δ than
C4 plants. Calculations are given in supporting information Table S4. Cited studies: Köhler et al. [2010] (Kö), Schubert
and Jahren [2012] (SJ), current study (Ho), Paruelo and Lauenroth [1996] (PL), von Fischer et al. [2008] (vF), and
Auerswald et al. [2012] (Au). ns, not significant.

bAugust mean temperature.
cLog of September rainfall inmmd�1, here converted tom yr�1 using 0.61m yr�1 and 0.855m yr�1 as representative

values (MAP was 0.735 ± 0.120m).
dJune mean temperature.
eLogofMarch–June rainfall inmmd�1, here converted tom yr�1 using0.61m yr�1 and0.855m yr�1 as representative

values (MAP was 0.735 ± 0.120m).
fEstimated from multiple regression, MAT, as given in supporting information Tables S2, S3, and S4.
gMAT.
hApril through August temperature. iJuly temperature.
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the long-term average of precipitation that influences C3 and C4 grass productivity than an individual year,
even thoughMAP-30 is the average from 1961 to 1990, whereas samples were from 1982 to 2009. In contrast,
calculated MAT in our study correlated so strongly with MAT-30 (r=0.994) that they were essentially identical
in their effects on the regression model, and, in fact, they were the two most important single factors in the
one-factor regression model (Table 2).

Comparable values for our coefficients of our regression model from the literature are given in Table 4.
Not surprisingly, in the two studies of exclusively C3 plants [Köhler et al., 2010; Schubert and Jahren,
2012], the estimated coefficients for pCO2, temperature, and precipitation are ~10 times lower than in
our study that looked across C3/C4 gradients. It is unclear why the temperature coefficient is higher in
our study than in the three other studies assessing this across natural C3/C4 gradients. We suspect that
summertime lawn watering, by favoring photosynthesis of C4 grasses under hot summertime conditions,
could extend the relative dominance of C4 grasses northward until they are limited by cold winter tem-
peratures, thereby effectively sharpening the temperature gradient of the C3/C4 transition. Turf manage-
ment in the U.S. divides the country into different regions, with C3, cool-season grasses predominating
northward and C4, warm-season grasses predominating in the south [Christians and Engelke, 1994]. The
relatively narrow transition zone between these two regions may be where a mix of C3 and C4 grasses
can survive and may account for the steep temperature gradient recorded in our study. Our estimate of
1.93‰ °C�1 translates into about a 7.5°C increase in MAT from 100% C3 to 100% C4, if we assume that
ΔC3-C4 is 14.4‰.

The following equationmodified from Schubert and Jahren [2015] predicted that the pCO2 increase across the
study interval (1982 to 2009) should increase Δ by 0.64‰ in C3 plants by decreasing photorespiration:

pCO2 effect ¼ A � B � pCO2 2009ð Þ þ C
� �� �

= A þ B � pCO2 2009ð Þ þ C
� �� �

– A � B � pCO2 1982ð Þ þ C
� �� �

= A þ B � pCO2 1982ð Þ þ C
� �� � (1)

where A=28.26, B= 0.22, and C= 23.9, pCO2(1982) = 341 ppm, and pCO2(2009) = 387 ppm. Given a 47 ppm shift
over this period (pCO2 = 341 ppm in 1982 and 387 ppm in 2009), the theoretical coefficient for the photore-
spiratory effect in C3 plants would be 0.64‰/46 ppm or 0.014‰/ppm. However, the observed coefficient
estimate is 0.072‰/ppm (Table 2), meaning that pCO2 alone cannot account for the increased Δ; additional
factors are therefore required to explain the increase in Δ. One likely possibility for the increased Δ across the
study interval is increased assimilation by Amanita thiersii of C3-derived carbon, presumably resulting from
increased productivity of C3 grasses relative to C4 grasses and lower photorespiratory losses in C3 grasses
with rising CO2 concentrations [Wand et al., 1999]. Thus, the observed Δ increase in Amanita thiersii probably
reflected both decreased photorespiration with rising pCO2 and shifts in the competitive balance between C3
and C4 grasses in suburban lawns.

We suggest that the competitive balance has shifted toward C3 grasses under these conditions sufficiently to
increase the coefficient for pCO2 in our regression model by a factor of 5 (from the calculated value for the
photorespiratory effect of 0.014‰ppm�1 to 0.072‰ppm�1). From 1982 to 2009, this corresponded to a
2.67‰ increase in Δ of Amanita-assimilated carbon driven by the productivity shift to C3 photosynthesis,
as calculated from (0.072‰–0.014‰) ppm�1 × 46 ppm. With an assumed 14.4‰ difference in Δ between
C3 and C4 photosynthesis [O’Leary, 1988], the calculated shift corresponded to a 18.5% (2.67/14.4) increase
in the proportion of total productivity attributed to C3 grasses over the 46 ppm increase in pCO2 This corre-
sponded to a 40% increase per 100 ppm pCO2 increase.

We can compare these field-derived results against those estimated from numerous experiments on C3
plants, which showed that biomass increased on average by 20–54% as pCO2 increased from ambient
(300–420 ppm) to elevated (475–700 ppm) levels [Ainsworth and Long, 2005; Kimball et al., 1993; Poorter,
1993; Poorter and Navas, 2003; Wand et al., 1999]. Biomass of C3 grasses (Poaceae) specifically increased by
33% to 44% [Wand et al., 1999]. Using these results as a guide, a 40% increase in biomass in response to a
130 ppm increase in pCO2 (e.g., 370 to 500 ppm) suggests a 31% increase in biomass per 100 ppm increase
in pCO2, which is similar to that determined here for lawns (40% per 100 ppm).

We note, however, that the pCO2 levels for our study spanned a narrow range and were all less than 400 ppm
(341 to 387 ppm). Given that the biomass response is greatest at low pCO2 and saturates at higher pCO2 [Hunt

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003579

HOBBIE ET AL. SAPROTROPHIC FUNGI INTEGRATE LAWN C FLUX 286



et al., 1991, 1993; Schubert and Jahren, 2011], it is not surprising that the response we observed at low pCO2 is
greater than that observed within studies that included significantly higher pCO2 levels (e.g., up to 750 ppm
in theWand et al. [1999] review). Thus, the integrated growth response that we have estimated in this study
using Amanita thiersii as an integrator of lawn photosynthesis appears entirely plausible based on numerous
growth studies of C3 grasses under elevated pCO2. Although shifts in lawn maintenance practices could also
influence Δ, the physiological responses of turf grasses since the early 1980s to rising pCO2 could readily
account for the integrated patterns reported here.

5. Conclusions

Amanita thiersii appeared to be a good integrator of the carbon produced by grasses in lawns. Temperature
was the primary control over C3 versus C4 grass distribution. Both management decisions and competition
between grass types within lawns could play a role in the patterns of carbon assimilated by Amanita thiersii.
Rising pCO2 over the 1982–2009 record correlated with the relative C3 and C4 assimilation by this fungus,
suggesting that rising pCO2 may have significantly affected the competitive balance between the two grass
types. This suggests that herbarium specimens of sporocarps could be used more widely to examine
ecosystem-scale responses to global change.
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