University of New Hampshire University of New Hampshire Scholars' Repository

Faculty Publications

1-24-2017

Increased C3 productivity in Midwestern lawns since 1982 revealed by carbon isotopes in Amanita thiersii

Erik A. Hobbie University of New Hampshire, Durham, erik.hobbie@unh.edu

Brian A. Schubert University of Louisiana at Lafayette

Joseph M. Craine Jonah Ventures

Ernst Linder University of New Hampshire, Durham

Anne Pringle University of Wisconsin-Madison

Follow this and additional works at: https://scholars.unh.edu/faculty_pubs

Recommended Citation

Hobbie, E.A., Schubert, B.A., Craine, J.M., Linder, E., Pringle, A. 2017. Increased C3 productivity in Midwestern lawns since 1982 revealed by carbon isotopes in Amanita thiersii. Journal of Geophysical Research: Biogeosciences 122: 280-288.

This Article is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

@AGUPUBLICATIONS

Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE

10.1002/2016JG003579

Key Points:

- Carbon isotopes in a lawn fungus integrated C_3 and C_4 productivity in lawns between 1982 and 2009
- Higher temperatures favored C₄ productivity, and higher precipitation favored C₃ productivity
- Between 1982 and 2009, pCO₂ increased by 47 ppm and the relative productivity of C₃ grasses increased 18.5%

Supporting Information:

Supporting Information S1

Correspondence to:

E. A. Hobbie, erik.hobbie@unh.edu

Citation:

Hobbie, E. A., B. A. Schubert, J. M. Craine, E. Linder, and A. Pringle (2017), Increased C₃ productivity in Midwestern lawns since 1982 revealed by carbon isotopes in *Amanita thiersii*, *J. Geophys. Res. Biogeosci.*, 122, 280–288, doi:10.1002/2016JG003579.

Received 25 AUG 2016 Accepted 11 JAN 2017 Accepted article online 24 JAN 2017 Published online 8 FEB 2017

Increased C₃ productivity in Midwestern lawns since 1982 revealed by carbon isotopes in *Amanita thiersii*

Erik A. Hobbie¹, Brian A. Schubert², Joseph M. Craine³, Ernst Linder⁴, and Anne Pringle⁵

JGR

¹Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA, ²School of Geosciences, University of Louisiana at Lafayette, Lafayette, Louisiana, USA, ³Jonah Ventures, Manhattan, Kansas, USA, ⁴Department of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire, USA, ⁵Departments of Botany and Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract How climate and rising carbon dioxide concentrations (pCO_2) have influenced competition between C₃ and C₄ plants over the last 50 years is a critical uncertainty in climate change research. Here we used carbon isotope (δ^{13} C) values of the saprotrophic lawn fungus *Amanita thiersii* to integrate the signal of C₃ and C₄ carbon in samples collected between 1982 and 2009 from the Midwestern USA. We then calculated ¹³C fractionation (Δ) to assess the balance between C₃ and C₄ photosynthesis as influenced by mean annual temperature (MAT), mean annual precipitation over a 30 year period (MAP-30), and pCO_2 . Sporocarp Δ correlated negatively with MAT ($-1.74\%^{\circ}C^{-1}$, 79% of variance) and positively with MAP (9.52 $\%^{\circ}$ m⁻¹, 15% of variance), reflecting the relative productivity of C₃ and C₄ grasses in lawns. In addition, Δ values correlated positively with pCO_2 (0.072 $\%^{\circ}$ ppm⁻¹, 5% of variance). Reduced photorespiration with rising pCO_2 accounted for 20% of this increased Δ , but the remaining 80% is consistent with increased assimilation of C₃-derived carbon by *Amanita thiersii* resulting from increased productivity of C₃ grasses with rising pCO_2 . Between 1982 and 2009, pCO_2 rose by 46 ppm and the relative contribution of C₃ photosynthesis to *Amanita thiersii* carbon increased 18.5%. The δ^{13} C value of *Amanita thiersii* may integrate both lawn maintenance practices and the physiological responses of turf grasses to rising CO_2 concentrations.

1. Introduction

Fundamental differences between the C₃ and C₄ modes of photosynthesis account for the higher ¹³C:¹²C ratios (expressed as δ^{13} C values) observed in C₄ plants than in C₃ plants. These fundamental differences also explain the differential responses of C₄ and C₃ grasslands to changes in atmospheric carbon dioxide levels (*p*CO₂), temperature, precipitation, and nutrient availability. In mixed communities, the competitive balance between C₃ and C₄ grasses should accordingly be sensitive to climate change and ongoing increases in *p*CO₂. Researchers have used δ^{13} C values in grazers to examine the balance between C₃ and C₄ grasses in paleon-tological studies stretching back 5–8 Ma [*Cerling et al.*, 1997] and have done similar studies in modern grasslands [*Auerswald et al.*, 2012], although data are needed on responses to the sharply rising *p*CO₂ of the last 50 years [*Lattanzi*, 2010].

Grasses lack the long-term record of environmental responses that have been used so successfully in tree ring research. One approach to overcome this limitation used native prairie soils themselves as integrators of the productivity of C_3 versus C_4 plants [von Fischer et al., 2008]; another promising approach is to use herbarium specimens as recorders of environmental information during the season of collection [*McLauchlan et al.*, 2010], although phylogenetic variability and the variable response to climate result in a noisy signal. Herbarium specimens of saprotrophic fungi may also provide a long-term record of environmental change since these fungi rely on plant cellulose as their primary source of energy and carbon.

One such fungus, *Amanita thiersii*, forms sporocarps in Midwestern lawns and is expanding its range rapidly [*Wolfe et al.*, 2012]. Lawns are the single largest irrigated crop in the U.S. and covered between 100,000 and 160,000 km² in 2005 (Figure 1) [*Steinberg*, 2006]. The δ^{13} C values of *Amanita thiersii* indicated that it can assimilate carbon derived from both C₃ and C₄ photosynthetic pathways [*Wolfe et al.*, 2012]. Here we will use isotopic patterns in *Amanita thiersii* to integrate local productivity of C₃ versus C₄ grasses and relate that productivity to climatic factors and *p*CO₂.

©2017. American Geophysical Union. All Rights Reserved.

Figure 1. Fraction of USA surface area covered by lawns. From http://eoimages.gsfc.nasa.gov/images/imagerecords/6000/6019/frac_turfgrass_lrg.jpg. (a) United States. (b) Sampling area in south central USA.

Numerous factors can influence the balance of C_3 and C_4 photosynthesis at a site. Both temperature and precipitation have been linked to the relative proportions of C₃ and C₄ photosynthesis across large spatial scales [Tieszen et al., 1997; von Fischer et al., 2008]. However, agricultural maize production can also influence large-scale patterns of C₄ photosynthesis. The relative proportions of C₃ and C₄ photosynthesis were quantified spatially by Still et al. [2009] in a global data set of the relative proportions of C₄ photosynthesis (f_{C4}) at 1° resolution. Within the central United States the choice of lawn grasses depends on the climatic zone, with more C₃ grasses selected in cooler regions and more C₄ grasses selected in warmer regions [Milesi et al., 2005]. Temperature is generally considered the dominant control on the abundance of C3 versus C4 grasses in natural habitats, with different studies using daytime summer maximum temperature, minimum growing season temperature, or mean annual temperature as the metric best correlating with the proportions of C₃ versus C₄ plants [Ehleringer et al., 1997]. The proportion of annual precipitation falling in summer in natural grasslands is also positively correlated with C4 abundance [Paruelo and Lauenroth, 1996].

The Suess effect, the decrease in δ^{13} C of atmospheric CO₂ caused by the burning of fossil fuels since the start of the Industrial Revolution, also influences δ^{13} C patterns. The δ^{13} C of atmospheric CO₂ has decreased by about 1.7‰ since 1850, while *p*CO₂ has risen from

285 ppm to ~400 ppm [*Hua et al.*, 2013; *McCarroll and Loader*, 2004]. One approach to remove the influence of the Suess effect is to calculate the ¹³C discrimination (Δ) of the tissue in question relative to the δ^{13} C of atmospheric CO₂ [*Köhler et al.*, 2010]. This approach allowed *Schubert and Jahren* [2012] to show that ¹³C discrimination increased in C₃ plants with increasing *p*CO₂ in elevated CO₂ experiments. However, long-term records of Δ from spring-harvested, seminatural grasslands at Rothamsted (all C₃ plants) indicated no shift in Δ from 1857 to 2007 [*Köhler et al.*, 2010].

Wolfe et al. [2012] compared δ^{13} C and δ^{15} N measurements on 49 archived specimens of Amanita thiersii against similar measurements from grassland Hygrocybe and from a worldwide survey of fungi to prove that Amanita thiersii was saprotrophic, rather than ectomycorrhizal. Here we have reanalyzed the isotopic data set of Amanita thiersii presented in Wolfe et al. [2012] against site information on mean annual temperature, mean annual precipitation, pCO₂, and the regionally estimated proportion of C₄ photosynthesis (f_{C4}) to

Figure 2. Collection locations are plotted by latitude (°N) and longitude (°W, given a negative sign) versus (a) mean annual temperature, MAT, and (b) mean annual precipitation, MAP. Colored isopleths are 1°C for temperature (from 11°C to 22°C) and 200 mm for precipitation (from 900 mm to 1800 mm). Isopleths for 2002 are shown.

study whether this fungus may integrate information on the competitive balance between C_3 versus C_4 grasses from the lawns where it was collected. We hypothesized the following:

- 1. δ^{13} C of *Amanita thiersii* integrates the relative proportions of C₃ and C₄ vegetation at the specific locations where it is collected; accordingly, Δ should correlate strongly with measures that either reflect or influence the balance of C₃ and C₄ vegetation such as f_{C4} , temperature, and precipitation.
- Because pCO₂ has increased over time, ∆ of Amanita thiersii will also increase over time [Schubert and Jahren, 2012].

0 2. Materials and Methods

In Wolfe et al. [2012], gill tissue was subsampled from 48 herbarium specimens of Amanita thiersii collected at 26 different locations between 1982 and 2009 in southeastern and south central USA. Locations were between 29°N and 40°N and 86°W and 100°W. Samples were analyzed for %C, %N, δ^{13} C, and δ^{15} N as detailed in *Wolfe et al.* [2012]. We analyzed the underlying data set from Wolfe et al. [2012] (as provided by B. Wolfe) using multiple regressions as provided in the statistical software JMP (SAS Institute, Cary, North Carolina, USA). One outlier sample collected in 1952 was not used in the analyses.

Mean annual temperature (MAT) and mean annual precipitation (MAP) during

the year of collection were determined with the Daymet Single Pixel Extraction tool using the latitude and longitude of sample sites (daymet.ornl.gov). In addition, mean annual temperature (MAT-30), mean annual precipitation (MAP-30), and mean temperature for the warmest month (WMT-30) and coldest month (CMT-30) for each location were derived from the 1961–1990 averages available from the Climate Research Unit (http://www.cru.uea.ac.uk), as described in *New et al.* [2002]. Yearly values of $\delta^{13}CO_2$ and *p*CO₂ were derived from *McCarroll and Loader* [2004], *Keeling et al.* [2009], *Hua et al.* [2013], and the publicly available database of the U.S. Earth Systems Research Laboratory (https://www.esrl.noaa.gov/gmd/ccgg/trends/data. html). From 1982 to 2009 the $\delta^{13}C$ value of atmospheric CO₂ declined from –7.48‰ to –8.24‰ because of the addition of fossil fuel-derived CO₂ to the atmospheric CO₂ in the year of collection and the preindustrial value of –6.4‰. We calculated the ¹³C fractionation (Δ) from atmospheric CO₂ to *Amanita thiersii* as $\Delta = (\delta^{13}C_{CO2} - \delta^{13}C_{Amanita})/(1 + \delta^{13}C_{Amanita})$. To test if large-scale estimates of C₄ photosynthesis were useful predictors of the Δ values calculated for *Amanita thiersii*, we used C₄ photosynthesis estimates from *Still et al.* [2009] that gave the fraction of C₄ photosynthesis at 1° resolution ($f_{C4-1°}$). We also used the *Still et al.* [2009] **Table 1.** Data on Annual pCO_2 , the Suess Effect, Mean Annual Temperature (MAT), Mean Annual Precipitation (MAP), and $\delta^{13}C^a$

Date (<i>n</i>)	<i>p</i> CO ₂ (ppm)	Suess Effect (‰)	Lat (°N)	Long (°W)	MAT (°C)	MAT-30 (°C)	MAP (mm)	MAP-30 (mm)	δ^{13} C ± se (‰)
11/9/1952	312.80	-0.46	30.61	96.36	20.57	20.0	836	991	-9.17
20/8/1982	341.13	-1.08	33.38	91.05	17.52	17.3	1345	1342	-14.00
15/7/1989	352.91	-1.28	35.66	97.47	15.64	15.6	938	851	-11.67
3/10/1990 (4)	354.19	-1.31	35.67	97.48	15.91	15.6	971	851	-10.67 ± 0.34
6/9/1991	355.59	-1.34	35.66	97.47	15.72	15.6	969	851	-13.57
8/9/1992 (2)	356.37	-1.37	37.73	89.21	13.57	13.2	122	1144	-20.83 ± 0.05
17/10/1999	368.31	-1.56	29.96	90.22	20.51	20.3	174	1589	-11.15
30/10/2000	369.48	-1.59	35.63	97.47	15.95	15.6	968	851	-12.56
7/6/2001	371.02	-1.62	35.63	97.47	15.89	15.6	951	851	-14.74
22/8/2001	371.02	-1.62	35.65	97.47	15.90	15.6	948	851	-11.97
15/9/2001	371.02	-1.62	35.02	97.38	16.33	16.0	1040	852	-14.08
2/9/2002	373.10	-1.65	35.78	97.70	15.85	15.7	926	816	-13.98
29/7/2003	375.64	-1.67	39.55	88.25	11.90	11.4	1072	994	-20.71
1/8/2003 (2)	375.64	-1.67	39.25	88.16	12.21	11.7	1087	1021	-21.29 ± 0.03
27/6/2004	377.38	-1.70	35.79	97.68	15.80	15.7	893	816	-11.18
28/6/2004 (2)	377.38	-1.70	38.53	90.45	13.42	13.1	1113	952	-21.49 ± 0.02
17/8/2004	377.38	-1.70	35.79	97.68	15.80	15.7	894	816	-10.69
18/7/2005 (2)	379.67	-1.73	37.30	89.52	14.18	14.1	1202	1184	-18.19 ± 0.33
4/7/2007 (4)	383.55	-1.78	38.97	95.25	13.17	13.3	988	992	-20.26 ± 0.37
22/7/2007	383.55	-1.78	39.55	88.25	12.22	11.4	1039	994	-22.08
10/9/2007	383.55	-1.78	39.16	86.52	12.02	11.7	1277	1095	-24.05
19/7/2008	385.34	-1.81	39.55	88.25	12.19	11.4	1086	994	-21.12
11/9/2008 (7)	385.34	-1.81	38.58	95.45	13.45	13.1	998	952	-19.98 ± 0.20
16/9/2008 (4)	385.34	-1.81	38.96	95.26	13.06	13.3	1000	992	-21.46 ± 0.16
22/7/2009 (4)	387.23	-1.83	38.85	95.31	13.07	13.3	976	992	-21.51 ± 0.14
29/8/2009 (2)	387.23	-1.83	29.41	95.12	21.02	20.5	1414	1138	-10.22 ± 0.04

^aSite location is given as latitude (Lat) and longitude (Long). Date of collection (day/month/year) and *n* are given in the first column. Standard errors (se) are given for n > 1. Seuss effect values are calculated from *McCarroll and Loader* [2004] and *Hua et al.* [2013] using a baseline year of 1850.

data set to calculate the fraction of C₄ photosynthesis at a resolution of $3 \times 3^{\circ}$ ($f_{C4-9^{\circ}}$). Our stepwise regression models of Δ included these nine factors: $f_{C4-1^{\circ}}$, $f_{C4-9^{\circ}}$, CMT-30, WMT-30, MAT, MAT-30, MAP, MAP-30, and pCO_2 . Model retention was determined by comparing values of the Akaike information criteria that were corrected for sample size (AICc). The model was then rerun as a linear regression with location as a random effect.

We searched for comparable data in the literature to estimate the effects of climate or pCO_2 on Δ . We used the equation $\Delta = (\delta^{13}C_{CO2} - \delta^{13}C_{substrate})/(1 + \delta^{13}C_{substrate})$. If studies presented data on the relative proportion of C_3 or C_4 vegetation rather than Δ , we assumed that $\Delta_{C3} - \Delta_{C4} = 14.4\%$.

Table 2.	• AICc and Correlations (r^2) of Different Stepwise Regression Models	s of Δ^{a}
----------	---	-------------------

Model	n	r ²	AICc
MAT	1	0.739	221.3
MAT-30	1	0.722	224.3
MAT and MAP-30	2	0.875	188.3
MAT and WMT-30	2	0.864	192.3
pCO ₂ , MAT, and MAP-30	3	0.915	172.2
pCO ₂ , MAP-30, and WMT-30	3	0.907	176.6
pCO ₂ , MAT, MAP-30, and WMT-30	4	0.917	173.7
pCO_2 , MAT, MAP-30, and f_{C4-1°	4	0.917	174.0
<i>p</i> CO ₂ , MAT, MAP-30, WMT-30, and <i>f</i> _{C4-9°}	5	0.919	175.5
<i>p</i> CO ₂ , MAT, MAP-30, WMT-30, and MAT-30	5	0.918	176.1

^aThe two models of lowest AICc are shown for each level. Variables included in models included pCO_2 , MAT, MAP, MAT-30, MAP-30, WMT-30, CMT-30, f_{C4-1° , and f_{C4-9° . n = 48. AICc values within 2 of the lowest value are in bold.

	· J		
Term	%Variance	Estimate ± se	р
Intercept		-1.39 ± 10.33	0.8939
MAT (°C)	79.3	-1.74 ± 0.15	<0.0001
MAP-30 (m)	15.4	9.52 ± 2.28	0.001
pCO ₂	5.2	0.072 ± 0.025	0.0071

Table 3. The Three-Term Regression Model of \triangle Values in *Amanita thiersii* That Maximized AICc^a

^aAdjusted r^2 is 0.970, n = 48, p < 0.0001, with the adjusted r^2 of the fixed effects at 0.910. Location contributed 68% to random effects. "%Variance" is the percentage of variance attributed to the given factor for the regression model run without random effects.

3. Results

In Figure 2, we have plotted sample locations and indicated the annual temperature and precipitation for 2002 to illustrate the broad gradients in temperature and precipitation across the region where *Amanita thiersii* was found. Data on δ^{13} C, *p*CO₂, the Suess effect, MAT, and MAP are presented in Table 1 by location and year. Latitude and longitude of sampling locations are also given. Sample data (%N, %C, C:N ratio, δ^{15} N, and δ^{13} C) and the percentage of site productivity attributed to C₄ plants are given in supporting information

Table S1. Overall, the 48 samples averaged 10.17 ± 1.20 for %N, 40.24 ± 1.97 for %C, 4.01 ± 0.53 for C:N ratio, 10.07 ± 1.59 for δ^{15} N, and $-17.65 \pm 4.48\%$ for δ^{13} C (±standard deviation).

Results from the stepwise multiple regression on Δ values are given in Table 2. In the stepwise multiple regression, lowest values of AICc were with a three-parameter model that included MAT, MAP-30, and pCO_2 (AICc = 172.2) and a four-factor model that included MAT, MAP-30, pCO₂, and WMT-30 (AICc = 173.7). However, WMT-30 and MAT were highly correlated ($r^2 = 0.988$). The three-factor model explained 91% of the variance in δ^{13} C. Residuals from this regression were correlated within a site, so location was added as a random factor. This increased the explained variance to 97% (Table 3). Sporocarp Δ correlated negatively with MAT (−1.93‰ °C⁻¹, 77% of variance), positively with MAP $(0.10\% \text{ cm}^{-1}, 15\%)$ of variance), and positively with pCO_2 $(5\% \text{ of variance}, 0.072\% \text{ ppm}^{-1})$. The coefficient of $0.072\% \text{ ppm}^{-1}$ for pCO_2 was much higher than the theoretical value of 0.014‰ ppm⁻¹ calculated from Schubert and Jahren [2015] for C₃ plants. Leverage plots of our three main factors against ¹³C discrimination are given in Figure 3.

In Table 4, we compared our coefficients of the effects of pCO_2 , temperature, and precipitation on Δ from estimates

pCO ₂ (‰ ppm ⁻¹)	Temperature (‰ °C ⁻¹)	Precipitation (‰ m ⁻¹)	Study	Notes
0.0064	-0.10 ^b	0.31 ^c	Kö	C ₃ grassland, summer/fall, 1875–2007
0.0015 (ns)	-0.11 ^d	1.17 ^e	Kö	C ₃ grassland, spring, 1857–2007
0.014			SJ	elevated CO ₂ studies, C ₃ plants
0.072	-1.74	9.52	Но	current study
	-0.75 ^t		PL	USA climate gradients, C ₃ /C ₄ vegetation
	–0.49 ^g , 0.78 ^h		vF	USA climate gradients, C ₃ /C ₄ A horizon roots
	-0.65 ¹		Au	Mongolian sheep wool from C ₃ /C ₄ pastures

Table 4. Estimated Effects of pCO_2 , MAT, and MAP on Δ Calculated From Prior Studies^a

^aIn some studies, parameters were referenced relative to the proportional shift in C₃ versus C₄ plant productivity or soil. We have converted those data to reflect shifts in Δ by assuming that C₃ plants average 14.4‰ higher in Δ than C₄ plants. Calculations are given in supporting information Table S4. Cited studies: *Köhler et al.* [2010] (Kö), *Schubert and Jahren* [2012] (SJ), current study (Ho), *Paruelo and Lauenroth* [1996] (PL), *von Fischer et al.* [2008] (vF), and *Auerswald et al.* [2012] (Au). ns, not significant.

^DAugust mean temperature.

^cLog of September rainfall in mm d⁻¹, here converted to m yr⁻¹ using 0.61 m yr⁻¹ and 0.855 m yr⁻¹ as representative values (MAP was 0.735 ± 0.120 m).

^dJune mean temperature.

^eLog of March–June rainfall in mm d⁻¹, here converted to m yr⁻¹ using 0.61 m yr⁻¹ and 0.855 m yr⁻¹ as representative values (MAP was 0.735 ± 0.120 m).

¹Estimated from multiple regression, MAT, as given in supporting information Tables S2, S3, and S4. ⁹MAT.

^hApril through August temperature. ⁱJuly temperature.

derived from previously published work in elevated CO_2 experiments, archived long-term studies, and studies of controls over either C_3 and C_4 plants or C_3 - and C_4 -derived soils. Our calculations are presented in supporting information Table S4. Coefficient estimates were higher in our study than in other work (Table 4).

4. Discussion

Carbon from Amanita thiersii reflected an overall balance between C_3 and C_4 photosynthesis over long periods at a site (Table 3). In our regression, the strong correlation of Δ with mean annual temperature presumably reflects an underlying correlation between MAT and the dominance of C_4 grasses [*Tieszen et al.*, 1997], but we assume that this pattern in turn reflects human selection for turf grass species that are C_3 or C_4 [*Milesi et al.*, 2005] and subsequent competition among planted and local species, rather than competition within natural vegetation. High temperatures during the growing season rather than mean annual temperatures appear to control C_3 versus C_4 grass distributions in studies of natural grasslands; for example, the best single predictor of % C_4 in soil organic matter in the A horizon was the high monthly temperature for April through August [*von Fischer et al.*, 2008]. However, mean annual temperature will correlate closely in most cases with the high monthly temperature [*Ehleringer et al.*, 1997] and in the current study the correlation between mean annual temperature and the mean temperatures will also largely control the choice of C_3 and C_4 turf species for a specific location [*Bertrand et al.*, 2013], in addition to other factors such as freezing tolerance [*Dionne et al.*, 2010].

As in studies focusing on natural vegetation [*von Fischer et al.*, 2008], MAP was a significant factor influencing Δ . Lawn turf grasses are selected for their drought tolerance [*Bonos and Huff*, 2013], with C₄ grasses more drought tolerant than C₃ grasses. Thus, regional shifts in MAP should increase the proportion in lawns of C₄ grasses of low Δ . Prior conditions, as potentially indicated by f_{C4} , did not significantly influence Δ , perhaps implying that *Amanita thiersii* carbon is drawn primarily from recent photosynthate. However, the C₄ distribution in *Still et al.* [2009] was driven by climate plus the economic incentives to grow maize, an annual C₄ crop, in regions where the C₄ perennial grasses used in lawns would overwinter poorly. Thus, it is not surprising that temperature and precipitation were better predictors of Δ in our study than large-scale estimates of C₄ distribution that included maize cultivation.

We point out that in the regression model, MAT and MAP-30 were selected, rather than MAT-30 and MAP. MAP correlated strongly with MAP-30 (r = 0.898), but we assume that MAP-30 is a better representation of

the long-term average of precipitation that influences C_3 and C_4 grass productivity than an individual year, even though MAP-30 is the average from 1961 to 1990, whereas samples were from 1982 to 2009. In contrast, calculated MAT in our study correlated so strongly with MAT-30 (r = 0.994) that they were essentially identical in their effects on the regression model, and, in fact, they were the two most important single factors in the one-factor regression model (Table 2).

Comparable values for our coefficients of our regression model from the literature are given in Table 4. Not surprisingly, in the two studies of exclusively C_3 plants [Köhler et al., 2010; Schubert and Jahren, 2012], the estimated coefficients for pCO_2 , temperature, and precipitation are ~10 times lower than in our study that looked across C_3/C_4 gradients. It is unclear why the temperature coefficient is higher in our study than in the three other studies assessing this across natural C_3/C_4 gradients. We suspect that summertime lawn watering, by favoring photosynthesis of C_4 grasses under hot summertime conditions, could extend the relative dominance of C_4 grasses northward until they are limited by cold winter temperatures, thereby effectively sharpening the temperature gradient of the C_3/C_4 transition. Turf management in the U.S. divides the country into different regions, with C_3 , cool-season grasses predominating northward and C_4 , warm-season grasses predominating in the south [Christians and Engelke, 1994]. The relatively narrow transition zone between these two regions may be where a mix of C_3 and C_4 grasses can survive and may account for the steep temperature gradient recorded in our study. Our estimate of 1.93‰ °C⁻¹ translates into about a 7.5°C increase in MAT from 100% C_3 to 100% C_4 , if we assume that $\Delta_{C_3-C_4}$ is 14.4‰.

The following equation modified from *Schubert and Jahren* [2015] predicted that the pCO_2 increase across the study interval (1982 to 2009) should increase Δ by 0.64‰ in C₃ plants by decreasing photorespiration:

$$pCO_{2} \text{ effect} = [A \times B \times (pCO_{2(2009)} + C)] / [A + B \times (pCO_{2(2009)} + C)] - [A \times B \times (pCO_{2(1982)} + C)] / [A + B \times (pCO_{2(1982)} + C)]$$
(1)

where A = 28.26, B = 0.22, and C = 23.9, $pCO_{2(1982)} = 341$ ppm, and $pCO_{2(2009)} = 387$ ppm. Given a 47 ppm shift over this period ($pCO_2 = 341$ ppm in 1982 and 387 ppm in 2009), the theoretical coefficient for the photorespiratory effect in C₃ plants would be 0.64‰/46 ppm or 0.014‰/ppm. However, the observed coefficient estimate is 0.072‰/ppm (Table 2), meaning that pCO_2 alone cannot account for the increased Δ ; additional factors are therefore required to explain the increase in Δ . One likely possibility for the increased Δ across the study interval is increased assimilation by *Amanita thiersii* of C₃-derived carbon, presumably resulting from increased productivity of C₃ grasses relative to C₄ grasses and lower photorespiratory losses in C₃ grasses with rising CO₂ concentrations [*Wand et al.*, 1999]. Thus, the observed Δ increase in *Amanita thiersii* probably reflected both decreased photorespiration with rising pCO_2 and shifts in the competitive balance between C₃ and C₄ grasses in suburban lawns.

We suggest that the competitive balance has shifted toward C₃ grasses under these conditions sufficiently to increase the coefficient for pCO_2 in our regression model by a factor of 5 (from the calculated value for the photorespiratory effect of 0.014‰ ppm⁻¹ to 0.072‰ ppm⁻¹). From 1982 to 2009, this corresponded to a 2.67‰ increase in Δ of *Amanita*-assimilated carbon driven by the productivity shift to C₃ photosynthesis, as calculated from (0.072‰-0.014‰) ppm⁻¹ × 46 ppm. With an assumed 14.4‰ difference in Δ between C₃ and C₄ photosynthesis [*O'Leary*, 1988], the calculated shift corresponded to a 18.5% (2.67/14.4) increase in the proportion of total productivity attributed to C₃ grasses over the 46 ppm increase in pCO_2 This corresponded to a 40% increase per 100 ppm pCO_2 increase.

We can compare these field-derived results against those estimated from numerous experiments on C_3 plants, which showed that biomass increased on average by 20–54% as pCO_2 increased from ambient (300–420 ppm) to elevated (475–700 ppm) levels [*Ainsworth and Long*, 2005; *Kimball et al.*, 1993; *Poorter*, 1993; *Poorter and Navas*, 2003; *Wand et al.*, 1999]. Biomass of C_3 grasses (Poaceae) specifically increased by 33% to 44% [*Wand et al.*, 1999]. Using these results as a guide, a 40% increase in biomass in response to a 130 ppm increase in pCO_2 (e.g., 370 to 500 ppm) suggests a 31% increase in biomass per 100 ppm increase in pCO_2 , which is similar to that determined here for lawns (40% per 100 ppm).

We note, however, that the pCO_2 levels for our study spanned a narrow range and were all less than 400 ppm (341 to 387 ppm). Given that the biomass response is greatest at low pCO_2 and saturates at higher pCO_2 [Hunt

et al., 1991, 1993; *Schubert and Jahren*, 2011], it is not surprising that the response we observed at low pCO_2 is greater than that observed within studies that included significantly higher pCO_2 levels (e.g., up to 750 ppm in the *Wand et al.* [1999] review). Thus, the integrated growth response that we have estimated in this study using *Amanita thiersii* as an integrator of lawn photosynthesis appears entirely plausible based on numerous growth studies of C₃ grasses under elevated pCO_2 . Although shifts in lawn maintenance practices could also influence Δ , the physiological responses of turf grasses since the early 1980s to rising pCO_2 could readily account for the integrated patterns reported here.

5. Conclusions

Amanita thiersii appeared to be a good integrator of the carbon produced by grasses in lawns. Temperature was the primary control over C₃ versus C₄ grass distribution. Both management decisions and competition between grass types within lawns could play a role in the patterns of carbon assimilated by Amanita thiersii. Rising pCO_2 over the 1982–2009 record correlated with the relative C₃ and C₄ assimilation by this fungus, suggesting that rising pCO_2 may have significantly affected the competitive balance between the two grass types. This suggests that herbarium specimens of sporocarps could be used more widely to examine ecosystem-scale responses to global change.

References

Ainsworth, E. A., and S. P. Long (2005), What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂, New Phytol., 165(2), 351–372.

Auerswald, K., M. H. Wittmer, R. Tungalag, Y. Bai, and H. Schnyder (2012), Sheep wool δ¹³C reveals no effect of grazing on the C₃/C₄ ratio of vegetation in the Inner Mongolia–Mongolia border region grasslands, *PLoS One*, *7*(9), e45552, 1–8.

Bertrand, A., Y. Castonguay, A. Azaiez, and J. Dionne (2013), Low-temperature stress, in *Turfgrass: Biology, Use and Management* edited by, edited by J. C. Stier, B. P. Horgan, and S. A. Bonos, pp. 279–318, Am. Soc. of Agron., Madison, Wis.

Bonos, S. A., and D. R. Huff (2013), Cool-season grasses: Biology and breeding, in *Turfgrass: Biology, Use, and Management*, edited by J. C. Stier, B. P. Horgan, and S. A. Bonos, pp. 591–660, Am. Soc. of Agron., Madison, Wis.

Cerling, T. E., J. M. Harris, B. J. MacFadden, M. G. Leakey, J. Quade, V. Eisenmann, and J. R. Ehleringer (1997), Global vegetation change through the Miocene/Pliocene boundary, *Nature*, 389(6647), 153–158.

Christians, N. E., and M. Engelke (1994), Choosing the right grass to fit the environment, in *Integrated Pest Management for Turf and Ornamentals*, pp. 99–113, Lewis, London.

Dionne, J., S. Rochefort, D. R. Huff, Y. Desjardins, A. Bertrand, and Y. Castonguay (2010), Variability for freezing tolerance among 42 ecotypes of green-type annual bluegrass, Crop. Sci., 50(1), 321–336.

Ehleringer, J. R., T. E. Cerling, and B. R. Helliker (1997), C₄ photosynthesis, atmospheric CO₂, and climate, *Oecologia*, *112*(3), 285–299. Hua, Q., M. Barbetti, and A. Z. Rakowski (2013), Atmospheric radiocarbon for the period 1950–2010, *Radiocarbon*, *55*(4), 2059–2072. Hunt, R., D. Hand, M. Hannah, and A. Neal (1991), Response to CO₂ enrichment in 27 herbaceous species, *Funct. Ecol.*, *5*, 410–421. Hunt, R., D. Hand, M. Hannah, and A. Neal (1993), Further responses to CO₂ enrichment in British herbaceous species, *Funct. Ecol.*, *7*, 661–668. Keeling, R. F., S. C. Piper, A. F. Bollenbacher, and S. J. Walker (2009), Atmospheric CO₂ values (ppmv) derived from in situ air samples collected

at Mauna Loa, Hawaii, USA. [Data set available online at http://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html.] Kimball, B., J. Mauney, F. Nakayama, and S. Idso (1993), Effects of increasing atmospheric CO₂ on vegetation, *Vegetatio*, *104*(1), 65–75. Köhler, I. H., P. R. Poulton, K. Auerswald, and H. Schnyder (2010), Intrinsic water-use efficiency of temperate seminatural grassland has increased since 1857: An analysis of carbon isotope discrimination of herbage from the Park Grass Experiment, *Global Change Biol.*, *16*(5),

1531–1541.
Lattanzi, F. A. (2010), C₃/C₄ grasslands and climate change, paper presented at grassland in a changing world. Proceedings of the 23rd General Meeting of the European Grassland Federation, Kiel, Germany, 29th August-2nd September 2010, Mecke Druck und Verlag.
McCarroll, D., and N. J. Loader (2004), Stable isotopes in tree rings, *Quat. Sci. Rev.*, 23, 771–801.

McLauchlan, K. K., C. J. Ferguson, I. E. Wilson, T. W. Ocheltree, and J. M. Craine (2010), Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands, *New Phytol.*, 187, 1135–1145.

Milesi, C., S. W. Running, C. D. Elvidge, J. B. Dietz, B. T. Tuttle, and R. R. Nemani (2005), Mapping and modeling the biogeochemical cycling of turf grasses in the United States, *Environ. Manag.*, *36*(3), 426–438.

New, M., D. Lister, M. Hulme, and I. Makin (2002), A high-resolution data set of surface climate over global land areas, *Climate Res.*, 21(1), 1–25.

O'Leary, M. H. (1988), Carbon isotopes in photosynthesis, Bioscience, 38(5), 328-336.

Paruelo, J. M., and W. Lauenroth (1996), Relative abundance of plant functional types in grasslands and shrublands of North America, *Ecol. Appl.*, 6(4), 1212–1224.

Poorter, H. (1993), Interspecific variation in the growth response of plants to an elevated ambient CO₂ concentration, *Vegetatio*, *104*(1), 77–97.

Poorter, H., and M. L. Navas (2003), Plant growth and competition at elevated CO₂: On winners, losers and functional groups, *New Phytol.*, *157*(2), 175–198.

Schubert, B. A., and A. H. Jahren (2011), Fertilization trajectory of the root crop *Raphanus sativus* across atmospheric pCO₂ estimates of the next 300 years, *Agric. Ecosyst. Environ.*, 140(1), 174–181.

Schubert, B. A., and A. H. Jahren (2012), The effect of atmospheric CO₂ concentration on carbon isotope fractionation in C₃ land plants, *Geochim. Acta*, *96*, 29–43.

Schubert, B. A., and A. H. Jahren (2015), Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by increase in atmospheric pCO₂, *Geology*, *43*(5), 435–438.

Acknowledgments

We thank Hope Jahren, Fernando Lattanzi, Lixin Wang, and two anonymous reviewers for comments on earlier drafts, Michael Routhier for assistance with graphics, and Ben Wolfe for access to original data. This project was supported by grant DEB1146328 from the U.S. National Science Foundation and grant 2013-67014-21318 from the U.S. Department of Agriculture. All sample data and calculations are available in supporting information tables. Steinberg, T. (2006), American Green: The Obsessive Quest for the Perfect Lawn, pp. 295, W. W. Norton & Company, New York.

Still, C. J., J. A. Berry, G. J. Collatz, and R. S. DeFries (2009), ISLSCP II C4 Vegetation Percentage, in *ISLSCP Initiative II Collection*, edited by F. G. Hall et al., Oak Ridge Natl. Lab. Distributed Active Archive Center, Oak Ridge, Tenn., doi:10.3334/ORNLDAAC/932. [Data set available on-line at http://daac.ornl.gov/.]

Tieszen, L. L., B. C. Reed, N. B. Bliss, B. K. Wylie, and D. D. DeJong (1997), NDVI, C₃ and C₄ production, and distributions in Great Plains grassland land cover classes, *Ecol. Appl.*, 7(1), 59–78.

von Fischer, J. C., L. L. Tieszen, and D. S. Schimel (2008), Climate controls on C₃ vs. C₄ productivity in North American grasslands from carbon isotope composition of soil organic matter, *Global Change Biol.*, *14*, 1141–1155.

Wand, S. J., G. Midgley, M. H. Jones, and P. S. Curtis (1999), Responses of wild C₄ and C₃ grass (Poaceae) species to elevated atmospheric CO₂ concentration: A meta-analytic test of current theories and perceptions, *Global Change Biol.*, *5*(6), 723–741.

Wolfe, B. E., M. Kuo, and A. Pringle (2012), Amanita thiersii is a saprotrophic fungus expanding its range in the United States, Mycologia, 104(1), 22–33.