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Production of methyl bromide in a temperate forest soil
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[1] Field enclosure measurements of a temperate forest soil
show net uptake of ambient methyl bromide (CH3Br), an
important trace gas in both tropospheric and stratospheric
ozone cycling. The net flux for 1999 was estimated to be
�168 ± 72 mg CH3Br m

�2 (negative indicates loss from the
atmosphere). Individual enclosure flux measurements
ranged from �4.0 to +3.3 mg CH3Br m�2 d�1. Soil
consumption of CH3Br was estimated from laboratory soil
incubations. Production of CH3Br was calculated as the
difference between net flux and predicted consumption.
Fungi could be responsible for the production of CH3Br in
this temperate forest soil. INDEX TERMS: 0315 Atmospheric

Composition and Structure: Biosphere/atmosphere interactions;

0322 Atmospheric Composition and Structure: Constituent sources

and sinks; 1615 Global Change: Biogeochemical processes (4805);

0330 Atmospheric Composition and Structure: Geochemical

cycles; 9350 Information Related to Geographic Region: North

America. Citation: Varner, R. K., M. L. White, C. H. Mosedale,

and P. M. Crill, Production of methyl bromide in a temperate

forest soil, Geophys. Res. Lett., 30(10), 1521, doi:10.1029/

2002GL016592, 2003.

1. Introduction

[2] The tropospheric budget of CH3Br is out of balance
with sinks exceeding sources by 59 Gg yr�1 [Yvon-Lewis,
2000]. Natural sources and sinks are of particular concern
because significant gaps remain in our understanding of
ecosystem CH3Br cycling.
[3] Several terrestrial sources of CH3Br have been iden-

tified [Gan et al., 1998; Varner et al., 1999b; Redeker et al.,
2000; Rhew et al., 2000; Dimmer et al., 2001; Rhew et al.,
2001]. The production mechanism of CH3Br in these eco-
systems is uncertain. Abiotic production of methyl halides
can occur during the oxidation of organic matter [Keppler et
al., 2000]. Leaf disc studies of a variety of plants, including
Brassica [Gan et al., 1998], have shown that enzyme
mediated methyl transferase can produce CH3Br [Attieh et
al., 1995; Saini et al., 1995]. Wood rotting fungi and
ectomycorrhizal fungi are also potential sources of CH3Br
in these ecosystems [Harper, 1985; Lee-Taylor and Holland,
2000 (L-TH2000); Redeker et al., unpublished (KR2003)].
[4] Consumption and production of CH3Br may be

occurring simultaneously in these ecosystems. Jeffers et
al. [1998] report a variety of leaves consume elevated levels
of CH3Br. Soil has also been identified as a sink of
atmospheric CH3Br [Shorter et al., 1995; Serça et al.,
1998]. Hines et al. [1998] determined the process to be
aerobic bacterial uptake. Bacteria that consume fumigant

and ambient levels of CH3Br have been isolated from soil
[e.g., Connell Hancock et al., 1998; Miller et al., 1997;
Goodwin et al., 2001].
[5] This paper examines production and consumption of

CH3Br in a temperate forest soil in New Hampshire. Field
measurements of soil-atmosphere exchange of ambient
CH3Br were completed from May 28 to October 28,
1999. Rates of CH3Br consumption in the soil were esti-
mated with a model derived from temperature and moisture
manipulated soil incubations. We estimated production in
the soil as the difference between measured net flux from
field measurements and the modeled consumption based on
soil incubations.

2. Methods

2.1. Field Measurements

[6] College Woods (43�080N, 71�570W), Durham, NH is
a mixed deciduous conifer forest abandoned as a woodlot
approximately 110 years ago. Soils are well drained, weakly
to moderately acidic inceptisols with a thin, variable litter
layer. A dark organic rich layer extended from 0 to 5 cm
then transitioned into light brown mineral soil below 5 cm.
[Crill, 1991].
[7] Field enclosure measurements were made on a near

weekly basis from May 28 to September 9 with two addi-
tional measurements on September 24 and October 28.
Measurements were completed at two aluminum collars
previously established at the site in 1989 [Crill, 1991].
One was located on the slope of a small hill while the other
collar was in a hollow approximately 5 m away. There was
no above-ground vegetation in the collars.
[8] An aluminum enclosure (0.152 m3 volume), with a

fan mounted inside to mix the headspace, was placed on the
collar and sealed with water. Four headspace samples (2.5L)
were collected every 5 minutes. The gas samples were
collected in stainless-steel electropolished cylinders and
analyzed for CH3Br by GC-ECD as described in Kerwin
et al. [1996]. Artifacts due to enclosure configuration were
below the analytical limit of detection.
[9] Soil samples of litter, 0–5 cm (organic layer) and 5–

10 cm (mineral layer) were collected. Soil moisture was
calculated as soil weight loss after oven drying at 75�C for
24 hrs divided by the dry weight of the sample. Air and soil
surface, 5 and 10 cm temperatures were measured manually
while datalogger recorded hourly-averaged air, 2, 8, and
15 cm soil temperatures from thermistors.

2.2. Laboratory Incubations

[10] Static soil incubations were performed to determine
the consumption rate of CH3Br. Soil samples were collected
from College Woods, stored at 4�C in air tight plastic bags
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and were processed within 1 week of collection. For more
details on the sampling and analysis method see Kerwin et
al. [1996]. A reaction rate constant, k (min�1), was deter-
mined as the slope of the regression fit of the natural log of
nmoles of CH3Br versus time. Uptake rate constants were
determined for the soil at 5, 15, 25, 35 and 45�C and for
moisture contents ranging from 26.3% to 344%.

3. Results

3.1. Field Measurements

[11] Themean flux for the site was�0.70 ± 0.31 mgCH3Br
m�2 d�1 (Figure 1B). Seasonal flux was calculated based on a
240 day growing season as �168 ± 72 mg CH3Br m

�2.

3.2. Soil Incubations

[12] By applying a Gaussian fit to the soil incubation data
(Figure 2), the predictor equation for k becomes

�k ¼ 1:24e�0:5 x�26:85
18:57ð Þ2þ y�194:34

77:80ð Þ2
� �

: ð1Þ

x and y are soil temperature (�C) and soil moisture,
respectively. This fit resulted in an r2 = 0.853 and an
estimate of error for k of ±0.21 min�1.
[13] The model was then used to estimate field uptake rate

constants using soil moisture and temperature data collected
during the 1999 sampling season. Soil consumption ofCH3Br
for each day of sampling was calculated from Varner et al.
[1999a]. A production estimate of CH3Brwas calculated for 5
sampling days as the difference between the measured or net
flux and the estimated consumption (Table 1).

4. Discussion

4.1. CH3Br Flux Measurements

[14] These are the first seasonal field measurements of
CH3Br exchange in a temperate forest. The net measure-

ments range from �3.0 to +4.0 mg CH3Br m�2 d�1 and
overlap the range seen in the more arid shrubland environ-
ments in Southern California (�0.95 to + 14.7 mg m�2 d�1)
[Rhew et al., 2001]. High moisture and organic matter
content in the soil could account for higher rates of
consumption [Hines et al., 1998]. The soil moisture of the
Rhew et al. [2001] sites ranged from 0.3 to 24%. We
measured a minimum moisture content of 50%. Organic
matter content data was not reported for the shrubland
study. Our site ranged in organic matter from 78.5% (0 – 5
cm) to 17.4% (5–10 cm).

4.2. Consumption and Production Estimates

[15] Using laboratory-derived rates of consumption in a
field setting brings with it many uncertainties. The bulk

Figure 1. A. Daily total precipitation (bars), hourly
average �8 cm soil temperature (solid line) and soil
moisture (squares and dotted line) for 1999. B. CH3Br flux
measurements for College Woods for the two collars. Error
bars are the error of the linear regression of the concentra-
tion versus time flux data. The cross indicates days when
Br- ion in the soil was measured.

Figure 2. College Woods 0–3 cm soil temperature and
moisture manipulations. Uptake rate constant versus %soil
moisture content at 25�C (&) and temperature at 128.5%
soil moisture (.).

Figure 3. Modeled versus measured consumption of
CH3Br for field data from 1994.
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density, temperature, moisture and biological activity will be
different than that encountered in the field. There have been
successful attempts to estimate field mechanisms of NO
production and consumption from laboratory measurements
[Galbally and Johansson, 1989; van Dijk et al., 2002].
Furthermore, we applied our laboratory derived model to
field measurement and see a reasonable estimate of field
consumption (Figure 3). Finally, our consumption estimates
for the 1999 field season (2.6 and 19.2 mg CH3Br m

�2 d�1)
encompass the rate reported by Serça et al. [1995] for a
temperate forest soil in Colorado.
[16] Soil production estimates calculated from the differ-

ence between net field measurements and the modeled
consumption in the forest soil range from 0.05 to 19.2 mg
CH3Br m�2 d�1. These overlap with the range of net
positive flux measurements reported by Rhew et al.
[2001] for Southern California shrubland (0.03–14.7 mg
m�2 d�1) and Dimmer et al. [2001] for a conifer forested
peatland in Ireland (0.08 to 18 mg m�2 d�1).

4.3. Sources of CH3Br

[17] Production of CH3Br in a temperate forest soil could
be the result of abiotic [Keppler et al., 2000], fungal
[Harper, 1985; L-TH2000, KR2003] or other unidentified
processes. Keppler et al. [2001] present an abiotic mecha-
nism for production of halocarbons during the oxidation of
Fe3+ in the presence of organic matter. We do not have the
information available to determine if this process occurs at
our site.
[18] Fungi could also be responsible for the emission of

CH3Br from this soil. There was visual evidence throughout
the sampling period of fungal mycelium, fruiting bodies and
ectomycorrhizal. We predicted production of CH3Br by
ectomycorrhizal fungi (EF) in the College Woods soils based
on observations by KR2003. Their observations for Cenoc-
cocum geophilium revealed a linear increase in CH3Br
production rates with halide content in the media. We
calculated a simple linear increase in production between
0.02 mM and 20 mM Br� in media for both the highest
(Laccaria laccata) and lowest (Hebeloma crustuliniforme)
observed production rates and determined the rates in our soil
based on the Br� content of the surface soil on 5 sampling
days. Fungal production by EF (mg CH3Br m�2 d�1)
was estimated using the following equation:

EFCH3Br ¼
ugCH3Br
gfungid

*gfungi

h i
Ac

ð2Þ

The mass of fungi (gfungi) in the collar was estimated as the
fungal biomass in gfungi kgdry soil

�1 multiplied by the grams
of dry soil in the collar. Fungal biomass 50.7 ± 18.4 mgfungi

gorg. matter
�1 was an average of the fungal biomass measured

in a northern hardwood forest stand of similar age and
species composition [Taylor et al., 1999]. Conservatively,
we believe half of the total fungal biomass to be EF. Fungal
biomass was then calculated as 0.34 ± 0.25 g fungi in the
collar area. Organic matter content in the collar was
measured as 60.3%. Ac, collar area, is 0.397 m2.
[19] The CH3Br produced by wood-rotting fungi was

estimated using equation (3) modified from L-TH2000:

WFCH3Br ¼ D* Br�½ �*1012 * kfc*
mCH3Br

mBr�

� �
ð3Þ

D is the annual pre-agricultural decomposition rate
(kgdry matter m

�2 yr�1). Assuming steady state with decom-
position equal to production, this value (0.448 kg m�2 yr�1)
was based on the annual litter production rates calculated
from direct measurements by Matthews [1997] for cool-
deciduous forests with evergreens. [Br�] is the measured
bromide concentration in the high organic matter soil below
the litter surface and falls within the range reported by L-
TH2000 for litter. The net efficiency of fungal conversion of
Br� to CH3Br, kfc, was calculated as 0.021 according to
parameters for temperate regions given in L-TH2000.mCH3Br

and mBr
� are the molar mass of CH3Br and Br�.

[20] Estimates from EF and WF indicate that they could
be responsible for some of the production of CH3Br in these
soils (Table 1). The error of the Gaussian fit controls the soil
production error and is high due to the limited number of
temperature and moisture manipulations. The Gaussian fit, a
smoothed peak, may overestimate uptake rates when soil
moisture is between 75 and 150% and when temperatures
are between 10 and 25�C (Figures 2A and 2B). This may
account for some of the differences between measured and
modeled uptake (Figure 3).
[21] The range of EF production of CH3Br in Table 1 is

driven by our fungal mass estimate, the Br� content of the
soil and the high and low estimates reported by KR2003. EF
may subsist on leaf or litter tissue which may have a higher
Br� content [e.g. L-TH2000 and references therein]. We
assumed that half of the total fungal biomass in the collar is
EF. Total fungal biomass can vary seasonally due to varying
substrate availability, soil temperature and soil moisture of
the system [Myers et al., 2001]. Fungal biomass can also
vary spatially on a local scale based on topography and
disturbances such as tree fall [Morris and Boerner, 1999].
[22] Our calculations for the WF production of CH3Br are

+3 and �0.27 times the production estimate. L-TH2000
believe this is a conservative estimate because 25 to 40% of
the global woody decay is not included and their estimates

Table 1. Measured Net Flux, Modeled Consumption and Estimated Production of CH3Br in College Woods Soils

Sampling
Date

Surface soil
Br� (mM)

Measured
Net Flux

Modeled
Consumption

Field
Production EF high and low (SD) WF (Range)

05/28 0.05 0.5 ± 0.16 �11.0 ± 5.9 11.5 ± 5.9 2.6 - 5E-05 (0.7) (1.5E-05) 0.28 (0.9–0.08)
06/01 0.09 �4.0 ± 1.1 �4.0 ± 5.9 0.1 ± 6.0 3.1 - 5E-05 (0.9) (1.5E-05) 0.17 (0.5–0.05)
06/30 0.09 3.3 ± 0.9 �15.9 ± 5.9 19.2 ± 6.0 3.0 - 5E-05 (0.9) (1.5E-05) 0.53 (1.6–0.14)
07/21 0.16 �0.3 ± 0.4 �9.1 ± 5.9 8.7 ± 5.9 4.0 - 5E-05 (1.2) (1.5E-05) 0.69 (2.1–0.19)
08/23 0.20 0.1 ± 0.66 –4.2 ± 5.9 4.3 ± 5.9 4.6 - 5E-05 (1.3) (1.5E-05) 0.44 (1.3–0.12)

All numbers reported in mg m�2 d�1. Italicized data are calculated values. SD = standard deviation.
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use production by one species of fungi and therefore a
single ratio of Cl/Br emission. KR2003 have measured
differing ratios of halide ion production from one species
to the next. We feel that our estimate is conservative and
could result in a larger range of emission if the above issues
were addressed.

4.4. Global Extrapolation

[23] The net consumption rate of 168 ± 72 mg m�2 for the
1999 growing season extrapolated over a global area of
12.9 	 1012 m2 for temperate forests [Matthews, 1983]
yields an estimate of net uptake of 2.2 ± 0.9 Gg of CH3Br
yr�1. This estimate is an order of magnitude less than the
Shorter et al. [1995] and the Serça et al. [1998] estimates
for temperate forest soil uptake of CH3Br. Differences in
measurement technique, sampling site characteristics or a
production mechanism in the soil could all be responsible
for the discrepancy between these estimates. Consumption
rates change with temperature and moisture and therefore an
estimate should take into account seasonal changes in
consumption rate. The discrepancy between the estimates
may reflect an abiotic or fungal production mechanism in
the soil. The two estimates for fungal production from
temperate forests: 0.5 to 5.2 Gg CH3Br yr

�1 from WF by
L-TH2000 and 7 to 65 Gg yr�1 from EF by KR2003 could
account for the difference between the estimates.

5. Conclusions

[24] Soils have a tremendous potential to consume
CH3Br and are currently identified as significant sinks in
the tropospheric budget. Production of CH3Br occurs in
soils as well and can exceed consumption resulting in a net
efflux of CH3Br to the atmosphere. An abiotic mechanism
during organic matter degradation and/or fungi associated
with litter and/or tree roots may be responsible for this
production. Both the consumption and production processes
are important to our understanding of the natural cycling of
CH3Br and the net CH3Br exchange with these systems.

[25] Acknowledgments. The authors would like to acknowledge
Andrew Mosedale, Sarah Pfafflin, Richelle Shaffer, Michael Keller, and
Claire McSweeney for their contributions. This project was funded by a
National Science Foundation Grant (EAR-9630694).
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