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Summary

 

1.

 

Physiological mechanisms such as allocation and release of nutrients are keys to understanding
an animal’s adaptation to a particular habitat. This study investigated how two detrivores with
contrasting life-history traits allocated carbon (C) and nitrogen (N) to growth, reproduction and
metabolism. As model organisms we used the collembolans, 

 

Proisotoma minuta 

 

(Tullberg 1871) and

 

Protaphorura fimata 

 

(Gisin 1952).

 

2.

 

To estimate allocations of C and N in tissue, we changed the isotopic composition of the animal’s
yeast diets when they became sexually mature and followed isotope turnover in tissue, growth and
reproduction for 28 days. In addition, we measured the composition of C, N and phosphorus (P) to
gain complementary information on the stoichiometry underlying life-history traits and nutrient
allocation.

 

3.

 

For 

 

P. minuta

 

, the smallest and most fecund of the two species, the tissue turnover of C and N
were 13% and 11% day

 

–1

 

, respectively. For 

 

P. fimata

 

, the equivalent rates were 5% and 4% d

 

–1

 

,
respectively. 

 

Protaphorura fimata 

 

had the lowest metabolic rate relative to total body mass but the
highest metabolic rates relative to reproductive investment. Adult 

 

P. fimata 

 

retained approximately
17% of the nutrient reserves acquired while a juvenile and adult 

 

P. minuta

 

 about 11%. N and P con-
tents of total tissue were significantly higher in 

 

P. minuta

 

 than in 

 

P. fimata

 

, suggesting that tissue
turnover was correlated with high protein-N and RNA-P.

 

4.

 

Our results suggest that the lower metabolism and nutritional requirements by 

 

P. fimata

 

 than

 

P. minuta

 

 is an adaptation to the generally low availability and quality of food in its natural habitat.

 

5.

 

The methodological approach we implemented tracking mass balance, isotope turnover and
elemental composition is promising for linking nutrient budgets and life-history traits in small
invertebrates such as Collembola.

 

Key-words:

 

Collembola, carbon, ecological stoichiometry, invertebrate, metabolism, nitrogen,
stable isotope, tissue turnover

 

Introduction

 

Physiological mechanisms such as allocation and release of
nutrients are keys to understanding an animal’s adaptation to
a particular habitat. Detrivores are, in spite of their enormous
distribution and vast importance for decomposition and cycling
of nutrients, among the least known group of invertebrates in

terms of  linking their nutrient budgets and life-history
strategies (Chown & Nicolson 2004; Bardgett

 

 et al.

 

 2005).
Linking these physiological parameters is important for
understanding how detrivores function in an environment
that is considered extremely nutrient limited and very patchy
in terms of food resources.

Collembola are among the most abundant of all soil-dwelling
arthropods. They are considered to feed mainly on decaying
vegetation and soil fungi although recent findings suggest
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that root exudates are an important food source as well
(Pollierer

 

 et al.

 

 2007; Larsen

 

 et al.

 

 2007a). Collembola belong
to a very heterogenous group with a wide range of life-history
traits. These particular traits affect the nutritional require-
ments of the animals (Jørgensen, Hedlund & Axelsen 2008).
Martinson

 

 et al.

 

 (2008) speculated that soil detrivores adapted
to higher quality food resources might have higher nitrogen
(N) and phosphorus (P) content than those adapted to lower
quality food resources. Similarly, Collembola adapted to living
in nutrient-poor habitats often have a lower fecundity than
those living in nutrient rich habitats (Larsen

 

 et al.

 

 2008). For
animals living in a nutrient poor habitat one might also expect
adaptations to overcome periods of  food shortages, such
as relying on nutrient reserves. However, the physiological
mechanisms behind dietary requirements and resource parti-
tioning to reproduction, nutrient reserves and other pools are
not well understood because no studies have implemented a
methodological approach that could link these parameters.

Only a limited number of studies have estimated nutrient
allocation in invertebrates. O’Brien, Schrag & del Rio (2000)
successfully documented resource allocation patterns in
Lepidoptera by isotopically labelling diet and subsequently
keeping track of isotope change in tissue. This isotope change
approach was based on studies that emerged almost two
decades earlier (Fry & Arnold 1982; Tieszen

 

 et al.

 

 1983), but
to our knowledge no studies have conducted a complete inver-
tebrate nutrient budget encompassing growth, reproduction
and metabolic turnover. Changing the isotope composition
of an animal’s diet provides a marker for tracking the rates of
growth and tissue turnover. In fecund invertebrates the
nutrient pools are allocated to reproduction, metabolism
and moulting.

The aim of  our study was to investigate how different
physiological traits in Collembola relate to nutrient alloca-
tions during growth, reproduction and metabolism. To address
this question, we estimated C and N allocations in two
collembolans with different physiological traits, 

 

Proisotoma
minuta 

 

(Tullberg 1871) and 

 

Protaphorura fimata 

 

(Gisin 1952).

 

Proisotoma minuta

 

 lives in the soil–litter interface (hemi-
epedaphic) and is pigmented (greyish or bluish) with fully
developed compound eyes and furca (Fjellberg 2007) (Fig. 1).

 

Protaphorura fimata

 

 lives below the litter-surface layer
(euedaphic) and has adapted traits typical for its habitat: it
lacks pigmentation (white) and has reduced compound
eyes and furcas (salutatory organ) (Fjellberg 1998) (Fig. 1).

 

Proisotoma minuta

 

 is small (1·1 mm in length) and has a faster
reproductive cycle than the larger 

 

P. fimata

 

 (2·2 mm in
length) (Larsen

 

 et al.

 

 2007b). While 

 

P. fimata

 

 predominantly
lives in forest soils, 

 

P. minuta

 

 is a cosmopolitan species that
occasionally can be found in very large number in habitats
with nutritious organic matter (Wiggins & Curl 1979; Hågvar
& Kjøndal 1981; Fjellberg 1998, 2007).

To ensure that the diet quality would not effect nutrient
allocations adversely (Frost

 

 et al.

 

 2005), we fed the animals a
high quality diet, dried baker’s yeast (

 

Saccharomyces cerevisiae

 

),
which is considered to balance the nutritional requirements of
the animals (Haubert

 

 et al.

 

 2005; Larsen

 

 et al.

 

 2008). We

changed the composition of the stable isotopes, 

 

13

 

C and 

 

15

 

N,
in diet when the animals entered sexual maturity to estimate
two parameters: (i) how much of egg C is derived from juvenile
vs. adult diets (O’Brien

 

 et al.

 

 2000); and (ii) how much does
egg manufacturing contribute to turnover of 

 

13

 

C and 

 

15

 

N in
tissue. In addition, we investigated the composition of C, N
and P in the animals relative to their diet to gain complementary
information on the regulatory processes underlying life-history
traits and nutrient allocation (Ventura 2006). We hypothesized
that the smallest and most fecund of the two species, 

 

P. minuta

 

would have a higher tissue turnover rate than 

 

P. fimata 

 

as
these traits are likely to be metabolically expensive (West,
Woodruff & Brown 2002; Gratton & Forbes 2006).

 

Meterials and methods

 

STUDY

 

 

 

ORGANISMS

 

 

 

AND

 

 

 

D IETS

 

The stock of 

 

P. fimata 

 

and 

 

P. minuta

 

 were obtained from laboratory
cultures that lived for many generations on commercial freeze-dried
bakers yeast (

 

S. cerevisiae

 

, De Danske Spritfabrikker A/S). 

 

Protapho-
rura fimata 

 

is in this study identified in the narrow sense (

 

s.s

 

.) but was
in a previous study (Larsen 

 

et al.

 

 2007a) identified under the species
complex name 

 

P. armata

 

 (Tullberg 1869) in the less strict sense (

 

s.l.

 

).
The mode of reproduction of 

 

P. fimata

 

 and 

 

P. minuta

 

 is not well
known, but assumed to be sexual as males are found in natural
populations. The prevalent mode of reproduction of our laboratory
cultures is also believed to be sexual. In laboratory cultures

 

P. fimata 

 

eats moulted exuvia (skin), whereas 

 

P. minuta

 

 does not eat
its own exuvia.

The control treatment fed the commercial freeze-dried bakers
yeast had the following elemental composition: C, 42·3 ± 0·1; N,
6·7 ± 0·0; and P, 0·88 ± 0·02% (average dry mass ± SE, 

 

n 

 

= 3). The
diet change treatment was fed 

 

13

 

C and 

 

15

 

N labelled yeast and this had
been grown in an aqueous medium at 28 

 

°

 

C over 2 days. Homo-
genous labelling was obtained by growing 

 

S. cerevisiae

 

 in an amino
acid free medium. The medium was enriched with 

 

13

 

C and 

 

15

 

N to
approximately twice the natural abundance to ensure that the
isotopic values of the two diets were distinct thus diminishing errors
associated with isotope fractionation. The medium contained:

Fig. 1. The two Collembola species in our study, Proisotoma minuta
(greyish, < 1·1 mm in length) and Protaphorura fimata (white, < 2·2 mm
in length).
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45·2 mg L

 

–1 

 

D-Glucose 99% U-

 

13

 

C6 (Cambridge Isotope Laboratories),
4·0 g L

 

–1

 

 D(+)-glucose (Sigma), 0·99 mg L

 

–1

 

 99 atom% 

 

15

 

N-(NH

 

4

 

)

 

2

 

SO

 

4

 

(Cambridge Isotope Laboratories), 264·0 mg L

 

–1

 

 (NH

 

4

 

)

 

2

 

SO

 

4

 

 (Sigma),
3·4 g L

 

–1

 

 ‘Yeast Nitrogen Base without amino acids and (NH

 

4

 

)

 

2

 

SO

 

4

 

’
(Fluka). Yeast was extracted from the medium by centrifugation,
then freeze dried and homogenized by grinding with mortar and
pestle. The elemental composition of labelled yeast was: C, 39·0 ± 0·1;
N, 7·0 ± 0·1; and P, 2·9 ± 0·1% (

 

n 

 

= 3). A preliminary growth exper-
iment showed that the mass of the collembolans was not signifi-
cantly different between the unlabelled and labelled diet treatments
(

 

n 

 

= 3, 

 

P

 

 < 0·05, 

 

P. fimata

 

 approximately 28 days old and 

 

P. minuta

 

approximately 35 days old).

 

EXPERIMENTAL

 

 

 

DESIGN

 

 

 

AND

 

 

 

SAMPLING

 

Animals were incubated at 20 

 

°

 

C in Petri dishes with plaster of
Paris (CaSO

 

4

 

) substrates and were fed twice a week 

 

ad libitum

 

. Each
generation of animals was hatched from eggs within 3 days, resulting
in an age varying between 0 and 3 days. Each replicate was initiated
by transferring 40–60 eggs to new substrates. To differentiate
between juvenile and adult nutrient pools, diet was changed from
unlabelled to labelled diet when the animals entered sexual maturity
in the ‘Diet change Parent’ (DP) treatment (Fig. 2). To have reference
isotope values of animals in equilibrium with their diets, we had a
control treatment called ‘Control Parent’ (CP, 

 

n

 

 = 4 for each of the
two sampling occasions) where animals were fed the non-labelled
diet during their entire life cycle. The labelled diet treatment, called
‘Labelled Gen. 1’ (LG, 

 

n

 

 = 4 for the only sampling occasion), were
hatched from eggs that were laid by animals fed labelled diet
(Labelled Parent – LP, 

 

n

 

 = 4) (Fig. 2). In the DP treatment, hatchlings
(

 

n

 

 = 4 for each of  the three sampling occasions) were raised on
unlabelled control yeast until sexual maturity (

 

P. minuta

 

 21–23 days,

 

P. fimata 

 

28–30 days). All animals sampled after sexual maturity
were transferred to new substrates without mixing animals between
replicates. The substrates were subsequently replaced with new
substrates once a week until sampling to avoid inhibitory effects
of info-chemicals on fecundity (Verhoef 1984). Animals from the CP

treatment were collected for analysis at sexual maturity and 28 days
after sexual maturity and eggs after 7, 14 and 28 days (Fig. 2). In the
DP treatment, animals and eggs were collected 7, 14 and 28 days
after sexual maturity. The analysis included counting the number of
animals, determining batch fresh (FM) and dry mass (DM) and
carrying out elemental (C, N and P) and isotopic (

 

13

 

C and 

 

15

 

N)
analyses. To reduce stress on the animals due to handling, the FM of
each replicate was determined only twice; at the designated sampling
day and at the sampling day proceeding it. Eggs were dried and
weighed before elemental and isotopic analysis. To obtain sufficient
exuvial biomass for elemental and isotopic analysis, exuvia collected
from 

 

P. minuta

 

 was pooled between maturity and termination for
each treatment. DW of all treatments was determined after drying at
50 

 

°

 

C for 24 h in pre-weighed tin capsules.
Collembolans follow a sigmoid growth model where juvenile

growth can be described according to an intrinsic exponential
growth model and adult growth to an asymptotic exponential model
(Folker-Hansen, Krogh & Holmstrup 1996). Therefore we used an
asymptotic exponential model to characterize adult growth:

eqn 1

where 

 

t

 

 is time after reaching maturity, 

 

k

 

a

 

 is the asymptotic growth
rate, 

 

W

 

(

 

t

 

) is the body mass at sampling, 

 

W

 

n

 

 is the asymptotic mass
and 

 

W

 

d

 

 is the difference between 

 

W

 

n

 

 and W(

 

t

 

0

 

) (mass at sexual
maturity). The three parameters Wn, Wd and ka were estimated by
nonlinear least squares minimization. Fecundity was calculated as
number of eggs laid per individual per day (eggs ind–1 d–1), and
reproductive investment was expressed as the dry mass of the repro-
ductive output per day relative to the dry mass of the parents (% d–1).

CHEMICAL ANALYSES

Each dried sample of animals was divided into two subsamples of at
least 300 μg and 20–30 animals. A Sartorius MC210 microbalance
was used for weighing. Elemental P analysis was carried out in
pre-weighed Teflon capsules and determined by acid-persulphate

Fig. 2. Diagram of the experimental design
with P. fimata and P. minuta. Gen.1 (first
generation) signifies progeny of the parent
generation. Solid lines represent animals
reared on unlabelled (control) diet and
dotted lines represents animals reared on
labelled diet. The CP treatment was in-
cluded as a control of the DP treatment.
The LP treatment was included to obtain
labelled eggs used for raising the animals in
the LG treatment. The LG treatment serves
as an isotopic reference for animals that are
fully equilibrated with the labelled diet. 

W t W W en d
k ta( )      = − × −
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digestion followed by phosphate analysis using the ammonium
molibdate method (Grasshoff et al. 1983). 13C and 15N isotope ratios
and concentrations were determined at the UC Davis Stable Isotope
Facility using a PDZ Europa ANCA-GSL elemental analyzer
interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer
(Sercon Ltd., Cheshire, UK). The working standard for N was
purified (NH4)2SO4 with a δ15N value of +1·33‰, calibrated against
IAEA N1 and IAEA N2. The working standard for C was beet (Beta
vulgaris L.) sucrose with a δ13C value of –23·83‰, calibrated against
NIST SRM 8539 and NIST SRM 8542 standards. The isotopic
ratios are reported with units of per mil (‰) difference according to
the equations in Appendix S1 in Supporting Information.

CARBON (C) AND NITROGEN (N) TURNOVER

To assess turnover of collembolan 13C and 15N, animals were
switched from unlabelled to labelled diet when entering sexual
maturity. Subsequently, isotopic ratios in total body mass and eggs
were tracked for 28 days. Isotopic turnover followed an asymptotic
exponential model akin to that used in previous diet change studies
(e.g. Tieszen et al. 1983; Hesslein, Hallard & Ramlal 1993):

eqn 2

where δt is the isotopic ratio of animals at the time t, subscript a
refers to adult DP animals, δn is the asymptotic isotope ratio of the
curve, δd is the difference between  and the intercept value at t  = 0.
λ is the turnover rate per day, which also can be presented as the
half-life: t1/2= ln (2)/λ. The turnover rate is a first order constant and
applies to the mixing fraction (βa) (defined as the fraction of tissue
that changes isotopically after diet switch). βa is obtained from: 

eqn 3

where  is the is the isotope ratio of  animals in equilibrium with
the unlabelled diet (CP) and  is the isotope ratio of animals in
equilibrium with the labelled diet (LG). The remaining fraction, the
non-mixing fraction (1 – βa), is built during juvenile growth and not
replaced after sexual maturity (Fig. 3). To find the isotope change
rate relative to the total body mass (Λa), we multiplied the turnover
rate (λ) by the mixing fraction (βa). While the term ‘change rate’
encompasses the contribution of growth, metabolism and reproduc-
tion to isotopic change, ‘turnover’ encompasses the contribution of
metabolism and reproduction only.

The processes contributing to isotopic change in adult Collem-
bola are growth and tissue turnover (Fig. 3). We calculated isotope
change due to growth  as:

eqn 4

Collembolan growth follows an asymptotic exponential model
(Eqn 1). For this reason, isotope change due to growth  also
follows an asymptotic exponential model. Because both  and 
(isotope ratio of total body mass) follow asymptotic exponential
curves, the rate of tissue turnover ( ) is found by subtracting 
from . The mixing fraction values for  and  were found by
substituting  in Eqn 2 with either  or . To find the change rates
due to growth (Λg) and tissue turnover (Λr) we multiplied the fraction
change rates of  and  by their respective mixing fraction values.

NUTRIENT ALLOCATIONS TO EGGS

Previous studies have shown that invertebrates allocate nutrients
for egg production from two sources: directly from the diet and indirectly
through tissue reserves (O’Brien et al. 2000). To investigate whether
nutrients used for egg production in Collembola were supplied
directly from the diet or indirectly through body reserves (the mixing
fraction) we used a simple two-compartment model of nutrient flow
that took into account the time it takes to produce an egg. Like
a growing animal, the production of an egg follows a particular
growth pattern. However, as no data exist in the literature on the
growth patterns of eggs we assumed the simplest possible model,
which is linear growth. The dietary isotope values are expressed as a
function of time,  f (t), where one diet source represents before change
and the other after change:

eqn 5

where δc is the isotope value of the control diet (before diet change),
δl is value of  the labelled diet, t is time of  diet change and ε is the
isotopic fractionation associated with manufacturing eggs, that is, the
isotopic difference between adults and their eggs. The next function
v(t) expresses the isotope values of whole body as a function of time:

eqn 6

where δa is the isotope value of juveniles (before diet change), and δn,
δd and λ are the parameters from Eqn 2 describing isotopic change

Fig. 3. The total rate of isotopic incorporation
(Λa) into collembolan tissue depends on
the rates of  growth (Λg) and tissue turnover
(Λr). In this model we make an operational
distinction between the mixing and a non-
mixing fraction in an adult Collembola. The
mixing fraction (β) is somatic tissue that is
renewed through diet intake (Λa) and replaced
through tissue turnover (Λ r). The fractions
responsible for tissue turnover are egg
manufacturing ( ), metabolic turnover ( )
and moulting of exuvia ( ). The non-mixing
fraction (1 – β) is incorporated during the
juvenile stage before sexual maturity and not
replaced in adults. 
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of adults. The next function h (x) describes the fraction that is
directly allocated from the diet (γ) and the remaining fraction
provisioned from the tissue (1 – γ):

h (x) = γ × f (t) + (1 −  γ ) * v (t) eqn 7

Finally, the last function g(t), estimates T, the time it takes
to develop or grow an egg from initiation (init) to oviposition
(init + T):

eqn 8

The residual variance is assumed to be normally distributed and
is estimated by the sum of  squares of  the residuals divided by the
sample size (Seber & Wild 1989). The joint Bayesian posterior distribu-
tion of the parameters in the model was sampled using the Metropolis–
Hastings algorithm with a multinomial candidate distribution
(100 000 iterations with a burn-in period of 1000), assuming uniform
prior distributions of the parameters with the constraints that γ
should be between 0 and 1, and T between 0 and 10 (Carlin & Louis
1998). The sampling procedure is checked by visual inspections of
the sampling chains.

TISSUE TURNOVER FRACTIONS

Beside egg production, the fractions responsible for tissue turnover
are metabolic turnover and shedding of  exuvia (Fig. 3). The con-
tribution of exuvia ( ) to tissue turnover can readily be found by
multiplying the rate of shedded exuvia by its elemental content. To
calculate the contribution of egg production ( ) to tissue turnover,
the proportion allocated directly from the mixing fraction to eggs,
(1 – γ ) was multiplied by reproductive investment (% d–1). Metabolic
tissue turnover ( ) is the fraction of tissue turnover that remains
after subtracting egg production ( ) and exuvia ( ) from tissue
turnover (Λ r) (Fig. 3).

STATISTICAL ANALYSES

All statistical analyses and modelling were performed with R,
version 2·7·1 (R Development Core Team 2008). All treatments were
tested for variance homogeneity before applying anova or Student’s
t-test. Nonlinear functions were fitted by nonlinear least squares
minimization and were compared to one another with the significance
test described by Motulsky and Ransnas (1987). To test lack-of-fit,
we compared the nonlinear functions with general anova models
using a likelihood ratio test. Prior to comparing the curves for δ13C
and δ15N we normalized their values by accounting for their different
isotope equilibrium values. The Satterthwaite approximation was
used to derive standard errors of pooled samples. Deviations are
given as standard errors.

Results

L IFE HISTORIES

After sexual maturity, the growth of P. minuta and P. fimata
followed an exponential asymptotic growth curve (Fig. 4).
The two growth curves of the two species in the DP treatment
were, after normalization of  the initial mass, tested to be
significantly higher for P. fimata than P. minuta (F3,29 = 6·6, P =

0·0016). Body growth for an average adult was 0·096 μg day–1

for P. minuta and 0·58 μg day–1 for P. fimata. For total tissue
production, which encompasses egg manufacturing, growth
and shedded exuvia, was 0·69 μg day–1 for P. minuta and
1·0 μg day–1 for P. fimata. These values demonstrate that
P. fimata allocated dietary resources equally between growth
and reproduction, while P. minuta allocated more resources to
reproduction than growth. The different strategies on
reproduction can also be seen from the significantly higher
fecundity and reproductive investment of P. minuta than P. fimata
(Table 1, P < 0·05). The reproductive investment for P. minuta
was 5·8% day–1, which is five times higher than for P. fimata.
Fecundity was 1·2 eggs ind–1 day–1 for P. minuta, and 0·39 eggs
ind–1 d–1 for P. fimata (Table 1). The growth and fecundity
parameters of  the control and diet change treatments
were not significantly different for each species (Table 1,
P > 0·05).

ELEMENTAL CONTENT AND IMBALANCES

The elemental compositions of labelled P. minuta and P.
fimata adults and eggs (Fig. 5) were significantly different
(anova, P < 0·05). The differences in elemental composition
between the two species were more pronounced for eggs
than adults. Proisotoma minuta adults and eggs contained
significantly less C but more N and P than P. fimata (anova,
P < 0·05). C : N and C : P ratios (by atoms) for adults and eggs
were thus significantly lower for P. minuta than P. armata
(anova, P < 0·05). The N : P ratios were similar for adults but
significantly lower for P. minuta than P. fimata eggs (anova,
P < 0·05). The labelled diet was balanced to the requirements
of the collembolans except for a negative elemental imbalance

g t
dV

dt
h t dt

T

( )   ( )=
+

�
init

init

egg

′Λx

′Λo

′Λc

′Λo ′Λx

Fig. 4. Individual mass (W) of  P. minuta (P.m., left axis) and
P. fimata (P.f., right axis) after sexual maturity in the diet change
(DP) treatment (n = 4) fitted with an exponential asymptotic growth
curve (n = 16): P. minuta; W(t) = 12·8 – 3·1e0·0655, Pr. fimata; W(t) =
58·5 – 25·4e0·0660.



750 T. Larsen et al.

© 2009 The Authors. Journal compilation © 2009 British Ecological Society, Functional Ecology, 23, 745–755

of C : N relative to adult P. minuta and P. fimata (P < 0·05).
Exuvia collected from P. minuta contained 7·4% C; 1·3% N;
and 0·032% P (C : N : P = 597 : 90 : 1). The elemental
compositions of  C, N and P of  the adult animals was not
significantly different between the diet switch and control
treatments (anova, P > 0·05).

CARBON (C) AND NITROGEN (N) TURNOVER

The isotope ratios of the animals and their diets can be found
in Table S1 in Supporting Information. Isotopic change rates
were higher for P. minuta than P. fimata. The asymptotic
exponential curves for isotope turnover differed significantly
between the two species (Fig. 6A, δ13C: F3,26= 36, P < 0·0001;
Fig. 6B, δ15N: F3,26= 68, P < 0·0001), with half-lives ranging
between 4 and 5 days for P. minuta, and between 6 and 7 days
for P. fimata (Table 2). The curve fits for δ13C and δ15N for
were similar for both species (P. minuta: F3,26 = 0·39, P = 0·76;
P. fimata: F3,26= 0·49, P = 0·69). The mixing fraction (βa) was

89% for P. minuta and significantly larger than the 82% for
P. fimata (P < 0·001, Table 2). Hence, Pr. fimata utilizes
compared to P. minuta a larger nutrient pool built during the
juvenile stage that is not replaced after sexual maturity as
indicated by the larger non-mixing fraction (1 – βa). Finally,
we estimated Λa, the isotopic change rate relative to the entire
body: Λa rates were 14·3% C d–1 and 12·8% N d–1 for P. minuta,
and 9·4% C d–1 and 8·7% N d–1 for P. fimata (Table 2).

After estimating mixing fractions and tissue change rates
for the entire body, we modelled the contribution of growth
and tissue turnover to isotopic change in the animals. The
mixing fraction values for growth (βg) for P. minuta were 22%
and 23%, and for P. fimata 40% and 41% (Table 2), showing
that P. fimata invested almost twice as much in growth than
P. minuta. Proisotoma minuta allocated relatively more
resources to tissue turnover than P. fimata with βr approxi-
mately 68% for P. minuta and 41% for P. fimata for both C and
N (Table 2). The change rates for growth (Λg) differed between
1·7% and 1·9% d–1, and 4·2% and 4·8% d–1 for P. minuta and

Table 1. Life-history parameters for the Diet change Parent (DP) and Control Parent (CP) (means ± SD, n = 4). Different letters denote
significant differences and apply to rows (anova, P < 0·05)

Proisotoma minuta Protaphorura fimata

DP CP DP CP

Whatchlings μg DM ind–1 0·55 0·55 1·40 1·40
Wmaturity 9·7 ± 0·7a 10·1 ± 0·2a 32·8 ± 3·4b 35·2 ± 1·4b

Wfinal 12·4 ± 0·8a 12·6 ± 0·3a 54·7 ± 1·9b 54·1 ± 1·8b

Fecundity Eggs ind–1 d–1 1·16 ± 0·05a 1·50 ± 0·34a 0·386 ± 0·064b 0·446 ± 0·035b

Reproduction % d–1 5·68 ± 0·11a 7·34 ± 0·84a 1·21 ± 0·10b 1·40 ± 0·06b

Fig. 5. Elemental composition and ratios (by atoms) from the diet change treatment with P. minuta (P.m.) and P. fimata (P.f.), their eggs and diet
(n = 4, error bars display standard errors). Horizontal broken line is the elemental content of the labelled yeast diet. Different letters signify
significant differences (anova, P < 0·05).
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Fig. 6. Changes in δ13C (A) and δ15N (B) in
adult  P. minuta and  P. fimata 0–28 days
after diet change; curves were fitted by
a nonlinear regression (a–d). Dashed lines
represent animals in equilibrium with un-
labelled (control parent) or labelled diets
(labelled gen.1). Changes in isotopes due to
growth were estimated from changes in
biomass. For eggs, the horizontal lines (e–f )
represent δ13C values of the oviposition
periods (0–7, 7–14, 14–28 days). The curves
for egg δ13C were fitted using Bayesian
modelling (see Fig. S1).
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P. fimata, respectively (Table 2). The tissue turnover rates (Λr)
were 12·9% C d–1 and 11·2% N d–1 for P. minuta, and 4·8% C
d–1 and 4·2% N d–1 for P. fimata.

EGG ALLOCATION

The mean δ13C and δ15N values of eggs laid by P. minuta after
diet change were equal or more enriched than adult animals
indicating that the nutrients used for egg production were a
mixture of diet and body reserves (Fig. 6A and 6B). In con-
trast, the δ13C and δ15N values of P. fimata eggs laid during the
first week were depleted relative to the adults indicating that
nutrients for egg production were provisioned from tissue
reserves created before the diet change (Fig. 6A and 6B).
However, P. fimata eggs harvested at 14 and 28 days were
similar or more enriched than the adults indicating that
nutrients for egg production were provisioned directly from
diet.

To investigate the dynamics of nutrient provisioning to
eggs, we estimated γ (Eqn 7 – the proportion of egg C or N
provisioned directly from diet) and T (Eqn 8 – the average

time it took to build an egg). Median values of T ranged were
3·8–4·3 days for P. minuta and 6·3–6·6 days for Pr. fimata (see
Fig. S1 in Supporting Information). The development time of
eggs was longest for P. fimata, concurrent with the larger egg
biomass of P. fimata than P. minuta. Median values of γ
ranged 0·59–0·64 for P. minuta and 0·45–0·56 for P. fimata (see
Fig. S1), indicating that the direct provisioning from diet to
eggs was slightly higher for P. minuta than for P. fimata. To
evaluate how well the modelled parameters fit the actual
values of isotope change of eggs, median values of γ and T
were integrated over time and plotted in Fig. 6A and 6B. The
modelled parameters fitted the isotopic change of  P. minuta
eggs well, although the enrichments of 13C and 15N were
underestimated. Contrary to P. minuta, the fit for P. fimata eggs
overestimated enrichments of 13C and 15N, particularly during
the first week.

TISSUE TURNOVER FRACTIONS

The fractions responsible for tissue turnover (Λr) are metabolic
turnover ( ), egg production ( ) and for P. minuta shedding

Table 2. Model parameters for isotope turnover (means ± SD, n = 4). The tissue change rate (Λ) signifies isotopic change relative to total body
mass. Growth (g) and Tissue turnover (r) are sub-fractions of Total (a), and Metabolism (c), Eggs (o) and Exuvia (x) are sub-fractions of Tissue
turnover (r) (Fig. 2). Different superscript letters indicate significant differences (P < 0·05)

Species
Asymptote 
(δn)

Delta 
(δd)

Turnover 
(λ)

Half-life 
(t1/2)

Mixing 
fraction (β)

Tissue change 
rate (Λ, % d–1)

Total (a)
P. minuta δ13C 832 ± 13 848 ± 18 0·160 ± 0·009a 4·34 0·893 ± 0·01a 14·3 ± 0·8
P. fimata 767 ± 23 786 ± 26 0·114 ± 0·009b 6·10 0·825 ± 0·03b 9·4 ± 0·6
P. minuta δ15N 901 ± 9 896 ± 11 0·144 ± 0·004a 4·82 0·890 ± 0·01a 12·8 ± 0·4
P. fimata 831 ± 21 830 ± 24 0·106 ± 0·007b 6·56 0·824 ± 0·02b 8·7 ± 0·6
Growth (g)
P. minuta δ13C 201 ± 55 217 ± 55 0·081 ± 0·048 8·58 0·216 ± 0·102 1·7 ± 1·0
P. fimata 370 ± 30 386 ± 34 0·110 ± 0·024 6·31 0·398 ± 0·032 4·4 ± 1·0
P. minuta δ15N 236 ± 58 232 ± 59 0·081 ± 0·048 8·58 0·233 ± 0·101 1·9 ± 1·1
P. fimata 416 ± 32 411 ± 36 0·110 ± 0·024 6·31 0·413 ± 0·032 4·5 ± 1·0
Tissue turnover (r)
P. minuta δ13C 634 ± 25 651 ± 35 0·189 ± 0·029 3·66 0·681 ± 0·030 12·9 ± 2·0
P. fimata 380 ± 24 401 ± 28 0·117 ± 0·020 5·94 0·408 ± 0·024 4·8 ± 0·8
P. minuta δ15N 685 ± 22 682 ± 29 0·167 ± 0·019 4·16 0·677 ± 0·028 11·2 ± 1·3
P. fimata 417 ± 30 419 ± 33 0·102 ± 0·020 6·78 0·413 ± 0·030 4·2 ± 0·8
Metabolism* (c)
P. minuta δ13C 10·7 [7·6–12·7]
P. fimata 4·2 [3·6–4·7]
P. minuta δ15N 8·9 [5·7–10·9]
P. fimata 3·6 [3·0–4·2] 
Eggs(i) (o)
P. minuta δ13C 2·1 [0·1–5·2]
P. fimata 0·54 [0·03–1·16]
P. minuta δ15N 2·3 [0·3–5·5]
P. fimata 0·67 [0·27–1·17]
Exuvia (x)
P. minuta δ13C 0·092
P. fimata NA
P. minuta δ15N 0·081
P. fimata NA

*Tissue turnover for metabolism and eggs are given as medium values and 95% confidence intervals.

′Λc ′Λo
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of exuvia ( ) (Fig. 3). For both species, the metabolism
was the largest contributor to tissue turnover. For P. minuta
we estimated median values for metabolic rates ( ) for C and
N as 10·7% and 8·9% d–1, respectively, and for P. fimata 4·2%
and 3·6% d–1, respectively (Table 2). The rates of  the 95%
confidence intervals do not overlap between the two species,
suggesting that P. minuta had the highest metabolic rate. The
median C and N values for egg production ( ) were for
P. minuta 0·54% and 0·67% d–1, respectively, and for P. fimata
2·1% and 2·3% d–1, respectively (Table 2). The rate of moulting
exuvia ( ) in P. minuta was very small (< 0·01% d–1) compared
to total tissue turnover (11·2–12·9% d–1) (Table 2).

Discussion

Our data support that isotope change in Collembola tissue
is primarily attributed to metabolism ( ) and, to a lesser
degree, growth (Λg). This contrasts with findings from similar
diet change studies with poikilotherms such as whitefish
(Hesslein et al. 1993), fish larvae (Herzka & Holt 2000),
young postlarval shrimp (Fry & Arnold 1982) and crusta-
ceans (Ventura & Catalan 2008), where most of the changes in
either C or N were attributed to growth. However, these studies
included animals growing at low temperatures, likely resulting
in low metabolic rates (Clarke & Johnston 1999). In contrast,
our experiment was performed at 20 °C, and our results are
more in line with observations from homeotherms (Ponsard
& Averbuch 1999). We did find strong differences between the
two collembolan species, which suggests that in addition to
the direct effects of temperature on metabolism, physiological
traits are also an important factor in explaining tissue turnover.

We confirmed our hypothesis that P. minuta has a higher
metabolic rate than P. fimata. The two most important phys-
iological traits contributing to the relatively high metabolism
in P. minuta are probably its smaller size and higher fecundity
compared to P. fimata. Petersen (1981) found the allometric
scaling exponent (b) relating metabolic rate to body mass
(metabolic rate = a × massb) to range 0·67–0·83 for eu- and
hemiedaphic Collembola (b = 0·78 for Onychiurus armatus
s.l., no species resembling P. minuta were included). When we
modelled allometric scaling between the two species in our
study, the 95% confidence values for b were 0·25–0·48 (see
Fig. S2). The relatively small value of the allometric scaling
exponent in our study indicates that P. minuta had a propor-
tionally higher metabolic rate than what can be explained by
allometric scaling, that is, the mass differences between the
two species. Therefore, it is likely that the much higher rate of
reproductive investment (egg manufacturing, ) in P. minuta
than P. fimata also contributed to its high metabolic rate.
Gratton and Forbes (2006) conducted a feeding experiment
on beetles and compartmentalized turnover of 13C in different
organs in beetles. They found that the isotopic signature in
body fat and reproductive organs changed more rapidly than
the more metabolically inert tissues, such as muscles and
cuticle. In terms of optimizing reproductive investment relative
to metabolic rates, our data indicate that P. minuta is more effi-
cient than P. fimata as the ratios of metabolism to reproductive

investment were 3–4 times higher for P. fimata than for P.
minuta. A possible trade-off  for the high reproductive invest-
ment of P. minuta compared to P. fimata could be a higher
somatic damage associated with replacing tissue cells. This
interpretation is supported by a longevity study with fruit flies
(O’Brien et al. 2008) where females with the greatest ratio of
nutrient investment to somatic tissue vs. reproduction were
the longest living.

The C metabolic rates for the two collembolans were in
the same range as previously found with classic allometric
approaches (direct measurements of respiration) (Petersen
1981). The animals in Petersen’s study were measured at a
lower temperature than the present study. At 10 °C, the respira-
tory rate by O. armatus s.l. was 1·2 mL O2 g

–1 h–1, and using a
temperature coefficient (Q10) of  3·2 (c.f. Petersen 1981) the
respiratory rate would be 4·0 mL O2 g

–1 h–1 at 20 °C. The
comparable metabolic rate for P. fimata in the present study
was 3·3 mL CO2 g

–1 h–1 (assuming that all metabolic C was
catabolized to CO2). For P. minuta, we estimated the metabolic
rate to 8·3 mL CO2 g

–1 h–1. The metabolic rates of both studies
are likely to underestimate actual rates. In Petersen’s study,
the animals were subject to resting conditions during a 1–4 h
period and in our study we only estimated carbon catabolized
from tissue, thus not taking into account what was catabolized
directly from diet. In terms of N metabolic rates, the values
reported here are much higher than previously reported with
direct measurement of  excreted ammonium (Sjursen & Hol-
mstrup 2004; Larsen et al. 2007b). The ammonium excretion
rates of P. minuta and P. fimata were  < 40% of the N metabolic
rates estimated in this present study (Larsen et al. 2007b). The
lower N metabolic rates previously measured could either
be because the animals were under resting conditions or that
collembolans excrete nitrogenous waste in other forms than
ammonium-N, such as uric acid (Verhoef et al. 1983).

We distinguished between the mixing and non-mixing frac-
tions, the latter belonging to the nutrient fraction that was
built during the juvenile stage and not replaced after sexual
maturity. The size of the non-mixing fraction after subtracting
the contribution of growth was larger for P. fimata than P.
minuta. This difference demonstrates that the species with the
lowest tissue turnover, P. fimata, retained more of its juvenile-
acquired nutrient reserves as an adult. A contributing factor for
the higher non-mixing fraction values of  Pr. fimata than P.
minuta could be that P. fimata re-ingested their exuvia. However,
the losses of C and N through shedding of exuvia were very
small for P. minuta relative to total tissue turnover. The sig-
nificance of adult animals having large juvenile reserves could
be that they more easily can cope with starvation or nutritional
stress and still maintain a normal reproduction rate.

Growth and reproduction requires N- and P-rich materials
such as amino acids, phospholipids and ribosomes, while
catabolism and storage of energy needs C-rich materials like
lipids and carbohydrates. We linked stoichiometry with tissue
turnover to evaluate the requirements of two different Colle-
mbola species. We found that P. minuta had a significantly
lower C : N ratio and higher tissue turnover of both C and N
than P. fimata, suggesting that P. minuta has a higher synthesis

′Λx
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rate of proteins than P. fimata. This finding also underlines
the importance of looking at both stoichiometry and tissue
turnover when evaluating nutrient requirements. The demand
for P was also highest for P. minuta because adults and eggs
contained significantly more P than P. fimata. In animal tissue,
P predominantly is found in phospholipids, nucleotides and
nucleic acids (Sterner & Elser 2002; Ventura 2006) and is
involved in processes inside the cell that govern growth and
reproduction (Elser et al. 2003). Adult P. minuta had the high-
est P content and tissue turnover. This supports the growth
rate hypothesis, which states that differences in organismal
C : N : P ratios are caused by differential allocations to RNA
necessary to meet protein synthesis demands of growth and
reproduction (Sterner & Elser 2002). Proteins contain about
16% N and 52% C and approximately half  of the body dry
mass of  animals is made of  proteins or free amino acids
(Ventura 2006). As the asymptotic curves for 13C and 15N were
similar for both species it indicates that proteins were the
primary drivers of tissue turnover.

Both species possess traits that are typical for their respective
habitats (Fjellberg 1998, 2007) except that euedaphic living
species tend to be smaller than hemi-edaphic species. It is
suggested that species living in the mineral layer of the soil are
adapted to a less nutritious diet than species living in rela-
tively fresh litter (Faber 1991; Berg & Verhoef 1998; Berg &
Bengtsson 2007). A number of parameters in our study indicate
that P. fimata is adapted to lower food quality and availability
than P. minuta by having large nutritional reserves, low fecundity,
low metabolic rate and low protein synthesis rate. Presently,
we are cautious to relate these parameters to vertical stratifica-
tion as this would require a much larger assemblage of species
than included in this study. However, the methodological
approach we implemented, combining mass balance, isotope
turnover and stoichiometry, is promising for linking nutrient
budgets and life-history traits.

In conclusion, we found that 13C and 15N changes in Collem-
bola were primarily attributed to metabolism and not growth,
contrasting previous allometric studies on poikilotherms,
such as fish and crustaceans. The euedaphic P. fimata had a
significantly lower metabolic rate and reproductive output than
the hemi-edaphic P. minuta. The two most important para-
meters explaining the higher metabolic rate of P. minuta than
P. fimata were most likely its small body size and high reproductive
investment. Our stoichiometric data indicate that P. minuta
may have higher nutritional requirements for reproduction
as the N : P ratio of its eggs was significantly higher than that
for Pr. fimata. The relatively low metabolism and nutritional
requirements by P. fimata might be an adaptation to the generally
low food availability and quality in the euedaphic habitat.
Our approach of tracking isotope turnover and mass balance
after sexual maturity allowed us to estimate nutritional
reserves, reproductive investments and metabolic turnover.
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