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Abstract This paper proposes a method to improve landscape-pollution interaction regression 
models through the inclusion of a variable that describes the spatial distribution of a land type 
with respect to the pattern of runoff within a drainage catchment. The proposed index is used as 
an independent variable to enhance the strength, as quantified by R² values, of regression 
relationships between empirical observations of in-stream pollutant concentrations and land type 
by considering the spatial distribution of key land-type categories within the sample point’s 
drainage area. We present an index that adds a new dimension of explanatory power when used 
in conjunction with a variable describing the proportion of the land type. 

We demonstrate the usefulness of this index by exploring the relationship between nitrate 
( −

3NO ) and land type within 40 drainage sub-catchments in the Ipswich River watershed, 

Massachusetts. Nutrient loads associated with non-point source pollution paths are related to 
land type within the up-stream drainage catchments of sample sites. Past studies have focused 
on the quantity of particular land type within a sample point’s drainage catchment. Quantifying the 
spatial distribution of key land-type categories in terms of location on a runoff surface can 
improve our understanding of the relationship between sampled −

3NO  concentrations and land 

type. 
Regressions that employ the proportion of residential and agricultural land type within 

catchments provide a fair fit (R² = 0.67). However, we find that a regression adding a variable that 
indicates the spatial distribution of residential land improves the overall relationship between in-
stream −

3NO  measurements and associated land types (R² = 0.712). We test the sensitivity of the 

results with respect to variations in the surface definition in order to determine the conditions 
under which the spatial index variable is useful.  

Keywords 

 GIS, Non-point source pollution, nutrient export, spatial distribution, regression 
modeling 
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1 Introduction 

1.1 Nitrogen Export 

Nitrate, −
3NO , is a major concern among hydrologists and water managers. In drinking 

water, elevated levels of nitrates can lead to serious illness and in some cases, death (EPA 
2004). As part of the 1974 Safe Drinking Water Act, The United States Environmental Protection 
Agency set a maximum contaminant level goal for nitrates at 10 ppm. Health problems are not 
limited to human consumption, however. Nitrates in surface water contribute to the process of 
eutrohpication, which leads to high biological activity, in particular, algal growth. This, in turn, can 
choke other species, such as fish and small vertebrates (EPA 2004).  

 
Most nitrates found in surface or groundwater have their origins in organic nitrogen or 

ammonia, generally from feces and urine that leak from septic systems or livestock feed lots. 
Organic nitrogen is converted to ammonium ( +

4NH ) in soil through the process of mineralization. 

Ammonium, in turn, is converted to nitrite ( −
2NO ) and nitrate ( −

3NO ) by bacteria of the genus’s 

nitrosomonas and nitrobacter, respectively (Pidwirny 2004). Inorganic potassium nitrate and 
ammonium nitrate are common ingredients in fertilizers, thus allowing the nutrient to skip any 
conversion process from organic nitrogen to ammonium to nitrate or nitrite (EPA 2003). Nitrate is 
very easily leached from soil and nitrogen deposition is very closely linked with hydrologic 
processes (Pidwirny 2004). Fertilizer application greatly accelerates the deposition of nitrogen 
and other nutrients in rivers, lakes and streams, and thus, accelerates eutrophication (Jordan 
1997).  

 
A myriad of studies relating heightened nutrient loads in surface water or groundwater to 

land type have been completed. Most commonly, studies of this sort concentrate on one of two 
land types, forest or agricultural land, depending on the region of study. The major cause of 
nitrate export into surface water and groundwater is inorganic fertilizer applied to crop land 
(Banasik 1999, Correll 1994, Jordan 1997, Mitchell 1999). The more intense the fertilization 
campaign, the greater the export of nutrients, nitrate in particular. Nitrate is leached from the soil 
and it enters the groundwater regime. Eventually, that nitrate appears in surface water.  

 
Conversely, forest land is commonly thought to be a sink for −

3NO . That is, given certain 

conditions, some nitrates can be removed from water that passes through these areas. Forested 
riparian areas are especially effective at removing nutrient loads from ground and surface water. 
Riparian areas are generally flat areas adjacent to stream channels. They are defined more 
concretely by three major characteristics: low slope, hydric soil type, and deep soils. Wetlands, an 
effective nutrient sink, are often found in riparian areas. Forested riparian areas and wetlands can 
be quite effective at removing nutrients from water, even during runoff events (Casey 2001). 
Forest land as a whole, inside or outside riparian areas, can effectively remove nutrients from 
water. Overall export of nitrogen from forested catchments is lower than from non-forested 
catchments (Band 2001). Wollheim et al. (2004) determined that increases impermeability 
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increases nitrogen loading through three factors: an increase in N sources, increased base flow, 
and a decrease of contact between runoff and soils.  

 
Scientists have used regression to quantify relationships between land type and nutrient 

export to predict future nitrate concentrations. Combining these relationships with predictions of 
future change in land type will enable researchers to make informed speculations about future 
water quality. Within the Ipswich River Watershed, Pontius et al. (2000) extrapolated a land-type 
change scenario to 2101 and used an empirical nitrate loading/land type relationship to predict 
that nitrate loading would increase as land was converted from forest to residential land. Their 
study used a distance weighted regression to determine nitrate loading potential per land type. 
While still a developing science, land-type change modeling may benefit from the use of spatial 
statistics when fleshing out impacts based on predictions.  

 

1.2 The Ipswich river watershed 

Nitrogen export is a primary environmental concern in the Ipswich River watershed. The 
Ipswich River drains into a large, estuary and protected saltwater sound – the Plum Island Sound. 
The Ipswich River watershed is located in the coastal lowland section of New England, in 
northeastern Massachusetts (Figure 1). In the early 1600s, Captain John Smith described the 
Ipswich River as a “land of promise” when he first laid eyes on the river valley. People apparently 
agreed with him. Today, there are 21 towns that touch or are within the watershed’s boundary. 
Within those towns, the river serves as a water source to 168,000 people and thousands of 
businesses (Census 2000). Use is not limited to towns within or touching the watershed, 
however. In total, 330,000 people depend on the river for drinking water (Bowling 2003). 
Permitted water withdrawals averaged 114.7 million liters per day in 1999. American Rivers, a 
non-profit river conservation organization, placed the Ipswich River at number 3 on their 10 Most 
Endangered Rivers list of 2003 (American Rivers 2003, Bowling 2003).  
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Figure 1. Ipswich river watershed within Massachusetts, USA. 

 
The peak elevation in the watershed is 125 meters. The Ipswich River watershed falls 

only 75 meters from the headwaters to the Ipswich Dam, then another 40 meters in the last few 
miles. The slope is as steep as 36°, but remains relatively flat, with an average slope of only 3.5°. 
The bedrock lithology of the watershed is largely mafic or granitic with some metamorphic rocks. 
Roughly half (49%) of the surface geology in the watershed is glacial till or bedrock. The 
remaining portion is mostly sand and gravel (42%) with small portions composed of flood plain 
alluvium (7%) or fine grain deposits (2%). Overlying this are mostly shallow, poorly drained soils 
(Baker 1964, Wollheim 2004). Landuse data from 1999 tells us that the watershed is largely 
forested (35%) with residential land and wetland making up the lion’s share of the remaining area 
with 30% and 20%, respectively.  

 
The watershed is under increasing development pressure. The Massachusetts 

Department of Environmental Protection observed a population increase in the watershed of 9% 
between 1980 and 2000, while the proportion of residential land within the watershed increased 
by 35%. This has come at the expense of forest and forested wetlands within the watershed, 
decreasing those land-cover types by 15% and 25%, respectively (Bowling 2003). Our 
observations of land type change between 1985 and 1999 (Table 1), while less drastic, reflect 
similar overall trends. This increased population has led to increasing demand for water. Low flow 



Journal of Spatial Hydrology 
 

64

conditions in the watershed have become more frequent. As much as half of the main stem of the 
river ran dry during the summer months of 1995, 1997, 1999 and 2002 (Bowling 2003). Low flow 
conditions have exacerbated problems in the watershed and led to heightened attention on the 
river as a resource.  

 

Table 1. Proportional land type changes in the Ipswich River watershed between 1985 and 1999. 
Values given are percentage of total area.  

Land Type 1985 1999 Change 
Agriculture 8.91 8.03 -0.88 

Forest 52.75 49.00 -3.75 
Wetland 5.01 4.71 -0.31 

Industrial-Commercial 3.40 3.77 0.37 
Residential 26.52 31.10 4.58 
Salt Marsh 1.23 1.23 0.00 

Water 2.17 2.16 -0.01 
 

1.3 The importance of spatial analysis 

Many traditional methods used to explore relationships between land type and non-point 
source water pollution have relied on one simple variable i.e., proportion of land type within a 
drainage catchment. While this type of analysis has the advantage of being easy to measure and 
interpret, it ignores a potentially very important consideration, the spatial arrangement of the land-
type within the catchment. Intuitive knowledge of flow regime and nutrient export tells us that flow 
through and near residential land will result in a very different nutrient export than flow farther 
from residential land.  

 
Spatial arrangement of land types can be important to understand nutrient sinks also. 

Forested riparian areas have the potential to act as denitrification zones, even in urbanized areas 
(Groffman 2003). Riparian forests that are located such that they receive a large amount of runoff 
from residential areas should remove more nitrogen from the hydrologic system than those 
concentrated in low drainage areas far and upstream from nutrient sources. Therefore, any type 
of analysis that depends solely on a variable measuring the proportion of these or other land 
types would be unable to recognize that forested riparian areas are very different than forested 
hillsides in the context of pollutant loading. This failure could be important because forested 
riparian areas have the ability to remove comparatively larger amounts of nitrate from surface and 
groundwater through denitrification (Groffman 2003). The denitrifying ability of any land type is 
limited by the potential for N-saturation (Band 2001, Wollheim 2004). Natural systems and 
processes are not random, but rather, demonstrate spatial structure or arrangement (Dale 2002). 
Riparian areas are defined in spatial terms. We propose that spatial structure is inherently linked 
to variation in non-point source nutrient loading in surface water and we provide an immediately 
accessible method of measuring spatial arrangement of land types for inclusion in analyses. 
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Spatial analysis is commonly defined as “a general ability to manipulate spatial data into 
different forms and extract additional meaning” (Bailey 1994). It includes a broad array of tools 
that range from relatively simple measures of distance and proximity, such as nearest neighbor 
analysis, to more complex statistics such as the Moran’s I, a measure of dependence across 
space, often referred to as spatial autocorrelation (Shekhar 2003, Isaaks 1989). For the purpose 
of this paper, we focus spatial analysis on statistical methods, as discussed by Bailey (1994), who 
limits the discussion of spatial analysis to methods that take into account the stochastic nature of 
patterns. Statistical spatial analysis seeks to quantify spatial patterns on a landscape. In this 
paper, we present a descriptive index that quantifies spatial distribution of a binary phenomenon 
(i.e. a single category of land type) across many catchments. We design the index so that it is 
useful for a variety of applications while we illustrate its usefulness by applying it in a regression 
analysis for the Ipswich River watershed. Potential applications of this index are wide and cover a 
variety of surface and landscape processes.   

 

2 Methods 

2.1 Data 

There are three primary types of information in this analysis: in stream samples of nitrate, 
digitally mapped categorical land-type data, and GIS-generated surfaces. The nitrate data was 
collected in February of 2000 as part of a sampling campaign undertaken by scientists of the 
Marine Biological Laboratory in Woods Hole, Massachusetts. Samples were analyzed for nitrate 
on a Lachat autoanalyzer using a cadmium reduction column.  

 
GPS points of the sampling points were collected as part of the campaign. These sample 

points were used to generate sub-catchments (Figure 2). We supervised the creation of reliable 
sub-catchments for the headwater non-nested sample points. These sub-catchments were used 
as study extents to compute the proportional amounts of land-type categories in each sub-
catchment. The land-type data was assembled by aggregating data of 37 categories supplied by 
the Massachusetts Executive Office of Environmental Affair’s Massachusetts Geographic 
Information System into seven categories. A wetlands dataset, created by the University of 
Massachusetts/Amherst and field checked by the Massachusetts Department of Environmental 
Protection as part of the Wetlands Conservancy Program, was then combined with the seven 
category data to create a final, wetland corrected land-type dataset for 1999. The five categories 
of land-type that we consider in our analysis are: forest, wetlands, industrial/commercial, 
residential and agriculture. We computed the proportions of each land type within each 
catchment.  
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Figure 2. Forty headwater catchments within the Ipswich river watershed. 

 
We also calculated a variable describing the density of septic systems with each sub-

catchment. This variable was derived from Census 2000 data. Each census block contains an 
attribute describing the proportion of households within the block that use septic systems. We 
calculate the number of households per unit area within each sub-catchment that have septic 
systems and include it in our analysis.  

 
We generated three surfaces for this analysis: a pair of surfaces, raw runoff and 

logarithmically transformed runoff, based on a 30 meter digital elevation model (DEM), and an 
additional surface based on Euclidean distance. The DEM was provided by the Massachusetts 
Geographic Information System (Mass. GIS 2005). The original five meter DEMs are derived from 
photogrammetric points and breaklines collected from 1:5000 scale orthophotgraphy. The 
provided elevation surface was resampled from its original resolution of five meter pixels to 30 
meter pixels. Before creating the analysis surfaces, we enhanced the DEM with hydrologic data. 
First, we created a “depressionless” or “pit-free” DEM with Arc Map’s “fill sinks” tool. Following 
this, we accounted for hydrologic channels by burning 1:100,000 scale stream centerlines into the 
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DEM. This was accomplished by subtracting a raster map of the stream centerlines from the 
DEM, which produced channels in the DEM’s surface. This allows for the calculation of a 
hydrologically adjusted routing of runoff using ARCINFO GRID.  

 
The runoff surface was created in two steps. First, a flow direction surface was created 

using the hydrologically corrected DEM as an input. In this surface, each pixel has one of 8 
possible values, each corresponding to a direction of flow into an adjacent cell. The value 
indicates the direction that water would flow upon exiting that cell. Next, we created a runoff 
surface using the flow direction raster as an input. Each cell in the runoff surface has a value that 
indicates the number of cells that flow into that cell. As the number increases, so does the 
predicted amount of water that passes through that cell. This constitutes the first raw runoff map. 
We created a second runoff surface by taking the natural logarithm of the raw runoff map. On 
both of these runoff surface maps, cells that are nearer the sample site or drainage channel have 
larger values, where nearer is defined with respect to runoff. 

 
One of the primary aims of this research is to present a simple, but statistically sound 

method of accounting for spatial distribution of features across a surface. To that aim, we 
included the logarithmic transformation of the raw runoff surface in our analysis in order to adhere 
to the conventions of statistical analysis. Logarithmic transformation is a commonly used method 
in statistical analysis as it aids in the satisfaction of the assumptions of symmetry and 
homoscedasticity while improving linearity. These are all desirable conditions and often aid in the 
performance of statistical techniques. We were very interested in how the spatial index might be 
improved using conventional statistical transformations.  

 
The third surface is the Euclidean distance from each of the 40 nitrate sample points.  In 

this surface, values near the sample site have smaller values and near is a function of straight 
line distance.  

 

2.2 Spatial Index 

2.2.1Definition 

The spatial distribution index, Equation (1), is a number that describes the distribution of 
a land type (or any other binary geographic characteristic) across a surface within a specified 
geographical extent. In this case, the surface is one of the three surfaces described in the 
previous section and the geographical extents are the 40 sub-catchments derived from surface-
water sample points. Equation (1) returns a descriptive value for each sub-catchment.  

∑
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Equation (1) defines SI as the spatial index for the catchment. Lower case n is the index 
for each cell in the catchment, while upper case N is the number of pixels in the catchment. nW  

is the weight (between 0 and 1) for pixel n. For our example, nW  = 1 for all n, but the weight is 

included as a variable to make the equations general. nS is the value on the selected surface 

map for cell n and nP is the proportion of a land type in pixel n. P  is the proportion of the land 

type in the catchment, given by Equation (2). 
 
If the land type is distributed evenly within the catchment, then the value of I is 1. If the 

land-type is concentrated in areas of low values on the surface, e.g. low drainage far from the 
sample site or drainage channel, then the value of I is less than 1. If the land type is located 
primarily in areas of high surface values, e.g. high drainage near the sample site or drainage 
channel, then I is greater than 1 (Aldrich 2002).  

 
One feature of I is that it is statistically and conceptually independent from P  (Aldrich 

2002). This is desirable because a regression analysis with proportion of a land type as an 
independent variable will be unlikely to encounter problems with multi-collinearity when it uses the 
spatial drainage index of the land type as an additional independent variable. This characteristic 
is illustrated by near zero measured association (R² = 0.000) between proportion residential and 
the residential spatial drainage index for the 40 catchments in Figure 2.  

 

2.2.2 Examples 

The spatial index seeks to illuminate the difference between the catchments shown in 
Figures 3 and 4, called catchments A and B, respectively. Forty-three percent of the variation in 
February, 2000 −

3NO  measured in the Ipswich River watershed can be explained by residential 

type land-cover (Figure 5). Residential land constitutes 35% of the area within both the sub-
catchments pictured in Figures 3 and 4. However, −

3NO  measured in February of 2000 was 20 

µm/l in catchment A, while −
3NO  was nearly three times higher, 73µm/l, in catchment B. Initial 

visual inspection indicates that the arrangement of residential land within the catchments is 
different. It appears that catchment A has more residential land within close proximity of both the 
sampling point and the stream channel than catchment B, which seems to be buffered from 
residential land along the stream channel. This potentially biased observation contradicts the 
hypothesis that higher nitrate would be observed at sample sites that are near residential areas. 
The spatial index (I) is designed to quantify the arrangement of land type with respect to each of 
the three surfaces: the raw runoff surface, the log-transformed runoff surface, and the Euclidean 
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distance from the sample point surface. It is important to calculate the spatial index because the 
human eye can be fooled, as it is difficult to consider simultaneously the land type map as well as 
the surface map.  

 
 

 

Figure 3. Catchment A, with a low raw spatial drainage index of 0.17. 

 
 

 
Figure 4. Catchment B, with an even raw spatial drainage index of 1.03. 
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With respect to the raw runoff surface, catchment A has a very low spatial drainage index 
(0.17). This tells us that residential land is concentrated in areas of low drainage. Conversely, 
catchment B (Figure 4) has a spatial drainage index of 1.03, indicating that residential land is 
more evenly distributed, slightly concentrated in areas of higher drainage. This fits our hypothesis 
that higher values of the spatial drainage index will align with higher −

3NO  values.  

 
We can see some of the differences between the catchments that are being quantified by 

the spatial index. Starting with Figure 3, note the location of gray pixels on the right hand portion 
of Figure 3. These are pixels classified as residential land. In particular, note the large block 
running from the northwest to the south along the edge of the sub-catchment near the pour point. 
A naïve analysis would suggest to us that, since so many residential pixels are close to the pour 
point, that the value of this index will be very high. However, if we compare this large block to the 
runoff map, on the left side of Figure 3, we can see that much of this large block overlays very 
light, almost white pixels, indicating low runoff values. Even the portion immediately southeast of 
the pour point is in an area of very low drainage. Examining the rest of the map, we can see that 
only a small portion of the residential pixels touch high drainage pixels on the runoff map.  

 
Compare this with Figure 4. At first glance, it would appear that, like catchment A, very 

few residential pixels intersect the stream channel. However, examining the runoff map, we see a 
large runoff channel not evident in the vector streams that extends almost due north from the 
vector stream channel. This area of high drainage is also an area of residential land. Likewise, 
the narrow mouth of the catchment contains a great deal of residential land. Other parts of the 
residential land, e.g. the southwest corner, are clearly in areas of low drainage. Residential land 
is distributed such that about half of it lies in areas of higher drainage, and half in lower drainage. 
Hence, we find a spatial drainage index near 1, i.e. 1.03.   

 

2.2.3 Sensitivity Analysis 

The spatial index is sensitive to the definition of the surface. That is, one catchment will 
return different index values for the same land-type depending on which surface is used to 
calculate the index. These different values will, in turn, result in different results in statistical 
analysis.  

 
In order to explore how different surface maps affect the outcomes of regression models, 

we create three indexes for each drainage catchment and use them in regressions. We calculate 
the index using three surfaces: a raw runoff surface, a logarithmic transformation of the raw runoff 
surface, and a Euclidean distance from the sample point surface. Hence, we calculate two spatial 
drainage indices and one spatial distance index. The indices are to be interpreted in different 
ways. If we use a runoff surface, a high value of the spatial index signals that the land type is 
concentrated in areas of high drainage, while a low index value signals that the distribution is in 
areas of low drainage. If we use the index with a Euclidean distance map, a low value of the 
spatial index indicates that the land type is concentrated in areas close to the drainage point, 
while a high index value signals that the distribution is far from the drainage point. Each 
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measurement of land-type proportion is paired with each of its three spatial indexes to assess the 
influence on the regression.  

 

2.3 Regression 

Stepwise regression considered the proportion and spatial indexes of the following: 
residential, forest, wetland, industrial/commercial, and agricultural. The analysis also included the 
mean septic system density of each catchment. We used the stepwise method of entering 
variables with a 0.05 p-value tolerance for inclusion of the variable in the regression. We ran a 
total of four stepwise regressions. First, we used only the land-type proportion variables and 
septic system density to determine the best non-spatial regression. Next, we used all the 
variables previously stated, as well as the spatial drainage indices based on a raw runoff surface 
for each of those land types. The next two stepwise regressions each included one spatial index 
type in place of the raw runoff spatial index, first we included those calculated with the log-
transformed runoff map and then those calculated based on Euclidean distance surfaces. In order 
to complete the sensitivity analysis, regressions were constructed that paired each proportional 
variable with each of its three spatial indexes to examine changes in R² values as the surface 
definition changes.  

 

3 Results 

Regression results show that the best single explanatory variable is percentage 
residential (Figure 5). Consideration of the spatial arrangement of land categories gives modest 
increase in goodness of fit. Table 2 gives R² values from stepwise regressions in the right most 
column and coefficients with p-values of included variables in the middle columns for that analysis 
that uses the raw runoff surface. Two key index land types are agriculture and residential. 
Regressions (b) and (c) show that proportion agriculture explains 22% of the variation in −

3NO  

and residential explains 43%. In both of these regressions the variables are significant at the 0.02 
level. Conversely, regression (a), using only the spatial drainage index for residential land 
produces a low R² value with a p-value of 0.407.  
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Figure 5. Nitrate versus proportion residential land-type by catchment with least squares line. R² 
= 0.434 with a p-value of 0.000. 

 
In regression (e), proportion residential is paired with the residential spatial drainage 

index. This produces an R² value of 0.469, an improvement of over proportion residential by itself. 
The p-value of the residential spatial drainage index is not significant (p =0.214). Regression (f) is 
the best non-spatial regression. This regression uses proportion agriculture and proportion 
residential as independent variables. Both variables have 0.000 p-values. These two variables 
explain 67% of the variation in the dependent variable. Regression (g) increases the R² to 0.712 
by adding the spatial index. The p-values of all three variables are significant at the 0.03 level. 
Including a measurement of the spatial distribution of residential land results in an improvement in 
the goodness of fit.  
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Table 2. Regression coeffecients, p-values and R² values. 

 Run Percent Agriculture Percent Residential 
Residential Raw Spatial 

Drainage Index R² 
a. n.i. n.i. 14 (0.407) 0.02 
b. 187 (0.002) n.i. n.i. 0.22 
c. n.i. 117 (0.000) n.i. 0.43 
d. 190 (0.001) n.i. 17 (0.273) 0.25 
e. n.i. 119 (0.000) 20 (0.214) 0.47 
f. 119 (0.000) 194 (0.000) n.i. 0.67 
g. 122 (0.000) 199 (0.000) 23 (0.028) 0.71 

 
Figure 6 illustrates how R² values change as a function of which surface map is used to 

calculate the spatial index. For each of three land-types, only the proportion variable is used 
initially to explain variation in February 2000 −

3NO . Following that, each proportion is paired with 

a version of its respective spatial index. Therefore, each land-type has a total of four regressions. 
R² values are sensitive to which surface the spatial index uses. In the case of forest, only one 
surface map, Euclidean distance from the sample point, adds any explanatory power. The other 
two land types exhibit similar behavior in that they exhibit sensitivity to the selection of the surface 
map. 

 

4 Discussion 

4.1 Interpretation 

The variation in regression results, illustrated by Figure 6, shows that it is important for a 
scientist to understand the underlying surface being used to calculate the spatial index. Likewise, 
it is important to examine critically the relationships that are revealed from different indexes. The 
forest land type demonstrates a large increase in R² values when paired with a distance index, 
but demonstrates no relationship with drainage indexes. The wetland land type demonstrates a 
similar behavior in that the best pairing is with a distance index.  
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Figure 6. R² values as a function of spatial index definition for regressions with February 
2000 −

3NO  as the dependent variable.  

 
Figure 7 shows how the indices vary as a function of the surface map used to calculate 

the index for the same set of 40 catchments. Most catchment’s index values in all three plots are 
scattered above the one to one line. Figure 7(a) reveals a slight positive relationship between raw 
runoff index values and log runoff index values (R² = 0.172). Overall, a logarithmically 
transformed drainage map produces values that are closer to 1 than does an untransformed 
drainage map. On the raw drainage map, cells close to the pour point and along the stream 
channel have a large amount of influence on the index due to their comparatively large values. 
The log transformation results in a more equitable distribution of influence among the cells within 
the catchment, thus pushing index values closer to one and reducing the variation among the 
catchments. Catchments with raw runoff index values that are less than 1 tend to have larger log 
drainage index values. Catchments with raw runoff index values greater than 1 tend to have 
smaller log drainage index values. Transforming the raw runoff map logarithmically results in a 
decreased range of index values compared to values derived from the raw runoff map. 
Knowledge of only raw runoff values allows us to make some generalizations about index values 
calculated with a log runoff map. However, log runoff index values are unique enough that they 
provide additional information about the nature of drainage landscape.  
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Figure 7 (a). Comparison of raw runoff and log runoff spatial index values. 

 
 

Figures 7(b) and 7(c) compare each of the two runoff indexes with the distance index. 
Unlike what we observed in Figure 7(a), we can see no linear relationship exists between the 
runoff indexes and the distance index. This tells us that the distance map and resultant index 
values are telling us something fundamentally independent about the distribution of land type with 
each catchment. The distance index values tend to be larger than those produced with runoff 
maps. This reflects reality. Distance index values are evenly spread around a value of 1 while raw 
runoff values tend to be less than 1. This makes sense because, for legal and practical reasons, 
people do not live in or close to stream channels.  
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Figure 7 (b). Comparison of raw runoff and euclidean distance spatial index values. 

 
 

 
Figure 7 (c). Comparison of log runoff and euclidean distance spatial index values. 
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A scientist interested in using spatial index values in a regression analysis should use at 
least two of the index calculation methods presented here. One regression should use index 
values from a Euclidean distance surface another regression should employ index values from a 
runoff surface: raw, logarithmically transformed, or both. Distance and drainage maps provide 
independent information. Log transformation should dampen the effect of outliers that may exist 
in a raw runoff map.  

 
All three of the variables in regression (g) of Table 2 have a positive relationship 

with −
3NO  measured in surface water. Agriculture is a well-documented source of nitrate, and 

residential land is becoming a new and potent source, due in large part to suburban lawn 
fertilization (Wollheim et al. 2004). It is interesting that the spatial drainage index for agriculture 
was not included in the final stepwise regression. This is probably due to a few characteristics of 
agricultural land. First and foremost, only 7% of the land in the watershed is agriculture and, on 
average, only 5% of each sample catchment is agriculture. Most catchments have very low 
values for agriculture’s spatial drainage index. Thus, the location of agriculture does not indicate 
anything additional about agriculture’s relationship with nitrate, because there is not much 
variation in the independent variable.  

 
Multicollinearity is one of the dangers of regression models that consider proportion of 

more than one land types. The proportions within a sub-catchment must sum to one, and 
therefore they must demonstrate collinearity. Additionally, regressions that use both forest and 
residential land types will result in some collinearity because these two categories dominate the 
Ipswich River watershed. We tested for collinearity and found that it is not severe. The variance 
inflation factors are all very close to 1, indicating that no substantial collinearity exists. 

 

4.2 Next steps 

This study illuminates relationships between land type and nitrate discharge from 
headwater catchments in the Ipswich River. The Ipswich River watershed has been the subject of 
several land type change studies. A next logical step in the progression of research would be to 
integrate the coefficients produced in this study into a forecasting exercise that takes into account 
potential land-type change as it relates to potential changes in nutrient discharge.  

 
The spatial index can be used to gauge distribution of a binary phenomenon across any 

surface, whether it is a runoff surface, a Euclidean distance surface, or some other surface. 
Jordan et al. (1997) found strong indicators that nitrate export is closely linked with groundwater 
flow. This supports the hypothesis that nitrate export is related directly to the amount of 
impervious surfaces in a drainage catchment (Wollheim et al. 2004). This is due to the fact that 
impervious surfaces have two effects: first, impervious surfaces increase runoff, and second, they 
reduce the amount of runoff that “touches” soil where nitrogen processing would take place.  

 
Their two studies suggest that an examination of the spatial distribution of certain land 

types, i.e., residential and agricultural, across a permeability surface might reveal an important 



Journal of Spatial Hydrology 
 

78

relationship. According to Jordan et al. (1997), residential land in highly pervious soils which are 
most susceptible to leaching, will export more nitrate to groundwater, and hence, surface water. 
Almost conversely, Wollheim’s hypothesis suggests that imperviousness will increase nitrate 
export, so perhaps residential land-type concentrated close to impervious surfaces will become a 
strong source. Our spatial index can be used to resolve these conflicting hypotheses by 
increasing the sophistication of empirical analysis.   

 
A very appropriate application of the spatial index in the context of nutrient loading would 

be to design landscapes in which land types that effectively remove nutrients from water are 
placed in high drainage areas to minimize nutrient export. Sharma et al. (2001) performed a study 
in which maps were altered digitally in order to increase water retention. Similarly, scientists may 
be able to inform zoning practices by treating conceptual landscapes and examining those 
landscapes in the context of their distribution across runoff surfaces, such that sustainable 
solutions to nutrient loading problems are envisioned. 

 

5 Conclusions 

We have presented a methodology for calculating an index that measures the spatial 
distribution of a binary characteristic, such as a land type, with respect to any surface. We have 
provided examples of surfaces and distributions that this statistic can calculate. We have 
demonstrated that this index can add a degree of explanatory power in statistical analysis of the 
interaction between land type and non-point-source pollutants when paired with variables 
describing the quantity of the land type being measured. The methods presented in this paper 
can be used by scientists, researchers and planners to easily quantify the spatial distribution of 
features on the landscape and to explore how those distributions affect a variety of landscape 
processes. 
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