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Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive
oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been
developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different
oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions.
Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-
deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic
conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated
under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA
levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results
indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased
respiratory protection.

1. Introduction

The genus Frankia is comprised of nitrogen-fixing actinobac-
teria that are able to establish a mutualistic symbiosis with
a variety of dicotyledonous host plants that results in the
establishment of a root nodule structure [1–6]. The bacteria
nourish their host plant with combined nitrogen and the
plants provide in return carbon and energy. This symbiosis
allows actinorhizal host plants to colonize nutrient-poor
soils. Besides its life style within the host plant, these bacteria
are members of soil community although less information
is known about this life style [7]. Under arid tropic and
subtropic conditions of North Africa, actinorhizal plants are
essentially represented by fast growing and highly tolerant
trees from the family Casuarinaceae [8].

Under atmospheric oxygen conditions, Frankia actively
fixes dinitrogen to ammoniumwithin the root nodules of the

host plants and aerobically in culture [9–15]. The oxygen-
labile nitrogenase enzyme is localized within specialized
thick-walled structures, termed vesicles that are formed in
planta and in vitro [2, 16–18]. Their shape is strain depen-
dent and host-plant-influenced. Vesicles act as specialized
structures for the nitrogen fixation process and are formed
terminally on short side branches of hyphae that have a
septum near their base. The mature vesicle is surrounded
by an envelope that extends down the stalk of the vesicle
past the basal septum, which separates the vesicle from the
hypha. The envelope surrounding the vesicle is composed
of multilaminated lipid layers containing primarily bacterio-
hopanetetrol and its derivatives [19–22]. It is believed that this
lipid envelope acts as an oxygen diffusion barrier to protect
the nitrogenase enzyme from oxygen inactivation [19].

Unlike other actinorhizal plants, Frankia found within
the root nodules of Casuarina and Allocasuarina plants are
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devoid of symbiotic vesicle structures [23, 24]. A positive
correlationwas observed between the differentiation of intra-
cellular hyphae and the lignifications of the host-infected cell
walls [23]. In several actinorhizal nodules, a low oxygen ten-
sion was shown to be consistent with the high concentrations
of hemoglobin [2]. Frankia are known to produce truncated
hemoglobins [25–27]. Besides hemoglobins, Frankia possess
hydrogenases that may act as oxygen-scavenging enzymes
[28]. Sequencing of several Frankia genomes [29–34] has
provided insight on the physiology and opened up new
genomics tools for these microbes. These databases have
been used in transcriptomics [35–37] and proteomics studies
[38–40] on these bacteria. The aim of the present study
was to investigate the expression levels for several selected
genes involved under different oxygen concentration for the
Casuarina compatible Frankia sp. strain CcI3. These genes
were involved in the following functions: nitrogen fixation
and assimilation, hopanoid biosynthesis, hydrogen uptake,
and oxidative stress.

2. Materials and Methods

2.1. Culture Conditions and Experimental Design. Frankia sp.
strain CcI3 [41] was grown and maintained at 28∘C in basal
MP growth medium with 5.0mM propionate and 5.0mM
NH
4
Cl as carbon and nitrogen sources, respectively, as

described previously [42].
In all experimental procedures, Frankia cells were grown

for 7 days in 250mL cylindrical bottles with a working
MP medium volume of 50mL with and without NH

4
Cl for

nitrogen-deficient and nitrogen-replete conditions, respec-
tively. Three sets of oxygen tensions were considered: oxic
(atmospheric condition), hypoxic (reduced partial pressure
of oxygen), and hyperoxic (elevated oxygen levels). Hypoxic
conditions were generated by placing the cultures in Brewer’s
jar that contained reduced partial pressures of oxygen by the
use of gas packets (BBL GasPak BBL CampyPak System).
For this system, water interacts with catalyst in the packet
generating a reduced partial pressure of oxygen within the
chamber. Hyperoxic conditions were generated by continu-
ously air-sparging the cultures via an aquarium pump.

2.2. Growth Assessment and Vesicle Count. For dry weight
determinations, cell cultures were collected on tarred mem-
brane filters (type HA, 0.45 um pore size; Millipore Corp.).
The filters were placed in a Petri dish over desiccant and
dried at 90∘C to constant weight [43]. In parallel, protein
content was measured. Briefly, cell samples were solubilized
by heating for 15min at 90∘C in 1.0NNaOHand total proteins
were measured using BCA method [44].

Vesicle numberswere determined as previously described
[45, 46]. Briefly, cells were sonicated for 30 s with a Braun
model 350 sonifier under power setting of 3 using microtip
probe. This treatment disrupted the mycelia and released
vesicles. The numbers of vesicles were counted by using
a Petroff-Hausser counting chamber with a phase-contrast
microscope at magnification of 400x.

2.3. Determination of Ammonia. Ammonium concentration
was determined in cell-free media usingmodified protocol of
Berthelot’s reagent [47].

2.4. RNA Extraction, RT-PCRs, and Q-PCR. For these exper-
iments, all solutions and materials were DEPC-treated to
prevent RNA degradation. RNA extractions were performed
by the TritonX100method as previously described [48]. RNA
samples were treated with DNase I (New England Biolabs)
according to the manufacturer’s recommendations. RNA
samples were quantified with a Nanodrop 2000c spectropho-
tometer (Thermo Scientific) and stored at −80∘C until use.
The cDNA synthesis was performed using hexamer primers,
400 ng RNA and SuperScript III reverse transcriptase (Invit-
rogen) according to the manufacturer’s recommendations.
The cDNA was quantified by a Nanodrop 2000c spectropho-
tometer, diluted to 10 ng/𝜇L working stocks in DNAse-free,
RNAse-free H

2
O, and stored at −20∘C until use.

Frankia gene expression analyses were performed by
qRT-PCR using specific primers (Table 1) and SYBR Green
PCR Master Mix (Applied Biosystems) as described previ-
ously [49]. Briefly, each 25 𝜇L reaction contained 50 ng tem-
plate cDNA, 300 nM of the forward and reverse primer mix,
and SYBRGreen PCRMasterMix. Parameters for the Agilent
MP3000 were as follows: (1) 95∘C for 15min, (2) 40 cycles of
95∘C for 15 s and 60∘C for 30 s, and (3) thermal disassociation
cycle of 95∘C for 60 s, 55∘C for 30 s, and incremental increases
in temperature to 95∘C for 30 s. Reactions were performed
in triplicates and the comparative threshold-cycle method
was used to quantify gene expression. The results were
standardized with rpsA expression levels. Relative expression
(fold changes) was determined by the Pfafflmethod [50] with
the control as the calibrator. Two biological replicates of the
triplicate samples were averaged.

3. Results

3.1. Growth and Vesicle Production under Different Oxygen
Pressures. Figure 1 shows the effect of oxygen on the growth
yield of Frankia sp. strain CcI3. Under nitrogen-replete
conditions (NH

4
), the biomass of cells grown under hyper-

oxic conditions was greater than both cultures grown under
oxic and hypoxic conditions. Under nitrogen-deficient (N

2
)

conditions, the biomass correlated with the oxygen level with
the hyperoxic conditions generating the greatest biomass.
Furthermore, vesicle production under nitrogen-deficient
(N
2
) conditions positively correlated with oxygen tension.

Cells under hyperoxic (air-sparged) conditions produced 2.6-
and 5.4-fold more vesicles (6.50 ± 0.41 × 106/mg) than oxic
(2.45 ± 0.29 × 106/mg) and hypoxic (1.20 ± 0.36 × 106/mg)
conditions, respectively. Analysis of ammonia metabolism by
Frankia CcI3 indicates that it was correlated with oxygen
tension. With nitrogen-replete conditions, hyperoxic condi-
tions resulted in the highest ammonia consumption, followed
by oxic condition and lastly hypoxic condition (Figure 1(c)).
Under nitrogen-deficient conditions the level of ammo-
nium ions increased under lower oxygen tension. This level
decreased with corresponding increases in oxygen tension.
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Table 1: Primers used in this study.

Locus tag Gene Gene identity Sequence

francci3 4488 nifH Nitrogenase reductase iron-sulfur protein 5󸀠-CGACAACGACATGAAGACC-3󸀠
5󸀠-CTTGCCGATGATGCTCTC-3󸀠

francci3 4487 nifD Nitrogenase molybdenum-iron protein alpha chain 5󸀠-AAGGACATCGTCAACATCAGCCAC-3󸀠
5󸀠-AACTGCATCGCGGCGAAGTTATTC-3󸀠

francci3 4486 nifK Nitrogenase molybdenum-iron protein beta chain 5󸀠-TGACGACGACTCCGGAAACAAACA-3󸀠
5󸀠-TGTGGTAGACCTCGTCCTTGAACA-3󸀠

francci3 4496 hup1 Nickel-dependant hydrogenase, large subunit 5󸀠-AACAAATCTGCGACGTCACGGTCA-3󸀠
5󸀠-ACTCTCGATCCATTCACCGCAGTA-3󸀠

francci3 1076 hup2 Uptake hydrogenase, large subunit 5󸀠-TGGAAGGTCAACTGGCTGGAGAA-3󸀠
5󸀠-ATGTCTAGGCAGTACCGGAGGAAGAA-3󸀠

francci3 1149 hboO Truncated hemoglobin 5󸀠-GGGACGCCTGGCTGAAGA-3󸀠
5󸀠-CCAGAGCTGCCTGTCGAGATC-3󸀠

francci3 2581 hboN Truncated hemoglobin 5󸀠-CACCCCTCTTTGCCAACCG-3󸀠
5󸀠-GGTGGTTTCCGTCGGGAC-3󸀠

francci3 0823 sqhC Squalene hopene cyclase 5󸀠-TGCAATGGCTGCTGGACAA-3󸀠
5󸀠-TGCCGTAGACGTGGTTGAT-3󸀠

francci3 0819 hpnC Squalene synthase 5󸀠-AACTTCCCGGTCTCGCCGTT-3󸀠
5󸀠-AACGCGTTGAAGTGGAAACGAACC-3󸀠

francci3 2949 katA Catalase 5󸀠-ACATGCCGGTGTTCTTCATTCAGG-3󸀠
5󸀠-ACATCATCATGTGGCATCGACTCGG-3󸀠

francci3 2817 sodA Superoxide dismutase 5󸀠-GTGCCAATGACACCCTTGAGAAGA-3󸀠
5󸀠-AGTGGAGAATATGCCCGGAAAGGT-3󸀠

francci3 3012 gltD Glutamate synthase, small subunit 5󸀠-TGCATGCGACGAACAACTTCCC-3󸀠
5󸀠-ATGATGCTGACCTCGATCTGCTTG-3󸀠

francci3 3013 gltB Glutamate synthase, large subunit 5󸀠-CGTGCTGAAGGTGATGTCCAAGAT-3󸀠
5󸀠-AAATAGGCGTCGATCAGTTCCTGG-3󸀠

francci3 3142 glnA Glutamine synthetase, type I 5󸀠-ATGACCCGATCACCAAGGAACAGT-3󸀠
5󸀠-GGGTTGTAGTCATAACGGACATCG-3󸀠

francci3 3143 glnA Glutamine synthetase, type II 5󸀠-AACTTCTCCACCAGGCAGACGAT-3󸀠
5󸀠-AGAACTTGTTCCACGGAGCTGTCT-3󸀠

francci3 4059 glnA Glutamine synthetase, catalytic region 5󸀠-TACAACATCGACTACGCGCTTTCC-3󸀠
5󸀠-ATACCGGAACACGATCTCGAACTG-3󸀠

francci3 1057 rpsA 30S ribosomal protein S1 5󸀠-CGAAGTCCGTTCCGAGTTC-3󸀠
5󸀠-CGCCGAAGTTGACGATGG-3󸀠

Locus tag and gene designationwere determined from the IntegratedMicrobial Genomes System (IMG) at the Joint Genome Institute (https://img.jgi.doe.gov/)
[51].

3.2. Expression of Nitrogen Fixation and Assimilation Genes
under Different Oxygen Pressures. The effect of oxygen on the
expression of several genes involved in nitrogen fixation and
assimilation was measured by detecting changes in mRNA
levels via qRT-PCR (Figure 2). For nitrogen-deficient con-
ditions, the level of structural nitrogenase genes (nifHDK)
mRNA increased >10-fold under hyperoxic and hypoxic
conditions compared to oxic condition (Figure 2(a)). Under
nitrogen-replete conditions, the expression levels for these
genes were very low and there was no change with different
oxygen tensions.

The Frankia genome contains two glutamate synthase
genes (gltB and gltD) encoding the large and small subunits of
the enzyme.These two glutamate synthase geneswere studied
for their expression levels under three oxygen tensions. The
mRNA levels of the gltB gene were reduced except under
hyperoxic and nitrogen-replete conditions (Figure 2(b)). The
gltD mRNA levels increased slightly (1.3–2.5-fold) under the
different nitrogen and oxygen conditions. There were four

glutamine synthetase orthologs found within the Frankia sp.
strain CcI3 genome. We were able to follow the expression
of three of these glnA genes (Figure 2(c)). The level of
francci3 3143 mRNA was controlled by nitrogen. Under all
oxygen conditions, francci3 3143mRNA levels increased 10–
15-fold under nitrogen-deficient (N

2
) conditions. Both high

and low oxygen tensions increased the level of francci3 3143
mRNA. The level of francci3 3142 mRNA was decreased
under nitrogen-deficient (N

2
) conditions and showed 7-fold

increase under hyperoxic under nitrogen-replete conditions.
The levels of francci3 4059mRNA remained constant except
under hyperoxic conditions, in which levels increased 15-
fold. Under hyperoxic conditions, the levels of francci3 4059
mRNA were controlled by nitrogen status and increased
approximately 2-3-fold from nitrogen-replete (NH

4
) condi-

tions.

3.3. Expression of Genes Known to Protect Nitrogenase from
Oxygen and Reactive Oxygen Species. The biosynthesis of
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Figure 1: Biomass yields of Frankia sp. strain CcI3 grown under nitrogen fixation (N
2

) and nitrogen-replete (NH
4

) at hypoxic (L), oxic (N),
and hyperoxic (H) conditions as estimation by (a) dry weight and (b) total protein and determination of (c) ammonium ion concentrations.

hopanoids has been correlated with vesicle development
[19]. The effect of oxygen tension on the expression of the
squalene synthase (hpnC) and squalene/phytoene cyclase
(sqhC) genes was examined (Figure 2(d)). Under nitrogen-
replete conditions (NH

4
), the level ofmRNA for sqhC showed

a 2-fold increase for hyperoxic conditions. A smaller increase
was observed for hpnC mRNA levels. In general, sqhC and
hpnC were expressed constitutively with comparable mRNA
levels for hypoxic and oxic levels. Under nitrogen-deficient
(N
2
) conditions, the mRNA levels of both genes (sqhC and

hpnC) increased 2- and 1.5-fold, respectively.
The Frankia CcI3 genome contains two hydrogenase

operons [30, 52, 53]. We tested the effects of oxygen ten-
sion and nitrogen status of their gene expression levels
(Figure 2(e)). Under nitrogen-replete (NH

4
) conditions, the

level of mRNA for hup2 increased proportionally with the
level of oxygen present, while the level of mRNA for hup1
only increased under hyperoxic conditions.The expression of
hup2 was influenced by the nitrogen status of the cells and by
the oxygen levels. Under both conditions, hup2 mRNA levels
increased, but hup1 expression remained constant.

The effect of oxygen tension and nitrogen status was
investigated on the expression of two truncated hemoglobins
(hboO and hboN). The level of mRNA of hboO and hboN
increased under hyperoxic condition for both nitrogen con-
ditions (Figure 2(f)). Under nitrogen-replete (NH

4
) condi-

tions, mRNA levels for hboO increased proportionally to

the oxygen tension levels. Under hypoxic nitrogen-deficient
conditions, mRNA levels for hboN increased about 1.5-fold.

The effects of oxygen tension and nitrogen status on the
expression levels of two oxygen defense enzymes, catalase
(katA) and superoxide dismutase (sodA), were also tested
(Figure 2(g)). Under hyperoxic conditions, the mRNA levels
of katA increased 6.5- and 8-fold under nitrogen-deficient
(N
2
) andnitrogen-replete (NH

4
) conditions, respectively.The

expression of the sodAgene appeared to be constitutive under
all oxygen tensions and both nitrogen statuses.

4. Discussion

Without a doubt, the vesicle is the most characteristic
morphogenetic structure produced by Frankia [1]. Vesicles
are functionally analogous to cyanobacterial heterocysts
providing unique specialized cells that allow nitrogen fixation
under aerobic condition [54, 55]. In this study, the growth
of Frankia strain CcI3 was evaluated under three oxygen
tensions. The results indicate that growth increased with
elevated oxygen tensions (Figure 1) confirming the aerobic
nature of themicrobe. Although the dry weightmeasurement
increased, the total protein values were reduced under hyper-
oxic nitrogen-deficient (N

2
) conditions. This result would

imply that the cells were producing other metabolic products
under this condition and a similar level of protein compared
to hypoxic nitrogen-deficient (N

2
) condition.Thus, this result



BioMed Research International 5

0

50

100

150

200

250

nifH
nifD

nifK

LN2 LNH4 NN2 NNH4 HN2 HNH4

(a)

0

0.5

1

1.5

2

2.5

3

gltD
gltB

LN2 LNH4 NN2 NNH4 HN2 HNH4

(b)

0
5

10
15
20
25
30
35

francci3 3142
francci3 3143

francci3 4059

LN2 LNH4 NN2 NNH4 HN2 HNH4

(c)

0

1

2

3

4

5

6

sqhC
hpnC

LN2 LNH4 NN2 NNH4 HN2 HNH4

(d)

0

5

10

15

20

25

30

hup2
hup1

LN2 LNH4 NN2 NNH4 HN2 HNH4

(e)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

HboO
HboN

LN2 LNH4 NN2 NNH4 HN2 HNH4

(f)

0
1
2
3
4
5
6
7
8
9

SodA
KatA

LN2 LNH4 NN2 NNH4 HN2 HNH4

(g)

Figure 2: Relative gene expression (fold change) in response to hyperoxic and hypoxic conditions. Frankia cultures were grown under
nitrogen-replete (NH

4

) or nitrogen-deficient (N
2

) conditions. These cultures were exposed to oxic (N), hyperoxic (H), and hypoxic (L)
conditions as described in Section 2. Experimental gene expression was normalized to the rpsA housekeeping gene and compared to the
calibrator (NH

4

oxic conditions). The following genes were analyzed: (a) nifHDK (b) gltB and gltD, (c) glnA genes, (d) hpnC and sqhC, (e)
hup1 and hup2, (f) hboN and hboO, and (g) sodA and katA.

suggests that part of the respiration was uncoupled providing
some oxygen protection. Frankia contains two respiratory
systems and a cyanide-insensitive system was proposed to
help protect nitrogenase from oxygen inactivation [46].With
other aerobic nitrogen-fixing bacteria, increased respiratory
rates in response to elevated oxygen tensions help maintain
low levels of intracellular oxygen protecting nitrogenase from
inactivation [56, 57]. Under nitrogen-deficient (N

2
) condi-

tions, vesicles were produced and correlated with oxygen

tensions. The numbers of vesicles produced per mg dry
weight increased with elevated oxygen levels. These results
confirm those obtained previously [58, 59].

In our study, we investigated the effects of oxygen on
gene expression for a variety of functional genes involved in
nitrogen fixation, nitrogen assimilation, and protection from
oxygen and other reactive oxygen species [60]. The levels
of expression for the structural nitrogenase genes (nifHDK)
indicate a concordant profile with clear induction under
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nitrogen-deficient (N
2
) conditions. Transcriptome studies

on Frankia sp. strain CcI3 under nitrogen-deficient and
nitrogen-replete conditions also show an increase in nifHDK
gene expression [35, 36]. The levels of nifHDK mRNA
showed an increase under hypoxic and hyperoxic conditions
indicating that nitrogenase induction was influenced by
oxygen levels.

The hopanoid envelope has been postulated to be
involved in the protection of nitrogenase from oxygen
inactivation [19]. We found that mRNA levels of squalene
synthase (hpnC) and squalene-hopene cyclase (sqhC) genes
increased in response to oxygen tension under nitrogen-
deficient conditions, but remained constant under nitrogen-
replete conditions (Figure 2(d)). The results correlate with
the increase in vesicle envelope observed under high oxygen
levels [61]. Nalin et al. [62] found only a slightly higher
hopanoid content under nitrogen-deficient conditions sug-
gesting remobilization rather than nascent biosynthesis. Fur-
thermore, the Frankia sp. strain CcI3 transcriptome profiles
under nitrogen-deficient and nitrogen-replete conditions did
not show any significant differences in hopanoid biosynthetic
genes [35, 36]. However, these studies were performed under
one oxygen tension while our study has investigated three
different oxygen tensions.

Analysis of the nitrogen assimilation genes (gltB, gltD,
and glnA) is a bit more complex. The Frankia CcI3 genome
contained several homologues of glnA. The mRNA level of
francci3 3143 correlated the best with nitrogen regulation,
being increased under nitrogen-deficient conditions. Tran-
scriptome studies have shown that francci3 3143 expression
increased significantly under nitrogen-fixing conditions [35,
36], while all of the other homologues remained consistent.
This result would suggest that this gene encoded primary
nitrogen scavenging enzyme. The levels of expression were
also influenced by elevated oxygen tensions during increased
nitrogenase activity.The expression levels of the gltB and gltD
appear to be less influenced by oxygen tension. These effects
seemed in agreement with the ammonia metabolism results
that showed an increase in consumption under hyperoxic
conditions.

Our results on hemoglobin gene expression correlate with
previous results [48] that showed no increase in hboN and
hboO expression in response to nitrogen status increased
under low oxygen tension. However, our results conflict in
response to oxygen. We found that both hboN and hboO
mRNA levels increased under hyperoxic conditions. The use
of the more sensitive qRT-PCR in our study compared to RT-
PCR is the best explanation for these differences.

Frankia possesses two uptake hydrogenase systems [52,
53]. One of them has been correlated with symbiotic growth
and the other to free-living conditions [53]. Our results show
that hup2 gene expression was influenced by nitrogen status
suggesting that it was associated with vesicle production,
while hup1 gene expression was relatively constant. The
levels of hup2 mRNA increased proportionally with oxygen
tensions suggesting potential oxygen protection mechanism.
Anoxic conditions have no effect on hydrogenase gene
expression by Frankia CcI3 but increased by 30% for Frankia

alni ACN14a [60]. We did not test anoxic conditions in our
study.

Increased oxygen tension can lead to elevated oxidative
stress conditions. We investigated the influence of oxygen
tensions on reactive oxidative stress genes. While sodA
expression levels were constitutive, katA gene expression
increased under hyperoxic conditions. In general, our results
confirm those of Steele and Stowers [63], which examined
enzymatic activity levels. They reported an increase in cata-
lase activity in cultures derepressed for nitrogen fixation
compared to ammonium-grown cultures.
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