
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 2010

Volatile organic compounds in the New England
troposphere: Atmospheric chemistry and
measurement techniques
Jesse L. Ambrose
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Ambrose, Jesse L., "Volatile organic compounds in the New England troposphere: Atmospheric chemistry and measurement
techniques" (2010). Doctoral Dissertations. 580.
https://scholars.unh.edu/dissertation/580

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/580?utm_source=scholars.unh.edu%2Fdissertation%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


VOLATILE ORGANIC COMPOUNDS IN THE NEW ENGLAND TROPOSPHERE: 

ATMOSPHERIC CHEMISTRY AND MEASUREMENT TECHNIQUES 

BY 

JESSE L. AMBROSE 

B.S., Chemistry, University of New Hampshire, 2004 

DISSERTATION 

Submitted to the University of New Hampshire 

in Partial Fulfillment of 

the Requirements for the Degree of 

Doctor of Philosophy 

in 

Chemistry 

May, 2010 



UMI Number: 3470087 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 3470087 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



ALL RIGHTS RESERVED 

c2010 

Jesse L. Ambrose 



This dissertation has been examined and approved. 

DisseftatibR-DJfeefor, Baricfey C. Sive, Research 
Associate Professor, Clinjafe Change Research 
Center 

d*JL ^ 2^ 

.«L4~ ' lalbT 
Robert W. Talbot, Director, Climate Change 
Research Center 

R-'cU P 5. 

Richard P. Johnson, Professor, Chemistry 
Depart! 

fr^-A pruj2 
. Miller, Professor, Chemistry Department 

( W » . U r \& _ 1££*\ 
Date 



ACKNOWLEDGMENTS 

Financial support for this work was provided through the Office of Oceanic and 

Atmospheric Research at the National Oceanic and Atmospheric Administration under 

grants #NA04OAR4600154, #NA05OAR4601080 and #NA06OAR4600189. Additional 

support was provided thorough the University of New Hampshire Chemistry Department 

under the Ingram Award and through the UNH College of Engineering and Physical 

Sciences under the John B. and Martha M. W. Zocchi Scholarship and the John H. Smith 

Scholarship. 

I thank my advisors, Dr. Sive and Dr. Mayne, for their generosity, patience and 

enthusiasm. I am honored to have had the opportunity to participate in their research and 

will always be grateful for their mentorship and their friendship. 

I also thank my family, especially my parents, for their support and encouragement of all 

my endeavors. 

iv 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS iv 

LIST OF TABLES ix 

LIST OF FIGURES x 

ABSTRACT xii 

CHAPTER PAGE 

INTRODUCTION 1 

I. NIGHTTIME NITRATE RADICAL CHEMISTRY AT APPLEDORE ISLAND, 
MAINE 3 

1.1. Introduction 3 

1.2. Experimental Methods 6 

1.2.1. Trace Gas Measurements 7 

1.2.2. Analysis Methods 9 

1.3. Results and Discussion 12 

1.3.1. Kinetic Comparison of Gas-Phase Nighttime NO3 Loss Processes.... 12 

1.3.2. Nocturnal Chemistry Case Studies 15 

1.3.2.1. Clean Marine Flow on July 13 and 14 15 

1.3.2.2. Polluted Continental Outflow on July 11 16 

1.3.2.3. Polluted Continental Outflow on July 16 18 

v 



1.3.2.4. Polluted and Biogenic Continental Outflow on July 25...20 

1.3.3. Measured versus Calculated NO3 Time Series Profiles 22 

1.3.4. Heterogeneous Nighttime NO3 Loss: Uptake of N2O5 by 
Aerosols/Ocean Surface 24 

1.3.5. Daytime versus Nighttime NO* Removal 29 

1.4. Summary 31 

II. INTERCOMPARSION OF GC-FID AND PTR-MS TOLUENE 

MEASUREMENTS 34 

II. 1. Introduction 34 

11.2. Methods 37 

11.2.1. Experimental 37 

11.2.2. Calculations 41 

11.3. Results and Discussion 44 

11.3.1. Monoterpene Distributions 44 

11.3.2. GC-FID/PTR-MS Toluene Field Intercomparison 48 

11.3.3. Sources of Interference from Monoterpene Fragmentation 50 

11.3.3.1. Reactions with H30+ 52 

11.3.3.2. Reactions with 02
+ and NO+ 55 

11.3.4. Sources of Interference from Monoterpene Oxidation Products 57 

11.3.4.1. Ozonolysis Products 58 

11.3.4.2. Photooxidation products 59 

11.3.5. Additional Contributions to PTR-MS Signal at mlz = 93 63 

11.3.5.1. Chloroacetone 64 

11.3.5.2. Proton-bound Ethanol Dimer ((EtOH)2 + H)+ 65 

11.4. Summary 65 

vi 



III. DEVELOPMENT OF A GAS CHROMATOGRAPHIC SYSTEM FOR 
MEASUREMENT OF HYDROGEN CYNAIDE IN THE LOWER 
ATMOSPHERE 69 

III.l. Introduction 69 

III .2. Experimental 72 

111.2.1. Measurement Site Location 72 

111.2.2. Configuration of the GC-FTD Instrument 73 

111.2.3. Instrument Development 76 

111.2.3.1. PDHID Experiments 76 

111.2.3.2. FID Experiments 77 

111.2.3.3. Preparation of an Acetonitrile Qualitative Standard 78 

III.3. Results and Discussion 79 

111.3.1. Sample Dehumidification and Enrichment 79 

111.3.2. Results with PDHID and FID 81 

111.3.2.1. Response Comparison between PDHID and FID 81 

111.3.2.2. Response of the PDHID to Permanent Gases 83 

111.3.2.3. Blank Measurement with PDHID 84 

111.3.2.4. Long Term Stability of PDHID Response 86 

111.3.3. Results with FTD 88 

III. 3.3.1. Dependence of Response on Detector Bead Voltage 88 

111.3.3.2. Response Comparison and MDL 89 

111.3.3.3. Carrier Gas Flow Rate 90 

111.3.3.4. Influence of Injection Parameters on HCN 
Chromatographic Analysis 90 

111.3.3.5. Ambient Air Analysis with GC-FTD Instrument 91 

vii 



Ill.3.3.6. Qualitative Identification of Acetonitrile (CH3CN) in 
Ambient Air Samples 92 

III.4. Summary 93 

LIST OF REFERENCES 144 

viii 



LIST OF TABLES 

1. Measurement details for atmospheric observations at AI during the ICARTT 
campaign 96 

2. Rate data applicable to nighttime gas-phase NO3 chemistry and pertaining to the 
chemical variables monitored at AI during the ICARTT campaign 97 

3. Comparison between rates of NO* loss and HNO3 production from NO3 and N2O5 
mechanisms for selected times during the ICARTT campaign 99 

4. Operational and quality parameters for analytical systems operated at THF during 
summer 2004 and from which measurements were used in this work 100 

5. Comparison between monoterpene emission fluxes calculated by Geron et al. [2000] 
for forestland encompassing the THF site and relative monoterpene abundances from 
mixing ratios measured by GC-FID at THF between July 24 and August 15, 2004.101 

6. Measured retention times for C9-C11 hydrocarbons in the THF GC system primary 
working standard that eluted between nonane and undecane on the VF-5ms column 
together with predicted retention times for several additional monoterpenes 102 

7. Quantitative comparison of GC-FID and PTR-MS toluene measurements for different 
monoterpene fragmentation corrections applied to the PTR-MS data 103 

8. Comparison of reported yields of mlz = 93 fragment ions associated with analysis of 
monoterpenes by PTR-MS and SIFT-MS 104 

9. Comparison of PTR-MS operating parameters employed at THF during summer of 
2004 and in selected studies reported in the literature 105 

10. Comparison of reported yields of mlz - 93 fragment ions associated with analysis of 
monoterpene oxidation products by PTR-MS and SIFT-MS 106 

11. Operational protocol of the GC-FTD instrument 107 

12. Sample volumes (at standard temperature and pressure) required to yield HCN 
masses greater than the PDHID, FID and FTDMDL 108 

ix 



LIST OF FIGURES 

1. Time series of selected trace gases measured between noon on July 8 and noon on 
July 28 110 

2. Relative biogenic reactivity calculated for the nighttime hours between 21:00 on July 
8 and 05:00 on July 28 I l l 

3. Absolute reactivity of DMS, monoterpenes and isoprene calculated for the nighttime 
hours between 21:00 on July 8 and 05:00 on July 28 112 

4. HYSPLIT trajectories for selected case study periods 113 

5. Atmospheric composition and chemistry on the night of July 11 114 

6. Atmospheric composition and chemistry on the night of July 16 115 

7. Atmospheric composition and chemistry on the night of July 25 116 

8. Measured versus calculated NO3 mixing ratios 117 

9. Average relative contributions of gas-phase and heterogeneous mechanisms to NO* 
removal for the period July 8-28 118 

10. Linear correlation between elution order (retention time) and boiling point for C9-C11 
compounds in the THF GC system primary working standard that eluted from the 
VF-5ms column between nonane and undecane 119 

11. Portion of a chromatogram from the THF GC system primary working standard... 120 

12. Portion of a chromatogram recorded at THF at 04:23 on August 3 during a period of 
enhanced monoterpene mixing ratios 121 

13. Comparison of trends in the mixing ratios of or-pinene and an unidentified (UnID) 
compound (assumed to be C10) during the period from 12:00 on August 2 to 12:00 on 
August 3 122 

14. Time series of monoterpenes, ./(NO2) and wind speed measured at THF from 22:00 
on July 24 to 06:00 on August 15 123 

15. Time series of toluene measured by GC-FID and PTR-MS during the period between 
22:00 on July 24 to 06:00 on August 15 124 

x 



16. Linear correlation between toluene measurements by GC-FID and PTR-MS 125 

17. Comparison between values of £*>TR-MS and AMOII for merged GC-FID, PTR-MS data 
for the period from 22:00 on July 24 to 06:00 on August 15 126 

18. Schematic of the GC-FTD system 127 

19. Schematic of the instrument configurations employed for development of HCN 
sampling and detection schemes 128 

20. Schematic of the instrument configuration used for preliminary testing of both the 
PDHIDandFTD 129 

21. Water vapor trapping efficiency in the sample dehumidification loop as a function of 
Tl temperature 130 

22. HCN trapping efficiency as a function of sample enrichment loop temperature 131 

23. Chromatograms recorded with the PDHID for blank and standard samples prepared 
with the Cryofocus System 132 

24. Configurations of standard dilution system used for blank response attribution 133 

25. Comparison of measured blank HCN chromatographic peak areas with those 
calculated using an HCN desorption model 134 

26. Observed variation in PDHID response as a function of sample injection number.. 135 

27. Response of the FTD to HCN as a function of bead voltage 136 

28. Carrier gas flow rate measurements 137 

29. Comparison between standard chromatograms recorded over a range of injection 
temperatures 138 

30. Chromatographic peak areas measured for standard samples analyzed during a period 
of continuous operation between April 2 and 9, 2009 139 

31. De-trended measurements from Figure 30 140 

32. Calibration curve constructed from de-trended standard and blank measurements 
made between April 2 and 9, 2009 141 

33. Time series of ambient HCN VMR measured between April 2 and 9, 2009 142 

34. Qualitative identification of CH3CN in ambient air 143 

xi 



ABASTRACT 

VOLATILE ORGANIC COMPOUNDS IN THE NEW ENGLAND TROPOSPHERE: 

ATMOSPHERIC CHEMISTRY AND MEASUREMENT TECHNIQUES 

by 

Jesse L. Ambrose 

University of New Hampshire, May, 2010 

Atmospheric measurements made at Appledore Island, Maine were used to 

investigate nighttime nitrate radical (NO3) chemistry and its significance for the nitrogen 

oxides (NO* = NO + NO2) budget in the Gulf of Maine region during the summer of 

2004 International Consortium for Atmospheric Research on Transport and 

Transformation field campaign. Removal of NO* was strongly dependent on reactions of 

NO3 with biogenic volatile organic compounds and the fate of dinitrogen pentoxide 

(N2O5). For three case studies, temporal profiles of NO3 were calculated from measured 

parameters. Comparisons between measured and calculated NO3 mixing ratios 

highlighted significant uncertainties in the kinetic parameters governing gas-phase and 

heterogeneous N2O5 hydrolysis. Removal of NO* was estimated to be ~11 ppbv day-1, 

with nighttime chemical pathways contributing ~50%. 

Atmospheric measurements made at the AIRMAP atmospheric monitoring station 

Thompson Farm (THF) during summer, 2004 were used to test the specificity of a proton 

transfer reaction-mass spectrometer (PTR-MS) for atmospheric toluene measurements 

under conditions often dominated by biogenic emissions. Quantitative estimates were 

xii 



made of potential interferences in the PTR-MS toluene measurements related to sampling 

and analysis of monoterpenes, including fragmentation of the monoterpenes and some of 

their primary carbonyl oxidation products in the PTR-MS drift tube. The analysis 

supported only minor interferences from the investigated fragmentation sources, 

suggesting that toluene can be reliably quantified by PTR-MS with the operating 

parameters used, under the ambient compositions probed. This work extends the range of 

field conditions under which PTR-MS validation studies have been conducted. 

A GC instrument was developed for measurement of hydrogen cyanide (HCN) in 

the lower atmosphere. Its major features include a cold temperature analyte enrichment 

system, a robust porous polymer stationary phase capillary column and a flame 

thermionic detector. The instrument was deployed for a 1 week period in April, 2009 at 

THF. Measured HCN mixing ratios ranged between 0.07(3) and 0.33(3) ppbv, with 

significant temporal variability, and appeared to agree well with previous tropospheric 

measurements. Long term, in-situ atmospheric measurement of HCN is necessary to 

characterize the regional HCN budget and reduce uncertainty in the global budget. Few 

such measurements have been demonstrated at present. 
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INTRODUCTION 

The troposphere extends from Earth's surface to the tropopause, the boundary at 

~12 km altitude (at mid-latitudes) between the troposphere and stratosphere [Brasseur 

and Schimel, 1999]. Its compositional complexity and direct interaction with Earth's 

surface make the troposphere a particularly challenging and exciting area for atmospheric 

investigation. The lower troposphere, consisting of the first few km above the surface 

and often referred to as the planetary boundary layer (PBL) [Brasseur et ah, 1999], is 

directly impacted by most of the natural and anthropogenic sources that emit trace gases 

and aerosols to the atmosphere. It is also the region where issues of air quality, including 

photochemical smog, ozone and fine particulate matter pollution are most relevant. 

Beyond their effects on human health many of the trace species emitted to the atmosphere 

at Earth's surface also influence regional and global climate [IPCC, 2007]. 

Our knowledge of the composition and chemistry of the troposphere is far from 

complete [Goldstein and Galbally, 2007; Heald et ah, 2008]. Continued effort is 

necessary to accurately describe the present composition of the troposphere, the temporal 

evolution of tropospheric composition and the corresponding climate responses and 

feedbacks. Such work is critically needed to address both current and possible future 

deleterious anthropogenic modifications of air quality and climate. Two important 

current directions in atmospheric research, relevant to the composition and chemistry of 

the troposphere, include (1) describing the budgets of the primary oxidants, the hydroxyl 

radical (OH), ozone (O3) and the nitrate radical (NO3) [Brown et al, 2006a,b; Rohrer and 
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Berresheim, 2006], and (2) developing measurement techniques for the multitude of trace 

atmospheric constituents [Apel et ah, 2003a; Sive et al, 2005; Sullivan and Prather, 

2005; de Gouw and Warneke, 2007]. 

The present work primarily concerns the abundances, chemistry and accurate 

quantitative measurement of selected volatile organic compounds in the PBL at the 

University of New Hampshire's AIRMAP atmospheric monitoring stations, Thompson 

Farm (THF) and Appledore Island (AI). Three separate projects were carried out and are 

described in the following chapters. For the first project (Chapter I) an extensive set of 

atmospheric observations made during the summer of 2004 International Consortium for 

Atmospheric Research on Transport and Transformation field campaign was used to 

describe nighttime NO3 chemistry at AI. For the second (Chapter II) atmospheric 

observations at THF were used to quantify potential interferences in measurement of 

toluene by proton transfer reaction-mass spectrometry related to sampling of biogenic 

monoterpene compounds. Finally, Chapter III describes the development of a gas-

chromatographic instrument for measurement of hydrogen cyanide. 
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CHAPTER I. 

NIGHTTIME NITRATE RADICAL CHEMISTRY 

AT APPLEDORE ISLAND, MAINE 

1.1. Introduction 

The hydroxyl radical (OH), nitrate radical (NO3) and ozone molecule (O3) are the 

most important gas phase oxidants of volatile organic compounds (VOCs) and nitrogen 

oxides (NO* = NO + NO2) in the troposphere. Both OH and O3 have primary 

photochemical sources, and OH is the most important daytime oxidant. NO3 is produced 

exclusively by the reaction of NO2 with O3, 

N 0 2 + 0 3 - » N 0 3 + 0 2 (Rl) 

and is highly photo-labile with limited oxidative capacity during the daytime due to rapid 

photolysis via 

N0 3 + hv -> NO + 0 2 (-10%) (R2a) 

N0 3 + h v -> N0 2 + O (-90%) (R2b) 

and reaction with NO, 

N 0 3 + N O - > 2 N 0 2 (R3) 

[Atkinson, 2000; Geyer et al, 2001; Geyer and Piatt, 2002; Brown et al, 2003a]. At 

night, the production rate of NO3 far exceeds that of OH, and NO3 is generally several 

orders of magnitude more reactive toward VOCs and NO* than O3 [e.g., Atkinson, 2000]. 
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During the nighttime, NO3 is directly removed from the atmosphere by reactions 

with VOCs and NO. For saturated VOCs, dimethylsulfide (DMS), the oxygenated VOCs 

(OVOCs), and aromatics, N03-initiated degradation proceeds mostly via hydrogen-atom 

abstraction to generate nitric acid (HNO3) and peroxy radicals. For unsaturated VOCs 

including isoprene, the alkenes and monoterpenes, reaction with NO3 proceeds mostly via 

initial NO3 addition at unsaturated sites with the initial products being nitrooxy peroxy 

radicals. Biogenic VOCs, such as isoprene, monoterpenes and DMS [Allan et al, 2000; 

Geyer et al, 2001; Warneke et al, 2004; Aldener et al, 2006] are particularly important 

reactants for NO3. Because NO is rapidly oxidized to NO2 by reaction with O3 after dark 

[Allan et al, 2000], it is generally an important reactant for NO3 only in the proximity of 

sources [Piatt and Janssen, 1995; Brown et al, 2003a; Stutz et al, 2004]. Also important 

to nighttime NO3 chemistry is the reversible reaction of NO3 with NO2 to generate 

dinitrogen pentoxide (N2O5), 

N03 + N02 + M —**-> N205 + M (R4a) 

N205 + M —±-> N02 + N03 + M (R4b) 

where kf and kt are the rate coefficients for reactions (R4a) and (R4b), respectively. The 

NO3-NO2-N2O5 system equilibrates rapidly after dark [Atkinson, 2000; Geyer et al, 

2001; Brown et al, 2003b]. The removal of N2O5 is generally expected to be governed 

by heterogeneous chemistry (i.e., reaction of N2O5 on or within aerosol particles), 

N A + H A ^ - • 2HN03 (R5) 

and likely depends strongly on aerosol composition [e.g., Folkers, et al, 2003; Hallquist 

et al, 2003; Thornton et al, 2003; Thornton and Abbatt, 2005; Brown et al, 2006a]. 
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Gas-phase reactions of N2O5 with water vapor have also been demonstrated [Wahner et 

al, 1998], 

N205 + H20 -» 2HN03 (R6a) 

N 2 0 5 + 2 H 2 0 - > 2 H N 0 3 + H 2 0 (R6b) 

although their overall importance in the chemistry of the atmosphere remains a topic of 

considerable uncertainty [Heintz et al, 1996; Martinez et al., 2000; Atkinson et al, 2004; 

Stutz et al, 2004; Aldener et al, 2006; Brown et al, 2006a]. 

The reactivity of NO3 can influence nighttime and early morning abundances of 

VOCs and NO*, and thus photochemical production of O3. How efficiently NO3 

mediates the removal of VOCs and NO* from the atmosphere depends strongly on the 

abundance of NO* [Piatt and Janssen, 1995] and the sinks for N2O5 [Brown et al, 2003a; 

Warneke et al, 2004; Brown et al, 2006b]. Accordingly, nighttime NO3 chemistry is 

significantly different in urban versus rural and continental versus marine environments, 

and varies considerably with season of the year [Piatt and Janssen, 1995; Heintz et al, 

1996; Geyer and Piatt, 2002; Vrekoussis et al, 2007]. 

The New England (NE) coastal marine boundary layer (MBL) is a unique 

environment for studying nighttime NO3 chemistry. It is a corridor for mixing of air 

masses of both marine and continental origin, and consequently ambient conditions vary 

from those characteristic of the remote Atlantic to being dominated by strong continental 

biogenic and anthropogenic sources. Measurements of NO3 in this region were 

previously limited to the 2002 New England Air Quality Study [Brown et al., 2004; 

Warneke et al, 2004; Aldener et al, 2006], which demonstrated that during the summer 

months nighttime NO3 chemistry competes with daytime OH chemistry in controlling the 
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NO* budget [Brown et al, 2004] and isoprene oxidation [Warneke et al, 2004]. The 

nighttime abundances of NO3 and monoterpenes were also closely coupled [Warneke et 

al, 2004; Aldener et al, 2006]. Hydrolysis of N2O5 and reactions of NO3 with VOCs 

were shown to contribute roughly equally to nighttime NO3 removal [Aldener et al, 

2006]. 

In this study we utilize measurements of a suite of trace gasses, including NO2, 

NO3, O3, and VOCs, and relevant meteorological parameters within the coastal Gulf of 

Maine MBL at the University of New Hampshire (UNH) AIRMAP Observing Station on 

Appledore Island (Al) (http://www.airmap.unh.edu) during the 2004 International 

Consortium for Atmospheric Research on Transport and Transformation (ICARTT). 

(See Fehsenfeld et al [2006] for an overview of the ICARTT campaign.) Our goals were 

to quantify the gas-phase chemistry that governed the observed nocturnal behavior of 

NO3 and to estimate the contribution of heterogeneous N2O5 chemistry to NO3 and NO* 

removal. 

1.2. Experimental Methods 

Routine measurements of CO, NO, and 0 3 at Al, ME (42° 59' 13"N, 70° 36' 

55"W) have been made seasonally (May to October) from the top story (~40 m asl) of a 

World War II-era surveillance tower since 2002 as part of the UNH AIRMAP Observing 

Network. The tower was equipped for measurements of an extensive suite of chemical 

parameters for the ICARTT campaign. The subset of measurements incorporated into 

this analysis, together with the experimental details of the instrumentation deployed 
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during ICARTT, is summarized in Table 1. Additionally, meteorological variables were 

monitored at the National Data Buoy Center Coastal-Marine Automated Network station 

(IOSN3) on White Island (42° 58' 00"N, 70° 37* 24"W, 15 m asl) [National Data Buoy 

Center, 2004] located 2.3 km southeast of AI. Backward air mass trajectories were 

simulated at Plymouth State University using the NOAA HYSPLIT model, initiated from 

AI and run for 24 hrs (http://pscwx.plymouth.edu/ICARTT/archive.html). The 

trajectories were used to provide qualitative descriptions of the mesoscale dynamics 

accompanying the trace gas observations. 

1.2.1. Trace Gas Measurements 

Air samples were collected hourly between July 2 and August 13, 2004 for C2-

C10 non-methane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates, 

selected OVOCs, CO2, and CH4. During the sampling period a single head metal bellows 

pump (MB-302MOD, Senior Flexonics, Sharon, MA) continuously drew ambient air 

from -40 m asl through a ~20 m * 6.35 mm I.D. stainless steel inlet line. Samples were 

collected in evacuated (10-2 mbar) 2 1 electropolished stainless steel canisters and 

pressurized to 3.4 bar. Filled canisters were returned to the UNH Climate Change 

Research Center every 4 days and their contents were analyzed by gas chromatography 

using flame ionization and electron capture detection in conjunction with quadrupole 

mass spectrometry. Detailed discussions of the UNH canister sampling and analysis 

protocols are provided by Sive et al. [2005] and Zhou et al. [2005]. 

7 
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In addition to chromatographic analysis, Proton Transfer Reaction-Mass 

Spectrometry (PTR-MS) was used to provide high frequency measurements of several 

groups of isomeric NMHCs, certain individual OVOCs, DMS, and acetonitrile from July 

1 to August 12 (Table 1). The PTR-MS sampled air that was continuously drawn through 

a 30.5 m x 9.525 mm I.D. PFA Teflon® tube from the same height as the canister pump 

inlet. The flow rate through the sample line was ~75 1 min-1, resulting in a ~2 s residence 

time. A sub-stream of fast flowing air off the main sample line was sent directly to the 

PTR-MS. The PTR-MS was operated with a drift tube pressure of 2 mbar and a drift 

voltage of 600 V while continuously stepping through a series of 30 masses. Of the 30 

masses monitored, 6 masses were used for diagnostic purposes while the other 24 masses 

corresponded to the VOCs of interest. The dwell time for each of the 24 masses was 20 

s, yielding a total measurement cycle of ~10 min. The system was zeroed every 2.5 hrs 

for 4 cycles by diverting the flow of ambient air through a heated catalytic converter 

(0.5% Pd on alumina at 450° C) to oxidize the VOCs and determine system background 

signals. 

Calibrations for the PTR-MS system were conducted using three different high-

pressure cylinders containing synthetic blends of selected NMHCs and OVOCs at the 

part per billion by volume (ppbv) level (Apel-Reimer Environmental, Inc.). Each of the 

cylinders used in the calibrations had an absolute accuracy of <±5% for all gases. Using 

methods similar to those described by Apel et al. [1998], standards were diluted to 

atmospheric mixing ratios (ppbv to pptv levels) with catalytic converter prepared zero air 

adjusted to maintain the humidity of the sampled air. Calibrations were conducted 

periodically to monitor PTR-MS performance and quantify the mixing ratios of target 
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gases. Additionally, mixing ratios for each gas were calculated by using the normalized 

counts per second which were obtained by subtracting out the non-zero background 

signal for each compound. 

Long-Path (LP) Differential Optical Absorption Spectroscopy (DOAS) was used 

to measure a suite of inorganic gases, including NO2 and NO3, and formaldehyde [Alicke 

et al, 2002]. The retroreflector array was installed (-15 m asl) on the White Island 

lighthouse, 2.3 km from AL Spectra were recorded from the tower's third floor (~40 m 

asl) over a 4.6 km path length [Pikelnaya et al, 2007]. The DOAS system was operated 

from July 8 to August 11 although spectra were often not obtainable during periods of 

persistent fog and/or precipitation. 

1.2.2. Analysis Methods 

In this paper we use an incremental approach to determine the respective 

importance of gas-phase and heterogeneous mechanisms in nighttime NO3 chemistry at 

AL This section describes our treatment of gas-phase NO3 chemistry. The potential 

importance of heterogeneous chemistry is discussed separately in Section 1.3.4. Table 2 

lists the measured NO3 reactants along with the kinetic data for their corresponding 

reactions. Kinetic data for additional reactions considered in this study are also given in 

Table 2. The pseudo first-order loss rate coefficient (hereinafter referred to as the loss 

efficiency) for removal of NO3 via its reaction with trace gas i, k\ (s_1), is given by the 

product of the reaction rate coefficient, £(NO3+;> and the concentration of i: 
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k\ = fik\ (2) 

(=i 

where k\ (s_1) is the total loss efficiency for the removal of NO3 by all N reactive gases. 

(The term k\ will also be described as the reactivity of i.) Because N2O5 was not 

measured, its contribution to NO3 removal was estimated by assuming equilibrium with 

NO2 and NO3 during the nighttime hours: 

W = J N A L = * L (3) 
eq [N02][N03] kr

 K 

The errors incurred by this approximation are expected to be minimal under most 

conditions observed at AI. For instance, for average conditions encountered at AI (see 

below) with [O3] ~ 40 ppbv, relative humidity (RH) - 90%, loss efficiencies for NO3 and 

N2O5 of -7 x 10~3 and -5 x 10~4 s"1, respectively, and the chemistry represented as 

described by Brown et al [2003b; equations (4) and (5)], simple box model calculations 

demonstrated that ambient N2O5 would have been 95% of its equilibrium value within 

~15 min of an instantaneous sunset, with starting concentrations of NO3 and N2O5 equal 

to zero. Furthermore, recent simultaneous field measurements of O3, NO2, NO3, and 

N2O5 showed good agreement between measured N2O5 mixing ratios and those 

calculated assuming equilibrium among the nitrogen oxides [Brown et al, 2003a]. In our 

analysis, the uncertainty in kt (average value of-20%) made the dominant contribution to 

the uncertainty in Keq [Atkinson et al, 2004]; together the uncertainties in the 

measurements of NO2 (-20%) and NO3 (-40%) made a greater contribution to the overall 

uncertainty (-60%) in the calculated N2O5 mixing ratios. The NO3 loss efficiency with 

respect to the reactions of N2O5 with water vapor, A^ocg) + N2O5), was determined as 

^ ,(H20(g)+N205) - indirect = (*6a + *6b " [ H 2 0 ] ) - K^ • [ N 0 2 ] [ H 2 0 ] (4 ) 
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where the rate coefficients k$a and k®> correspond with reactions (R6a) and (R6b), 

respectively, and [H2O] is the atmospheric water vapor concentration. The NO3 loss rate 

with respect to sink (i.e., loss pathway) j , L/NO3), is the product of the loss efficiency for 

sinky and the NO3 concentration; the total loss rate via gas-phase (homogeneous) sinks, 

£hom(N03), is given by 

W N O 3 ) = f > y ( N 0 3 ) =(A:,
T+^indirect).[N03] = £'hom-[N03] (5) 

7=1 

where the summation is over all K gas-phase sinks. The total rate of gas-phase nighttime 

NO* removal is given by 

£(NOJmght = i , (N03) + 2 • Zindirect(N03) (6) 

where the factor of 2 appears in front of the ^Os-mediated NO3 loss rate because N2O5 

contains two equivalents of NO*. Daytime NO* removal results primarily from the 

reaction of NO2 with OH, 

N0 2 + OH + M -> HN03 (g) + M (R7) 

with a rate given by 

Z(NOJday = V02+OH) -[N02][OH] (7) 

[Brown et ah, 2004]. During the ICARTT campaign, OH concentrations were calculated 

following the parameterization of Ehhalt and Rohrer [2000] as discussed by Keene et al. 

[2007]. The NO3 production rate, P(N03), was calculated from the measured mixing 

ratios of NO2 and O3 and the corresponding rate coefficient (Table 2): 

P(N03) = ^ (N02+03)(r)-[N02][03] (8) 

The total rate of the NO3 concentration change, d\NOz\ldt, can be approximated as 
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f [ ^ l = P(N0,)-* ' t a n-[N03] (9) 

at 

If the terms P(NC>3) and ĥom in equation (9) are constant, the concentration of NO3 at 

any arbitrary time t, [NC^], is given by: 

[ N O j = P(NQ3) - [(P(NQ3) - £'hom-[NO3]0)- exp(- k\om-t)] ( 1 Q ) 

* hom 

where [N03]o is the initial NO3 concentration. Since these terms do in fact vary, the time 

dependence of [NCb]̂  was obtained by propagating equation (10) for short intervals, 

updating the values of P(NO{) and A:'hom at every time step. For this investigation, 

equation (10) was used to calculate nocturnal NO3 mixing ratio profiles with the initial 

condition [NC>3]o = 21:00 = 0. For clarity in presentation of our results, we utilized U.S. east 

coast local time (Eastern Daylight Time), which is UT - 4 hours. 

1.3. Results and Discussion 

1.3.1. Kinetic Comparison of Gas-Phase Nighttime NOj Loss Processes 

Time series of NO3, its precursors NO2 and O3, biogenic VOCs, and selected 

anthropogenic tracer species are presented in Figure 1 for July 8-28, 2004, where the 

thickened lines correspond to measurements during the nighttime hours (21:00-05:00). 

Highly variable conditions were experienced at AI, as the site was frequently impacted by 

continental outflow comprised of both anthropogenic and biogenic emissions [Chen et 

al, 2007]. The mixing ratios of NO2, NO3, isoprene, DMS, and the monoterpenes varied 

over wide ranges from below their limit of detection (LOD) to 19.6, 0.073, 0.85, 0.33, 
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and 0.62 ppbv, respectively. The average NO3 mixing ratio was ~10 pptv (see below), 

which appears to agree well with the observations of Warneke et al. [2004] in this region 

during July and August, 2002. By comparison, the average summertime NO3 mixing 

ratio on the island of Crete in the East Mediterranean Sea during the years 2001-2003 

was ~6 pptv [Vrekoussis et al, 2007]. Allan et al. [2000] measured NO3 mixing ratios up 

to 40 and 20 pptv in the northeast Atlantic at Mace Head, Ireland during July and August, 

1996 and at Tenerife Island off the coast of northwestern Africa during June and July, 

1997, respectively. Average NO3 mixing ratios during several nights in June, 1995 at a 

coastal site in north Norfolk, England [Allan et al, 1999] ranged between ~4 and 25 pptv. 

Average NO3 mixing ratios in summer 1993 at a rural site on Rugen Island in the Baltic 

Sea [Heintz et al, 1996] ranged between 6 and 10 pptv. During several nights in August 

and September, 2000, at a suburban continental site outside the city center of Houston, 

TX, Stutz et al. [2004] observed NO3 mixing ratios typically <10 pptv with a maximum 

of ~60 pptv. Geyer et al [2001] observed similar values during July and August, 1998 at 

a suburban site near Berlin, Germany. During July and August, 1990 at a suburban site 

in the San Joaquin Valley, CA Smith et al [1995] observed average and maximum NO3 

mixing ratios of ~2 and 80 pptv respectively. 

The time series shown in Figure 2 presents the ratio of the total reactivity of 

biogenic compounds, b̂iogenics, to the total reactivity of all VOCs, &Vocs- The average 

ratio during the time period from July 8-28 was 0.91 ±0.14, emphasizing the dominance 

of biogenic VOC reactivity. The alkenes appeared to be the next most important class of 

VOCs for nighttime NO3 removal, but on average they accounted for <10% of the VOC 
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reactivity during the night. The OVOCs, aromatics and alkanes each accounted for <1% 

of the VOC reactivity during the night. 

The relative contribution of the individual biogenic VOCs to the overall NO3 loss 

rate was evaluated, including '̂monoterpenes, £'DMS and £'iSoprene (Figure 3). Of the 

biogenically derived compounds measured at AI, DMS appeared to be the dominant NO3 

reactant. Average values of £7&'biogenics, where i = DMS, isoprene and monoterpenes, 

were 0.56 ± 0.36, 0.18 ± 0.21 and 0.26 ± 0.30 respectively. When they were above the 

LOD, monoterpenes generally accounted for a large fraction of the NO3 nightly loss, but 

due to their continental origin they appeared at AI only during time periods influenced by 

strong offshore flow. This occurred -30% of the time during the ICARTT study period 

[Chen et at., 2007]. 

Assuming equilibrium conditions for the NO2-NO3-N2O5 system, the NO3 and 

N2O5 mixing ratios should be nearly equal when NO2 mixing ratios are several ppbv for 

the average conditions encountered at AI (7 = 290 ± 2 K, NO3 = 0.011 ± 0.013 ppbv, and 

NO2 = 4.0 ± 4.2 ppbv). Our calculations suggest that removal of NO3 via gas-phase 

reactions of N2O5 was frequently comparable in magnitude to NO3 removal with VOCs, 

indicating £'vocs ~ ^direct- The average values of £'indirect/£'hom and k'vocJk\om were 0.42 

± 0.26 and 0.58 ± 0.27 respectively, indicating that these two pathways were, in fact, 

comparable sinks forN03. 

Whereas the reactions of NO3 with VOCs remove NO3 and NO* at the same rate, 

hydrolysis of N2O5 is two times more efficient than N03-related mechanisms for NO* 

removal because two equivalents of NO* are associated with N2O5. The average rate of 

NO* loss via reactions of N2O5 with H20(g) was estimated to be 0.36 ± 0.41 ppbv hr_1 
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compared to a NO* loss rate of 0.12 ± 0.11 ppbv hr 1 through reactions of NO3 with 

VOCs. 

1.3.2. Nocturnal Chemistry Case Studies 

The following discussion focuses on trace gas measurements from several nights 

during July 8-28, 2004. Backward air mass trajectories were used for qualitative source 

region identification, while trace gas measurements and relevant gas-phase kinetics were 

used to explain important features of nighttime NO3 chemistry. 

The selected case studies illustrate the role of nighttime NO3 chemistry over a 

range of conditions at AI, including periods of Atlantic aged marine flow (July 13 and 

14), polluted continental outflow (July 11 and 16), and polluted continental/biogenic 

outflow (July 25). For each case study we examined the relative levels of pollutants and 

estimated the transport pathway, calculated the mixing ratio of N2O5, and subsequently 

assessed the NCb/NO* loss rates due to reaction with marine and terrestrial biogenic 

VOCs. 

1.3.2.1. Clean Marine Flow on July 13 and 14. 

The lowest trace gas levels during the nighttime hours of the ICARTT campaign 

were measured on July 13 and 14. Backward trajectories for these two nights (Figures 4a 

and 4b) indicate that prior to their arrival at AI, the air masses resided over the Atlantic 

Ocean for >24 hr [Keene et ah, 2007]. Overall, the trace gas mixing ratios were 
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characteristic of relatively clean conditions, exhibiting no recent anthropogenic 

influences. For example, average mixing ratios of toluene, ethyne and o-xylene on the 

night of July 13 were 0.008 ± 0.002, 0.288 ± 0.051 and 0.015 ± 0.002 ppbv respectively 

and on the night of July 14 were 0.009 ± 0.003, 0.105 ± 0.011 and 0.015 ± 0.003 ppbv. 

By comparison, for the nighttime hours (21:00-05:00) between July 8 and 28, the 

average mixing ratios of these three gases were 0.157 ± 0.151, 0.360 ± 0.231 and 0.031 ± 

0.018 ppbv. 

During both nights NO2 mixing ratios were sub-ppbv and NO3 was below its 

LOD of 3.4 pptv. The relatively low abundances of NO3 presumably resulted from 

correspondingly low levels of NO* coupled with high levels of DMS. Mixing ratios of 

DMS were elevated to >0.20 ppbv, while isoprene remained <0.025 ppbv and the 

monoterpenes were below their LODs (Figure 1). Throughout both nights, DMS mixing 

ratios exhibited increasing trends while oxidant concentrations remained low. The 

average values of £Ws/£Ws were 0.970 ± 0.004 and 0.948 ±0.014 on the two nights 

respectively, indicating that reaction of NO3 with DMS was the dominant gas-phase 

mechanism for removal of NO3. 

1.3.2.2. Polluted Continental Outflow on July 11. 

Trace gas measurements and backward trajectories on July 11 (Figure 4c) suggest 

that AI was impacted by polluted continental air masses characterized by average mixing 

ratios of toluene, ethyne and o-xylene of 0.39 ± 0.13, 0.69 ± 0.21 and 0.057 ± 0.012 ppbv 

respectively (Figure 5a). These levels were 2 to 5-fold higher compared to the nights of 
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July 13 and 14. In addition, the average mixing ratios of NO2 and NO3 were elevated by 

more than an order of magnitude to 12 ± 6 ppbv and 7 ± 3 pptv respectively. Backward 

trajectories indicate that during daytime on July 11 the air mass descended to the 

southeast of AI enroute from over northeastern Maine and then circled back to AI from 

the south (Figure 4c). The air mass appeared to traverse the Boston metropolitan area at 

approximately 20:00 and was subsequently transported to AI in <6 hours. The mixing 

ratios for most of the anthropogenic tracers increased throughout the night, corresponding 

to continuous continental outflow of urban pollutants which seemingly fumigated the 

MBL surrounding AI. 

The calculated reactivities of biogenic VOCs closely tracked the measured mixing 

ratios of NO3 around the midnight hours (Figures 5b and 5c). Between 23:00 and 01:00, 

NO3 mixing ratios increased by about a factor of six while biogenic reactivity decreased 

~8-fold. The loss rate of isoprene with NO3 was >20 times faster than with O3 during this 

time period, indicating that the observed removal of isoprene most likely resulted from 

reaction with NO3. On this night it appears that isoprene was the most important NO3 

reactant, and the attendant reduction in biogenic reactivity was mostly caused by its 

removal from 0.53 ppbv at 23:00 to 0.06 ppbv at 01:00. 

The contribution to ĥom from the reactions of N2O5 increased significantly from 

sunset to sunrise. As illustrated in Figure 5c, this trend was driven mostly by the increase 

in NO2 mixing ratios, which shifted the nitrogen oxides equilibrium toward N2O5. The 

reaction of N2O5 with H.20(g) generally becomes more important with increasing relative 

humidity or decreasing temperature; however, both of these variables were relatively 

constant in this case. After midnight, £"hom was apparently dominated by reactions of 
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N2O5, such that during the remainder of the evening NO3 chemistry should have been 

primarily generating HNO3. At 01:00, NO2 mixing ratios were 11.0 ppbv resulting in a 

gas-phase HNO3 production rate of 0.54 ± 0.31 ppbv hr_1. By 05:00 when NO2 had 

increased to 18.4 ppbv, the rate of gas-phase HNO3 production was increased to 1.1 ±0.6 

ppbv hr_1. The corresponding rates of gas-phase NO* loss were 0.58 ± 0.31 and 1.2 ± 0.6 

ppbv hr_1 respectively. The gas-phase rates of HNO3 production and NO* loss at 01:00 

and 05:00 are compared with the corresponding rates from heterogeneous N2O5 

hydrolysis in Table 3. Despite increasing NO2 mixing ratios, the NO3 production rate 

remained roughly constant at 0.51 ± 0.12 ppbv hr_1, resulting from the subsequent 

decrease in O3 mixing ratios. Thus, it appears that the slight decreasing trend in the NO3 

mixing ratios after 01:00 resulted primarily from the increasing trend in the N2O5 loss 

rate. 

1.3.2.3. Polluted Continental Outflow on July 16. 

Polluted continental air masses characterized by average mixing ratios of toluene, 

ethyne and o-xylene of 0.36 ± 0.09, 0.67 ±0.19 and 0.040 ± 0.009 ppbv respectively 

impacted AI on July 16. For most of this night these anthropogenic marker species had 

decreasing trends in their mixing ratios (Figure 6a), suggesting a reduced influence of 

pollution sources at AI after dark. The 02:00 backward trajectory (Figure 4d) showed 

that the air mass originated over central New York State during the night of July 15 and 

was lofted to ~1 km altitude over northern Massachusetts during the day on July 16. By 
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sunset, the air mass appeared to be traveling several hundred meters above ground level 

and may have had minimal contact with the surface layer upwind of AI during the night. 

Opposite trends in the biogenic reactivity and NO3 concentrations were observed 

at both the beginning and end of this night (Figures 6b and 6c). Between 21:00 and 

22:00, the biogenic reactivity decreased from 6 ± 3 x 10~3 to 1.5 ± 0.7 * 10~3 s"1 while 

NO3 mixing ratios increased from 4 to 21 pptv. These trends corresponded with 

decreases in isoprene and DMS mixing ratios from 0.280 to 0.062 ppbv and 0.044 to 

0.019 ppbv, respectively. From 03:00 to 04:00 the NO3 mixing ratio decreased from 19 

to 4 pptv as the biogenic reactivity increased from 2.3 ± 0.6 x 10~3 to 8.1 ± 1.9 * 10~3 s_1. 

Increases in the mixing ratios of or-pinene, /?-pinene and camphene (from their LODs to 

8, 45 and 44 pptv, respectively) comprised the dominant contribution to the biogenic 

reactivity. In this case a concurrent decrease in the NO3 production rate, which was 

<Lhom(N03) during this time period, appeared to contribute to the observed trend in NO3. 

Decreased production, coupled with a shift in loss mechanism also seemed to 

significantly reduce the rate of gas-phase NO* loss from 1.0 ± 0.2 ppbv hr_1 (22:00-

03:00) to <0.4 ppbv hr_1 (after 03:00). 

The NO3 loss frequency was probably controlled by N2O5 reactions between 

22:00 and 03:00 (Figure 6b), when the ambient levels of the biogenic VOCs were 

relatively low. During this time period, the values of '̂indirect were on average roughly 

two times larger than the corresponding values of &Vocs, while the calculated N2O5 

mixing ratios were approximately an order of magnitude greater than the measured NO3 

mixing ratios. The average contribution of N2O5 hydrolysis to gas-phase NO* removal 

was 82 ± 7%. The average contributions of gas-phase and heterogeneous mechanisms to 
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NO* removal and HNO3 production are compared in Table 3 for the periods from 22:00 

to 03:00 and from 04:00 to 05:00. The general decreasing trend in the measured NO3 

mixing ratios appeared to result mostly from decreasing rates of production as the total 

gas-phase loss rate was relatively constant between 22:00 and 03:00 and exceeded 

P(N03) during the interval 23:00 to 04:00. Because the NO2 mixing ratios remained 

constant, the NO3 trend closely followed that of O3 (Figure 6c). 

1.3.2.4. Polluted and Biogenic Continental Outflow on July 25. 

Trace gas measurements during the night of July 25 indicate that AI experienced 

relatively clean conditions prior to 01:00, similar to those observed on the nights of July 

13 and 14. This is supported by the low mixing ratios of anthropogenic tracers such as 

CO (<120 ppbv), toluene (<0.050 ppbv), ethyne (<0.150 ppbv), o-xylene (<LOD), and 

NO2 (<3 ppbv) (Figure 7a). The influence of polluted continental outflow was first 

observed after 01:00, when O3 and NO3 concentrations decreased abruptly by 10 ppbv 

and 20 pptv respectively (Figure 7c). One hour prior to this, the mixing ratio of CO 

began to rise from 120 ppbv reaching 170 ppbv by 01:00. However, sharp increases in 

the mixing ratios of monoterpenes and aromatics were delayed until 02:00 (Figure 7a). 

Between 02:00 and 03:00, the CO mixing ratio increased by another 50 ppbv to 220 

ppbv, NO2 rose from 1.7 to 11.3 ppbv, isoprene from the LOD (0.002 ppbv) to 0.160 

ppbv, and monoterpenes from 0.012 to 0.30 ppbv. By 04:00 the measured NO2 mixing 

ratio had increased to 19.6 ppbv and all the alkenes and aromatic compounds listed in 

Table 2 were above their respective LODs. Finally, O3 plummeted to ~4 ppbv by 04:00. 
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The transport patterns for both July 11 and 25 were strikingly similar (Figure 4, c 

and e) and the backward trajectories suggest that the air masses probably incorporated 

emissions from the urban coastal corridor stretching from Boston to southern Maine 

(Figure 4e). Winds were significantly weaker on July 25 (1.3 ± 0.5 m s_1) compared to 

July 11 (5.7 ± 0.8 m s_1), resulting in longer transport times to AI on July 25. The 

relatively stagnant conditions during the night of July 25 likely led to little influx of air 

masses with higher O3 levels, and O3 titration continued after 01:00, which prevented the 

NO3 production rate from reaching even half the average value for the night of July 11. 

Relatively weak production, coupled with extraordinary enhancements of NO3 reactants, 

particularly monoterpenes, suppressed NO3 concentrations to below the LOD by 04:00. 

Conversely, higher levels of monoterpenes on this night than on both July 11 and 16 

likely resulted in part from reduced production of NO3. 

At 03:00 the rate of gas-phase NO* removal reached a maximum of 0.83 ± 0.21 

ppbv hr_1, which was -75% of the average removal rate after 03:00 on July 12. 

However, after 03:00 on July 26 the removal rate was apparently dominated by the 

reactions of NO3 with monoterpenes and would have decreased considerably due to the 

slow rate of NO3 production. For instance, if the NO3 mixing ratio was equal to half the 

LOD (1.7 pptv; probably a conservative lower limit) after 03:00, the rate of NO* removal 

would have decreased to <0.12 ppbv hr_1 for the remainder of the night. The estimated 

contributions of gas-phase and heterogeneous mechanisms to NO* removal and FTN03 

production at 03:00 are presented in Table 3. 
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1.3.3. Measured versus Calculated NOj Time Series Profiles 

Figures 8a-c show comparisons between measured and calculated (Section 1.2.2.) 

NO3 mixing ratios for July 11, 16 and 25 respectively, where only gas-phase chemistry 

was considered. The calculated profiles reproduce the measurements within estimated 

uncertainties during most time intervals, indicating that gas-phase chemistry may have 

accounted for the majority of NO3 loss. Assuming that uncertainties in the interpolated 

NO3 production and loss rates are comparable to those of the hourly values, uncertainties 

in the calculated NO3 mixing ratios for July 11, 16 and 25 ranged from 30^40%, 20-30% 

and 10^0% respectively. 

Discrepancies between the measured and calculated values likely resulted mainly 

from the real temporal variability of the atmosphere not being captured in the hourly 

input values. For example, on the night of July 16, peak NO2 mixing ratios were 

observed around 02:30, which slowed the overall decrease in the NO3 production rate at 

the end of the night (Figure 8b). Thus, the calculated NO3 values appeared to decrease 

faster than the measured ones after 02:00 due to coarse resolution that resulted in under-

predicted NO3 production between the hours of 02:00 and 03:00. Similarly, the peak in 

O3 between 02:00 and 03:00 on July 26 was not captured in the calculated NO3 

production and caused the under-prediction of measured NO3 during that time period. 

The calculated NO3 mixing ratios appeared to more accurately reproduce the 

measurements on July 16 compared with July 11 and July 25, which is likely due to 

increased variability in chemical composition during the latter two nights. In general, the 

calculation was expected to perform less well when any of the input parameters, namely 
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the concentrations of NO2 and O3 and the value of k\om, varied nonlinearly between the 

hour steps. Furthermore, variations in the input parameters between measurements could 

not be fully captured in the calculation; they depended strongly on the distributions and 

strengths of upwind emissions sources, which were unknown. 

Exclusion of heterogeneous chemistry from the determination of the overall NO3 

loss efficiency probably contributed to the systematic positive bias observed in the 

calculated values for the nights of July 11 and 16 (Figures 8a and 8b). For July 11, the 

bias was largest at the end of the night when N2O5 chemistry made the greatest 

contribution to the NO3 loss efficiency. For July 16, the bias was largest at the beginning 

of the night when the calculation was most sensitive to the input parameters. 

The night of July 25 was an exception in that the calculated NO3 mixing ratios 

were generally negatively biased. This suggests that the total NO3 loss efficiency derived 

from the measurements may have been larger than the average over the DOAS 

measurement path length. Between 21:00 and 01:00 or-pinene was near the LOD but 

made a significant contribution to the total NO3 loss efficiency. Variability in the level of 

a-pinene between the LOD (0.002 ppbv) and 0.008 ppbv controlled much of the 

variability in the measured (relative standard deviation (RSD) = 80%) and calculated 

(RSD = 70%) NO3 mixing ratios. A 50% variation in the or-pinene mixing ratios (~l-4 

pptv) caused an average change in the calculated NO3 mixing ratios of 24 ± 9%. The 

details of this sensitivity to or-pinene may not have been captured well by the hourly 

hydrocarbon measurements. 

Finally, disagreement between measured and calculated NO3 mixing ratios would 

be expected if conditions at the point of the tower sampling inlets were in fact different 
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than the average over the DOAS path length. This could arise from spatial heterogeneity 

in the air masses influencing the region or from the influence of local emissions sources. 

Indeed, during ICARTT air mass heterogeneity on a scale as small as ~3 km, which is 

close to the maximum distance along the DOAS light path from the tower sampling 

inlets, was determined from inter-comparisons between the NOAA research vessel 

Ronald H. Brown (R/V Brown) and the AI DOAS system [Osthojf et al, 2005]. 

However, O3 measurements from the tower and the DOAS system generally tracked each 

other well, indicating the same air mass was usually being sampled. Times when local 

emissions could be clearly identified (these corresponded with nocturnal spikes in NO) 

were filtered out in our analysis. 

1.3.4. Heterogeneous Nighttime NOg Loss: Uptake of NiOg by Aerosols/Ocean 

Surface 

To estimate the contributions to NO3 and NO* removal of heterogeneous N2O5 

chemistry (i.e., reaction (R5) and presumably also deposition of N2O5 to the ocean 

surface) the NO3 loss efficiency with respect to heterogeneous N2O5 chemistry, £"het, was 

first approximated based on discrepancies between the measured and calculated NO3 

mixing ratios for the nights of July 11 and 16 (Figures 8a and 8b, respectively). After 

midnight on July 11 (Figure 5b) and between 22:00 and 03:00 on the night of July 16 

(Figure 6b) reactions of N2O5 potentially dominated N03/NO* removal. During these 

time periods, with the exception of the period between 02:00 and 03:00 on July 17 

(Section 1.3.3), the systematic positive biases in the calculated NO3 mixing ratios likely 
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resulted from the exclusion of heterogeneous chemistry in the calculations. By adding a 

term equal to an adjustable fraction of indirect to the total NO3 loss efficiency in equation 

(10), the value of ^het was determined as the fraction of îndirect for which the average 

error between the calculated and measured NO3 mixing ratios was minimized. The 

resulting ranges of ^W '̂indirect (denoted as yOhet hereinafter) were 0.3-0.4 and 0.2-0.3 for 

the nights of July 11 and 16 respectively. Figures 8d-f show comparisons between 

calculated and measured NO3 mixing ratios for the nights of July 11, 16 and 25, 

respectively, where 0.2 < phet < 0.4. Again, the night of July 25 was the exception; 

agreement between the measured and calculated NO3 mixing ratios was not improved by 

accounting for heterogeneous N2O5 chemistry. This was expected based on our 

discussion in Section 1.3.3. 

Aerosol properties as a function of size were measured in the Gulf of Maine 

aboard R/V Brown (data courtesy of T. Bates, NOAA Pacific Marine Environmental 

Laboratory (PMEL)). We utilized data obtained within a 50 km radius of AI (ship 

coordinate data courtesy of J. Johnson, NOAA PMEL) to better quantify heterogeneous 

removal of N2O5 by aerosols. The aerosol surface area density distributions suggested 

that aerosols with diameters d<\ am accounted for 97 ± 2% of the total aerosol surface 

area density Sa. Average aerosol reaction probabilities y were estimated using 

j_^ha ( 1 1 ) 

v-S-a-Keq.[K02] 

Here v is the mean molecular speed of N2O5 and values for k'het were taken as derived 

above (i.e., 0.2 < phet < 0.4). Using the regionally averaged surface area density, Sa (= 

290 ± 140 ^m2 cm"3), we obtained a range of 0.003 ± 0.001 to 0.019 ± 0.004 for y. Note 
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the minimum and maximum derived average values of /correspond with p^et = 0.2, 55 = 

430 um2 cnT3 and phet
 = 0.4, 5a = 150 um2 cm-3, respectively. This range compares 

favorably with previous work and properties of sub-um aerosol observed at AI [Hallquist 

et al, 2000; Folkers et al, 2003; Hallquist et al, 2003; Thornton and Abbatt, 2005; 

Fischer et al, 2006; Keene et al, 2007]. 

Sub-um aerosol at AI was reportedly acidic in general, with median pH values 

<1.6 and total acidity dominated by bisulfate anion (HSO4"") [Keene et al, 2007]. For 

N2O5 uptake on aqueous sub-um sulfuric acid (H2SO4) aerosol under similar atmospheric 

environment, Hallquist et al. [2000] obtained the Rvalue of 0.033 ± 0.004, which is close 

to the upper bound of our derived range of y (-0.023). 

It is suggested in several studies that increasing NO3- activity in aqueous sub-um 

sodium nitrate (Na-NCh) aerosol [Hallquist et al, 2003] and adding surface active 

organic compounds to sub-um aerosol [Folkers et al, 2003; Thornton and Abbatt, 2005] 

can reduce reactive uptake of N2O5. In particular, Folkers et al [2003] measured 3- to 7-

fold reductions in y upon exposure of aqueous ammonium bisulfate (NFLrHSC^) aerosol 

to particle free ambient air. Since particulate nitrate (N03~) loading in sub-um aerosol 

size fractions was observed at AI in continental outflow during ICARTT [Fischer et al, 

2006], values of y <0.033 seem to be highly reasonable. Our lower bound agrees 

favorably with the value of-0.003 derived by Allan et al [1999] and the one obtained by 

applying a sevenfold reduction to the y ofHallquist et al. [2003]. 

The favorable agreement between the calculated and assumed y values indicates 

that our derived range of/^et values is valid. However, it should be cautioned that the y 
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values calculated in this study might represent upper limits since depositional loss of 

N2O5 was not accounted for. Over the derived range of phet values, the rates of NO3 and 

NO* removal were on average 10 ± 6% to 19 ± 5% and 12 ± 5% to 24 ± 10% larger, 

respectively than those determined without considering heterogeneous N2O5 uptake. 

Accounting for additional N2O5 removal as described above does not change the 

conclusion that reactions of NO3 with VOCs and reactions of N2O5 appeared to be 

comparable sinks forNOs. 

The relative importance of gas-phase versus heterogeneous N2O5 loss as 

determined in the present work depends strongly on the rate coefficient for reaction of 

N2O5 with water vapor (£(H2o(g)+N2o5))- The results of Brown et al. [2006a] suggest a 

value of &(H2o(g)+N2o5) that is lower than the current recommended value [Atkinson et al, 

2004] by a factor (denoted as/hereinafter) >2.6. Our data also appear to be consistent 

with a reduced value of &(H2o(g)+N2o5)- For example, on the night of July 11, using the 

average value of Sa (162 ± 67 urn2 cm-3) from measurements aboard R/V Brown (the ship 

was on average 33 ± 7 km southeast of Al on this night), the derived values of £'N2O5 (= 

£'indirect + &'het), and constraining the value of k\et such that the average value of/<0.037 

(the mean + l a value of Hallquist et al. [2000]) for the night of July 11, we obtained a 

reduction of £(H2o(g)+N2o5) by/<2.9. The calculated value of/increases with Sa and would 

be underestimated if larger surface area densities were experienced at Al than aboard R/V 

Brown. However,/would be overestimated if/was in fact smaller. 

Reducing &(H2o(g)+N2o5)by/= 2.9 decreased the average value of &'indirect/£'hom by 

-50% to 0.25 ± 0.20 (Section 1.3.1) and increased the derived upper limit of phet to 3.1. 
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The average value of AW '̂hom increased from 0.14 ± 0.08 to 0.36 ± 0.20, while the 

average contributions of aerosol N2O5 uptake to NO3 and NO* removal increased from 

minima of-10% (pket = 0.2) to as large as 40 ± 19% and 50 ± 18%, respectively (phet
 = 

3.1;/= 2.9). The N2O5 loss efficiency was thus significantly repartitioned between gas-

phase and heterogeneous chemistry. Presented in Table 3 is a comparison of the average 

values of L(NOx) and P(HNC>3) resulting from VOC- and ^Os-mediated NO3 removal, 

including the gas-phase values given in Section 1.3.1. The dependence of the N2O5-

mediated rates on &(H2o(g) + N2o5) is also shown. 

When the ^Os-mediated NO3 loss efficiency is attributed entirely to 

heterogeneous hydrolysis the maximum derived average value of y is 0.065 ± 0.014, 

which seems unrealistically large based on the discussion above. This result suggests that 

it is inappropriate to assume N2O5 hydrolysis is an exclusively heterogeneous process. 

The average contributions of N2O5 chemistry to nighttime NO3 and NO* removal 

were 51 to 54 (± 25%) and 63 ± 24% to 66 ± 23% respectively, corresponding with the 

derived range of yOhet- These values are independent of the precise value of £(H2o(g)+N2o5) 

following our methodology. A similar partitioning between direct and indirect NO3 

removal mechanisms in this region during July and August, 2002 was reported by 

Aldener et al. [2006]. The average relative contributions of gas-phase and heterogeneous 

mechanisms to nighttime NOx removal are summarized for the limiting values of yOhet and 

/ i n Figure 9. 
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1.3.5. Daytime versus Nighttime NO* Removal 

The average rate of daytime NO* removal, determined using equation (7) for the 

daytime hours (05:30-20:30) between 05:30 on July 11 and 20:30 on July 28, was 0.43 ± 

0.58 ppbv hr_1. In comparison, the average rate of nighttime NO* removal, determined 

using equation (6) for the nighttime hours (21:00-05:00) between July 8 and 28, ranged 

between 0.55 ± 0.54 ppbv hr_I and 0.62 ± 0.62 ppbv hr_1. These rates correspond to the 

range of relative heterogeneous loss efficiencies that were derived in Section 1.3.4 and are 

insensitive to repartitioning N2O5 removal between gas-phase and heterogeneous 

chemistry. Both NO3 and OH mediated NO* removal is expected to be relatively 

inefficient near sunrise and sunset, when the abundances of both oxidants reach their 

minima [e.g., Warneke et al, 2004]. Hence, the average total NO* removal during a 24 

hr cycle was estimated by multiplying the average daytime and nighttime NO* removal 

rates by the durations of the daytime and nighttime periods defined above. The resulting 

24 hr-averaged NO* removal was -11 ppbv with nighttime NO* removal contributing 

-50% of the total, despite the nighttime hours representing only -40% of the diel cycle. 

Accordingly, reduction of NO* in polluted continental outflow is expected to be two fold 

greater than would be predicted based on daytime chemistry alone. This result provides 

additional evidence for the importance of nighttime NO3 chemistry in this atmospheric 

environment. 

Brown et al. [2004] inferred the relative importance of daytime and nighttime 

NO* removal from the New England MBL during summertime by comparing daytime 

and nighttime HNOs(g) production. They found that nighttime production on average 
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accounted for -35% of the total production. The calculated average nighttime HNC>3(g) 

production rate was -80% of the average daytime production rate. The rate of daytime 

HNC>3(g) production is roughly equivalent to the rate of daytime NO* loss given by 

equation (7), while the rate of nighttime HNC>3(g) production was approximated using 

equation (6), where &'N2O5 was used in place of indirect and only VOCs that react with 

NO3 via H-atom abstraction (DMS being most important (Section 1.3.1.)) were 

considered: 

P(HN03(g))night = . W N C g + 2 • Z N A (N03) (12) 

Equation (12) assumes that heterogeneous N2O5 uptake, as derived in Section 1.3.4, 

primarily generates gas-phase HNO3. This should be valid for reaction of N2O5 with 

acidic sub-um aerosol in this region [Brown et al, 2004], however we have not 

determined the magnitude of N2O5 depositional loss to the ocean surface and thus the 

phase partitioning of the resultant HNO3 is uncertain. The resulting estimated average 

rate of nighttime HNC>3(g) production ranged between 0.47 ± 0.52 ppbv hr_1 and 0.55 ± 

0.60 ppbv hr_1, for phet - 0.2 and 0.4 respectively (Table 3), corresponding with -110-

130% of the average daytime HN03(g) production rate. Thus, we conclude that average 

P(HN03(g))night <1.3 x average P(HNC>3(g))day This range is in reasonable agreement 

with the findings of Brown et al. [2004], and further suggests that the variability in 

nighttime NO3 chemistry in summer 2002 over this same region was largely reproduced 

in 2004. Such reproducibility in the atmospheric environment was also noted regarding 

properties of aerosol chemistry [Fischer et al, 2006; Keene et al, 2007]. Moreover, that 

our results suggest daytime and nighttime HN03(g) production rates were often 
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comparable may partially explain the occurrence of nocturnal peaks in HNC>3(g) mixing 

ratios measured at AI [Fischer et ah, 2006]. 

1.4. Summary 

Measurements of trace gases important to the nighttime chemistry of NO3 were 

measured at Appledore Island, ME during the 2004 ICARTT campaign. The suite of 

measurements including NO3, VOCs, O3 and NO2 were used in this study to determine 

the most important gas-phase nighttime loss mechanisms for NO3 during the period July 

8-28, 2004, and, together with backward trajectories, to understand the NO3 chemistry 

that occurred during several individual nights. The importance of heterogeneous N2O5 

chemistry for nocturnal NO3 and NOx removal was also investigated. The following 

conclusions were drawn from this work: 

(1) This study confirmed the importance of biogenic VOCs as nighttime reactants 

with NO3 in the NE MBL during the summertime. The average contribution of DMS, 

isoprene and monoterpenes to the loss efficiency of all measured VOCs was >75%. 

DMS appeared to be the dominant NO3 reactant overall due to constant DMS emissions 

in this marine environment. On average DMS accounted for 51 ± 34% of the NO3 loss 

efficiency of all measured VOCs. The inverse relationship between the NO3 mixing ratio 

and the reactivity of biogenic compounds suggested that the abundance of biogenic 

compounds at AI was significantly modified by nighttime NO3 chemistry. 

(2) The chemistry of NO3 was most active at AI under the influence of continental 

outflow when elevated levels of NO* and VOCs were transported under southerly flow in 
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the MBL. Under these conditions, isoprene and the monoterpenes were typically the 

dominant NO3 reactants at the beginning of the night. Conversely, reactions with NO3 

appeared to efficiently oxidize isoprene and the monoterpenes. Strong upwind NO* 

emissions greatly enhanced the importance of N2O5 chemistry for NO* removal, 

although, with significant upwind titration of O3, VOC oxidation and NO* loss actually 

appeared to be suppressed by reduced NO3 production. 

(3) VOC- and N205-mediated NO3 removal appeared to be roughly equivalent. 

However, N2O5 removal is more efficient for NO* removal than for NO3 removal and the 

average contribution of N2O5 chemistry to total nighttime NO* removal was 63-66%. 

(4) Based on the recommended rate coefficient for reaction of N2O5 with H20(g) 

[Atkinson, et al, 2004] heterogeneous N2O5 chemistry appeared to be of minor 

importance to nocturnal NO3 chemistry with estimated minimum average contributions to 

nighttime NO3 and NO* removal of -10%. The corresponding average derived 

probabilities /for reaction of N2O5 with aerosols were -0.003-0.019. This range agrees 

with previous work and properties of sub-um aerosol at AI. Our results appeared to be 

consistent with those of Brown et al. [2006a], which suggest that gas-phase N2O5 

reactivity is overestimated by the current recommended value of £(H2o(g)+N2o5)- However, 

based on our analysis, it is equally probable that the recommended rate coefficient is 

correct. The estimated maximum average contributions of heterogeneous N2O5 

chemistry to nighttime NO3 and NO* removal were -40% and -50% respectively, 

corresponding to a factor of 2.9 reduction in the recommended value of £(H2o(g)+N2o5)-

Larger reductions in £(H2o(g)+N2o5) yielded unrealistically large y values, suggesting that a 
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component of gas-phase N2O5 hydrolysis was necessary to adequately describe the NO3 

measurements. 

(5) The 24hr-averaged NO* loss was -11 ppbv with nighttime chemistry 

contributing -50% despite the nighttime having been only -40% of a diel cycle. It 

follows that true NOx removal in this region during summertime should be roughly two 

times that estimated based on photochemistry alone. 

(6) The maximum average rate of nighttime HNOs(g) production was -130% of 

the average daytime production rate. Thus, it is likely that nighttime NO3 chemistry was 

an important mechanism for causing measured HN03(g) mixing ratios to exhibit 

secondary maxima after dark. 

(7) The overall favorable agreement between the measured and calculated NO3 

mixing ratios for the nights of July 11, 16 and 25 suggests that the kinetic treatment 

presented here accurately reflects the general characteristics of nighttime NO3 chemistry 

at AI during the ICARTT campaign and corroborates our understanding of the overall 

role of nocturnal NO3 chemistry at this site. 

(8) Finally, our results suggest that variability in the chemistry of the atmosphere 

in this region during summer 2002 was largely reproduced during the ICARTT campaign 

during summer 2004. 

Under certain conditions, future measurements of NO2, O3 and gas phase NO3 

reactants at this site could be used, in the absence of NO3 measurements, to help infer the 

role of nocturnal NO3 chemistry. More complete simultaneous measurements of aerosol 

properties would help constrain aerosol loss and reconcile possible discrepancies between 

laboratory and field measurements of &(H2o(g)+N2o5)-
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CHAPTER II. 

AN INTERCOMPARISON OF GC-FID AND PTR-MS TOLUENE MEASUREMENTS 

ILL Introduction 

Proton transfer reaction-mass spectrometry (PTR-MS) was recently developed for 

on-line monitoring of atmospheric volatile organic compounds (VOCs) [Hansel et al., 

1995; Lindinger et al, 1998]. The method and its applications in atmospheric sciences 

were described in great detail in recent reviews [de Gouw and Warneke, 2007; Blake et 

al, 2009]. The principal advantages of PTR-MS are its capability for sensitive, high 

frequency measurements in real time. A disadvantage is that the method does not 

distinguish between isomeric/isobaric compounds; furthermore, ion fragmentation, 

clustering and secondary ion-molecule reactions in the drift tube can interfere in the 

measurement of some compounds under certain conditions [de Gouw and Warneke, 

2007]. Considerable effort has been made to characterize the performance of PTR-MS 

for quantification of atmospheric VOCs, demonstrating it to be a valuable analytical 

method for that purpose [de Gouw et al, 2003a; de Gouw et al, 2003b; Warneke et al, 

2001; Warneke et al, 2003; de Gouw and Warneke, 2007]. Still, the compositional 

diversity of the atmosphere and widespread deployment of PTR-MS for trace gas 

monitoring requires continued validation work be carried out, and atmospheric 

environments remain for which PTR-MS validation studies are lacking [de Gouw and 
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Warneke, 2007]. In particular, validation work has not been carried out in forested 

environments where the VOC spectrum is expected to be dominated by biogenic 

compounds. The present work is aimed toward the validation of PTR-MS toluene 

measurements based on ambient trace gas measurements at a forested site in New 

England. 

Toluene is a significant component of fossil fuel and biomass combustion 

emissions [Andreae and Merlet, 2001; Schauer et al, 2002]. It is also released to the 

atmosphere via fossil fuel and industrial solvents evaporation [Singh and Zimmerman, 

1992; White et al, 2009]. Although biogenic toluene emissions have not been widely 

observed [Helmig et al., 1998], a recent report demonstrated that toluene may be directly 

emitted from some plant species [White et al., 2009], as was suggested by observations 

from two previous studies [Heiden et al, 1999; Holzinger et al, 2000]. Toluene is a 

ubiquitous component of atmospheric VOC loading, and atmospheric toluene 

measurements have been used to probe several important issues in atmospheric sciences 

including photochemical aging of pollutants [Roberts et al, 1984; Parrish et al, 2007; 

Warneke et al, 2007] and emissions inventory testing [Warneke et al, 2007; Karl et al, 

2009]. Additionally, several studies demonstrated that toluene may contribute to 

secondary organic aerosol formation in certain environments [e.g., Hurley et al, 2001]. 

In the analysis of VOCs in ambient air by PTR-MS, toluene is quantified from its 

protonated molecular ion (CyHg*) with a mass to charge ratio (m/z) of 93. Previous field 

studies conducted under conditions dominated by anthropogenic emissions generally 

showed good quantitative agreement between toluene measurements made both by PTR-

MS and gas chromatography (GC) techniques [Warneke et al, 2001; de Gouw et al, 
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2003a; Warneke et al, 2003; Kuster et al, 2004; Rogers et al, 2006]. However, 

laboratory investigations pertinent to PTR-MS measurements of monoterpenes (C10H16), 

which have primarily biogenic sources [Geron et al, 2000], demonstrated that samples of 

several common monoterpenes and their oxidation products may, under certain 

conditions, yield mlz = 93 ion fragments via reactions with H30+, C>2+ and NO+ in the 

PTR-MS drift tube [Schoon et al, 2003; Tani et al., 2003; Warneke et al, 2003; Schoon 

et al, 2004, Tani et al, 2004; Lee et al, 2006a, b; Maleknia et al, 2007]. An analysis of 

toluene measurements made by PTR-MS and GC-MS in the New England coastal marine 

boundary layer, downwind of monoterpene source regions, found no evidence for 

interference of monoterpenes in the PTR-MS toluene measurements [de Gouw et al, 

2003 a]. Stronger correlations between monoterpenes and the PTR-MS mlz = 93 signal 

were observed in a laboratory investigation of VOC emissions from Mediterranean holm 

oak [Holzinger et al, 2000] and in a boreal forest environment [Rinne et al, 2005], 

although their causes could not be identified unambiguously. It was shown that the mlz -

93 signal measured from holm oak could be attributed to /?-cymene (C10H14), a biogenic 

VOC related to the monoterpenes [Tani et al, 2003]. To date, no analysis of field data 

dedicated to quantification of potential interferences in PTR-MS toluene measurements 

related to sampling of monoterpenes has appeared in the literature. 

The present investigation uses ambient measurements made at a forested site in 

New England under conditions of enhanced monoterpene loading to quantify potential 

interferences in PTR-MS toluene measurements associated with sampling of 

monoterpenes and their oxidation products. Details of the measurement site, the 

analytical systems used and the data analysis methods are given in Section II.2. 
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Measurements of monoterpenes by GC-flame ionization detection (FID) and toluene by 

GC-FID and PTR-MS are presented in Section II.3, together with a quantitative analysis 

of potential interferences in the PTR-MS toluene measurements. The major findings are 

summarized in Section II.4. 

11.2. Methods 

II.2.1. Experimental 

Measurements reported in this work were made in Durham, NH at the University 

of New Hampshire AIRMAP atmospheric monitoring network site Thompson Farm 

(THF) [Talbot et al., 2005] between July 24 and August 15, 2004, during the 

International Consortium for Atmospheric Research on Transport and Transformation 

(ICARTT) field campaign. The THF site (43.11 °N, 70.95 °W, 24 m elevation above sea 

level) is 24 km from the Gulf of Maine on an active corn farm, seasonally planted with 

alfalfa; it is surrounded by mixed hardwood/pine forest [Ollinger et ah, 1998; Justice et 

al, 2002]. Ambient air was drawn at -1500 standard liters per minute through a PFA 

Teflon-lined aluminum manifold from the top of a 15 m tower using a Gast R5-Series 

regenerative blower (Gast Manufacturing, Inc., Benton Harbor, MI). Sub-samples were 

directed to a suite of trace gas analyzers housed at the base of the tower. 

This work focuses on toluene measurements made using a GC system and a PTR-

MS [Lindinger et al, 1998] and monoterpene measurements made using the GC system. 

Ancillary measurements included nitric oxide (NO) by chemiluminescence (model 

37 



42CTL, Thermo Environmental Instruments, Inc, Franklin, MA), ozone (O3) by UV 

photometer (model 49C-PS, Thermo Environmental), nitrogen dioxide photolysis 

frequency (./(NO2)) by filter radiometer (Metcon, Inc., Boulder, CO), and meteorological 

parameters, measured by a suite of Qualimetrics sensors (Qualimetrics, Inc., now All 

Weather, Inc., Sacramento, CA), including temperature by thermistor (model 5190C), 

pressure by capacitance manometer (model 7190), relative humidity (RH) by thin film 

capacitor (model 5190C), and wind speed by anemometer (model 2031). Selected 

operational parameters for each of the above measurement systems are given in Table 4. 

The GC system [Zhou et ah, 2005] and the operational parameters of the PTR-MS were 

described in previous publications [Talbot et ah, 2005; Ambrose et ah, 2007]. Specific 

details pertaining to the measurements in this work are described here. 

The GC sample acquisition/injection system was a modified, liquid N2 cooled, 

Entech sample concentrator (Entech Instruments, Inc., Simi Valley, CA). Samples (1200 

cm ) were drawn at -200 cm min via a downstream pump and mass flow controller 

(Unit Instruments, Inc., Yorba Linda, CA) through two 20 cm * 0.3175 cm Silonite-

coated stainless steel loops (Entech). The first loop was cooled to -20 °C for sample 

dehumidification; the second loop was packed with 60/80 mesh glass beads (Ohio Valley 

Specialty Company, Marietta, OH) and cooled to -185 °C for analyte enrichment. After 

sample trapping, the loops were flushed with 100 cm3 of ultra high purity (UHP) He 

•a -I 

(Maine Oxy, Auburn, Maine) at 100 cm min . The sample enrichment loop was 

resistively heated to 100 °C in ~10 s and the sample was injected in UHP He carrier 

(Maine Oxy), via an 8-port switching valve (SV) (Valco Instruments Company, Inc., 

Houston, TX), into a Shimadzu 17A GC (Shimadzu Corporation, Columbia, MD), where 
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the sample was split to four separate capillary columns. Nonmethane hydrocarbons 

(NMHCs) (C6-C11) were separated on a 60 m * 0.32 mm I.D., 1.0-um film thickness VF-

5ms column (Varian, Inc., Walnut Creek, CA) and measured with an FID. Following 

injection, the sample dehumidification and enrichment loops were both heated and back-

flushed with UHP He for 5 min at 100 °C to clean the loops in preparation for the next 

sample. The sample cycle time was ~42 min with a ~6 min acquisition time. A 1200 

cm3 aliquot of one of two different whole air standards was analyzed every ninth sample 

for quantification of target compounds and to monitor system performance. In this work 

the average rc-decane response factor (RF), (14.2 ± 0.9) x 103 ppbv-1 (ley; n - 40), 

measured from assays of a whole air standard was used for quantification of 

monoterpenes in ambient samples. 

R F d M « = Adecme (!) 

MRdecane 

In equation (1) Adecane is the decane chromatographic peak area determined from analysis 

of the whole air standard containing a known decane mixing ratio, MRdecane- Although 

several of the measured monoterpenes were contained in one of the whole air standards 

their mixing ratios were observed to decrease over time. The monoterpenes are highly 

reactive and were previously shown to exhibit loss in VOC standards [Sive, 1998]. 

Calibration experiments with the THF GC system demonstrated that the RF for 

monoterpenes and other C10 hydrocarbons were in close agreement. In fact, one of the 

principal advantages of the FID is that it generally yields uniform efficiency (on a per 

carbon basis) for quantification of hydrocarbons [Schqfield, 2008]. Therefore, we used 

decane, for which the standard mixing ratio was stable, to quantify the FID C10 RF. 
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The PTR-MS (Ionicon Analytik GmbH, Innsbruck, Austria) was operated with a 

drift tube pressure of 2 mbar and a potential of 600 V applied over the length of the drift 

tube. A series of 30 masses was monitored continuously; six masses were monitored for 

diagnostic purposes while the remaining 24 masses corresponded to the VOCs of interest. 

The dwell time for each of the 24 masses was 20 s, yielding a total measurement cycle of 

~8 min. The system was zeroed every 2.5 hrs for 4 cycles by diverting the flow of 

ambient air through a heated catalytic converter (0.5% Pd on alumina at 450 °C) to 

oxidize the VOCs and determine system background signals. Calibrations for the PTR-

MS system were conducted using three different high-pressure cylinders containing 

synthetic blends of selected NMHCs and oxygenated VOCs (OVOCs) at the ppbv level 

(Apel-Reimer Environmental, Inc., Broomfield, CO). Each of the cylinders used in the 

calibrations had an absolute accuracy of <±5% for all gases. Using methods similar to 

those described previously [Apel et al., 1998, 2003a], standards were diluted to 

atmospheric mixing ratios (ppbv to pptv levels) with catalytic converter-prepared zero air 

adjusted to maintain the humidity of the sampled air. Calibrations were conducted 

periodically to monitor PTR-MS performance and quantify the mixing ratios of target 

gases. Mixing ratios for each gas were calculated by using the normalized counts per 

second which were obtained by subtracting out the non-zero background signal for each 

compound. 

40 



II.2.2. Calculations 

The PTR-MS and GC-FID measurements were merged to the GC system time 

stamp. Only samples for which the GC-FID sample trapping interval and the PTR-MS 

sample cycle overlapped were included. The merged data were used to estimate the 

potential contribution of monoterpene fragmentation in the PTR-MS drift tube to the 

PTR-MS signal at mlz = 93 (nominally toluene). 

The reaction of toluene (Tol) with H30+ in the PTR-MS drift tube to produce the 

protonated molecular ion, (Tol + H)+, at mlz = 93 (m93) is described by reaction (Rl), 

Tol + H30+ *To1"^ >m93 + H 2 0 (Rl) 

where kr ]+H + is the rate constant for the reaction. Similarly, the reaction of compoundy 

with H30+ can be written as in reaction (R2). 

y + H30+ */+H?0+ >(; + H ) + + H 2 0 (R2) 

For some atmospheric VOCs, including monoterpenes, the protonated molecular ion 

formed via reaction (R2) will fragment to lower mlz product ions under certain PTR-MS 

operating conditions. The production of m/z = 93 fragment ions from reaction of 

compound/ with H30+ can be written as in equation (R3), 

4(93)rk + 

y + H30+ ' ^ ° >m93 (R3) 

where $93)y is the m93 yield resulting from ionization of compound j . Therefore, the 

total rate of change of the concentration of mlz = 93 ions in the PTR-MS drift tube 

directly resulting from reaction of H3O1" with toluene and fragmentation of other 

compounds/ is given by equation (2). 
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The rate constant for reaction of compound y with H30+ and the concentration of/ can be 

expressed as fractions of the corresponding rate constant for toluene and the toluene 

concentration, respectively. 

[y] = /y'[Tol] (3b) 

Combining equations (3 a) and (3b) with equation (2) gives equation (4). 

^f1 = K,^ •[Tol].[H30
+].|l + 2«K93),,fkj •/,} 

= *M+H^-[rol].[H30+].{l + F} 

Integration of equation (4) over the time interval required for ions to traverse the drift 

tube, At, gives equation (5). 

[i»93] = £Tol+H30+ • [Tol] • [H30+ ] • {1 + F}- At (5) 

If there are no other compounds present which fragment to mlz = 93, all the values of 

^(93) are zero, F - 0, and equation (5) reduces to the standard expression for integrated 

signal in PTR-MS [Lindinger et al, 1998]. The toluene volume mixing ratio, VMR(w93) 

(hereinafter referred to simply as the toluene mixing ratio), is quantified based on the 

ratio of the ion current (counts per second, cps) at mlz = 93, Im93, to the normalized ion 

current (ncps) for H^O* as shown in equation (6), 

VMR(m93) = /m93 ~ /m93b (6) 
H3CT 

r 
'-'Tol 
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where 7m93b is the background mlz = 93 ion current and CT0I denotes the calibration factor 

(sensitivity) for toluene, typically expressed in units of ncps ppbv-1. In this work the 

calibration factor was determined from assays of standard gas cylinders as described in 

Section II.2.1. Alternatively, the calibration factor can be determined from the 

instrument operating parameters, measured ion transmission efficiencies, 7>, and 

published values of kJol+H Q+ and HaO+ ion mobility, fx, as described previously [de Gouw 

and Warneke, 2007]. The ion transmission efficiency is related to the ion concentration 

and measured current as shown for the example of the mlz - 93 ion in equation (7), 

/
m 9 3 - /

m 9 3 b = 7 >
m 9 3 - [ ' w 9 3 ] ( 7 ) 

Combining equation (6) with equation (7) gives equation (8). 

VMR(m93) = r ^ 3 - N 9 3 ] ( g ) 

-* FT ^-.+ H 30+ 

V J 
r 
Wol 

In ambient air samples with contributions to [m93] from j as described above the true 

toluene mixing ratio, VMR(m93),, and the apparent measured toluene mixing ratio, 

VMR(w93)w, can be defined as shown in equation (9), which follows from equations (5) 

and (8). 

VMR(m93), = VMR(m93)m • - j J - , (9) 
{1 + F} 

As expected, equation (9) shows that the value of VMR(/ra93), will always be smaller 

than that of VMR(m93) „, in the presence of monoterpenes that fragment to ion products at 

mlz = 93 (i.e., F >0). Similar to equation (9) corrections can be made for (1) production 

of ion products at mlz = 93 from reactions of monoterpenes with O^ and NO+ in the 

PTR-MS drift tube and (2) fragmentation of monoterpenes oxidation products. It should 
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be noted that O2 and NO ionize by charge transfer rather than by proton transfer as for 

HsO+. To account for reactions of C>2+ and NO+ withy, additional terms that represent 

abundances of O-f and NO+ relative to HsO+ in the PTR-MS drift tube are included in F. 

Values of F are obtained primarily from knowledge of monoterpenes present together 

with published data for parameters such as proton and charge transfer rate constants. 

II.3. Results and Discussion 

II.3.1. Monoterpene Distributions 

Here we present GC-FID measurements of monoterpenes at THF during summer 

2004. In the discussion that follows monoterpenes include C10H16 hydrocarbons as well 

as/?-cymene (C10H14), which is a related biogenic hydrocarbon [Geron et ah, 2000]. The 

monoterpene composition of plant species in the northeastern United States was 

previously shown to consist mostly of a-pinene, A3-carene, /?-pinene, af-limonene, 

sabinene, /3-phellandrene, p-cymene, /?-myrcene, ocimene, and terpinolene, whereas a-

and /3-pinene, camphene, A3-carene, /3-myrcene, d-limonene, sabinene, p-cymene, and /5-

phellandrene were estimated to compose >95% of summertime monoterpenes emissions 

from forestland encompassing the THF site (Table 5) [Geron et ah, 2000]. At THF we 

identified and regularly measured a- and /3-pinene, camphene, A3-carene, and d-limonene 

in ambient samples. All major chromatographic features observed in ambient 

chromatograms in the monoterpenes' retention time window were identified from whole 

air and synthetic standards. 
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Retention times (RTs) for additional monoterpenes not identified from qualitative 

and quantitative standards were estimated based on the observed correlation between 

measured RTs and published boiling point (b.p.) values for C9-C11 hydrocarbons in the 

primary working standard that eluted from the VF-5ms column between nonane (C9H20; 

b.p. = 150.82 °C) and undecane (CnH24; b.p. = 195.9 °C) (Figure 10, Table 6). The 

elution order of the normal alkanes did not follow the same trend as the aromatics and 

monoterpenes and so the «-alkanes were excluded from the regression analysis. Peak 

identifications for o-xylene and C9-C11 hydrocarbons in the primary working standard are 

shown in Figure 11. Table 6 lists b.p. values together with (1) measured average RTs for 

C9-C11 hydrocarbons identified in Figure 11 and (2) RTs predicted based on the 

regression analysis shown in Figure 10 for several additional monoterpenes. For 

comparison, the regression analysis shown in Figure 10 predicted RTs for camphene and 

A3-carene of 11.5 ± 0.3 min and 12.6 ± 0.2 min (Table 6), whereas the values measured 

from a multi-component synthetic standard were ~11.6 min and -12.8 min, respectively. 

The agreement between predicted and measured RTs indicated that the RT versus b.p. 

relationship determined for C9-C11 hydrocarbons in the primary working standard was a 

good predictor of RTs for monoterpenes when measured values were not available. 

Figure 12 shows an example chromatogram from the night of August 2, when 

significantly elevated monoterpene mixing ratios were measured. The unidentified peak 

at -13.3 min, labeled "UnID", was within the estimated retention time windows for 

ocimene and p-cymene (Table 6), which were not identified from qualitative and 

quantitative standards. The area of the unidentified peak was strongly correlated with 

those of the other major monoterpenes, as illustrated in Figure 13; however, it typically 
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represented a minor fraction of the total monoterpene mixing ratio. Other minor features 

that could be attributed to /?-phellandrene, or-terpinene, ^-terpinene, and terpinolene were 

also observed while the monoterpene mixing ratio was elevated; however, the 

corresponding mixing ratios, estimated using the «-decane RF, were typically below the 

instrumental limit of detection (LOD) for the monoterpenes (0.010 ppbv). Due to their 

apparent low abundance monoterpenes other than those measured (Table 5) were not 

considered in the following analysis. 

A time series of the monoterpene mixing ratios measured between 22:00 on July 

24 and 06:00 on August 15 is presented in Figure 14. Measurements of ./(NO2), 

expressed as 10 min average values normalized to the summertime (June to August) 

maximum, 7.9 x 10-3 s_1, reflect relative solar irradiance intensity and delineate daytime 

and nighttime periods. Sunrise, sunset times ranged from -05:27, 20:13 on July 24 to 

-05:50, 19:46 on August 15, as determined using the NOAA Sunrise/Sunset Calculator 

(www.ssrb.noaa.gov/highlights/sunrise/sunrise.html; accessed on May 22, 2009). The 

highest monoterpene mixing ratios were measured during the nighttime hours under calm 

conditions (wind speed <0.5 m s"1) and with more humidity, which may have contributed 

to the nocturnal emissions [Geron et al, 2000]. Previous work demonstrated that the 

nocturnal boundary layer in the region encompassing the THF site can lead to nighttime 

surface enhancements in trace gases with local emissions sources [Talbot et al, 2005; 

White et al, 2008], which likely contributed significantly to the nighttime monoterpene 

maxima. The observed daytime minima in the monoterpene mixing ratios were likely 

driven by increased ventilation of the boundary layer as well as greater oxidation by 

46 

http://www.ssrb.noaa.gov/highlights/sunrise/sunrise.html


hydroxyl radical (OH) and O3 during the daytime despite higher monoterpene emissions 

during the day owing to warmer temperatures [Guenther et al, 1993]. 

Table 5 compares estimated summertime monoterpene fluxes [Geron et al, 2000] 

for forestland encompassing the THF site and average relative ambient monoterpene 

distributions for summer 2004 based on data shown in Figure 14. The flux estimates 

were derived from regional tree species distributions, monoterpene composition and 

emissions at 30 °C [Geron et al, 2000]. The flux uncertainty was within a factor of 2 to 

3, given uncertainties in monoterpene composition, emissions and tree species 

distributions [Geron et al., 2000]. The estimated flux distribution and measured mixing 

ratio distributions were in partial quantitative agreement for the dominant monoterpenes, 

except a greater abundance of camphene than /?-pinene was measured, and /?-myrcene 

was not measured. The measured daytime and nighttime mixing ratio distributions were 

in close agreement, as observed previously at a rural site in Colorado [Roberts et al., 

1985]. 

Based on data collected between 1990 and 1999, land cover in Strafford County, 

in which the THF site is situated, consisted mostly of mixed forestland (-57% of 

forestland) and deciduous tree species (-30% of forestland) [Justice et al, 2002], for 

which monoterpene composition and emissions data were relatively scarce when the 

regional monoterpenes flux estimates shown in Table 5 were compiled [Geron et al, 

2000]. Thus, it is conceivable that local patterns of tree species distribution and 

monoterpene emissions contributed to the differences between the emissions and mixing 

ratio distributions in Table 5. The monoterpenes react rapidly with OH, O3 and the 

nitrate radical (NO3) [Atkinson, 1994; Atkinson and Arey, 2003], and monoterpene 
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oxidation between emission and sampling likely contributed to the measured 

monoterpene distribution at THF. The lifetime of /S-myrcene with respect to reaction 

with O3 is much shorter than for the monoterpenes measured at THF [Atkinson and Arey, 

2003], which might partially explain why /?-myrcene was not measured in ambient air at 

THF, despite the relatively high /?-myrcene emissions flux predicted for the THF region 

[Geronetal, 2000]. 

II.3.2. GC-FID/PTR-MS Toluene Field Intercomparison 

Several laboratory and field intercomparisons among PTR-MS and GC-based 

toluene measurements were conducted previously, with most studies demonstrating good 

quantitative agreement between PTR-MS and the more established chromatography-

based measurement techniques. These include comparison of PTR-MS with (1) GC-FID 

(offline) at a suburban site in the Netherlands during March, 2000 [Warneke et al, 2001]; 

(2) GC-MS, with ion trap and quadrupole MS, at a suburban site in Houston, TX during 

August and September, 2000 [Kuster et al, 2004]; (3) GC-MS aboard a research ship in 

the New England coastal marine boundary layer (CMBL) during July and August, 2002 

[de Gouw et al, 2003a]; (4) GC-FID at a suburban site in Tokyo, Japan during 

November, 2002 [Kato et al, 2004]; (6) GC-FID (offline) at a laboratory biomass 

combustion facility [Christian et al, 2004]; (6) GC-FID (offline) in the Mexico City 

metropolitan area during April and May, 2003 [Rogers et al, 2006]; (7) GC-FID (offline) 

aboard a research aircraft over New England and eastern Canada during July, 2004 [de 
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Gouw et al, 2006]; and (8) GC-MS and GC-FID (offline) aboard a research aircraft in 

the vicinity of Mexico City during March, 2006 [Karl et al, 2009]. 

Analyses coupling GC with PTR-MS (GC-PTR-MS) were also employed to 

determine the specificity of PTR-MS for measuring atmospheric toluene. In air samples 

collected at urban sites (Utrecht, The Netherlands and Boulder, CO) during March, 2001 

and January, 2002 and a remote site in the Austrian Alps during March, 2001 only 

toluene contributed to the PTR-MS mlz = 93 signal [de Gouw et al, 2003b; Warneke et 

al, 2003]. Laboratory GC-PTR-MS measurements showed a- and /?-pinene to yield 

minor quantities of mlz = 93 ion fragments [Warneke et al, 2003]. To accommodate the 

laboratory results de Gouw et al [2003a] fit PTR-MS mlz — 93 signal to a linear 

combination of toluene and either a- or /?-pinene measured by GC-MS using data 

collected in the New England CMBL during summertime. However, they did not obtain 

significant contributions from a- and /?-pinene to PTR-MS mlz - 93 signal under 

conditions of elevated monoterpene mixing ratios. 

Here we compare toluene measurements by GC-FID and PTR-MS from the 

AIRMAP THF monitoring site during the summer of 2004. Figure 15 shows time series 

of toluene mixing ratios measured by GC-FID and PTR-MS from 22:00 on July 24 to 

06:00 on August 15. Overall the two systems tracked each other well from values at or 

near the GC-FID and PTR-MS LODs to maxima of 0.42 ± 0.02 ppbv (GC-FID) and 0.52 

± 0.03 ppbv (PTR-MS). 

The GC-FID and PTR-MS data sets yielded 351 merged samples in which toluene 

was above the LOD for the PTR-MS (0.015 ppbv) and GC-FID (0.005 ppbv), with 

median toluene mixing ratios of 0.085 ± 0.006 ppbv (GC-FID) and 0.085 ± 0.017 ppbv 
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(PTR-MS). For 60% of the merged samples the toluene mixing ratios measured with the 

two systems agreed quantitatively within the combined l a measurement precisions. 

Figure 16 shows a linear correlation plot for the merged data. The parameters of simple 

least squares regression and orthogonal least squares regression (determined using JMP™ 

statistical software) are given in Table 7 (Treatments A and A', respectively). Orthogonal 

least squares accounts for errors in both independent and dependent variables [Tan and 

Iglewicz, 1999] and was applied in a previous intercomparison among ambient PTR-MS 

and GC-MS toluene measurements [de Gouw et ah, 2003a]. As shown in Table 7 the 

results of both regression analyses agree quantitatively in terms of the regression 

parameters and the coefficients of determination. In the following discussion the results 

of different treatments of the PTR-MS toluene data are analyzed in terms of simple least 

squares regression parameters. 

II.3.3. Sources of Interference from Monoterpene Fragmentation 

The C10H16 monoterpenes are typically detected by PTR-MS as the protonated 

molecular ion {mlz =137) and a dominant fragment ion with mlz = 81. As discussed in 

greater detail below mlz = 93 ions may also be generated from monoterpene 

fragmentation in the PTR-MS drift tube. The mlz = 93, 81 and 137 signals were observed 

by PTR-MS in a laboratory study of VOC emissions from Mediterranean holm oak 

[Holzinger et al, 2000], consistent with (1) a biogenic toluene source, as was observed 

from sunflower and Scots pine by GC-MS [Heiden et al, 1999] and alfalfa by GC-FID 

[White et al, 2009], and (2) monoterpene fragmentation in the PTR-MS drift tube [Tani 
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et al, 2003]. In a factor analysis applied to PTR-MS measurements of VOCs in a boreal 

forest during July, 2004 the mlz = 93, 81 and 137 signals loaded strongly on the same 

factor [Rinne et al, 2005]; however, the implications were not discussed. 

Here we discuss several possible sources of interferences in PTR-MS analysis of 

toluene related to simultaneous sampling and analysis of monoterpenes. During the 

period from July 24 to August 15, 2004 toluene and monoterpenes were quantified by 

GC-FID from a total of 600 ambient samples at THF. The ratio of the sum of the 

monoterpene mixing ratio to the GC-FID toluene mixing ratio, hereinafter denoted by 

Aivion, ranged from <0.25 to 31 ± 2, with a median value of 2.4. For the merged data set 

(n — 349) the median value of AMon was 2.6 ± 0.2. By comparison maximum AMon values 

of >5 were reported from measurements made in the Gulf of Maine during summer of 

2002 [de Gouw et al, 2003a]. Thus, it appears we observed relatively large 

enhancements in monoterpenes relative to toluene at the THF site during summer 2004 

and our data provide a unique test of the specificity of PTR-MS for measurement of 

toluene in an atmospheric environment strongly influenced by biogenic monoterpene 

emissions. 

It is expected that the generation of ion products at mlz = 93 by monoterpene 

fragmentation in the PTR-MS drift tube would result in (1) a positive bias in the PTR-MS 

toluene measurements as compared with the GC-FID measurements, and (2) a positive 

correlation between AMon and the magnitude of the PTR-MS bias. An overall positive 

bias of-13% was observed in the PTR-MS measurements as indicated by the slope of the 

least squares regression fit to the merged data in Figure 16 (Table 7, treatment A). 

Although the observed bias is consistent with an additional source of mlz = 93 ions in the 

51 



PTR-MS instrument it could have been introduced in the calibrations or resulted from 

errors in the blank signal quantification and subtraction. Figure 17 compares time series 

of the PTR-MS error (percent difference with respect to the GC toluene 

measurements), hereinafter denoted as £J>TR-MS, and AMOII- Maxima in the values of SPTR. 

MS and Ajvion generally occurred during nighttime but did not appear to be well correlated, 

suggesting qualitatively that interference in the PTR-MS toluene measurements from 

monoterpene fragmentation was unimportant at THF. Quantitative estimates of potential 

interferences in the PTR-MS toluene measurements are presented below. 

II.3.3.1. Reactions with FfrO+. 

Ion products were detected at mlz = 93 in laboratory PTR-MS analyses of six 

monoterpenes, or-pinene [Warneke et al, 2003; Maleknia et al, 2007], /?-pinene 

[Warneke et al, 2003], J-limonene [Maleknia et al, 2007], /-terpinene [Maleknia et al, 

2007], a-terpinene [Lee et al, 2006b], andp-cymene [Tani et al., 2003, 2004; Maleknia 

et al, 2007], and in the analysis of or-pinene and /?-myrcene by selected ion flow tube 

mass spectrometry (SIFT-MS) using H30+ as reagent ion [Schoon et al, 2003]. Table 8 

compares yields of mlz = 93 fragment ions, $93), reported in the literature. When more 

than one set of operating parameters was employed, as in several of the above studies 

[Tani et al, 2003, 2004; Maleknia et al, 2007], fragmentation data chosen for 

comparison in Table 8 correspond with operating parameters most similar to those used 

at THF. When data were not available regarding the fraction of NO+ and C>2+ in the PTR-

MS drift tube, the reported values of $93) were attributed entirely to F^O* reactions; 
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however, contributions from reactions of the parent monoterpenes with NO+ and C>2+ 

should not be ruled out (see below). It is also important to note that fragmentation 

patterns are partly controlled by PTR-MS operating conditions, which differed between 

studies; therefore, the yields reported in Table 8 may differ significantly from the actual 

yields obtained at THF. Table 9 gives the instrumental operating parameters, when 

available, corresponding with the fragmentation yields reported in Table 8 as well as the 

parameters employed at THF during summer 2004. Also given in Table 9 are mean HsO+ 

kinetic energies, KEjon, calculated from the tabulated operating parameters using equation 

(10) [McFarland et al, 1973], 

K E i o n = ~ m . v d
2 + i - M b - v d

2 + | ^ B . r (10) 

where m and Mb are the H30+ and buffer gas molecular weights, respectively, Vd is the 

HaO+ drift velocity, T is the drift tube temperature, and k& is the Boltzmann constant. 

The drift velocity was calculated using equation (11) [de Gouw and Warneke, 2007], 

/ v i v ^ (ii) 
d N 

where //o is the reduced H30+ mobility in the buffer gas, No is the gas number density at 

standard temperature and pressure, E is the electric field strength, and N is the gas 

number density under the experimental conditions. The values of KEi0n in Table 9 allow 

Ff30+-neutral collision energies to be compared between studies. Increasing KEjon 

generally results in greater product ion fragmentation in the PTR-MS drift tube [c.f, Tani 

et al, 2003]. 

Although most previous studies reported values of ^(93) <1% from PTR-MS 

analysis and reaction with H30+ of the monoterpenes measured at THF, two showed 
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$93) >1% from PTR-MS analysis of or-pinene [Warneke et al, 2003; Maleknia et al, 

2007], while one study reported $93) >1% from PTR-MS analysis of /?-pinene [Warneke 

et al, 2003]. Impurities in liquid monoterpene standards employed in previous 

laboratory PTR-MS studies were measured at mlz = 93 [Tani et al, 2003], and it is 

possible that uncharacterized impurities contributed to the maximum $93) value of 12% 

shown in Table 8. However, it is less likely that interference from impurities contributed 

to the high $93) values of 7% measured for a- and /?-pinene in a GC-PTR-MS analysis 

of synthetic gas standards [Warneke et al, 2003]. Therefore, we considered values of 

$93) significantly greater than 1% in quantifying possible interferences from a- and fi-

pinene fragmentation in the PTR-MS drift tube. 

Corrections to the PTR-MS toluene mixing ratios were calculated for reactions of 

H30+ with the measured monoterpenes as shown in Section II.2.2 using values of AMOII 

from the GC-FID measurements; proton transfer reaction rate constants measured 

previously for toluene [Spanel and Smith, 1998], a- and /?-pinene [Tani et al, 2003]; and 

integer values of $93) within the range of those reported previously (Table 8). To 

simplify the analysis we only considered corrections for which the value of $93) for a-

pinene was > that for /?-pinene, consistent with previous observations (Table 8). Table 7 

presents quantitative data comparing the GC-FID and PTR-MS toluene measurements for 

several fragmentation corrections (treatments B to F) applied to the PTR-MS 

measurements. We defined fragmentation corrections that improved quantitative 

agreement between the GC-FID and PTR-MS measurements as those which (1) reduced 

the deviation of the simple least squares regression slope from unity and (2) increased the 

percentage of data for which both instruments agreed within combined measurement 
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precisions. The minimum fragmentation correction used a value of ^(93) = 1% for a-

pinene (treatment B). The best quantitative agreement between the two data sets was 

achieved with ^(93) = 2% for or-pinene and 1% for /?-pinene (treatment C). For treatment 

C the median, 75th and 95th percentile corrections were 3%, 8% and 19%, respectively; 

most of the corrections were within the PTR-MS measurement precision and were 

therefore insignificant. Values of ^(93) >5% for a-pinene (e.g., treatment D) resulted in 

poorer quantitative agreement than for the uncorrected measurements. Thus, our data 

appear to be most consistent with small values of ^(93) for the measured monoterpenes 

and only a minor interference in the PTR-MS toluene measurements from reactions of 

monoterpenes with H30+ in the PTR-MS drift tube. 

II.3.3.2. Reactions with Q?+ and NO+. 

The C>2+ and NO+ ions are formed in low yield in the PTR-MS ion source drift 

region [Hansel et al, 1995; de Gouw and Warneke, 2007], and their reactions with 

monoterpenes were shown to generate products that may interfere with the PTR-MS 

signal at mlz — 93. Reactions of 02+ with a- and /?-pinene, J-limonene, A3-carene, fi-

myrcene, and camphene in the flow tube of a SIFT-MS instrument produced fragment ion 

products with ^93 >10% in all cases (Table 8) [Schoon et al, 2003]. Similarly, reactions 

of NO+ with /?-myrcene yielded fragment ion products with ^(93) = 22% [Schoon et al, 

2003]. Lower yields (<5%) of mlz = 93 products were measured for reactions of NO+ 

with a- and /?-pinene, t/-limonene, A3-carene, and camphene [Schoon et al, 2003]. It is 

important to note that the absence of a strong electric field along the SIFT-MS flow tube 
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results in substantially lower H30+-neutral collision energies in SIFT-MS than in PTR-

MS, as illustrated by values of KEion given in Table 9. Furthermore, the stabilities of 

reaction intermediates are affected by the buffer gas, which differs between SIFT-MS and 

PTR-MS. Table 8 compares values of ^(81) measured for several monoterpenes by 

SIFT-MS, using FbCT as reagent ion, and PTR-MS, illustrating that the extent of 

monoterpene fragmentation (1) was greater at higher ratios of electric field strength to 

gas number density, EIN, in PTR-MS analyses and (2) was significantly greater, by a 

factor of 1.8 ± 0.7(1CT), in PTR-MS (with EIN= 120-150 Td) than in SIFT-MS analyses. 

Accordingly, fragmentation yields from reactions of monoterpenes with C>2+ and NO+ at 

THF likely were significantly higher than those observed by SIFT-MS. 

Corrections to the PTR-MS toluene mixing ratios were calculated for reactions of 

C»2+ with the measured monoterpenes in the PTR-MS drift tube (Table 7, treatment E). 

The calculations used rate constants and fragmentation patterns measured by SIFT-MS 

(Table 8) [Schoon et al, 2003]. At THF the PTR-MS signal at mlz = 32, which we 

attributed to C»2+, was typically <1% of the HsO+ signal during summer 2004, and the 

median correction to the PTR-MS toluene mixing ratios was <1%, while the 95th 

percentile correction was 6%. The quantitative agreement with the GC-FID 

measurements was slightly improved as compared with the uncorrected PTR-MS 

measurements (Table 7); however, the corrections were entirely within the PTR-MS 

measurement precision and therefore were insignificant. Increasing the values of ^(93) 

(Table 8) by a factor of 2 for O^ reactions with the measured monoterpenes, yielding 

^(93) = 100% for a- and /?-pinene, did not significantly influence the results for 

treatment E. Applying corrections for HsO+ and 02+ reactions together (treatment F) did 
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not significantly affect agreement with the GC-FID measurements compared to when 

corrections were applied only for HaO+ reactions. Our calculations suggest that reactions 

of monoterpenes with C>2+ in the PTR-MS drift tube likely resulted in a minor additional 

source of mlz - 93 fragment ions which did not interfere significantly with the measured 

toluene mixing ratios. 

The PTR-MS signal at mlz = 31, with contributions from 15N160+ and likely also 

the protonated molecular ion of formaldehyde (H3CO+) [de Gouw and Warneke, 2007], 

was typically <0.001% of the H30+ signal. The corresponding 14N160+ signal at mlz = 30 

(unmeasured) was calculated to be <0.3%. Thus, considering that values of ^(93) for 

NO+ reactions are generally lower than those for C>2+ (Table 8), reactions of monoterpenes 

with NO+ in the PTR-MS drift tube likely did not significantly affect the measured mlz = 

93 ion current. 

II.3.4. Sources of Interference from Monoterpene Oxidation Products 

Table 10 gives yields of mlz - 93 fragment ions from ozonolysis and 

photooxidation products of several monoterpenes. Reported formation yields for the 

oxidation products are also tabulated. Reactions of HsO+ with oxidation products of a-

pinene and A -carene were shown by SIFT-MS to give fragment ions at mlz = 93 [Schoon 

et al, 2004]. Products from ozonolysis of /?-myrcene and terpinolene were detected by 

PTR-MS at mlz = 93 in a recent laboratory chamber study [Lee et al, 2006a]. In an 

investigation of monoterpene photochemistry by the same group [Lee et al, 2006b] 

photooxidation of /?-myrcene, A -carene, ^-terpinene and terpinolene gave products 
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detected by PTR-MS at mlz - 93 with >5% molar yield, whereas photooxidation of /?-

pinene gave products detected at mlz = 93 with <5% molar yield. Ocimene undergoes 

similar ozonolysis and photooxidation chemistry as /?-myrcene [Reissell et al, 2002], and 

therefore could potentially also yield an additional indirect source of mlz = 93 fragment 

ions in PTR-MS analysis of monoterpenes during periods of active oxidation chemistry. 

In the following discussion we consider production of mlz — 93 fragment ions from 

reactions of identified oxidation products of the monoterpenes measured at THF: 

pinonaldehyde, or-pinene oxide and caronaldehyde. 

II.3.4.1. Ozonolysis Products. 

We used O3 measurements, together with published kinetic data for O3-

monoterpene reactions and product formation yields (Table 10) to estimate production 

rates of pinonaldehyde and a-pinene oxide from ar-pinene ozonolysis, and caronaldehyde 

from A3-carene ozonolysis at THF. Unless otherwise indicated kinetic and product yield 

data from the most recent recommendations of the IUPAC Subcommittee for Gas Kinetic 

Data Evaluation [Atkinson et al, 2006, 2009] and from previous critical reviews 

[Atkinson, 1994; Atkinson, 1997] were used. Local conditions of pressure and 

temperature were used in all kinetic calculations; temperature dependencies have not 

been quantified for oxidation reactions of the majority of the monoterpenes. The 

calculated pinonaldehyde production rates, based on a yield of 16 ± 3% (Table 10), 

ranged from <0.001 to 0.023 ± 0.015 ppbv hr_1, with uncertainty governed mostly by 

contribution from the rate constant [Atkinson et al., 2009]. The measured a-pinene 
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mixing ratios were linearly interpolated between consecutive GC-FID samples to 

estimate pinonaldehyde production rates at 5 min time resolution. Pinonaldehyde mixing 

ratios were estimated by summing the 5 min production rates over 1 hour intervals, and 

ranged from O.001 to 0.023 ± 0.004 ppbv. Corrections to the PTR-MS toluene 

measurements for reactions of H^O+ with pinonaldehyde were calculated as described 

above for reactions of HsO+ and C<2+ with the parent monoterpenes. A value of $93) = 

0.02 (Table 10) and the measured proton transfer rate coefficient for pinonaldehyde 

[Schoon et al, 2004] resulted in negligible, 95th percentile <1%, corrections to the PTR-

MS toluene mixing ratios. The pinonaldehyde mixing ratio estimates bear considerable 

uncertainty since atmospheric loss processes and transport were not taken into account. 

To partially account for the possibility of a higher value of $93) and greater 

pinonaldehyde accumulation in the sampled air, calculations were performed with the 

SIFT-MS value of $93) increased by a factor of 2. With $93) = 0.04 the 95th percentile 

correction remained <1%. Calculated production rates for or-pinene oxide and 

caronaldehyde were considerably lower than for pinonaldehyde, <0.003 and <0.001 ppbv 

hr_1 respectively, therefore it is likely that sampling of a-pinene oxide and caronaldehyde 

from 03-initiated oxidation of a-pinene and A3-carene did not significantly interfere in 

the PTR-MS toluene measurement. 

113.4.2. Photooxidation Products. 

Because no measurements of OH have been made at THF to date the quantitative 

contribution of OH to monoterpene oxidation at THF is highly uncertain. We used a 
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simple approximation of OH concentrations, together with published kinetic data 

[Atkinson, 1989; Atkinson, 1994; Atkinson et al., 2006, 2009] and formation yields for 

monoterpene photoxidation products (Table 10) to estimate production rates of 

pinonaldehyde and caronaldehyde from reactions of OH with a-pinene and A3-carene, 

respectively. Considering only daytime OH chemistry the time rate of change of the 

pinonaldehyde mixing ratio was approximated by equation (12a). 

^ J 1 1 3 = ^ n o n - * O H + Pinon-[PinOn] ( 1 2 a ) 

+Pinon = -Wo-P in ' fPinon ' [ * " P ^ ] • [ O H ] ( 1 2 b ) 

* OH +Pinon = *OH +Pinon ' [ O H J ( 1 2 c ) 

Here Ppinon is the pinonaldehyde production rate, ypi„on denotes the formation yield of 

pinonaldehyde from reactions of OH with or-pinene, and the bracketed terms represent 

concentrations where a-Pin and Pinon stand for or-pinene and pinonaldehyde, 

respectively. Pinonaldehyde mixing ratios were estimated by integrating equation (12a) 

stepwise over twelve consecutive 5 min intervals (1 hr), with the initial condition that 

[Pinon] = 0. For each 5 min interval, the terms Ppjn0n and &'OH + Pinon were calculated from 

the interpolated (5 min intervals) a-pinene mixing ratios and a constant OH concentration 

of 2 x 106 molecules cm-3. The starting value of [Pinon] was taken from integration over 

the preceding interval. Caronaldehyde mixing ratios were estimated analogous to the 

pinonaldehyde estimates. Integration of equation (12a) and the method used for 

estimating pinonaldehyde mixing ratios from opinene ozonolysis are equivalent when 

the second term on the right side of equation (12a) is excluded, which is appropriate for 

the slow 03-carbonyl reactions [c.f, Hakola et al, 1994]. A similar method as outlined 
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above was previously applied to estimate nighttime nitrate radical mixing ratios at the 

AIRMAP atmospheric monitoring station on Appledore Island, Maine [Ambrose et al, 

2007]. The approach is less appropriate here because the pinonaldehyde lifetime may be 

long enough for transport to partially govern its atmospheric mixing ratios. As for the 

pinonaldehyde levels estimated from or-pinene ozonolysis, the mixing ratios estimated 

from OH oxidation bear large uncertainties. The calculated pinonaldehyde production 

rates ranged from <0.001 to 0.11 ± 0.09 ppbv hr_1 based on an upper limit pinonaldehyde 

yield of 87 ± 20% (Table 10). The 1 hr integrated pinonaldehyde mixing ratios ranged 

from <0.001 to 0.10 ± 0.02 ppbv, with maximum values occurring during the early 

morning hours, 06:00 to 07:30. A value of $93) = 0.02 (Table 10) and the measured 

proton transfer rate coefficient for pinonaldehyde [Schoon et al, 2004] resulted in 

negligible, 95th percentile <1%, corrections to the PTR-MS toluene mixing ratios during 

the daytime hours. Measured OH concentrations were shown previously to be strongly 

correlated with solar ultraviolet radiation (UV) [Ehhalt and Rohrer, 2000; Rohrer and 

Berresheim, 2006]. An approximation of OH that is consistent with the observed 

correlations between the OH concentration and solar UV would give lower OH 

concentrations and reduced oxidation rates at dawn, resulting in smaller corrections than 

for the case of a uniform OH concentration. Calculated production rates for 

caronaldehyde were slightly lower than for pinonaldehyde, <0.09 ppbv hr-1, while the 

SIFT-MS value of $93) [Schoon et al, 2004] is only a factor of 1.5 higher for 

caronaldehyde (Table 10). Thus, it is likely that sampling of caronaldehyde from the 

oxidation of A3-carene by OH did not significantly interfere in the PTR-MS toluene 

analysis. 
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In addition to daytime photochemistry, reactions of O3 with alkenes were shown 

previously to generate OH in the dark [Atkinson, 1994]. Yields of OH determined 

previously from ozonolysis of the monoterpenes measured at THF were typically large 

and ranged from <0.18 for camphene to 1.06 (±50%) for A3-carene [Atkinson, 1997]. 

Based on measured nighttime monoterpene and O3 mixing ratios and published kinetic 

data [Atkinson, 1994; Atkinson et ah, 2009] and OH yields [Atkinson, 1997] the median 

nighttime OH production rate at THF was calculated to be -0.03 ppbv hr"1 and 

dominated by a-pinene ozonolysis. For comparison, daytime OH production rates were 

calculated for the reaction sequence (R4) + (R5) using measurements of atmospheric 

pressure, RH, and ./(NO2) and published kinetic data for reactions of singlet oxygen, 

0*0, with N2, 02 , and H20 [Atkinson et ah, 2004]. 

0 3 + / z u - > 0 ' D + 0 2 (R4) 

0 'D + H 2 0 - » 2 0 H (R5) 

Values of J(OlD) were estimated from the ./(NO2) measurements using equation (13), 

which was derived from observations during summertime at a research site in northern 

Germany [Ehhalt andRohrer, 2000]. 

, ( 0 > D ) = ( ^ ) ) 2 (.3) 

The median daytime OH production rate from reactions (R4) and (R5) was calculated to 

be ~0.1 ppbv hr_1, and may represent <25% of the total daytime OH production [Rohrer 

and Berresheim, 2006]. Thus, it is expected that OH made a small but perhaps non-

negligible contribution to nighttime monoterpenes oxidation at THF. Published 

mechanisms for the oxidation of or-pinene by OH require values of 
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VMR(NO)/VMR(Mon) >1 for maximal yield of pinonaldehyde [Pinho et al, 2007]. 

Pinonaldehyde yields significantly lower than the values given in Table 10 were observed 

previously from photooxidation of ar-pinene in the absence of NO [Hatakeyama et al, 

1991]. Nighttime NO levels at THF were typically below the 0.06 ppbv instrumental 

LOD, 95th percentile <0.15 ppbv, and values of VMR(NO)/VMR(Mon) were typically 

<0.01, 95 percentile <0.21. Thus, nighttime OH-initiated production of pinonaldehyde 

and caronaldehyde (by analogy) was expected to be significantly lower than daytime 

production despite higher monoterpene mixing ratios during nighttime. In conclusion the 

above analysis suggests that products of OH-initiate monoterpene oxidation did not 

interfere with the PTR-MS toluene measurement at THF. 

II.3.5. Additional Contributions to PTR-MS Signal at mlz. = 93 

For completeness it should be noted that, in addition to toluene and fragment ions 

produced from monoterpenes and their oxidation products, chloroacetone was also shown 

to yield an mlz = 93 ion (C3H6C10+) when measured via PTR-MS [Warneke et al, 2003]. 

Also, several laboratory studies have attributed PTR-MS measurements of mlz = 93 ions 

to proton-bound ethanol dimers (C4Hi302
+; ((EtOH)2 + H)+) [Steeghs et al, 2004; 

Maleknia et al, 2007]. 
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H.3.5.1. Chloroacetone. 

A potential source of chloroacetone in the atmosphere is chlorine atom-initiated 

oxidation of methacrolein (MACR) [Canosa-Mas et ah, 2001; Orlando et ah, 2003], 

which could be important in certain coastal regions. The THF site was shown previously 

to be influenced during summertime by marine air masses that penetrate inland form the 

Gulf of Maine [Zhou et ah, 2005, 2008]. Likewise, the export of terrestrial air masses 

offshore was observed from trace gas measurements at the AIRMAP atmospheric 

monitoring site on Appledore Island [Ambrose et ah, 2007; White et ah, 2008]. It is 

feasible that under certain conditions the confluence of marine and terrestrial air masses 

upwind of THF facilitated oxidation of MACR by CI atom and subsequent transport of 

the resulting oxidation products over THF. We measured the sum of MACR and methyl 

vinyl ketone (both at mlz = 71) by PTR-MS at THF and estimates of summertime CI 

atom concentrations during 2004 for the Gulf of Maine were reported previously 

[Pszenny et ah, 2007]. However, it is beyond the scope of this work to estimate 

chloroacetone mixing ratios at THF. Chloroacetone is not commonly measured in the 

atmosphere, and its mixing ratios are expected to be low [Warneke et ah, 2003]. It is 

probable that interference in the PTR-MS toluene measurements from chloroacetone was 

minimal at THF. 
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II.3.5.2. Proton-bound Ethanol Dimer (YEtOH)? + H)+. 

Recent PTR-MS measurements of pure ethanol vapor showed ((EtOH)2 + H)+ to 

be the dominant ion product [Maleknia et al, 2007]. However, in a study of root secreted 

VOCs the abundance of ((EtOH)2 + H)+ was reported as a few percent of protonated 

ethanol (mlz = 47; (EtOH + H)+) [Steeghs et al, 2004], and no mlz = 93 signal was 

attributed to EtOH in a GC-PTR-MS study [Warneke et al, 2003]. Experimental and 

computational studies demonstrated that clustering of EtOH molecules occurs in the 

equilibrium vapor over liquid samples, and that cluster size distribution depends on the 

degree of saturation of the vapor phase [Shi et al, 2002; Liu et al, 2007]. It seems likely 

that sampling of pure, saturated ethanol vapor contributed significantly to the abundance 

of ((EtOH)2 + H)+ that was observed previously by PTR-MS [Maleknia et al, 2007]. The 

relative abundance of ((EtOH)2 + H)+ in the PTR-MS analysis of ambient air is expected 

to be at or below the levels (few percent of total product ions) reported in the study of 

root emissions [Steeghs et al, 2004]. We found the mlz = 47 signal to be unreliable for 

measurement of EtOH in ambient air due to low sensitivity and significant interferences. 

Interference in the PTR-MS mlz = 93 signal from ((EtOHh + H)+ cannot be fully 

evaluated from our data, but it is not likely to be significant. 

II.4. Summary 

In the analysis of atmospheric VOCs by PTR-MS, toluene is quantified as its 

protonated molecular ion at mlz = 93. Previous laboratory PTR-MS and SIFT-MS 
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studies suggested additional sources of mlz — 93 ions associated with sampling and 

analysis of several monoterpenes, including fragmentation of the parent monoterpenes 

and their carbonyl oxidation products in the PTR-MS drift tube [Schoon et al, 2003; Tani 

et al, 2003; Warneke et al, 2003; Schoon et al, 2004, Tani et al, 2004; Lee et al, 

2006a, b; Maleknia et al, 2007]. To date, studies dedicated to evaluating the importance 

of these additional mlz = 93 sources in ambient air have not appeared in the literature; in 

general, PTR-MS validation studies have not been carried out in forested environments 

where the largest quantities of monoterpenes and their oxidation products are expected to 

be encountered. 

We conducted a quantitative comparison between GC-FID and PTR-MS toluene 

measurements made at the AIRMAP THF atmospheric monitoring station during the 

summer of 2004. Concurrent measurements of monoterpenes, including a- and /2-pinene, 

camphene, A3-carene, and af-limonene, by GC-FID demonstrated that the monoterpene 

abundance regularly greatly exceeded that of toluene during the nighttime hours under 

calm conditions. The data presented a unique test of PTR-MS specificity for toluene 

measurement in an atmospheric environment heavily influenced by biogenic 

monoterpene emissions. 

The GC-FID and PTR-MS toluene measurements ranged between <0.015 to ~0.5 

ppbv and were generally in good quantitative agreement as observed in previous 

intercomparison studies. An overall -13% positive bias was observed for the PTR-MS 

measurements, but did not correlate strongly with coincident monoterpene enhancements, 

as would be expected if monoterpene fragmentation contributed significantly to the PTR-
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MS signal at mlz = 93. The bias could have been introduced in the calibrations or in 

quantifying the PTR-MS background. 

Potential sources of mlz = 93 fragment ions associated with sampling and analysis 

of monoterpenes by PTR-MS were quantified and included reactions of the measured 

monoterpenes and some of their atmospheric oxidation products with H30+, C>2+ and NO+ 

in the PTR-MS drift tube. Their significance was evaluated in terms of corresponding 

calculated corrections to the PTR-MS toluene mixing ratios. Yields of mlz = 93 fragment 

ions, $93), and kinetic parameters for the associated ion-molecule reactions were taken 

from the PTR-MS and SIFT-MS literature. Kinetic parameters for reactions of the 

monoterpenes and their primary carbonyl oxidation products with O3 and hydroxyl 

radical, together with measured O3 mixing ratios and an assumed constant OH 

concentration were used to estimate mixing ratios for the carbonyls. Our data were most 

consistent with $93) values of a few percent for reactions of H30+ with a- and /?-pinene, 

which resulted in mostly insignificant corrections to the PTR-MS toluene measurements. 

Negligibly small corrections to the PTR-MS measurements were also calculated for 

reactions of the measured monoterpenes with 02+ and NO+. Likewise, levels of the 

monoterpene oxidation products pinonaldehyde, or-pinene oxide and caronaldehyde were 

estimated to be too low to significantly interfere with the PTR-MS toluene measurement. 

Overall, the calculated fragmentation corrections increased by <10% the number of PTR-

MS toluene measurements that agreed quantitatively with the GC-FID measurements. 

Our results suggest that with our PTR-MS operating conditions, under the 

atmospheric conditions encountered at THF, interferences in PTR-MS toluene 

measurement associated with monoterpene sampling is not significant. This work 
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extends the range of atmospheric conditions under which the specificity of the PTR-MS 

technique for atmospheric VOC measurement has been validated. The data interpretation 

methods presented here should be more generally applicable for verifying the extent of 

analyte fragmentation in PTR-MS analysis of ambient air samples. 
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CHAPTER III. 

DEVELOPEMENT OF A GAS CHROMATOGRAPHIC SYSTEM FOR 
MEASUREMENT OF HYDROGEN CYANIDE IN THE LOWER ATMOSPHERE 

III.l. Introduction 

Biomass burning is generally thought to be the major source of hydrogen cyanide 

(HCN) in the atmosphere [Li et al, 2000, 2003; Shim et al, 2007]. Pyrolysis of N-

containing functionalities in the fuel is the primary mechanism proposed for HCN release 

from biomass combustion [Glarborg et al, 2003; Johnson and Kang, 1971]. Hydrogen 

cyanide has been measured from field biomass fires [Hurst et al, 1994; Goode et al, 

2000; Yokelson et al, 2007], and from laboratory biomass combustion systems [Lobert et 

al, 1991; Holzinger et al, 1999; Christian et al, 2004; Becidan et al, 2007]. Elevated 

free tropospheric HCN columns were measured from the International Scientific Station 

of the Jungfraujoch (ISSJ) in the Swiss Alps by solar infrared spectroscopy (IR) during 

1998, coinciding with a period of intense biomass burning in the tropics [Rinsland et al, 

2000]. 

Low HCN mixing ratios were observed in urban plumes off the United States 

West Coast, suggesting that automobile emissions make a small contribution to the total 

global HCN budget [Singh et al, 2003], consistent with previous conclusions [Lobert et 

al, 1991]. It is well known that HCN is an important intermediate in nitric oxide (NO) 

formation in non-N containing fuels [Dagaut et al, 2008]. Variability in the correlation 
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between column abundances of HCN and carbon monoxide (CO), a general combustion 

tracer, measured at ISSJ suggested that fossil fuel combustion sources of HCN could be 

significant [Rinsland et ah, 2000]. Two recent studies reported direct measurement of 

HCN in automobile exhaust [Karlsson, 2004; Baum et ah, 2007]. Positive, though highly 

variable, correlations between HCN and CO were observed in vehicle exhaust plumes at 

a suburban site in Massachusetts during October, 2007 [Knighton et ah, 2009]. 

The significance of biogenic emissions to the global HCN budget has long been 

questioned [Cicerone and Zellner, 1983; Mahieu et ah, 1997; Rinsland et ah, 2000; Singh 

et ah, 2003; Li et ah, 2003; Shim et ah, 2007]. Many plant species are known to produce 

cyanogenic glycosides, which may through enzymatic mechanisms produce HCN [Vetter, 

2000]. A large number of plant species have been shown to be potential HCN emitters 

[Aikman et ah, 1996]. It has been shown for several plant species that cyanogenic 

glycosides and the enzymes responsible for HCN production are separately 

compartmentalized within the plant tissue, which presumably prevents large scale HCN 

release [Poulton and Li, 1994]. Recently, Custer et ah [2000] observed HCN emissions 

from wounded clover using negative ion-chemical ionization mass spectrometry (NI-

CIMS) with HO~ as reagent ion. 

The atmospheric chemistry of HCN was described in detail previously [Cicerone 

and Zellner, 1983], with some modifications discussed recently by Kleinbohl et ah 

[2006]. Reaction with hydroxyl radical (OH) in the troposphere was shown to be the 

primary gas-phase loss mechanism for HCN in the atmosphere, imposing a lifetime of a 

few years. Reaction with singlet oxygen (0 !D) was estimated to become important in the 

lower stratosphere. Uptake to the ocean was recently shown to potentially be the 
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dominant atmospheric sink for HCN [Li et ah, 2000]. Estimates of the HCN lifetime 

with respect to ocean uptake range from 2 to 5.3 months [Li et ah, 2001, 2003; Singh et 

ah, 2003]. Details of the ocean sink mechanism are lacking at this time. 

Although HCN does not appear to play a significant role in atmospheric 

chemistry, it may represent an important N-source in remote oceanic environments [Li et 

ah, 2000]. Additionally, it may be a useful tracer for biomass burning emissions 

[Yokelson et ah, 2007]. Finally, biogenic production of HCN and carbonyl compounds, 

which do play an important role in atmospheric chemistry [e.g., Singh et ah, 1995], are 

known to be associated [Vetter, 2000]. Considerable uncertainties remain regarding 

contributions to the HCN source budget on regional and global scales. Measurements in 

the lower atmosphere may provide the best means for reducing such uncertainties, but are 

lacking at this time. 

Most previous atmospheric HCN measurements were made using solar IR 

spectroscopy [e.g., Rinsland et ah, 2007]. In-situ measurements were first made in the 

stratosphere by negative ion-chemical ionization mass spectrometry (NI-CIMS) [e.g., 

Schneider et ah, 1997]. Later, in-situ measurements in the troposphere were made by (1) 

matrix-isolation Fourier transform IR (FTIR) spectroscopy performed offline on grab 

samples of biomass burning plumes [Hurst et ah, 1994], (2) long-path FTIR spectroscopy 

within biomass burning plumes [Goode et ah, 2000; Yokelson et ah, 2007], (3) a GC 

system, using a reduction gas detector [Singh et ah, 2003], (4) NI-CIMS using CFsO" as 

reagent ion [Crounse et ah, 2006; Yokelson et ah, 2007], and (5) proton transfer reaction-

mass spectrometry (PTR-MS) [Knighton et ah, 2009]. In-situ measurements of 

background HCN levels by IR spectroscopy have not been reported. Instruments based 
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on NI-CIMS typically exhibit reduced sensitivity at elevated H2O vapor pressures 

[Crounse et al, 2006]; therefore their use has been inhibited in much of the lower 

atmosphere. The low proton affinity of HCN [Holzinger et al, 1999] and potential 

interference from ethene [Knighton et al, 2009] have complicated measurement of HCN 

in the atmosphere by PTR-MS, though these issues may be overcome through calibration. 

Only one report of in-situ surface measurements has appeared in the literature [Knighton 

et al, 2009]. 

In order to improve our understanding of the role of HCN in the atmosphere a GC 

instrument, incorporating a flame thermionic detector (FTD), was developed and 

deployed for atmospheric measurement of HCN at the AIRMAP atmospheric monitoring 

station THF2 during a weeklong period in April, 2009. A detailed description of the 

instrument and tests performed during its development is given in Section III.2. Results 

obtained during the initial testing phases as well as ambient measurements are presented 

in Section III.3. Conclusions and suggestions for further study are given in Section III.4. 

III.2. Experimental 

IH.2.1. Measurement Site Location 

The GC-FTD instrument was deployed for ambient measurements between April 

2 and 9, 2009 at the University of New Hampshire's AIRMAP atmospheric monitoring 

station at Thompson Farm (THF2; 43.1078 °N, 70.9517 °W, 40 m elevation above sea 

level (a.s.l)), located within a stand of mixed hardwood/pine forest ~320 m from the 
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original Thompson Farm monitoring station (THF). Construction of THF2 began during 

the 2007-2008 winter and the station was brought on-line for atmospheric monitoring 

during the summer of 2008. At THF2 a 24 m observation tower extends above the 

surrounding forest canopy. Ambient air was drawn at -1500 STP 1 min-1 (standard 

temperature of 273 K and pressure of 1 arm, respectively) through a PFA Teflon-lined 

aluminum manifold from the top of the tower using a Gast R7-Series regenerative blower 

(Gast Manufacturing, Inc., Benton Harbor, MI). Sub-samples were directed to a suite of 

trace gas analyzers, including the GC-FTD instrument, housed at the base of the tower. 

The temperature in the instrument room was maintained at -22 °C between April 2 and 9 

when an analysis of ambient air was performed. 

III.2.2. Configuration of the GC-FTD Instrument 

Figure 18 shows a schematic of the GC-FTD instrument. The HCN calibration 

standard was a permeation tube source (VICI Metronics, Inc., Poulsbo, WA) contained in 

a glass chamber, which was temperature-regulated using an OMEGA CN76000 Series 

temperature controller (OMEGA Engineering, Inc., Stamford, CT). Standard samples of 

HCN were prepared in ultra high purity (UHP) N2 (Maine Oxy, Auburn, Maine) using an 

MKS type 1479A mass flow controller (MKS Instruments, Inc., Andover, MA) coupled 

with an MKS type 247D digital readout. The flow controller accuracy was checked with 

a Gilibrator System flow calibrator (Gillian Instrument Co., now Sensidyne, Clearwater, 

FL). The standard samples were further diluted in zero air to ambient levels (-0.01 to 1 

ppbv) using a commercial zero air generator (Apel Riemer Environmental, Inc., 
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Broomfield, CO). Sample volumes of 250 STP cm3 were concentrated at -110 °C in a 20 

cm x 0.3175 cm i.d. Silonite-coated loop (Entech Instruments, Inc., Simi Valley, CA) 

packed with 1 mm diameter glass beads (Ohio Valley Specialty Co., Marietta, OH) and 

contained in an MMR model CC2202 Cryofocus System (MMR Technologies, Mountain 

View, CA; see Sive et al. [2005] for further details). Prior to their capture samples were 

dried at -30 °C in a second 20 cm x 0.3175 cm i.d. Silonite-coated loop (Entech 

Instruments, Inc., Simi Valley, CA) contained in the Cryofocus System. Sample 

injections were performed in UHP He onto a 25 m x 0.32 mm i.d., 5 um film thickness 

CP PoraBOND Q column (Varian, Inc., Palo Alto, CA) using a VICI 8-port switching 

valve (SV) (Valco Instruments Company, Inc., Houston, TX). According to the 

manufacturer's specifications the CP PoraBOND Q column is a bonded porous polymer 

PLOT column exhibiting low bleed and high stability under exposure to water. A similar 

type of stationary phase, in combination with an FTD, was previously employed for 

separation of cyanides from the headspace of blood samples [Seto et al, 1993]. The 

sample dehumidification and capture loops, Cryofocus System and 8-port SV were 

incorporated in a custom built, fully automated sample acquisition system that was 

described in detail in a previous publication [Sive et al, 2005]. For measurement of 

HCN, an additional 4-port SV (VICI) was incorporated into the sample acquisition 

system to permit isolation of the sample capture loop between sample trapping and 

injection (Figure 18). The column and a Shimadzu FTD (Shimadzu Corporation, 

Columbia, MD) were housed in a temperature programmed Shimadzu model 2014c GC. 

The GC oven temperature program was 40 °C for 7.5 min, 15 °C min"1 to 150 °C, 150 °C 

for 4 min. The FTD was operated at 200 °C and a constant voltage of 80% relative to 
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maximum. The carrier flow rate at the initial column temperature was 21.6 ± 0.2 ( la) 

STP cm3 min-1 as measured with a Hewlett Packard soap bubble flow meter. The 

makeup gas was UHP He at a nominal flow rate of ~10 cm3 min-1, while UHP H2 and 

purified ambient air from an Aadco 737-series Pure Air Generator (Aadco, Cleves, OH) 

were also supplied to the FTD at nominal flow rates of ~1 cm3 min-1 and -100 cm3 

min-1, respectively [Shimadzu Corporation, 2004]. Activated charcoal/molecular sieve 

traps, prepared in-house and purchased from Ohio Valley, were used with all cylinders 

for further purification. Additionally, a VICI HP2 helium purifier was used for the He 

carrier gas. Gas transfer lines were constructed of Silcosteel (Restek, Bellefonte, PA) and 

PFA 450 Teflon (E & S Technologies, Inc., Chelmsford, MA) of varying i.d. 

The operational protocol of the instrument was as follows (refer to Figure 18): 

stage 1, cool: Tl and T2 cooled in preparation for sample acquisition; stage 2, flush: inlet 

lines flushed with ambient air or standard to condition prior to trapping; stage 3, trap: 

sample dehumidified in Tl and trapped in T2; stage 4, flush: inlet lines flushed with UHP 

He to purge residual sample constituents; stage 5, trap: UHP He trapped to displace O2 

and O3 form the loop; stage 6, desorb: T2 isolated and heated to vaporize trapped HCN; 

stage 7, inject: sample injected in UHP He; stage 8, bake: Tl and T2 heated and flushed 

with UHP He in preparation for the next sample. Table 11 indicates the positions of the 

valves in Figure 18 during each sample cycle stage. 
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III.2.3. Instrument Development 

Several configurations that differed from the description in Section II.2.2 were 

tested during development of the HCN instrument and are illustrated in Figures 19 and 

20. They included (1) a 60 m x 0.32 mm i.d., 1 jum film thickness Carbowax 20M 

column (Ohio Valley), (2) a VICI model D-2 pulsed discharge helium ionization detector 

(PDHID) [Wentworth et al, 1994; Forsyth, 2004], (3) a Shimadzu flame ionization 

detector (FID), and (4) a separate VICI 6-port SV and gas transfer manifold for manual 

sample injection. Additional MKS mass flow controllers were of type 1179A and 

1479A. Carbowax 20M was first selected as chromatographic stationary phase because a 

similar polyethylene glycol (PEG) stationary phase was used earlier in a GC instrument 

for measurement of HCN on an aircraft platform over the western Pacific [Singh et al, 

2003]. We tested an FID for measurement of HCN because the FID is used routinely for 

measurement of atmospheric hydrocarbons in our laboratory and others [Apel et al, 

2003b], and to the best of our knowledge the sensitivity of the FID to HCN was not 

reported previously. Our motivation for testing a PDHID was that ~10-fold higher 

sensitivity to <Cg organics was observed previously for the PDHID compared with the 

FID [Wentworth et al, 1994]. 

ffl.2.3.1. PDHID Experiments. 

Experiments conducted with the PDHID used only the Carbowax 20M column. 

Standard samples were prepared primarily in UHP He, although UHP N2 and zero air 
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matrices were also analyzed. Sample injections were performed using a VICI 6-port SV 

with 0.2159 cm i.d. Silcosteel loops of varying length (yielding volumes of 5, 10 and 15 

cm3) at room temperature (Figure 19a, b) or the glass bead packed Silonite-coated loop in 

the Cryofocus System (Figures 19c, 20). The column and detector were housed in a 

Shimadzu model 17A GC. The PDHID was operated primarily at 40 °C, although 

several testes at 100 °C were performed. The discharge gas was UHP He, further 

purified with a VICI HP2 He purifier and supplied to the detector at 11 ± 2 to 1 2 7 ± 6 

cm3 min-1, as determined by calibration with the soap bubble flow meter. For several 

experiments a 4-port SV and water bubbler with deionized water were used for 

humidification of standard samples (Figure 19). To test the system performance with a 

matrix similar to ambient air the standard dilution components were configured as shown 

in Figure 19d, which enabled standards to be prepared in UHP N2 and further diluted in 

zero air. The zero air generator was supplied with laboratory air. To overcome 

interference from N2 in the HCN analysis a 4-port SV and UHP He cylinder were 

incorporated as shown in Figures 19 (c, d) and 20 so that the sample enrichment loop 

could be purged of N2 prior to injection of samples prepared in N2 and NVzero air 

matrices. The configurations in Figures 19a and 20 allowed for reduced consumption of 

the UHP N2 diluent when preparing standard samples. 

III.2.3.2. FID Experiments. 

Experiments with the FID used the VICI 6-port SV, 5 cm3 Silcosteel loop, 

Carbowax 20M column and Shimadzu 17A GC (Figure 19a). The sample diluent gas 
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was UHP He. The FID was operated at 250 °C and was supplied with UHP H2 and ultra 

zero air (Maine Oxy) at nominal flow rates of ~70 and ~550 cm min , respectively 

[Shimadzu Corporation, 1995]. 

IH.2.3.3. Preparation of an Acetonitrile Qualitative Standard. 

Headspace vapor from a ~3 ml glass vial containing ~1 ml of HPLC grade 

CH3CN (EMD Chemicals, Inc., Gibbstown, NJ) was drawn with a syringe through a 

Parafilm cover (American National Can™, Greenwich, CT) and diluted in ambient air at 

the inlet of an evacuated (P ~ 1.5 x 10~2 Torr) 1 1 electropolished stainless steel canister. 

The canister was previously flushed with ambient air. After filling with dilute CH3CN 

vapor the canister was pressurized with ambient air to 20 ± 10 psig with a metal bellows 

pump. The ambient temperature was estimated to be in the range -10 to 10°C, over 

which the CH3CN vapor pressure was calculated to range between 14 and 42 Torr based 

on literature data [Lide, 2008]. Assuming >90% transfer of the headspace gas the HCN 

mixing ratio in the pressurized canister was calculated to be ~2 to 4 ppmv. For analysis 

the CH3CN canister was connected to the sample inlet of the SSV (Figure 18b) with a tee 

fitting; the canister was temporarily opened during trapping of an ambient sample to 

introduce a small volume of standard into the sample stream. 
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III.3. Results and Discussion 

III.3.1. Sample Dehumidification and Enrichment 

A range of temperatures for sample dehumidification and enrichment were tested 

using the instrument configurations shown in Figure 19b and 19c, respectively. The 

experiments were designed to determine (1) the minimum dehumidification loop (Tl) 

temperature at which HCN loss was negligible and (2) the maximum sample enrichment 

loop (T2) temperature that yielded 100% HCN trapping efficiency. For the Cryofocus 

System used the Tl temperature range was limited to values > -30 °C. 

To quantify potential HCN loss in Tl the system response to standard samples 

was measured for Tl temperatures between -30 °C and 30 °C. Standard samples were 

prepared at 46 ± 5 ppbv in UHP He; the mass of HCN injected was 0.8 ±0 .1 ng. 

Compared to the system response for r(Tl) = 30 °C the relative response for T(T1) = -30 

°C was 1.00 ± 0.01 (la; n = 2), indicating that HCN was passed through the sample 

dehumidification loop with 100% efficiency at the minimum achievable Tl temperature. 

Thus it was concluded that a Tl temperature of -30 °C was optimal for sample 

dehumidification. 

The instrument configuration shown in figure 19b was modified such that RH and 

temperature of the effluent from Tl could be sampled with a Testo model 605-H1 Mini 

Thermohygrometer (Testo, Inc., Flanders, NJ). Dry (RH <5%) and humidified UHP He 

were mixed to an average measured final humidity of 57 ± 4 % (la; n = 9) at 22.6 ± 0.7 

°C (room temperature). The measured humidity compared favorably with a value of 63 ± 
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7 % calculated based on the gas flow rates, temperature, pressure, and H2O saturation 

vapor pressure (/?°(H20)) data from the literature [Lide, 2008]. A linear regression fit to a 

plot of ln(p°(H20)) versus Tx for temperatures in the range 5 °C to 25 °C yielded m — 

AHvap(n20)-ICl = 5348 ± 8 K and b = 21.11 ± 0.03, where A//vap(H20) is the enthalpy of 

vaporization for H2O. The uncertainty in the calculated RH represents contributions from 

the flow rates (<5%), temperature (0.5 °C), pressure (assumed to be ~1 to 2 psi), and the 

fit to the literature/>°(H20) data. A portion of the humidified He was flowed through Tl 

at -200 STP cm min and the effluent humidity was measured as a function of the Tl 

temperature in the range -30 °C to 30 °C. The H2O trapping efficiency, s, was calculated 

as the relative difference between the calculated (calc) and measured (meas) effluent RH. 

e = ^±h^—"^mcas -100 (1) 

Figure 21 shows a plot of the measured H20 trapping efficiency as a function of Tl 

temperature. The corresponding measured RH and calculated H2O partial pressures 

(p(H20)) are indicated. With 7/(Tl) < -20 °C the measured values of s were >90%, while 

RH and pQljO) were reduced to <5% and <1 Torr, respectively. For analyses with the 

Cryofocus System the mass of H20 in each sample was estimated from the measured or 

calculated input RH and the trapping efficiency data of Figure 21. 

Figure 22 shows a plot of the relative PDHID response to standard HCN samples 

for T2 temperatures ranging between -150 °C and -90 °C. A relative response of unity 

represents 100% trapping efficiency. The HCN mixing ratio in the standard samples was 

46 ± 9 ppbv, while the sample flow rate and volume were 198 ± 7 STP cm3 min-1 and 50 

± 2 STP cm3, respectively, corresponding with injections of 2.8 ± 0.2 ng of HCN. 

Standard samples were prepared in UHP He. Error bars in Figure 22 represent 
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uncertainties in the permeation tube emission rate (±5 ng min"1), the dilution system flow 

rates (<5%) and the sample trapping time (~0.5 s). The trapping efficiency was 

determined to be 100% within the measurement uncertainties for T2 temperatures <—110 

°C. Therefore, -110 °C was taken to be the optimal T2 temperature for HCN analysis. 

III.3.2. Results with PHDID and FID 

III.3.2.1. Response Comparison between PDHID and FID. 

The response of the PDHID to HCN was compared with that of the FID for 5.00 ± 

0.05 cm3 samples of 9.7 ± 0.7 ppbv HCN in dry He using direct loop injection (Figure 

19a). The mass of HCN analyzed was 0.059 ± 0.006 ng. The PDHID response (2.1 ± 0.3 

x 104 AU ng-1; AU, peak area unit) was 14 ± 3 times higher than that of the FID (1.5 ± 

0.3 x 103 AU ng"1) with comparable precision of ±6% and ±17% (la, n = 7) for the 

PDHID and FID, respectively. The method detection limit (MDL) [Lavagnini and 

Magno, 2006] with respect to HCN was estimated to be 0.015 ± 0.002 ng and 0.032 ± 

0.006 ng for the FID and PDHID, respectively, using equation (2). 

MDL = 3.14 a (2) 

Here, a is the standard deviation in the analytical response to standard samples (n = 7) 

containing analyte quantities 2 to 5 times larger than the expected MDL [Lavagnini and 

Magno, 2006]. In this work the ratio of HCN mass injected to estimated MDL 

(winj/MDL) was 3.9 ± 0.6 and 1.8 ± 0.4 for the PDHID and FID, respectively. Table 12 

gives, as a function of HCN mixing ratio, sample volumes required to yield a detectable 
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HCN signal, based on the estimated MDLs. Corresponding sample acquisition times for 

a nominal flow rate of 200 STP cm mm are also given. A study using an atmospheric 

chemical transport model suggested minimum annual average HCN mixing ratios in the 

range of 0.010 to 0.100 ppbv in the marine boundary layer [Li et ah, 2000]. A median 

HCN mixing ratio of 0.130 ppbv was reported from air-born measurements made at 

altitudes <2 km in relatively unpolluted air masses over the Northwestern Pacific [Singh 

et ah, 2003]. The THF site is 24 km from the Gulf of Maine and is frequently influenced 

by marine air masses [Zhou et ah, 2005, 2008]. It is therefore feasible that HCN mixing 

ratios near the minima measured and predicted for the marine boundary layer could be 

encountered at THF. Boundary layer dynamics were shown previously to strongly 

influence trace gas mixing ratios at the THF site, with some compounds (e.g., ozone (O3) 

and methanol (CH3OH)) depleted at the surface during nighttime beneath a low altitude 

boundary layer inversion [Talbot et ah, 2005; Mao et ah, 2006]. The behavior of HCN 

under similar conditions is unknown and the possibility of depletion events cannot be 

ruled out. Therefore, an analytical system capable of quantifying HCN at mixing ratios 

as low as 0.010 ppbv is desirable. The data in Table 12 demonstrate that the response of 

the FID and PDHID should be adequate to quantify HCN mixing ratios of >0.100 ppbv. 

The sample volumes necessary to quantify HCN with either detector are expected to be 

impractically large for HCN mixing ratios <0.010 ppbv, although the PDHID may be 

capable of measuring HCN down to 0.010 ppbv. 
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III. 3.2.2. Response of the PDHID to Permanent Gases. 

The PDHID is a universal detector and responds to atmospheric permanent gases 

(e.g., O2, N2), H2O and common inorganic pollutants including carbon monoxide (CO) 

and carbon dioxide (CO2) [Wentworth et al, 1992; Forsyth, 2004]. To determine 

potential interferences from several common atmospheric inorganic and organic gases, 

analyses were performed for samples of (1) UHP N2 diluted with UHP He, (2) humidified 

UHP He (Figure 19c), (3) a synthetic blend of methane (CH4), acetylene (C2H2), ethane 

(C2H6), CO, and CO2 in N2, and (4) catalytic-converter prepared zero air (Figure 19d). 

Retention times for N2 and H2O were determined from (1) and (2), respectively, while 

those for the remaining gases tested could not be individually assigned. 

Figure 23 shows chromatograms for blank UHP He samples and a standard 

sample prepared in UHP N2/zero air. For the standard sample, the sample enrichment 

loop (T2) was purged with ~70 STP cm3 UHP He following sample trapping. Traces of 

N2 and H2O were present in all samples analyzed. An N2 peak is clearly observable in 

the blank and standard chromatograms in Figure 23, while an H2O peak is also 

observable in the latter. The HCN peak was well resolved from N2, H2O, the light 

hydrocarbons analyzed in (3), and other inorganic atmospheric gases present in the zero 

air matrix. However, it should be noted that the HCN peak was obscured by a broad N2 

tail when T2 was not purged with He between sample capture and injection. 

Additionally, the PDHID background signal appeared to increase significantly with the 

amount of water trapped in T2. The measured RH value for the zero air was 15 ± 3% 

(equivalent to the laboratory air) at the time the standard chromatogram shown in Figure 
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23 was recorded. Although the observed background signal enhancement was fairly 

reproducible it was accompanied by an undesirable increase in the baseline slope with the 

GC temperature program, which would be expected to reduce measurement precision in 

ambient air samples. The background signal enhancement appeared to increase with 

detector temperature. 

HI.3.2.3. Blank Measurement with PDHID. 

Method blanks were periodically analyzed during all phases of the instrument 

development. Blank samples were typically prepared with the HCN permeation tube 

removed from the permeation oven. Non-zero HCN levels were usually detected in the 

blanks and were calculated to range from <1% to ~25% of the standard mixing ratio. 

Several experiments were performed to characterize the blank response and are described 

below. Their results were used to quantify contributions of the standard dilution system 

components to blank HCN levels observed. 

The standard dilution system shown in Figure 19a was reconfigured to isolate its 

components as illustrated in Figure 24. The HCN chromatographic peak area 04HCN) was 

measured for blank samples prepared with each configuration. The measured peak areas, 

diluent flow rates (/), sample loop volume (V) and response (R) were used to calculate 

HCN emission rates (e°) for the isolated components (equation (3)), where it was 

assumed that surface desorption of HCN was the primary source of HCN in the blank 

samples. Blank responses were typically higher after (1) the system was left stagnant 
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overnight and (2) analysis of high concentration standards, consistent with an HCN 

desorption model. 

The calculated value of e° for the permeation oven was 2.6 ± 0.3 ng min-1, which was 

~2% of that for the permeation tube standard. Values of e° for the remaining components 

were calculated to be factors of ~20 to 50 lower than for the oven. The overall 

contribution to HCN in the blanks was attributed mostly to a single flow controller which 

had earlier been exposed to relatively high HCN mixing ratios. To assess the validity of 

the blank source apportionment the calculated emission rates were used to predict blank 

responses for the configuration shown in Figure 19a. For the day on which the emission 

rates were estimated, the measured HCN chromatographic peak area, 522 ± 23 AU (la; n 

= 2), appeared to agree well with the calculated value 597 ±167 AU, which supported the 

validity of the assumed desorption model and the measured blank source apportionment. 

The calculated blank HCN concentration decreased significantly over the course of 

several days following the emission rate determination, suggesting decreasing emission 

rates for the standard dilution system components. Blank responses predicted using 

emission rates reduced in proportion to the calculated blank HCN concentration reduction 

are compared with the measured responses in Figure 25. The initial blank responses (i.e., 

522, 597 AU) are also plotted. As shown in Figure 25, the measured and predicted blank 

responses were in good agreement and therefore appeared to be described fairly well 

according to the assumed desorption model and the measured blank source 

apportionment. 
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The emission rate estimates and equation (3) suggested that the relative blank 

response could be reduced by (1) reducing the HCN concentration in the standard 

dilution system and (2) increasing the flow rates through the permeation oven and 

downstream components. The HCN concentration could be reduced independent of 

diluent flow rate by reducing the total internal pressure of the standard dilution system. 

Although the result in (2) was confirmed experimentally, practical limitations were 

imposed by the HCN standard permeation rate and the desire to maintain reasonable 

diluent gas economy. Thus, nonzero blank HCN levels had to be tolerated. For future 

work it is recommended that a standard with at least a 10-fold lower permeation rate 

and/or an N2 generator for the diluent gas supply be used. 

IH.3.2.4. Long Term Stability of PDHID Response. 

Here the stability of the GC-PDHID instrument over the entire period of 

laboratory testing is assessed. Figure 26 shows a plot of the PDHID response to HCN 

(expressed as chromatographic peak area units (AU) per pg of HCN injected) as a 

function of the number of sample injections performed. The data in Figure 26 are labeled 

by diluent gas and sample loop configuration. In addition to different diluent gases and 

loop configurations, a range of discharge gas flow rates (~11 ± 2 to 127 ± 6 cm3 min-1) 

were used. It is clear from Figure 26 that the PDHID response decreased significantly 

over the course of testing, and the decreasing trend appeared to dominate over any 

variations resulting from changes to the sample matrix, instrument configuration and 

operating parameters. 
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Significant response drift with time does not appear to be a common feature of the 

PDHID detector. However, it is feasible that contamination of the discharge electrodes 

would result in loss of response. The discharge electrodes may become contaminated 

under operating conditions where any of the following parameters exceed an empirical 

threshold value: (1) column flow rate; (2) column bleed [Valco Instruments Co. Inc., 

1998]; (3) organic analyte concentration [Wentworth et al, 1994]. Finally, exhaustion of 

the discharge gas purifier, which was not tested, would have resulted in higher levels of 

impurities in the discharge gas, which would have facilitated contamination of the 

discharge electrodes. In the detector and carrier gas inlet configuration of the VICI 

PDHID used in this work, the discharge electrodes are purged by the discharge gas, 

which minimizes exposure of the discharge electrodes to impurities in the column 

effluent. A minimum discharge flow rate of 30 cm3 min-1 is specified by the 

manufacturer [Valco Instruments Co. Inc., 1998]. 

Preliminary tests with the PDHID demonstrated that higher response was 

achieved at lower discharge flow rates, and for most of the time during which the PDHID 

was operated the discharge flow rate was 18 ± 2 to 25 ± 3 ml min"1. Comparable carrier 

gas flow rates were estimated based on the measured N2 retention time and the estimated 

volume of the components between the sample loop and the detector. Therefore, the gas 

flow rates to the PDHID may have been inadequate to safeguard against contamination of 

the discharge electrodes. 

It was previously reported that degradation of Carbowax 20M stationary phases is 

accelerated by traces of H2O and O2 [Barry, 2004], suggesting that such phases should 

not be suitable for chromatographic analysis of ambient air. It is possible that 
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degradation of the Carbowax 20M stationary phase following injections of samples 

containing air and water vapor resulted in increased column bleed, which would have 

facilitated contamination of the detector. It should be noted that the vast majority of 

samples analyzed over the time period represented in Figure 26 were prepared using 

relatively dry cylinder gas. 

In this work the HCN mass analyzed was on the order of a few ng or less, which 

appears to be well within an acceptable range for organic analytes based on previous 

work [Wentworth et ah, 1994]. 

The PDHID baseline noise was observed to increase with temperature; therefore, 

a low operating temperature of 40 °C was selected. After several months of operation at 

40 °C the detector temperature was temporarily increased to 100 °C. Subsequently, the 

background signal increased significantly, probably as a result of re-volatilization of 

compounds that condensed during operation at 40 °C. The background level recovered 

when the detector temperature was reset to 40 °C; therefore, baking the detector did not 

appear to affect response. 

III.3.3. Results with FTP 

III.3.3.1. Dependence of Response on Detector Bead Voltage. 

Figure 27 shows a plot of the FTD response to HCN measured as a function of the 

detector voltage. Measurements were performed using the instrument configuration 

shown in Figure 20. The HCN mass analyzed was 1.2 ± 0.1 ng. The GC temperature 
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program was as given in Figure 22. As shown in Figure 27 near zero response to HCN 

was observed below a threshold voltage of-70%. The response appeared to maximize at 

voltages between 85% and 90%, and declined at higher voltages. 

III.3.3.2. Response Comparison and MDL. 

The FTD response and MDL with respect to HCN were determined based on an 

analysis of standard samples of 0.068 ± 0.008 ng HCN (0.22 ± 0.03 ppbv) prepared in 

UHP N2. Components for sample acquisition and standard dilution were configured as 

shown in Figures 18b and 20, respectively. The FTD response was 1.07 ± 0.08 x 106AU 

ng-1 and therefore higher than that of the PDHID by a factor of-50. It should be noted 

that FTD detectors are known to exhibit loss of response with operation time [Colon and 

Baird, 2004], the rate of decrease for the Shimadzu FTD being proportional to the 

detector bead voltage [Shimadzu Corporation, 2004]. The response given above was 

-50% below the maximum response measured with a newly conditioned detector bead. 

The FTD MDL for HCN was determined to be 0.012 ± 0.001 ng, with a measurement 

precision of ±4% (la, n - 7). This MDL value corresponds with an HCN VMR of-0.04 

ppbv at a trapping volume of 250 cm3. The FTD MDL is compared with those for the 

PDHID and FID (Section III.3.2.1) in terms of sampling requirements in Table 12. 

Despite the FTD response to HCN being much larger the MDL for this detector did not 

appear to be significantly lower than that of the PDHID. However, the value of 

Wjnj/MDL at which the FTD MDL was determined (5.6 ± 0.8) was significantly higher 

than for the PDHID MDL determination. It may be appropriate to scale down the FTD 
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MDL based on the difference in mmj/MDL. The modest improvement in detection was 

accompanied by a major improvement in selectivity (see below). 

III.3.3.3. Carrier Gas Flow Rate. 

The carrier gas flow rate through the PoraBOND Q column was measured as a 

function of carrier pressure, in the range 30 to 130 psig, and column temperature, in the 

range 40 to 110 °C, (Figure 28) using the Hewlet Packard flow meter. The flow meter 

temperature was measured with a Fluke IR thermometer (model 63, Everett, WA); the 

surface probed was an area of the body that was covered with flat black adhesive tape. 

Measured flow rates were normalized to 0 °C, but were not corrected for water vapor 

partial pressure. The decrease in carrier flow rate (at constant pressure) with increasing 

temperature (Figure 28) results from increased viscosity of the carrier gas [Bartram, 

2004], and possibly also flow restriction via swelling of the column stationary phase. 

IH.3.3.4. Influence of Injection Parameters on HCN Chromatographic Analysis. 

Figure 29 compares several standard chromatograms recorded as a function of 

injection temperature (Jinj), which was varied by adjusting the time delay between the 

start of sample desorption and injection. The HCN mixing ratio was 1.0 ± 0.1 ppbv, 

while the HCN mass injected was 0.30 ± 0.04 ng. With rinj below the HCN boiling 

temperature (rb(HCN) = 26 °C [Lide, 2008]) the HCN peak was broad and irregular, 

while significant improvement in peak shape was observed with Tm^ well above Tb(HCN). 
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As 7inj was increased above the HCN melting temperature (rm(HCN) — —13 °C [Lide, 

2008]) the chromatographic peak area decreased significantly, consistent with a loss of 

sample from the injection volume. The apparent loss of sample may be attributed to 

pressure driven flow induced by increasing temperature in the sample enrichment loop 

during desorption. The measured peak areas suggest sample loss was 28 ± 4% for Tmj in 

the range 56 to 85 °C. A 4-port SV was incorporated in the instrument to isolate the 

sample enrichment loop and prevent sample outflow during desorption (Figure 18). 

Figure 29 shows a chromatogram recorded with the sample enrichment loop isolated 

during desorption and Tmj = 83 °C (sample 016). For samples injected at high 

temperature (in the range of 56 to 85 °C) and T2 isolated during desorption the average 

peak area was 15 ± 8% lower than for samples injected at low temperature (Tmj = -70 

°C), indicating the isolation valve significantly improved sample transfer to the column. 

More measurements would be required to reduce uncertainties in the above response 

comparisons. 

HI.3.3.5. Ambient Air Analysis with GC-FTD Instrument. 

With the instrument configured as shown in Figure 18, ambient air was analyzed 

continuously between April 2 and 9, 2009. Standards prepared in UHP N2 and zero air 

were periodically analyzed for calibration. Additionally, the background HCN level in 

the zero air was monitored. Background HCN in the standard dilution system was shown 

to be governed by the zero air generator, likely as a result of incomplete catalytic 

conversion of HCN. The HCN mixing ratio in the standard samples was set in the range 
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from 0.13 ± 0.01 to 0.50 ± 0.05 ppbv. Figure 30 shows the measured response to 0.50 ± 

0.05 ppbv HCN as a function of operation time. The linear trend in response was roughly 

-0.3% hour-1 and resulted from exhaustion of the detector bead. Although such loss of 

sensitivity is undesirable, it appears to be well characterized, and thus accounted for, by 

calibration. Figure 31 shows the measurements from Figure 30 following de-trending. 

The measurement precision ( la) was ~5%. Figure 32 shows a calibration curve 

constructed from all the de-trended standard and blank responses. Figure 33 shows a 

time series of the ambient HCN VMR measurements, derived from the de-trended raw 

responses using the calibration curve in Figure 32. The range of the ambient HCN 

mixing ratios was -0.07 to 0.31 ppbv, which appeared to agree well with previous 

tropospheric measurements [e.g., Singh et ah, 2003; Rinsland et al, 2007]. The 

measurement uncertainty was estimated to be ~0.015 to 0.030 ppbv based on the 

calibration curve shown in Figure 32. Results from the first field deployment of the GC-

FTD system suggest that the instrument has the capability to measure HCN in the PBL 

with high sensitivity, selectivity and precision. Future use of this instrument should yield 

valuable information regarding the temporal variability and budget of HCN in the lower 

atmosphere. 

HI.3.3.6. Qualitative Identification of Acetonitrile (CHjCN) in Ambient Air Samples. 

Only a single chromatographic peak, in addition to that for HCN, was observed in 

ambient chromatograms recorded during April, 2009. Figure 34 compares ambient 
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chromatograms recorded before and after spiking the sample inlet with CH3CN 

qualitative standard. The peak at -12 min retention time is clearly identified as CH3CN. 

III.4. Summary 

A GC-FTD instrument was developed for measurement of HCN in the lower 

atmosphere and was deployed for testing at the AIRMAP atmospheric monitoring station 

THF2 for a 1 week period during April, 2009. The FTD was chosen for its superior 

response and selectivity for HCN compared with the FID and PDHID detectors. A low 

bleed, robust porous polymer PLOT column was chosen for analyte separation. 

Quantitative calibration of the HCN measurements was performed by dynamic dilution of 

a certified permeation tube standard in UHP N2 and catalytic converter-prepared zero air. 

Only two compounds were observed in ambient air samples analyzed in April, 2009. 

These were identified as HCN and CH3CN based on the retention times of pure standard 

samples. During continuous operation, the FTD showed a linearly decreasing response of 

-0 .3% hour-1. The overall precision was ~5%. The range of the ambient HCN mixing 

ratios was ~0.07 to 0.31 ppbv with an overall uncertainty of ~0.015 to 0.030 ppbv as 

determined from a linear calibration curve. The instrument MDL was estimated to be 

~0.04 ppbv for the 250 cm3 sample volume used. Overall the instrument performed well, 

however malfunction of the Cryofocus System that was used prevented collection of a 

longer observation record. For long term measurements, the FTD bead would require 

periodic reconditioning. It is possible that further refinements in operating parameters 

can reduce the frequency of such maintenance. With proper calibration this system could 
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potentially yield CH3CN measurements. The use of an N2 generator for standard dilution 

and/or a permeation tube with a lower emission rate (e.g., <10 ng min-1) would be 

desirable for future work in order to reduce background HCN levels in the standard 

dilution system and improve diluent gas economy. 
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TABLES 
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1. Measurement details for atmospheric observations at AI during the ICARTT 
campaign. 

Variables measured 

C rC10NMHCs 

OVOCs 
C8-C|0 aromatics 
DMS 
OVOCs 

N0 3 

HCHO 
N0 2 

CO 
NO 
O3 

Ambient P 
Ambient T 
Dew J 
Wind direction 

Wind speed 

Analytical scheme3 

GC-FIDb 

GC-MSb 

PTR-MS 

DOASc 

IR absorbance (2200 cm" 
Chemi luminescence 
UV absorbance (254 nm)d 

Barometer 
Thermistor 
RH probe 
Anemometer 

Sampling 

interval 
Sample cycle 
period, r 

Chemical variables 
7/2-8/13 

7/1-8/13 

7/8-8/11 

V 

l h r 

10 min 

5 min 

15 min 
15 min 

1 min 
1 min 
1 min 

Meteorological variablese 

l h r 
l h r 
l h r 

lOmin 

Integration 
time 

5 min8 

20 s 

5 min 
15 min 
15 min 
1 min 
1 min 
1 min 

2min 
2 min 
2 min 
2 min 

LOD 

0.002-0.003 

0.010 ppbv 

3.4 pptv 

0.6 ppbv 
0.30 ppbv 

10 ppbv 
0.075 ppbv 
1 ppbv 

ppbv 

800 mbar 
-40 to 50 °C 
-35 to 30 °C 

0-360° from N 

0-62 m s"1 

Accuracy 

±10% 

±15% 

±1.7 pptv 

±0.3 ppbv 
±0.15 ppbv 

±5 ppbv 
±0.020 ppbv 
±1 ppbv 

±1 mbar 
±1°C 
±1 °C 

±10° 

±1 m s"1 

The following sources should be consulted for detailed descriptions of these systems: 
bSive et al. [2005]; Zhou et al. [2005]. 
cAlicke et al. [2002]; Pikelnaya et al. [2007]. 
dMao and Talbot [2004]. 
eNational Data Buoy Center [2004]. 
Intervals are indicated only for systems that were not operational during the entire 

campaign (4 July - 15 August). 
gValue denotes the time interval over which canister samples were collected. 
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2. Rate data applicable to nighttime gas-phase N0 3 chemistry and pertaining to the 
chemical variables monitored at AI during the ICARTT campaign.' 
NO, sink / Reaction A (cm molecule"1 s"1) B(K) k c(cm molecule"1 s" ) 

Ethane 
Propaned 

i -Butane6 

n -Butane 

Cyclopentane8 

/ -Pentaneh 

n -Pentaneh 

2,2-Dimethylbutane8 

Methylcyclopentane8 

Cyclohexane 
2-Methylpentaneh 

3-Methylpentane 

n -Hexane 
n -Heptane 

2,3-Dimethylpentane8 

2,4-Dimethylpentane 

n -Octane11 

2,2,4-Trimethylpentaneh 

2,3,4-Trimethylpentaneg 

n -Nonaneh 

n -Decaneh 

Alkanes 

3.05 x 10" 
2.8 x 10 -12 

2.99 x 10" 

,"17 1 x 10 
7 x 10"17 

3060 ± 99 1.06 x 10"16 (±40%) 
3280 ± 400 4.6 x 10"17 (±58%) 

1.7 x 10"17 

2927 ± 173 1.62 x 10"16 (±35%) 

8.7 x 10" 
2.7 x 10 
3.2 x 10" 
1.4 x 10 
1.8 x 10" 
2.2 x 10 
1.1 x 10 
1.5 x 10 
3.3 x 10" 
1.5 x 10" 
1.9 x 10" 
9 x 10"17 

4.4 x 10 

2.3 x 10"lb(±40%) 
2.8 x 10"16 

-17 

-16 

-16 

•16 

-16 

-16 

Alkenes and Alkynes 

Ethene 
Ethynef 

Propenef 

1-Buteneh 

c -2-Butene 

/-Buteneh 

f-2-Buteneh'' 

2-Methyl-2-buteneh 

1-Pentene' 
c -2-Pentene1 

t- 2-Pentene1 

3.3 x 10 

4.6 x 10" 
3.14 x 10 

,"12 

,"13 

1.22 x 10" 

2880 ± 500 

1155 ±300 
938 ± 106 

-382 ±28 

2.1 x 10"16(±58%) 
1 x 10"16 

9.5 x 10"15 (±58%) 
1.35 x 10"14(±30%) 
3.50 x 10"13 

3.32 x 10 

3.90 x 10" 

9.37 x 10" 
1.20 x 10 

6.55 x 10" 
3.78 x 10" 

,-i3 

-14 

a -Pineneh 

6-Pineneh 

Campheneh 

d-Limonene 

DMSk 

Isopreneh 

1.19 x 10 ,-12 

"13 1.9 x 10 

3.03 x 10" 

Biogenics 

-490 ± 97 6.16 x 10"12 (±30%) 
2.51 x 10"12(±40%) 
6.6 x 10"13 (±35%) 
1.22x10"" (±35%) 

-520 ±200 1.1 x 10"12(±41%) 
446 ±60 6.78 xlO"13 
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2. Rate data applicable to nighttime gas-phase NO3 chemistry and pertaining to the 
chemical variables monitored at AI during the ICARTT campaign - continued.3 

N03 sink / Reaction A (cm molecule"1 s~ ) B (K) kbc (cm3 molecule"1 s"1) 

Toluene 

Ethylbenzene 

m +p -Xylene 

o -Xylene 

i -Propylbenzene™ 

n -Propylbenzene™ 

2-Ethyltoluenem 

3-Ethyltoluenem 

4-Ethyltoluenem 

1,2,3-Trimethylbenzene" 

1,2,4-Trimethylbenzenen 

1,3,5 -Trimethylbenzene 

Acetaldehyde 

Acetonef 

Formaldehydef 

Methanol 

Rlk 

R3k 

R4° 

R6a + R6b 

R7k 

aFrom Atkinson [1991] unless otherwise indicated. 
bCalcualted at 298 K; given by: k = A-exp~(m. 
cUncertain by a factor of 2 unless otherwise indicated. 
dFrom Atkinson et al. [1997]. 
eVvom Atkinson [\99A\. 
fFrom Atkinson et al. [1999]. 
8Derived from bond-additivity relationships of Atkinson [1991]. 
hVxom Atkinson [\991]. 
JGiven by: k = ^•72-exp"(B/7). 
jFrom Pfrang et al. [2005]. 
From Atkinson et al. [2004]. 
Average of values from m- andp-xylene from Atkinson [1991]. 

mFrom Jenkin et al. [2003]. 
"Calculated at 294 K. 
°Calcualted from parameters given by Atkinson et al. [2004]. 
•"Total rate coefficient with respect to (R6a) and (R6b) calculated at 290 K with 

[H20(g)] = (4.0 ± 0.4) x 1017 molecules cm"3. 
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Aromatics 
6.8 x 10"17 

5.7 x 10"16 

3.43 x 10"16(±74%) 

3.77 x 10"16 

1.4 x 10"16 

1.4 x 10"16 

7.1 x 10"16 

4.5 x 10"16 

8.6 x 10"17 

1.86 x 10"15 

1.81 x 10"15 

8.00 x 10"16 

1.4 x 10 •12 

9.4 x 10 

OVOCs 

1860 ±500 

Additional 

1.4x10"" 2470 ±150 

1.8x10"" -110±100 

Keq = (2.8 ± 0.6) x 10"11 (cm3 molecule"1) 

2.7 x 10"1:,(±58%) 

3 x 10"17 

5.8 x 10" 
1 6 , 

2650 ± 700 1.30x10'° (±220%) 

3.5 x 10"" (±15%) 
2.6 x 10_11(±26%) 

k 'p(9.7±7.6)x 10"2 

1.19 x 10"U 



3. Comparison between rates of NO* loss and HNO3 production from NO3 and N2O5 
mechanisms for selected times during the ICARTT campaign. 

Date 

July 8-28e 

My 12 01:00 
July 12 05:00 
July 16-17f 

July 17g 

July 26 03:00 

/ = VOCs 
0.12 
0.08 
0.13 
0.19 
0.10 
0.65 

./ = 

/=oc 

0.36 
0.50 
1.07 
0.85 
0.11 
0.18 

L> 
indirect 
7 = 2.9 

0.12 
0.17 
0.37 
0.29 
0.04 
0.06 

,(NOx)' 

Phet = 

0.07 
0.10 
0.21 
0.17 
0.02 
0.04 

i ,b 

0.2d 
J = 

Phet~ 

0.14 
0.20 
0.43 
0.34 
0.04 
0.07 

het 
= 0.4 Phet-3.1 

0.38 
0.53 
1.13 
0.89 
0.12 
0.19 

Pvocs(HN03)
a 

0.04 
0.03 
0.02 
0.06 
0.01 
0.01 

aUnits are ppbv hr~ . 
^Ox loss rate via sink/; For N2O5 mechanisms, L(NOx) = P(HNC<3). 
°̂ indirect(NO*) was calculated for &(H2o(g)+N2o5) reduced by factor/(see Section 1.3.4 for 

details). 
d£het(NQ*) is expressed as a function of the ratio, phet, of ^het to ^direct (see Section 

1.3.4 for details); p^et — 0.2, 0.4 correspond with/= 0; p^et = 3.1 corresponds with/= 2.9; 
total rates are obtained by summing ally components. 

eAverage values for nighttime hours (21:00-05:00). 
fAverage values for the period from 22:00 on July 16 to 03:00 on July 17. 
gAverage values for the period from 04:00 to 05:00. 
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4. Operational and quality parameters for analytical systems operated at THF during 
summer 2004 and from which measurements were used in this work. 

Variables measured 

Toluene 

Monoterpenes 
Toluene 

0 3 

NO 

Pressure 
Temperature 
Relative Humidity 

Wind speed 

J(N02) 

Analytical Scheme 

GC-FID 

PTR-MS 

UV absorbancee 

0 3 chemiluminescence 

Manometer 
Thermistor 
Thin film capacitor 

Anemometer 

Filter radiometer 

Sample cycle 
period 

Integration 
time 

Chemical variables 
-40 min 

8 min 

1 min 

1 min 

~6 min 

20 s 

1 min 

1 min 
Meteorological variables 
1 min 
1 min 
1 min 

1 min 

1 min 
1 min 
1 min 

1 min 

Other 
1 min 1 min 

LOD or range 

0.005 ppbv 

0.010 ppbv 

0.015 ppbv 
1 ppbv 

0.060 ppbv 

500-1100 mbar 
-40 to 60 °C 

0-100% 

0-75 m s"1 f 

1 x 10"6 s_1 

Precision 

±5% 

±5% 

±5%c 

±1% 

<t l7% 

±0.03 mbar 
±0.1 °C 
±0.3% 

Accuracy 

±5%a 

±5%a 

±15%'' 

±0.08 mbar 
±0.2 °C 
±2 to ±3% 

±1% 

or ±0.07 m s"1 

For standard mixing ratio. 
bQuality parameters derived from analysis of «-decane standard. 
cFor calibration factor (CT0I) determination; measurement precision was estimated 

from counting statistics as described previously [Hayward et ah, 2002; de Gouw et al, 
2003a] and was >10%. 

dBased on least squares linear regression against GC-FID toluene measurements. 
e254 run. 
threshold = 0.45 ms"1. 
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5. Comparison between monoterpene emission fluxes calculated by Geron et al [2000] 
for forestland encompassing the THF site and relative monoterpene abundances from 
mixing ratios measured by GC-FID at THF between July 24 and August 15, 2004. 

THF (%)b 

Monoterpene 
a-pinene 
/?-pinene 
camphene 

A -carene 

/?-myrcene 
c/-limonene 
sabinene 
p -cymene 
/?-phellandrene 
thujene 
a-terpinene 
terpinolene 
^-terpinene 
ocimene 

E°(\i 
39.1 
23.9 
21.4 
19.1 

16.4 
16.0 
8.2 
6.2 
4.8 
1.9 
1.5 
0.3 
0.16 
0.1 

,gCm"2h"V 
(24.6) 
(15.0) 
(13.5) 
(12.0) 

(10.3) 
(10.1) 

(5.2) 
(3.9) 
(3.0) 
(1.2) 
(0.9) 
(0.2) 

1 (0.1) 
(0.1) 

Daytime0 

36 ±10 
22 ± 8 
30±11 

7 ± 4 

NMe 

4 ± 3 
NM 
NM 
NM 
NM 
NM 
NM 
NM 
NM 

Nighttim 
40 ±12 
25 ± 7 
25 ±12 

7 ± 2 

NM 
3 ± 2 

NM 
NM 
NM 
NM 
NM 
NM 
NM 
NM 

aE°, emission flux [Geron et al., 2000]; percentage of total shown in parentheses. 
bMeasured average ± l a relative ambient mixing ratio distribution. 
cn = 369. 
dn - 244. 
^ M , not measured. 
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6. Measured retention times for C9-C11 hydrocarbons in the THF GC system primary 
working standard that eluted between nonane and undecane on the VF-5ms column 
together with predicted retention times for several additional monoterpenes. 
Compound 
n -nonane 
i -propylbenzene 
a-pinene 
n -propylbenzene 
camphene 
3-ethyltoluene 
4-ethyltoluene 
1,3,5-TMB 
2-ethyltoluene 
/?-pinene 
n-decane 
/J-myrcene 
1,2,4-TMB 

A -carene 
/?-phellandrene 
1,2,3-TMB 
a-terpinene 

ocimene 

p -cymene 
d-limonene 
1,3-DEB 
1,4-DEB 
1,2-DEB 
y-terpinene 

terpinolene 
undecane 

b.p. (°C)a 

150.82 
152.41 
156.2 
159.24 
158 to 161 
161.3 
162 
164.74 
165.2 
166 
174.15 
167 
169.38 
171 
171.5 
176.12 
174 

177 

177.1 
178 
181.1 
183.7 
184 
183 

186 
195.9 

RT (min)b 

10.18 ±0.04 
10.89 ±0.05 
11.14 ±0.04 
11.54 ±0.05 

11.5±0.3C 

11.68 ±0.05 
11.76 ±0.05 
11.85 ±0.05 
12.09 ±0.05 
12.17 ±0.05 
12.27 ±0.05 

12.2 ± 0.2C 

12.43 ± 0.05 

12.6 ± 0.2° 
12.6 ±0.1 
13.08 ±0.05 

12.9±0.2C 

13.1±0.2d 

13.2 ±0.1° 
13.18 ±0.05 
13.54 ±0.05 
13.75 ±0.05 
13.84 ±0.06 

13.7 ±0.2° 

14.0 ± 0.2C 

14.42 ± 0.06 
\Lide, 2008]. 
Measured average ±3a except where noted otherwise. 

cDerived from linear regression between RT and b.p. for compounds in the primary 
working standard; errors represent 0.01 to 1 °C uncertainty in b.p. values and the 95% 
prediction interval on the RT values determined from regression analysis. 

\Graedel, 1979]. 
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7. Quantitative comparison between GC-FID and PTR-MS toluene measurements for 
different monoterpene fragmentation corrections applied to the PTR-MS data. 

Treatment3 

A 
A' 
B 
C 
D 
E 
F 

Regression Parameters 

mb 

1.13 ±0.02 
1.16 ±0.02 
1.07 ±0.02 
1.00 ±0.02 
0.84 ± 0.02 
1.10 ±0.02 
0.97 ± 0.02 

bb 

-0.008 ± 0.003 
-0.011 ±0.001 
-0.005 ± 0.002 
-0.003 ± 0.002 

0.004 ± 0.002 
-0.007 ± 0.002 
-0.002 ± 0.002 

2 

r 
0.908 
0.908 
0.910 
0.907 
0.858 
0.911 
0.909 

% Agreer 
60.1 
60.1 
62.8 
64.8 
57.6 
61.0 
65.3 

aData treatment description: A, PTR-MS data uncorrected, correlation analyzed using 
simple least squares regression; A', same as A, but analyzed using orthogonal least 
squares regression with variance ratio, A - a2pxR-Ms/cr2Gc-FiD — 4.6 ± 1.6; B, PTR-MS data 
corrected assuming $93) = 1% for reaction of H30+ with a-pinene; C, same as B, but 
$93) = 2% for a-pinene and 1% for /?-pinene; D, same as B, but $93) = 7% for a-
pinene; E, PTR-MS data corrected for reactions of O^ with measured monoterpenes 
using $93) from [Schoon et al, 2003]; F, PTR-MS data corrected for reactions of H30+, 
as in treatment C, and C»2+, as in treatment E. 

bUncertainties are standard errors, except those for orthogonal least squares 
parameters which reflect l a range of X. 

Percentage of samples for which GC-FID and PTR-MS values agreed within 
combined ley measurement precisions. 
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8. Comparison of reported yields of mlz = 93 fragment ions associated with analysis of 
monoterpenes by PTR-MS and SIFT-MS. 

(zK93)(%) vs. Reagent 
Monoterpene 

a-pinene 

camphene 

/5-pinene 

/?-myrcene 

A3-carene 

a-terpinene 

p -cymene 

d-limonene 

X-terpinene 

terpinolene 

H30+ a 

12d 

7B 

r 

<o.ij-k 
<ld ' e 

7g 

<ld'e>' 

<0.1j ,k 

< 1 d , e , l 

<0.1 j ,k 

<20n 

91d 

85 M 

ld 

<l e 

<0.1 j 'k 

3d 

<ln 

<1* ' 

0 2
+ b 

52e 

13e 

56e 

61e 

le 

41e 

26e 

NO + b 

4e 

<le 

3e 

22e 

4e 

<l e 

<2H81)(%)a'c 

57d'f 

45h '! 

4 0 i . k 

3 1 g , m 

30 e b 

7 0 d , f 

40*'" 
•2^6, b 

26s 'm 

2 6 e b 

30>'k 

1 9 e b 

7 2 d , f 

40s'k 

22e'b 

"NO* and 02+ abundances were not specified and ion transmission efficiency 
corrections were not applied in the PTR-MS studies and may have contributed to the 
reported ion yields. 

bSIFT-MS; He carrier gas; yield corrected for ion transmission efficiency. 
cFrom reaction with H30+. 
\Maleknia et al, 2007]. 
\Schoonet al, 2003]. 
f£/Ar=140tol50Td. 
g[Warnekeetal, 2003]. 
\Taniet al, 2004]. 
'£/iV=142Td. 
j[7ara'^a/.,2003]. 
kE/N- 120 Td; percentage of total ion signal including isotopic signal. 
\hee etal, 2006a]. 
m£/AT=106Td. 
\Leeetal, 2006b]. 
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9. Comparison of PTR-MS operating parameters employed at THF during summer of 
2004 and in selected studies reported in the literature. 
PDT(mbar) rD T (K) E (V cm'1) E/N (Td)a KEion (kJ mole"')b Reference 

[Maleknia et al., 2007] 
[Tani et al., 2004] 
This work 
[Tani et al., 2003] 
[Warneke et al., 2003] 

[Schoonetal. ,2003]6 

\Lee et al., 2006a,b] 
Abbreviations: DT, drift tube; ND, no data. 

alTd (Townsend) = 10"17 V cm2. 
bCalculated from published values of juo in N2 [Dalton et al, 1976]. 
cDrift tube length assumed to be 9.6 cm. 
Calculated from PDT and E/N. 
eAssumedrDT>21 °C. 
Equivalent to thermal energy. 

8SIFT-MS; conditions correspond with flow tube. 

1.8-2.1 

1.8-2.1 
2.005 ± 0.005 
ND 

2.4 

1.47 
2.2 

303-333 

296d 

318 
ND 

ND 

298 
ND 

60° 
41.7-62.5 
62.5 
ND 

ND 

0.08 
ND 

120-150 

142 
137 
120 

106 

0.22 
ND 

23.5-39. 

32.8 
30.7 

>23.3e 

>18.4e 

3.7f 

ND 
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10. Comparison of reported yields of mlz = 93 fragment ions associated with analysis of 
monoterpene oxidation products by PTR-MS and SIFT-MS. 

Monoterpene 

or-pinene 

/?-pinene 

/?-myrcene 

A -carene 

ocimene1' 
rf-limonene 

X-terpinene 

terpinolene 

Oxidation Product 

pinonaldehyde 

ar-pinene oxide 

UnIDf 

4-vinyl-4-pentenal 

caronaldehyde 

UnID 

4-methyl-3,5-hexadienal1 

UnID 

UnID 

4-methyl-3 -cyclohexen-1 -one 

Yield (%) vs. Oxidant 

OH 

47-83" 

28-87e 

<5b 

-il-A lb 

34±8 ; 

>5b 

<2 

<5b 

>5b 

43±7b 

0 3 

19-34c 

16±3e 

5.4 ± 0.6° 
2e 

49±8C 

<8' 

<33 

53±9C 

«»(93)(%)a 

2d 

9d 

100g 

> 7 0 b , g , h ) > 1 0 c , g , h 

3d 

1008 

100g 

100B 

4yb, g,h ^c, g,h 

aFrom reaction with H30+unless indicated otherwise. 
b[Lee etal, 2006b]. 
c[Lee etal, 2006a]. 
\Schoon etal, 2004]. 
\Aikinson et ah, 2006]. 
fUnID, unidentified oxidation products. 
gNO+ and C»2+ abundances were not specified and may have contributed to reported 

fragmentation. 
Assuming dehydration of the corresponding protonated oxidation product in the 

PTR-MS drift tube was the only source of the reported yield. 
[[Hakola et al, 1994]. 
}cis-, trans- mixture. 
\Reisselletal, 2002]. 
Protonated molecular ion may dehydrate to a mlz - 93 fragment ion as observed for 

other 110 amu products [Lee et al, 2006a, b]. 
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11. Operational protocol of the GC-FTD instrument. 
Sample cycle stage, valve position 

Valve3 l.Coof 2. Preflush0 3. Trap0 4. Preflush" 5. Trap" 6. Desorb" 7. Inject" 8. Bake 

ssv 
sv6 

svf 

VI 
V2 
V3 

6,7,8 

A 

A 
closed 
closed 
closed 

1,3,4,5 

A 

A 
open 
closed 
open 

1,3,4,5 

A 

A 
closed 
open 
closed 

2 

A 

A 
open 
closed 
open 

2 

A 

A 
closed 
open 
closed 

6,7,8 

A 

B 
closed 
closed 
closed 

2 

B 

A 
closed 
closed 
closed 

2 

A 

A 
closed 
closed 
closed 

As labeled in Figure 18. 
bSSV is in a dead end position. 
cAmbient or standard sample. 
dHe. 
eEight-port SV. 
fFour-port SV. 
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12. Sample volumes (at standard temperature and pressure) required to yield HCN 
masses greater than the PDHID, FID and FTP MDL. 
HCN (ppbv) 
0.100 
0.010 
0.001 

^PDHID (liters)a 

0.12 ±0.02 
1.2 ±0.2 

12±2 

t PDHID (min) 

0.62 ± 0.08 
6.2 ± 0.8 

62 ± 8 

VYrD (liters) 
0.26 ± 0.05 
2.6 ±0.5 

26 ± 5 

?FID(min) 
1.3 ±0.2 

13 ±2 
132 ±23 

VFTD (liters) 
0.101 ±0.008 
1.01 ±0.08 

10.1 ±0.8 

>FTD(miri) 

0.50 ± 0.04 
5.0 ± 0.4 

50 ±4 

PDHID, FID and FTD MDL = 0.015 ± 0.002 ng HCN, 0.032 ± 0.006 ng HCN, and 0.012 
± 0.001 ng HCN respectively. 

aSample volume. 
""Trapping time at 0.2 1 min-1. 
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Villi Jwi/I \ > H 0.1 1 

0.25 f 

1.0.20 

2" 0.15 
1? 

0.10 | 

| 0.05 

0.00 

(e) 

I Hi >J I h.& 

a-Pinene 
/J-Pinene 
Camphene 
Limonene 

I Jl M L.,1 i i 
7/9 0:00 7/13 0:00 7/17 0:00 7/210:00 7/25 0:00 

Date (EDT) 

1. Time series of selected trace gases measured between noon on July 8 and noon on July 
28. (a) NO3 and O3; (b) NO and NO2; (c) ethyne and toluene; (d) isoprene and DMS; (e) 
monoterpenes. Segments of thickened lines indicate measurements made during the 
nighttime hours (21:00-05:00). Uncertainties are described in Table 1. 
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7/9 0:00 7/13 0:00 7/17 0:00 7/210:00 7/25 0:00 
Date (EDT) 

2. Relative biogenic reactivity calculated for the nighttime hours between 21:00 on July 8 
and 05:00 on July 28. Open circles show the reactivity of the biogenic compounds 
relative to that of all the measured VOCs. The NO3 mixing ratios (green trace) measured 
during the nighttime hours are reproduced for comparison. The average uncertainty in 
the calculated values of &'biogenics/£'vocs was 50%. 
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^ — 1 . . . 1 1 

I "monoterpenes 

"isoprene 

I ^DMS 

, 1 , , , y. 

1 * 
.1 I * I v Li - li L _ . I i 

h 

1 [ 

<£. h td > JC J ^ . 
, , . ., , . , T 

7/90:00 7/13 0:00 7/17 0:00 7/210:00 7/25 0:00 
Date (EDT) 

3. Absolute reactivity of DMS, monoterpenes and isoprene calculated for the nighttime 
hours between 21:00 on July 8 and 05:00 on July 28. Note the break in the ordinate 
between 0.026 and 0.036 s_1. The average uncertainties in the values of £", where i -
DMS, isoprene and monoterpenes were 60%, 60% and 30%, respectively. 
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02:00 20:00 14:00 08:00 02:00 
July 14 July 13 

02:00 20:00 14:00 08:00 02:00 
July 15 July 14 

02:00 20:00 14:00 08:00 02:00 
July 12 July 11 

r—JIT/ 

02:00 20:00 14:00 08:00 02:00 
July 17 July 16 

02:00 20:00 14:00 08:00 02:00 
July 26 July 25 

4. HYSPLIT trajectories for selected case study periods, (a) July 13; (b) July 14; (c) July 
11; (d) July 16; (e) July 25. Units of elevation (Elev.) are in m (x 1(T3) above ground 
level (a.g.l). Red, blue and green trajectories end at AI (star) at 10, 200 and 1000 m 
a.g.l., respectively. 
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300 

280 

260 -? 

240 S 

o 
220 O 
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180 

160 

7/11 21:00 7/12 5:00 7/12 1:00 
Date (EDT) 

5. Atmospheric composition and chemistry on the night of July 11. (a) Measured mixing 
ratios of ethyne, toluene, o-xylene, and CO (averaged hourly), (b) Contributions to the 
total NO3 loss efficiency; for the nighttime hours between 21:00 on July 8 and 05:00 on 
July 28, the average uncertainties in the values of îndirect, &Vocs, b̂iogenics, and ĥom were 
80%, 30%, 40%, and 40%, respectively, (c) Measured mixing ratios of N02 , NO3 and 0 3 

and calculated mixing ratios of N2O5; the average uncertainty in the calculated mixing 
ratios of N2O5 was 60%; uncertainties in the measured NO2, NO3 and O3 mixing ratios 
are described in Table 1; NO3 measurements below the LOD (Table 1) were set to 0.5 * 
LOD. 
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7/16 21:00 7/17 5:00 7/171:00 
Date (EDT) 

6. Atmospheric composition and chemistry on the night of July 16. (a) Measured mixing 
ratios of ethyne, toluene, o-xylene, and CO (averaged hourly), (b) Contributions to the 
total NO3 loss efficiency on the night of July 16; uncertainties are the same as described 
in Figure 5b. (c) Measured mixing ratios of NO2, NO3 and O3 and calculated mixing 
ratios of N2O5 for the night of July 16; uncertainties are the same as described in Figure 
5c. 
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7/25 21:00 7/26 5:00 7/26 1:00 
Date (EDT) 

7. Atmospheric composition and chemistry on the night of July 25. (a) Measured mixing 
ratios of ethyne, toluene, o-xylene, and CO (averaged hourly), (b) Contributions to the 
total NO3 loss efficiency on the night of July 25; uncertainties are the same as described 
in Figure 5b. (c) Measured mixing ratios of NO2, NO3 and O3 and calculated mixing 
ratios of N2O5 for the night of July 25. Uncertainties are the same as described in Figure 
5c. NO3 measurements below the LOD (Table 1) were treated as in Figure 5c. 
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<d> 

T , 

K 

A' 
- i 

i 

Calculated 

Calculated 

—o— Measured 

/;h« 

^« 
s t =o .2 ; 
,. = 0.4 

^s' . 

7/17 05:00 7/16 21:00 7/17 1:00 7/17 5:00 

Calculated: phet = 0.2 

Calculated: phet = 0.4 

(e) 

7/12 5:00 7/1121:00 7/12 1:00 7/12 5:00 

(f) 

Calculated: / ^ ^ = 0.2 

Calculated: p^ei = 0.4 

Measured 

7/25 21:00 7/25 23:00 7/26 01:00 7/26 03:00 7/25 21:00 7/25 23:00 7/26 01:00 7/26 03:00 

Date (EDT) Date (EDT) 

8. Measured versus calculated NO3 mixing ratios. Calculations were performed using 
equation (10) for the nights of July 11 (a and d), July 16 (b and e) and July 25 (c and f). 
Calculated values in a-c include only gas phase loss processes for NO3 and N2O5 whereas 
calculated values in d-f include limits for heterogeneous loss of N2O5 to aerosol and the 
ocean surface. Gray shaded regions in a-c represent uncertainty in the calculated values, 
the average being ~30% for July 11 and 16 and ~20% for July 25. Shaded regions in d, e 
and f define limits of the calculated values based on uncertainties shown in a, b and c, 
respectively. Measurements below the LOD (Table 1) were treated as in Figure 5 c with 
uncertainties set to 100%. 
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/Vt = 0.2; f=0 /fc,= 3.1;f=2.9 

Z.(NOx) = 0.55 ± 0.54 ppbv hr1 L(HOx) = 0.62 ± 0.62 ppbv hr1 

9. Average relative contributions of gas-phase and heterogeneous mechanisms to NO* 
removal for the period July 8-28. (a) Minimum heterogeneous contribution; (b) 
maximum heterogeneous contribution (see text for details). 
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a: 12 

150 160 170 180 190 200 

b.p.(0C) 
10. Linear correlation between elution order (retention time) and boiling point for C9-C11 
compounds in the THF GC system primary working standard that eluted from the VF-
5ms column between nonane and undecane. The regression line was derived by a simple 
least squares analysis which excluded data for the «-alkanes. Error bars are 0.04 to 0.06 
min, representing 3 a of the mean values determined from standard chromatograms, and 
0.01 to 1 °C (taken to be 1 unit in the least significant digit of the literature b.p. values). 
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11. Portion of a chromatogram from the THF GC system primary working standard. 
Compounds that eluted between nonane and undecane on the VF-5ms column are 
identified. The temperature program employed was 35 °C for 2 min, 10 °C min"1 to 115 
°C, 7 °C min"1 to 200 °C for 5 min. Abbreviations: TMB, trimethylbenzene; DEB, 
diethylbenzene. 
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12. Portion of a chromatogram recorded at THF at 04:23 on August 3 during a period of 
enhanced monoterpene mixing ratios. 
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12:00 18:00 00:00 06:00 12:00 

Time (LT) 

0 1 2 3 

alpha-jp'mene (ppbv) 
13. Comparison of trends in the mixing ratios of or-pinene and an unidentified (UnID) 

compound (assumed to be Cio) during the period from 12:00 on August 2 to 12:00 on 

August 3. (a) Time series of relative mixing ratios; (b) linear regression of absolute 

mixing ratios. The ./(NO2) data in (a) are 10 min averages and delineate daytime and 

nighttime periods. In (b) the correlation between the J-limonene and or-pinene mixing 

ratios is shown for comparison. The coefficients of determination (r2) for the regression 

lines were 0.97 and 0.95 for d-limonene and UnID, respectively. Error bars represent the 

greater of the measurement precision or LOD. Mixing ratios below the LOD were set to 

0.5 x LOD in (a) and were excluded from the regression in (b). 
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8 Aug 9 Aug 11 Aug 12 Aug 

Date (LT) 
13 Aug 15 Aug 

14. Time series of monoterpenes, ./(NO2) and wind speed measured at THF from 22:00 

on July 24 to 06:00 on August 15. Values of /(NO2) and wind speed are 10 min 

averages. The former are given as relative to the summertime maximum and illustrate 

daytime and nighttime periods. Mixing ratios below the LOD were set to 0.5 x LOD. 
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15. Time series of toluene measured by GC-FID and PTR-MS during the period between 

22:00 on July 24 and 06:00 on August 15. Values of /(NO2) are show as in Figure 14. 

Errors in the GC-FID and PTR-MS data are the greater of the l a measurement precision 

or LOD. 
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regression line and its confidence band were derived from a simple least squares analysis. 
The regression parameters are given in Table 7. 
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18. Schematic of the GC-FTD system. System segregated into (a) standard dilution, (b) 
sample capture and analysis components. Configuration in (b) shows 8-port SV in 
position A and 4-port SV in position B (for sample desorption). Components: SV, 
switching valve; SSV, stream select valve; V, solenoid valve; P, pressure gauge; FC, flow 
controller; Tl, sample dehumidification chamber; T2, sample enrichment chamber; ZAG, 
zero air generator. 
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19. Schematic of the instrument configurations employed for development of HCN 
sampling and detection schemes. Configurations are shown for (a, b) direct loop 
injection, (c) sample concentration, and (d) preparing standards in N2 and zero air. 
Components as in Figure 18, except: H2O, water bubbler. 
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20. Schematic of the instrument configuration used for preliminary testing of both the 
PDHID and FTD. Components labeled as in Figures 18 and 19. 
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21. Water vapor trapping efficiency in the sample dehumidification loop as a function of 
Tl temperature. The error bars correspond with the trapping efficiency values and 
represent contributions from the measured and calculated humidity (±4% and ±7%, 
respectively). The regression line is a quadratic fit to the data, where a = -2.2 ± 0.1, b = 
-0.0134 ± 0.0002 and c - 0.745 ± 0.006. 
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22. HCN trapping efficiency as a function of sample enrichment loop temperature. 
Temperature program: 30 °C for 0.6 min, 80 °C min"* to 80 °C, 30 °C mhT1 to 100 °C, 
60 °C min"1 to 200 °C for 4 min. The carrier flow rate at the initial column temperature 
was estimated at 17 ± 2 cm3 min-1 from the N2 RT and the volume of the system 
components between the sample enrichment loop and the GC column. 
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23. Chromatograms recorded with the PDHID for blank and standard samples prepared 
with the Cryofocus System. The instrument configurations were as in Figure 19c, d. The 
bottom trace shows the detector baseline response to the He carrier gas; the second and 
third traces were for 200 STP cm3 samples of UHP He; the uppermost trace was for a 200 
STP cm3 standard sample of HCN (0.58 ± 0.04 ng) in UHP N2/zero air. Peaks for HCN, 
N2 and H2O are labeled. The chromatograms were recorded on two separate days. 
Approximate H2O masses in the preceding samples are shown for traces 3 and 4. The 
temperature program was the same as that give in Figure 22. 
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24. Configurations of standard dilution system used for blank response attribution. 
Isolated components include (a) oven FC outlet (line 1), standard dilution system outlet 
(line 2) and downstream components; (b) oven and components in (a); (c) outlet of 
secondary dilution FC (lines 3a and 3b) and components in (a); (d) oven outlet (lines 4a 
and 4b), downstream FC and components in (c). 
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25. Comparison of measured blank HCN chromatographic peak areas with those 
calculated using an HCN desorption model. Error bars represent the measurement 
precision (5-10%) and uncertainties associated with estimated HCN surface emission 
rates and diluent flow rates through the standard dilution system. 
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26. Observed variation in PDHID response as a function of sample injection number. 
Values represent daily average responses (n = 2-10) at the daily median injection number 
and were corrected for measured response to diluent blanks; errors, ranging from 5% to 
20%, were determined from the measurement precision and uncertainties associated with 
quantifying the mass of HCN delivered. Data are labeled by diluent gas and sample loop, 
where ZA stands for zero air; Silcosteel 1 and Silcosteel 2 stand for 5 cm3 and 15 cm3 

Silcosteel loops, respectively, at room temperature; Silonite stands for the glass bead-
packed Silonite loop in the Cryofocus System. 
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27. Response of the FTD to HCN as a function of bead voltage. Values at F(FTD) = 50, 
75 and 95% are from single determinations, while the remaining values represent 
averages of replicate measurements (n = 2-5). Error bars represent contributions from 
the measurement precision and the sampled HCN mass. 
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Pressure (psig) 
28. Carrier gas flow rate measurements. Data points are averages of 4-6 measurements. 
Errors are 2 psig and the standard deviation (<6%) of the average flow rate at each value 
of P and T. Lines fit to the data are two parameter power series functions, y = a-xb. 
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29. Comparison between standard chromatograms recorded over a range of injection 
temperatures. Peaks are labeled by injection temperature. For the sample injected at 83 
°C (sample 016) the sample enrichment loop was isolated during desorption; the 
chromatogram is offset by 2 min for clarity. Temperature program: 40 °C for 7.5 min, 15 
°C min-1 to 150 °C, hold for 4 min. 
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30. Chromatographic peak areas measured for standard samples analyzed during a period 
of continuous operation between April 2 and 9, 2009. 
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31. De-trended measurements from Figure 30. 
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32. Calibration curve constructed from de-trended standard and blank measurements 
made between April 2 and 9, 2009. 
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33. Time series of ambient HCN VMR measured between April 2 and 9, 2009. Error 
bars represent an uncertainty of 0.03 ppbv. 
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34. Qualitative identification of CH3CN in ambient air. Chromatograms recorded for 
ambient air samples before (002) and after (006) introducing a small volume of diluted 
pure CH3CN liquid headspace vapor into the ambient air inlet stream of the instrument 
shown in Figure 18. 
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