University of New Hampshire **University of New Hampshire Scholars' Repository**

Faculty Publications

8-1-1998

Chesapeake Bay Watershed Model Application and Calculation Of Nutrient and Sediment Loadings. Appendix H: Tracking Best Management Practice Nutrient Reductions in the Chesapeake Bay Program

Michael W. Palace University of New Hampshire, Durham, michael.palace@unh.edu

James E. Hannawald *USDA*

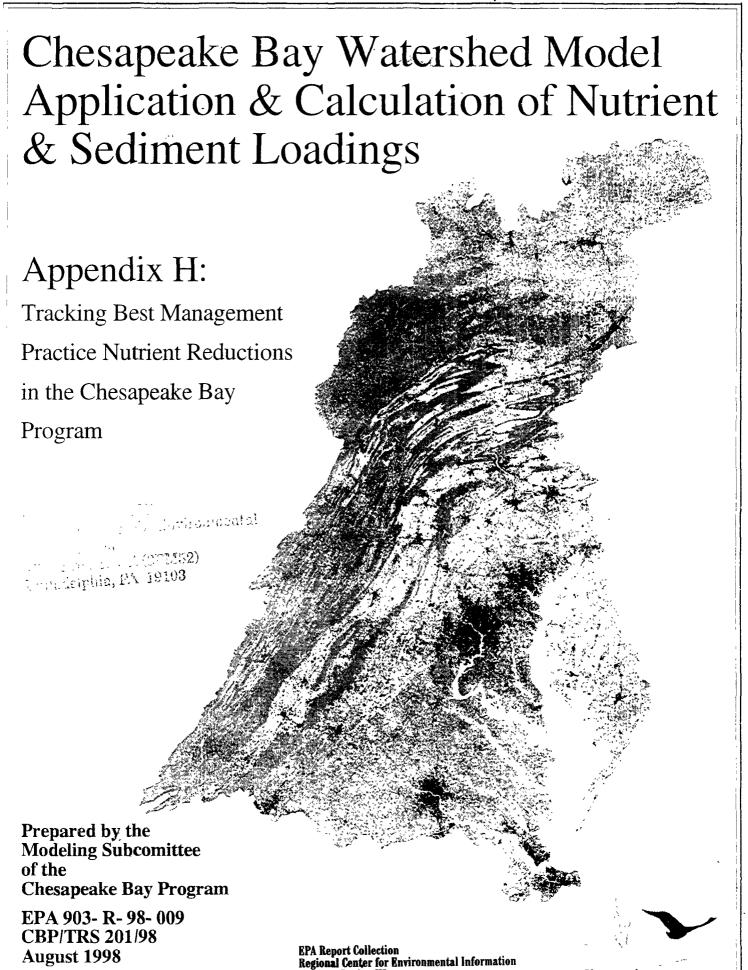
Lewis C. Linker U.S. Environmental Protection Agency

Gary W. Shenk
U.S. Environmental Protection Agency

Jennifer M. Storrick Chesapeake Research Consortium

Recommended Citation

Palace, M.W., J.E. Hannawald, L.C. Linker, G.W. Shenk, J.M. Storrick, and M.L. Clipper. 1998. Chesapeake Bay Watershed Model Application and Calculation of Nutrient and Sediment Loadings. Appendix H: Tracking Best Management Practice Nutrient Reductions in the Chesapeake Bay Program. EPA 903-R-98-009, CBP/TRS 201/98.U.S. Environmental Protection Agency Chesapeake Bay Program, Annapolis, MD.


This Report is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

UC://2- 10-00%

Chesapeake Bay Program

Philadelphia, PA 19103

U.S. Environmental Protection Agency

Libraries

Contact Us | Pṛint Version

EPA Home > Information Sources > Libraries > Online Library System > OLS Record

OLS Record

Display Records as Bibliography

Item Status

RECORD NUMBER: 7 OF 13

Main Title	Chesapeake Bay watershed model application and calculation of nutrient and sediment loadings—appendix H . tracking best management practice nutrient reductions in the Chesapeake Bay Program /		
Publisher	Printed by the U.S. Environmental Protection Agency for the Chesapeake Bay Program,		
Year Published	1998		
OCLC Number	42320849		
Subject Added Ent	Water quality managementData processing ; Watershed managementMathematical models ; Chesapeake Bay Watershed (Md. and Va.)		
Collation	xii, 78 p. : ill., maps ; 28 cm.		
Holdings	LIBRARY CALL NUMBER LOCATION		
	EJAD EPA 903/R-98-009 Region 3 Library/Philadelphia, PA		
	EJDD CB 00785 2 copies OASQA Library/Fort Meade,MD		
Notes	"Prepared by the Modeling Subcommittee of the Chesapeake Bay Program"Cover. "August 1998." "EPA 903-R-98-009."		
Author Added Ent	Palace, Michael W.		
Corp Au Added Ent	United States Environmental Protection Agency Chesapeake Bay Program.		
Title Ser Add En :	CBP/TRS;		
Place Published	{Washington, D.C.?}:		
PUB Date Free Form	1998.		
Series Ti Untraced	CBP/TRS ; 201/98		

Holdings Modified	LIBRARY Date Modified EJA 19991217 EJD 19990910	
Bib Level	m	
OCLC Time Stamp	19991213130047	
Cataloging Source	OCLC/T	
Language	eng	
OCLC/NTIS	OCLC	
Туре	CAT	
OCLC Rec Leader	01244nam 2200289Ka 45020	

Display Records as Bibliography

Item Status

If there is an AREA footer, put it here

EPA Home | Privacy and Security Notice | Contact Us

Last Updated on Wednesday, April 23rd, 2003 URL: http://cave.epa.gov/cgi/nph-bwcgis/BASIS/ncat/lib/ncat/DDW

CHESAPEAKE BAY WATERSHED MODEL APPLICATION AND CALCULATION OF NUTRIENT AND SEDIMENT LOADINGS

Appendix H: Tracking Best Management Practice Nutrient Reductions in the Chesapeake Bay Program

Regional Center for Environmental Information USEPA Region III 1650 Arch St Philadelphia, PA 19103 A Report of the Chesapeake Bay Program Modeling Subcommittee Annapolis, MD

August 1998

in the Environmental

Thisdelphia, PA 19103

Printed by the U.S. Environmental Protection Agency for the Chesapeake Bay Program

Principal Authors

Michael W. Palace Chesapeake Research Consortium Chesapeake Bay Program Office Annapolis, MD

James E. Hannawald
United States Department of Agriculture
Natural Resources Conservation Service
Chesapeake Bay Program Office
Annapolis, MD

Lewis C. Linker
United States Environmental Protection Agency
Chesapeake Bay Program Office
Annapolis, MD

Gary W. Shenk
United States Environmental Protection Agency
Chesapeake Bay Program Office
Annapolis, MD

Jennifer M. Storrick Chesapeake Research Consortium Chesapeake Bay Program Office Annapolis, MD

Michael L. Clipper Chesapeake Research Consortium Chesapeake Bay Program Office Annapolis, MD

Tributary Strategy Workgroup

Tom Simpson

Chairman

MD Department of Agriculture

Chesapeake Bay Agricultural Programs

Annapolis, MD

Mark Bennett

VA Dept. of Conservation &

Recreation

Division of Soil and Water Conservation

Richmond, VA

Don Fiesta

PA Dept. of Environmental Protection

Bureau of Water Quality Protection

Harrisburg, PA

Jim Hannawald

US Dept. of Agriculture

Natural Resource Conservation Service

Chesapeake Bay Program Office

Annapolis, MD

Wayne Jenkins

MD Dept. of the Environment

Chesapeake Bay Watershed Management

Administration

Baltimore, MD

Tim Karikari DC Dept. of Health Washington, DC

Russ Mader Jr.

US Dept. of Agriculture

Natural Resource Conservation Service

Chesapeake Bay Program Office

Annapolis, MD

Mary Searing

MD Department of Natural Resources

Watershed Management and Analysis

Division

Annapolis, MD

Mohsin Siddique

DC Dept. of Health

Washington, DC

Helen Stewart

MD Dept. of Natural Resources

Watershed Management and Analysis

Division

Annapolis, MD

Tom Tapley, Chair, Pt. Source Workgroup

MD Dept. of the Environment

Technical and Regulatory Services Administration

Baltimore, MD

Allison Wiedeman

US Environmental Protection Agency

Chesapeake Bay Program Office

Annapolis, MD

Kenn Pattison

PA Dept. of Environmental Protection

Bureau of Water Quality Protection

Harrisburg, PA

Modeling Subcommittee Members

James R. Collier Chairman Water Resources Management Division Washington, DC

Dr. Joseph Bachman US Geological Survey Towson, MD

Mark Bennett Department of Soil and Water Conservation Richmond, VA

Dr. Peter Bergstrom Chesapeake Bay Field Office US Fish & Wildlife Service Annapolis, MD

Dr. Arthur Butt Chesapeake Bay Office VA Department of Environmental Quality Richmond, VA

Brian Hazelwood Metropolitan Washington Council of Governments Washington, DC

Dr. Albert Y. Kuo VA Institute of Marine Science Gloucester Point, VA

Lewis C. Linker Coordinator US EPA Chesapeake Bay Program Office Annapolis, MD Dr. Robert Magnien
MD Department of Natural Resources
Assessment Administration
Annapolis, MD

Dr. Ross Mandel Interstate Commission on the Potomac River Basin Rockville, MD

Dr. Bruce Parker National Oceanic and Atmospheric Administration/NOS/OES33 Coastal & Estuarine Oceanography Silver Spring, MD

Kenn Pattison PA Dept. of Environmental Protection Bureau of Water Quality Protection Harrisburg, PA

Ron Santos US Army Corps of Engineers Baltimore, MD

Dr. Tom Stockton MD Dept. of Environmental Resources Watershed Modeling & Analysis Annapolis, MD

Paul Wella USDA Natural Resources Conservation Service East Regional Office Beltsville, MD

Dr. Alan Lumb Hydrologic Analysis Support Section USGS National Center Reston, VA

Acknowledgments

The writers would like to acknowledge the contribution of the Nutrient Subcommittee's Tributary Strategy Workgroup for their guidance in the development and review of this document. This document, and other Chesapeake Bay Program modeling documents, can be found on the Modeling Subcommittee web page:

http://www.chesapeakebay.net/bayprogram/committ/mdsc/model.htm

Appendix Summary

Appendix H documents the work of the Chesapeake Bay Program Nutrient Subcommittee and the Tributary Strategy Workgroup. The Tributary Strategy Workgroup is made up of Chesapeake Bay Program scientists, engineers, and managers who work closely with the Chesapeake Bay Watershed Model in estimating the progress toward Chesapeake Bay nutrient reduction goals. Appendix H provides a summary of the methodologies used in tracking nutrient reduction goals with the Phase IV Watershed Model and outlines the data management procedures used for BMP tracking within each state. Information on nutrient application rates, land use conversions, and the application of land use-based BMP efficiency rates within the Phase IV Watershed Model is presented.

List of Phase IV Watershed Model Reference Appendices

Appendix A	Phase IV Chesapeake Bay Watershed Model Hydrology Calibration Results
Appendix B	Phase IV Chesapeake Bay Watershed Model Water Quality Calibration
Appendix C	Phase IV Chesapeake Bay Watershed Model Nonpoint Source Simulation
Appendix D	Phase IV Chesapeake Bay Watershed Model Precipitation and Meteorological Data Development and Atmospheric Nutrient Deposition
Appendix E	Phase IV Chesapeake Bay Watershed Land Use & Model Linkages to the Airshed & Estuarine Models
Appendix F	Phase IV Chesapeake Bay Watershed Model Point Source Loads
Appendix G	Observed Water Quality Data Used for Calibration, A Simulation of Regression Loads, and a Confirmation Scenario of the Phase IV Chesapeake Bay Watershed Model
Appendix H	Tracking Best Management Practice Nutrient Reductions in the Chesapeake Bay Program
Appendix I	Model Operations Manual

Table of Contents

Principal Authors	i
Tributary Strategy Workgroup Members	ii
Modeling Subcommittee Members	ii
Acknowledgments	
Appendix Summary	
List of Phase IV Watershed Model Reference App	
-	
Table of Contents	
List of Figures	ix
List of Tables	x
Acronym Index	xi
H.1 BMP Data Management	1
H.1.1 Federal Cost-Share Programs	
H.1.2 State Programs	
H.1.3 Land Use Conversions	
H.2 Implementation of Nutrient Management BN	
•	• •
Nutrient Reduction Efficiency Rates	
<u>-</u>	
H.2.1.1 Conservation Reserve Program	
H.2.1.3 Tree Planting.	
H.2.1.4 Conservation Tillage	
H.2.1.5 Forest and Grass Buffers	
H.2.2 BMPs Involving Nutrient Reduction Efficiencies.	30
H.2.2.1 Urban BMPs	
H.2.2.1.1 Erosion and Sediment Controls	22
	33
H.2.2.1.3 Onsite Wastewater Management Syste	
H.2.2.1.4 Onsite Wastewater Management Syste	
H.2.2.1.5 Urban Nutrient Management	
H.2.2.2 Agriculture/Silviculture BMPs	
H.2.2.2.1 Cropland Nutrient Management.,	46
	Plan
H.2.2.2.3 Animal Waste Management Systems	
H.2.2.2.4 Manure Applications to Pastureland	
H.2.2.2.5 Runoff Control for Animal Confineme	
H.2.2.2.6 Grazing Land Rotation	

H.2.2.2.7 Stream Protection (with and without fencing)	
H.2.2.2.9 Forest and Grass Buffers	72
H.2.2,2.10 Cover Crops.	72
.2.2.3 BMPs Affecting Direct Loads to Tidal Bay Waters	72
H.2.2.3.1 Marine Sewage Disposal Facilities	73
H.2.2.3.2 Shoreline Protection	73
H.2.2.3.3 Combined Sewer Overflows	73
Summary of Watershed Model Operations	
Scenario Characteristic Modification.	
Initial Model Run for the Edge of Stream Loads	
Adjustment of Bed Concentration	75
Second Model Run	75
Delivery Factors	75
Final Model Run	75
404	77
	H.2.2.2.8 Forestry BMPs. H.2.2.2.9 Forest and Grass Buffers. H.2.2.2.10 Cover Crops. 2.2.3 BMPs Affecting Direct Loads to Tidal Bay Waters. H.2.2.3.1 Marine Sewage Disposal Facilities. H.2.2.3.2 Shoreline Protection. H.2.2.3.3 Combined Sewer Overflows. Summary of Watershed Model Operations. Scenario Characteristic Modification. Initial Model Run for the Edge of Stream Loads. Adjustment of Bed Concentration. Second Model Run. Delivery Factors. Final Model Run.

List of Figures

rigure	Page	
H.1.1	Watershed Model Scenario Operations	. 2
H.1.2	Major Basins in the Chesapeake Bay Watershed	. 3
H.1.3	Conservation Tillage vs Conventional Tillage for the Chesapeake Bay Watershed	23
H.1.4	Conservation Tillage vs Conventional Tillage for the United States	24
H.2.1	Determining Fertilizer Nutrient Application Rates for Pervious Urban Areas	44
H.2.2	Fertilizer Application to the Phase IV Watershed Model for Pervious Urban Land	45
H.2.3	Cropland Mass Balance Used to Calculate the Amount of Nutrients Needed Under Nutrient Management Conditions	47
H.2.4	Calculating Manure Acres and their Incorporation into the Phase IV Watershed Model	49
H.2.5	Manure Mass Balance for each Phase IV Watershed Model Segment	50
H.2.6	Total Animal Units by County	53
H.2.7	Method Used to Estimate Nitrogen Applied to Pasture	64
H.2.8	Comparison of Modeled and Observed Manure Application Rates of TN and TP to Conventional Tillage	67
H.2.9	Comparison of Modeled and Observed Manure Application Rates of TN and TP to Conservation Tillage	68
H.2.10	Comparison of Modeled and Observed Manure Application Rates of TN and TP to Hayland	69

List of Tables

Table	Page
H.1.1	Chesapeake Bay Watershed Model (WSM) BMP Identities with Associated Land Use Code
H.1.2	Correlation of Tributary Strategy BMPs with Phase IV Watershed Model BMPs
H.1.3	Federal Conservation Reporting and Evaluation System (CRES) Practice Identities and Corresponding Phase IV Watershed Model BMP Identities (used from 1985 to 1992)
H.1.4	Federal Conservation Reporting and Evaluation System (CRES) Practice Identities and Corresponding Phase IV Watershed Model BMP Identities (used from 1993 to Present)
H.1.5	An Example of Percentages of Selected Counties within each Corresponding Chesapeake Bay Phase IV Watershed Model Segment
H.1.6	Pennsylvania Cost-Share BMP Identities and Corresponding Chesapeake Bay Phase IV Watershed Model BMP Identities (Practices tracked from 1985 to 1996)
H.1.7	Maryland Cost-Share BMP Identities and Corresponding Chesapeake Bay Phase IV Watershed Model BMP Identities (Practices tracked from 1985 to 1996)
Н.1.8	Virginia Cost-Share BMP Identities and Corresponding Chesapeake Bay Phase IV Watershed Model BMP Identities (Practices tracked from 1985 to 1996)
H.1.9	Example of Maryland BMP Data Format for the Phase IV Watershed 1996 Progress Scenario
H.1.10	List of Maryland BMPs and Data Sources
H.1.11	Example of Pennsylvania BMP Data Format
H.1.12	Example of Virginia BMP Data Format

Table	Page
H.1.13	Example of District of Columbia's BMP Data
H.1.14	BMPs Resulting in a Land Use Conversion
H.2.1	Maryland's Nutrient Reduction Efficiencies for Forest or Grass Buffers
H.2.2	Chesapeake Bay Watershed Model BMP Matrix with Associated Nutrient Reduction Efficiencies
H.2.4	Population Estimates & Projections for Chesapeake Bay Program Model Segments
H.2.5	Septic Loading Projections for the Chesapeake Bay Program Model Segments
H.2.6	Distribution of Total Nitrogen from Manure for each Phase IV Watershed Model (WSM) Segment in the Manure Mass Balance Calculation for the Phase IV Watershed Model
H.2.7	Estimated Quantities of Voided Manure from Livestock and Poultry (Normalized to 1,000 pounds of animal body weight)
H.2.8	Manure in All Confined Areas
H.2.9	Manure in Areas Susceptible to Run-off (BMPs possible)
H.2.10	Manure in Areas Always Susceptible to Run-off
H.2.11	Manure in Areas Never Susceptible to Run-off
H.2.12	Breakdown of TN Manure Applications per 2 Days
H.2.13	Breakdown of TN Manure Applications per Year

Acronym Index

Acronym Term
AU Animal Unit

AWMSL Animal Waste Management System (livestock)
AWMSP Animal Waste Management System (poultry)

BF Buffer Forested

BG Buffer Grassed (on agricultural land)

BMP Best Management Practice
CBP Chesapeake Bay Program

CBPLU Chesapeake Bay Program Land Use

CC Cover Crop

CIMS Chesapeake Information Management System

CRES Federal Conservation Reporting and Evaluation System

CRP Conservation Reserve Program
CSO Combined Sewer Overflow
CT Conservation Tillage

CTIC Conservation Technology Information Center

ESC Erosion and Sediment Control
ESWM Enhanced Stormwater Management

FC Forest Conservation

FCA Forest Conservation Act (Maryland)

FHP Forest Harvesting Practice FSA Farm Services Agency

GIS Geographic Information System

HSPF Hydrologic Simulation Program FORTRAN

MSDF Marine Sewage Disposal Facility

NCRI National Center for Resource Information
NMPI Nutrient Management Plan Implementation
NRCS National Resources Conservation Service
OSWMS On-site Wastewater Management System

RC Runoff Control

RHEL Retirement of Highly Erodible Land

SC Septic Connection

SCWQP Soil Conservation and Water Quality Plan

SCWQPI Soil Conservation and Water Quality Plan Implementation

SD Septic Denitrification SP Septic Pumping

SPWF Stream Protection With Fencing
SPWO Stream Protection Without Fencing
SWCD Soil & Water Conservation District

SWM Stormwater Management

SWMC Stormwater Management Conversion SWMR Stormwater Management Retrofit

TN Total Nitrogen
TPLANT Tree Planting
TP Total Phosphorous

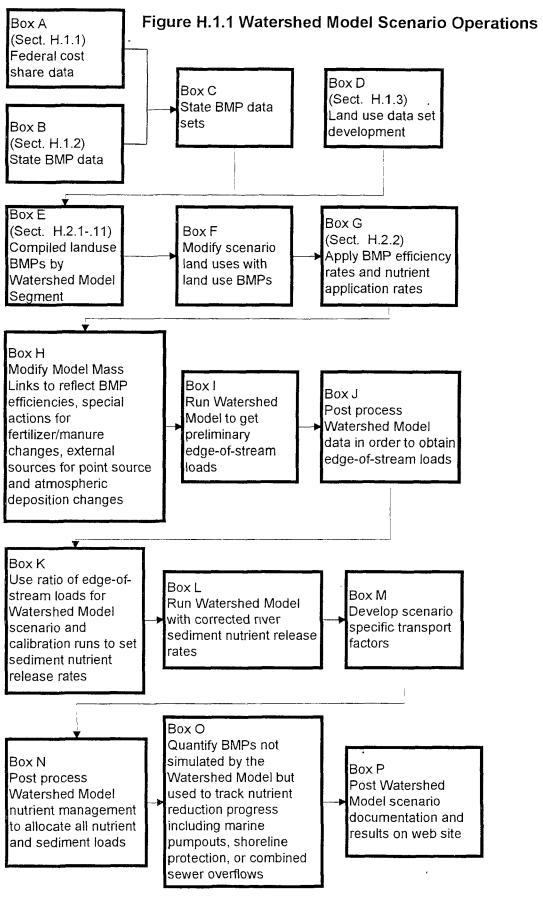
TSWG Tributary Strategy Workgroup UNM Urban Nutrient Management

USDA United States Department of Agriculture
USEPA United States Environmental Protection Agency

WDM Watershed Data Management

WSM Watershed Model

Section H.1 BMP Data Management


Nutrient reduction tracking involves: 1) accurate annual land use data, 2) annual Best Management Practice (BMP) installation or implementation data, and 3) using the land use and BMP data to simulate the effect of implemented BMPs. Annual land use and BMP data are used as input for the Phase IV Watershed Model scenarios of past, present, or projected BMP implementation conditions to calculate nutrient loads and sediment delivered to the Bay. The land use and BMP databases are necessarily large and complex due to the 64,000 square miles of land area within the Bay watershed and the wide range of BMPs applied to reduce nutrient and sediment loads. Figure H.1.1 is a schematic representation of that process. The watershed includes parts of Delaware, New York, West Virginia, Pennsylvania, Maryland, Virginia, and all of the District of Columbia (Figure H.1.2).

Since 1984, the four signatory Bay Agreement jurisdictions (Maryland, Pennsylvania, Virginia, and the District of Columbia) have expanded existing nonpoint source (nps) pollution control programs and started new programs. Cost share programs, a major component of nps control programs provide financial assistance to landowners for BMP implementation. The BMP cost share implementation data set is used as a major source of BMP tracking data within the Phase IV Watershed Model and throughout the Bay watershed.

As a result of the Chesapeake Bay Program 1992 Baywide Nutrient Reduction Strategy, the Chesapeake Reevaluation Executive Council Directive 93-1 established target load reductions for each of the ten major Chesapeake Bay Tributaries depicted in Figure H.1.2. The Directive commits each signatory jurisdiction to establish a strategy for achieving the required nutrient reductions within each tributary by the year 2000. Directive 93-1 has two implications: (1) achieving the established nutrient loading cap requires accounting for all nutrient reductions throughout the entire watershed, and (2) locations of BMP installations are needed at a sub-basin level to determine current nutrient reduction delivered to the Chesapeake Bay as estimated by the Phase IV Watershed Model.

The tracking process begins with data sets from each of the signatory state jurisdictions (Figure H.1.1, Boxes A, B, and C). In the non-signatory jurisdictions of Delaware, New York, and West Virginia, the USDA Farm Service Agency's (FSA) Federal Conservation Reporting and Evaluation System (CRES) data are used to track practices. CRES data are also used to supplement the signatory state's cost-share BMP data (i.e. BMPs implemented on private property with state or federal financial assistance). Data from the Conservation Technology Information Center (CTIC) are used to track conservation tillage.

The management, documentation, and reporting of BMP installation tracking data are the responsibility of the individual signatory jurisdictions. Each jurisdiction tracks BMP installations through cost share as well as non cost-share programs. This means that BMP installation progress reported from a signatory jurisdiction may include non-cost shared BMPs that may or may not have been installed with Soil Conservation District technical assistance. The signatory jurisdictions have agreed to use a common set of BMPs and efficiencies developed by the Tributary Strategy Workgroup as the basis for evaluating Tributary Strategy progress. Non-signatory jurisdictions use only federal CRES data in tracking BMP implementation progress.

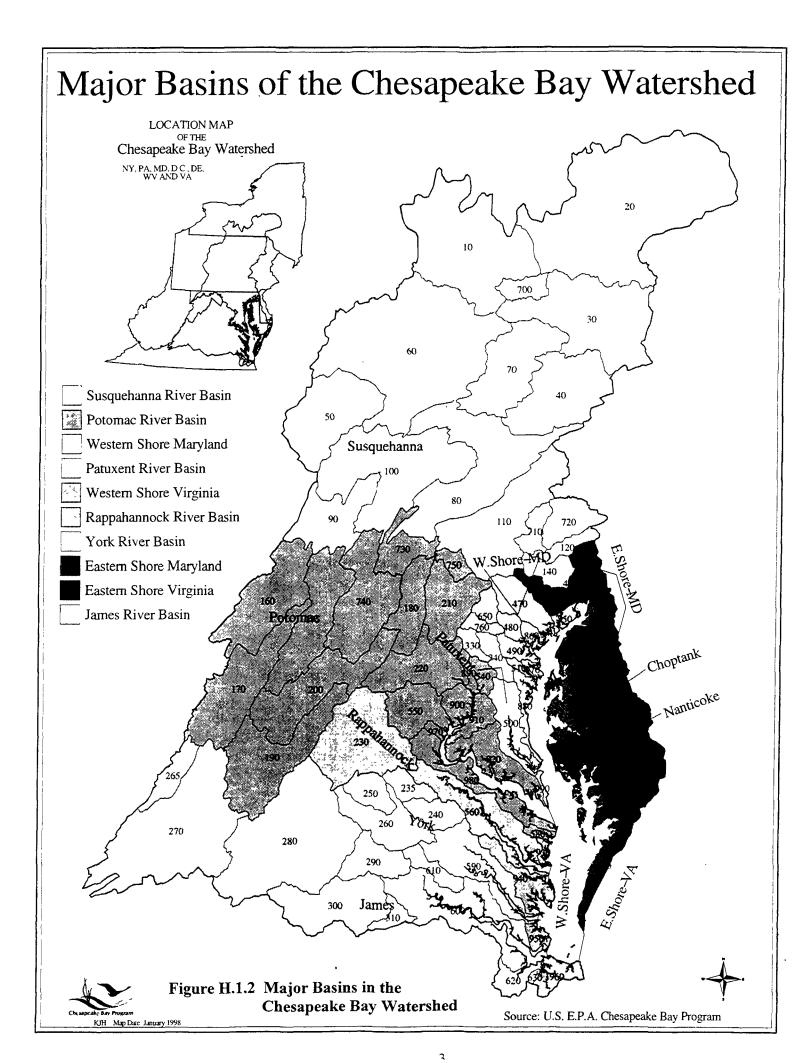


Table H.1.1 lists the Chesapeake Bay Program Watershed Model BMPs in conjunction with the applicable land use. The land use code is an accounting code which represents the land use simulated by the Phase IV Watershed Model (WSM).

Table H.1.1 BMP Identities With Associated Land Use Code

WSM	Unit	Land Use Applied To	Land Use Code
BMP 1	acres	all cropland	60
BMP 2	acres	pasture	40
BMP 3	acres	conventional/conservation	23
		tilled cropland	
BMP 4	acres	manure	70
BMP 5	acres	forest	10
BMP 6	acres	manure	70
BMP 7	acres	pasture	40
BMP 8	acres	all cropland (NM)	60
BMP 9	acres	pasture	40
BMP10	acres	forest	10
BMP11	acres	urban (pervious/impervious)	50
BMP12	acres	urban (pervious/impervious)	50
BMP13	systems	urban (pervious only)	50
BMP14	systems	urban (pervious only)	50
BMP15	systems	urban (pervious only)	50
BMP16	acres	urban (pervious only)	50
BMP17	acres	all cropland	60
BMP18	acres	all cropland	60
BMP19	acres	pasture	40
BMP20	acres	conventional tilled cropland	20

A listing of all the various BMP types and categories used in the tributary strategies has been developed by the Chesapeake Bay Program Nutrient Subcommittee's Tributary Strategy Workgroup. Table H.1.2 shows how these field BMPs relate to Chesapeake Bay Watershed Model BMPs.

Table H.1.2 Correlation of Tributary Strategy BMPs with Phase IV Watershed Model BMPs

Category	7	Tributary Strategy BMPs	WSM BMPs
Land Use C	onversions		
		retirement of highly erodible land	*
		Conservation Reserve Program (CRP)	*
		forest conservation	*
		forest/grass buffers	*
		tree planting	*
		conventional tillage to conservation tillage	*
Jrban		· ·	
	Erosion and Sediment Control	erosion and sediment control	BMP11
	Storm Water Management	extended detention (dry)	BMP12
	-	pond-wetland system (series)	BMP12
		stormwater wetland (one step)	BMP12
		retention ponds (wet)	BMP12
		SWM conversions (dry->retention)	BMP12
		sand filters	BMP12
	Septic Systems	septic pumping	BMP13
		septic connections	BMP15
		septic denitrification	BMP14
	Nutrient Management	nutrient management (residential)	BMP16
griculture			
	Forest	forest	BMP 10
	Soil Conservation WQ Plan	cropland (conventional & conservation tillage)	BMP 1
		hayland	BMP I
		pasture	BMP 2
	Animal Waste	animal waste management systems (dairy/beef/swine)	BMP 4
		animal waste management systems (poultry)	BMP 4
	Barnyard Runoff Control	supplemental (added to existing waste management system)	BMP20
		full system (total barnyard control)	BMP 4
	Grazing Land Protection	grazing land protection (rotational grazing)	BMP 9
	Streambank Protection	stream protection with fencing	BMP 7
		stream protection without fencing	BMP19
		stream restoration (non-tidal)	BMP 7
	Forest Harvesting	forest harvesting practices	BMP 5
	Nutrient Management Plans	nutrient management plans	BMP 8
	Riparian Buffers	forested	BMP18
		grassed	BMP17
	Cover Crop	cover crops (cereal grain)	BMP 3
ributary Me	odel BMPs		
	Marine Pumpouts	marine pumpouts (installation)	**
	Shoreline Protection	structural shore erosion control	**
		nonstructural shore erosion control	**
	Combined Sewer Overflows	treatment	**
		conversion of combined sewer overflow to sewer	**

^{*} Note 1: Land use conversions are directly simulated as a land use change and are not reduction efficiencies, therefore they are no assigned a Phase IV Watershed Model BMP number.

^{**} Note 2: Simulated as a load reduction by the Phase IV Watershed Model or the Chesapeake Bay Water Quality Model.

Section H.1.1 Federal Cost-Share Programs

Box A. Federal cost share data

The USDA Farm Services Agency's Conservation Reporting and Evaluation System (CRES) tracks conservation practices implemented through the USDA federal cost-share program. This data set documents sediment and erosion control practices installed, and acres treated annually throughout the United States. A data subset may then be created which includes practices installed and acres treated for the counties within the Bay watershed. Each practice is cumulative from 1985 to the year of the Phase IV Watershed Model scenario with the exclusion of practices which regularly change on an annual basis, i.e. cover crop practices, which are not cumulative. The smallest unit of geographic reference for these BMP installations is by county. Tables H.1.3 and H.1.4 list the Conservation Reporting and Evaluation System BMP identities and corresponding Chesapeake Bay Program BMP identities used from 1985 to 1992, and from 1993 to the present, respectively.

Table H.1.3 Conservation Reporting and Evaluation System (CRES) Practice Identities and Corresponding Watershed Model BMP Identities (used from 1985 to 1992)

CRES Practices Tracked 1985-1992	CRES BMP ID	WSM BMP ID
contour farming	SL13	BMP 1
Stripcropping, contour or field	BMP3, SL3	BMP 1
terrace system	BMP4, SL4	BMP 1
diversion system	BMP5, CP6, SL5	BMP 1
waterway system	BMP7, CP8, WP3	BMP 1
sediment retention/erosion or water control structure	BMP12, CP7, WP1	BMP 1
field windbreak	CP5	BMP 1
windbreak restoration	SL7	BMP 1
grass filter strip	CP13	BMP 1
water impoundment reservoirs	WC1	BMP 1
grazing land protection system	BMP6, SL6	BMP 2
stream protection system	BMP10, WP2,	BMP 7
stream bank stabilization	SP10	BMP 7
fertilizer management	BMP15	BMP 8
cropland protection cover	SL8	BMP 3
tree planting	FP1	BMP 5
forest tree stand improvement	FR2	BMP 5

Table H.1.4 Conservation Reporting and Evaluation System (CRES) Practice Identities and Corresponding Watershed Model BMP Identities (used from 1993 to present)

CRES Practices Tracked 1993-Present	CRES BMP ID	WSM BMP ID
stripcropping systems	SL3	BMP 1
terrace systems	SL4	BMP 1
diversions	SL5	BMP 1
grazing land protection	SL6	BMP 2
field windbreak restoration or establishment	SL7	BMP 1
cropland protective cover	SL8	BMP 3
vegetative row barriers	SL12	BMP 1
sediment retention, erosion or water control structure	WP1	BMP 1
stream protection	WP2	BMP 7
sod waterways	WP3	BMP 1
agricultural waste control facilities	WP4	BMP 4
constructed wetland systems for agricultural waste	WP6	BMP 4
site preparation for natural regeneration	FR3	BMP 5
stream bank stabilization	SP10	BMP 7
forest land management roads	SP43	BMP 5
integrated crop management	SP53	BMP 8
improving a stand of forest trees	FP2	BMP 5
site preparation for natural regeneration	FP3	BMP 5
reforestation and afforestation	SIP2	BMP 5
forest improvement	SIP3	BMP 5
agroforestry establish/maintenance/renovate	SIP4	BMP 5
soil and water protection and improvement	SIP5	BMP 5
contour farming	SL13	BMP 1
water impoundment reservoirs	WC1	BMP 1
forest tree stand improvement	FR2	BMP 5
riparian buffer strips	WP7	BMP10

Since CRES data is located by state and county, and not by Phase IV Watershed Model segments, the CRES data must be redistributed by model segment before it can be used as input for the Phase IV Watershed Model. The approach assumes all practices are distributed homogeneously within each land use and each county. Each Phase IV Watershed Model segment is assigned BMP treated acres according to the proportion of the county within the Phase IV Watershed Model segment (Table H.1.5). For example, County A is divided between three Watershed Model segments: model segment 1 containing twenty percent, model segment 2 containing thirty percent, and model segment 3 containing fifty percent. An installation that treats 100 acres in County A will be represented by 20 acres treated in model segment 1, 30 acres treated in model segment 2, and 50 acres treated in model segment 3.

After all practices are assigned to the proper segment(s), they are aggregated by practice type (i.e. BMP1, BMP5, etc.) within each Phase IV Watershed Model segment. When a county falls on the boundary of the watershed only the portion of the county in the Chesapeake Bay basin is used. Examples of the percentages of various counties within the Chesapeake Bay Watershed Model segments are listed in Table H.1.5. For example, Anne Arundel County, Maryland is 100 percent in the basin and falls in six Phase IV Watershed Model segments. Kent County,

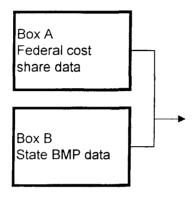

Delaware is only 33 percent within the Chesapeake watershed and comprises a portion of five Phase IV Watershed Model segments. This information, obtained by over-laying state, county, and Phase IV Watershed Model boundary information using GIS is documented in *Chesapeake Bay Watershed Model Application and Calculation of Nutrient and Sediment Loading: Appendix E, Phase IV Watershed Land Use*.

Table H.1.5 An Example of Percentages of Selected Counties Within Each Corresponding Chesapeake Bay Watershed Model (WSM) Segment. A Complete Account of percentages of counties within Phase IV Watershed Model segments can be found in Appendix E.

County	State	WSM Segment	Percent of County In WSM Segment
Kent	DE	380	4.99
Kent	DE	400	3.77
Kent	DE	410	10.64
Kent	DE	770	12.86
Kent	DE	780	1.79
New Castle	DE	370	2.65
New Castle	DE	380	2.57
New Castle	DE	800	2.90
New Castle	DE	810	1.50
Sussex	DE	410	38.88
Sussex	DE	420	0.21
Sussex	DE	430	4.50
Sussex	DE	780	6.40
District of Columbia	DC	220	5.24
District of Columbia	DC	540	24.63
District of Columbia	DC	890	54.06
District of Columbia	DC	910	16.08
Allegany	MD	160	60.67
Allegany	MD	170	0.01
Allegany	MD	175	39.32
Anne Arundel	MD	340	13.68
Anne Arundel	MD	490	20.95
Anne Arundel	MD	500	15.91
Anne Arundel	MD	510	11.19
Anne Arundel	MD	870	10.07
Anne Arundel	MD	880	28.18
Baltimore	MD	110	0.01
Baltimore	MD	450	1.99
Baltimore	MD	470	61.17
Baltimore	MD	480	13.31
Baltimore	MD	490	4.49
Baltimore	MD	760	8.78
Baltimore	MD	860	10.25
Calvert	MD	500	70.79
Calvert	MD	880	28.10
Calvert	MD	990	1.12

The federal BMP data (CRES) are also used for tracking BMP implementation in the three non-signatory states of New York, West Virginia, and Delaware. Linear interpolation between 1991 and 1996 CRES data are used to estimate annual BMP implementation while linear extrapolation was used to project BMP implementation to the year 2000 for the non-signatory jurisdictions. Along with cost share data from the states, CRES provides supplemental BMP tracking data for the signatory states (Maryland, Pennsylvania, and Virginia). For 1996 and beyond, CRES data are not used to augment Maryland BMP tracking data.

Section H.1.2 State Programs (Figure H.1.1, Box B)

The signatory jurisdictions of Pennsylvania, Maryland, and Virginia submit data sets documenting the installation of BMP cost-shared with Chesapeake Bay Program Implementation Grants. The data sets are submitted on computer disks in various formats including ASCII, Lotus 1-2-3, QuatroPro, MS Access, and dBASE DBF. The Chesapeake Bay Program Office processes these data in order to compile a database containing information on the state, county, state BMP code, acres treated, and animal waste stored. Tables H.1.6-8 list the BMPs used in the Pennsylvania, Maryland, and Virginia cost-share programs, respectively, and their corresponding Chesapeake Bay Watershed Model BMP identity.

Table H.1.6 Pennsylvania Cost-Share BMP Identities and Corresponding Chesapeake Bay Watershed Model BMP Identities (Practices tracked from 1985 to 1996)

BMP NAME	PA BMP ID	WSM BMP ID
stripcropping, contour or field	3	BMP 1
terrace system	4	BMP 1
diversion system	5	BMP 1
waterway system	7	BMP 1
sediment retention/erosion or water control	12	BMP 1
grazing land protection system	6	BMP 2
stream protection system	10	BMP 2
cropland system (cover crop)	8	BMP 3
animal waste management	2	BMP 8
nutrient management	16	BMP 4

Table H.1.7 Maryland Cost-Share BMP Identities and Corresponding Watershed Model BMP Identities (Practices tracked from 1985 to 1996)

BMP NAME	MD BMP ID	WSM BMP ID
contour farming	330	BMP I
stripcropping, contour or field	585	BMP 1
stripcropping, contour or field	586	BMP I
terrace system	600	BMP 1
diversion system	362	BMP 1
waterway system	412	BMP 1
waterway system	468	BMP 1
contour orchard/fruit area	331	BMP I
sediment basin	350	BMP 1
field border	386	BMP 1
field windbreak	392	BMP 1
grass filter strip	393	BMP 1
spring development	574	BMP 2
trough or tank	614	BMP 2
fencing	382	BMP 2
cover and green manure crop	340	BMP 3
animal waste control facility	313	BMP 4
animal waste control facility	359	BMP 4
animal waste control facility	425	BMP 4
forest land erosion control system	408	BMP 5
forest land management	409	BMP 5
roof runoff management	558	BMP 4
grade stabilization structure	410	BMP 1

Table H.1.8 Virginia Cost-Share BMP Identities and Corresponding Watershed Model BMP Identities (Practices tracked from 1985 to 1996)

BMP NAME	VA BMP ID	WSM BMP ID
stripcropping, contour or field	SL-3	BMP I
buffer stripcropping	SL3-B	BMP 1
terrace system	SL-4	BMP 1
diversion system	SL-5	BMP 1
waterway system	WP-3	BMP 1
sediment retention/erosion or water control	WP-1	BMP 1
grass filter strip	WQ-1	BMP I
grass filter strip (restrictive)	WQ-2	BMP 1
water table control structure	WQ-5	BMP 1
grazing land protection system	SL-6	BMP 2
stream protection system	WP-2	BMP 7
intensive rotational grazing	WQ-3	BMP 9
protective cover for specialty crops	SL-8	BMP 3
specialty cover crop for nutrient management	SL-8B	BMP 3
legume cover crop animal waste control facility	WQ-4 WP-4	BMP 3 BMP 4

Information from state databases are submitted on a county basis, not by Chesapeake Bay Watershed Model segment. The same process used with the CRES data to distribute BMP implementation data to Watershed Model segments is applied to these cost share databases. Each practice is cumulative from 1985 except for practices which change regularly on an annual basis such as conservation tillage.

Development of tributary strategies by the signatory jurisdictions brought changes in how BMP data are submitted to the Chesapeake Bay Program Office. Watershed Model data sets represent the cumulative implementation of BMPs since 1985, from all sources, including, but not limited to state cost-share and federal cost-share programs as well as from other programs, such as the USDA Natural Resources Conservation Service and Conservation Districts programs. These data are developed by the signatory jurisdictions. Practices tracked for these signatory jurisdictions correspond to those listed in their tributary strategies. Tables H.1.9-1.12 are examples of the data submitted by individual state jurisdictions to the Chesapeake Bay Program Office. These databases can be accessed on the Chesapeake Bay Program Modeling Subcommittee Web Page at:

http://www.chesapeakebay.net/bayprogram/committ/mdsc/model.htm.

Table H.1.9 Example of Maryland BMP Data Format for the Phase IV Watershed Model 1996 Progress Scenario

WSM	BMP Code	PROGRESS	UNIT	BMP Description
Segment		1996		
110	AWMSL	1.20	systems	animal waste management systems livestock
110	AWMSP	0.00	systems	animal waste management systems poultry
110	BF	0.79	acres	buffers forested
110	BG	0.98	acres	buffers grassed (agricultural land)
110	CC	15.47	acres	cover crops
110	CT	1182.36	acres	conservation tillage
110	ESC	0.65	acres	erosion and sediment control
110	ESM	1.39	acres	enhanced stormwater management
110	FC	0.00	acres	forest conservation
110	FHP	0.00	acres	forest harvesting practices
110	NMPI	674.13	acres	nutrient management plan implementation
110	RC	0.17	systems	runoff control
110	RHEL	0.33	acres	retirement of highly erodible land
110	SC	0.40	systems	septic connections
110	SCWQP	930.47	acres	SCWQP treatment of highly erodible land
110	SD	0.00	systems	septic denitrification
110	SMC	0.02	acres	stormwater management conversion
110	SMR	0.01	acres	stormwater management retrofits
110	SP	0.00	systems	septic pumping
110	SPWF	0.75	acres	stream protection with fencing
110	SPWOF	0.69	acres	stream protection without fencing
110	TP	0.20	acres	tree planting
110	UNM	0.00	acres	urban nutrient management
140	AWMSL	17.22	systems	animal waste management systems livestock
140	AWMSP	0.00	systems	animal waste management systems poultry
140	BF	15.49	acres	buffers forested
140	BG	0.00	acres	buffers grassed (agricultural land)
140	CC	60.32	acres	cover crops
140	CT	7000.33	acres	conservation tillage
140	ESC	13.93	acres	erosion and sediment control
140	ESM	27.45	acres	enhanced stormwater management
140	FC	0.56	acres	forest conservation
140	FHP	0.00	acres	forest harvesting practices
140	NMPI	6188.91	acres	nutrient management plan implementation
140	RC	16.85	systems	runoff control
140	RHEL	3.38	acres	retirement of highly erodible land
140	SC	2.09	systems	septic connections
140	SCWQP	8738.55	acres	SCWQP treatment of highly erodible land
140	SD	0.00	systems	septic denitrification
140	SMC	1.92	acres	stormwater management conversion
140	SMR	3.50	acres	stormwater management retrofits
140	SP	0.00	systems	septic pumping
140	SPWF	431.40	acres	stream protection with fencing

Maryland submits Chesapeake Bay BMP tracking data in spreadsheet format using Quattro Pro (Table H.1.10). Maryland tracks BMP implementation through several different databases, including the Maryland Agriculture Water Quality cost-share program database, the Maryland Department of Natural Resources (MD DNR) Forest Service Target and Accomplishment Reporting System, the Federal Conservation Technology Information Center, the Maryland Department of Environment (MDE) Water Management Administration (WMA) Notice of Intent (NOI) database, the MDE Environment Technical And Regulatory Services Administration (TARSA) Urban BMP database, the MD DNR Forest Service, the Nutrient Management Program of Maryland Department of Agriculture Office of Resource Conservation, the MDE Nonpoint Source database, the Soil Conservation Districts reports to the USDA-Natural Resources Conservation Service (USDA-NRCS) and the Maryland Department of Agriculture (MDA). Table H.1.10 lists Maryland's BMPs used within the Phase IV Watershed Model and the sources of these BMP data. In addition to these databases, the MD DNR Waterway Resources Division marina database is used to track shoreline erosion BMPs throughout the state. MD DNR Shore Erosion Control staff developed this database to account for the number of marine pumpouts installed, and structural and nonstructural shore erosion control installations throughout Maryland. Additional documentation on the data sources for Maryland's BMPs may be found in the tributary strategy team's annual reports.

Table H.1.10 List of Maryland BMPs and Data Sources

Maryland's BMP Code	Option	Maryland's Sources of BMP Data
ESC	Erosion and Sediment Control	MDE WMA Notice of Intent database
ESM	Enhanced Stormwater Management	MDE TARSA Urban BMP database
SMR	Stormwater Management Retrofits	MDE Nonpoint Source database
SMC	Stormwater Management Conversion	MDE Nonpoint Source database
SP	Septic Pumping	Data currently not yet available
SD	Septic Denitrification	MDE Nonpoint Source database
SC	Septic Connections	MDE Nonpoint Source database
UNM	Urban Nutrient Management	Data currently not available
SCWQP	SCWQP Implementation	Soil Conservation Districts reporting to USDA, NRCS and MDA
AWMSL	Animal Waste Management Systems livestock	MD Agricultural Water Quality Cost-share program database
AWMSP	Animal Waste Management Systems poultry	MD Agricultural Water Quality Cost-share program database
RC	Runoff Control	MD Agricultural Water Quality Cost-share program database
RHEL	Retirement of Highly Erodible Land	MD Agricultural Water Quality Cost-share program database
SPWF	Stream Protection with Fencing	MD Agricultural Water Quality Cost-share program database
SPWOF	Stream Protection without Fencing	MD Agricultural Water Quality Cost-share program database
NMPI	Nutrient Management Plan Implementation	Nutrient Management Program of MDA Office of Resource Conservation
CC	Cover Crops	MD Agricultural Water Quality Cost-share program database
	Buffers Forested	MD DNR Forest Service Target and Accomplishment Reporting System
	Buffers Grassed (agricultural land)	MD Agricultural Water Quality Cost-share program database
FHP	Forest Harvesting Practices	Data currently not available
FC	Forest Conservation	MD DNR Forest Service
TP	Tree Planting	MD DNR Forest Service Target and Accomplishment Reporting System
СТ	Conservation Tillage	Federal Conservation Technology Information Center

Pennsylvania submits Watershed Model BMP tracking data in a Microsoft Excel spreadsheet format (Table H.1.11). For example, Pennsylvania's Watershed Model 1996 Progress Scenario BMP data were compiled from data received from the USDA Farm Service Agency (FSA), the USDA-NRCS, the Pennsylvania Game Commission, and the Pennsylvania Department of Environmental Protection (PADEP) cost-share program. BMP data from these agencies are first compiled on a county basis. Due to the differences in reporting methods used by the various agencies, the possibility exists that permanent vegetative cover, strip cropping systems, cropland protection systems, and conservation tillage practices reported by the federal and state cost-share programs may be double-counted. To avoid this problem, the acres reported under Pennsylvania's cost-share program are subtracted from the acreage reported by the federal programs. The county data were then redistributed among the Phase IV Watershed Model segments using a method similar to that previously described for the federal cost-share program.

Table H.1.11 displays Pennsylvania's BMP data per Watershed Model segment and land use. The conservation tillage column values are given in units of acres converted from conventional tillage to conservation tillage. The nutrient management column values are provided in units of cropland acres converted to nutrient management practices. These nutrient management practices include manure storage/handling and fertilizer applications at rates that agree with the agronomic needs of the land. The farm plan column provides values in acres of cropland under farm plans and covers a wide range of BMP practices. Farm plan BMP practices can be generally described as pasture and cropland management practices. The stream bank fencing column provides acreage values where stream bank fencing is implemented.

Table H.1.11 Example of Pennsylvania BMP Data Format

WSM Segment	Land Use	Conservation Tillage ¹	Nutrient Management (acres)	Farm Plan (acres)	Stream Bank Fencing (acres)
10	conventional tillage	16137.00	5077.00	15129.67	
10	conservation tillage			2255.33	
10	hayland				
10	pasture			2913.00	26.00
10	animal waste		23.00		
10	forest				
10	urban				
20	conventional tillage	4648.00	3549.00	3653.86	
20	conservation tillage			261.14	
20	hayland				
20	pasture			279.00	20.00
20	animal waste		28.00		
20	forest				
20	urban				
30	conventional tillage	50714.60	17376.00	40449.20	
30	conservation tillage			14568.80	
30	hayland				
30	pasture			9600.00	128.00
30	animal waste		155.00		
30	forest				
30	urban				

¹ given in units of acres converted from conventional tillage to conservation tillage

Virginia submits Chesapeake Bay Watershed Model Progress Scenario BMP tracking data in comma delimited text file format (Table H.1.12). Virginia's BMP data are submitted to the Chesapeake Bay Program Office on a Watershed Model segment basis. Several sources are used in Virginia to obtain BMP data but the majority of the data are obtained through the Virginia Agricultural cost-share program BMP database. This Virginia cost-share program is administered through local Soil and Water Conservation Districts. As part of the cost-share program, each Soil and Water Conservation District is required to make quarterly reports of BMP implementation to the Virginia Department of Conservation and Recreation in a database format. This database includes the latitude and longitude of each BMP implemented and is easily translated into Watershed Model segments. The cost-share program database is supplemented with data from an extensive Virginia farm operator survey of BMP implementation without state or federal cost-share assistance. Conservation tillage information is derived from CTIC data. Nutrient management data are provided from a Virginia Department of Conservation and Recreation database, which includes information on all nutrient management plans written or approved by state nutrient management specialists. During Virginia's Tributary Strategy development process, agricultural specialists at the local level verified all of these data.

Urban BMP implementation data were also collected from participating localities during the tributary strategy development process. These data include erosion and suspended sediment control, storm water management retrofits, urban nutrient management, and septic pumping. Data are typically collected on a county basis and are aggregated to Watershed Model segments on a proportional basis. Shoreline erosion protection data are taken from a study on highly erodible shoreline and BMP implementation in the Virginia portion of the Chesapeake Bay. The source of the forest harvesting data is the Virginia Department of Forestry.

Table H.1.12 Example of Virginia BMP Data

BMP Treatment	Units	Model Segment 170	Model Segment 200	Model Segment 220	Sum of Potomac Basin
					Model Segments
conservation tillage	acres	270	20,854	23,855	156,533
farm plans	acres	1,386	69,551	68,497	392,139
nutrient management	acres	1,322	73,469	17,712	276,471
highly erodible land retirement	acres	535	3,126	2,716	23,133
grazing land protection	acres	1,200	16,400	4,242	36,609
stream protection	acres	0	708	925	3,298
stream fencing	linear feet	0	9,959	206	167,328
stream protection	linear feet	0	469	0	14.012
cover crops	acres	43	5,581	161	19,643
grass filter strips	acres	313	2,981	858	11.483
woodland buffer filter area	acres	4	298	97	900
forest harvesting	acres	233	2,215	591	8.378
animal waste control facilities	systems	0	72	3	212
poultry waste control facilities	systems	2	232	1,152	4,907
loafing lot management	systems	0	5	446	1,851
erosion and sediment control	acres	3	272	1,402	6,199
urban SWM/BMP retrofits	acres	0	0	489	1.965
urban nutrient management	acres	2	161	791	16,398
septic pumping	systems	0	0	15	72
shoreline erosion protection	linear feet	0	0	0	9,575

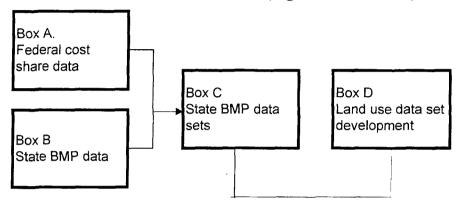

The District of Columbia reports BMP implementation in both a text file and hard copy printout (Table H.1.13). Data submitted by the District of Columbia is taken from DC's BMP implementation programs. Stormwater management implementation databases are ground-truthed within the District and these databases include information on the type, location, status, and drainage area of stormwater management facilities. Site inspections are conducted by the Soil Resources Management Division (Department of Consumer and Regulatory Affairs) to verify the presence of each BMP, thereby obtaining an accurate accounting of all urban BMPs implemented within a given year.

Table H.1.13 Example of District of Columbia's BMP Data

ВМР	Number of BMPs	Acres Treated Treated	Year
	BIVIPS	1 reated	
dry pond (extended)	1	10.00	1988
dry pond (extended)	2	17.40	1991
dry pond (extended)	2	27.60	1992
wet ponds	1	0.69	1991
infiltration trenches	1	0.16	1988
infiltration trenches	2 .	0.86	1989
infiltration trenches	1	0.34	1990
infiltration trenches	3	1.67	1991
infiltration trenches	2	2.11	1992
infiltration trenches	2	0.67	1993
infiltration trenches	1	0.25	1994
oil/grit	17	18.54	1988
oil/grit	3	4.15	1989
oil/grit	4	3.51	1990
oil/grit	10	11.27	1991
oil/grit	3	2.30	1992
oil/grit	2	1.10	1993
sand filters	2	2.40	1988
sand filters	24	21.42	1989
sand filters	24	25.87	1990
sand filters	22	26.65	1991
sand filters	9	7.46	1992
sand filters	14	12.46	1993
sand filters	18	19.19	1994
sand filters	8	12.85	1995
underground detention	3	1.45	1988
(i.e. oversized pipes)		•	
underground detention	2	12.00	1990
(i.e. oversized pipes)			
underground detention	3	9.75	1991
(i.e. oversized pipes)			
underground detention	1	0.74	1992
(i.e. oversized pipes)			
underground detention	1	2.51	1993
(i.e. oversized pipes)			
water quality inlets	2	2.53	1988
water quality inlets	1	9.40	1990

Data from all jurisdictions are converted to MS Excel format before being imported into an MS ACCESS 2.0 database. This BMP database is part of the Chesapeake Bay Information Management System (CIMS). For Watershed Model segments that contain portions of more than one state, the data are aggregated into one model segment by adding the acres associated with each model BMP in each model segment. When all the BMP tracking data has been processed, it is then applied in the Phase IV Watershed Model (Figure H.1.1, Box C).

Section H.1.3 Land Use Conversions (Figure H.1.1, Box D)

Some BMPs involve a change in land use, for example - highly erodible land (HEL) in cropland is retired and converted to pasture. Land use conversions are a significant portion of BMP nutrient reductions in the Chesapeake Bay Watershed and are simulated directly in the Phase IV Watershed Model as a change in land use area. Data for land use conversions of conventional tillage to conservation tillage are developed through county level CTIC data for each simulation year. Other land use conversions such as forest buffers and urban forestry are tracked in the state BMP data bases.

For those land use conversions tracked throughout the watershed, including signatory and nonsignatory states, the primary data sets consist of information from Conservation Technology Information Center. Other data include land use change BMPs tracked through state implementation grants and USDA Farm Services Agency's BMP installations. Table H.1.14 lists those categories that create land use changes.

Table H.1.14 BMP Practices resulting in a Land Use Change

BMP Type	Land Use Change
Conservation Reserve Program (CRP)	cropland to pasture
forest conservation	pervious urban to forest
forest/grass buffers	cropland to forest/pasture
tree planting	cropland/pasture to forest
conventional tillage/conservation tillage	conventional tillage to conservation tillage

Land use Conversions from Conventional Tillage to Conservation Tillage

In the Phase IV Watershed Model, conservation tillage is tracked on an annual basis to reflect increases or decreases that occur in tillage management. Acreage in conservation tillage for each of the six Chesapeake Bay basin states was obtained through the Conservation Technology Information Center (CTIC). CTIC provides annual data sets for each state showing the acres of cropland planted using conservation tillage.

CTIC collects these data in an annual survey conducted on a county-by-county basis by USDA Natural Resources Conservation Service offices, and soil and water conservation districts to track tillage systems used on annually planted crops. The acreage for "Total Cropland Planted" and "Total Cropland Planted Using Conservation Tillage" major data categories is tracked by the CTIC surveys and used by the Chesapeake Bay Program. Within this CTIC data set, conservation tillage is further broken down into the following major data subcategories; "15-30 Percent Residue Tillage," "Under 15 Percent Residue Tillage," "Mulch Tillage," and "No-Till Tillage." Tillage methods and acreage for the following crop types are estimated by the annual surveys: corn full season and double cropped; small grain fall and spring seeded; soybeans full season and double cropped; cotton; grain sorghum full season and double cropped; forage crops; and other crops.

Once the Chesapeake Bay Program obtains these data, a CTIC software program (CEDAR) is used to organize the data into a new data set that includes "Total Tillage" (all acres planted, including those planted by conservation tillage) and "Conservation Tillage" (all acres planted using conservation tillage) for each county. This data set includes the following crops: corn full season; small grain fall and spring seeded; soybeans full season; cotton; grain sorghum full season; forage crops; and other crops. To eliminate double counting of acres, the double cropped acres are not included in this data set. Forage is included, since at the planting stage it responds more like tilled cropland in the first season of growth.

This data set is normalized to the cropland areas represented in the Phase IV Watershed Model by adding all acres of the above crops for both "Total Tillage" and "Conservation Tillage," and then dividing "Conservation Tillage" by "Total Tillage" to get "Percent Conservation Tillage" for each county. This percent value is then used to adjust conservation and conventional tillage within each county of the Chesapeake Bay Program Land Use data set. This adjustment is made within the data set by multiplying the "Percent Conservation Tillage" by the total cropland (less

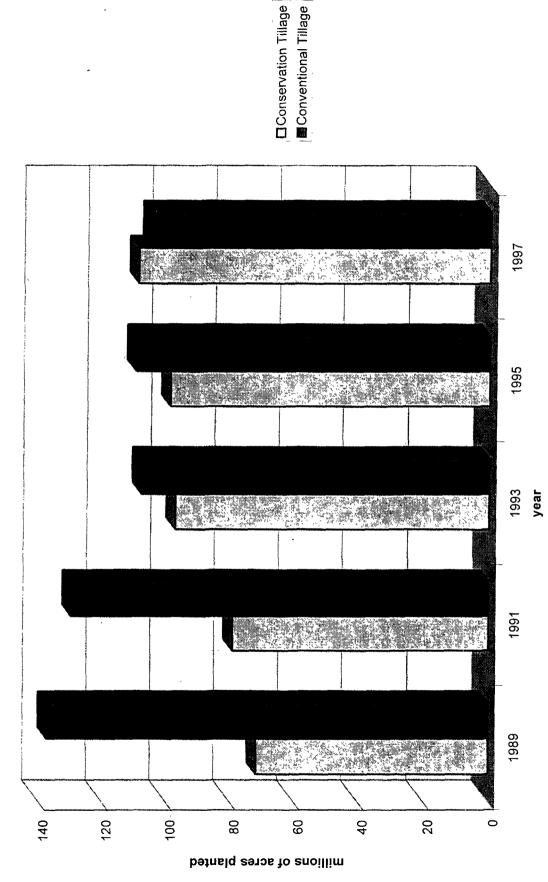

hayland) for each county to get the acres of conservation tillage in each county. The difference between total cropland (less hayland) and conservation tillage is the conventional tillage acres. Both conservation and conventional tillage acres are multiplied by the percent of county in each Phase IV Watershed Model segment. These county values are added to obtain both conservation and conventional tilled acres within each model segment.

Figure H.1.3 shows the amount of conservation tillage compared to the amount of conventional tillage as modeled by the Phase IV Watershed Model. The Chesapeake Bay Watershed, in 1985 had more conservation tillage than conventional. By the year 2000, it is projected that conservation tillage will have been implemented on even more acres. The trend of decreasing conventional tillage and increasing conservation tillage practice is also evident in Figure H.1.4 on a national basis.


☐Conservation Tillage Conventional Tillage Figure H.1.3 Conservation Tillage vs Conventional Tillage for the Chesapeake Bay 2000 Progress Watershed 1996 Progress 1985 Reference 3.5 2.5 0.5 millions of acres planted

Model Scenario

Figure H.1.4 Conservation Tillage vs Conventional Tillage for the United States (http://ctic.purdue.edu/survey)

Section H.2 IMPLEMENTATION OF NUTRIENT MANAGEMENT BMP APPLICATION RATES AND BMP NUTRIENT REDUCTION EFFICIENCY RATES

The Phase IV Watershed Model simulates BMP nutrient reductions by land use conversions (i.e. conventional tillage to conservation tillage), application of BMP nutrient reduction efficiencies, and nutrient management. The following sections describe how the effects of BMPs are simulated within the Phase IV Watershed Model, lists BMPs identified by current tributary strategies, and includes the range of nutrient reduction efficiency values used within the Phase IV Watershed Model.

Section H.2.1 BMPs Involving Land Use Conversion (Figure H.1.1, Box E)

Land use conversions within all Chesapeake Bay basin jurisdictions are accounted for through the use of the Phase IV Watershed Model through a land use acreage change from one land use to another. Because the Phase IV Watershed Model simulates only a total acreage value for each model segment, any land use changes must be averaged over the total land use acreage and then applied to the total acreage value within a model segment.

Land use conversions simulated by the Chesapeake Bay Watershed Model are forest/grass buffers, conservation reserve program, forest conservation, tree planting, and changing conventional tillage to conservation tillage. These land use conversions occur on the land through the conversion of cropland to conservation reserve program acres, urban land to forest (through forest conservation), urban land to forest (through tree planting programs), conventional tillage to conservation tillage, and urban or cropland to forest/grass buffers. A final land use conversion (used only by Maryland) is highly erodible land to pasture. Implemented land use conversions cause nutrient load reductions because they change the edge-of-stream loading rate into a lower rate thereby reducing nutrient and suspended sediment loads delivered to the Bay.

Section H.2.1.1 Conservation Reserve Program

Authorized by the Amended Food Security Act of 1985, the Conservation Reserve Program (CRP) is a voluntary program that offers annual land rental and incentive payments to farmers establishing conservation practices and planting permanent vegetative cover for 10-15 years. The program encourages farmers to convert highly erodible cropland to grass and trees. In 1997, revisions were made to the Conservation Reserve Program stating that only croplands that are used to grow commodities, or marginal pastures that are either enrolled in the Water Bank Program or suitable for use as forested riparian buffers are eligible for the program. In addition, croplands must either be: highly erodible; considered cropped wetland; devoted to highly beneficial environmental practices (i.e. riparian buffers, filter strips, etc.); subject to scour erosion; or be in a national or state Conservation Reserve Program priority area.

In most cases, it is not possible to determine if land is converted to grass or trees, so it is assumed that all acres are planted to grass. In Virginia, critical areas may be converted to forest through a state program. In this case, the areas of converted cropland to forest are known, which allows this conversion to forest to be applied in the Phase IV Watershed Model.

Section H.2.1.2 Forest Conservation

Forest conservation land use conversion is based upon estimates in the amount of forest land saved between 1993 and 2000 as a result of Maryland's Forest Conservation Act. Incorporation of forest conservation practices consist of a land use conversion from developed land (pervious urban) to forest. Maryland's Forest Conservation Act helps to maintain and enhance forest cover by requiring the identification of priority areas for forest retention, setting guidelines for development that require the retention of 15-50 percent of the forested area, and replanting of cleared areas. Priority areas are designated as 100-year flood plains, intermittent and perennial streams and their buffers, steep slopes, and critical habitats. This BMP reduces deforestation created by urban development by requiring that a certain percentage of developed land remain as forested land.

The substitution of forest land for what would otherwise be urban land is best understood within the context of how the Phase IV Watershed Model projects land use. For any year other than 1990, the year of the Chesapeake Bay Program land use data base, land use is projected forward or backward based on population. As population increases within a model segment, urban land use area increases proportional to the 1990 urban land use and population, and the land uses of forest and agriculture, proportionally decrease. Forest Conservation Act BMPs reduce this constant rate of urbanization as projected through population growth.

Section H.2.1.3 Tree Planting

The tree planting BMP includes any tree plantings on any site except those along rivers and streams. Plantings along rivers and streams are considered riparian buffers and are treated differently. The definition of tree planting does not include reforestation. Reforestation replaces trees removed during timber harvest and does not result in an additional nutrient reduction or an increase in the forest acreage.

Section H.2.1.4 Conservation Tillage

Conservation tillage involves planting and growing crops with minimal disturbance of the surface soil using a non-inversion plowing technique and maintaining a 30 percent minimum crop residue cover on the soil surface. No-till farming is a form of conservation tillage in which the crop is seeded directly into slits cut into the soil, therefore, no tillage of the soil surface is needed. Minimum tillage farming involves some disturbance of the soil surface, but maintains a minimum of 30 percent crop residue on the surface. Research has shown that with at least 30 percent of the crop residue remaining at the time of planting, the amount of erosion and resultant nutrient loss are substantially reduced.

Conservation tillage is a land use simulated by the Phase IV Watershed Model. Conservation tillage involves a simple land use change in the land acreage cover between conventional and conservation tillage. Each Watershed Model segment acre in conservation tillage is determined annually using Conservation Technology Information Center county level data.

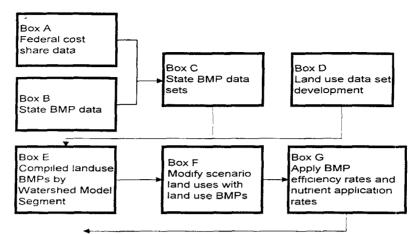
Section H.2.1.5 Forest and Grass Buffers

Buffers, which are linear strips of vegetation along rivers and streams, help to filter nutrients sediment, and other pollutants carried in runoff, as well as excess nutrients in groundwater. It signatory States report buffer BMPs implemented in linear feet, buffers are assumed to be 100 feet wide on a streamside. Based on this buffer width, nutrient reductions in the Phase IV Watershed Model are assumed to be two acres of upgradient land treated for each buffer acre. It signatory States report buffer BMPs implemented as acres treated, then the buffer nutrient reduction efficiency is directly applied to the reported land use.

Forest and grass buffers are incorporated into the Phase IV Watershed Model simulation in two ways. Forest/grass buffers include both a land use conversion on the riparian area and a land use load reduction from upgradient land. Forest buffer land use conversion is a change in land use from cropland to forest. Grass buffer land use conversion is a change from cropland to pastureland.

Buffers also reduce nutrient loads from land adjacent to, and upgradient from, the buffer. Although soil types, vegetative type, width of buffer, and other factors alter the buffer's effectiveness, it is assumed that an acre of forest or grass buffer reduces loads from 2 acres of land adjacent to, and upgradient from the buffer.

The tracking of buffer BMPs is calculated according to buffer area. The Chesapeake Bay Program Office assume one buffer acre for every 435.6 linear feet of riparian buffer (assumed to be 100 feet wide). Land adjacent to the buffer are assumed to be cropland in Virginia, Maryland, and Pennsylvania, and urban land in the District of Columbia, unless otherwise specified. In Pennsylvania, Virginia, and the District of Columbia, forested buffers are estimated to reduce the nitrogen load by 57 percent and both the phosphorus and suspended sediment loads by 70 percent on upgradient agricultural, and urban land uses. Grass buffers are estimated to reduce the upgradient nitrogen load by 43 percent, and the phosphorus and suspended sediment loads by 53 percent.


It is assumed that a certain percentage of stream miles within urban pervious and urban impervious land uses are impractical for buffer implementation. These assumptions are included in the Phase IV Watershed Model by removing 100 percent of the urban impervious and 50 percent of the urban pervious stream miles from buffer eligibility.

In Maryland the efficiencies of forest or grass buffers are estimated for each tributary basin as described in Table H.2.1.

TABLE H.2.1 Maryland's Nutrient Reduction Efficiencies for Forest or Grass Buffers

Basin	Buffer Type	% TN	% TP
		Efficiency	Efficiency
Upper Potomac	forest	48	36
(Model Segments 160, 175, 180, 210,	grass	36	53
730, 740, 750)	i		
Middle Potomac	forest	51	70
(Model Segments 220, 540, 890)	grass	38	53
I amount Data and a	f	5.0	70
Lower Potomac	forest	56	70 53
(Model Segments 910, 920, 990)	grass	42	53
Patuxent	forest	56	70
(Model Segments 330, 340, 500)	grass	42	53
Patapsco/Back	forest	56	70
(Model Segments 480, 490, 660, 760,	grass	41	53
860)			
Upper Western	forest	49	70
(Model Segments 510, 870, 880)	grass	37	53
(Model beginning 510, 670, 660)	5.455	37	
Lower Western	forest	56	70
(Model Segments 470, 850)	grass	42	53
Upper Eastern	forest	58	70
(Model Segments 370, 380, 390, 450,	grass	43	53
800, 810, 820, 830)	5-400	.5	
Lower Eastern	forest	66	70
(Model Segments 410, 420, 430, 780,		49	53
(Model Segments 410, 420, 430, 780, 840)	grass	47	دد
040)			
Choptank	forest	59	70
(Model Segments 400, 770)	grass	44	53

Section H.2.2 BMPs Involving Nutrient Reduction Efficiencies (Figure H.1.1, Box G)

Within the Phase IV Watershed Model, BMP nutrient reduction efficiencies are applied to nitrogen, phosphorus, and suspended sediment nutrient loads (Figure H.1.1, Box G, page 2) Nutrient reduction efficiencies associated with the implementation of BMPs throughout the Chesapeake Bay signatory states are listed in Table H.2.2.

Table H.2.2 Chesapeake Bay Watershed Model BMP Matrix With Associated Nutrient Reduction Efficiencies

Category (Units)	Type of Watershed Model BMP	Reduction Efficiency N (%)	Reduction Efficiency P (%)	Reduction Efficiency TSS (%)
urban	erosion and sediment control (BMP 11)	33	50	. 50
urban – stormwater management ²	extended detention (dry) (BMP 12)	25	20	20
	retention ponds (wet) (BMP 12)	32	46	46
	stormwater wetland (one step) (BMP 12)	25	47	47
	pond-wetland system (series) (BMP 12)	29	64	64
	SWM conversions (dry->retention) (BMP 12)	32	46	46
	sand filters (BMP 12)	30	45	80

¹ acres treated

² acres protected

Category	Type of Watershed Model BMP	Reduction Efficiency N (%)	Reduction Efficiency P (%)	Reduction Efficiency TSS (%)
urban – septic systems ³	septic pumping (BMP 13)	5	0	0
,	septic connections (BMP 15)	55	0	0
urban – septic systems ³	septic denitrification (BMP 14)	50	0	0
urban ¹	nutrient management (residential) (BMP 16)	17	22	0
agriculture SCWQ ⁴ plan implementation	cropland (conventional/ conservation tillage) (BMP 1)	10/4	40/8	40/8
	hayland (BMP 1)	4	8	8
	pasture (BMP 2)	20	14	14
agriculture ⁵	animal waste management systems (AWMS) (dairy/beef/ swine) (BMP 4)	. 80	80	-
	AWMS (poultry) (BMP 4)	14	14	-
agricultural barnyard runoff control ³	supplemental (added to existing waste management system) (BMP 4)	10	10	-
	full system (total barnyard control) (BMP 4)	75	75	-
agriculture ²	grazing land protection (rotational grazing) (BMP 9)	50	25	-
resource protection & watershed planning – streambank protection!	stream protection with fencing (BMP 7)	75	75	75

¹ acres treated ² acres protected ⁴ soil conservation water quality plan

³ number of systems ⁵ tons of manure reduced

Category	Type of Watershed Model BMP	Reduction Efficiency N (%)	Reduction Efficiency P (%)	Reduction Efficiency TSS (%)
resource protection & watershed planning – streambank protection (continued)		40	40	40
	stream restoration (non-tidal) (BMP 7)	75	75	75
resource protection & watershed planning 1	forest harvesting practices (BMP 5)	50	50	50
buffers ¹	forested (BMP 1)	48-65	70	70
	grassed (BMP 1)	35-50	53	53
cover crops ¹	cover crops (cereal grain) (BMP 3)	34-51	10-20	10-20
Water Quality Model BMPs ⁶	marine pumpouts (installation)	95	95	
Water Quality Model BMPs - shoreline protection ⁶	structural shore erosion control	75	75	75
	nonstructural shore erosion control	75	75	75
Water Quality Model BMPs – combined sewer overflows ²	treatment	15	30	30
	conversion (CSO->sewer)	95	95	95

¹ acres treated

² nutrient load pound reduction

The simulation of a land use, for example pastureland, within a particular Watershed Model segment is not a simulation of all of the different types of pasturelands, but a single representative average pasture within that Watershed Model segment. BMP nutrient reduction efficiencies applied to pasturelands are represented with this average value and applied as a percent reduction to the portion of pastureland treated with that BMP. This BMP nutrient reduction efficiency represents a percent reduction in nutrient loading, which results from applying a BMP to the land use. Equation 1 shows this process, where a hypothetical pasture rotation BMP had a total nitrogen reduction efficiency of 10 percent, was applied to 100 aces of pasture in a Watershed Model segment, which had a total of 1,000 acres of pastureland. The reduction applied to the average pastureland simulated by the Phase IV Watershed Model would then be:

10 percent BMP efficiency * $\underline{100 \text{ acres treated}}$ = overall 1 percent TN (1) 1,000 acres total reduction for the average simulation of pasture

Section H.2.2.1 Urban BMPs

Urban BMPs simulated within the Phase IV Watershed Model are erosion and sediment control, extended stormwater detention (dry), pond-wetland systems, stormwater wetlands, retention ponds, stormwater retention structure conversions (dry to wet), sand filters, septic systems (pumping, connections, and denitrification), and urban nutrient management. The following section describes each of these BMPs.

Section H.2.2.1.1 Erosion and Sediment Controls

Erosion and sediment controls, including sediment ponds and silt fencing, are applied to construction sites. The Chesapeake Bay Watershed Model assumes that some portion of the urban land use is in a transitory construction phase at all times. Erosion and sediment controls reduce the high nutrient and suspended sediment loads during the transitory construction phase. Erosion and sediment controls have been in place throughout the Chesapeake Bay basin prior to the 1985 reference year, but are counted as an efficiency reduction in tributary strategies because of the substantial refinements of erosion and sediment reduction techniques, permit inspections, and practice implementation since 1985 throughout the Chesapeake Bay basin. The jurisdictions have also increased implementation of erosion and sediment controls since 1985.

Erosion and sediment controls primarily protect off-site areas from sediment runoff and nutrient pollution. There are numerous technologies that allow for the reduction of sediment from erodible lands. By retaining the soil on-site, nutrients attached to the sediment are prevented from leaving the disturbed area, thus reducing off-site impacts.

Incorporation of erosion and sediment controls result in the reduction of suspended sediment and nutrient loads from pervious urban land. Erosion and sediment controls are estimated to reduce

nutrient loads from urban acres by 33 percent for total nitrogen and 50 percent for both total phosphorus and sediment.

Section H.2.2.1.2 Stormwater Management Systems

Stormwater management systems include extended detention areas (dry basins or ponds) retention ponds (wet), stormwater wetlands (one step), pond-wetland systems (series) stormwater retrofits, stormwater conversions (conversion from dry to retention), and sand filters Nutrient reduction is not the only benefit of stormwater management systems: they also reduce sediment transport, and control peak runoff flows. New development areas in Virginia are required to have stormwater management systems, but for a majority of the Bay basin, these stormwater management systems are for peak flows only and focus on protecting downstream banks from erosion rather then on water quality issues. The only place where stormwater management system water quality controls are required for new developments within the Bay Watershed are in Chesapeake Bay Preservation Act areas in Virginia. These stormwater management practices such as retention ponds with adequate storage and ponds which have extended detention (1 year - 24 hour design criteria) can provide significant pollutant removal, especially when coupled with wetlands components.

Stormwater management BMPs are incorporated into the Phase IV Watershed Model by applying nutrient reduction percentages to nutrient loads from pervious and impervious land areas. These reductions apply to the nutrient and suspended sediment load from land acres affected by stormwater management BMPs. The estimated percentages for each stormwater management system follow:

Management System	TN reductions(%)	TP & TSS reductions(%)
Extended detention	25	20
(dry basins or ponds)		
Retention ponds	32	46
(wet)		
Stormwater wetlands	25	47
(one step)		
Pond-wetland systems	29	64
(series)		

Stormwater retrofits may be extended detention retention ponds, stormwater wetlands, or other water bodies designed to address peak flows and nonpoint source nutrient loads generated on existing urban land developed before stormwater management systems were required. Retrofits provide the same reductions as new stormwater management practices and may be designed to address stormwater flows and/or nutrient and sediment control.

Stormwater conversions increase nonpoint source pollution reductions from areas served by dry basins. Dry basins, without extended detention, are designed to control peak flows and provide relatively few water quality benefits. A stormwater conversion changes a detention basin to a retention pond. For a stormwater conversion, the estimated nutrient and suspended sediment load

reductions are: 32 percent for total nitrogen loading, and 46 percent for both total phosphorus and total suspended sediment loading.

Sand filters are also used for the reduction of urban nutrient loads. It is estimated that sand filters reduce the total nitrogen load by 30 percent, the total phosphorus load by 45 percent, and the total suspended sediment load by 80 percent.

It is not possible to decrease the flow intensity in the Phase IV Watershed Model. Therefore, some beneficial effects of stormwater practices are not accounted for in the tracking systems. These ancillary benefits include reduction in stream channel erosion and urban stream habitat restoration.

Section H.2.2.1.3 Onsite Wastewater Management Systems

For onsite wastewater management systems (OSWMS), commonly called septic systems, nutrient reductions are achieved through three types of management practices. These practices are frequent maintenance and pumping, connection of OSWMS to sewage treatment systems, and OSWMS denitrification. For all of these septic system BMPs, the nutrient reduction efficiency is applied only to nitrogen as it is assumed that phosphorus is entirely treated by OSWMS.

Public education promotes onsite wastewater management system maintenance and informs people how these systems impact the Chesapeake Bay. Whenever septic tanks are pumped and septage removed, the onsite wastewater management system has an increased capacity to remove settable and floatable solids from the wastewater (Robillard and Martin, 1990a). Septic tank pumping promotes biological digestion of a portion of the solids and allows for storage space for the remaining undigested solid portion of the wastewater. OSWMS effluent flows out of septic tanks and into an underground soil adsorption system (field). The pumping of septic tanks is one of several measures that can be implemented to protect soil adsorption systems from clogging and failure (Robillard and Martin, 1990b). This measure reduces the nitrogen loads by an estimated 5 percent. The level of BMP implementation is reported by signatory states as the number of systems implemented. A ratio is formed of the number of pumpouts reported and the total number of septic systems. If a system fails, soil adsorption fields are often unable to adequately filter and treat wastewater, consequently non-treated septic system effluent can drain directly into ground and surface water sources.

Septic system nutrient load simulations are incorporated into the Phase IV Watershed Model as a percent reduction of the OSWMS nitrate load. This is accomplished by reducing the OSWMS nitrate load in a Watershed Data Management file in proportion to the amount of edge-of-stream nitrate load attenuated with OSWMS BMPs.

Using an average water flow of 75 gallons/person-day (gpd) for a septic tank (Salvato, 1982), a mean value of 3,940 grams/person-year for groundwater septic flow, 4,240 grams/person-year for surface flow of septic effluent, and typical surface/subsurface splits as reported by Maizel, et. al., a total nitrogen concentration of about 39 mg/l at the edge of the septic field is calculated. This concentration compares favorably with Salvato (1982) who calculated onsite wastewater

management system total nitrogen concentrations of 36 mg/l. It is assumed that between the edge of septic system field nitrate loads and edge-of-river nitrate loads represented in the Phase IV Watershed Model are primarily: (1) attenuated in anaerobic saturated soils with sufficien organic carbon (Robertson, Cherry, et. al., 1991; Robertson and Cherry, 1992), (2) attenuated by plant uptake (Brown and Thomas, 1978), or (3) attenuated in the primary through quaternary streams before the main river reach. Overall, the total attenuation is assumed to be 60% Consequently, 40 percent of the septic system nitrate load for each model segment as reported ir Maizel, et. al. (1997) is input to the major river reaches simulated by the Phase IV Watershed Model. Given the previously mentioned assumptions of a 60 percent reduction, edge-of-river loads from OSWMS are 23 mg/l of total nitrogen. Further attenuation of the OSWMS loads delivered to the Bay occurs through nutrient dynamics in the river reaches.

The connection of onsite wastewater management system to sewage lines is particularly effective in reducing OSWMS nutrient loads. Information used to estimate this option includes the number of septic systems that local governments have identified as connected to sewer systems since the base year of 1985. Septic connections reduce total nitrogen load by an estimated 55 percent which approximates an edge-of-river OSWMS nitrate load delivered to a tertiary treatment plant.

Denitrification in OSWMSs is accomplished through a sand mound system with effluent recirculation. The nitrogen load is reduced by 50 percent when denitrification is incorporated in septic systems.

Section H.2.2.1.4 Onsite Wastewater Management System Loading

Onsite wastewater management system loading information per Watershed Model segment is extracted from the National Center for Resource Innovation (NCRI) data (Maizel et al., 1997). The NCRI report (Maizel et al., 1997) provides estimates of human population and people served by septic disposal within a Watershed Model segment. Estimates of population using septic disposal through time is calculated by multiplying the ratio of the total population to the total population using septic systems by the population estimates for Chesapeake Bay Watershed Model segments (Table H.2.4 and Table H.2.5). These data in coordination with Watershed Model segment area values are used to simulate Watershed Model segment OSWMS loads (per acre and per person) to the Bay.

The septic nutrient loads are included in the HSPF simulation as a continuous time series Watershed Data Management file that inputs OSWMS nitrate (pounds/day) to model segment river reaches or to the tidal Bay. The use of a Watershed Data Management file for incorporation of septic nitrate allows for this attenuation factor to easily be changed on a model segment basis. For above fall line Watershed Model segments, OSWMS nitrate loads are input directly into the stream reach. For below fall line Watershed Model segments, there is no stream reach, so estimated OSWMS nitrate loads are delivered directly to the tidal Bay.

Table H.2.4 Population Estimates & Projections for Chesapeake Bay Program Modeling Segments

SEPTIC	Prj Pop	121918	263321	96084	93676	55695	88926	74810	162421	39637	119579	248000	44687	35762	37260	19218	26211	85760	99153	91094	149422	116319	95987	19534	13579	14701	43698	1473	50577
SEPTICS		89	262337	97145	95114	55903	87527	73993	161077	38940	117886	245447	43425	34999	37226	18974	25568	83414	96939	87231	142455	111811	90550	18341	13195	14048	41352	1473	50052
SEPTIC SI		117	261353	98205	96552	56109	86127	73177	159732	38241	116194	242892	42166	34217	37160	18674	24830	80854	94723	83262	135432	107300	85115	17147	12810	13396	39006	1473	49528
SEPTIC SI		32	260276	99567	97857	56919	84276	72170	157104	37535	114200	238031	40438	33187	37105	18366	24024	77492	92569	79186	124629	101759	79677	15955	12426	12742	36661	1474	49286
SEPTICS			258668	100928	99161	57728	82424	71164	154474	36828	112204	233177	38709	31973	37031	18048	23163	74040	90416	75013	114055	96286	74242	14762	12041	12090	34314	1478	49049
SEPTIC S	_	117689	254423	101686	99931	58377	80790	71129	152850	36295	109730	231294	36603	30779	36415	18350	22672	70572	90164	71346	101091	91067	67095	14078	12310	11906	33748	1582	50379
SEPTIC S	Est Pop Ein 1994 in	118112	256997	101937	100194	58330	80688	71251	152208	36197	109669	229451	36209	30373	36321	18142	22405	69623	89171	70306	98791	89447	65950	13509	12032	11618	32689	1579	50150
SEPTIC S	Est Pop E in 1993 ir	118286	258266	102198	100330	58120	80203	69924	151008	36065	109409	227366	35840	29952	36350	17948	22195	68602	87755	69312	95873	87735	64907	12955	11904	11325	31868	1580	49941
SEPTIC S		118196	258469	102284	100344	57928	79612	69075	149771	35826	108781	225185	35470	29604	36394	17757	21912	67607	86876	68251	92983	85877	63811	12374	11665	11053	31076	1578	49556
SEPTIC	Est Pop Ein 1991	117819	257636	102217	100204	57791	79005	68837	148573	35644	108434	223100	35141	29169	36394	17609	21571	66416	85983	67295	90523	84240	62718	11940	11512	10792	30288	1576	49425
SEPTIC SE	Est Pop Es in 1990 in	117382	256453	102018	99881	57753	78182	68487	146656	35395	107767	219785	34537	28556	36316	17407	21079	64976	84753	65958	87711	82532	60954	11377	11178	10445	29318	1594	49023
SEPTIC SE	Est Pop Es in 1985 in	118034	254580	103444	101252	59943	77175	67915	142670	34964	108157	212609	32112	26871	37191	17002	20250	61259	80360	60982	77770	72226	54768	9295	10722	9493	26843	1722	49833
SEPTIC SE	Pop Es /Total Pop in	0.502383	0.515373	0.259266	0.292036	0.551859	0.34262	0.538199	0.398305	0.773786	0.425485	0.332549	0.773204	0.863138	0.318064	0.608516	0.745706	0.424894	0.461894	0.575484	0.490847	0.13066	0.692358	0.65207	0.808588	0.814212	0.860227	0.583659	0.564725
Watershed S	Model F Segment /	10	20	30	40	20	09	70	80	06	100	110	120		09 37	170	175	180	190	200	210	220	230	235	240	250	260	265	270

Prj Pop	in 2020	16/255	38962	01080	0200	33084	2991	24309	6237	28001	63023	40452	33226	20874	159646	90545	16004	34403	103020	26816	11642.	111133	62188	3646	82566	131360	42185	25058	273	8680	45668	98673	37152
		162682	3,068	20090	97949	31187	2899	23554	5972	27465	61064	39089	32648	20838	155021	88921	15943	33601	97089	26357	11209	104508	59388	3541	77675	126230	40167	24271	267	8740	44625	95875	36803
	١,	158111	35174	7623	26583	29260	2803	22651	2677	26849	58839	37552	31843	20802	150090	87375	15889	32737	90852	25791	10760	97884	56589	3437	72787	121100	38150	23485	260	8801	43582	93077	36454
	- 1	92000	32782	7290	25301	27993	2688	21749	5384	26089	56243	35876	30723	20911	144842	86137	15996	32135	85633	25277	10280	91260	53789	3333	67893	116469	36165	22720	254	8872	42074	89245	35754
_	10 2000 ir	140907	36715	8958	23528	25738	2556	20719	5039	25318	53207	34114	29446	21019	137440	84179	16078	30885	80052	24227	9818	84636	50991	3228	63003	111840	34180	21954	249	8944	40565	85415	35054
_	11 1995 II	20022	37193	6662	21811	23607	2400	19301	4565	24290	49289	32193	27871	21267	126976	82289	16010	29741	73739	23300	9419	75087	50575	3160	60299	107980	32417	21163	248	8930	39130	80586	34592
	11 1994 II	20560	36772	6591	21471	23155	2368	19000	4467	24120	48488	31875	27539	21247	124941	81619	16163	29441	72620	22992	9378	73851	48928	3145	58564	106975	32112	20674	246	8890	38689	79772	34457
_	143587 III	28038	36441	6483	21106	22637	2336	18802	4413	23899	47628	31556	27004	21187	122608	80982	16330	29068	71317	22578	9321	72430	47119	3123	96029	106006	31535	20385	242	8887	38274	78983	34222
Est Pop E	6	28343	35815	6285	20658	22084	2301	18602	4347	23693	46709	31111	26553	21141	121045	80491	16465	28688	70498	22193	9278	70867	45660	3103	55350	105316	30973	20049	237	8857	37858	78199	33955
Est Pop E	0381	27803	35318	6200	20297	21680	2264	18340	4305	23442	45801	30804	26205	21118	118331	79730	16547	28381	69439	21893	9227	69069	44309	3048	53861	103500	30522	19852	232	8802	37476	77497	33659
Est Pop Es	853	27161	34762	5983	19816	21058	2211	17990	4217	23261	44735	30194	25898	21060	114836	78549	16547	27961	67640	21556	9134	67215	42685	2991	52249	101871	29945	19659	229	8746	36838	76169	33117
Est Pop Es	7	24873	33951	5699	17174	18458	2057	16607	3733	22229	42026	28169	24017	21431	104901	75617	168:13	26340	62709	20131	8641	56829	37667	2891	46852	95818	27585	18892	218	8885	34728	70784	32088
	3574	0.28037	0.742736	0.825716	0.552381	0.083846	0.788588	0.658677	0.702874	0.537942	0.691714	0.474014	0.592752	0.756768	0.554552	0.340422	0.027694	0.092675	0.365952	0.461104	0.013827	0.197031	0.4046	0.850801	0.68712	0.130063	0.177894	0.322114	0.004755	0.642741	0.388991	0.263288	0.414658
Pop /Total Pop	280 0			310 0.	330 0.																			0									/30 0.
Model	Name of the second			_	,	_	_		_	7	7	*	7	7	7	7	7	7	38				_	_		_	.	υ '	.	_	_	_	_

Pri Pon	in 2020	141030	18093	39471	13845	6713	14806	7175	15964	13116	5401	4528	6291	38533	61271	5521	17516	26742	95080	3489	35143	16340	31661	6445	0440	4031
Pri Pop		134791	17561	37380	13434	6491	14327	7062	15209	12832	5368	4402	6256	37873	58628	5308	16990	25517	89875	3393	33380	15886	30270	5992	61162	3782
Pri Pop		128044	17027	35286	12958	6237	13809	2069	14364	12549	5318	4265	6225	37061	55741	5088	16464	24241	84524	3297	31619	15433	28879	5539	5202	3517
Pri Pop		120912	16301	32954	12387	5940	13193	6737	13549	12159	5234	4144	6251	36321	53480	4835	15938	23103	78889	3201	29856	14979	27537	5087	54808	3245
Pri Pop	in 2000	113522	15586	30849	11724	5582	12509	6578	12554	11840	5167	3920	6260	34814	50340	4682	15411	22046	73679	3105	28095	14525	26194	4635	51633	3000
Est Pop	ĺ	105798	14913	29177	10929	5116	11704	6374	11163	11487	5053	3552	6226	33480	47206	4676	14235	21008	64808	2993	25798	14467	24275	4092	49865	2686
Est Pop		104261	14756	28532	10750	5014	11535	6320	10895	11339	5075	3491	6267	33038	46374	4725	14144	20953	63763	2969	25271	14350	24266	4009	48250	2639
Est Pop	in 1993	102559	14573	27925	10616	4910	11371	6257	10761	11198	5077	3409	6315	32443	45339	4766	14001	20864	62787	2956	24879	14152	24293	3919	46218	2583
Est Pop	in 1992	101087	14395	27440	10424	4798	11183	6218	10585	11093	5065	3371	6353	31890	44344	4781	13837	20841	62436	2939	24282	13833	24024	3818	44932	2566
Est Pop	in 1991	66866	14216	26929	10275	4690	10993	6111	10461	11060	5046	3271	6371	31459	43494	4802	13623	20795	61454	2913	23974	13578	23540	3711	43096	2507
Est Pop E	in 1990 ir	96296	13869	26207	10020	4559	10714	6003	10246	10829	5064	3150	6358	30974	42507	4841	13412	20622	59666	2888	23628	13277	23430	3600	40880	2415
Est Pop E		89003	12963	23721	9392	4258	9918	5737	8971	9952	2096	2837	6413	28927	39007	4733	12052	19902	52283	2787	21174	12492	21562	3008	35540	2127
		0.53121	0.470037	0.587876	0.932583	0.874629	0.689785	0.675963	0.681072	0.44829	0.653193	0.069591	0.012689	0.488961	0.367983	0.008755	0.016068	0.0599	0.527289	0.786088	0.889272	0.088801	0.033511	0.120048	0.525818	0.403513
	t /Total Pop	740	750															910						920	086	066
Model	Segment																									

Table H.2.5 Septic Loading Projections for the Chesapeake Bay Program Modeling Segments

Watershed (Septic Load/	Estload	Fst Load	Fsf Load	Fet Load	Fet I gad	Fet Load	Te+ 1	100 T	100	- 1 6 6	7 · · · · · · · · · · · · · · · · · · ·	- -
ent	Person	in 1985	in 1990			LSt LSau in 1993	L3t L0au in 1994	in 1995	Lst Loau in 2000	in 2005	est Load in 2010	ESt Load in 2015	Est Load in 2020
10	9.21	ı	1,081,091	1,085,116	1,088,582	1,089,415	1,087,814	1,083,913	1,097,956	1,107,335	1,114,567	1,118,722	1 122 868
20		2,314,135	2,331,155	2,341,911	2,349,482	2,347,641	2,336,107	2,312,707	2,351,290	2,365,911	2,375,698	2,384,641	2.393.589
30	9.27			947,553	948,173	947,375	944,960	. 942,629	935,601	922,983	910,361	900,533	890,701
40				917,868	919,147	919,027	917,777	915,370	908,316	896,366	884,417	871,245	858,073
20	9.49			548,439	549,732	551,560	553,550	554,001	547,836	540,159	532,476	530,517	528,548
09	9.41	726,215		743,438	749,144		759,278	760,238	775,607	793,037	810,453	823,627	836.794
20		619,055	624,265	627,459	629,627	632,369	649,461	648,348	648,666	657,835	667,014		681.903
80	9.27	1,322,543	1,359,491	1,377,255	1,388,361	1,399,829	1,410,958	1,416,910	1,431,959	1,456,343	1,480,704		1,505,627
06	9.11		322,560	324,830	326,480	328,659		330,761	335,612	342,057	348,488	354,863	361,216
100	9.28		1,000,382		1,009,794		1,018,037	1,018,606	1,041,570	1,060,094	1,078,602	1,094,310	1,110,030
110	9.10	τ-	-	_	2,048,299	ď	2,087,103	2,103,873	2,121,000	2,165,145	2,209,363	2,232,603	2,255,831
120	9.12				323,377	326,747	330,116	333,704	352,907	368,669	384,424	395,907	407,411
140	9.28	249,401			274,764	277,993	281,902	285,667	296,754	308,018	317,583		331,915
160	9.31			_	338,870		338,189	339,068	344,805	345,492	346,004		346,931
170	10.28		178,961	181,032	182,558		186,512	188,658	185,549	188,821	191,980	195,064	197,579
175	9.85		207,679	212,528	215,886	218,678	220,750	223,372	228,214	236,700	244,635	251,908	258,242
180	9.11	558,026	591,893	605,003	615,852		634,217	642,868	674,459	705,903	736,523	759,850	781,215
190	9.31		789,172		808,943		830,314	839,557	841,901	861,952	882,011	902,638	923,261
200	9.45		623,435		645,111		664,535	674,364	709,019	748,466	786,994	824,510	861,020
210	9.12		800,197	825,852	848,287	874,658	901,280	922,259	1,040,533	1,136,994	1,235,551	1,299,627	1,363,188
220	80 6		749,599		779,985	796,857	812,411	827,126	874,521	924,231	974,557	1,015,536	1,056,475
230	9.55	4,	582,033		\sim	619,782	629,739	640,674	708,914	760,818	812,742	864,640	916,557
235	9.20		104,615	109,789	113,782	119,124	124,215	129,449	135,739	146,705	157,671	168,644	179,616
240			107,566	110,780	112,250	114,553	115,783	118,460	115,868	119,572	123,276	126,972	130,676
250	9.55		99,732	103,051	105,539	108,136	110,935	113,687	115,444	121,671	127,914	134,134	140,369
260		7	280,490	289,765	297,303	304,883	312,734	322,873	328,289	350,740	373,174	395,617	418,060
265		19	18,097	17,898	17,918	17,938	17,931	17,964	16,778	16,738	16,719	16,719	16,719
270	69.6	482,737	474,892	478,787	480,051	483,787	485,806	488,027	475,144	477,436	479,777	484,859	489,947

d Est Load	in 2020	03 1,566,838														-							•			, -	<u>_</u>				ω	4		
	in 2015	8 1,524,003	1 343,365	<u>~</u>		.,	-			_						₹					_				1 34,337	1~	Ψ.				w	4		
Est Load	in 2010	1,481,178				.,							339,229			τ							-	541,249	33,331	675,605	~	346,942			w	4		
Est Load	in 2005	1,438,348	308,392	357,405	66,809	226,911	253,706		′		2	517,520	324,092		209,339	1,310,912	777,679	203,441		785,562	228,522	117,023		514,470		630,182	1,076,202	328,886	216,243		82,296	390,254		
Est Load	in 2000	1,395,523	290,968	350,506	63,767	211,009	233,269	23,065	191,149	46,677	233,819	489,579	308,172	272,314	210,422	1,243,917	760,004	204,473	289,044	734,363	219,034	111,761	768,627	487,702	31,301	584,791	1,033,427	310,835	208,958	2,268	82,964	376,262	777,582	
Est Load	in 1995	1,371,793	276,343	355,072	61,051	195,612	213,957	21,663	178,065	42,288	224,321	453,535	290,821	257,749	212,907	1,149,218	742,937	203,619	278,335	676,449	210,646	107,215	681,910	483,732	30,641	559,694	997,758	294,800	201,429	2,260	82,832	362,948	733,629	
ō	in 1994	1,357,796	273,822	351,052	60,400	192,561	209,857	21,371	175,288	41,383	222,751	446,158	287,943	254,674	212,702	1,130,793	736,891	205,555	275,529	666,187	207,861	106,749	670,685	467,974	30,501	543,590	988,474	292,033	196,769	2,240	82,457	358,864	726,213	0.00
Est Load	in 1993	1,345,077	268,053	347,889	59,409	189,291	205,166	21,080	173,459	40,876	220,709	438,247	285,061	249,729	212,104	1,109,683	731,138	207,686	272,042	654,235	204,122	106,102	657,776	450,668	30,287	529,967	979,520	286,785	194,025	2,202	82,427	355,010	719,032	1
Est Load	in 1992	1,331,368	262,550	341,912	57,600	185,268	200,148	20,767	171,612	40,270	218,811	429,794	281,045	245,558	211,642	1,095,534	726,712	209,403	268,478	646,722	200,641	105,607	643,585	436,717	30,089	513,755	973,145	281,673	190,821	2,160	82,153	351,150	711,891	77.0
Þ	in 1991	1,315,087	257,543	337,168	56,821	182,028	196,488	20,432	169,193	39,879	216,496	421,437	278,270	242,340	211,415	1,070,976	719,837	210,442	265,604	637,003	197,932	105,035	627,259	423,796	29,561	499,934	956,365	277,570	188,948	2,117	81,646	347,610	705,501	240
ō		1,300,773	251,595	331,864	54,831	177,714	190,855	19,955	165,967	39,059	214,822	411,629	272,759	239,501	210,831	1,039,336	709,175	210,437	261,674	620,500	194,880	103,969	610,423	408,263	28,999	484,971	941,306	272,324	187,114	2,085	81,127	341,689	693,416	207 465
7		1,253,542	230,400	324,121	52,227	154,019	167,287	18,560	153,206	34,580	205,288	386,698	254,466	222,107	214,543	949,419	682,700	213,820	246,504	575,266	181,999	98'366	516,099	360,269	28,034	434,880	885,383	250,860	179,808	1,990	82,409	322,123	644,395	207 006
	-	9.37	9.26	9.55	9.16	8.97	90.6	9.05	9.23	9.26	9.24	9.20	9.03	9.25	10.01	9.05	9.03	12.72	9.36	9.17	9.04	11.38	9.08	9.56	9.70	9.28	9.24		9.52	9.12	9.28	9.10	9.28	0 18
•		280	290	300	310	330	340	370	380	390	400	410	420	430	440	450	470	480	490	200	510	540	550	099	089	590	600	610	620	630	700	710	720	730

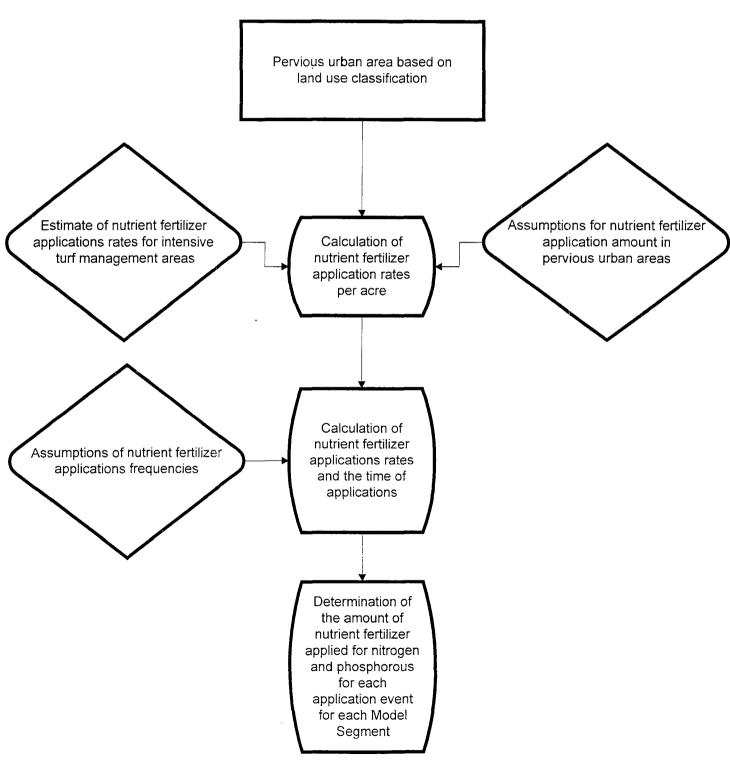
Model	Load/	Est Load	Est Load	ğ	Est	Est Load		Est Load	Est Load		Est Load Est Load	Est Load	Est Load
Segment	Person	=	≥	≥	۱≥.	in 1993	in 1994	in 1995	in 2000	in 2005	in 2010	in 2015	in 2020
740		6 817,179	888,729	912,633		941,643	3 957,270	971,384	1,042,300	1,110,153	1,175,635	1,237,577	1.294.865
750	0 9.13	3 120,102	128,498	131,708	133,367	135,022	136,716	3 138,170				162	167 631
260	0 9.03	3 216,546	3 239,246	245,834	250,498	254,928	3 260,465		- 1			341,237	360 328
770			90,446	3 92,752	94,099	95,825	5 97,037	7 98,654	105,834			121.265	124,978
78			5 41,451	42,644		44,648	3 45,595	5 46,517				59.019	61,039
800	0 9.13	3 89,464				102,567	, 104,042		~	_	_	129,228	133,546
81					56,771	57,135	57,709	58,203	60,067			64,480	65,511
820	0 9.27	7 83,907				100,648		104,406	117,414	126,727	134,345	142,251	149,309
830				`		103,810	105,115	106,486	109,756	112,715	116,327		121,588
840							3 46,728	3 46,523		48,189			49,729
850		7 27,695				33,274	34,079	34,674	38,259				44.202
860				60,346			59,362		59,289	59,212			59,591
870	00.6 0			-	448,020	455,790	464,143	3 470,359	489,092	4,7	α,	4,	541,341
880		• •	`			408,084	417,397	7 424,883	453,098	481,354	501,710	527,690	551,478
890				44,088		43,756	3 43,387	42,935	42,984	44,391	46,716	48,731	50,692
006	_				187,402		191,564	192,794	208,726	215,852	C		237,231
91							216,472	217,035	227,765				276,273
920		ųγ	4,			614,607	, 624,156	3 634,386	721,217	772,223		879,757	930,711
930						28,142	28,262	2 28,486	29,556	30,469			33,207
940				•		239,229	243,000	248,062	270,149	(1	(,)	ന	337,924
950					5	133,476	135,344	136,453	136,995	141,275		149,836	154,116
096		•	2 220,190	221,228		228,303	3 228,049	3 228,131	246,165	258,783		284,470	297,540
920		9 29,221	34,977	36,056	37,089	38,078	38,945	39,760	45,027	49,423			62,612
086		(1)	ຕງ	391,642	408,324	420,012	438,481	7	469,225	4	Δ,	u,	584,687
066	0 9.44	4 19,897	7 22,600	23,461	24,004	24,167	7 24,688	3 25,133	28,067			35,384	37 721

Section H.2.2.1.5 Urban Nutrient Management

(2)

Urban areas are divided into pervious and impervious urban areas within the Chesapeake Bay Watershed Model. Pervious urban areas account for suburban areas, parks, lawns, and areas in which water is able to percolate through the soil. Alternatively, impervious urban land are areas such as roads, paved lots, and rooftops where water is unable to percolate through the soil profile. These lands use groups are derived from Chesapeake Bay Program Land Use (CBPLU) categories and are described in Watershed Model Appendix E: Watershed Land Uses and Model Linkages to the Airshed and Estuarine Models. The following equations use Chesapeake Bay Program Land Use estimates to calculate the two categories of urban areas:

```
Pervious Urban = (CBPLU High Intensity Urban * 0.15) + (CBPLU Low Intensity Urban * 0.6)
+ (CBPLU Herbaceous Urban * 0.9) + (CBPLU Urban * 0.9)
+ (CBPLU Exposed * 0.6)


(3)
Impervious Urban = (CBPLU High Intensity Urban * 0.85)+(CBPLU Low Intensity Urban* 0.4)
+ (CBPLU Herbaceous Urban * 0.1) + (CBPLU Urban * 0.1)
+ (CBPLU Exposed * 0.4)
```

Generally, on a portion of pervious urban acres including some lawns, golf courses, and portions of park land, intensive turf management practices are applied. For these areas, an estimated recommended fertilizer application is 130 pounds of nitrogen/acre. A portion of the pervious urban areas has little or no turf maintenance and only has fertilizer applied once every three years, if at all. These areas may include lawns, medians of highways, roadside rights of way, and portions of parks. Considering the differences in the amount of fertilizer applied to various types of pervious land and the limitation of the use of the various types of urban land use averaged to represent a single urban land use, an average fertilizer application of 50 pounds of nitrogen/acre/year is applied to all pervious land within the Phase IV Watershed Model.

Figure H.2.1 shows how fertilizer nutrient application rates are determined for pervious urban areas. Fertilizer is usually applied during the spring and early fall. For this reason, the timing of fertilizer applications are split into eight periods each with a distribution of 10 days. These applications begin on the following days and last for 10 days; March 9, April 9, May 9, June 9, July 9, August 9, September 9, and October 9. The application rates of fertilizer, both NO₃ and NH₄, are illustrated in Figure H.2.2.

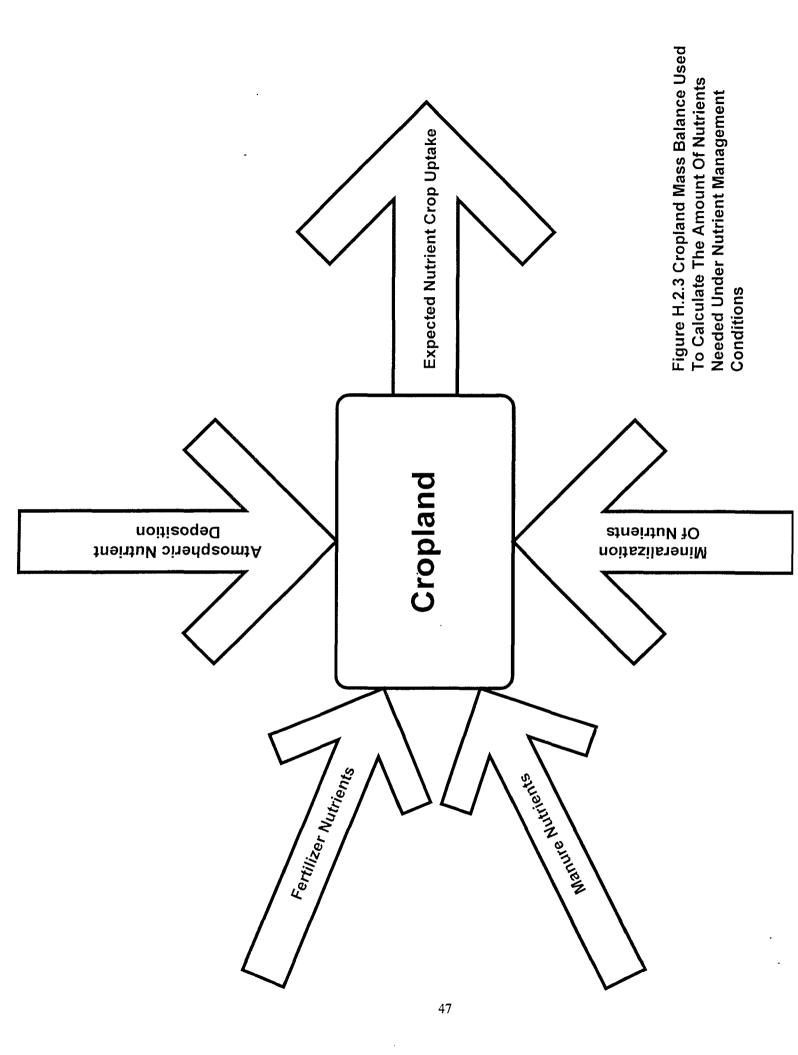
With the implementation of tributary strategies, urban nutrient management leads to a reduction of urban fertilizer applied. Urban nutrient management involves public education (targeting urban/suburban residents and businesses) to encourage reduction of excessive fertilizer use. The CBP Nutrient Subcommittee's Tributary Strategy Workgroup has estimated that urban nutrient management reduces nitrogen loads by 17 percent and phosphorus loads by 22 percent.

Figure H.2.1 Determining Fertilizer Nutrient Application Rates For Pervious Urban Areas

■NO3 DNH4 October Figure H.2.2 Fertilizer Application to the Phase IV Watershed Model for Pervious Urban Land 1.625 September 6.5 1.625 August 6.5 July Month June 1.5 May ဖ April March က ω 9 4 7 0 7 2 က lb/acre

Section H.2.2.2 Agriculture/Silviculture BMPs

The types of agricultural/silvicultural BMPs included in the Chesapeake Bay Watershed Mode simulations are: cropland nutrient management, soil conservation water quality plar implementation, animal waste BMPs, barnyard runoff control, rotational grazing, streambank protection, forest harvesting BMPs, nutrient management plans, forested and grass buffer strips, and cover crops. The following describes the agricultural/silvicultural BMPs simulated within the Phase IV Watershed Model.


Section H.2.2.2.1 Cropland Nutrient Management

Cropland nutrient management is simulated (for each Watershed Model segment) through the net pound reduction of fertilizers applied to conventional tillage, conservation tillage, and hayland acres (Figure H.1.1, Box G, page 2). Fertilizer reductions are enacted as a part of cropland nutrient management in order to only apply nutrients at rates that ensure adequate soil fertility for crop production, thus reducing the availability of excess nutrients to runoff waters. The Phase IV Watershed Model accounts for these cropland nutrient management practices by simulating "edge-of-stream" nutrient loading according to the reduction of fertilizer nutrients applied to the land. The nutrient management application rates are implemented on the land according to the appropriate agronomic rate for each crop, with a minimum reduction of 10 percent. These nutrient application pound reductions are determined by a Watershed Model segment Cropland Mass Balance (Figure H.2.3) and vary between Watershed Model segments. For this mass balance, Watershed Model segment-specific maximum nutrient fertilizer reductions are determined from an analysis of available nutrients versus expected crop uptake. Nutrient reduction efficiencies range from 5-39 percent for nitrogen and 5-35 percent for phosphorous when calculated from nutrient fertilizer pound reductions.

For each Watershed Model segment, cropland nutrient management reductions are simulated using the percentage of acres under nutrient management. For example, if nutrient management is implemented on 100 percent of the cropland acres in a given Watershed Model segment and an estimated reduction of 60 pounds/acre nitrogen is realized, then the fertilizer reduction would be 60 pounds/acre for nitrogen for all acres under nutrient management. However, if only 25 percent of the acres are under nutrient management, the resulting fertilizer reduction would be 60 pounds/acre multiplied by 25 percent or 15 pounds/acre.

Section H.2.2.2.2 Soil Conservation and Water Quality Plan

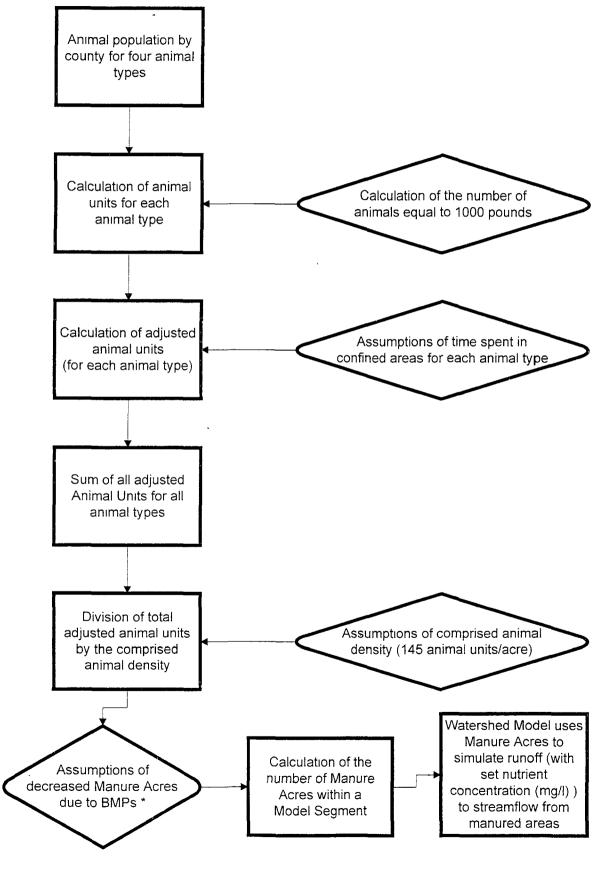
Soil conservation and water quality plans are comprehensive plans that address natural resource management concerns on agricultural lands and utilize Best Management Practices to control erosion and runoff. A USDA professional and/or a Soil Conservation District employee assists in developing these plans at the request of a landowner. They work with farmers to determine which BMPs and/or systems are needed to address specific erosion and/or runoff problems on their farms. Together these practices control erosion (within acceptable levels) in a manner compatible with the farm operation and cropping systems. Soil conservation and water quality plans are based on current farming objectives and should be reviewed and/or revised if changes

occur. Nutrient reductions are only one of many benefits derived from soil conservation and water quality plans, other benefits include, but are not limited to, better soil quality (therefore better crop yields), the establishment of constructed ponds, and the enhancement of wildlife and plant habitats.

Soil conservation and water quality plans are incorporated into the Phase IV Watershed Model through a reduction of sediment loss from conventional and conservation tillage, and pasture and hay croplands. These plans reduce nutrient and suspended sediment loading from each land use.

The effectiveness of soil conservation and water quality plans varies between land uses. Therefore, reductions in nutrient and suspended sediment loads vary between land uses. The estimated reductions by landuse as effected by soil conservation and water quality plans follows:

Landuse	TN reductions(%)	TP & TSS reductions(%)
Conventional tillage	10	40
Conservation tillage	4	8
Hayland	4	8
Pastureland	20	14


Section H.2.2.2.3 Animal Waste Management Systems

Agricultural livestock and farm animals produce manure, and consequentially nutrient flow in to water supplies which directly impact the Chesapeake Bay water quality (Ritler and Scarbourgh, 1996; Evanylo, 1995). Understanding such an influence is important in modeling nutrient loads from land uses to the Bay, both from surface and subsurface flow (Johnson and Parker, 1993). Nutrients in manure are a vital resource and can be collected for application to cropland (Krider, 1992; Graves 1986).

Manure from agricultural livestock may either be voided in confined areas or unconfined areas (Gilbertson, 1979). Within the Phase IV Watershed Model, manure voided in unconfined areas is assumed to occur in pasturelands. The effect of confined animal waste management systems are calculated by adjusting the percentage of manure between two types of confined groups (confined/susceptible to runoff and confined/susceptible to runoff with BMPs able to be implemented). This calculation allows for some of the animal waste to always be susceptible to runoff (assuming that the BMP efficiency of animal waste and confinement systems is never 100 percent efficient).

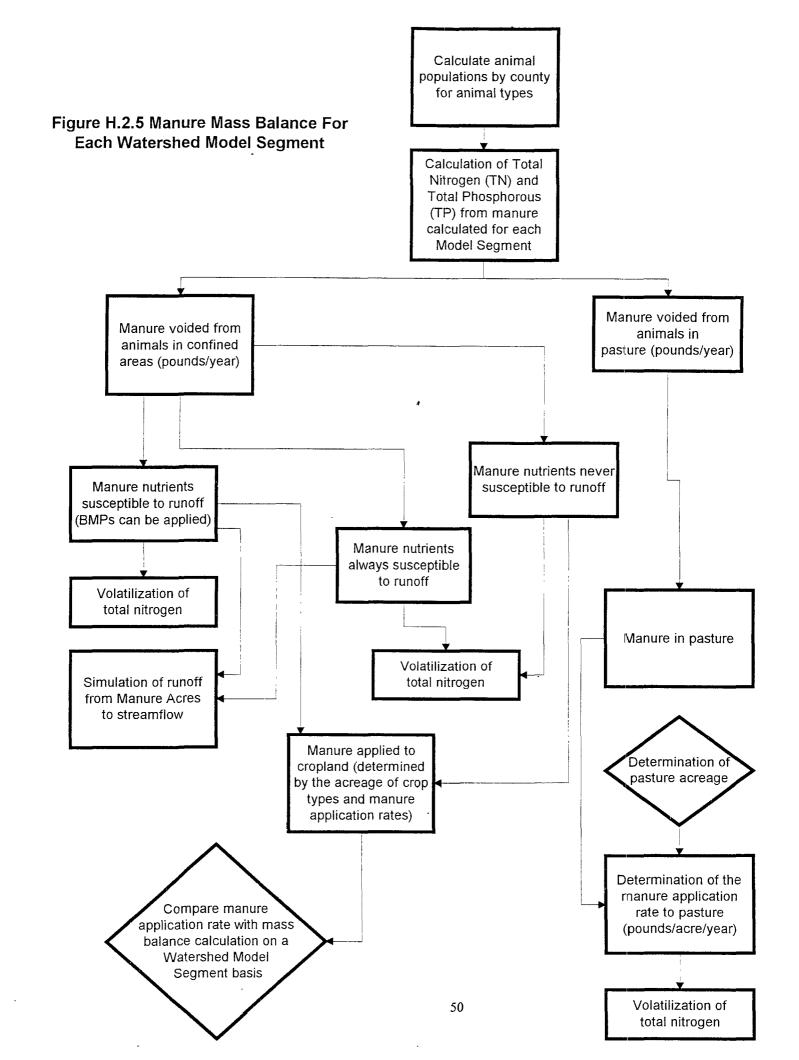

Confined animal waste management system calculations are incorporated into Watershed Model input files by adjusting manure acres per Watershed Model segment. A manure acre is defined as 145 Animal Units (AUs) in the confined/susceptible to runoff grouping. Figure H.2.4 outlines how manure acres are obtained and later incorporated into the Phase IV Watershed Model. The Phase IV Watershed Model simulates the effect of Animal Waste System Best Management Practices (AWSBMP) through a reduction in manure acres. These manure acres are areas of

Figure H.2.4 Calculating Manure Acres And Their Incorporation Into The Watershed Model

^{*} Not used during Reference Watershed Model simulations, but was applied for BMPs in Watershed Model Progress simulations.

49

high concentrations of confined animals in which a large amount of nutrient load runoff occurs. Manure acres are representative of all portions of manure management, including manure in feedlots, production houses, processing centers, collection practices, and leakage from holding facilities.

Manure produced in confined areas can be properly or improperly stored (Loser and Hogan 1989). Animal waste management systems are designed for the proper handling, storage, and utilization of wastes generated from animal confinement operations. These systems include a means of collecting wastes and wash water from confinement areas into appropriate waste storage structures. Waste management facilities take on many forms based on the animal type and handling method (i.e., solid, slurry, and liquid). Lagoons, ponds, and concrete tanks are used for the treatment and/or storage of liquid wastes. Storage sheds or pits are commonly used to store solid wastes. Adequate storage allows operators to apply manure to their land when crops can utilize the nutrients, and when the soil and weather conditions are appropriate. Animal waste management systems not only provide major nutrient reduction benefits, but also greatly reduce a farmer's need for chemical fertilizers.

The influence that agricultural livestock and farm animals have on the Chesapeake Bay Watershed is best understood by determining a mass balance of manure for each Watershed Model segment. This manure mass balance distributes manure nutrients voided into four groups: confined/never susceptible to runoff, confined/susceptible to runoff, confined/susceptible to runoff with BMPs able to be implemented, and pasture (Table H.2.6). This Manure mass balance (Figure H.2.5) uses estimated populations of animal types within each Watershed Model segment and assumes average nutrient levels in the amounts of manure voided for each animal type (Table H.2.7) (Palace, 1997). This mass balance includes a modification in the simulation of pastureland through the addition of manure in the special action block, a simulation of ammonia volatilization, and a seasonal variation of the first-order rate constant to describe plant uptake.

Different animal species create varied volumes of manure with distinct nutrient concentrations. Within the Phase IV Watershed Model, four types of animals are included in manure mass balance calculations. These animal types are beef, dairy, swine, and poultry (which include poultry layers, broilers, and turkeys). Horse and sheep populations were not included in the manure mass balance. To estimate the amount of manure voided in a Watershed Model segment, an animal unit is defined as 1000 pounds of animal weight. One animal unit corresponds to 0.71 dairy cows, one beef cow, five swine, 250 poultry layers, 500 poultry broilers, or 100 turkeys. Animal populations were derived for each Watershed Model segment from the 1992 Agricultural Census, published by the U.S. Department of Commerce and the Bureau of the Census for the six states within the Chesapeake Bay basin. The percentage of area in a Watershed Model segment for each county is used to decide the proportion of animal units within a Watershed Model segment. Figure H.2.6 shows the total animal units per county in the Chesapeake Bay Watershed.

Animal waste management system nutrient reductions for dairy/beef/swine operations have been estimated by the Chesapeake Bay Program Nutrient Subcommittee's Tributary Strategy Workgroup to be 80 percent for nitrogen and phosphorus, assuming that an animal waste system

Table H.2.6 Distribution of Total Nitrogen from Manure for Each Watershed Model (WSM) Segment in the Manure Mass Balance Calculation for the Phase IV Watershed Model

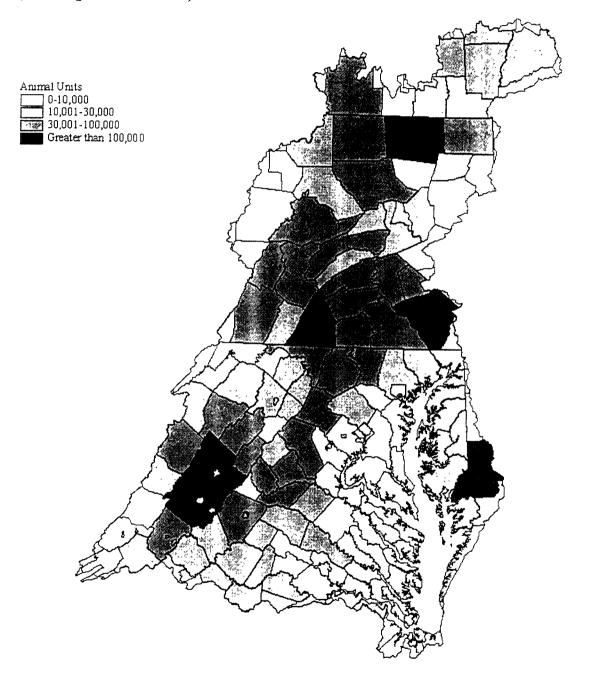

Animal Type	Confined (Susceptible to runoff)	Confined (Susceptible to runoff) (BMPs can be implemented)	Confined (Never susceptible to runoff)	Pasture
Dairy	0.20	0.80	0.00	0.00
Beef	0.00	0.00	0.00	1.00
(WSM Segment without snow)	0.04	0.16	0.00	0.00
Beef (WSM Segment with snow)	0.04	0.16	0.00	0.80
Swine	0.20	0.80	0.00	0.00
Poultry (layers)	0.01	0.14	0.85	0.00
Poultry (broilers)	0.01	0.14	0.85	0.00
Turkeys	0.01	0.14	0.85	0.00

Table H.2.7 Estimated Quantities of Voided Manure from Livestock and Poultry (Normalized to 1,000 pounds of animal body weight) (Gilbertson, 1979)

Animal Type	Animals/ Animal Units	Wet Manure Voided (tons/year)	Total Phosphorous (pounds/year)	Total Nitrogen (pounds/year)
Dairy	0.71	14.90	21.00	123.00
Beef	1.00	6.70	18.00	61.00
Swine	5.00	11.70	37.00	160.00
Poultry (layers)	250.00	9.70	100.00	235.00
Poultry (broilers)	500.00	13.10	110.00	390.00
Turkeys	100.00	10.20	84.00	304.00

Figure H.2. 6

Total Animal Units By County (1000 pounds/AU)

Data Source 1992 Census of Agriculture

treats 145 animal units (or one manure acre). Using the same 145 animal unit assumption nutrient reductions for poultry animal waste systems have been determined to be 14 percent for nitrogen and phosphorus. These animal waste management system BMP efficiencies are used within the Phase IV Watershed Model to simulate the amount of nutrient reduction obtained with these management practices.

Estimated BMP efficiencies were developed separately for livestock (primarily dairy and swine) and poultry waste systems. Livestock manure must be stockpiled or spread daily if no storage system is available, resulting in a high potential for nutrient pollution to ground and surface water sources. On the other hand, poultry manure remains in the production house for a majority of the time. Small amounts of manure are removed with each flock (approximately every seven weeks for broilers), and the entire production house is cleaned approximately every two years. Poultry manure is relatively dry so if it is properly stacked outside, the potential for nutrient loss is less than that of livestock waste.

It is assumed within the Phase IV Watershed Model that dairy are in confined areas 100 percent of the time. Dairy are further divided into the three confined groups as follows: 20 percent in confined/susceptible to runoff, 80 percent confined/susceptible to runoff with BMPs able to be implemented, and 0 percent confined/never susceptible to runoff.

Beef are assumed to be in pasture 100 percent of the time, except for Watershed Model segments where snow covers the ground a large portion of the winter. These areas receiving snow tend to have beef cattle housed in feed lots or confined areas. Within these Watershed Model segments, it was decided that beef should be calculated in the pasture for 80 percent of the time, as opposed to 100 percent. According to this assumption, beef are in confined areas 20 percent of the year (4 percent of the total time in confined/susceptible to runoff, and 16 percent in confined/susceptible to runoff with BMPs able to be implemented). This assumption is incorporated into the Phase IV Watershed Model, based on the assumption that cattle spend 292 days a year in the field, starting March 1 and ending December 17.

Within the Phase IV Watershed Model, swine are in confined areas 100 percent of the time. Swine are further divided into the three confined groups as follows: 1 percent in confined/susceptible to runoff, 14 percent confined/susceptible to runoff with BMPs able to be implemented, and 85 percent confined/never susceptible to runoff.

Throughout the Watershed Model Scenarios, it is assumed that all poultry (including poultry layers, poultry boilers, and turkeys) are found in confined areas 100 percent of the time. Poultry are further divided into the three confined groups as follows: 1 percent in confined/susceptible to runoff, 14 percent confined/susceptible to runoff with BMPs able to be implemented, and 85 percent confined/never susceptible to runoff. The amount of total nitrogen in pounds per year for each of these animal groups are presented in Tables H.2.8-H.2.11.

Table H.2.8 Manure in All Confined Areas

Model	Cattle	Dairy			Poultry (broilers)	Turkeys	TN in Confined Areas
Segment	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
10	0	7,412,860.77	322,159.59	238.86	500.88	727 41	7,736,487.51
20	0	20,222,592.93	207,013.45	30,389.97	830 86	1,661.31	20,462,488.53
30	0	6,171,144.32	148,914 95	1,396.21	739.15	469.3	6,322,663.94
40	0	1,440,062.40	844,851.76	6,575.97	319,392.10	81,921.46	2,692,803.69
50	0	1,023,546.70	164,450.69	6,605.97	1,218.27	334.53	1,196,156.17
60	0	4,916,456.66	526,983.66	6,855.71	28,105.85	1,214.14	5,479,616.02
70	0	2,315,094.50	670,308.29	2,244.39	440,288.10	195,185.63	3,623,120.91
80	0	7,994,961.58	3,683,503.72	1,489,409.28	2,024,146.03	975,150.11	16,167,170.72
90	0	2,849,960.38	360,682.36	1,873.52	385.39	22,682.22	3,235,583.86
100	0	8,705,662 44	1,543,286.86	227,551.04	1,505,299.42	431,594.87	12,413,394.62
110	0	7,427,194.61	5,057,592 49	3,250,559.82	2,017,600.36	1,541,127.58	19,294,074 86
120	. 0	2,730,182.08	2,044,870.19	2,685,280.77	963,108.71	113,621.55	8,537,063.30
140	0	1,660,540.52	1,295,302.63	1,231,383 72	464,423.96	166,811.26	4,818,462.09
160	0	1,348,090.20	118,845.38	9,492.56	742,283.32	197,534.59	2,416,246.05
170	0	169,339.11	146,311.24	495,738 50	3,729,548.87	3,660,889.95	8,201,827.67
175	0	952,246.82	194,616.55	635,875.69	1,683,328 68	29,928.15	3,495,995 89
180	0	3,800,172.50	492,393 41	447,701 44	44,463.15	46,114.35	4,830,844.86
190	0	4,114,876.79	391,645.93	1,629,929.04	10,467,233.30	11,524,395.63	28,128,080.69
200	0	2,982,049.73	321,144 63	866,400.63	6,173,757.54	6,820,604.65	17,163,957.17
210	0	5,529,145 89	310,694.79	614,547.22	7,063.78	208,278.49	6,669,730.17
220	0	953,376.40	50,912.90	13,414.70	200.23	212 09	1,018,116.31
230	0	1,836,824.62	223,921.69	3,968.38	26,576.79	4,848.81	2,096,140.29
235	0	96,007.70	8,725.23	292 38	0	0	105,025.31
240	0	9,535.27	18,768.86	346.41	0	0	28,650.55
250	0	185,088.58	37,997.56	72.66	0	0	223,158.81
260	0	228,796 41	69,541.06	110.18	95,158.54	2.28	393,608.47
265	0	1,230.38	1,240.63	136.33	0	99,235.86	101,843.21
270	0	1,283,631.05	91,132.65	169,058.98	194,525.15	1,378,804 11	3,117,151.94
280	0	653,093.29	295,841.88	176,778.42	1,792,610 18	13,517.48	2,931,841 26
290	0	88,400 78	79,414.32	41,364.93	242,333.21	22.48	451,535.71
300	0	918,394 17	139,784.61	86,679.14	2,603,681.72	0	3,748,539.65
310	0	57,327.77	35,211.53	54 09	140,695.87	0	233,289.26
330	0	120,677.81	16,623.40	370.75	63 12	0	137,735.09
340	0	118,124.63	35,945.64	673.86	56.7	44.5	154,845.33
370	0	93,375.90	11,761 72	8.22	4 86	7.73	105,158.44
380	0	698,781.38	208,409.68	5,015.42	924,194.74	21.91	1,836,423.14
390	0	83,697.71	17,443.20	28.58	322,871.43	0	424,040.92
400	0	399,939.65	251,239.32	3,878.23	4,325,250.39	10.89	4,980,318.47
410	0	326,055 85	939,231.02	283,889.04	15,246,760.10	30.73	16,795,966.74
420	0	8,301.04	201,318.09	334,346.27	5,440,244.44	0	5,984,209.84
430 440	0 0	53,941.46	991,424.01	300,251.60 39.25	14,667,499.31	0	16,013,116.37
450		0 3,380,971.35	36,999 71	39.25 1,979,264 71	1,061,254.22	0	1,098,293.17
450 470	0 0	550,109.10	1,558,345.31 140,794.82	79,045 74	705,919.77	123,033.42	7,747,534.56
480	0	66,937.86	19,783.98	1,236 75	1,538.59	7,901.05 0	779,389.30
490	0	52,585.01	18,925.13	785 19	0 17.94	68.11	87,958.60 72,384,38
500	0	31,514.26	161,515.00	3,369 56	78.36	637.06	72,381.38
510	0	31,314.20	2,961.32	154.94	2.01	36 4	197,114.25 3,154.67
540	0	57,993.77	16,673.59	589.11	29.36	30 4 0	3, 154.67 75,285.83
550	0	525,324.65	13,279.39	1,310.66	62.83	91.38	75,265.63 540,068.90
560	0	30,914 18	68,466.39	353.92	02.83	91.30	99,734.49
580	0	20.79	0.77	0	0	0	99,734.49 21 56
590	0	247,547.01	136,863.13	478.36	48,191.41	18.62	433,098.53
600	0	4,394.74	1,423,526.95	1,479.72	263,997.19	0	1,693,398.61

Model	Cattle		Swine	Poultry (layers)	Poultry (broilers)	Turkeys	TN in Confined Areas
Segment	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
610	0	33,739 42	10,564.61	74.1	24,288.61	0	68,666.74
620	0	338.94	427,633.17	0	192,884.45	0	620,856.56
630	0	4,609.62	3,936.80	0	448.66	0	8,995.08
630	0	0	0	0	C	0	0
700	0	1,144,317.87	22,542.18	38.86	33.6	34.06	1,166,966.58
710	0	2,472,554.19	1,921,256.45	2,309,305.86	854,727.30	142,882.81	7,700,726.62
720	0	7,207,546.03	5,339,553.40	7,185,820.38	2,635,584.48	218,313 35	22,586,817.64
730	0	4,616,116 89	1,451,561.49	952,254.30	213,103.18	179,450 53	7,412,486.39
740	0	2,978,529.23	1,064,117.24	259,298.93	17,229.78	8,717 14	4,327,892.32
750	0	513,825.40	263,084.83	19,660.98	15,520.70	507,847.93	1,319,939.84
760	0	865,919.50	145,078.66	400,671.60	50.84	25.82	1,411,746 41
770	0	139,157.33	47,625.10	12,904.97	477,477.55	37.14	677,202.09
780	0	43,843.64	110,689.41	1,796.26	1,675,679.67	5 17	1,832,014.15
800	0	129,907.39	16,446.62	8.96	6 87	8.43	146,378.28
810	0	381,297.75	125,301.87	4.65	139,114 73	4.38	645,723.38
820	0	47,846.22	7,689.04	0	147,705.50	0	203,240.76
830	0	75,190.64	29,044.69	121.42	506,074.84	0	610,431.60
840	0	0	370,591.83	0	2,181,566.16	0	2,552,158.00
850	0	168,416 66	7,721.16	248.98	0	161.16	176,547.95
860	0	51,548.69	15,235.60	952 42	0	0	67,736.71
870	0	0	2,664.92	139.43	1.81	32 76	2,838.92
880	0	0	9,516.72	390.19	5.06	91.66	10,003 63
890	0	49,601.26	1,827 46	170.19	1,358.08	0	52,956.98
900	0	0	1,567.10	0	0	21 65	1,588.76
910	0	15,514.91	53,885.24	1,231.42	21.14	25.99	70,678.70
920	0	62,955.97	524,769.97	9,776.78	341.18	2,303.15	600,147.05
930	0	503.09	18.59	0	0	0	521.67
940	0	0	41,268.62	4.25	0	36.1	41,308.97
950	0	0	0	0	0	0	0
960	0	18,457.87	534,848.19	0	0	0	553,306 06
970	0	32,294.00	298 98	104.79	0	0	32,697.76
980	0	14,810.76	21,283.14	488.61	1.17	1.28	36,584.96
990	0	5,781.55	47,539.75	882.86	30.13	249.89	54,484.19
	0	128,003,720.33	38,788,759.94	28,285,247.95	87,800,791.65	28,709,042.50	311,587,562.36

Table H.2.9 Manure in Areas Susceptible to Run-off (BMPs possible)

							TN Sus. Areas
Model	Cattle	⁻ Dairy		Poultry (layers)	Poultry (broilers)		(BMP possible)
Segment	(lbs/yr)	(lbs/yr)		(lbs/yr)	(lbs/yr)		(lbs/yr)
10	0	5,930,288.61	257,727.67	33.44	70.12		6,188,221.69
20	0	16,178,074.35		4,254.60	116.32		16,348,288.61
30	0	4,936,915.46		195.47	103.48		5,056,412.07
40	0	1,152,049.92		920.64	44,714.89	11,469.00	1,885,035.86
50	0	818,837.36		924.84	170.56		951,540.14
60	0	3,933,165.33	•	959.8	3,934.82	169.98	4,359,816.86
70	0	1,852,075.60		314.21	61,640.33	27,325.99	2,477,602.77
80	0		2,946,802.97	208,517.30	283,380.44	136,521.02	9,971,190.99
90	0	2,279,968.30	288,545.89	262.29	53.95	3,175.51	2,572,005.95
100	0		1,234,629.49	31,857.15	210,741.92	60,423.28	8,502,181.78
110	0	5,941,755.69	4,046,073.99	455,078.38	282,464.05	215,757.86	10,941,129.97
120	0		1,635,896.15	375,939.31	134,835.22	15,907.02	4,346,723.36
140	0	1,328,432.42	1,036,242.10	172,393.72	65,019.35	23,353.58	2,625,441.17
160	0	1,078,472.16	95,076.30	1,328.96	103,919.66	27,654.84	1,306,451.93
170	0	135,471.29	117,048.99	69,403.39	522,136.84	512,524.59	1,356,585.10
175	0	761,797.46	155,693.24	89,022.60	235,666.02	4,189.94	1,246,369.25
180	0	3,040,138.00	393,914.73	62,678.20	6,224.84	6,456.01	3,509,411.78
190	0	3,291,901.43	313,316.74	228,190.07	1,465,412.66	1,613,415.39	6,912,236.29
200	0	2,385,639.79	256,915.70	121,296.09	864,326.05	954,884.65	4,583,062.28
210	0	4,423,316.71	248,555.83	86,036.61	988.93	29,158.99	4,788,057.07
220	0	762,701.12	40,730.32	1,878.06	28.03	29.69	805,367.22
230	0	1,469,459.70	179,137.35	555.57	3,720.75	678.83	1,653,552.20
235	0	76,806.16	6,980.18	40.93	0	0	83,827.28
240	0	7,628.22	15,015.09	48.5	0	0	22,691.80
250	0	148,070.86	30,398.05	10.17	0	0	178,479.09
260	0	183,037.12	55,632.84	15.42	13,322.20	0.32	252,007.91
265	0	984.3	992.51	19.09	0	13,893.02	15,888.92
270	0	1,026,904.84	72,906.12	23,668.26	27,233.52	193,032.57	1,343,745.31
280	0	522,474.63	236,673.51	24,748.98	250,965.43	1,892.45	1,036,754.99
290	0	70,720.62	63,531.45	5,791.09	33,926.65	3.15	173,972.96
300	0	734,715.34	111,827.69	12,135.08	364,515.44	0	1,223,193.55
310	0	45,862.22	28,169.22	7.57	19,697.42	0	93,736.43
330	0	96,542.25	13,298.72	51.9	8.84	0	109,901.72
340	0	94,499.70	28,756.52	94.34	7.94	6.23	123,364.72
370	0	74,700.72	9,409.38	1.15	0.68	1.08	84,113.01
380	0	559,025.10	166,727.75	702.16	129,387.26	3.07	855,845.34
390	0	66,958.16	13,954.56	4	45,202.00	0	126,118.73
400	0	319,951.72	200,991.45	542.95	605,535.05	1.52	1,127,022.70
410	0	260,844.68	751,384.81	39,744.47	2,134,546.41	4.3	3,186,524.68
420	0	6,640.84	161,054.47	46,808.48	761,634.22	0	976,138.01
430	0	43,153.17	793,139.21	42,035.22	2,053,449.90	0	2,931,777.50
440	0	0	29,599.76	5.5	148,575.59	0	178,180.85
450	0	2,704,777.08		277,097.06	98,828.77	17,224.68	4,344,603.84
470	0	440,087.28	112,635.86	11,066.40	215.4	1,106.15	565,111.09
480	0	53,550.29	15,827.19	173.15	0	0	69,550.62
490	0	42,068.01	15,140.10	109.93	2.51	9.54	57,330.09
500	0	25,211.41	129,212.00	471.74	10.97	89.19	154,995.31
510	0	0	2,369.06	21.69	0.28	5.1	2,396.13
540	0	46,395.02	13,338.87	82.48	4.11	0	59,820.48
550	0	420,259.72	10,623.51	183.49	8.8	12.79	431,088.31

Model	Cattle	Dairy	Swins	Poultry (layers)	Poultry (broilers)	Turkovo	TN Sus. Areas
Segment	(lbs/yr)	-			• •	Turkeys	(BMP possible)
560	(105/91)	(lbs/yr) 24,731.34	(lbs/yr) 54,773.11	(lbs/yr) 49.55	(lbs/yr)	(lbs/yr)	(lbs/yr)
580	0	16.63	0.61	49.55	0	0 0	79,554.00
590	0	198,037.61	109,490.50	66.97	6,746.80	2.61	17.25
600	0		1,138,821.56	207.16	36,959.61	2.01	314,344.49
610	0	26,991.54	8,451.69	10.37	3,400.41	0	1,179,504.12
620	0	20,991.54	342,106.54	0.37	27,003.82	0	38,854.00
630	0	3,687.70	3,149.44	0	62.81	0	369,381.52
630	0	0,007.70	0,149.44	0	02.81	0	6,899.95
700	0	915.454.30	18,033.75	5.44	4.7	4.77	0 933,502.96
710	0	•	1,537,005.16	323,302.82	119,661.82	20,003.59	3,978,016.76
710	0	5,766,036.82		1,006,014.85	368,981.83	30,563.87	11,443,240.09
730	0	3,692,893.51		133,315.60	29,834.45	25,123.07	5,042,415.83
740	Ö	2,382,823.38	851,293.79	36,301.85	2,412.17	1,220.40	3,274,051.59
750	0	411,060.32	210,467.86	2,752.54	2,172.90	71,098.71	697,552.33
760 760	0	692,735.60	116,062.93	56,094.02	7.12	3.61	864,903.28
770	Ö	111,325.87	38,100.08	1,806.70	66,846.86	5.2	218,084.70
780	0	35,074.92	88,551.53	251.48	234,595.15	0.72	358,473.80
800	0	103,925.91	13,157.30	1.26	0.96	1.18	117,086.61
810	Ö	305,038.20	100,241.50	0.65	19,476.06	0.61	424,757.02
820	0	38,276.98	6,151.23	0	20,678.77	0.07	65,106.98
830	0	60,152.52	23,235.75	17	70,850.48	Ö	154,255.75
840	Ö	0	296,473.47	0	305,419.26	ő	601,892.73
850	0	134,733.33	6,176.93	34.86	0	22.56	140,967.67
860	0	41,238.95	12,188.48	133.34	0	0	53,560.77
870	0	0	2,131.94	19.52	0.25	4.59	2,156.30
880	0	0	7,613.38	54.63	0.71	12.83	7,681.55
890	0	39,681.01	1,461.97	23.83	190.13	0	41,356.93
900	0	0	1,253.68	0	0	3.03	1,256.71
910	0	12,411.93	43,108.20	172.4	2.96	3.64	55,699.12
920	0	50,364.78	419,815.98	1,368.75	47.77	322.44	471,919.71
930	0	402.47	14.87	0	0	0	417.34
940	0	0	33,014.90	0.59	0	5.05	33,020.54
950	0	0	0	0	0	0	0
960	0	14,766.29	427,878.55	0	0	0	442,644.85
970	0	25,835.20	239.18	14.67	0	0	26,089.05
980	0	11,848.61	17,026.51	68.41	0.16	0.18	28,943.87
990	0	4,625.24	38,031.80	123.6	4.22	34.98	42,819.85

Table H.2.10 Manure in Areas Always Susceptible to Run-off

	Cattle	Dairy			Poultry (broilers)		TN in Always Susceptible
Segment	(lbs/yr)	(lbs/yr)		(lbs/yr)	(lbs/yr)		(lbs/yr)
10	0	1,482,572.15		2.39	5.01	7.27	1,547,018.74
20	0	4,044,518.59		303.9	8.31	16 61	4,086,250.10
30	0	1,234,228.86	29,782.99	13.96	7.39	4.69	1,264,037.90
40	0	288,012.48	168,970.35	65.76	3,193.92	819.21	461,061.73
50	0	204,709.34	32,890.14	66 06	12 18	3 35	237,681.07
60	0	983,291.33	105,396 73	68.56	281.06	12.14	1,089,049.82
70	0	463,018.90	134,061.66	22.44	4,402.88	1,951.86	603,457.74
80	0	1,598,992.32	736,700.74	14,894.09	20,241.46	9,751.50	2,380,580 11
90	0	569,992.08	72,136.47	18.74	3.85	226.82	642,377.96
100	0	1,741,132.49	308,657.37	2,275.51	15,052.99	4,315.95	2,071,434.31
110	0	1,485,438.92	1,011,518.50	32,505.60	20,176.00	15,411.28	2,565,050.30
120	0	546,036.42	408,974.04	26,852.81	9,631.09	1,136.22	992,630.56
140	0	332,108.10		12,313.84	4,644.24	1,668 11	609,794.82
160	0	269,618.04	23,769.08	94.93	7,422.83	1,975.35	302,880.22
170	0	33,867.82	29,262.25	4,957 38	37,295.49	36,608.90	141,991 84
175	0	190,449.36	38,923.31	6,358.76	16,833.29	299.28	252,864.00
180	0	760,034.50	98,478.68	4,477 01	444 63	461.14	863,895.97
190	0	822,975.36	78,329 19	16,299.29	104,672.33		1,137,520.12
200	0	596,409.95	64,228.93	8,664.01	61,737.58	68,206.05	799,246.50
210	0	1,105,829 18	62,138.96	6,145.47	70.64	2,082.78	1,176,267.03
220	Ö	190,675.28	10,182.58	134.15	2	2.12	200,996.13
230	Ö	367,364.92	44,784.34	39.68	265.77	48 49	412,503.20
235	Ö	19,201.54	1,745.05	2.92	0	0	20,949.51
240	0	1,907.05	3,753.77	3.46	0	Ö	5,664 29
250	Ö	37,017.72	7,599.51	0.73	0	0	44,617.96
260	0	45,759.28	13,908.21	11	951.59	0.02	60,620.20
265	Ö	246 08	248.13	1.36	0	992.36	1,487.92
270	Ö	256,726.21	18,226.53	1,690.59	1,945.25	13,788.04	292,376.62
280	Ö	130,618.66	59,168.38	1,767.78	17,926.10	135.17	209,616.10
290	Ö	17,680.16	15,882.86	413.65	2,423.33	0.22	36,400.22
300	Ö	183,678.83	27,956.92	866 79	26,036.82	0.22	238,539.37
310	Ö	11,465.55	7,042.31	0.54	1,406.96	0	19,915 36
330	0	24,135 56	3,324.68	3.71	0.63	0	27,464.58
340	0	23,624.93	7,189.13	6.74	0.57	0.44	30,821.80
370	Ö	18,675.18	2,352.34	0.08	0.05	0.08	21,027.73
380	0	139,756.28	41,681.94	50.15	9,241.95	0.22	190,730.53
390	0	16,739.54	3,488 64	0.29	3,228.71	0.22	23,457.18
400	0	79,987 93	50,247.86	38 78	43,252.50	0.11	173,527.19
410	0	65,211.17	187,846.20	2,838.89	152,467 60	0.31	408,364.17
420	Ō	1,660.21	40,263.62	3,343 46	54,402.44	0	99,669.73
430	Ö	10,788.29	198,284.80	3,002.52	146,674.99	0	358,750 60
440	ō	0	7,399.94	0.39	10,612.54	Ő	18,012 88
450	Ö	676,194.27	311,669.06	19,792.65	7,059.20	1,230.33	1,015,945.51
470	Ö	110,021.82	28,158 96	790.46	15.39	79.01	139,065.64
480	ő	13,387.57	3,956.80	12.37	0	0	17,356.74
490	Ö	10,517.00	3,785.03	7.85	0.18	0.68	14,310.74
500	Ö	6,302.85	32,303.00	33.7	0.78	6.37	38,646.70
510	Ö	0,302.03	592.26	1.55	0.02	0.36	594.2
540	0	11,598.75	3,334.72	5.89	0.29	0.30	14,939.66
550	ő	105,064.93	2,655.88	13.11	0.63	0.91	107,735 46
560	0	6,182.84	13,693.28	3.54	0.09	0.91	19,879.65
580	Ö	4.16	0 15	0	0	0	4.31
590	0	49,509.40	27,372.63	4.78	481.91	0.19	77,368.91
	~	,	,	0	.0	00	77,000.01

	Cattle	Dairy			Poultry (broilers)	•	TN in Always Susceptible
Segment	(lbs/yr)	(lbs/yr)		(lbs/yr)	(ibs/yr)	(ibs/yr)	(ibs/yr)
600	0	878.95		14 8	2,639.97	0	288,239.11
610	0	6,747.88	2,112.92	0 74	242.89	0	9,104.43
620	0	67.79	85,526.63	0	1,928.84	0	87,523.27
630	0	921.92	787.36	0	4.49	0	1,713.77
630	0	0	0	0	0	0	0
700	0	228,863.57	4,508.44	0.39	0.34	0.34	233,373.08
710	0	494,510 84	384,251.29	23,093.06	8,547.27	1,428.83	911,831 29
720	0		1,067,910.68	71,858.20	26,355 84	2,183.13	2,609,817.07
730	0	923,223.38	290,312.30	9,522.54	2,131 03	1,794.51	1,226,983.76
740	0	595,705.85	212,823.45	2,592.99	172.3	87.17	811,381.75
750	0	102,765 08	52,616.97	196.61	155.21	5,078.48	160,812.34
760	0	173,183.90	29,015.73	4,006.72	0.51	0.26	206,207.11
770	0	27,831 47	9,525.02	129.05	4,774.78	0.37	42,260.68
780	0	8,768.73	22,137.88	17.96	16,756.80	0.05	47,681.42
800	0	25,981.48	3,289.32	0.09	0.07	0.08	29,271.04
810	0	76,259.55	25,060.37	0.05	1,391.15	0.04	102,711 16
820	0	9,569 24	1,537 81	0	1,477.05	0	12,584.11
830	0	15,038.13	5,808.94	1.21	5,060.75	0	25,909.03
840	0	0	74,118.37	0	21,815.66	0	95,934.03
850	0	33,683 33	1,544.23	2 49	0	1.61	35,231.66
860	0	10,309.74	3,047.12	9 52	0	0	13,366.38
870	0	0	532.98	1.39	0 02	0.33	534.72
880	0	0	1,903.34	3.9	0.05	0.92	1,908.21
890	0	9,920 25	365.49	17	13.58	0	10,301.03
900	0	0	313.42	0	0	0.22	313.64
910	0	3,102.98	10,777.05	12.31	0.21	0 26	13,892.82
920	0	12,591 19	104,953 99	97.77	3.41	23 03	117,669.40
930	0	100.62	3 72	0	0	0	104.33
940	0	0	8,253.72	0.04	0	0.36	8,254.13
950	0	0	0	0	0	0	0
960	0	3,691.57	106,969 64	0	0	0	110,661.21
970	0	6,458 80	59 8	1.05	0	0	6,519.64
980	0	2,962 15	4,256.63	4.89	0.01	0.01	7,223.69
990	0	1,156.31	9,507.95	8.83	0.3	2.5	10,675.89
	0 2	25,600,744.07	7,757,751.99	282,852.48	878,007.92 2	87,090.42	34,806,446.87

Table H.2.11 Manure in Areas Never Susceptible to Run-off

Model Segment	Cattle (lbs/yr)	Dairy (lbs/yr)	Swine (lbs/yr)	Poultry (layers) (lbs/yr)	Poultry (broilers) (lbs/yr)	Turkeys (lbs/yr)	TN in Non-Susceptible (lbs/yr)
10	0	0	0	203.03	425.75	618.3	1,247.08
20	0	0	0	25,831.48	706.23	1,412.12	27,949.82
30	0	0	0	1,186.78	628.28	398.91	2,213.96
40	0	0	0	5,589.58	271,483.28	69,633.24	346,706.10
50	0	0	0	5,615.07	1,035.53	284.35	6,934.96
60	0	0	0	5,827.35	23,889.97	1,032.02	30,749.34
70	0	0	0	1,907.73	374,244.89	165,907.79	542,060.40
80	0	0	0	1,265,997.89	1,720,524.12	828,877.59	3,815,399.61
90	0	0	0	1,592.49	327,58	19,279.88	21,199.95
100	0	0	0	193,418.38	1,279,504.51	366,855.64	1,839,778.52
110	0	0	0	2,762,975.85	1,714,960.30	1,309,958.44	5,787,894.60
120	0	0	0	2,282,488.66	818,642.41	96,578.31	3,197,709.38
140	0	0	0	1,046,676.16	394,760.37	141,789.57	1,583,226.10
160	0	0	0	8,068.68	630,940.82	167,904.40	806,913.90
170	0	0	0	421,377.72	3,170,116.54	3,111,756.46	6,703,250.72
175	0	0	0	540,494.33	1,430,829.38	25,438.93	1,996,762.64
180	0	0	0	380,546.23	37,793.68	39,197.20	457,537.10
190	0	0	0	1,385,439.68	8,897,148.31	9,795,736.29	20,078,324.28
200	0	0	0	736,440.53	5,247,693.90	5,797,513.95	11,781,648.39
210	0	0	0	522,365.14	6,004.21	177,036.72	705,406.06
220	0	0	0	11,402.49	170.19	180.28	11,752.96
230	0	0	0	3,373.12	22,590.27	4,121.49	30,084.88
235	0	0	0	248.52	0	0	248.52
240	0	0	0	294.45	0	0	294.45
250	0	0	0	61.76	0	0	61.76
260	0	0	0	93.65	80,884.76	1.94	80,980.36
265	0	0	0	115.88	0	84,350.48	84,466.36
270	0	0	0	143,700.13	165,346.38	1,171,983.49	1,481,030.00
280	0	0	0	150,261.66	1,523,718.66	11,489.86	1,685,470.17
290	0	0	0	35,160.19	205,983.23	19.11	241,162.53
300	0	0	0	73,677.27	2,213,129.47	0	2,286,806.74
310	0	0	0	45.98	119,591.49	. 0	119,637.47
330	0	0	0	315.14	53.65	0	368.79
340	0	0	0	572.78	48.19	37.82	658.8
370	0	0	0	6.99	4.14	6.57	17.7
380	0	0	0	4,263.11	785,565.53	18.62	789,847.26
390	0	0	0	24.29	274,440.71	0	274,465.01
400	0	0	0	3,296.49	3,676,462.83	9.25	3,679,768.58
410	0	0	0	241,305.68	12,959,746.09	26.12	13,201,077.89
420	0	0	0	284,194.33	4,624,207.77	0	4,908,402.10
430	0	0	0	255,213.86	12,467,374.41	0	12,722,588.27
440	0	0	0	33.36	902,066.08	0	902,099.45
450	0	0	0	1,682,375.00	600,031.80	104,578.41	2,386,985.21
470	0	0	0	67,188.88	1,307.80	6,715.89	75,212.57
480	0	0	0	1,051.24	0	0	1,051.24
490	0	0	0	667.41	15.25	57.9	740.55
500	0	0	0	2,864.12	66.61	541.5	3,472.24
510	0	0	0	131.7	1.71	30.94	164.34
540	0	0	0	500.75	24.95	0	525.7
550	0	0	0	1,114.06	53.4	77.67	1,245.13

Model	Cattle	Dairy		• •	Poultry (broilers)	Turkeys	TN in Non-Susceptible
Segment	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
560	0	0	0	300.83	0	_	300.83
580	0	- 0	0	0	0	_	0
590	0	0	0	406.6	40,962.70		41,385.13
600	0	0	0	1,257.76	224,397.61		225,655.38
610	0	0	0	62.99	20,645.32		20,708.30
620	0	0	0	0	163,951.78	0	163,951.78
630	0	0	0	0	381.36	0	381.36
630	0	0	0	0	0	0	0
700	0	0	0	33.04	28.56	28.95	90.55
710	0	0	0	1,962,909.98	726,518.21	121,450.39	2,810,878.58
720	0	0	0	6,107,947.32	2,240,246.81	185,566.35	8,533,760.48
730	0	0	0	809,416.15	181,137.70	152,532.95	1,143,086.80
740	0	0	0	220,404.09	14,645.31	7,409.57	242,458.97
750	0	0	0	16,711.84	13,192.60	431,670.74	461,575.17
760	0	0	0	340,570.86	43.21	· 21.94	340,636.02
770	0	0	0	10,969.23	405,855.91	31.57	416,856.71
780	0	0	0	1,526.82	1,424,327.72	4.39	1,425,858.93
800	0	0	0	7.62	5.84	7.17	20.63
810	0	0	0	3.96	118,247.52	3.72	118,255.20
820	0	0	0	0	125,549.67	0	125,549.67
830	0	0	0	103.21	430,163.62	0	430,266.82
840	0	0	0	0	1,854,331.24	0	1,854,331.24
850	0	0	0	211.63	. 0	136.99	348.62
860	0	0	0	809.56	0	0	809.56
870	0	0	0	118.52	1.54	27.84	147,89
880	0	0	0	331.66	4.3	77.91	413.87
890	0	0	0	144.66	1,154.36	0	1,299.03
900	0	0	0	0	0	18.41	18.41
910	0	0	0	1,046.71	17.97	22.09	1,086.77
920	0	0	0	8,310.26	290	1,957.68	10,557.94
930	0	0	0	0	0	0	0
940	0	0	0	3.61	. 0	30.68	34.29
950	0	0	0	0	0	0	0
960	0	0	0	0	0	. 0	0
970	0	0	0	89.07	0	0	89.07
980	0	0	0	415.32	0.99	1.09	417.4
990	0	0	0	750.43	25.61	212.4	988.45
	0	0	0	24,042,460.76	74,630,672.90		123,075,819.78

Section H.2.2.2.4 Manure Application to Pasturelands

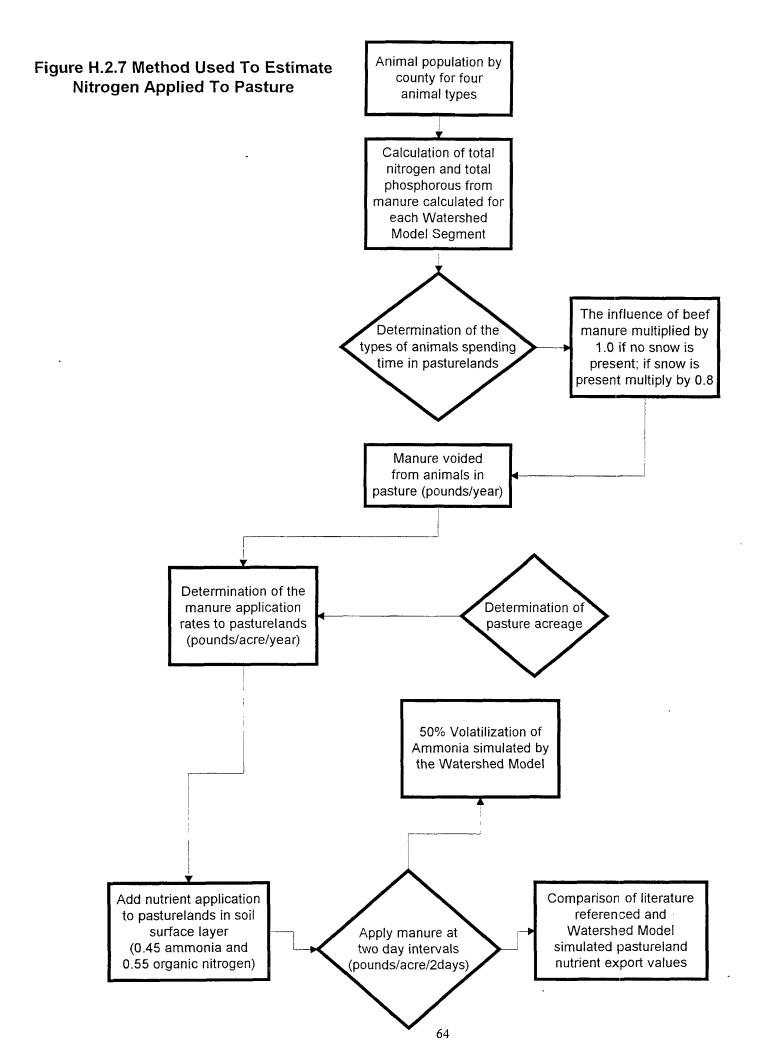
Within the Phase IV Watershed Model, it is assumed that all manure voided in unconfined areas occurs in pasturelands. Figure H.2.7 presents a flowchart of the calculations used to estimate the amount of nitrogen applied to these pasturelands. Manure application rates (pounds/acre/year) per Watershed Model segment are calculated by dividing the amount of manure voided in pasture by the number of pasture acres. Annual manure application rates are divided by 182.5 to calculate manure application rates on two day intervals. Tables H.2.12 and H.2.13 list manure nutrient application rates (on two-day and annual intervals) for total nitrogen per Watershed Model segment. Manure nitrogen applications are split between organic nitrogen and ammonia in a ratio of 55 to 45 percent (Reedy et. al., 1979; Donigian et al., 1991).

The application rate for each crop type per Watershed Model segment is determined from the Phase IV Watershed Model input deck to allow for the comparison between the amount of manure produced in collectible/confined areas and that applied to agricultural lands. Using the total acreage for each crop type (conventional tillage, conservation tillage, and hayland) and the respective application rates, total nutrients applied for a given crop type are calculated. Adding the three crop types together yields the total nutrients from manure applied to cropland within a Watershed Model segment. Figures H.2.8-H.2.10 illustrate the differences between the model manure application rates and the rates calculated from animal unit and mass balance information to each of the three crop types.

To determine the amount of manure produced in a Watershed Model segment that is available for collection and application to pasturelands, the following steps were taken. After manure acres are calculated, 25 percent of the total nitrogen applied to pasture and croplands is assumed to be volatilized. The remaining total nitrogen from both confined/properly stored and confined/improperly stored is assumed to be collected and applied to croplands.

An application rate is calculated from the manure mass balance for each crop type. This is primarily used as a comparison tool. An effort is made to create comparable nutrient application rates proportional to the original nutrient application rates and consistent with the acreage of a given crop type within a Watershed Model segment. An added difficulty is that some crop type application rates are zero. When an application rate is zero and excess manure needs to be applied, the application rate is determined by a proportion of nutrient application rates and crop type acreage. Manure application rates are then compared with actual input of total nitrogen from the Phase IV Watershed Model, based on a matrix that determines how much of a crop area receives the specific manure and fertilizer applications.

Within the Phase IV Watershed Model, pastureland plant uptake simulations can be completed with three simulation methods. These methods are Michaelis-Menton, yield based, and first order simulations. Michaelis-Menton is included in the Phase IV Watershed Model for forest simulation only. Beaulac and Reckhow (1982) suggest that pastureland nutrient export is more like forest than it is like cropland. In other words, the pasture has a greater assimilation potential for nutrients than does cropland. Because pasturelands are not being managed for nutrients like cropland and yield-based plant uptake is based on growing specific sized crops, the first order



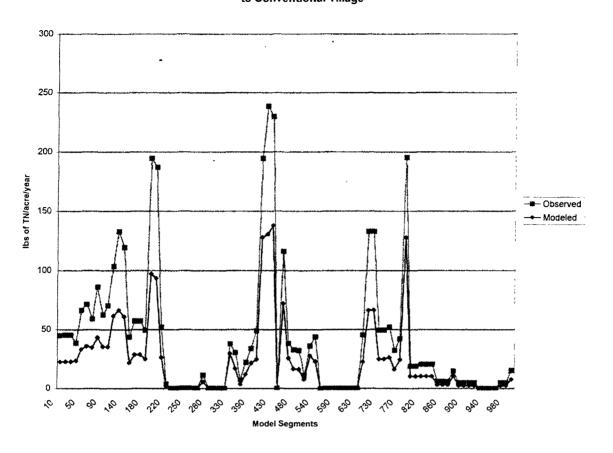

Table H.2.12 Breakdown Of TN Manure Applications Per 2 Days

	Table n.2	. 12 DIEAKGOWI	I OI IN Manue	Application
Model Segment	Pasture Acres	NH3 lb/acre/2d	ORGN lb/acre/2d	TN lb/acre/2d
10	197241 72	0 038	D 046	0 084
20	427825 19	0 036	0 044	0 080
30 40	166774 57 82904 58	0 046	0 057	0 103
50	39209 33	0 029 0 040	0 035 0 049	0 064 0 088
60	113776 55	0 048	0 058	0 106
70	70540 14	0 047	0 058	0 105
80	131155 56	0 070	0 085	0 155
90	52940 01	0 057	0 070	0 128
100 110	113751 64 114828 17	0 069 0 109	0 085 0 133	0 154 0 242
120	13523 79	0 285	0 348	0 634
140	22488 55	0 124	0 152	0 276
160	96781 63	0 037	0 045	0 082
170	197544 80	0 035	0 042	0 077
175 180	86197 83 73980 78	0 047 0 078	0 058 0 095	0 105 0 173
190	262749 45	0 082	0 101	0 183
200	205106 91	0 076	0 092	0 168
210	64782 21	0 101	0 123	0 224
220	124718 34	0 053	0 065	0 118
230 235	262317 19 10596 44	0 070 0 076	0 085 0 093	0 155 0 170
240	6293 27	0 066	0 080	0 146
250	30485 59	0 082	0 100	0 182
260	38213 65	0 090	0 110	0 200
265	25312 86	0 027	0 033	0 061
270 280	206758 49 240132 88	0 081 0 072	0 099 0 088	0 180 0 160
290	25576 39	0 089	0 109	0 198
300	86827 25	0 068	0 083	0 150
310	2679 33	0 122	0 150	0 272
330	14447 08	0 033	0 040	0 072
340 370	12027 71 6447 03	0 052 0 026	0 063 0 032	0 115 0 057
380	31799 23	0 024	0 029	0 053
390	6639 97	0 019	0 024	0 043
400	26747 25	0 023	0 029	0 052
410	11302 76	0 081	0 099	0 179
420 430	2847 37 10118 39	0 055 0 059	0 068 0 073	0 123 0 132
440.	2340 72	0 033	0 040	0 074
450	64410 66	0 084	0 103	0 188
470	37039 47	0 039	0 048	0 087
480	2561,81	0 078	0 095	0 173
490 500	2298 82 34407 79	0 136 0 018	0 167 0 022	0 303 0 039
510	984 28	0 061	0 075	0 136
540	2547 52	0 098	0 119	0 217
550	72686 55	0 053	0 064	0 117
560	24494 42	0 077	0 094	0 171
580 590	1221 64 26051 43	0 030 0 050	0 036 0 061	0 066 0 110
600	23684 19	0 076	0 093	0 169
610	6398 95	0 073	0 089	0 162
620	7267 65	0 034	0 042	0 076
630 650	314 71 13711 57	0 046 0 000	0 056	0 102 0 000
700	20243 34	0 104	0 000 0 127	0 231
710	16854 59	0 216	0 264	0 480
720	29341 79	0 340	0 416	0 756
730	32615 84	0 143	0 175	0 318
740 750	167395 31 14821 07	0 049 0 070	0 059 0 086	0 108 0 156
760	11514 92	0 161	0 196	0 357
770	4744 65	0 047	0 057	0 103
780	2706 72	0 043	0 053	0 097
800 810	4563 08 14539 95	0 051 0 027	0 062 0 033	0 113 0 060
820	2157 94	0 032	0 039	0 000
830	8020 67	0 018	0 022	0 040
840	2846 15	0 038	0 047	0 085
850	3714 99	0 116	0 141	0 257
860	873 63	0 176	0 215	0 391
870 880	1005 95 7333 31	0 054 0 030	0 066 0 037	0 120 0 068
890	2048 45	0 079	0 097	0 176
900	4631 52	0 023	0 029	0 052
910	8315 22	0 029	0 035	0 063
920	38156 70	0 022	0 026	0 048
930 940	1685 97 3284 16	0 016 0 080	0 020 0 097	0 036 0 177
950	1532 51	0 013	0 016	0 030
960	1514 33	0 059	0 072	0 131
970	1205 32	0 145	0 177	0 321
980	20204 74	0 055	0 068	0 123
990	1226 42 Average	0.045 0.069	0 055 0.084	0 101 0.153
	Average	4,443	4.444	0.133

Table H.2.13 Breakdown Of TN Manure Applications Per Year

Model	Dankum	NH3	ORGN	TN
Segment	Pasture Acres	lb/acre/2d	Ib/acre/2d	Ib/acre/2d
10	197241 72	6 870	8 397	15 267
20	427825 19	6 579	8 042	14 621
30 40	166774 57	8 458	10 338 6 388	18 796
50	82904 58 39209 33	5 227 7.266	6 388 8 88 1	11 615 16 147
60	113776 55	8 698	10 631	19 329
70	70540 14	8 617	10 532	19 150
80	131155 56	12 692	15 512	28 203
90 100	52940 01 113751 64	10 477 12 637	12 805 15 445	23 282 28 082
110	114828 17	19 844	24 254	44 098
120	13523 79	52 033	63 596	115 629
140	22488 55	22 665	27 702	50 368
160 170	96781 63 197544 80	6 770 6 317	8 275 7 721	15 045 14 038
175	86197 83	8 637	10 556	19 194
180	73980 78	14.208	17 366	31 574
190	262749 45	15 052	18 397	33 450
200 210	205106 91	13.788	16 853 22 445	30 641
220	64782 21 124718 34	18.364 9 682	11 833	40 809 21 515
230	262317 19	12 762	15 598	28 361
235	10596 44	13 936	17 033	30 968
240	6293 27	11 997	14 663	26 660
250 260	30485 59 38213 65	14 978 16 455	18 306 20 111	33 284 36 566
265	25312 86	4 995	6 105	11 100
270	206758 49	14 759	18 039	32 798
280	240132 88	13 173	16 101	29 274
290 300	25576 39 86827 25	16 271 12 347	19 886 15 091	36 157 27 438
310	2679 33	22 355	27 323	49 678
330	14447 08	5 946	7 267	13 213
340	12027 71	9 4 1 8	11 511	20 929
370 380	6447 03 31799 23	4 715 4 334	5 763 5 297	10 479 9 631
390	6639 97	3 539	4 325	7 864
400	26747 25	4 256	5 201	9 457
410	11302 76	14 728	18 000	32 728
420 430	2847 37 10118 39	10 119 10 843	12 368 13 253	22 487 24 096
440	2340 72	6 042	7 385	13 427
450	64410 66	15 419	18 845	34 264
470	37039 47	7 150	8 738	15 888
480 490	2561 81 2298 82	14 220 24 872	17 380 30 399	31 600 55 272
500	34407 79	3 221	3 937	7 159
510	984 28	11 171	13 653	24 824
540	2547 52	17 831	21 794	39 626
550 560	72686 55 24494 42	9 613 14 054	11 750 17 177	21 363 31 231
580	1221 64	5 395	6 594	11 989
590	26051 43	9 043	11 053	20 096
600 610	23684 19 6398 95	13 886 13 321	16 972 16 282	30 858 29 603
620	7267 65	6 223	7 606	13 829
630	314 71	8 393	10 258	18 652
650 700	13711 57	0 000	0 000	0 000
710	20243 34 16854 59	18 985 39 397	23 204 48 152	42 189 87 549
720	29341 79	62 066	75 858	137 923
730	32615 84	26 149	31 960	58 109
740 750	167395 31 14821 07	8 883 12 774	10 857 15 613	19 741 28 387
760	11514 92	29 304	35 816	65 121
770	4744 65	8 496	10 384	18 879
780	2706 72	7 936	9 699	17 635
800 810	4563 08 14539 95	9 294 4 943	11 350 6 042	20 654 10 985
820	2157 94	5 822	7 116	12 938
830	8020 67	3 267	3 993	7 260
840	2846 15	6 962	8 509	15 471
850 860	3714 99 873 63	21 118 32 112	25 811 39 248	46 928 71 360
870	1005 95	9 836	12 022	21 858
880	7333 31	5 551	6 785	12 336
890	2048 45	14 432	17 639	32 071
900 910	4631 52 8315 22	4 284 5 203	5 235 6 359	9 519 11 563
920	38156 70	3 938	4 813	8 751
930	1685 97	2 942	3 596	6 538
940	3284 16	14 545	17 778	32 323
950 960	1532 51	2.425 10.757	2.964	5.388
960 970	1514 33 1205 32	10 757 26 399	13 147 32 266	23 904 58 665
980	20204 74	10 125	12 375	22 499
990	1226 42	8 271	10 109	18 381
	Average	12 562	15 353	27 915

Figure H.2.8 Comparison of Modeled and Observed Manure Application Rates of TN to Conventional Tillage

Comparison of Modeled and Observed Manure Application Rates of TP to Conventional Tillage

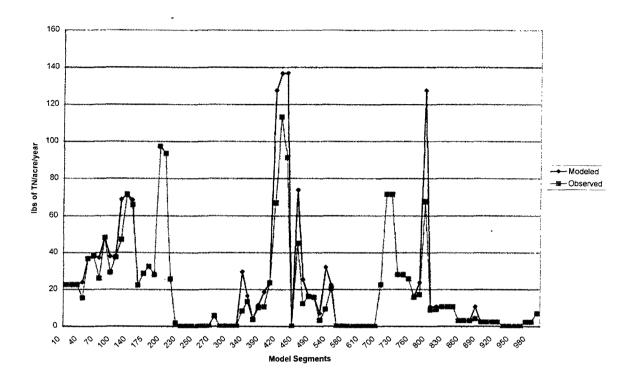



Figure H.2.9 Comparison of Modeled and Observed Manure Application Rates of TN to Conservation Tillage

Comparison of Modeled and Observed Manure Application Rates of TP to Conservation Tillage

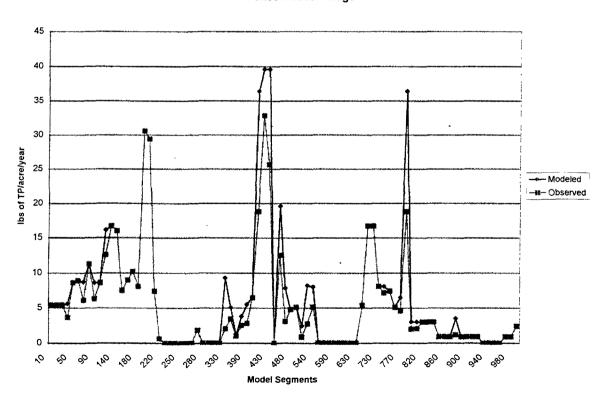
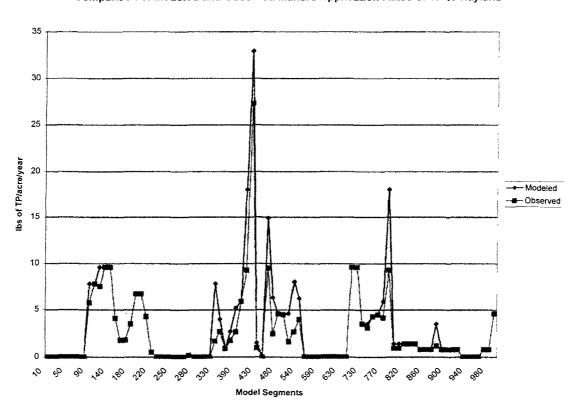



Figure H.2.10 Comparison of Modeled and Observed Manure Application Rates of TN to Hayland

Comparison of Modeled and Observed Manure Application Rates of TP to Hayland

simulation method seems to be the most appropriate for the simulation of plant uptake within pasturelands.

The amounts of manure nutrients applied to pasturelands are incorporated into the Phase IV Watershed Model using AGCHEM Watershed Model input files. Ammonia volatilization rates for manured pasturelands are simulated by the Phase IV Watershed Model and are based on a 50 percent loss of ammonia in the first twenty-four hours for unincorporated manure (Thompson et al. 1987, Lauer et al. 1976, and Reedy et al. 1979b). After five days only 3 percent of the original ammonia is retained. The surface layer ammonia volatilization rate is lower than the sub-surface layer ammonia volatilization rate and is based on a 40 percent volatilization loss after ten days. Lower layers down to and including groundwater layers simulated within the Phase IV Watershed Model have no ammonia volatilization due to the incorporation of manure into the soil.

Section H.2.2.2.5 Runoff Control for Animal Confinement Areas

A facility with an existing animal waste storage structure may not have runoff controls for animal confinement areas. As a result, runoff from up-slope areas and roof flows to feedlots can carry waste nutrients to surface water bodies. In some cases, excess runoff flows into waste lagoons cause overflow problems. Animal confinement runoff control consists of practices such as up-slope diversions and directed downspouts to minimize off-site water entering the facility. In some cases, improved conditions at the confinement facility can improve animal health and production. Both supplemental and full runoff control systems are monitored by the signatory states. Supplemental systems are those installed in addition to a waste storage structure and full systems are installed at a site without a preexisting storage structure.

Implementation of a full system (without a waste storage system) reduces current nutrient loads by an estimated 75 percent for nitrogen, phosphorus, and sediment. A supplemental system (with a waste storage system) can reduce current nutrient loads by an additional 10 percent for nitrogen, phosphorus, and suspended sediment beyond those reductions gained by the storage structure.

Section H.2.2.2.6 Grazing Land Rotation

The rotation of livestock on grazing land limits the manure load and other impacts of livestock to pasture. Benefits of this BMP include improved infiltration/runoff characteristics, healthier grass stands, reduced need for fertilizers, and reduced erosion. It is estimated that the nitrogen and phosphorous load is reduced by 50 percent and suspended sediment loads are reduced by 25 percent for pastures utilizing grazing rotation management. See the Stream Protection paragraphs (below) for an explanation of how this BMP is incorporated into the pasture.

Section H.2.2.2.7 Stream Protection (with and without fencing)

Direct animal contact with surface waters and the resultant streambank erosion are primary causes of nutrient loss from pastures. Stream protection with fencing involves fencing narrow strips of land along streams to exclude livestock. The fenced areas may be planted with trees or

grass, but are typically not wide enough to provide the benefits of buffers. The implementation of stream fencing limits the length of streambanks where animals can enter into a stream but does not exclude animals from entering the stream within limited watering and stream crossing areas.

Streambank fencing greatly reduces the nutrient losses from pasture, in addition to improving streambank stability, reducing sedimentation, and creating wildlife habitat. The implementation of two hundred and eight feet of streambank fencing results in a nutrient reduction equal to 75 percent of the load from three acres of pasture.

Stream protection without fencing involves the use of troughs or "water holes" away from streams. In some instances, trees are planted away from the stream to provide shade for the livestock. Research has indicated that these measures will greatly reduce the time livestock spend in streams. Therefore, nutrient losses should decrease.

The incorporation of stream protection (both with and without fencing) into the Phase IV Watershed Model involves a reduction of the load from pasture. To determine the total amount that the load to pasture is reduced for the entire Watershed Model segment, "Pastureland," a new pasture application load, is incorporated in the SPEC-ACTIONS section of the Phase IV Watershed Model input deck.

It has been determined by the Chesapeake Bay Program Nutrient Subcommittee's Tributary Strategy Workgroup that stream protection with fencing reduces nutrient and suspended sediment loads to pasture by 75 percent for total nitrogen, total phosphorous, and total suspended sediment. For stream protection without fencing the reduction is an estimated 40 percent for total nitrogen, phosphorous, and sediments. These reductions are only applied to pasturelands within the Phase IV Watershed Model.

Section H.2.2.2.8 Forestry BMPs

Forestry BMPs focus on minimizing the environmental impacts from forest harvesting operations, such as road building, and harvesting and thinning operations. These BMPs reduce soil erosion and the loss of nutrients that adhere to the eroding soil particles. Timber harvesting is a regulated activity. Additional controls are required when working in non-tidal wetlands, stream buffers, and the Chesapeake Bay Critical Area in Maryland. Forest harvesting BMPs could potentially be applied to all forested lands cut for timber each year. Virginia has a silviculture law that applies to the entire state.

Forest BMPs are incorporated into the Phase IV Watershed Model by reducing the nutrient and suspended sediment flow from the forest. It has been determined by the Chesapeake Bay Program Nutrient Subcommittee's Tributary Strategy Workgroup that when BMPs are used during forest harvesting operations a reduction of 50 percent of total nitrogen, total phosphorus, and total suspended sediment loading is achieved.

Section H.2.2.2.9 Forest and Grass Buffers

Forest and grass buffers also receive nutrient reduction efficiencies. For forested buffers, the average reduction for nitrogen is estimated to be 57 percent, and an estimated 70 percent reduction for phosphorous and suspended sediment. Grass buffers have an average nutrient reduction estimated at 43 percent for nitrogen and 53 percent for phosphorous and sediment.

Section H.2.2.2.10 Cover Crops

This BMP refers to (non-harvested) cover crops specifically designed for nutrient removal. This BMP is more prevalent in the lower Chesapeake Basin due to the longer growing season. Significant amounts of nitrogen may remain in the soil after harvest, regardless of yield, especially during drought years. Nitrate nitrogen is particularly subject to leaching to groundwater over the winter if substantial amounts are in the soil in the fall. Small grains (i.e., rye, barley, wheat) planted without fertilizer in late summer or early fall will greatly reduce nitrate leaching losses. These small grains use the nitrogen as they grow, provided root growth is sufficient to reach the available nitrogen, hence the early planting date requirement. (Proper timing of cover crop ploy-down in spring releases "trapped" nitrogen for use by the following crop.) As with other cover crops, their use reduces phosphorus losses through reduced soil erosion.

While nutrient reduction is the principal benefit of cover crops, the quality of the soil may also improve in the long-term. Cover crop acres will be assumed to be in the conventional and conservation tillage land uses, and will receive average reductions of 43 percent for nitrogen and 15 percent for phosphorus and sediment.

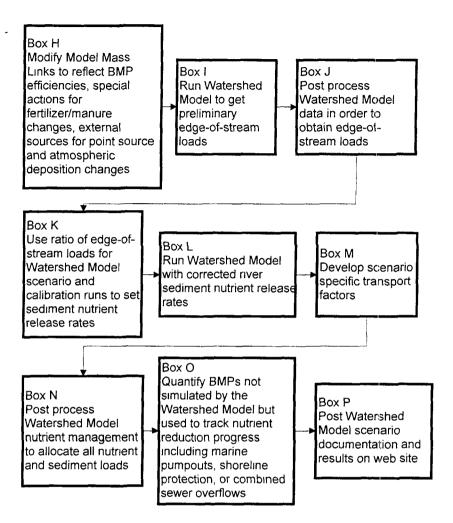
Section H.2.2.3 BMPs Affecting Direct Loads to Tidal Bay Waters

Within the Phase IV Watershed Model, the types of BMPs affecting direct nutrient and suspended sediment loading to the Chesapeake Bay are marine pumpouts, tidal shoreline protection (structural and nonstructural), and combined sewer overflows (treatment and conversions). These BMPs reduce nutrient loads that are used as direct input into the Chesapeake Bay Water Quality Model.

Section H.2.2.3.1 Marine Sewage Disposal Facilities

Marine sewage disposal facilities include pumpouts and portable toilet dump stations located shore side to allow boaters to properly dispose of sewage. Boat sewage is then transported to local wastewater treatment plants, where treatment levels vary. Marine sewage pumped to local treatment plants is included in point source calculations. Only Maryland tracks marine pumpouts as part of their individual tributary strategies. Two components of controlling nutrients from boat waste are the installation of pump-out facilities and the implementation of an educational program to encourage boaters to use existing and new pumpouts for boat waste disposal. Marine sewage disposal facilities reduce the nitrogen load by an estimated 43 percent and the phosphorus and suspended sediment loads by an estimated 53 percent. Currently, nutrient

reductions from these practices are not simulated by the Phase IV Watershed Model, but are subtracted from the final simulated Watershed Model output values.


Section H.2.2.3.2 Shoreline Protection

Tidal structural and non-structural erosion control measures stabilize the eroding shoreline, a major source of suspended sediment and nutrient loading to the Bay. Non-structural erosion control practices focus on the use of native vegetation to stabilize shorelines. Where wave energy is too high for the non-structural approach, structural methods are employed, such as stone revetments and breakwaters. Both tidal structural and non-structural erosion controls reduce the nitrogen, phosphorus, and suspended sediment loads by an estimated 75 percent. Similar to marine sewage disposal facility pumpouts, nutrient reductions from shoreline erosion practices are not simulated by the Phase IV Watershed Model but are subtracted from final simulated load output values.

Section H.2.2.3.3 Combined Sewer Overflows

Combined sewer overflows (CSOs) deliver a nutrient load to rivers and the bay during storm events. A combined sewer system only uses a single sewer pipe network to collect storm runoff, domestic wastewater, and industrial discharge. During dry-weather flow periods, the wastewater treatment facility is able to process all dry weather flows. However, during storm events, the wastewater treatment facility is unable to handle the increased flow; therefore, the excess flow (containing sewage) is discharged directly into the water bodies through a bypass mechanism in the conveyance system. Since high loads are a result of high flow periods, the combined sewer overflow is extremely detrimental to nutrient reduction strategies. There is an effort to treat water that does originate during a high flow period. Conversion of combined sewer overflows is one effort underway to reduce nutrient loads to the tributary rivers and the Bay. The treatment and conversion of combined sewer overflows are tracked in the tributary reductions. Treatment of combined sewer overflows reduce the nitrogen load by an estimated 15 percent and the phosphorus and suspended sediment loads by an estimated 30 percent. Conversion of combined sewer overflows reduce the nitrogen, phosphorus, and suspended sediment loads by an estimated 95 percent. This number is high because it is the assumed efficiency of wastewater treatment plants. To apply this load reduction in a Tributary Strategy Watershed Model Scenario, the existing combined sewer overflow load must be incorporated into the Water Quality Model (Note, to date this has only been done for the District of Columbia's combined sewer overflows).

Section H.3 SUMMARY OF WATERSHED MODEL OPERATIONS

The Phase IV Watershed Model is based upon the Hydrologic Simulation Program-FORTRAN (HSPF) Model – Version 11 (Johanson et al., 1980). An HSPF simulation requires two types of data files, a user control input file (UCI) and a water data management (WDM) file. The UCI file contains simulation time and output control information, hydrological and nutrient dynamic module control, initialization, parameterization, linkages between land and water and specific loading information. The WDM file is a binary file that contains input time series data for meteorological, precipitation, atmospheric deposition and point source data.

Each scenario uses unique UCI files that are modifications of the reference scenario UCI files. The changes in the UCI files reflect the physical changes in the watershed due to estimated land use change and reported BMP implementation. A series of FORTRAN programs read each HSPF UCI file and generate modified files according to scenario-specific data files. All scenarios use the same WDM files.

Section H.3.1 Scenario Characteristic Modification

For each scenario, the reference UCI files are modified by a series of FORTRAN programs. A UNIX script file is used to call each program in turn for each UCI. The modifications include land use changes, loads of fertilizer and manure to crop land, manure deposited on pasture land, changes to exported loads due to BMP implementation, and changes to point source and septic loads.

Section H.3.2 Initial Model Run for the Edge of Stream Loads

After the synthesis of the scenario-specific UCI files is completed, a model run is performed to produce edge-of-stream loads. The output of this model run contains daily edge-of-stream loads for suspended solids and several species of nitrogen and phosphorus for each land use and model segment.

Section H.3.3 Adjustment of Bed Concentration

The Phase IV Watershed Model adjusts the concentration of adsorbed ammonia and phosphate in the bed sediment of the free-flowing rivers. This adjustment is proportional to the change in edge-of-stream loading from all upstream sources for each particular Watershed Model segment. These factors are determined through the comparison of the Watershed Model Reference scenario edge-of-stream loads and those of the specific scenario being run. Once again, a FORTRAN program is used to automatically adjust the concentrations sorbed to bed sediment specified in the UCI files. Sediment scoured from the river bed is reduced by a similar process.

Section H.3.4 Second Model Run

The second run of the Watershed Model scenario is only necessary for those model segments that have reaches, since the only alteration since the initial run is in the bed concentration and the amount of sediment scoured. The in-stream concentration files are then used to determine the loads for each reach that are delivered to the next downstream reach.

Section H.3.5 Delivery Factors

To determine the loads delivered to the Chesapeake Bay from each source within each Phase IV Watershed Model segment, delivery factors must be developed which give the fraction of the total load entering any particular river reach that reaches tidal waters. A pre-formatted spreadsheet is used to calculate the delivery factors from the post-processed edge-of-stream loads and the loads exiting each reach.

Section H.3.6 Final Model Run

This model run is a twelve year simulation that applies a nutrient load to the Chesapeake Bay Water Quality Model. The adjusted bed concentrations from the second run are used to simulate the full twelve years, as opposed to only eight. There are a few differences between this Phase IV Watershed Model run and the previous ones: (1) the November, 1985 storm is now included

in the precipitation and load data, and (2) particulate inorganic phosphorus loads are now identified for linkage to the Chesapeake Bay Water Quality Model.


The final model outputs are in a tabular format with loading information about NH₃, NO₃, organic nitrogen, total nitrogen, PO₄, organic phosphorus, total phosphorus, and total sediment. This information is further broken down by land use, basin, state and above/below fall line. Subsegmentation is used in segments that discharge directly to tidal waters. This produces higher resolution which is more compatible with the Water Quality Model.

REFERENCES

- Beaulac, M.N. and K.H. Reckhow. 1982. An Examination Of The Land Use-Nutrient Export Relationship. Water Resources Bulletin 18(6): 1013-1024.
- Brown, K.W. and J.C. Thomas. 1978. Uptake of N by grass from septic fields in three soils. Agronomy Journal, 70: 1037-1040.
- Donigian, A.S. Jr., Linker, L.C., C. Chang. 1991. Chesapeake Bay Program Watershed Model Application To Calculate Bay Nutrient Loadings: Final Findings and Recommendations, U.S. Environmental Protection Agency, Annapolis, Maryland.
- Evanylo, G.K.. 1995. Mineralization And Availability Of Nitrogen In Organic Waste-Amended Mid-Atlantic Soils, STAC Literature Synthesis, CRC Publication, Edgewater, Maryland.
- Gilbertson, C.B. (Ed.). 1979. Animal Waste Utilization On Cropland And Pastureland: A Manual For Evaluating Agronomic And Environmental Effects, U.S. Department of Agriculture and U.S. Environmental Protection Agency.
- Graves, R.E. 1986. Field Application of Manure: A Supplement To Manure Management For Environmental Protection.

 Commonwealth of Pennsylvania, Department of Environmental Resources, Harrisburg, Pennsylvania.
- Haith, D.A. and L.L. Shoemaker. 1987. Generalized Watershed Loading Functions For Streamflow Nutrients. Water Resources Bulletin 23(3):471-478.
- Johnson, T.J. and J.C. Parker. 1993. A Model Of Nitrate Leaching From Agricultural Systems In Virginia's Northern Neck. Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
- Krider, J.N (Ed.). 1992. Agricultural Waste Management Handbook. National Engineering Handbook, United States Department of Agriculture, Soil conservation Service.
- Lauer, D.A., D.R. Bouldin, and S.D. Klausner. 1976. Ammonia Volatilization From Dairy Spread On The Soil Surface. Journal of Environmental Quality 5:134-141.
- Maizel, M.S., G. Muehlbach, P. Baynham, J. Zoerkler, D. Monds, T. Iivari, P. Welle, J. Robbin, J. Wiles. 1997. The Potential For Nutrient Loading From Septic Systems To Ground And Surface Water Resources And The Chesapeake Bay. Report of the Chesapeake Bay Program Office, Annapolis, MD.
- Novotny, V. and H. Olem. 1994. Water Quality: Prevention, Identification, And Management Of Diffuse Pollution. 311-332. Van Norstrand Reinhold, New York.
- Palace, M.W. 1997. An Animal Waste Nutrient Mass Balance For The Chesapeake Bay Watershed Model. Coastal Zone 97, Boston, Massachusetts. July 19-25, 1997.
- Reedy, K.R., R. Khaleel, M.R. Overcash, and P.W. Westerman. 1979a. A Nonpoint Source Model For Land Areas Receiving Animal Waste: Ammonia Volatilization. Trans. ASAE 22(6): 1398-1405.
- Reedy, K.R., R. Khaleel, M.R. Overcash, and P.W. Westerman. 1979b. A Nonpoint Source Model For Land Areas Receiving Animal Waste: Mineralization of Organic Nitrogen. Trans. ASAE 22(4): 863-872.
- Ritler, W.F. and J.N. Scarbourgh. 1996. An Evaluation Of Animal Waste Management Systems And Nutrient Management Strategies For The Chesapeake Bay; Cooperative Agreement.

- Robertson, W.D., J.A. Cherry, and E.A. Sudicky. 1991. Ground-water contamination from two small septic systems on sand aquifers. Groundwater, 29(1): 82-92.
- Robertson, W.D. and J.A. Cherry. 1992. Hydrogeology of an unconfined sand aquifer and its effect on the behavior of nitrogen from a large-flux septic system. Applied Hydrogeology, pp. 32-44.
- Robillard, P.D. and K.S. Martin. 1990a. Septic Tank Pumping. The Pennsylvania State University, College of Agricultural Sciences-Cooperative Extension. F-162.
- Robillard, P.D. and K.S. Martin. 1990b. Preventing On-lot Septic System Failures. The Pennsylvania State University, College of Agricultural Sciences-Cooperative Extension. SW- 163.
- Salvato, J.A. 1982. Environmental Engineering And Sanitation (Third Edition). Wiley-Interscience, New York, New York.
- Thompson, R.B., J.C. Ryden, and D.R. Lockyer. 1987. Fate Of Nitrogen In Cattle Slurry Following Surface Application Injection To Grassland. Journal of Soil Science, 38: 689-700.

Chesapeake Bay Program

U.S. Environmental Protection Agency Chesapeake Bay Program Office

410 Severn Avenue, Suite 109 Annapolis, MD 21403 1–800–YOUR BAY

www.epa.gov/chesapeake