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ABSTRACT 

 
GENETIC DISSECTION OF NON-HOST RESISTANCE TO THE WHEAT STEM RUST 

PATHOGEN, USING AN INTERSPECIFIC BARBERRY HYBRID 

By 

Radhika Bartaula 

University of New Hampshire 
September 2018 

 
Stem rust, caused by the macrocyclic fungal pathogen P. graminis (Pg), is one of the most 

devastating diseases of wheat and other small grains globally; and the emergence of new stem 

rust races virulent on deployed resistance genes brings urgency to the discovery of more durable 

sources of genetic resistance.  Given its intrinsic durability and effectiveness across a broad 

range of pathogens, non-host resistance (NHR) presents a compelling strategy for achieving 

long-term rust control in wheat.  However, NHR to Pg (Pg-NHR) remains largely unexplored as 

a protection strategy in wheat, in part due to the challenge of developing a genetically tractable 

system in which Pg-NHR segregates.  In this dissertation, an investigation of Pg-NHR is 

undertaken via the pathogen's alternate (sexual) host, barberry (Berberis spp.).  Within the highly 

diverse Berberis genus, numerous species function as alternate hosts to Pg but others are non-

hosts. European barberry (B. vulgaris L.), for example, is susceptible to Pg infection but 

Japanese barberry (B. thunbergii DC.) is a non-host.  In this study, the nothospecies 

B. ×ottawensis C.K. Scheid, an inter-specific hybrid between Pg-susceptible B. vulgaris and Pg-

resistant B. thunbergii, is explored as a possible means of mapping the gene(s) underlying the 

apparent Pg-NHR exhibited by B. thunbergii.  The overall goal of this research is to contribute to 

the global search for novel sources of potentially durable stem rust resistance genes.  
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The first chapter describes a field study conducted in western Massachusetts, in which a 

natural population of B. ×ottawensis was characterized to determine if the hybrid can be used to 

genetically dissect the Pg-NHR exhibited by B. thunbergii.  A population of 63 B. ×ottawensis 

individuals were clonally propagated, phenotyped for disease response to Pg via controlled 

inoculation using overwintered telia of Pg found on naturally infected E. repens, and genotyped 

using the de novo genotyping-by-sequencing (GBS) pipeline GBS-SNP-CROP. Controlled 

inoculation of a subset of 53 B. ×ottawensis accessions, verified via GBS to be true, first-

generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. 

Although such variation in disease response within a natural population of F1 hybrids could be 

explained by non-nuclear (cytoplasmic) inheritance of resistance, a similar pattern of segregation 

was observed in a population of B. ×ottawensis full-sibs, developed via controlled crosses.  The 

results of this first chapter demonstrate not only that the Pg-NHR observed in B. thunbergii 

segregates among F1 interspecific hybrids with Pg-susceptible B. vulgaris but that the resistance 

is likely nuclearly inherited.  Therefore, at least in principle, the gene(s) underlying Pg-NHR in 

B. thunbergii should be mappable in an F1 population derived from the controlled hybridization 

of the two parental species. 

Building on the results of first chapter, the second chapter of this dissertation details the 

generation and use of a bi-parental B. ×ottawensis mapping population to develop genetic 

linkage maps for both parental species and begin mapping the gene(s) underlying Pg-NHR in B. 

thunbergii.  Using 162 full-sib F1 hybrids and a total of 15,411 sequence variants (SNPs and 

indels) identified between the parents via GBS, genetic linkage maps with 1,757 and 706 

markers were constructed for B. thunbergii accession 'BtUCONN1' and B. vulgaris accession 

'Wagon Hill', respectively.  In each map, the markers segregated into 14 linkage groups, in 
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agreement with the 14 chromosomes present in these Berberis spp. The total lengths of the 

linkage maps were 1474 cM (B. thunbergii) and 1714 cM (B. vulgaris), with average distances 

between markers of 2.6 cM and 5.5 cM. QTL analysis for Pg resistance led to the identification 

of a single QTL, dubbed QPgr-3S, on the short arm of chromosome 3 of B. thunbergii.  The peak 

LOD score of QPgr-3S is 28.2, and the QTL spans 13 cM, bounded by the distal SNP marker 

M411 and proximal SNP marker M969.  To gain further insight into the QPgr-3S region, a 

chromosome-level 1.2 Gb draft genome for B. thunbergii was assembled using long PacBio 

reads and Hi-C data.   By anchoring the B. thunbergii linkage map to the draft genome, the 13 

cM QPgr-3S region was found to correspond to ~3.4 Mbp, represented by 10 contigs.  Using a 

189.3 Mb transcriptome assembled from a multiple tissue library of RNA-seq data, the QPgr-3S 

region was found to contain 99 genes.  To help narrow this list to candidate genes of highest 

priority for subsequent investigation, a combination of approaches was taken. Specifically, 

annotation of the QTL region and differential gene expression analysis led to the identification of 

12 candidate genes within the region. Of those, two emerge as particularly noteworthy due to the 

fact that both appear to be differentially expressed in B. thunbergii during Pg inoculation and 

belong to families implicated in disease resistance in other plant-pathogen systems, namely 

leucine-rich repeat receptor-like kinases (gene GG9708) and zinc ion binding SSM4 proteins 

(gene GG9868).  

The final chapter provides a summary of the research and offers recommendations for 

future studies, building on the results to date.  The original vision of this research was to explore 

the possible use of a heretofore uncharacterized system in identifying novel sources of resistance 

to Pg, and much progress has been made toward this end. Significant follow up research is 

needed, however, and the objectives of that research should be to validate, further characterize, 
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and continue to dissect the QPgr-3S region; test candidate gene hypotheses; and seriously 

confront the difficult question of the relevance of gene(s) regulating Pg-NHR in B. thunbergii to 

durable strategies of stem rust resistance in wheat. 

This dissertation demonstrates the feasibility of dissecting the genetics of a source of Pg-

NHR in a novel way, using the interspecific hybrid barberry B. ×ottawensis.  The genetic linkage 

maps developed in this work are the first available for any species within the ancient plant family 

Berberidaceae; and the draft genome is the first available for any plant within the order 

Ranunculales. Altogether, the resources developed in this study not only establish B. ×ottawensis 

as a viable system to dissect Pg-NHR but also makes available valuable resources for global rust 

surveillance work and ornamental horticulture breeding.
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INTRODUCTION 

1 Overview  

Stem rust (casual organism Puccinia graminis - Pg) is one of the most globally important 

diseases of wheat and other cereal grains, responsible for severe epidemics and major recurring 

yield losses [1–3].  Historically, the ability of Puccinia spp. to rapidly evolve new forms and 

combinations of virulence has necessitated the continual development and deployment of 

improved wheat varieties with updated sources of rust resistance [4].  Due to a combination of 

concerted breeding efforts and the systematic eradication of the pathogen's alternate host from 

major wheat producing regions, wheat stem rust epidemics became less common over the course 

of the 20th century, to the extent that concern over the disease largely disappeared by the 1970's 

[5].  In 1999, however, that concern was rekindled by the emergence of Ug99, a new stem rust 

race radiating out of East Africa.  Ug99 was noteworthy because it was virulent on Sr31, a stem 

rust resistance gene conferring protection to the vast majority of the world's currently grown 

varieties [6].  The rapid proliferation and increase in both the virulence and aggression of the 

Ug99 family of races [3] sounded the alarm for wheat scientists; and the search for new sources 

of resistance, particularly durable (i.e. race non-specific) resistance [7], continues to be a top 

priority in terms of wheat security. 

To complement this global search for novel sources of potentially durable Pg resistance 

within the Triticum genepool, the current research was undertaken to investigate the 

mechanism(s) of rust resistance in Pg's alternate host, barberries. Within the highly diverse 

Berberis genus, numerous species function as alternate (sexual) hosts to Pg [8,9]; but others do 

not. For example, while the common European barberry, B. vulgaris, is susceptible to Pg 
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infection, Japanese barberry (B. thunbergii) is identified as a non-host [10].  The molecular basis 

of Pg non-host resistance (NHR) in B. thunbergii is unknown, but it is of enormous interest 

given the historic durability of this resistance and the potential to transfer such resistance 

mechanism(s) by transgenesis to crop plants [11].  In his dream for tomorrow, Dr. Norman 

Borlaug envisioned the ability of biotechnology to transfer the rust immunity of rice to wheat, 

forever solving the rust problem in one of humanity's most important staple crops [12].  When 

simply inherited (e.g. maize Rxo1 gene), the proof of concept for such a visionary transfer of 

NHR between species has already been shown [13]; but studies suggest that rust NHR in rice is 

far from simply inherited [11] .  Dr. Borlaug's vision of looking beyond the Triticum genepool 

for novel sources of durable resistance remains compelling, however.  The evolutionary 

relationship between barberry and Pg is thought to predate the pathogen's host jump to the 

cereals [14]; thus barberry presents itself as a unique system to explore the basis of potentially 

durable rust resistance. Furthermore, although the multi-million dollar commercial trade of 

ornamental barberries in the U.S. is tightly regulated due to this issue of rust susceptibility on 

some Berberis spp. [15], no molecular markers are available that can distinguish susceptible and 

resistant cultivars.  This lack of genetic information also stymies current barberry surveillance 

work, occurring globally, as no molecular taxonomic tools are available to help wheat rust 

researchers identify alternate host species in the field. To address these gaps in knowledge, this 

research seeks to develop genetic and genomic resources for Berberis spp. and to identify the 

genetic mechanism(s) of NHR to stem rust pathogen in the alternate host. 

 

2 Research objectives  
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The main goal of this research was to understand the genetic mechanism(s) of Pg-NHR 

exhibited by B. thunbergii, with the aim of discovering novel sources of potentially durable and 

transferable stem rust resistance genes.  To meet this broad goal, the specific objectives of this 

dissertation were to: 

1.  Characterize a naturally occurring population of Berberis spp. to explore the viability of the 

“Berberis-Pg” pathosystem as a novel system for characterizing and mapping the gene(s) 

underlying the putative Pg-NHR in non-host species; 

2.  Develop genetic and genomic resources of relevant Berberis spp. to facilitate the above 

objective, including: 

High-resolution genetic linkage maps of both Pg non-host B. thunbergii and Pg 

susceptible B. vulgaris; 

Chromosome-level reference genome of B. thunbergii; and 

Assembled transcriptome of B. thunbergii 

3.  Perform quantitative trait loci (QTL) analysis for identifying loci regulating Pg-NHR in B. 

thunbergii;   

4.  Identify a list of candidate genes governing Pg-NHR response in B. thunbergii; and  

5.  Develop a strategy for subsequent candidate gene validation and future studies 

 

3 Background 

3.1 The stem rust pathogen 

Stem rust disease, caused by Puccinia graminis (Pg), is one of the most devastating 

diseases of small grain cereal crops, affecting wheat, barley, rye, oat, and triticale [1,2].  Pg is a 

fungal pathogen belonging to the phylum Basidiomycota, class Urediniomycetes, order 
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Uredinales, and family Pucciniaceae [1].  The host range of Pg is very broad, including at least 

365 species of plants across 54 genera [16].  Based on its host range, the species is further 

divided into subgroups commonly referred to as formae speciales (f. sp.).  The commonly known 

f. sp. of Pg and their respective cereal hosts are P. graminis f. sp. tritici (wheat), P. graminis f. 

sp. hordei (barley), P. graminis f. sp. avenae (oat), P. graminis f. sp. secalis (rye), P. graminis f. 

sp. poae (blue grass), and P. graminis f. sp. lolii (stiff brome).  While many cereals and grasses 

(non-cereals) affected by Pg are valuable dietary and industrial crops, historically the threat 

posed by P. graminis f. sp. tritici (Pgt) to wheat production is the most feared.  

 

3.1.1 Biology and life cycle of the wheat stem rust pathogen 

Pg is an obligate parasite, meaning that it requires living host tissue for growth and 

reproduction.  In the absence of living host tissue, however, Pg can survive in the form of 

dormant spores (teliospores) for years [17].  Pg is a heteroecious, macrocyclic fungus that 

requires two unrelated host plants to compete its life cycle, namely various species of cereals 

(Poaceae) and barberry (Berberidaceae).  The asexual spores of Pg (urediniospores, teliospores, 

and basidiospores) are produced during its asexual cycle on its gramineous hosts, and the sexual 

spores (pycniospores and aeciospores) are produced during its sexual cycle on barberry.  The 

various cereal hosts are often referred to as the primary hosts (i.e. the hosts of greatest concern), 

while barberry is referred to as the alternate host; but the term "primary" refers only to the 

agricultural importance of these species relative to barberry, not to their role as asexual hosts.  

For other rusts, for example the cedar-apple rust (causal organism Gymnosporangium juniperi-

virginianae), apple (Malus spp.) is often referred to as the primary host, even though as the 
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sexual host it is more analogous to barberry in the life cycle of Pg.  The complete life cycle of 

the stem rust fungus is shown in Fig.1. 

 

 

 

Fig. 1 Life cycle of heteroecious, macrocyclic Puccinia graminis, adapted from Zheng et.al [18]. To 
complete its complex life cycle, Pg alternates between cereal crops (Poaceae) as its primary host and 
barberry (Berberidaceae) as its alternate host. 
 

Each season, the disease cycle of wheat stem rust can be thought to begin when a wheat 

crop is exposed to infectious Pgt spores under appropriate environmental conditions.  The 

possible sources of inoculum for wheat are either aeciospores, produced during sexual 

recombination on barberry, or urediniospores, originating from infected volunteer grasses or 

wheat from distant regions.  Once this primary inoculum lands on the surface of a wheat plant 

(usually the stem) and comes into contact with free moisture, the spores can germinate within 1-3 
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h [19].  A germinating spore produces a germ tube, which locates stomata and forms a 

specialized penetration structure, known as an appressorium [20]. Upon exposure to sunlight, 

this appressorium develops a penetration peg and subsequently forms a substomatal vesicle that 

gives rise to the primary infection hypha [20,21].  As the fungus grows, it produces specialized 

feeding structures, known as haustoria, which allow the pathogen to directly uptake nutrients 

from within the plant cell [19,20].  The haustoria then branch to produce secondary infection 

hyphae, drawing more nutrients from the plant cells.  As the invasion progresses, the fungus 

produces a mass of urediniospores which erupts through the stem's surface, providing a new 

source of inoculum [20].  The process from initial infection to the production of new spores can 

take as little at 10 days [20]; and these urediniospores, genetically identical to the primary 

inoculum, spread to neighboring plants to cause a new round of infection.  Under the right 

environmental conditions, epidemic levels of disease can quickly develop over the course of the 

growing season.  Stem rust is found wherever wheat production occurs, in part because 

urediniospores can move extremely long distances by wind.  Long-distance transport through 

prevailing winds commonly occurs across the North American Great Plains [22], but the rare 

long-distance dispersal of about 8000 km from southern Africa to Australia has also been 

reported [23].  

When the growing season comes to an end and there is no longer any living host tissue 

for pathogen to draw nutrients from, the fungus produces thick-walled, two-celled overwintering 

spores called teliospores.  The teliospores of Pg have two nuclei, one of + mating type and the 

other of - mating type [24].  During the process of entering dormancy, these two nuclei fuse to 

produce a single diploid nucleus, which quickly divides meiotically to produce four haploid 

nuclei.  Dormant, overwintering teliospores can survive on dead wheat stubble until spring when 
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each haploid nucleus germinates to produce another spore type known as a basidiospore [16,25].  

Basidiospores are not cable of infecting wheat crops; instead, they infect young leaves of its 

alternate host, for example B. vulgaris.  

Upon infection on barberry, each haploid basidiospore spore produces pycniospores that 

act as gametes [24].  When + type pycniospores are fertilized with - type pycniospores from a 

nearby infection (pycnia), the fertilized dikaryotic structure leads to the eventual production of 

diploid aeciospores.  Pycnia typically form on the adaxial surface of barberry leaves within 5-6 

days of infection, and mature aeciospores appear on the abaxial surface 5-7 days after 

pycniospore fertilization.  The lifecycle is completed when aeciospores, carrying novel 

recombinations of genetic material, germinate on the surface of a wheat plant to begin the next 

cycle of infection. 

The life cycle of Pgt illustrates the important role of the alternate host on stem rust 

disease epidemiology.  Aeciospores from barberry provide early-season of inoculum, thereby 

promoting the rapid development of stem rust epidemics [26].  Without barberry, the teliospores 

of Pgt represent a dead end in its life cycle, so barberry also serves as the bridge to carry the rust 

fungus from one crop season to the next.  Finally, as the sexual host, barberry serves as the 

breeding ground for the pathogen and thus plays a significant role in the generation of new 

virulent races of the wheat stem rust pathogen [9].  

 

3.1.2 Symptoms and signs of stem rust 

Stem rust infection in cereals occurs mainly on the stems and leaf sheaths of susceptible 

varieties.  The symptom of the disease in cereals appears as brick-red pustules (Fig. 2A), the 

result of powdery masses of urediniospores similar in appearance to rust spots on a weathered 
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iron surface.   Later in the season, teliospores appear as a layer of black spores, causing the stems 

of heavily infected plants to appear blackened (Fig. 2B); hence stem rust is often commonly 

referred to as black rust.  On barberry, pycniospore-containing pycnia usually appear on the 

adaxial leaf surfaces, while striking aeciospore-bearing aecial horns break through the abaxial 

surface.  Pycniospores (Fig. 2C) appear as a bright orange-yellow in sticky honeydew and 

aeciospores (Fig. 2D) appear as bright yellow rusty powder in aecial cups.  

 

Fig. 2 Symptoms of infection by the stem rust pathogen on its primary and alternate hosts. (A) Masses of 
brick-red urediniospores erupting through the epidermis of a wheat stem. (B) Black masses of 
overwintering teliospores in wheat. (C) Bright orange-yellow pycniospores appear on upper surface of a 
barberry leaf. (D) Aecial horns emerge from the lower leaf surface of a barberry leaf. Image A photo 
credit: R. Park. 
 
 

3.1.3 Historical significance of stem rust  

With its global distribution and its ability to destroy an apparently healthy crop of 

susceptible cultivar in as little as 3 weeks [1,2,20], stem rust is one of the most feared 

agricultural diseases in the world.  The scourge of rust is recorded as far back as 500 BC, as 
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evidenced in early Greek and Roman writings which describe the details of sacrificial 

ceremonies to appease Robigus, the rust god, in an attempt to prevent crop failure [27,28]. 

Severe stem rust epidemics have been recorded throughout Africa, the Middle East, Australia, 

New Zealand, Europe, the Americas, and Asia [29].  In the 20th century, stem rust epidemics in 

Europe resulted in yield losses of up to 33% [30].  In the United States, yield reductions 

exceeding 50% were noted during epidemic years (1918 to 1976) in major wheat growing areas 

[31].  

 

3.1.5 Present day risk of stem rust  

By the late 20th century, stem rust had been effectively controlled through the development and 

deployment of resistant wheat varieties, in combination with the systematic eradication of the 

alternate host Berberis vulgaris L. in some major wheat growing areas.  In 1998, a new highly 

virulent race of Pgt, referred to as Ug99, was detected in Uganda [32] that overcame Sr31, one of 

the most widely used stem rust resistance gene in wheat cultivars around the world.  In the years 

following the first detection of Ug99, 80% of wheat and 95% of barley cultivars worldwide were 

considered to be susceptible to Ug99 [3,33].  Since its first detection, thirteen different variants 

of Ug99 have emerged, combining various other virulences on important resistance genes to the 

Sr31 virulence; and the race group has spread to more than 13 countries in Africa and the Middle 

East [3,32,34–36].  More recent outbreaks of stem rust in Ethiopia (2013-2014) and Kenya 

(2014) have broken additional resistance genes widely used in modern wheat varieties [37,38]. 

Additionally, recent outbreaks of the stem rust in United Kingdom and other parts of Europe, 

have increased the potential for wheat stem rust epidemics in Europe [39,40].  Thus, there is an 
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ongoing need to explore new sources of resistance to diversify the current pool of genetic 

resistance [7]. 

 

3.2 Barberry and its connection with stem rust 

The genus Berberis, commonly known as barberries, represents the largest genus within 

the family Berberidaceae and consists of nearly 400 species [41]. Berberis is distributed nearly 

worldwide, with centers of diversity in southern Asia as well as Central and South America 

[41,42].  Many Berberis spp. are highly valued as ornamental shrubs because of their lush 

evergreen and/or vibrant, multicolored leaves.  In the USA and Canada alone, ornamental 

barberry is a multi-million dollar industry [43]. Some Berberis spp. are also highly valued for 

their pharmaceutical and medicinal properties [44,45].  In addition, many have also been 

recognized for their use in the printing and dyeing industry, as well as for their culinary uses 

[46,47].  

Beyond their economic importance, numerous species within the highly diverse Berberis 

are known to function as competent sexual hosts to the stem rust pathogen [8,9].  As the alternate 

host of Pg, susceptible barberry species play a key role in the sexual stage of the pathogen’s life 

cycle and provide an early source of inoculum for the rapid onset of disease.  In particular, the 

European, or common, barberry (B. vulgaris) has been implicated in the wheat-stem rust 

pathosystem for centuries, as evidenced by the existence of barberry eradication laws as far back 

as the 1600's.  Barberry eradication programs undertaken as a means of controlling wheat stem 

rust epidemics in both the United Kingdom and the USA had significant positive effects on the 

control of stem rust epidemics [26,48].  Under a massive B. vulgaris eradication program 

undertaken by the USA government from 1918-1974, the largest plant eradication effort in 
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history, more than 500 million common barberry plants were destroyed throughout the wheat-

growing areas of the North Central Plains [49].  This effort resulted not only in a significant 

reduction of early season inoculum but also a reduction in the genetic variation in the fungal 

population by effectively eliminating its sexual cycle [5].  Similarly, barberry eradication in the 

United Kingdom during the late nineteenth and early twentieth centuries resulted in the almost 

complete disappearance of wheat stem rust in those countries [48].  

Over more recent decades, however, barberry has begun to re-establish in these historic 

eradication zones and their populations are increasing in major wheat growing areas [50]. 

Because of the re-emergence of barberry on many sites in Minnesota and recent changes 

observed in the regional Pg population, there is increasing concern over the possibility of stem 

rust epidemics once again occurring in the area [50].  Outside of the historic federal eradication 

zone, New England is another region of concern.  In the northeast, B. vulgaris plants are so 

widespread that the species is considered to be invasive [51]; and a growing interest in 

revitalizing the small grain industry in the region raises a serious concern about the potential for 

the region functioning as an epidemiological hotspot for the emergence of new virulent races of 

Pg.  Similar concerns exist in the United Kingdom, where purposeful replanting of B. vulgaris 

has been underway for decades, largely due to a habitat conservation program for the endangered 

barberry carpet moth [52].  The recent detection of the stem rust pathogen on barberry in the 

United Kingdom raises questions regarding the potential role of barberry in the rust 

epidemiology of Europe.  

 

3.3 Breeding for stem rust resistance  
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Although cultural practices and fungicide application are widely used methods for 

disease control in many crops, such practices are not viable options for wheat producers due to 

the low profit margins of the crop.  Thus, genetic resistance has long been viewed as the most 

economically appropriate and environmentally sustainable method for disease control in wheat. 

Race-specific resistance genes, often referred to as major resistance genes, are the most common 

types of disease resistance genes used in breeding programs. Such genes follow the “gene-for-

gene” model, conferring complete resistance to specific races of the pathogen that carry a 

corresponding avirulence gene [53].  Major genes in plants are known to predominantly encode 

nucleotide-binding and leucine-rich repeat (NB-LRR) proteins [54]. To date, more than 50 major 

stem rust resistance genes have been described in wheat and its close relatives [55].  Of these, 

only 5 have been successfully cloned (Table 1) and they all encode NB-LRR proteins [53]. 

Although many R genes have been identified and utilized effectively in wheat cultivars, the 

resistance afforded by such genes often breaks down due to the evolution of the pathogen, as 

exemplified by the recent emergence of Ug99. 

 

Table 1. List of major wheat stem rust resistance genes that have been cloned 

Species Gene Gene product Source 
Triticum monococcum Sr22 CC-NB-LRR1 Steuernagel et al. 2016 [56] 
Aegilops tauschii Sr33 CC-NB-LRR Periyannan et al. 2013 [57] 
Triticum monococcum Sr35 CC-NB-LRR Saintenac et al. 2013 [58] 
Aegilops tauschii Sr45 CC-NB-LRR Steuernagel et al. 2016 [56] 
Secale cerale Sr50 CC-NB-LRR Mago et al. 2015 [59] 

1 Coiled Coil Nucleotide Binding Leucine Rich Repeat protein   

In contrast to major resistance, race non-specific resistance is another category of genetic 

resistance to the wheat stem rust.  Generally speaking, race non-specific resistance is defined as 

broad spectrum, meaning the underlying genes confer resistance against all races of a pathogen 
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species.  In many cases, the conferred resistance is partial, or quantitative, and is sometimes 

effective against multiple pathogens [53].  In wheat, many such partial resistance genes are 

referred to as adult plant resistance (APR) genes because they provide protection only at adult 

stages of wheat development.  In contrast to NB-LRR resistance genes, some APR genes have 

proven themselves to be highly durable.  The widely deployed stem rust resistance complex Sr2, 

for example, has remained effective for all races of stem rust for nearly 100 years [60].  

Apart from race-specific and race non-specific genes, another far less explored option for 

durable resistance is the use of non-host resistance (NHR) genes. NHR, in which an entire plant 

species is resistant to all genetic variants of a pathogen species, is the most common type of 

resistance exhibited by plants [61].  Due to its durability and inherent race non-specificity, NHR 

has gained more attention recently as a potential strategy for improving crop resistance; but the 

genetic basis of NHR remains poorly understood.  Currently, plant immune responses are 

thought to fall into two major classes, those triggered by pathogen-associated molecular patterns 

(PAMP-triggered immunity; PTI) and those triggered by pathogen effectors (effector-triggered 

immunity; ETI).  Whereas PTI is thought to be associated with receptor kinases located in the 

plant plasma membrane, ETI is triggered by intracellular NB-LRR proteins [53].  Recent studies 

of NHR suggest that it may be a form of PTI, though its specific mode of action and its 

relationship to basal defense response remains unclear [62].  

 

Summary of dissertation research and thesis chapter descriptions 

This thesis explores NHR as a protection strategy against the wheat stem rust pathogen 

Puccinia graminis.  Intrinsically durable and the most common form of genetic resistance, NHR 

holds promise as a strategy for disease protection.  Despite the potential relevance of NHR for 
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disease resistance, however, the genetic basis of this form of resistance remains poorly 

understood, in part due to the inherent challenge of developing a genetically tractable system in 

which genes controlling NHR segregate.  Because all of the individuals in a non-host plant 

species are, by definition, resistant to the pathogen, relevant genetic analyses are difficult to 

perform.  The objective of this research was to overcome this fundamental obstacle by 

developing a genetically tractable system for Pg-NHR in the pathogen's alternate host, 

barberries.  Such a system was realized in the form of an interspecific hybrid between Pg non-

host B. thunbergii and Pg susceptible B. vulgaris; and foundational genetic and genomic 

resources were developed to facilitate its use.  The development of this unique pathosystem 

allows for the first time the ability to associate a genomic region with Pg-NHR and identify 

underlying candidate genes.  

 

Chapter 1: "An interspecific barberry hybrid enables genetic dissection of non-host 

resistance to the stem rust pathogen Puccinia graminis" is a published manuscript in Journal of 

Experimental Botany [63] that characterizes a natural population of Berberis spp. present in New 

England.  By demonstrating segregation of Pg-NHR in an F1 interspecific hybrid population (Pg 

susceptible B. vulgaris x Pg non-host B. thunbergii), this chapter establishes the “Berberis-Pg” 

pathosystem as a viable model for characterizing and mapping the gene(s) underlying the 

putative Pg-NHR of B. thunbergii. This chapter also rules out non-nuclear (maternal) mode of 

inheritance of NHR in B. thunbergii. 

 

Chapter 2: "Mapping non-host resistance to the stem rust pathogen in an interspecific 

barberry hybrid" describes the development of foundational genetic and genomic resources for 
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Berberis spp. to enable QTL analysis and the positing of candidate genes for Pg-NHR.  To 

conduct QTL analysis of the Pg-NHR exhibited by B. thunbergii, an F1 bi-parental mapping 

population was developed via a controlled cross between Pg susceptible B. vulgaris and Pg non-

host B. thunbergii.  Using genotyping-by-sequencing data, genetic linkage maps were 

constructed for both parental species; and a single QTL associated with Pg-NHR was located on 

the short arm of chromosome 3 of B. thunbergii. 

To gain further insight into the QTL region, a chromosome-level draft genome for B. 

thunbergii was assembled using long PacBio reads and Hi-C data.  The QTL region was found to 

correspond to ~3.4 Mbp in the physical map and to contain 99 genes.  Transcriptome based 

annotation of the QTL region and differential gene expression analysis led to the identification of 

12 candidate genes within the region.  Of those, two emerged as noteworthy due to their 

differential expression in B. thunbergii during Pg inoculation and both genes belong to families 

implicated in disease resistance in other plant-pathogen systems, namely leucine-rich repeat 

receptor-like kinases (gene GG9708) and zinc ion binding SSM4 proteins (gene GG9868). 

 

Chapter 3 "Summary and future directions" provides a summary of the completed work 

and offers recommendations for future studies, building on the results to date.  Future work 

should focus on the validation, further characterization, and dissection of the identified QTL, 

including testing of candidate gene hypotheses.  Beyond this, now that the Berberis-Pg system 

has been shown to be a viable means of probing the mechanism of Pg-NHR in B. thunbergii, 

future work must also wrestle with the question of potential translatability of that resistance to 

wheat.	
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ABSTRACT 

Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the 

emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for 

sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is 

largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of 

developing a genetically tractable system within which NHR segregates. Here, we demonstrate 

that Pg’s far less studied ancestral host, barberry (Berberis spp.), provides such a unique 

pathosystem. Characterization of a natural population of B. ×ottawensis, an interspecific hybrid 

of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon 

nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. 

Artificial inoculation of a natural population of B. ×ottawensis accessions, verified via 

genotyping by sequencing to be first-generation hybrids, revealed 51% susceptible, 33% 

resistant, and 16% intermediate phenotypes. Characterization of a B. ×ottawensis full sib family 

excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation 

of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg 

epidemiology and lays a novel foundation for the genetic dissection of NHR to one of 

agriculture’s most studied pathogens.  

 

Keywords: Barberry, genotyping by sequencing, non-host resistance, stem rust, wheat.  
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Introduction  

Stem rust, caused by the fungal pathogen Puccinia graminis (Pg), is one of the most 

devastating diseases of wheat and other small grains, and is responsible for severe epidemics and 

major recur- ring yield losses worldwide (Leonard and Szabo, 2005). The threat of Pg to global 

food security is further enhanced by its ability rapidly to evolve new forms and combinations of 

virulence (Pretorius et al., 2000). Since the pioneering work of Dr. Elvin Stakman nearly 90 

years ago (see Christensen, 1984), tremendous effort has been made by a global community of 

researchers to identify and deploy genetic sources of Pg resistance in wheat cultivars. Despite 

these efforts, the protection conferred by the vast majority of resistance genes has been 

temporary, or non- durable, due to evolving virulence (Singh et al., 2015). With concern 

rekindled over the emergence and spread of new virulent stem rust races, most notably the Ug99 

family of races radiating out of East Africa, the search for novel sources of durable resistance has 

come to be considered essential to achieving long-term wheat security (Stokstad, 2007; Ayliffe et 

al., 2008).  

Non-host resistance (NHR), in which an entire plant species is resistant to all genetic 

variants of a pathogen species, is the most common type of resistance exhibited by plants (Lipka 

et al., 2010). Given its intrinsic durability and efficacy across a broad range of pathogens 

(Thordal-Christensen, 2003; Mysore and Ryu, 2004), NHR presents a compelling strategy for 

achieving long-term rust control in wheat. In his dream for tomorrow, Dr. Norman Borlaug 

envisaged the eventual transfer of Pg-NHR from rice to wheat, forever solving via biotechnology 

the historic rust problem plaguing one of humanity’s most important staple crops (Borlaug, 

2000). When simply inherited, the proof of concept for such a visionary transfer of NHR 

between species has been demonstrated [e.g. maize gene Rxo1 for bacterial streak disease of rice 
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(Zhao et al., 2005)], but some studies suggest that Pg-NHR may not be simply inherited (Cheng 

et al., 2012).  

Considerable effort has been made to understand the response to rust pathogens using 

various non-host and intermediate host pathosystems, including Uromyces vignae, Puccinia 

triticina, and P. striiformis on the model plant Arabidopsis thaliana (Mellersh and Heath, 2003; 

Shafiei et al., 2007; Cheng et al., 2013); P. graminis, P. triticina, P. striiformis, P. hordei, P. 

sorghi, and Melampsora lini on rice (Ayliffe et al., 2011); P. striiformis on broadbean (Cheng et 

al., 2012); P. hordei and U. fabae on wheat (Prats et al., 2007; Zhang et al., 2011); and P. 

striiformis, P. triticina, P. hordei, P. coronata, P. recondite, P. hordei-secalini, and P. persistens 

on barley (Atienza et al., 2004; Jafary et al., 2008; Dawson et al., 2016).While the specific 

mechanisms underlying NHR to rust fungi remain unknown, progress has been made in 

understanding the basal host defense responses of NHR under pathogen pressure. The current 

body of know- ledge, based largely on histological and cytological studies, suggests that NHR 

involves multiple mechanisms, including callose deposition, production of reactive oxygen 

species, phytoalexin synthesis, salicylic acid signaling, and jasmonic acid signaling (Perumalla 

and Health, 1989;Ayliffe et al., 2011; Zhao et al., 2016). Despite a growing understanding of 

such basal mechanisms of some forms of NHR, however, little is known about the genetics 

underlying such responses. Since all of the individuals in a non-host plant species are, by 

definition, resistant to the pathogen, relevant genetic analyses are difficult to perform. Simply 

stated, in order to study the genetics of this type of resistance, a genetically tractable system 

segregating for NHR is required.  

Within the highly diverse Berberis genus, numerous species are known to function as 

competent alternate (or sexual) hosts to Pg (Jin, 2011; Zhao et al., 2013), but others do not. For 
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example, European barberry (B. vulgaris L.) is susceptible to Pg infection, but Japanese barberry 

(B. thunbergii DC.) is identified as a non- host, with no infection observed either under natural 

conditions or through extensive laboratory testing (Levine and Cotter, 1932). The association of 

B. vulgaris with Pg has been implicated in the wheat stem rust pathosystem for centuries, as 

evidenced by the existence of B. vulgaris eradication laws as far back as the 1600s (Zadoks and 

Bouwman, 1985). From 1918 to 1974, a massive B. vulgaris eradication program was 

undertaken by the US government as a means of controlling wheat stem rust (Peterson, 2013). 

Under that program, the largest plant eradication effort in history, >500 million common 

barberry plants were destroyed throughout the North Central Plains of the USA (Peterson, 2003). 

In contrast, cultivars of B. thunbergii continue to this day to be sold as part of a multi-million 

dollar ornamental landscape industry (Lubell et al., 2008), provided their resistance to Pg is 

confirmed by the USDA Cereal Disease Laboratory through its long-running barberry testing 

program (Silander and Klepeis, 1999). In the northeastern USA, outside the boundary of the 20th 

century federal barberry eradication zone, both B. vulgaris and B. thunbergii are found in great 

abundance, to the extent that both are considered invasive species (Silander and Klepeis, 1999; 

Mehrhoff et al., 2003). When the two species co-occur, they can hybridize to produce the 

relatively rare nothospecies B. ×ottawensis, and several natural populations of this interspecific 

hybrid have been documented in the region in recent years (Connolly et al., 2013; Hale et al., 

2015; Van Splinter et al., 2016).  

Despite the evolutionary relationship between some barberry species and Pg, and despite 

wheat stem rust being one of the most intensively researched plant diseases; no attempt has been 

made to understand the genetic mechanism of Pg-NHR exhibited by some Berberis spp. It is 

hypothesized that the modern-day macrocyclic, heteroecious species of Pg evolved from a 
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progenitor that existed in aecial form, parasitizing dicot ancestors of the Berberidaceae prior to 

its host expansion to the grasses (Leppik, 1961; Wahl et al., 1984). It is thus of interest to 

investigate the mechanism of NHR exhibited by descendants of the ancestral hosts of cereal rust 

pathogens. Since B. vulgaris is a competent host of Pg and B. thunbergii is not, their interspecific 

hybrid presents a unique system for studying the genetic mechanism(s) of the apparent Pg-NHR 

in B. thunbergii. For this study, we utilized a natural population of B. ×ottawensis to determine if 

indeed the nothospecies can be used toward this end, thereby providing insight into mechanisms 

of NHR that may inspire novel strategies of stem rust resistance in wheat.  

 

Materials and methods  

Study taxa and field survey  

Naturally occurring individuals of three barberry taxa, B. vulgaris L. (common or European 

barberry), B. thunbergii DC. (Japanese barberry), and B. ×ottawensis C.K. Scheid, were collected 

from Mass Audubon’s Lime Kiln Farm Wildlife Sanctuary in Sheffield, MA, for use in this 

study. Berberis vulgaris was first introduced to North America by European settlers during the 

17th century (Grieve, 1931; Gleason and Cronquist, 1963) and is now considered an invasive 

species throughout many regions of the USA, including New England (Mehrhoff et al., 2003). 

These upright, perennial shrubs grow up to 3 m tall, display 2–5 cm long obovate to obovate–

oblong leaves with highly serrated margins (>50 serrations), and have 5–8 cm long pendant 

racemes of bright yellow flowers (Gleason and Cronquist, 1963; Mehrhoff et al., 2003). Berberis 

thunbergii, first introduced to North America as an ornamental plant from Japan in 1875 

(Steffey, 1985), is also now considered an invasive species throughout New England, the 

Midwest, and eastern states. It is a relatively smaller shrub, ranging from 0.5 m to 2.5 m tall, that 
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displays 1.3–3.8 cm long entire leaves and 1–2 cm long inflorescences with few umbellate but 

mostly solitary flowers (Gleason and Cronquist, 1963; Mehrhoff et al., 2003; Haines, 2011). The 

third taxon, B. ×ottawensis, is the nothospecies resulting from the interspecific hybridization of 

B. vulgaris and B. thunbergii (Rehder, 1949). This hybrid is intermediate in height and leaf size 

be- tween the two parental species, with either entire or moderately serrated leaf margins and 

truncated pendant racemes bearing 5–12 bright yellow flowers (Mehrhoff et al., 2003; Connolly 

et al., 2013). Representative images of the leaf morphologies and inflorescence types of the three 

taxa are shown in Figs 1 and 2, respectively.  
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Fig. 1. Leaf morphologies of the three Berberis taxa in the study. (A) 2–5 cm long obovate to obovate–
oblong leaves with highly serrated margins (>50 serrations) typical of B. vulgaris; (B) 1–4 cm long, entire 
leaves typical of B. thunbergii; and (C) variations in leaf shape and size observed among B. ×ottawensis 
hybrids. Among hybrid accessions, leaves vary in shape (ovate, oblong, or obovate), size (2–6 cm long 
and 1–4 cm wide), and margins (entire to >30 serrations).  
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Fig. 2. Inflorescence types of the three Berberis taxa in the study. (A) 5–8 cm long pendant racemes with 
bright yellow flowers typical of B. vulgaris; (B) 1–2 cm long inflorescences with mostly solitary flowers 
typical of B. thunbergii; and (C) truncated pendant racemes with 5–12 bright yellow flowers typical of B. 
×ottawensis.  
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In June 2014, a field survey was conducted to document and characterize the natural 

populations of B. vulgaris, B. thunbergii, and B. ×ottawensis growing within an ~7 ha area 

section of the Lime Kiln Farm Wildlife Sanctuary. All Berberis spp. plants located within the 

study area were keyed to species based on the following morphological parameters: plant height, 

growth habit, leaf morphology, and inflorescence/flower morphology. Of the nearly 1000 plants 

keyed to species, 190 were selected for subsequent propagation, genotyping, and disease 

phenotyping, comprising 22 B. vulgaris, 27 B. thunbergii, and 141 putative B. ×ottawensis 

accessions. Prior to sampling, these 190 plants were assigned unique IDs, labeled with metal 

tags, and geo-referenced using a Garmin eTrex Vista HCx GPS unit.  

In August 2014, 1-year-old semi-hardwood cuttings were taken from each of the 190 

selected accessions for clonal propagation via rooting at the MacFarlane Research Greenhouses 

at the University of New Hampshire (UNH) in Durham, NH. To propagate, the proximal end of a 

10–16 cm stem cutting was dipped in dry Hormodin-1 (0.1% indole-3-butyric acid) rooting 

hormone powder and inserted into moistened vermiculite. The set cuttings were maintained at 

30–35 ºC, and light misting was provided every 5–6 min to maintain high relative humidity 

throughout the propagation period. Once rooted, cuttings were trans- planted into black plastic 

pots (11.5 cm diameter × 6.5 cm tall) filled with PRO-MIX HP growth media and maintained in 

the greenhouse for tissue sampling and disease phenotyping.  

 

DNA isolation and genotyping by sequencing  

Based on relative propagation success, a random subset of 80 collected accessions were 

selected for genotypic characterization, including 8 B. vulgaris, 9 B. thunbergii, and 63 putative 

B. ×ottawensis genotypes (see Supplementary Fig. S1 at JXB online). To increase the sampled 
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genetic diversity and thus the confidence in calling true species-specific variants (i.e. variants 

polymorphic between B. vulgaris and B. thunbergii but monomorphic within each species), three 

additional B. vulgaris and four additional B. thunbergii accessions were collected from other 

sites (Randall Road, Lee, NH; Adams Point Road, Durham, NH; Piscataqua Road, Durham, NH; 

and Agronomy Road, Storrs, CT) and included for genotyping (Supplementary Table S1.). For 

all 87 accessions, genomic DNA (gDNA) was extracted from ~100 mg of lyophilized leaf tissue 

using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle, 1987). Prior to 

genotyping by sequencing (GBS) library preparation, the isolated gDNA was purified using 

Zymo Research’s Genomic DNA Clean & ConcentratorTM (Catalog # D4011), following the 

manufacturer’s protocol.  

Reduced representation libraries were constructed using the two- enzyme (PstI–MspI) 

GBS protocol described by Poland et al. (2012) and sequenced via 150 bp paired-end (PE) reads 

on an Illumina HiSeq 2500 at the Hubbard Center for Genome Studies, UNH. Raw FASTQ files 

were generated using CASAVA 1.8.3 and analyzed using the de novo (i.e. reference-free) 

bioinformatics pipeline GBS-SNP-CROP (Melo et al., 2016). In the first stage of the pipeline, all 

raw reads were parsed, quality trimmed, and demultiplexed into individual read pairs per 

genotype. A mock reference was constructed using the high-quality PE reads from all 63 B. 

×ottawensis accessions, and putative variants, both single nucleotide polymorphisms (SNPs) and 

bi-allelic indels, were identified by aligning the high-quality PE reads of all 63 B. ×ottawensis 

accessions to the mock reference, following the pipeline’s recommended parameters. Using 

SAMTools (Li et al., 2009), only those read pairs possessing high mapping quality (q>30), 

exhibiting proper pair orientation, and showing no supplementary alignments were retained for 

variant calling. The parameters used for variant calling followed the pipeline recommendations 
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for diploid species, except that the -mnAvgDepth parameter was increased to 7 to enhance 

accuracy, at the expense of total marker number. Complete details of the GBS-SNP-CROP 

command lines used in this study, including all specified pipeline parameters, are provided in 

Supplementary Text S1.  

The 11 B. vulgaris and 13 B. thunbergii accessions included in the GBS library were 

genotyped by mapping their high-quality PE reads to the B. ×ottawensis mock reference and 

calling alleles only for those marker positions identified as segregating among the natural 

population of B. ×ottawensis lines. For all downstream genetic diversity and pedigree analyses, 

only those variants located within centroids (i.e. consensus GBS fragments) containing single 

markers (hereafter referred to as simplex markers) were retained. All parsed, high-quality PE 

reads are deposited in the National Center for Biotechnology Information (NCBI) Short Read 

Archive (SRA). Individual barcode assignments, species information, detailed sequencing 

statistics, and assigned SRA numbers for the 87 genotyped accessions can be found in 

Supplementary Table S1.  

 

Characterization of genetic diversity  

To characterize the genetic diversity both within and among the populations of the three 

Berberis taxa present in the Lime Kiln Farm Wildlife Sanctuary, variants (or markers) were first 

characterized based on average read depth (D), the percentage of homozygotes (Homo), the 

percentage of heterozygotes (Hetero), and the proportion of missing genotype calls (NA). The 

software GenAIEx 6.5.01 (Peakall and Smouse, 2006) was then used to generate descriptive 

population genetic parameters, such as the numbers of effective alleles (NE), the minor allele 

frequencies (MAF), the observed heterozygosities (HO), the unbiased expected heterozygosities 
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(HE), the inbreeding coefficients (FIS), and the measure of interspecific genetic structure (FST). 

Interspecific genetic structure was also assessed via principal component analysis (PCA) through 

the dudi.pca() function in R (package ‘adegenet’) (Jombart and Ahmed, 2011).  

 

Pedigree inference for B. ×ottawensis individuals  

To infer the pedigrees (e.g. F1, BC1, etc.) of the 63 genotyped B. ×ottawen- sis hybrid 

individuals, species-specific markers (i.e. variants polymorphic between B. vulgaris and B. 

thunbergii but monomorphic within each species) were identified. To ensure the informativeness 

of such markers across the population, we excluded all SNPs and indels for which there were 

>25% missing data. Further filtering was applied to retain only 459 high confidence, species-

specific markers that exist in alternate homozygous states between all genotyped accessions of 

the two parental species, including the additional seven accessions from sites other than Lime 

Kiln (Supplementary Table S1). For those 459 high confidence, species-specific markers, alleles 

specific to B. thunbergii are referred to as ‘Bt’ alleles and alleles specific to B. vulgaris are 

referred to as ‘Bv’ alleles.  

Pedigree inferences for the 63 B. ×ottawensis accessions were made based on the 

percentage compositions of Bt homozygous loci, Bv homozygous loci, and Bv/Bt heterozygous 

loci within each individual. Because the pedigree analysis involves only species-specific 

markers, the theoretical expectation for true F1 hybrids is 100% heterozygosity across all loci 

(i.e. 100% Bv/Bt). Due to both sampling bias and inherent genotyping error, however, 100% 

heterozygosity is not expected in empirical data; thus in this study, B. ×ottawensis individuals 

were considered F1 hybrids if the observed percentage of Bv/Bt heterozygosity across all 459 

high-confidence species-specific markers was >95% and the combined percentage of Bv 
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homozygous and Bt homozygous loci was <5%. More complex pedigrees were similarly 

inferred, under the simplifying assumption of independent segregation. A reference table of 

expected proportions of Bt homozygous, Bv homozygous, and Bv/Bt heterozygous loci for 

possible hybrid pedigrees, up to four generations, is provided in Supplementary Table S2.  

 

Disease phenotyping  

In April and May 2015, rooted cuttings of the 87 genotyped accessions were phenotyped 

for their responses to Pg at the USDA-ARS Cereal Disease Laboratory (CDL) in St. Paul, MN, 

using the standard protocol (Cotter, 1932) for testing barberry varieties for release to regulated 

states, as per CDL’s contract with the USDA Animal and Plant Health Inspection Service. If 

scored as resistant at the CDL, the disease reactions of the 63 genotyped B. ×ottawensis 

individuals were verified via an independent round of testing at UNH in April and May 2016. 

For all disease phenotyping, newly emerged leaves were inoculated with germinated Pg 

basidiospores by suspending overwintered, telia-laden straw of naturally infected Elymus repens 

(L.) Gould over barberry plants in an inoculation chamber cycling between 18 °C (light, 14 h) 

and 16 °C (dark, 10 h). The Pg-infected stems of E. repens were collected in 2013 in St. Charles, 

MN, where a population of Pg is alternating between B. vulgaris and E. repens (Y. Jin, 

unpublished) and are part of CDL’s source inoculum for barberry testing. In that region, E. 

repens is commonly infected by two Puccinia spp. (P. graminis, the causal organism of stem 

rust, and P. coronata, the causal organism of crown rust), but the two are easily distinguished on 

the basis of telia and teliospore morphologies (Cummins, 1971). Also, given the fact that the 

alternate host for P. coronata is Rhamnus spp. rather than Berberis spp., the natural inoculum 

used in this study was certainly Pg.  
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Two days post-inoculation, plants were moved to a growth chamber or greenhouse 

cycling between 20 ± 2 °C (light, 14 h) and 18 ± 2 °C (dark, 10 h) for further incubation. 

Infections were scored visually 14 d after inoculation, when mature aecia developed on the 

susceptible B. vulgaris check. Individual plants were scored as Pg susceptible if more than five 

pycnia were seen to develop on the upper surfaces of individual leaves and mature aecia were 

seen to develop on the lower surfaces. Individuals were scored as Pg resistant if the inoculation 

failed to produce visual symptoms, apart from minor flecking. Individuals were scored as inter- 

mediate if any of the following were observed: hypersensitive reactions, including chlorosis 

and/or necrosis; leaf reddening; or fewer than five pycnia with no associated aecia. If the 

susceptible checks failed to exhibit clear infection, all accessions in that group were subjected to 

an- other round of inoculation and rescored. Because of the inherent spatial heterogeneity of 

basidiospore ejection during inoculation, Pg susceptibility is called with higher confidence than 

Pg resistance. Therefore, all B. ×ottawensis individuals scored as resistant were screened a 

second time to reduce the chance of false negatives (Supplementary Table S3).  

 

Testing maternal inheritance of Pg-NHR  

To test whether or not the Pg-NHR of B. thunbergii observed segregating in the 

population of Lime Kiln hybrids is maternally inherited, an independent population of 129 F1 B. 

×ottawensis full sibs was developed via a controlled cross between B. vulgaris accession 

‘Wagon Hill’ (female parent) and B. thunbergii accession ‘UCONN1’ (pollen parent). The 

hybrid status of all progeny was validated via GBS, and their reactions to Pg were evaluated at 

UNH in April and May 2016, following the method described above.  
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Results  

Relative abundance and phenotypic characterization of Berberis taxa at the study site  

The field survey conducted to characterize the natural populations of B. vulgaris, B. 

thunbergii, and B. ×ottawensis growing within the Lime Kiln Farm Wildlife Sanctuary in 

Sheffield, MA, revealed wide distribution of all three barberry taxa within the study area 

(Supplementary Fig. S1). The combined population size of the three taxa was estimated to be 

~1000 individuals, spread over an area of ~7 ha. Berberis thunbergii (~600 individuals) was 

observed to outnumber the other two taxa, although B. ×ottawensis and B. vulgaris plants were 

also observed in significant numbers (~200 each). While morphological variation was observed 

within the populations of all three taxa, the most pronounced variation within a taxon was 

observed among the B. ×ottawensis hybrids, especially in the diagnostic characteristics of plant 

height (0.5–3 m tall), leaf size (2–6 cm long and 1–4 cm wide), and leaf margin (entire to >30 

serrations). While some B. ×ottawensis individuals were as tall as or even taller than mature B. 

vulgaris plants, their leaves were often smaller than those of B. vulgaris and/or their margins had 

far fewer serrations. In contrast, other hybrids largely resembled B. thunbergii, in the sense of 

being relatively short (0.5–1 m tall) and having non-serrated leaves, but bore 5–12 bright yellow 

flowers on truncated pendant racemes typical of the nothospecies.  

 

Variant calling  

GBS generated a total of 381 million 150 bp PE reads for the 87 accessions selected at 

random from the study site. After quality parsing and demultiplexing, the average numbers of 

high-quality reads per genotype retained by the GBS-SNP-CROP pipeline were 2.8, 3.5, and 4.8 

million PE reads for B. thunbergii, B. vulgaris, and B. ×ottawensis, respectively (Supplementary 
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Table S1). Using high-quality PE reads from all 63 B. ×ottawensis individuals, we generated a 

mock reference comprised of 143 213 centroids (i.e. consensus GBS fragments), with a total 

length of ~25 Mbp. In total, the pipeline identified 23091 putative variants, including 20799 

SNPs (average depth DSNPs=26.71) and 2292 bi-allelic indels (Dindels=25.22), and the 

percentage of missing data was low (4%). After filtering, the final set of 2369 simplex markers 

(i.e. SNPs or indels located within centroids containing a single polymorphic site) exhibited 

higher depth (D=66.67) but a similar pattern of heterozygosity, homozygosity, and missing data 

characteristic of the entire data set (Table 1).  

 
Table 1. Summary data characterizing the variants called for 63 accessions of B. ×ottawensis 
collected from the Lime Kiln Farm Wildlife Sanctuary in Sheffield, MA 

 
Typea Nb Dc %Hetd %Home %NAf 
All markers 
SNP 20,799 48.74 55.89 40.22 3.89 
Indel 2,292 46.45 54.79 40.69 4.52 
Both 23,091 48.51 55.78 40.26 3.96 
Simplex markers only 
SNP 2,164 67.55 50.03 46.15 3.81 
Indel 205 57.42 55.02 39.20 5.77 
Both 2,369 66.67 50.46 45.55 3.98 

 

a The type of variant called by the de novo GBS-SNP-CROP pipeline (v.2.1), either SNPs or indels 

b The number of variants, by type, called after imposing all recommended genotyping criteria for diploid species 
c The average read depth, by variant type 
d The percentage of heterozygous loci throughout the population 
e The percentage of homozygous loci throughout the population 
f The percentage of missing cells (i.e. no genotype assigned for a given variant-accession combination) 
 

Assessment of genetic diversity  

Genetic diversity analyses were performed within and among the three populations of 

barberry taxa at Lime Kiln using the 2369 simplex markers described above (see Table 2). In 

terms of intraspecific genetic diversity, the percentage of polymorphic loci was nearly 100% 

within the B. ×ottawensis subpopulation, a result which reflects the hybrid nature of these 



	 37	

individuals and supports the high level of unbiased expected heterozygosity (HE=0.375) 

estimated for the nothospecies. The percentages of polymorphic loci were relatively lower for 

both of the parental species (21.7% for B. vulgaris and 41.0% for B. thunbergii), and the lowest 

value of HE was found for B. vulgaris (HE=0.088). Like this low value of HE, the highly 

negative value of FIS (–0.24) for B. vulgaris is unsurprising in light of the severe genetic 

bottleneck presumed for this species during its colonial introduction from Europe to North 

America.  

 

Table 2. Population parameters characterizing the genetic diversity among and within the three 
sampled sub-populations of barberry taxa, based on 2,369 simplex markers 

 
Taxon Na %POLb HO

c HE
d FIS

e 
B. thunbergii 9 40.95 0.152 0.153 -0.065 
B. vulgaris 8 21.74 0.104 0.088 -0.243 
B. ×ottawensis 63 99.96 0.462 0.375 -0.085 
Means 		 54.18 0.239 0.205 -0.101 

 

a The number of genotypes sampled, by species 
b The percentage of polymorphic loci within each species 
c The observed heterozygosity 
d The unbiased expected heterozygosity 
e The inbreeding coefficient 

 

In general, the low level of inbreeding observed for all three species (average FIS= –

0.131) is an understandable consequence of their outcrossing physiologies (Lebuhn and 

Anderson, 1994). The high value of the interspecific genetic structure between B. vulgaris and B. 

thunbergii (FST=0.738) indicates a robust population structure in spite of co-location, a structure 

that is probably maintained due to flowering time differences between the parental species, with 

B. thunbergii flowering 2–4 weeks earlier than B. vulgaris in the region (Connolly et al., 2013). 

Both the overall taxa-based population structure and the relative genetic diversity within taxa are 
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well captured by a PCA (Supplementary Fig. S2), in which the first two axes account for >89% 

of the genetic diversity.  

 

Inferred pedigrees of the B. ×ottawensis individuals  

From a total of 2369 simplex markers, 459 high-confidence, species-specific variants (i.e. 

SNPs or indels polymorphic between the two parental species but monomorphic within) were 

retained and used for pedigree analysis. Using this reduced set of parental species-informative 

markers, we inferred the generic pedigrees of the 63 genotyped B. ×ottawensis individuals based 

on the percentage compositions of Bt homozygous, Bv homozygous, and Bt/Bv heterozygous 

loci within each individual, where ‘Bt’ designates an allele specific to B. thunbergii and ‘Bv’ 

designates an allele specific to B. vulgaris. Of the 63 genotyped B. ×ottawensis individuals, 53 

(84%) were found to be heterozygous (Bt/Bv) at ≥95% of the 459 loci; hence the vast majority of 

B. ×ottawensis individuals appear to be true, first-generation (F1) hybrids at the study site (Table 

3). Comparatively smaller numbers of B. ×ottawensis individuals appear to be later generation 

hybrids (e.g. backcrosses to parental species, etc.; see Table 3). In addition to the expected 

proportions of Bt homozygous, Bv homozygous, and Bt/Bv heterozygous loci for various 

possible pedigrees (Supplementary Table S2), the full data set with actual proportions and 

inferred pedigrees is presented in Supplementary Table S3.  
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Table 3. Inferred pedigrees and observed reaction types of the 63 genotyped B. ×ottawensis 
accessions, based on 459 species-specific markers 

 
Inferred pedigreea Sb Ic Rd Fe 
Bt/Bv = F1 26 8 17 2 
F1/Bv 1 0 0 0 
F1/Bt//Bv 1 1 0 0 
F1/Bv//Bv 1 0 0 0 
F1/Bv//Bt 1 0 0 0 
F1/Bt//Bv///Bt 0 2 0 0 
F1/Bv//Bt///Bv 1 0 0 0 
F1/Bt//Bt///Bt////Bv 2 0 0 0 
Total 33 11 17 2 

 

a Accession pedigrees are inferred based on observed proportions of homozygous and heterozygous loci, 
considering only species-specific markers and assuming independent segregation (see S2 Table). Bt 
designates a B. thunbergii parent, Bv designates a B. vulgaris parent, and F1 designates the B. ×ottawensis 
F1 hybrid. Within each pedigree, one slash (“/“) indicates the first cross, two slashes (“//“) indicate the 
second cross, and so forth.  For example, pedigree "A/B//C///D" indicates that A was first crossed with B, 
their offspring was crossed with C, and that offspring was crossed with D. 
b The number of Pg-susceptible genotypes 

c The number of intermediate genotypes 
d The number of Pg-resistant genotypes 
e The number of failed inoculations (i.e. no disease phenotype) 
 

Reaction to Puccinia graminis inoculation  

To determine disease responses to Pg, individual propagated accessions were inoculated 

using overwintered telia of Pg found on naturally infected E. repens. Of the 190 individuals 

collected from the field, inoculation was successful for 122 accessions, with the other 68 

accessions dying during either shipment, propagation, or handling in the greenhouse. One week 

after inoculation, pycniospores began to develop on the upper surfaces of young leaves of both 

B. vulgaris and susceptible B. ×ottawensis individuals, whereas resistant B. ×ottawensis 

individuals showed varying responses, ranging from no visual symptoms (similar to B. 

thunbergii) to the development of sparse brown flecking. Two weeks after inoculation, 

accessions of B. vulgaris exhibited a clear susceptible reaction, with well-developed mature aecia 
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visible on the lower leaf surfaces (Fig. 3A). In contrast, accessions of B. thunbergii developed 

either no symptoms at all or small, sparse flecking (Fig. 3B), and accessions of B. ×ottawensis 

showed varying responses, ranging from B. vulgaris-like full susceptibility (Fig. 3C) to B. 

thunbergii like resistance (Fig. 3H). Various intermediate disease responses of some B. 

×ottawensis accessions included aecial development in the presence of red necrotic islands (Fig. 

3D), reddish or brown necrotic lesions with no aecial development (Fig. 3E, F), and flecking 

(Fig. 3G). As summarized in Table 4, all B. vulgaris accessions exhibited clear susceptible 

reactions and all B. thunbergii accessions exhibited clear resistant reactions. Of the 105 B. 

×ottawensis accessions successfully tested for disease response to Pg, 54 (52%) exhibited clear 

susceptible reactions with well-developed pycnia and mature aecia, and 37 (35%) accessions 

exhibited clear resistant reactions with either no visual symptoms or sparse, small flecking. The 

remaining 14 accessions (13%) exhibited various intermediate responses, usually involving <5 

pycnia, no aecial development, and associated hypersensitive-like reactions, including chlorosis, 

necrosis, and leaf reddening.  
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Fig. 3. Representative responses of B. vulgaris, B. thunbergii, and B. ×ottawensis accessions to P. graminis 
inoculation, using overwintered teliospores of naturally infected E. repens under controlled conditions. All 
photos were taken 14 d post-inoculation. (A) Susceptible reaction of B. vulgaris accession ‘LK-070’, showing 
pycnia on the upper surfaces of leaves and well-developed aecia on the lower surfaces of leaves. (B) Resistant 
reaction of B. thunbergii accession ‘LK-107’, showing no visual symptoms. (C, D) Susceptible reactions of B. 
×ottawensis accessions ‘LK-165’ and ‘LK-160’, showing well-developed pycnia and aecia. (E–G) 
Intermediate reactions on B. ×ottawensis accessions ‘LK-074’, ‘LK-121’, and ‘LK-137’, showing sites of red 
or brown necrosis. (H) Resistant reaction of B. ×ottawensis accession ‘LK-015’, with no visual symptoms. 
White scale bar=1 cm.  

 

The population of F1 B. ×ottawensis full sibs derived from the cross between B. vulgaris 

accession ‘Wagon Hill’ and B. thunbergii accession ‘UCONN1’ was similarly tested for 

response to Pg. As within the natural population of B. ×ottawensis hybrids, varying responses 

ranging from apparent immunity to severe susceptibility were observed to segregate among the 

full sibs. Of the 129 full sib lines tested for disease response to Pg, 81 (63%) exhibited a clear 

susceptible reaction, 23 (18%) exhibited an intermediate response, and 25 (19%) exhibited a 

resistant reaction (Table 4).  
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Table 4. Summary of reactions to P. graminis by the 122 Lime Kiln accessions of three barberry 
taxa as well as the derived population of 129 B. ×ottawensis full sibs  

  Sa Ib Rc 
Taxa collected from Lime Kiln 

  B. thunbergii 0 (0%) 0 (0%) 13 (100%) 
B. vulgaris 4 (100%) 0 (0%) 0 (0%) 
B. ×ottawensis 54 (52%) 14 (13%) 37 (35%) 

‘Wagon Hill’/‘UCONN1’ full sibs 
  B. ×ottawensis  83 (63%) 23 (18%) 25 (19%) 

 

aThe number and percentage of Pg-susceptible genotypes.  
bThe number and percentage of intermediate genotypes.  
cThe number and percentage of Pg-resistant genotypes.  
 

Discussion  

As the most common form of genetic resistance, NHR has the potential to provide broad-

spectrum, durable resistance to many plant pathogens, including the causal organism of wheat 

stem rust. Unfortunately, the genetic mechanisms underlying Pg-NHR are poorly understood, in 

part due to the inherent challenge of developing a genetically tractable system in which genes 

controlling Pg-NHR segregate. In this study, we investigated the disease response of an 

interspecific hybrid between Pg-resistant B. thunbergii and Pg-susceptible B. vulgaris, and 

demonstrated the viability of this unique pathosystem to begin characterizing and mapping the 

gene(s) underlying the putative Pg-NHR of B. thunbergii.  

 

The apparent non-host resistance of B. thunbergii to P. graminis segregates in the 

interspecific hybrid B. ×ottawensis  

The natural population of B. ×ottawensis hybrids screened for disease response in this 

study was found to segregate for resistance to Pg. Specifically, 52% of the successfully screened 

hybrid accessions exhibited B. vulgaris-like susceptibility, 35% showed clear B. thunbergii-like 
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resistance, and the remaining 13% showed varying intermediate reactions. GBS analysis 

performed on a random subset of 63 of these phenotyped B. ×ottawensis accessions showed that 

53 were true, first- generation (F1) hybrids, among which a similar proportion of susceptible 

(51%), resistant (33%), and intermediate (16%) reactions were observed (Table 3). These results 

demonstrate that the Pg-NHR observed in B. thunbergii segregates in a population of first-

generation (F1) interspecific hybrids with Pg-susceptible B. vulgaris. Therefore, the gene(s) 

underlying Pg-NHR in B. thunbergii are, in theory, mappable in an F1 population derived from 

the controlled hybridization of Pg- susceptible B. vulgaris and Pg-resistant B. thunbergii.  

Over the past decade, in light of growing global concern about the wheat rusts, a number 

of efforts have been mounted to understand NHR to rust pathogens using various model and non-

model plants. Many plant species, including A. thaliana, Brachypodium distachyon, rice, barley, 

and cowpea (Ayliffe et al., 2011; Cheng et al., 2012, 2013; An et al., 2016; Dawson et al., 2016; 

Li et al., 2016; Zhao et al., 2016), have been used to study NHR to P. striiformis f. sp. tritici 

(Pst), the causal organism of wheat stripe rust. In contrast, Pg-NHR has thus far been studied 

only in rice (Ayliffe et al., 2011), as distinct from the studies of intermediate Pg resistance 

conducted in barley and B. distachyon (Figueroa et al., 2013; Dracatos et al., 2014). Given the 

evolutionary relationship between the Berberis genus and Pg prior to its host expansion to the 

grasses, the findings of this study suggest that the interspecific hybrid B. ×ottawensis may have 

value as an alternative, novel system for mapping and gaining insight into the genetic 

mechanism(s) underlying resistance to this complex pathogen.  

 

Pg-NHR in B. thunbergii probably involves more than one nuclear gene  
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From the practical standpoint of breeding for improved resistance to biotic factors, the 

central questions regarding NHR concern the nature and modes of inheritance of the under- lying 

genes. In the case of maize NHR to the rice bacterial streak pathogen Xanthomonas oryzae pv. 

oryzicola, Zhao et al. (2004) reported that the resistance is mediated by a single gene, designated 

Rxo1. If a single gene governs Pg-NHR in B. thunbergii, the segregation of resistance among F1 

hybrids documented in this study suggests that the underlying resistance gene may exhibit 

dominance and exist in a heterozygous state within B. thunbergii. In such a case, however, 

independent assortment during meiosis would invariably result in homozygous Pg-susceptible B. 

thunbergii progeny. To date, no accession of B. thunbergii tested by the CDL has shown 

susceptibility to Pg; thus a single gene governing Pg-NHR in B. thunbergii is unlikely. The 

range of disease responses observed in this study, including a complete lack of visual symptoms 

(i.e. immunity), various intermediate-level reactions, and full susceptibility (Fig. 3), also 

suggests that the Pg-NHR of B. thunbergii is probably governed by more than a single gene.  

Segregation of resistance within a natural population of F1 hybrids could also be 

explained if the inheritance of NHR is non-nuclear. If the Pg-NHR of B. thunbergii is 

transmitted via the cytoplasm, all offspring should exhibit a disease response similar to that of 

the maternal plant. Under natural conditions, such as those at the Lime Kiln Farm Wildlife 

Sanctuary, the relatively restricted gene flow between B. thunbergii and B. vulgaris is assumed 

to be bi-directional, meaning both species have an equal chance to serve as the female parent of 

B. ×ottawensis hybrids. If Pg-NHR is cytoplasmically inherited, all hybrid progeny obtained 

from a B. thunbergii mother plant are expected to be resistant, and all hybrids obtained from a B. 

vulgaris mother plant are expected to be susceptible. In this study, we found that ~50% of the 

Lime Kiln F1 hybrids exhibit a susceptible reaction, suggesting that the Pg-NHR of B. thunbergii 
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may indeed be cytoplasmically inherited. To test this hypothesis, a population of 129 F1 B. 

×ottawensis full sibs was developed via a controlled cross between B. vulgaris (female parent) 

and B. thunbergii (pollen parent) and screened for disease response to Pg. Under this scenario, 

all F1 hybrids would be expected to exhibit B. vulgaris-like susceptibility to Pg; yet clear 

segregation in disease response was observed (Table 4), indicating that the Pg-NHR of B. 

thunbergii is not transmitted via the cytoplasm.  

 

Pg-resistant barberry species may be epidemiologically relevant to Pg evolution by virtue of 

their hybrid progeny  

It is well established that naturalized populations of B. thunbergii and B. vulgaris are 

widespread throughout New England (Connolly et al., 2013; Hale et al., 2015), to the extent that 

both are considered invasive species.This study shows that B. ×ottawensis is present throughout 

the Lime Kiln Farm Wildlife Sanctuary, and other recent studies report that this interspecific 

hybrid, assumed previously to be quite rare, is commonly found where the two parental species 

co-occur (Connolly et al., 2013; Hale et al., 2015). Once they are confirmed to be resistant to Pg 

by the USDA, B. thunbergii cultivars are propagated and sold as ornamental shrubs throughout 

the USA, as part of a multi-million dollar nationwide industry (Lubell et al., 2008). While 

individual B. thunbergii genotypes may be deemed to pose no risk in terms of stem rust 

epidemiology, the results of this study raise a concern about the epidemiological risk of their 

progeny. Given the documented ability of B. thunbergii to naturalize and disperse, the prolific 

fruit set of many ornamental cultivars, the Herculean effort to purge the landscape of Pg-

susceptible barberry plants in the 20th century, and the ongoing need to prevent sexual 

recombination of the stem rust pathogen, this study indicates a need to investigate and recon- 
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sider the epidemiological risk posed by B. thunbergii, by way of its interspecific hybrid with B. 

vulgaris. Specifically, in light of concerns around both invasiveness and Pg epidemiology, per- 

haps the minimum standard for new ornamental cultivars of B. thunbergii should be sterility, as 

pioneered by the recently patented cultivars 'UCONNBTCP4N', 'UCONNBTB039', 

'UCONNBTB048', 'UCONNBTB113', and 'NCBT1' Sunjoy Mini MaroonTM.  

Beyond the USA, the highly diverse Berberis genus is distributed nearly worldwide, with 

centers of diversity in southern Asia as well as Central and South America (Ahrendt, 1961; 

Rounsaville and Ranney, 2010), and evidence of the alternate host’s role in current rust 

epidemics is mounting. In China, for example, ~250 Berberis spp. are found, accounting for 

nearly 50% of the species recorded globally (Ying and Chen 2001); and the sexual 

recombination of Pst observed on barberries has been implicated in the high genetic diversity of 

Pst in that country (Lu et al., 2009; Mboup et al., 2009; Sharma-Poudyal et al., 2013; Zheng et 

al., 2013; Wang et al., 2016). Similarly, Pg-compatible B. holstii growing near wheat production 

areas in the highlands of eastern Africa may have played a role in the emergence of new 

virulence combinations in that region, including the rapidly diversifying Ug99 family of races 

(Singh et al., 2015; Zhang et al., 2017). In Iran, a country where the fruit of B. vulgaris is 

produced commercially on ~11 000 ha (Rahimi-Madiseh et al., 2017), Pg races of highly diverse 

virulence profiles were recovered from aecial samples collected from infected B. vulgaris plants, 

indicating that Pg can complete its sexual cycle in the region (Hansen et al., 2013). Indeed, 

barberries grow widely throughout the mountainous areas of Central West Asia and North 

Africa, including countries in the Ug99 pathway, yet their exact epidemiological relevance 

remains unclear. While the present study focuses only on the two barberry species found in New 

England, one imported from Europe and the other from Japan, their natural hybrid and its 
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complex response to Pg raises questions about the epidemiological role of presumably rust-

resistant Berberis spp. worldwide. In short, the existence of interspecific hybrids may bring 

additional complications to the important work of understanding the contribution of Berberis 

spp. to global rust cycles.  

 

Future work  

To build on the results of this study, we are developing an F bi-parental mapping 

population via a controlled cross between B. vulgaris accession ‘Wagon Hill’ and B. thunbergii 

accession ‘UCONN1’ in order to develop linkage maps for both parental species and begin 

mapping the gene(s) underlying Pg- NHR in B. thunbergii. To facilitate downstream dissection 

of potential quantitative trait loci, a reference genome for B. thunbergii is also in development. 

While it is possible, even likely, that the mechanisms governing Pg-NHR at the basidiospore 

stage (i.e. Pg’s infection of its sexual host) may not be relevant to those governing Pg-NHR at 

the aeciospore or urediospore stages (i.e. the spores which infect Pg’s asexual hosts, including 

wheat and other small grains), the ongoing, centuries-long fight against this complex and historic 

pathogen demands that all strategies be pursued. Ultimately, the hope is that characterization of 

Pg-NHR in B. thunbergii, a species closely related to the pathogen’s ancestral host, may provide 

information about the evolution of modern day heteroecious Pg and contribute insight into 

possible mechanisms of durable resistance in wheat. 
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Supplementary data  

Supplementary data are available at JXB online. https://doi.org/10.1093/jxb/ery066 

Fig. S1. Map of the Lime Kiln Farm Wildlife Sanctuary in Sheffield, MA. 

Fig. S2. Principal components analysis showing the genetic structure of the three barberry 
subpopulations at the Lime Kiln Farm Wildlife Sanctuary.  

Table S1. The 87 Berberis accessions used in the study, with passport information, genotypic 
data, and phenotypic features.   

Table S2. Expected proportions of homozygous and heterozygous loci of hybrid accessions of 
various potential pedigrees.  

Table S3. Disease reactions and observed proportions of homozygous and heterozygous loci 
within each of the 63 genotyped hybrid accessions.  

Text S1. Detailed record of the GBS-SNP-CROP command lines used in this study, including all 
specified pipeline parameters.  
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AFTERWORD 
 

Non-host resistance (NHR) is defined as resistance exhibited by all individuals of a plant species 

to all genetic variants of a non-adapted pathogen [1]. Generally, a true non-host species would 

show complete immunity (i.e. no signs of colonization by a non-adapted pathogen), and the 

pathogens’ inability to penetrate host tissue or form infection structures such as haustoria would 

be requirements for describing a plant as non-host to a pathogen [2].  In practice, however, 

phenotypic responses to infection by non-adapted rust pathogens range from immunity (lack of 

visual symptoms) to formation of visual pustules, depending on whether the NHR response 

arises from a basic incompatibility, in which the pathogen may be physically incapable of 

penetrating the host, or some active recognition and defense response, wherein the pathogen is 

capable of entering the host tissue but may be arrested at some stage in its development.   

Some of the examples that have been collectively described as NHR response to cereal 

rusts in the literature include, but are not limited to, basic incompatible reactions in which the 

pathogen is incapable of infecting the host (e.g. flax rust on rice) [3]; pathogen penetration into 

host tissue followed by an inability to form haustoria (e.g. wheat stripe rust on Arabidopsis 

thaliana and bean, bean rust on wheat) [4,5]; infection in which all the fungal structures 

necessary for parasitism including haustoria are produced but sporulation never occurs (e.g. 

wheat stem rust, leaf rust, stripe rust, and barley brown rust on rice) [3]; formation of occasional 

tiny sporulating pustules (e.g. rusts of Triticeae hosts on Brachypodium spp.) [6]; and "near 

NHR," in which the majority of individuals of a potential host species exhibit immunity but a 

few exhibit moderate susceptibility to a non-adapted pathogen (e.g. wheat leaf rust on barley) 

[7]. For the cereal rusts, then, determination of whether a species is a host or non-host is 

complicated by the complex nature of phenotypic responses observed upon pathogen infection. 
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As there are no clear boundaries delimiting host and non-host species in case of cereal 

rusts, host resistance and NHR are most commonly differentiated based on pathogen adaptation 

to a particular species (host) and lack of adaptation to other species (nonhost) [8]. Despite their 

classification into two distinct categories of resistance, however, a growing understanding of 

plant immune responses suggests that host and non-host resistance may share some similarities 

in their underlying molecular mechanisms. There are several examples that indicate NHR 

consists of defense mechanisms similar to those utilized against adapted pathogens, including 

pathogen-associated molecular pattern (PAMP)-triggered and effector-triggered immunities [9–

11]. Furthermore, both host and non-host resistance have been found to be associated with 

cellular responses such as hypersensitive reactions, callose deposition, production of reactive 

oxygen species, phytoalexin synthesis, and salicylic acid signaling [8]. Despite the fact that there 

is overlap between the two types of resistance, NHR is thought to be relatively durable due to the 

presumed complexity of its underlying mechanisms [12]; however, some studies suggest that 

apparent immunity may be conferred by few genes [13]. While the underlying concept of what 

comprises host and non-host resistance remains controversial, we speculate that with the aid of 

ever-improving molecular biology and genomics tools, future studies will shed light on the 

relationship between host and non-host resistance. 

Complicating matters further, deciding whether or not two plant populations are the same 

species is itself non-trivial, and the subject continues to be intensely debated among taxonomists 

and evolutionary biologists.  This debate bears directly on the work of the previous chapter 

because the question can be asked whether or not the two Berberis spp. used in this study (B. 

vulgaris and B. thunbergii) are actually distinct species.  By extension, such a line of thinking 

then calls into question whether or not the resistance observed in B. thunbergii against Pg can 
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justifiably be referred to as NHR, as opposed to just basal resistance.  According to the biological 

speciation concept (BSC), two taxa are defined as separate species by their inability to intercross 

with each other to produce fertile hybrid progeny [14].  Because B. thunbergii and B. vulgaris 

hybridize to produce the viable interspecific hybrid barberry Berberis ×ottawensis, one may 

claim on the grounds of BSC that these two taxa are not, therefore, separate species.  In this 

afterword, rationale is provided to defend the claim that B. thunbergii and B. vulgaris are in fact 

two separate species despite such gene flow and that justification exists to call the resistance 

observed in B. thunbergii against Pg as NHR.  

Although BSC is the oldest speciation concept and has been widely used to demarcate 

species in the animal kingdom, plant systematists have largely abandoned this concept as the sole 

determinant of speciation [15].  Unlike in the animal kingdom, where infertility can be easily 

determined by an inability to intercross, tests of infertility cannot be applied unambiguously in 

plants because intercrossing success in plants ranges from 0-100% and species assignment in the 

case of intermediate levels of infertility is ambiguous.  Therefore, within the plant kingdom, 

unless hybridization between two taxa is so pervasive that the two effectively merge into a 

common genepool, the mere occurrence of some level of gene flow between taxa is insufficient 

grounds to declare the two as a single species [16].  Thus, in contrast to the rather binary view 

outlined by the BSC, species within plant kingdom are defined based on a range considerations, 

including morphological, ecological, geographical, reproductive difference, and other evidence 

of well-marked lineages [16]. 

Berberis vulgaris and B. thunbergii exhibit distinctly different morphological traits, 

including overall plant architecture, height, leaf shape and size, and inflorescence structure 

(discussed in detail in the previous chapter) [17].  The interspecific hybrid B. ×ottawensis, 
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typical to hybrid plants, exhibits a range of morphologies clearly intermediate between the two 

parental species.  In addition, the two parental taxa, prior to their human-mediated introduction 

to North America, were geographically isolated from one another, with B. vulgaris being native 

to Asia and B. thunbergii to Japan.  The co-occurrence of these species in North America began 

only recently, following the introduction of B. vulgaris 17th century European settlers and the 

introduction of B. thunbergii as an ornamental plant from Japan in 1875 [18].  The history of the 

hybrid B. ×ottawensis is even more recent.  Berberis ×ottawensis was first created as an 

experimental hybrid in 1894 by hand-pollinating B. vulgaris with pollen from B. thunbergii [19].  

Nearly 130 years later, the B. ×ottawensis remains an uncommon hybrid [20], with the 

occurrence of natural hybrids reported to be very rare until recently.  The recent occurrence of 

the natural hybrid is further supported by the identification of 84% of the individuals in a natural 

stand as being true first generation hybrids in my study [21].  

Besides being morphologically different and geographically isolated until very recently, 

B. vulgaris and B. thunbergii are also reproductively isolated, even when growing sympatrically, 

due to difference in flowering time.  Here in the northeast, B. thunbergii flowers 2-4 weeks 

earlier than B. vulgaris, resulting in a very small window of flowering overlap for intercrossing 

[18].  In effect, this differential adaptation provides a reproductive behavior that severely 

restricts gene flow between the two species.  

As opposed to the concept of speciation as is commonly applied to the animal kingdom, 

there is no clear consensus about the definition of species in plants.  Based on overall differences 

in morphology and geographical provenance, as well as effective reproductive isolation even 

between sympatric populations, I assert that multiple lines of primary evidence exist to justify 

the classification of B. thunbergii and B. vulgaris as two distinct species. This conclusion, in 
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combination with the results of nearly a century of testing at the USDA-ARS Cereal Disease 

Laboratory (CDL) in St. Paul, MN on diverse B. thunbergii accessions for their response to Pg 

and never observing infection [22], provides the rationale for referring to the resistance to Pg 

observed in B. thunbergii as NHR. Some caution is warranted, however, when claiming B. 

thunbergii to be a definitive non-host to Pg. Despite the extensive testing that has taken place, 

not all individuals of B. thunbergii have been screened; nor have all known isolates of Pg been 

used in such tests. Specifically, no B. thunbergii accession has yet been tested for its response to 

Ug99 due to the practical difficulty of conducting such a test under current international 

quarantine regulations. All that being said, the course of ongoing evolution may one day erase 

this boundary. Although co-located only a little over a century ago, the rare hybridization events 

observed today may signal the beginning of a slow erosion of the boundary between these two 

species.  Indeed, as intermediate genotypes between the two parental species, B. ×ottawensis 

individuals may play a key bridging role in that fusion, increasing facilitating interspecific gene 

flow to the extent that their status as separate species may need to be re-evaluated. In addition, 

some words of caution are necessary with regard that B. thunbergii have not been tested for their 

response to Ug99 

In the end, the fact is that the definitions of both species and NHR remain actively 

debated; thus our claim, however reasoned, that the resistance observed in B. thunbergii against 

Pg is NHR will be considered controversial by some researchers. Taking a more practical 

perspective, in terms of breeding for resistance, the salient question is not whether the resistance 

exhibited by B. thunbergii is NHR or not; the question is whether or not that resistance, whatever 

its mechanism or label, is durable. Durability of resistance is defined as the ability of widely 

deployed resistant gene to provide an economic level of protection over an extended period of 
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time [23].  To date, no accession of B. thunbergii has shown susceptibility to Pg, despite both 

intensive screening [22] and the proliferation of the species in the landscape (Y. Jin, personal 

communication); thus the resistance carried by B. thunbergii meets the basic definition of 

durability.  In many ways, the question of host or non-host is immaterial.  The practical value of 

the study as outlined in the previous chapter lies in its examination of the Pg resistance present in 

B. thunbergii and in what insight it may ultimately provide regarding Pg evolution and possible 

mechanisms of durable resistance to this historic pathogen. 
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ABSTRACT 

Non-host resistance (NHR) presents a compelling strategy for achieving long-term plant 

protection for global food security, yet the genetic basis of NHR remains poorly understood.  For 

many diseases, including wheat stem rust [causal organism Puccinia graminis (Pg)], an inherent 

challenge in studying the mechanism of NHR lies in the difficulty of developing a genetically 

tractable system within which NHR segregates.  The present study turns to the pathogen's 

alternate host, barberry (Berberis spp.), to overcome this challenge.  An interspecific F1 bi-

parental mapping population was developed via a controlled cross between Pg-susceptible 

European barberry (B. vulgaris) and Pg-resistant Japanese barberry (B. thunbergii) to dissect the 

genetic mechanism of the apparent Pg-NHR exhibited by B. thunbergii.  Using genotyping-by-

sequencing (GBS) data, the first genetic linkage maps were constructed for the two parental 

species; and QTL analysis of Pg-NHR resulted in a single QTL on the short arm of chromosome 

3 of B. thunbergii.  To gain further insight into this QTL region, dubbed QPgr-3S, a 

chromosome-level 1.2 Gb draft genome for B. thunbergii was assembled using long PacBio 

reads and chromosome conformation capture data.  By anchoring the B. thunbergii linkage map 

to the draft genome and using a 189.3 Mbp transcriptome, the 13 cM QPgr-3S region was found 

to contain 10 contigs, ~3.4 Mbp of sequence, and 99 high-confidence genes.  To narrow this list 

to candidate genes of high priority for subsequent investigation, differential gene expression 

analysis was combined with functional annotation, resulting in the identification of 12 candidate 

genes, of which two were particularly noteworthy.  Both GG9708 and GG9868 appear to be 

differentially expressed in B. thunbergii during Pg inoculation and belong to gene families 

implicated in durable disease resistance in other plant-pathogen systems, namely leucine-rich 
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repeat receptor-like kinases (GG9708) and zinc ion binding SSM4 proteins (GG9868).  Although 

subsequent validation and fine mapping studies are required, this study demonstrates the 

feasibility and lays the groundwork for dissecting the mechanism of Pg-NHR in the alternate 

host, with the hope that such work may contribute insight into possible novel mechanisms of 

durable rust resistance in wheat.  

Keywords: Wheat | Stem rust | Barberry | Non-host resistance | Durable resistance | Linkage 
mapping | Genome assembly 
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Introduction 

Stem rust, caused by the fungal pathogen Puccinia graminis (Pg), is one of the most 

destructive diseases of wheat and related small grains [1], causing severe epidemics and major 

recurring yield losses globally for millennia [2,3].  Since the middle of the 20th century, stem 

rust has been effectively controlled through a combination of the ongoing development of 

resistant wheat varieties and the removal of the pathogen's alternate host Berberis vulgaris near 

major wheat growing areas [3,4].  In the last 20 years, however, the emergence of new virulent 

stem rust races has rendered some long-used resistance genes ineffective [5,6].  For example, 

when the Ug99 stem rust race was detected in East Africa in 1998, more than 80% of the world's 

wheat germplasm was estimated to be vulnerable to its novel virulence on the widely deployed 

resistance gene Sr31 [7].  The rapid distribution and continued evolution of the Ug99 family of 

races, combined with recent outbreaks of stem rust in Europe [8], underscore the importance to 

long-term wheat security of developing new strategies of durable resistance [9].  Traditionally, 

researchers have turned to the diverse Triticum genepool for new sources of resistance.  

Although translatability to wheat improvement may be less straightforward, a complementary 

approach is to look outside the Triticum genepool for insight into mechanisms of intrinsically 

durable non-host resistance (NHR) to the complex Pg pathogen. 

The defining characteristics of NHR is that it is a form of resistance in which all 

individuals of a potential host species exhibit immunity to all individuals (e.g. races) of a 

potential pathogen [10].  As the most common form of resistance, NHR presents a compelling 

vision to provide broad-spectrum, durable protection from many plant pathogens, including the 

causal organism of wheat stem rust [11,12].  The genetic mechanisms underlying Pg-NHR 

remain largely unknown, however, especially in comparison to the relatively well-studied 
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mechanisms of race specific and quantitative, race non-specific host resistance.  While current 

knowledge of true Pg-NHR is limited to one study conducted in rice [13], intermediate Pg-NHR 

resistance, in which the majority of individuals of a potential host species exhibit immunity but a 

few exhibit moderate susceptibility to a non-adapted pathogen, has been investigated in barley 

and Brachypodium distachyon [14,15].  The study of Pg-NHR in rice demonstrated that, despite 

the macroscopic appearance of immunity, the pathogen has the capacity to develop haustoria and 

colonize mesophyll.  Such a result suggests that rice mounts a post-haustorial defense response, 

one found largely to be comprised of callose and reactive oxygen species production [13].  It 

would be valuable to identify the gene(s) underlying such a response in a non-host species, but 

traditional inheritance and mapping studies cannot be used because the non-host, by definition, 

fails to segregate for resistance.  To facilitate the study of the genetics of this type of resistance, a 

genetically tractable system segregating for Pg-NHR is desired.  

 The Berberis-Pg system recently has been proposed as a unique pathosystem to 

investigate the genetic basis of Pg-NHR [16].  Numerous species within the highly diverse 

Berberis, or barberry, genus are susceptible to Pg infection (e.g. B. vulgaris) [17,18], but others 

are considered non-hosts (e.g. B. thunbergii) [19].  Interspecific hybridization between such host 

and non-host barberry species is known to occur in nature [20]; thus mapping populations 

derived from such hybridization provides a potential means of mapping and dissecting the 

genetic basis of Pg-NHR. 

Unlike rice, which has no co-evolutionary relationship with Pg, barberries are thought to 

be one of the first eudicots parasitized by the rusts; thus they may have played an important role 

in the evolution of several groups of rust fungi (Fig 1).  Multiple lines of evidence support this 

line of thinking: 1) Berberis spp. host a wide diversity of rust species, including numerous 
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macrocyclic, heteroecious species of Puccinia (e.g. P. graminis, P. striiformis, P. montanensis, 

P. brackypodii, P. pigmea, P. koeleriae, and P. errhenatheri), a number of autoecious rusts (e.g. 

Cumminsiella spp. belonging to Pucciniaceae, Edythea spp. belonging to Uropyxidaceae, and 

Pucciniosira spp. belonging to Pucciniosiraceae), as well as anamorphic rusts (e.g. Acedidium 

and Uredo spp.); 2) Only slight morphological differences exist among the teliospores of the 

various macrocyclic rusts, suggesting a single evolutionary origin of these pathogens; and 3) A 

recent palaeobotanical finding of B. wuganensis from a sediment layer between 55 to 65 Mya in 

northeastern China suggests that the barberries are one of the earliest groups of angiosperms.  

Finally, there are eight known species of the macrocyclic, heteroecious Puccinia spp. that 

undergo their sexual (aecial) stage on barberry and their asexual (uredinial and telial) stages on 

graminaceous plants from the Poaceae family, further suggesting that Puccinia spp. likely 

parasitized Berberis spp. prior to their host expansion to the grasses. 

Today, the genus Puccinia comprises more than 2,000 species; and within that diverse 

genus, host jump rather than co-speciation is believed to be the more frequent form of speciation 

[21].  In other words, host jumps from the Poaceae into other, newer plant families likely 

explains the origins of the majority, if not all, of the diverse Puccinia spp. that parasitize the 

grasses.  For example, a host jump from Poaceae to Ranunculaceae likely produced the P. 

recondita complex and aligned species, a jump to Liliaceae likely produced P. hordei and 

aligned species, and a jump to Oxalidaceae likely produced P. sorghi and aligned species.  

Because the relationship between barberries and the rusts likely predates such speciation (Fig 1), 

it is of interest to understand the mechanism of NHR exhibited by some barberry species today, 

the descendants of the ancestral hosts of the cereal rust pathogens. 
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Fig 1 Hypothetical evolutionary chart showing evolution of modern day macrocyclic, heteroecious 
Puccinia spp. Solid arrow represents host jump between respective host group supported by the presence 
of existing rust species connecting the groups. Dotted line represents host jump between respective host 
group indirectly supported by similarity of teliospores but a lack of existing rust species connecting the 
respective host groups. 
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Quantitative trait loci (QTL) mapping is a proven method for dissecting the genetic 

underpinnings of both simple and complex traits in plants, including disease resistance [22]; but 

successful QTL analysis in a species is possible only once basic genomic tools and resources 

become available [23].  For example, it is the availability of extensive genomic resources, such 

as a high quality reference genome [24] and dense genetic linkage maps [25–28], that has 

facilitated significant progress in wheat research in recent years.  For the barberries, in contrast, 

available resources prior to this study were limited to 7 microsatellite markers [29], 238 AFLPs 

[30–32], and a set of GBS data from natural populations recently deposited on Sequence Read 

Archive database [16].  A high-quality genetic linkage map is a necessary prerequisite to begin 

mapping genes governing Pg-NHR in barberry, and a reliable reference genome is required to 

facilitate QTL dissection and motivate candidate gene postulation.  Once developed, such 

genomic resources also have the potential to support researchers tasked with identifying Berberis 

spp. in the field as part of a global rust surveillance network [33] as well as provide molecular 

tools to ornamental breeders.   

The primary objective of this research is to identify gene(s) associated with Pg-NHR in 

B. thunbergii.  To achieve this, an F1 bi-parental mapping population was developed via an inter-

specific cross between Pg susceptible B. vulgaris and Pg non-host B. thunbergii; and that 

population was used to construct the first genetic linkage maps for both parental species and 

perform QTL analysis.  To gain insight into the detected Pg-NHR QTL region, second and third 

generation sequencing platforms were used to assemble a high quality reference genome and 

transcriptome for B. thunbergii.  Combining the results of QTL mapping with differential 

expression analysis and B. thunbergii - B. vulgaris sequence variation analysis, two noteworthy 

candidate genes for Pg-NHR were identified.  This study not only establishes foundational 
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resources for the novel Berberis-Pg pathosystem but also demonstrates its use in an initial 

dissection of Pg-NHR, with the long-term hope of contributing insight into possible novel 

mechanisms of durable resistance to the wheat stem rust pathogen. 

 

Materials and Methods 

Mapping population development 

An F1 mapping population consisting of 182 individuals was derived from an inter-

specific cross between B. vulgaris accession 'Wagon Hill' (female parent) and B. thunbergii 

accession 'BtUCONN1' (pollen parent). Wagon Hill is susceptible to stem rust and is a relatively 

taller shrub (~ 3 m height) that displays 2-5 cm long obovate to obovate-oblong leaves with 

highly serrated margins (>50 serrations) and has 5-8 cm long pendant racemes of bright yellow 

flowers.  In contrast, BtUCONN1 is a non-host to the stem rust pathogen and is a small shrub 

(0.5–2.5 m height) that displays 1.3–3.8 cm long entire leaves and 1-2 cm long inflorescences 

with few umbellate but mostly solitary flowers. The female parent Wagon Hill is a feral plant 

growing along the shoreline of the Great Bay Estuary in Durham, New Hampshire 

(N43°07'30.64", W70°52'17.95") and the pollen parent BtUCONN1 is a feral plant maintained in 

the barberry collection at the research farm of the University of Connecticut (N41°47'40.63", 

W072°13'39.61"). 

To make the inter-specific cross, pollen was harvested from mature flowers of 

BtUCONN1 using the previously described N-pentane method [34] and stored at 4ºC until 

flowers of Wagon Hill reached reproductive maturity.  Emasculation and hand pollination of 

female flowers was performed at the so-called balloon stage, when the petals begin to part 

slightly at the top, giving the appearance of an inflated balloon prior to opening. Seeds from 
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successful crosses were individually handpicked and stratified in wet sand in a petri dish at 4 ºC 

for three months to break dormancy before sowing.  Propagated cuttings of the two parents were 

maintained along with the F1 mapping population in plastic pots (11.5 cm diameter; 6.5 cm tall) 

filled with PRO-MIX HP growth media in the Macfarlane Greenhouse facility at the University 

of New Hampshire, Durham. 

To verify the putative F1 status of the individuals in the mapping population, a PCR-

based species-specific marker was designed based on available GBS data [16].  A universal 

primer pair was designed to amplify a short genomic sequence exhibiting a length polymorphism 

between the two parents. Specifically, the primers (F: 5'-CCTGATTGGGGCTCATTATC-3'; R: 

5'-AGTGAGGAATTCCGAGCTGA-3') amplified a 208 bp fragment in Wagon Hill but only a 

195 bp fragment in BtUCONN1, due to the presence of a 13 bp indel (see Text S1).  PCR was 

conducted with a total reaction volume of 20 µl (0.25 mM of each primer, 100 µM of each 

dNTP, 0.75 U Taq DNA Polymerase, 10x standard Taq buffer, and 100 ng of template DNA).  

Cycling conditions consisted of 5 minutes at 94°C, 32 cycles of 30 s at 94°C, 30 s at the primer 

annealing temperature of 52°C, and 15 s at 68°C, followed by a final 5 minute elongation step.  

Amplified products were separated on a 3% TBE/EtBr agarose gel for 60 min at 75 V and 

imaged with UV transillumination.  The F1 status of a putative hybrid individual was considered 

validated if both bands from the two parental species were detected (Fig S1). 

 

Genotyping and variant detection 

Genomic DNA of the 182 verified F1 individuals and both parents was extracted from 

~100 mg of lyophilized leaf tissue using a modified CTAB method [35].  Prior to GBS library 

preparation, isolated DNA was purified using Zymo Research's Genomic DNA Clean & 
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ConcentratorTM-10 column (Catalog # D4011), following manufacturer’s protocol.  Reduced 

representation libraries were constructed using the two-enzyme (PstI-MspI) GBS protocol 

described by Poland et al. [36] and sequenced via 150 bp paired-end (PE) reads on an Illumina 

HiSeq 2500 at the Hubbard Center for Genome Studies, UNH.  

Raw FASTQ files were generated by CASAVA 1.8.3 and analyzed using the reference-

free bioinformatics pipeline GBS-SNP-CROP v.3.0 [37].  A Mock Reference (MR) was 

constructed using the high quality PE reads from the two parents; and putative variants, both 

SNPs and indels, were identified via alignment of high quality PE reads from the parents and all 

F1 progeny to the MR, following the pipeline's recommended parameters for diploid species. 

Complete details of the GBS-SNP-CROP command lines used in this analysis, including all 

specified pipeline parameters, are provided in Text S2.  

 

Genetic linkage map construction 

A detailed account of the series of filters applied to obtain the final set of markers for 

linkage map construction is provided in result.  In short, a marker was culled if it met any of the 

following criteria: 1) It was unscored for more than 30% of the individuals in the population; 2) 

It was heterozygous for both parents; 3) It did not segregate in the population (i.e. all progeny 

were heterozygous for the marker); 4) Its mean ratio of primary to alternate allele depth deviated 

significantly from the expected ratio of 1:1; and 5) Its segregation ratio deviated significantly 

from the expected ratio of 1:1, according to its marker class (Table 1).  As a final filter, 

genotypes with >30% missing data were removed. 

 Linkage analysis was performed using ONEMAP v2.0-4 R package [38], and separate 

linkage maps were constructed for the two parents according to a two-way pseudo-test-cross 
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mapping strategy [39].  The BtUCONN1 linkage map was constructed using marker sets 1 and 2, 

while the Wagon Hill map was constructed using marker sets 3 and 4 (Table 1).  For each map, a 

two-point test was first performed for all marker pairs, using a minimum LOD score of 4 and a 

maximum recombination fraction of 0.25 to group markers into linkage groups (LGs). Next, 

markers within each LG were ordered using the 'try' algorithm within ONEMAP. 

 
Table 1 Four classes (sets) of markers were selected for linkage map construction. 
 

Marker Set BtUCONN1 Wagon Hill  Expected segregation 
of F1 genotypes 

For generating a linkage map for B. thunbergii 
 1 ab aa aa:ab (1:1) 

2 cd -- c:d (1:1) 
For generating a linkage map for B. vulgaris 

 3  ee ef ee:ef (1:1) 
4 -- gh g:h (1:1) 

 

To identify potential genotyping errors, common in GBS data [40], maps were manually 

inspected for the presence of singletons (apparent double crossovers) [41], which were replaced 

with missing values.  If multiple markers were found to map to the same genetic bin, a consensus 

of the set of markers was chosen to represent the linkage bin for final mapping iterations, which 

were made until no alternative orders were generated by the 'ripple.seq' function.  Final map 

distances were calculated with the Kosambi mapping function [42], and ideograms were 

generated using Mapchart 2.0 [43].  All mapped markers were tested for locus specific 

segregation distortion.  Specifically, the chi-square goodness fit was used to test for significant 

deviation (p-value < 0.01) from expected Mendelian inheritance, which may arise as a result of 

gametic selection or post post-zygotic selection. 
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Stem rust disease phenotyping  

To determine disease responses, the parents and all F1 individuals in the mapping 

population were inoculated with Pg basidiospores, using with Pg telia found on naturally 

infected Elymus repens, as previously described [16].  The pollen parent BtUCONN1 exhibits 

the clear non-host reaction typical of B. thunbergii.  In contrast, the female parent Wagon Hill 

exhibits the clear susceptible reaction of B. vulgaris, with well-developed mature aecia visible on 

the abaxial surfaces of leaves.  Images of typical reactions of the parents and of individuals in the 

F1 mapping population are presented in Fig 2.  As detailed in Table 2, a 4-point scale was 

developed in response to the particular segregating characteristics observed in this population.  

The levels of this scale are based on consideration of the following symptoms: 1) Degree of 

flecking; 2) Presence and intensity of necrotic lesions; and 3) Presence and density of pycnia and 

aecia.  All plants were scored for reaction to stem rust 14 days after inoculation. 

Table 2 Descriptions of the levels of the 4-point scale developed for phenotyping the disease 
reactions of the individuals comprising the F1 mapping population in this study. 
 

Scale1 Description 

1 Sparse flecking and necrotic lesions, sometimes < 3 tiny pycnia without aecia in 
a leaf 

2 Evident necrotic lesions; 5 to 15 obvious pycnia with or without aecia in a leaf 
3 5 to 15 well developed pycnia with aecia in a leaf; sparse necrotic lesions 
4 >15 well developed pycnia and aecia; not preceded by necrosis 

 

1 In general, a resistant (R) reaction is indicated by a score of 1, a moderate resistant (MR) reaction by 2, a 
moderate susceptible (MS) reaction by 3, and a susceptible (S) reaction by 4. Representative images for 
each disease class are presented in Fig 2. 
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Fig 2 Representative disease responses of the two mapping population parents, B. thunbergii accession  
'BtUCONN1' and B. vulgaris accession 'Wagon Hill', motivate the four-point disease reaction scale used 
to phenotype the F1 mapping population. (A) Resistant reaction of B. thunbergii accession 'BtUCONN1', 
showing no visual symptoms; (B) Susceptible reaction of B. vulgaris accession 'Wagon Hill', showing 
dense pycnia on the upper leaf surface and prolific, well-developed aecia on the lower surface; (C) 
Resistant reaction (score of 1 on the four-point scale) of B. ×ottawensis progeny 'WH15-039', showing 
sparse flecking; (D) Moderate resistant reaction (score 2) of B. ×ottawensis progeny 'WH15-063', 
showing evident necrotic lesions and some pycnia formation; (E) Moderate susceptible reaction (score 3) 
of B. ×ottawensis progeny 'WH15-128', showing well-developed pycnia and aecia, alongside sparse 
necrotic lesions; and (F) Susceptible reaction (score 4) of B. ×ottawensis progeny 'WH15-149', showing 
well-developed pycnia and aecia and no evident necrosis. All photos were taken 14 days post-inoculation. 
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QTL analysis 

 QTL analysis for Pg resistance was performed using both the parental and maternal 

genetic linkage maps in R using R/qtl v1.39-5 [44,45].  Haley-Knott regression [46] was used, 

based on the composite interval mapping method (CIM); and a QTL was deemed significant if 

its peak LOD score exceeded the threshold determined via permutation analysis (1,000 

permutations, 5% significance level). 

 

Reference genome assembly 

B. thunbergii cv ‘Kobold’, a commercial green-leafed cultivar common in the ornamental 

industry, was selected for whole genome sequencing.  Kobold is a heterozygous diploid (2n = 

2x= 28) and is a non-host to stem rust [47].  Cuttings of Kobold were obtained from the barberry 

collection at the University of Connecticut, rooted, and maintained in the MacFarlane 

Greenhouses at UNH under standard conditions for barberry [16].  For sequencing, ~2 g of fresh 

young leaves were collected from 4-6 clonally propagated plants and flash frozen in liquid 

nitrogen.  Genomic DNA was extracted using modified a CTAB procedure [48] and quantified 

via both fluorometry (Qubit, Thermo Fisher Scientific, Waltham, U.S.A.) and agarose gel 

electrophoresis with a lambda DNA standard.  A 20-kb BluePippin kit (PacBio) was used for 

Single Molecule Real Time (SMRT) library preparation; and 115 SMRT cells were sequenced 

on the PacBio RS II system at the UC Davis Genome Center, using P6-C4 chemistry.  All data 

were collected as 6-h sequencing videos.  

The FALCON v0.3.0 and FALCON-Unzip toolkits [49] were used for whole genome 

assembly and phasing.  FALCON is described as a Hierarchical Genome Assembly Process 

(HGAP) pipeline that generates a genome assembly from long PacBio reads through the 
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following basic steps: 1) Raw read error correction via alignment of sub-reads; 2) Pre-assembly 

of long, error-corrected reads; 3) Overlap detection pre-assembled reads; 4) Overlap filtering; 5) 

Overlap graph construction; and 6) Graph-based contig construction.  After this initial assembly, 

FALCON-Unzip is used in highly heterozygous species to resolve the distinct haplomes (i.e. 

unzip the genome) based on patterns of structural variants and associated SNPs (i.e. haplotype 

blocks).  This unzip process gives rise to a set of so-called primary contigs (the primary 

assembly) and a set of associated haplotigs (phased variants of the primary contigs, in regions of 

high heterozygosity).  Complete details of the FALCON assembly parameters used in this study 

are provided in Text S3. Finally, the Arrow algorithm from the ‘GenomicConsensus’ PacBio 

package (https://github.com/PacificBiosciences/GenomicConsensus) was used to polish the 

phased primary contigs and their associated haplotigs. The genome size was estimated using k-

mer analysis of the error-corrected PacBio reads [50] and propidium iodide flow cytometric 

analysis using Pisum sativum L. Citrad (2C= 9.09 pg) as an internal standard BD Accuri™ C6 

Cytometer [51].  

Further polishing and curation of the assembly was accomplished using the Purge 

Haplotigs pipeline [52].  High levels of heterozygosity in some genomic regions can lead to the 

incorrect assignment of haplotigs as distinct primary contigs [52].  To identify such errors and 

correctly assign homologous contigs into the haplotig pool, the Purge Haplotigs pipeline first 

performs a read-depth analysis [53] to flag abnormally low or high coverage contigs as potential 

chimeras and then performs a BLAST [54] against the entire assembly to identify putative 

primary contigs exhibiting high homology to one another.  During this process, alignment 

dotplots are produced, and these are manually screened to break likely chimeras, to define the 
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final set of primary contigs as the reference sequence, and to assign residual syntenic contigs as 

haplotigs.  Complete details of the script used for purging halpotigs are provided in Text S4. 

 

Assessment of genome assembly quality and Hi-C scaffolding 

Quality of the final curated assembly was assessed using QUAST [55], and assembly 

completeness was evaluated using the set of 1,440 core plant genes in BUSCO v3 [56].  To 

identify and purge contaminant contigs, the final assembly was aligned using BLAST to the 

following databases of possible contaminants: plasmid DNA (cpDNA and mtDNA) from 

angiosperms, the human genome (GRCh38.p7), the Escherichia coli genome (CP017100.1), and 

16S and 18S rRNAs.  The rRNA database was created using the SILVA project [57], and the 

others were created via sampling from Genbank.  To further evaluate completeness, the PacBio 

error corrected reads (preads), the RNA-seq data generated for transcriptome assembly (see 

below), and the GBS data from the BtUCONN1 parent generated for linkage mapping were also 

aligned to the final assembly.  

 To linearly orient and order the primary contigs into chromosome-scale 

pseudomolecules, Proximity-Guided Assembly was performed using Phase Genomics’ 

ProximoTM chromosome conformation capture (Hi-C) analysis [58]. Tissue processing, 

chromatin isolation, library preparation, sequencing, and Hi-C analysis were performed by Phase 

Genomics (Seattle, WA, USA).  Finally, the BtUCONN1 genetic linkage map was used to 

manually curate the Hi-C assembly using JuiceBox [59], bringing independent information to 

guide the ordering of a set of anchor contigs in instances of ambiguity. 
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Anchoring of the genetic linkage maps to the physical assembly  

Orthogonal sets of markers were used to build the genetic linkage maps of the two 

parents; thus the two maps share no markers in common, preventing a direct assessment of 

synteny between the two species.  The physical assembly, however, presents a potential 

"common language" by which the two maps can be compared, provided the markers in the 

linkage maps can be uniquely located in (i.e. anchored to) the physical assembly.  To accomplish 

this, BLASTn [60] was performed between the MR centroids (queries) and the curated assembly 

(subject).  Using only those centroids exhibiting unique positions within the reference genome, 

synteny plots were generated using the Pacth function of the Matplotlib plotting library 

(https://matplotlib.org/index.html).  The above anchoring method was also used to project the 

detected Pg-NHR QTL region onto the physical map, thus permitting insight into its underlying 

physical sequence. 

 

Transcriptome assembly  

For transcriptome assembly, ten different tissues, including immature leaf tissue at 

various time points after Pg inoculation, were collected from a clonally propagated plant of B. 

thunbergii cv ‘Kobold’ (Table S1).  Fresh tissues were flash frozen in liquid nitrogen and ground 

to fine powder using mortar and pestle.  Total RNA was isolated using the Zymo Research RNA 

Clean & Concentrator™ kit (Catalog # R1015), according to the manufacturers’ protocol. RNA-

seq libraries were prepared with Illumina TruSeq® RNA Library Prep Kits and sequenced via 

150 bp paired-end (PE) reads on an Illumina HiSeq 2500 at the Hubbard Center for Genome 

Studies, UNH. 

CASAVA-processed raw sequences were error-corrected using the software BFC v1.0 
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[61], following recommendations from the Oyster River Protocol For Transcriptome Assembly 

[62].  Error-corrected reads were then processed to remove Illumina adapters and gently trimmed 

to remove low quality reads (Phred ≤ 5) using Trimmomatic v.0.33 [63].  All post-processed 

reads from the 10 tissues were pooled, and the transcriptome was assembled using Trinity 

(reference-guided de novo assembly) [64,65].  Assembly quality was evaluated using TransRate 

[66], and its completeness was assessed using the set of 1,440 core plant genes in BUSCO v3 

[56].  In addition to providing basic summary statistics and quality metrics, TransRate provides 

an overall score of transcriptome contiguity based on various mapping metrics; and BUSCO 

evaluates assembly content based on the representation of expected single copy orthologs.  

Identification of candidate genes 

To facilitate the identification of candidate genes that may explain the association of the 

detected QTL region to Pg response, the physical contigs spanning the QTL region were first 

annotated using the RepeatMasker software [67].  Next, a functional annotation was performed 

with the Maker pipeline [68], using both ab-initio and transcriptome-based analyses.  The set of 

well-supported genes within the QTL region, hereafter referred to as high-confidence (HC) 

genes, were defined based on Maker's Annotation Edit Distance quality metric (AED < 0.5) and 

non-overlapping genes greater than 500 bp.  

Combinations of approaches were taken to pare down the full set of HC genes to those 

more likely to contribute to Pg-NHR.  A differential gene expression (DGE) analysis experiment 

was conducted to identify genes whose levels of expression change under challenge by Pg.  

Three biological replicates of immature leaves were sampled from clonally propagated B. 

thunbergii cv. ‘Kobold’ plants at four different time points: pre-inoculation (T0) and 48, 72, and 

144 hrs post-inoculation (T48, T72, and T144).  Total RNA was extracted, sequenced, and 
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processed as described above. Transcript abundance was quantified using Kallisto [69], and time 

course analysis was performed using Sleuth [70].  Complete details of the parameters used for 

transcript abundance and time course analysis are provided in Text S5.  

The final list of high-priority candidate genes is composed of those HC genes in the QTL 

region that are differentially expressed under Pg inoculation and show homology to gene 

families implicated in disease resistance in other plant pathosystems. Putative protein functions 

and Gene Ontology (GO) terms were assigned to the candidate genes using both the Phytozome 

v.12.1 [71] and UniProtKB [72] databases. 

 

Results  

Variant detection and linkage map construction 

GBS libraries were constructed for the two parental lines and 182 F1 progeny, generating 

a total of 60 Gb of data (~401 million 150-bp PE reads).  After quality parsing and 

demultiplexing, the average of 3 million high quality reads per genotype were retained by the 

GBS-SNP-CROP pipeline (Table S2).  Using the high quality reads from the two parents, a 

mock reference (MR) comprised of 87,089 centroids (i.e. consensus GBS fragments) was 

generated, with a total length of approximately 15.35 Mbp. 

A total of 15,411 polymorphic markers, including 14,043 SNPs (average depth DSNPs = 

41.5) and 1,368 indels (Dindels = 36.4), were identified by mapping all high quality reads from the 

population to the MR. A detailed account of the progression of filters applied for obtaining the 

final sets of markers for linkage map construction is provided in Table 3.  Separate genetic 

linkage maps were constructed for each species, according to a two-way pseudo-test-cross 

mapping strategy. After filtering individual F1 lines with >30% missing data, 161 and 162 
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individuals were retained for BtUCONN1 and Wagon Hill linkage map construction, 

respectively.  The BtUCONN1 map was constructed using a total of 1,757 makers (1,497 and 

260 from Marker Sets 1 and 2, respectively; see Table 3), and the Wagon Hill map was 

constructed using a total of 706 markers (600 and 106 from Marker Sets 3 and 4, respectively).  

Two additional markers were removed from the BtUCONN1 analysis due to lack of linkage with 

any other markers.  From the Wagon Hill analysis, seven ambiguous markers were similarly 

removed.  For both parental species, the remaining markers coalesced into 14 distinct linkage 

groups, in agreement with the 14 chromosomes present in these Berberis spp (Fig 3). 
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Table 3 Description of the progression of filters applied to the initial set of 15,411 markers 
(SNP's and indels) identified by the GBS-SNP-CROP pipeline to obtain the final sets of markers 
for construction of linkage maps 

 

Filter descriptions 

Markers 
removed 
at each 

step 

Markers 
retained 

1. More than 30% missing genotype calls across the population 6,106 9,305 
2. Heterozygous in both parents  272 9,033 
3. Homozygous for alternate alleles in the two parents a 3,982 5,051 
4. Deviating significantly from expected allele depth ratio in 
heterozygotes b 1,801 3,250 

5. Segregating genotypes unsupported by parental genotypes c 697 2,553 
6. Deviating significantly from expected Mendelian segregation d 90 2,463 
   
Final markers for the B. thunbergii linkage map (Bt × Bv)  1,757 

Set 1: ab × aa  1,497 
Set 2: cd × --  260 

Final markers for the B. vulgaris linkage map (Bt × Bv)  706 
Set 3: ee × ef  600 
Set 4: -- × gh  106 

 

a Both parents are homozygous for the marker and no variation is observable among the F1 
progeny (i.e. all are heterozygous for the marker) 
b Mean allele depth ratio across heterozygote F1 progeny deviates > 25% from the expected bi-
allelic depth ratio of 1:1  
c Lack of parental genotypes (missing data) and/or parental genotyping errors can prevent the 
unique assignment of gametic origin.  For example, while ab × aa is expected to segregate only 
as aa and ab among the progeny, the alternate homozygote (bb) may be observed due to parental 
genotyping error. All such markers were removed from the analysis.  
d Segregation ratio of genotypes deviates > 2 SD from the expectation for each marker set; such 
markers were removed due to their high segregation distortion  
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Chromosome 1 
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Chromosome 2 
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Chromosome 3 
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Chromosome 4 
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Chromosome 5 
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Chromosome 6 
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Chromosome 7 
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Chromosome 8 
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Chromosome 9 
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Chromosome 10 
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Chromosome 11 
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Chromosome 12 
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Chromosome 13 
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Chromosome 14 
 

 
 
Fig 3 Detailed genetic linkage maps of B. thunbergii accession BtUCONN1 and B. vulgaris accession 
Wagon Hill. For each of the 14 chromosomes (paired based on synteny assessed via the Kobold reference 
assembly), side-by-side ideograms are shown for BtUCONN1 and Wagon Hill. All chromosomes share 
the same scale (Kosambi cM) and are oriented such that 0 cM corresponds to the telomere of the short-
arm. 
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Summary statistics of the two genetic linkage maps are detailed in Table 4.  The 

BtUCONN1 map consists of 598 recombination bins (mapped loci) and a total length of 1,474 

cM.  The number of loci in each linkage group varies from 23 (LG14) to 60 (LG7), with an 

average distance between adjacent loci of 2.6 cM.  The Wagon Hill map consists of 347 loci and 

total length of 1,713.96 cM.  The number of loci in each linkage group varies from 25 (LG7) to 

76 (LG7), with an average distance between adjacent loci of 5.5 cM.  Marker names, alleles, and 

genetic positions (cM), as well as a color-coded visualization of the recombination events within 

all members of the mapping population genotypes are provided in Table S3 for BtUCONN1 and 

Table S4 for Wagon Hill.  

All loci were evaluated for segregation distortion and the distribution of distorted loci 

determined, relative to the maps.  For BtUCONN1, a total of 71 mapped loci exhibited 

significant distortion (p < 0.01), and a high proportion of these loci (~86%) were localized to 

three linkage groups (37% within 63 cM of LG2, 24% within 44 cM of LG3, and 25% within 44 

cM of LG11), indicating the possibility of a true biological basis of distortion rather than it being 

a random artifact.  On the other hand, the Wagon Hill map contains comparatively fewer 

distorted loci (~4%), with no clear pattern of distribution.
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Table 4 Comparative summary statistics of the Berberis thunbergii 'BtUCONN1' and B. vulgaris 
'Wagon Hill' linkage maps 

  
Linkage 
Group  Length (cM) Number of markers Number of loci Mean distance 

between loci (cM) 

 

BtUCONN1 Wagon 
Hill BtUCONN1 Wagon 

Hill BtUCONN1 Wagon 
Hill BtUCONN1 Wagon 

Hill 
1 98.1 130.4 122 63 41 31 2.5 4.3 
2 122.1 145.5 178 74 60 37 2.1 4.0 
3 119.7 134.1 140 58 50 28 2.4 5.0 
4 101.6 143.0 109 54 47 27 2.2 5.5 
5 110.8 154.1 139 44 48 28 2.4 5.7 
6 112.0 121.4 151 33 50 21 2.3 6.1 
7 115.7 135.0 195 76 49 31 2.4 4.5 
8 96.8 134.6 148 63 46 32 2.2 4.3 
9 102.0 120.2 145 44 34 26 3.1 4.8 

10 93.0 121.2 88 25 34 14 2.8 9.3 
11 87.4 64.6 110 39 43 21 2.1 3.2 
12 118.3 86.8 75 35 39 15 3.1 6.2 
13 101.0 139.7 100 52 34 23 3.1 6.3 
14 95.9 83.3 55 32 23 13 4.4 6.9 

Average 105.3 122.4 125.4 49.4 42.7 24.8 2.6 5.5 
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Disease phenotyping 

To determine disease responses to Pg, the parents and all F1 progeny were inoculated 

using overwintered telia of Pg found on naturally infected E. repens.  The F1 progeny segregated 

into four clear phenotypic classes, ranging from resistant to susceptible (Fig 2, Table 2). Of the 

162 F1 individuals used to build linkage map, phenotype is available for 153 individuals.  25 

exhibited a clear resistant reaction similar to that of the B. thunbergii parent (Fig 2C) and 61 

exhibited a clear susceptible reaction similar to that of the B. vulgaris parent (Fig 2F). Of the 

remaining 67 lines, 38 exhibited moderate resistance (Fig 2D) and 29 exhibited moderate 

susceptibility (Fig 2E).   

 

QTL analysis 

To map regions associated with Pg-NHR in B. thunbergii, CIM analysis was conducted 

using the linkage maps of both parents and the 4-point stem rust reaction type described above.  

According to the LOD threshold score of 3.9 declared via permutation analysis, CIM analysis 

resulted in the identification of a single significant QTL of peak LOD value 28.2, centered 25 cM 

from the telomere of B. thunbergii chromosome 3 (Fig 4).  The flanking markers for this QTL, 

hereafter referred to as QPgr-3S (QTL for Pg resistance on the short arm of chromosome 3), 

were determined via a detailed characterizations of the F1 individuals with recombination events 

on either side of peak QTL marker M1128.  The distal flanking marker M411 is set by phenotype 

of the WH15-191, with a recombination event with M1125.  Similarly, the proximal flanking 

marker M969 is set by phenotype of the WH15-101, with a recombination event with M512.  

Both WH15-191 and WH15-101 are clear resistant lines with score of 1.  Hence, the QPgr-3S 

region spans approximately 13 cM bounded by markers M411 and M969. No significant QTL 
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was detected in the B. vulgaris map.  

 

Fig 4 Genetic and physical positions of the QPgr-3S region on the short arm of chromosome 3 of B. 
thunbergii. (A) Full linkage map of the chromosome 3; (B) Enlarged linkage map of the chromosome 3, 
with the QTL region indicated in blue between its two flanking markers, M411 and M969; (3) LOD plot 
of the QTL region (top) and the context of the single QTL peak across the 14 chromosomes of B. 
thunbergii (bottom). The dotted red line indicates the threshold for QTL significance (LOD = 3.9), 
determined via permutation analysis. 
 

Draft genome of B. thunbergii cv. ‘Kobold’ 

Approximately 129 Gbp of sequence data was generated from 115 PacBio SMRT cells 

(P6-C4 chemistry), with an average read length of 10,409 bp and a read length N50 of 15,021 bp 

(Table S5).  The haploid genome size of Kobold was estimated to be 1.37 Gbp based on k-mer 

analysis and 1.72 Gbp based on flow cytometry, both of which are close to the previously 
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published B. thunbergii haploid genome size (1C) of 1.51 Gb [73].  The FALCON-Unzip 

pipeline resulted in an assembly of 1.36 Gb, consisting of 4,671 primary contigs and a read 

length N50 of 669,177 bp (Table 4).  The corresponding phased haplotigs numbered 7,144 

contigs, with a total length of 0.87 Gb, approximately 64% of the primary contig space.  Further 

curation, in the form of chimera breaking and cryptic haplotig identification, resulted in a final 

1.23 Gbp assembly consisting of 2,698 primary contigs with a read length N50 of 0.76 Mbp 

(Table 5).  The number of haplotigs in the final assembly increased to 8,790, with a combined 

length of 0.99 Gb (>80% of the primary contig space). 

Table 5 Summary statistics of the main stages of the B. thunbergii cv ‘Kobold’ genome assembly 
 

Variables 
FALCON-Unzip Final assembly 1 Hi-C 

scaffolding 2 Primary 
contigs Haplotigs Primary 

contigs Haplotigs 

Number of contigs 4,671 7,144 2,698 8,790 15 
Total length (Gbp) 1.36 0.88 1.23 0.99 1.23 
Longest (Mbp) 8.60 1.49 8.60 1.49 100.80 
Shortest (bp) 8,581 561 20,469 561 1,319 
> 100 kbp (%) 2,551 (54.6) 2,836 (39.7) 2,229 (82.6) 3126 (35.6) 15 (100) 
> 1 Mbp (%) 289 (6.2) 9 (0.1) 289 (10.7) 9 (0.1) 15 (100) 
Mean length (Mbp) 0.29 0.12 0.46 0.11 5.99  
N50 length (Mbp) 0.67 0.21 0.76 0.19 86.95 
GC content (%) 37.6 37.7 37.7 37.7 37.7 
 

1 After application of the Purge Haplotigs pipeline [52] and manual curation (chimera breaking and 
haplotig re-assignment) 
2 All statistics for the Hi-C assembly refer to scaffolds rather than contigs  
 

Genome completeness and contamination analyses revealed a final genome assembly of 

acceptable quality, featuring complete representation of 80.9% of the BUSCO core plant gene set 

and only 15.1% missing BUSCO genes. While only 83.0% of the BtUCONN1 GBS fragments 

aligned to the final assembly, 100% of the PacBio preads and 100% of the RNA-seq data (92.2% 

in proper pair) aligned to the final assembly.  After the initial FALCON-Unzip assembly, 119 

primary contigs showed significant sequence similarity with plant cpDNA and mtDNA 



	 103	

sequence; but this number dropped to only one primary contig in the final assembly, following 

haplotig purging and curation.  

Although BUSCO analysis represented relatively lower percentage of complete single 

copy plant genes (80%) in final assembly, 100% alignments of RNA-seq data indicate relative 

completeness of the final assembly than represented by BUSCO scores. Some BUSCOs 

classified as missing in the Kobold final genome assembly could be due to Berberis spp. being 

too divergent from model plants used to build BUSCO core genes for plant datasets. 

Additionally, Berberis spp. may have complex gene structures than in model plants that render 

the gene prediction tool difficult to locate and predict correctly or even partially. Indeed, BUSCO 

plant gene sets are defined based on 30 model plants that are phylogenetically distantly related 

from any plant species within order Ranunculaes.  

The primary contigs from the final assembly were ordered into chromosome-level 

scaffolds (pseudo-molecules) on the basis of three-dimensional proximity information obtained 

via chromosome conformation capture analysis (Hi-C).  As shown in the Hi-C heatmap (Fig 5), 

97.8% of the primary contigs (2,824 contigs, 1.2 Gbp) successfully assembled into 14 pseudo-

molecules representing the 14 chromosomes of B. thunbergii.  The remaining 2.2% (157 primary 

contigs, 49.9 Mbp) were assigned as unscaffolded contigs. 
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Fig 5 Hi-C post scaffolding Heat Map of B. thunbergii.  Primary contigs assembled into 14 pseudo-
molecules representing the 14 chromosomes of B. thunbergii 

 

Anchoring of the genetic linkage maps to the physical assembly 

Using BLASTn with MR centroids as queries, the positions of the mapped GBS markers 

in the final Hi-C assembly was used to anchor the genetic linkage maps of both the parental 

species to the Kobold physical map.  As illustrated in Fig 6 a very high degree of synteny is 

observed between the two species, with co-linearity to the B. thunbergii (Kobold) physical map 

being 92.9% and 95.1% for the B. vulgaris (Wagon Hill) and B. thunbergii (BtUCONN1) genetic 
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linkage maps, respectively.  The physical positions of a small percentage of loci in both linkage 

maps, 3.9% in B. thunbergii and 5.1% in B. vulgaris, were ambiguous, in that they could not be 

associated with unique positions in the physical assembly.  Another small percentage of loci, 

0.93% in B. thunbergii and 1.12% in B. vulgaris, exhibited unambiguous BLAST hits to 

different chromosomes than in the linkage map, as indicated by dots in Fig 4. Approximate 

centromere positions were visually inferred from the Hi-C heatmap plot (Fig 5).  
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Fig 4 Visualization of synteny of the BtUCONN1 (red) and Wagon Hill (green) genetic maps (cM), via 
anchoring of GBS centroids to the B. thunbergii cv Kobold physical reference (blue; Mbp). The seven 
GBS markers that BLAST outside their home linkage group are indicated by small numbers (01 – 14) that 
signify the linkage groups with which they associate. The four GBS markers that BLAST to unscaffolded 
contigs are indicated by “Un”. Small dots beside linkage maps indicate loci with multiple, ambiguous 
alignments throughout the genome. Bold horizontal black bars on the Kobold physical map indicate 
approximate centromere positions, based on the Hi-C heatmap. Finally, the grey side bar along the 
chromosome 3 linkage map for BtUCONN1 indicates the position of QPgr-3S. 
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Transcriptome assembly  

A total of 62 Gbp of data, comprised of ~206 million 150-bp PE reads, was 

obtained by sequencing a library of 10 different tissues from the reference accession 

Kobold, including immature leaf tissues sampled as various time points following 

inoculation with Pg.  Using the Trinity pipeline and the final Kobold assembly as a guide, 

a 189.3 Mbp transcriptome was assembled, containing 131,407 putative transcripts and 

55,186 cDNA sequences (complete ORFs) (see Table 5 for summary statistics).  Quality 

and completeness of the transcriptome assembly were assessed by TransRate and 

BUSCO.  A recent study reports that a TransRate score of 0.22 exceeds 50% of the 

published de novo assembled transcriptomes deposited in the NCBI TSA to date [66].  In 

comparison, the TransRate score of the Kobold transcriptome is 0.40, indicating its 

relative quality.  Completeness statistics are also acceptable, as indicated by the fact that, 

of the BUSCO set of 1,440 core plant genes, 1,286 (89.3%) were represented in the 

transcriptome, of which 501(34.8%) were single copy and 754 (52.4%) were duplicated. 
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Table 6 Descriptive statistics of the B. thunbergii cv. 'Kobold' reference-guided transcriptome 
assembly 
 

Trinity reference-based assembly results 
Number of transcripts 122,872 
Total length (bp) 189,291,041 
Mean length (bp) 1,541 
Number of ORFs (%) 55,186 (44.28%) 
Transcript length N50 (bp) 1,991 
GC Content 40.0% 
  

TransRate results 
TransRate score 0.403 
TransRate optimal score 0.427 
TransRate cutoff 0.037 
Number of good contigs (%) 120,972 (98.5%) 

 
BUSCO results 

Complete (%) 1,286 (89.3%) 
Complete and single-copy (%) 651 (45.2%) 
Complete and duplicated (%) 635 (44.1%) 
Fragmented (%) 47 (3.3%) 
Missing (%) 107 (7.4%) 

 
 

Identification of candidate genes 

Functional annotation of the QPgr-3S region resulted in the identification of 99 

high confidence (HC) genes. Of these 99 genes, 61 were annotated based on the reference 

transcriptome (evidence-based approach) and 38 were annotated based on gene prediction 

models (Ab-initio approach).  To identify a short list of candidate genes potentially 

associated with Pg-NHR, the HC genes were further inspected using two different 

analyses (see Materials and Methods). Time course DGE analysis identified 12 genes that 

exhibit differential expression 72 hours after Pg inoculation (Table S6). 

Combined with the underlying linkage evidence from the QTL analysis, the 

results of the time course DGE analyses elevated the 12 genes identified above to a status 
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of potential candidates associated with Pg-NHR. All of these candidate genes are found 

on the same primary contig (000400F, 8.6 Kbp).  Of these 12 genes, only two 

simultaneously met all three criteria of linkage, differential expression, and homology to 

protein families implicated in disease resistance in other systems.  As high-priority 

candidates, these two genes were selected for detailed functional annotation (Table S7). 

The first gene (GG9708) was found to be a leucine-rich repeat belonging to receptor-like 

kinase (LRR-RLKs), and the second (GG9868) a zinc ion binding SSM4 protein, two 

gene families that have been implicated in durable disease resistance in other systems 

(Fig S4).  

 

Fig 7 Candidate genes present in contig 000400F. (A) All 12 candidate genes were identified in 
contig 000400F. (B) Functional description of 2 high priority candidate genes (GG9708 and 
GG9868) (C) The time course differential gene expression analysis showing the transcript 
abundance (TPM) across the evaluated time. 
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Discussion 
As the most common form of disease resistance, and one that possesses intrinsic 

durability, non-host resistance (NHR) presents itself as a compelling strategy for 

protecting crops from plant diseases.  Despite well-articulated visions of such a strategy 

and the great need for durable disease resistance in many crops, however, the genetic 

basis of NHR remains poorly understood for many plant-microbe pathosystems, 

including wheat stem rust.  Over the past decade, in light of growing global concern 

about the ever-evolving cereal rusts, efforts have been mounting to understand NHR to 

rust pathogens using various model and non-model plants.  Many plant species, including 

A. thaliana, Brachypodium distachyon, rice, barley, and cowpea [74–79], have been used 

to study NHR to P. striiformis f. sp. tritici (Pst), the causal organism of wheat stripe rust.  

In contrast, NHR to the wheat stem rust pathogen P. graminis has thus far been studied 

only in rice [74], as distinct from the studies of intermediate Pg resistance conducted in 

barley and B. distachyon [14,15].  

As the only globally important small grain that is immune (i.e. a non-host) to all 

known rust diseases, rice (Oryza spp.) is an attractive source for genes conferring durable 

rust resistance.  Genetic studies for Pg-NHR in rice are difficult, however, precisely 

because all individuals exhibit resistance to the pathogen.  Although studies have shown 

some limited progression of Pg infection in rice, thus raising the possibility of dissecting 

Pg-NHR in that system [74], variation in the infection process is small, requires tedious 

microscopic studies, and ultimately fails to complete. 

Inheritance and mapping studies which make use of interspecific crosses (host × 

non-host) present an alternative means of probing the genetics of Pg-NHR.  Developing 

such mapping populations can be challenging, however, as interspecific crosses 
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frequently suffer from sterility, abnormal growth, and poor seed viability [80].  

Fortunately, a host and non-host species within Berberis, the ancestral host genus of Pg, 

successfully hybridize, making the development of an F1 interspecific hybrid mapping 

population possible.  In this study, a controlled cross between Pg susceptible B. vulgaris 

and Pg non-host B. thunbergii was done to study the inheritance of the gene(s) 

underlying the putative Pg-NHR of B. thunbergii.  To support this work, foundational 

genetic and genomic resources were developed to help establish the Berberis-Pg 

pathosystem as a viable research model for studying Pg-NHR.   

 

Genetic and genomic resource development 

A high-quality genetic linkage map is required for quantitative trait loci 

(QTL) mapping, but the relatively long generation time of some perennial plant species, 

like barberries, precludes the efficient generation of inbred lines, thus impeding map 

construction.  Despite its many non-model attributes, however, barberry displays a high 

level of heterozygosity due to its outcrossing nature.  And interspecific hybrids obtained 

by crossing highly heterozygous species often display sufficient segregation to allow 

genetic map construction in an F1 population.  In this study, using a pseudo test cross 

strategy, high-quality linkage maps were developed for both B. vulgaris and B. thunbergii 

from a single F1 population.  As a result of the stringent quality filters applied to the set 

of de novo GBS markers, nearly 100% of the markers were placed successfully in the 

linkage maps of the two species.  Although flow-cytometry analysis indicates comparable 

genome sizes between the two parents (1.72 Gb vs.1.69 Gb), the total length of the 

BtUCONN1 (B. thunbergii) linkage map is roughly 15% smaller than that of the Wagon 
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Hill (B. vulgaris) map (1,474 cM vs. 1,714 cM).  This incongruity with the expected 

physical genome sizes is likely due to the significantly fewer markers available for the B. 

vulgaris map as compared to those available for the B. thunbergii map (706 vs 1,757).  

Low marker density often results in inflation of linkage maps [81], so it is expected that 

additional markers may act to reduce the overall recombination length of B. vulgaris 

map.  The significantly lower number of markers available for the B. vulgaris map is 

likely a result of the relatively lower level of heterozygosity in this species as a result of 

the severe genetic bottleneck presumed during its colonial introduction from Europe to 

North America [16]. 

Despite this deviation from expected overall similarity in length, the two linkage 

maps developed in this study, the first of their kind for any species within the plant order 

Ranunculales, represent a solid contribution to the field.  The relatively even distribution 

of markers across the 14 chromosomes of both species permits initial QTL analysis of 

acceptable resolution, with approximately 30% and 20% of the inter-marker distances 

being less than 1 cM for B. thunbergii and B. vulgaris, respectively.  In addition, the 

strong synteny observed between the two maps gives further evidence of their reliability. 

As a complement to genetic resources like mapping populations and linkage 

maps, a high-quality reference genome can serve as an invaluable resource in dissecting 

QTLs, identifying underlying candidate genes, and facilitating their detailed 

characterization.  In this study, cutting-edge sequencing and scaffolding technologies 

were used to develop a highly contiguous de novo reference genome of B. thunbergii.  

Using PacBio SMRT sequencing and chromosome conformation capture data, a 1.2 Gb 

haploid assembly of B. thunbergii cv. 'Kobold' was successfully assembled into 14 
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chromosome-scale pseudo-molecules.  As with the linkage maps, this reference is the 

first of its kind for a member of both the Berberidaceae family as well as the order 

Ranunculales more broadly.  Given the previous lack of molecular resources for 

barberries, the reference assembled in this study exemplifies the power of recent 

technologies to make rapid progress even in non-model systems and establishes a 

benchmark for the de novo assembly of a highly heterozygous plant species with a 

moderately sized genome. 

In conclusion, the development of foundational genetic and genomic resources, 

including a genotyped interspecific mapping population, linkage maps for its two parental 

species, a chromosome-scale reference genome, and a multiple-tissue transcriptome 

establishes Berberis spp. as a viable research model for studying Pg-NHR.  Furthermore, 

such resources promise to facilitate related endeavors, including global rust surveillance 

work and ornamental horticulture breeding.  

QPgr-3S and the identification of candidate genes for Pg-NHR  

The long-term goal of this research is to identify candidate gene(s) governing Pg-

NHR in B. thunbergii.  As an initial step in that direction, the genetic and genomic 

resources developed here enabled the identification of a single QTL of large effect (LOD 

> 28) on the short arm of chromosome 3 of B. thunbergii (Fig 3).  This 13 cM QTL 

region, dubbed Qpgr-3S, was found to span 10 physical contigs and contain a total of 99 

high-confidence genes.  Of these, 12 were identified as candidate genes and short-listed 

as relatively high priority for follow up studies, including one (GG9708) exhibiting 

homology to a leucine-rich repeat containing receptor-like kinase and the other (GG9868) 

to a zinc ion binding SSM4 protein. 
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Receptor-like kinases (RLKs) in plants are a large superfamily of proteins 

involved in a diverse array of plant responses, including development, growth, hormone 

perception, and recognition of and response to pathogens [82].  Although new data are 

highlighting different classes of RLKs, many known defense-related RLKs belong to the 

leucine-rich repeat (LRR) subclass; and RLKs have been identified to regulate both plant 

innate immune response and R-gene mediated pathogen specific responses. The gene 

GG9708 identified in this study exhibits homology to the LRR subclass of RLKs.  

The current model of plant NHR suggests that plant immune responses can be 

broadly grouped in two major classes, namely those triggered by pathogen-associated 

molecular patterns (PAMP-triggered immunity-PTI) and those triggered by pathogens 

effectors (effector-triggered immunity- ETI) [83,84].  PTI in immune plants is often 

recognized via a receptor kinase located in the plant plasma membrane, whereas ETI 

invokes intracellular NB-LRR proteins after detecting actions or structures of pathogen 

effectors [85].  PAMPs, upon recognition by so-called pattern-recognition receptors 

(PRRs), are known to activate RLKs [86–88].  As a specific example, Rajaraman et al. 

(2016) identified a LRR-malectin domain-containing transmembrane RLK that appears to 

mediate intermediate NHR of barley to the non-adapted wheat powdery mildew fungus 

Blumeria graminis f.sp. tritici [89].  Similarly, the barley Rpg1 gene, known to confer 

durable resistance to the stem rust pathogen, also encodes a receptor-like kinase protein 

[90,91].  Thus, in addition to other evidence (linkage and DGE), the functional annotation 

of GG9708 underscores its status as a noteworthy candidate gene, perhaps triggering the 

Pg-NHR response in B. thunbergii via PTI. 
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The functional annotation of GG9868 also supports its status as a candidate gene 

of interest. Mechanical barriers to foliar pathogen penetration, mostly consisting of the 

waxy cuticle present on a leaf's surface, are considered an important factor in many forms 

of NHR [92].  Such barriers are often the first line of defense against pathogen attack, and 

potential pathogens must overcome them for the successful colonization of the host.  Zinc 

finger transcription factors have been implicated in the regulation of wax biosynthesis 

[92]; and a gene affecting rust germ tube differentiation has been identified to encode a 

zinc finger transcription factor in alfalfa [92].  The identification of zinc ion binding 

protein as one of the candidate genes suggests that pre-invasive penetration barrier upon 

pathogen attack may also trigger NHR response in B. thunbergii.    

The identification of both the QPgr-3S region and a pair of high-priority 

candidate genes demonstrates the utility of the genetic and genomic resources developed 

in the study to probe the genes underlying Pg-NHR exhibited by B. thunbergii.  Such 

results, however, are but the first step toward identifying the genes governing Pg-NHR; 

and further work is required to validate and dissect the QTL region, in addition to testing 

candidate gene hypotheses.  

 

Possible modes of inheritance of Pg-NHR 

From the practical standpoint of breeding for improved resistance to wheat stem 

rust, the central questions regarding Pg-NHR concern the nature and modes of 

inheritance of the underlying genes.  As previously observed in a natural interspecific 

barberry hybrid population [16], F1 interspecific hybrids exhibit a range of reactions to 

Pg, from fully resistant to fully susceptible, with many intermediate forms.  This range of 
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reactions was similarly observed in the F1 mapping population used in this study (Figure 

2C-2F and Table 2), suggesting that Pg-NHR in B. thunbergii is most likely polygenic.  

Polygenic NHR has been suggested in other studies as well, including rice NHR to wheat 

stem rust, barley NHR to powdery mildews, barley NHR to oat stem rust, and barley 

NHR to other non-adapted rust species [14,93,94]. 

If indeed QPgr-3S is implicated in Pg-NHR, the data suggest that its underlying 

gene(s) are necessary but not sufficient for resistance.  In other words, this study at most 

provides a first insight into a larger gene network regulating Pg-NHR in B. thunbergii.  

Indeed, in light of the lack of segregation in the non-host parental species B. thunbergii, 

the segregation of resistance among F1 hybrids suggests the possible existence of some 

critical gene(s), by definition fixed within the B. thunbergii genepool, upstream of QPgr-

3S.  Because of their fixed state within B. thunbergii, such gene(s) cannot be mapped in 

an F1 population; but if recessive, their single dosage in an F1 would permit susceptibility 

to Pg, thus allowing the detection of background resistance genes, (e.g. QPgr-3S).  In all 

likelihood, then, QPgr-3S is not a critical region conferring Pg-NHR but is rather a 

region contributing to Pg resistance.  Strategic crosses among the F1 progeny and/or 

backcrosses to B. thunbergii will be necessary to identify those critical gene(s) regulating 

Pg-NHR in B. thunbergii; and the current work demonstrates the feasibility of such 

studies. 

 

Data availability  

All raw sequence data and final assemblies (genome and transcriptome) generated 

in this study are available through the NCBI database. The parsed, high-quality GBS data 
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generated for the two parental lines and the 182 F1 genotypes are available through the 

NCBI Short Read Archive, with SRA ID's provided in Supplementary Data 1. RNA-seq 

data from the ten B. thunbergii cv. 'Kobold' tissues used for DGE and transcriptome 

assembly are linked to NCBI BioProject PRJNA478022. The assembled transcriptome 

itself is available under TSA ID GGRA00000000, and the final Kobold genome assembly 

is deposited in NCBI under accession number QNQO00000000. 
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Supplementary Materials 
 
 

 
 
 
Fig S1 Gel image for F1 mapping population validation. The F1 status of a putative hybrid 
individual was considered validated if both bands from the two parental species were detected.  
 
 
 
Text S1 Cluster sequences and primers information for PCR based markers used for validation of 
F1 status of mapping population. A) 222 bp sequence of Berberis thunbergii; Deleted sequence is 
highlighted in green. B) 235 bp sequence of B. vulgaris. C) Alignment of B. vulgaris and B. 
thunbergii cluster. D) Primer and final PCR product information 
 
A. 
>B.thunbergii_Cluster45383_222bp 
AATAATAGCTCCCTGATTGGGGCTCATTATCAGTCGCCATGTTTAGAATCCCGAGCAAGAAGCTCGGGAAAAATCAGAA
GCACATGCAATAGATAGAAGAAGCAAAGAGGTATTCTTCAAAGCTCCAAATCCCCTAAAAAAAACGTGGTCGGTTCTGC
TCGGCTAGGTTGCTTCAAATATAGCATTTCAGCTCGGAATTCCTCACTTTTCTTCTCAGCTCCG 
 
B. 
>B.vulgaris_Cluster45383_235bp 
AATAATAGCTCCCTGATTGGGGCTCATTATCAGTCGCCATGTTTAGAATCCCGAGCAAGAAGCTCGGGAAAAATCAGAA
GCACATGCAATAGATAGAAGAAGCAAAGAGATCGATCAAAGAGGTATTCTTCAAAGCTCCAAATCCCCTAAAAAAAACG
TGGTCGGTTCTGCTCGGCTAGGTTGCTTCAAATATAGCATTTCAGCTCGGAATTCCTCACTTTTCTTCTCAGCTCCG 
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C. 
Bv     AATAATAGCTCCCTGATTGGGGCTCATTATCAGTCGCCATGTTTAGAATCCCGAGCAAGA   1              
Bt     ............................................................  
Bv     AGCTCGGGAAAAATCAGAAGCACATGCAATAGATAGAAGAAGCAAAGAG-----------   61               
Bt     .................................................ATCGATCAAAG  
Bv     --GTATTCTTCAAAGCTCCAAATCCCCTAAAAAAAACGTGGTCGGTTCTGCTCGGCTAGG   121              
Bt     AG..........................................................                  
Bv     TTGCTTCAAATATAGCATTTCAGCTCGGAATTCCTCACTTTTCTTCTCAGCTCCG        181    
Bt     ....................................................... 
 
 
D. 
 

Species Primer ID Primer sequence Annealing 
Tm Band size (bp) 

B. thunbergii  Cluster45383_UF  CCTGATTGGGGCTCATTATC 
52 ºC 

195 
B. vulgaris Cluster45383_UR AGTGAGGAATTCCGAGCTGA 208 

 
 
 
 
Text S2 Detailed record of the GBS-SNP-CROP v.3.0 command lines used in this study, 
including all specified pipeline parameters. 
 
# GBS-SNP-CROP-1.pl 
perl /path-to-workdir/GBS-SNP-CROP-1.pl -d PE -b barcodesIDs.txt -fq L001 -s 1 -e 48 -enz1 
TGCA -enz2 CGG 
 
# GBS-SNP-CROP-2.pl 
perl /path-to-workdir/GBS-SNP-CROP-2.pl -d PE -fq L001 -t 10 -ph 33 -ad TruSeq3-
PE.fa:2:30:10 -l 30 -sl 4:30 -tr 30 -m 32 
 
# GBS-SNP-CROP-3.pl 
perl /path-to-workdir/GBS-SNP-CROP-3.pl -d PE -b barcodesIDs.txt -fq L001 
 
# GBS-SNP-CROP-4.pl 
perl /path-to-workdir/GBS-SNP-CROP-4.pl -d PE -b barcodeID.txt -rl 150 -pl 32 -p 0.01 -id 0.93 
-t 10 -MR MockRefName 
 
# GBS-SNP-CROP-5.pl 
perl /path-to-workdir/GBS-SNP-CROP-5.pl -d PE -b barcodeID.txt -ref 
MockRefName.MockRef.Genome.fasta -Q 30 -q 0 -f 2 -F 2308 -t 10 -Opt 0 
 
# GBS-SNP-CROP-6.pl 
perl /path-to-workdir/GBS-SNP-CROP-6.pl -b barcodeID.txt -out SNPs.summary.txt 
 
# GBS-SNP-CROP-7.pl 
perl /path-to-workdir/GBS-SNP-CROP-7.pl -in SNPs.summary.txt -out SNPs.call.txt 
-mnHoDepth0 5 -mnHoDepth1 20 -mnHetDepth 3 -altStrength 0.962 -mnAlleleRatio 0.25 -
mnCall 0.75 -mnAvgDepth 7 -mxAvgDepth 200 
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# GBS-SNP-CROP-8.pl 
perl /path-to-workdir/GBS-SNP-CROP-8.pl -in SNPs.call.txt -out SNP.Rmatrix -b 
barcodesIDs.txt -formats R 
 
 
Text S3 Complete details of the FALCON assembly parameters used in this study.  
 
[General] 
# list of files of the initial fasta 
input_fofn = input.fofn 
 
input_type = raw 
#input_type = preads 
 
#openending = True 
 
stop_all_jobs_on_failure = False 
 
# The length cutoff used for seed reads used for initial mapping 
length_cutoff = 5000 
 
genome_size = 1400000000 
seed_coverage = 30 
 
# The length cutoff used for seed reads usef for pre-assembly 
length_cutoff_pr = 9000 
 
sge_option_da = -pe smp 5 -q bigmem 
sge_option_la = -pe smp 20 -q bigmem 
sge_option_pda = -pe smp 6 -q bigmem  
sge_option_pla = -pe smp 16 -q bigmem 
sge_option_fc = -pe smp 24 -q bigmem 
sge_option_cns = -pe smp 12 -q bigmem 
 
pa_concurrent_jobs = 96 
cns_concurrent_jobs = 96 
ovlp_concurrent_jobs = 96 
 
 
pa_HPCdaligner_option =  -v -B128 -M32 -e.70 -l4800 -s100 -k18 -h480 -w8  
ovlp_HPCdaligner_option = -v -B128 -M32 -h1024 -e.96 -l2400 -s100 -k18 
 
 
pa_DBsplit_option = -a -x500 -s400 
 
ovlp_DBsplit_option = -s400 
 
falcon_sense_option = --output_multi --min_idt 0.70 --min_cov 2 --max_n_read 200 --n_core 8  
falcon_sense_skip_contained = True 
 
overlap_filtering_setting = --max_diff 85 --max_cov 87 --min_cov 2 --n_core 12 
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Text S4 Complete details of script used for purging halpotigs. This code is available at 
https://bitbucket.org/mroachawri/purge_haplotigs 
 
 
 
Text S5 Complete details of parameters used for quantifying transcript and the sleuth R code for 
the time course differential expression analysis. 
 
Kallisto command lines for quantify transcript abundance. The quant function was performed for 
all seven RNA-seq libraries:  
 
$ kallisto index -i Ber_ALL7.idx ALL7.TrinityGG.Assembly.fa 
$ kallisto quant -t 20 -i Ber_ALL7.idx -o IM0_R1_KOUT \ 
/path/to/dir/IM0-1_PE_R1.fq 
/path/to/dir/IM0-1_PE_R1.fq 
$ kallisto quant -t 20 -i Ber_ALL7.idx -o IM0_R2_KOUT \ 
/path/to/dir/IM0-2_PE_R1.fq 
/path/to/dir/IM0-2_PE_R1.fq 
$ kallisto quant -t 20 -i Ber_ALL7.idx -o IM0_R3_KOUT \ 
/path/to/dir/IM0-3_PE_R1.fq 
/path/to/dir/IM0-3_PE_R1.fq 
 
Sleuth R command lines for a time course analysis: 
 
library("sleuth") 
sample_id = dir(file.path(".", "kallistoOUT")) 
kal_dirs = file.path(".", "KallistoOUT", sample_id, "kallisto") 
s2c = read.table(file.path(".", "hiseq_info.txt"), header = T, stringsAsFactors=F) 
s2c = dplyr::select(s2c, sample = sample, condition) 
s2c = dplyr::mutate(s2c, path = kal_dirs) 
so = sleuth_prep(s2c, extra_bootstrap_summary=T,read_bootstrap_tpm=T) 
so = sleuth_fit(so, ~condition, 'full') 
so = sleuth_fit(so, ~1, 'reduced') 
so = sleuth_lrt(so, 'reduced', 'full') 
sleuth_table = sleuth_results(so, 'reduced:full', 'lrt', show_all = F) 
sleuth_significant = dplyr::filter(sleuth_table, qval <= 0.01) 
wtest = sleuth_wt(so, 'conditionTime0', 'full') 
swbeta = sleuth_lrt(wtest, 'reduced',  'full') 
sleuth_live(swbeta) 	
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Table S1 B. thunbergii cv ‘Kobold’ tissues used for transcriptome assembly. Immature leaf tissue 
were collected at four time points (before and after Pg inoculation, were collected from a clonally 
propagated plant of B. thunbergii cv ‘Kobold’ 
 

Tissue ID Tissue Time after P. graminis 
inoculation (hrs) 

IM0 Immature leaf  0 
IM48 Immature leaf  48 
IM72 Immature leaf  72 

IM144 Immature leaf  144 
ML Mature leaf -- 
AM Apical meristem -- 
YS Young stem -- 
RO Root  -- 
FR Fruit -- 
FL Flowers -- 

 
 
Table S2 Table of the Berberis thunbergii accession 'BtUCONN1', B. vulgaris accession 'Wagon 
Hill', and the interspecific F1 mapping population used in the study. For each accession, the 
following information is provided: 1) Accession ID, 2) GBS library ID, 3) GBS barcode, 4) 
Assigned NCBI Sequence Read Archive (SRA) number, 5) Number of high-quality paired-end 
(PE) reads used for variant calling, 6)% of missing data 
 
 

Accession 
ID GBS Library ID GBS Barcode SRA Number PE reads % Missing 

Data  
BtUCONN1 Lib4_01 TGACGCCA  SRR5712434   2,790,916  28.40 
Wagon Hill  Lib2_86 TAGCAG  SRR5712049   4,007,578  12.81 
WH15-001 Lib3_01 TGACGCCA SRR7450012  2,112,038  41.68 
WH15-002 Lib3_02 CAGATA SRR7450011  5,751,546  5.03 
WH15-003 Lib3_03 GAAGTG SRR7450018  3,388,764  26.48 
WH15-004 Lib4_02 CAGATA SRR7450107  2,842,666  6.89 
WH15-005 Lib3_04 TAGCGGAT SRR7450017  4,446,406  8.45 
WH15-006 Lib3_05 TATTCGCAT SRR7450033  3,349,136  8.33 
WH15-007 Lib3_06 ATAGAT SRR7450032  5,045,010  6.40 
WH15-008 Lib3_07 CCGAACA SRR7450031  4,525,094  6.57 
WH15-009 Lib3_08 GGAAGACAT SRR7450110  4,920,230  6.49 
WH15-010 Lib4_03 GAAGTG SRR7450071  3,295,594  7.53 
WH15-011 Lib3_09 GGCTTA SRR7450008  5,759,290  5.89 
WH15-012 Lib3_10 AACGCACATT SRR7450007  4,065,098  6.85 
WH15-013 Lib3_11 GAGCGACAT SRR7450053  1,554,146  47.19 
WH15-014 Lib4_04 TAGCGGAT SRR7450070  2,003,012  17.82 
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WH15-015 Lib3_12 CCTTGCCATT SRR7450052  5,659,240  5.96 
WH15-016 Lib3_13 GGTATA SRR7450055  2,517,512  37.56 
WH15-018 Lib3_14 TCTTGG SRR7450054  5,408,654  5.85 
WH15-019 Lib3R_41 ACCAGGA SRR7450037  248,778  5.61 
WH15-020 Lib3_15 GGTGT SRR7450057  6,678,362  5.68 
WH15-021 Lib3_16 GGATA SRR7450056  6,628,450  5.66 
WH15-022 Lib3_17 CTAAGCA SRR7450059  1,369,444  56.34 
WH15-023 Lib3_18 ATTAT SRR7450058  2,281,894  14.20 
WH15-024 Lib3R_19 GCGCTCA SRR7450088  365,442  52.83 
WH15-025 Lib3_20 ACTGCGAT SRR7450050  1,823,152  35.27 
WH15-026 Lib3_21 TTCGTT SRR7450049  1,227,128  33.92 
WH15-027 Lib3_22 ATATAA SRR7450027  2,341,268  39.82 
WH15-028 Lib4_05 TATTCGCAT SRR7450036  1,079,506  69.82 
WH15-030 Lib3_23 TGGCAACAGA SRR7450028  2,713,452  8.24 
WH15-031 Lib3_24 CTCGTCG SRR7450029  3,051,676  8.55 
WH15-032 Lib3_25 GCCTACCT SRR7450030  3,861,554  6.77 
WH15-033 Lib3R_42 CCACTCA SRR7450040  47,664  11.19 
WH15-034 Lib3_26 CACCA SRR7450023  3,777,170  8.00 
WH15-035 Lib3_27 AATTAG SRR7450024  3,381,012  8.29 
WH15-036 Lib4_06 ATAGAT SRR7449972  3,622,674  7.53 
WH15-037 Lib3_28 GGAACGA SRR7450025  1,126,232  68.77 
WH15-038 Lib4_07 CCGAACA SRR7450085  3,294,350  8.19 
WH15-039 Lib3_29 ACAACT SRR7450026  2,237,874  36.38 
WH15-040 Lib4_08 GGAAGACAT SRR7450082  2,550,346  14.03 
WH15-041 Lib3_30 ACTGCT SRR7450020  5,120,752  5.44 
WH15-042 Lib3_31 CGTGGACAGT SRR7450021  3,213,812  7.03 
WH15-043 Lib4_09 GGCTTA SRR7450087  2,997,460  7.60 
WH15-044 Lib3_32 TGGCACAGA SRR7449998  1,226,120  60.28 
WH15-045 Lib3_33 TGCTT SRR7449997  3,105,110  33.54 
WH15-046 Lib3_34 GCAAGCCAT SRR7449996  2,400,666  37.51 
WH15-047 Lib4_10 AACGCACATT SRR7450086  3,262,280  9.88 
WH15-048 Lib3_35 CGCACCAATT SRR7449995  1,832,180  24.66 
WH15-049 Lib4_11 GAGCGACAT SRR7450081  3,129,446  9.29 
WH15-050 Lib3_37 AACTGG SRR7450002  1,214,340  59.30 
WH15-051 Lib3_38 ATGAGCAA SRR7450001  1,170,156  65.38 
WH15-052 Lib4_12 CCTTGCCATT SRR7450080  2,755,322  12.50 
WH15-053 Lib3_39 CTTGA SRR7450000  5,082,016  5.54 
WH15-054 Lib3_40 GCGTCCT SRR7449999  2,500,852  28.39 
WH15-055 Lib4_13 GGTATA SRR7450123  2,826,948  8.04 
WH15-056 Lib4_14 TCTTGG SRR7450124  2,880,728  10.71 
WH15-057 Lib3R_43 TCACGGAAG SRR7450034  504,342  73.23 
WH15-058 Lib4_15 GGTGT SRR7450125  3,871,918  8.28 
WH15-059 Lib4_16 GGATA SRR7450126  3,668,444  7.09 
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WH15-060 Lib4_17 CTAAGCA SRR7450127  610,598  56.78 
WH15-061 Lib4_18 ATTAT SRR7450128  776,324  65.32 
WH15-062 Lib4_19 GCGCTCA SRR7450129  1,176,104  37.64 
WH15-063 Lib3R_47 CTCTA SRR7450141  230,072  15.20 
WH15-064 Lib4_20 ACTGCGAT SRR7450130  1,322,092  31.40 
WH15-065 Lib3_49 CTCTCGCAT SRR7450004  4,724,580  7.27 
WH15-066 Lib3_50 CAGAGGT SRR7450003  2,593,728  26.14 
WH15-067 Lib4_21 TTCGTT SRR7450131  1,658,562  21.84 
WH15-068 Lib3R_44 TATCA SRR7450035  322,004  2.44 
WH15-069 Lib3_51 GCGTACAAT SRR7449979  2,488,068  36.07 
WH15-070 Lib4_22 ATATAA SRR7450132  959,976  56.59 
WH15-071 Lib3_52 ACGCGCG SRR7449980  9,830,004  5.45 
WH15-072 Lib4_23 TGGCAACAGA SRR7450153  968,652  49.78 
WH15-073 Lib3_53 GTCGCCT SRR7449977  5,544,474  5.94 
WH15-074 Lib4_24 CTCGTCG SRR7450152  374,958  83.23 
WH15-075 Lib3_54 AATAACCAA SRR7449978  2,536,380  29.21 
WH15-076 Lib3R_45 TAGCCAA SRR7449981  611,760  61.70 
WH15-077 Lib3_55 AATGAACGA SRR7449975  7,813,208  6.26 
WH15-078 Lib3_56 CGTCGCCACT SRR7449976  3,174,022  11.11 
WH15-079 Lib4_96 CGTTCA SRR7450115  2,839,052  7.38 
WH15-080 Lib3_58 GAAGCA SRR7449973  8,406,004  5.24 
WH15-081 Lib3_59 AACGTGCCT SRR7449974  3,493,722  11.58 
WH15-082 Lib3R_46 ATATCGCCA SRR7449994  244,814  5.15 
WH15-083 Lib4_25 GCCTACCT SRR7450151  2,769,448  21.89 
WH15-084 Lib4_26 CACCA SRR7450150  1,594,186  35.02 
WH15-085 Lib3R_48 GGTGCACATT SRR7450051  229,258  47.35 
WH15-086 Lib3_60 CCTCG SRR7449982  4,394,588  25.11 
WH15-087 Lib3_61 CTCAT SRR7449983  3,045,094  27.45 
WH15-088 Lib3_62 ACGGTACT SRR7450138  3,509,716  36.59 
WH15-089 Lib3_63 GCGCCG SRR7450137  2,323,742  36.73 
WH15-090 Lib4_27 AATTAG SRR7450149  1,621,560  49.77 
WH15-091 Lib4_28 GGAACGA SRR7450148  2,313,742  13.12 
WH15-092 Lib4_29 ACAACT SRR7450147  3,225,278  9.40 
WH15-093 Lib4_30 ACTGCT SRR7450146  3,453,890  10.47 
WH15-094 Lib4_31 CGTGGACAGT SRR7450145  2,483,696  15.15 
WH15-096 Lib4_32 TGGCACAGA SRR7450144  2,819,988  14.31 
WH15-098 Lib4_34 GCAAGCCAT SRR7449988  3,158,644  9.46 
WH15-099 Lib3_65 TCCGAG SRR7450140  1,672,242  48.55 
WH15-100 Lib4_35 CGCACCAATT SRR7449989  1,974,742  23.71 
WH15-101 Lib3_66 TAGATGA SRR7450139  4,757,720  6.42 
WH15-102 Lib3_67 TGGCCAG SRR7450134  5,428,268  6.41 
WH15-103 Lib3R_66 TAGATGA SRR7450106  571,520  59.52 
WH15-104 Lib3_68 GCACGAT SRR7450133  3,309,024  36.90 
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WH15-105 Lib3_69 TTGCTG SRR7450136  2,870,162  43.83 
WH15-106 Lib3_70 CGCAACCAGT SRR7450135  1,005,144  62.00 
WH15-107 Lib3_71 TCACTG SRR7450143  1,606,654  58.45 
WH15-108 Lib3_72 ACAGT SRR7450142  1,889,622  52.26 
WH15-109 Lib3_73 GGAGTCAAG SRR7450113  4,858,370  7.57 
WH15-110 Lib3_74 TGAAT SRR7450116  6,207,404  6.39 
WH15-111 Lib4_37 AACTGG SRR7449986  2,913,062  8.10 
WH15-112 Lib3_75 CATAT SRR7450122  2,286,546  47.14 
WH15-113 Lib3_76 GTGACACAT SRR7450117  7,132,616  16.98 
WH15-114 Lib3_77 TATGT SRR7450118  3,406,668  43.75 
WH15-115 Lib3_78 CAGTGCCATT SRR7450119  4,697,626  7.51 
WH15-116 Lib3_79 ACAACCAACT SRR7450120  5,118,394  27.09 
WH15-117 Lib3_80 TGCAGA SRR7450121  5,167,950  19.39 
WH15-118 Lib3_81 CATCTGCCG SRR7450111  5,493,618  17.98 
WH15-119 Lib4_38 ATGAGCAA SRR7449987  3,065,592  11.71 
WH15-120 Lib3_82 GGACAG SRR7450112  2,840,562  45.71 
WH15-121 Lib4_39 CTTGA SRR7449992  3,991,212  7.55 
WH15-122 Lib3_83 ATCTGT SRR7450097  3,243,778  22.30 
WH15-123 Lib4_40 GCGTCCT SRR7449993  2,628,172  14.48 
WH15-125 Lib3_84 AAGACGCT SRR7450096  2,966,272  30.45 
WH15-126 Lib4_41 ACCAGGA SRR7449990  2,941,652  14.60 
WH15-127 Lib4_42 CCACTCA SRR7449991  2,080,476  33.29 
WH15-128 Lib4_43 TCACGGAAG SRR7449984  3,454,326  9.95 
WH15-129 Lib4_44 TATCA SRR7449985  1,826,916  18.32 
WH15-130 Lib4_45 TAGCCAA SRR7450010  3,460,470  9.62 
WH15-131 Lib4_46 ATATCGCCA SRR7450009  2,477,832  13.60 
WH15-132 Lib4_47 CTCTA SRR7450022  1,337,624  46.23 
WH15-133 Lib3_85 GAATGCAATA SRR7450095  4,046,612  22.06 
WH15-135 Lib4_48 GGTGCACATT SRR7450019  2,468,640  26.36 
WH15-136 Lib4_49 CTCTCGCAT SRR7450014  2,477,022  17.00 
WH15-137 Lib4_50 CAGAGGT SRR7450013  4,132,720  6.70 
WH15-138 Lib4_51 GCGTACAAT SRR7450016  3,029,696  9.46 
WH15-140 Lib3_87 ATCCG SRR7450094  5,166,780  10.17 
WH15-141 Lib3_88 CTTAG SRR7450093  5,671,298  5.47 
WH15-142 Lib3_89 TTATTACAT SRR7450092  2,341,538  31.74 
WH15-143 Lib4_52 ACGCGCG SRR7450015  1,598,226  26.81 

WH15-144 Lib3_90 
GCCAACAAG
A SRR7450091  5,124,162  9.49 

WH15-147 Lib3_93 CAACCACACA SRR7450090  3,537,756  10.17 
WH15-148 Lib3_94 GCTCCGA SRR7450089  2,533,302  34.33 
WH15-149 Lib4_53 GTCGCCT SRR7450006  2,366,658  14.42 
WH15-150 Lib4_54 AATAACCAA SRR7450005  1,954,346  18.63 
WH15-151 Lib4_55 AATGAACGA SRR7450045  2,467,150  15.62 
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WH15-152 Lib4_56 CGTCGCCACT SRR7450046  2,709,674  10.36 
WH15-153 Lib4_57 ATGGCAA SRR7450047  2,960,330  9.90 
WH15-155 Lib4_58 GAAGCA SRR7450048  3,374,758  8.53 
WH15-156 Lib4_59 AACGTGCCT SRR7450041  2,127,672  36.16 
WH15-157 Lib4_60 CCTCG SRR7450042  1,060,136  37.04 
WH15-158 Lib4_61 CTCAT SRR7450043  3,079,852  12.54 
WH15-159 Lib4_62 ACGGTACT SRR7450044  2,593,134  31.17 
WH15-160 Lib4_63 GCGCCG SRR7450038  1,787,808  26.72 
WH15-161 Lib4_64 CAAGT SRR7450039  3,486,468  17.54 
WH15-162 Lib4_65 TCCGAG SRR7450065  2,139,246  17.86 
WH15-163 Lib4_66 TAGATGA SRR7450064  3,736,462  8.35 
WH15-164 Lib4_67 TGGCCAG SRR7450063  3,155,444  7.99 
WH15-165 Lib4_68 GCACGAT SRR7450062  3,940,062  6.63 
WH15-166 Lib4_69 TTGCTG SRR7450069  3,836,980  6.78 
WH15-167 Lib4_70 CGCAACCAGT SRR7450068  2,423,538  10.80 
WH15-168 Lib4_71 TCACTG SRR7450067  2,856,424  8.41 
WH15-169 Lib4_72 ACAGT SRR7450066  2,303,656  12.69 
WH15-170 Lib4_73 GGAGTCAAG SRR7450061  3,335,196  8.56 
WH15-171 Lib4_74 TGAAT SRR7450060  3,356,992  7.14 
WH15-172 Lib4_75 CATAT SRR7450078  4,391,264  6.90 
WH15-173 Lib4_76 GTGACACAT SRR7450079  4,404,624  6.89 
WH15-174 Lib4_77 TATGT SRR7450076  3,884,856  6.32 
WH15-175 Lib4_78 CAGTGCCATT SRR7450077  3,621,816  8.16 
WH15-176 Lib4_79 ACAACCAACT SRR7450074  3,059,892  12.99 
WH15-177 Lib4_80 TGCAGA SRR7450075  3,906,346  7.86 
WH15-178 Lib4_81 CATCTGCCG SRR7450072  2,538,896  11.43 
WH15-179 Lib4_82 GGACAG SRR7450073  3,243,944  7.97 
WH15-180 Lib4_83 ATCTGT SRR7450083  2,384,508  12.19 
WH15-181 Lib4_84 AAGACGCT SRR7450084  2,246,822  19.55 
WH15-182 Lib4_85 GAATGCAATA SRR7450103  3,182,898  11.10 
WH15-183 Lib4_86 TAGCAG SRR7450102  3,073,906  8.04 
WH15-184 Lib4_87 ATCCG SRR7450105  2,084,460  12.45 
WH15-185 Lib4_88 CTTAG SRR7450104  3,944,864  6.22 
WH15-186 Lib4_89 TTATTACAT SRR7450099  2,138,918  16.72 

WH15-187 Lib4_90 
GCCAACAAG
A SRR7450098  3,007,726  10.88 

WH15-188 Lib4_91 TGCCGCAT SRR7450101  2,444,658  12.48 
WH15-189 Lib4_92 CGTGTCA SRR7450100  2,372,566  11.19 
WH15-190 Lib4_93 CAACCACACA SRR7450109  2,313,580  14.07 
WH15-192 Lib4_94 GCTCCGA SRR7450108  1,154,644  44.34 
WH15-193 Lib4_95 TCAGAGAT SRR7450114  3,018,696  13.08 
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Table S3 Linkage map of B. thunbergii accession 'BtUCONN1' and associated information. 
Marker names, alleles, genetic positions (cM), and color-coded visualization of the recombination 
events within all members of the mapping population genotypes are provided. This file is 
available at https://unh.box.com/s/ogzs6zvrxlczsmsg6h8t7y6gzuvqckga 
 
 
Table S4 Linkage map of B. vulgaris accession 'Wagon Hill' and associated information. Marker 
names, alleles, genetic positions (cM) and color-coded visualization of the recombination events 
within all members of the mapping population genotypes are provided. This file is available at 
https://unh.box.com/s/ogzs6zvrxlczsmsg6h8t7y6gzuvqckga 
 

Table S5 Summary table of PacBio raw data obtained by sequencing 116 SMRT cells 
 

  Basepair (bp_ 
Total sequence amount 128,875,283,508 
Number of reads 12,069,440 
Median read length 10,630 
Mean read length 10,409 
N75 read length 18,777 
N50 read length 15,021 
N25 read length 11,266 
Maximum read length 46,433 

 
 
Table S6 Maker functional annotation features for the 12 candidate genes for time course 
differential gene expression. The two high priority candidate genes are highlighted in dark green. 
This file is available at https://unh.box.com/s/ogzs6zvrxlczsmsg6h8t7y6gzuvqckga 
 
Table S7 Phytozome-based detailed annotation of the two high priority candidate genes 
associated with the Pg resistance in B. thunbergii, describing a detailed functional annotation as 
well the associated reference ID's for different databases. This file is available at 
https://unh.box.com/s/ogzs6zvrxlczsmsg6h8t7y6gzuvqckga 
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Summary of work to date 
Wheat stem rust, caused by the fungal pathogen Puccinia graminis (Pg), is one of the 

most agriculturally important diseases in the world; and many of the rust resistance genes 

deployed in improved wheat varieties have been overcome since strategic breeding began in the 

early 20th century. The overarching goal of the research presented in this dissertation was to 

search for novel sources of durable resistance to the stem rust pathogen. Toward that end, the 

mechanism of the non-host resistance (NHR) in Pg's alternate (sexual) host, barberry, was 

investigated, with the hope of identifying a novel source of durable resistance beyond the 

Triticum genepool.   

The research began with an investigation of whether or not the interspecific hybrid 

Berberis ×ottawensis, obtained via an intercross between Pg non-host B. thunbergii and Pg-

susceptible B. vulgaris, can be utilized to dissect the genetic mechanism(s) of Pg-NHR exhibited 

by B. thunbergii. For this Berberis-Pg pathosystem to be useful for genetic studies of NHR, 

segregation for Pg resistance must be observable with a hybrid population. To determine if the 

hybrid satisfied that minimum criterion, a natural population of B. ×ottawensis in western 

Massachusetts was surveyed, propagated, and screened for reaction to Pg. The results of this 

study demonstrated that the Pg-NHR observed in B. thunbergii indeed segregates in a population 

of first-generation (F1) interspecific hybrids; therefore, the gene(s) underlying Pg-NHR in B. 

thunbergii are in theory mappable in an F1 population derived from the controlled hybridization 

of B. vulgaris and B. thunbergii. 

Given the confirmed segregation of Pg-NHR in an F1 mapping population, the scope of 

the research broadened. To map the gene(s) underlying Pg-NHR in B. thunbergii, an F1 bi-

parental population was developed via a controlled cross between B. vulgaris accession Wagon 

Hill and B. thunbergii accession BtUCONN1. Using markers identified between the parents via a 
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novel genotyping-by-sequencing pipeline which I helped develop, the first-ever genetic linkage 

maps were constructed for the two parental species. Subsequent QTL analysis led to the 

identification of a single QTL of large effect, dubbed QPgr-3S, on the short arm of chromosome 

3 of B. thunbergii  

To facilitate both dissection of the 13 cM QPgr-3S region as well as eventual candidate 

gene postulation, a 1.2 Gbp chromosome-scale reference genome of B. thunbergii cv. 'Kobold' 

was assembled using long-read PacBio SMRT sequencing and three-dimensional proximity 

information obtained from Hi-C. To support the functional annotation of this reference and 

investigate differential gene expression under Pg challenge, a transcriptome of the reference 

accession was also assembled from a multiple tissue RNA library. The reference genome 

generated in this work represents the first genome sequence available not only within the 

Berberidaceae family but for the entire plant order Ranunculales. More broadly, the genetic and 

genomic resources developed in this study lay the groundwork for the Berberis-Pg pathosystem 

as a viable research system for dissecting Pg-NHR while simultaneously providing valuable 

resources for global rust surveillance work and ornamental horticulture breeding.  

Combining the results of the QTL analysis with those of functional annotation, 

differential gene expression analysis, 12 candidate genes were identified for ongoing 

investigation of which two genes, GG9708 and GG9868, were noteworthy due to homology with 

disease resistance protein family. GG9708 exhibits homology to leucine-rich repeat receptor-like 

kinases (LRR-RLKs), and GG9868 exhibits homology to zinc ion binding SSM4 proteins. Both 

are noteworthy Pg-NHR gene candidates due to their differential expression under Pg 

inoculation, their absence of homologs in the B. vulgaris parent, and the fact that their associated 

gene families have been implicated in durable resistance in other studies. While not ignoring 
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other lower priority candidate genes in the region, these two genes should be prioritized for 

future validation studies.  

Although the QPgr-3S region is relatively large (13 cM, 3.4 Mb, 10 contigs, 99 HC 

genes), the identification of a few promising candidate genes demonstrates the utility of the 

aggregated genetic and genomic resources developed in this work to dissect the Pg-NHR 

expressed in B. thunbergii. These resources should prove valuable in the future fine mapping and 

functional studies necessary to dissect not only the QPgr-3S region but other genomic regions 

containing genes contributing to Pg-NHR in B. thunbergii. 

 

Future directions 

To build on the results of this study, future work should focus not only validation and 

dissection of the QPgr-3S region but also a serious exploration of the potential relevance of 

genes regulating Pg-NHR in B. thunbergii to durable stem rust resistance strategies in wheat. 

Progeny testing in an independent population derived either from the same cross (Wagon Hill × 

BtUCONN1) or a cross between hybrids in the original mapping population could be used for 

validation of the QPgr-3S region. In either case, the larger set of segregating lines (and critical 

recombinants) will be useful for saturating the linkage map, thereby delimiting the QTL to a 

smaller region, as per a traditional positional cloning approach.  

As discussed in Chapter 2, the data suggest that the Pg-NHR in B. thunbergii is likely 

polygenic; and because no segregation for disease response has yet been observed in B. 

thunbergii, we hypothesize the existence of at least one critical NHR gene, perhaps fixed and in a 

recessive state, which simply cannot be mapped using the current F1 population. According to 

this thinking, the heterozygous B. thunbergii locus mapped using the current population harbors 
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gene(s) necessary but not sufficient for Pg resistance in the hybrids. In order to detect and 

identify the critical gene(s) governing Pg-NHR in B. thunbergii, a mapping population derived 

from a strategic crosses between F1 progeny that controls for the QPgr-3S region is required. For 

example, a cross between two F1 lines carrying the resistant haplotype at QPgr-3S but exhibiting 

extreme disease phenotypes (e.g. WH15-004 and WH15-129 should allow segregation of this 

hypothesized critical Pg-NHR gene, thereby further elucidating the network of gene(s) governing 

Pg-NHR in B. thunbergii. 

The research reported in this dissertation lays the foundation for a novel approach to 

studying NHR and demonstrates the viability of the Berberis-Pg pathosystem toward that end; 

but some words of caution are necessary with regard to the potential relevance of genes 

regulating Pg-NHR in B. thunbergii to durable stem rust resistance strategies in wheat. As 

described in the introduction, while wheat and barberry are both hosts of the stem rust pathogen, 

each are hosts (and non-hosts) to that pathogen at its various life stages (spore types). While 

wheat is susceptible to infection by Pg aeciopores and urediniospores, it is a non-host to Pg 

basidiospores.  Conversely, barberry is susceptible to infection by Pg basidiospores but is a non-

host to aeciospores and urediniospores. 

It is possible, even likely, that the mechanisms governing Pg-NHR at the basidiospore 

stage in barberry may have no relevance at all to those governing Pg-NHR at the aeciospore or 

urediniospores stages in wheat. However, no study has yet been undertaken to ask the question if 

there is any overlap in these resistance mechanisms. It is possible that a histo-chemical study 

comparing the reaction of resistant barberry to infection by both urediniospores and 

basidiospores could shed light on whether any overlap exists in the mechanisms of recognition of 

and resistance to the two spore types. Complementary histo-chemical studies could be performed 
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comparing the reactions of a stem rust resistant wheat variety to both urediniospore and 

basidiospore infection. Because the various life stages in question belong to the same pathogenic 

organism and because Berberis spp. are the ancestral hosts of Pg prior to its host expansion to 

the grasses, the possibility exists that the mechanism of Pg-NHR in B. thunbergii may provide 

information about the evolution of modern day heteroecious Pg and contribute insight into 

possible mechanisms of durable resistance in wheat. Now that the Berberis-Pg pathosystem has 

been shown to be a viable research system for dissecting Pg-NHR, investment should be made in 

investigating its potential relevance to wheat improvement.  
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