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ABSTRACT 

FOUR YEARS OF UAS IMAGERY REVEALS VEGETATION CHANGE IN A SUB-

ARCTIC MIRE DUE TO PERMAFROST THAW 

by 

Jessica DelGreco 

University of New Hampshire, September, 2018 

 

Warming trends in sub-arctic regions have resulted in thawing of permafrost which in 

turn induces change in vegetation across peatlands both in areal extent and composition. 

Collapse of palsas (i.e. permafrost plateaus) has also been correlated with increases in methane 

(CH4) emission to the atmosphere. Vegetation change provides new microenvironments that 

promote CH4 production and emission, specifically through plant interactions and structure. By 

quantifying the changes in vegetation at the landscape scale, we will be able to scale the impact 

of thaw on CH4 emissions in these complex climate-sensitive northern ecosystems. We combine 

field-based measurements of vegetation composition and Unmanned Aerial Systems (UAS) high 

resolution (3 cm) imagery to characterize vegetation change in a sub-arctic mire. The objective 

of this study is to analyze how vegetation from Stordalen Mire, Abisko, Sweden, has changed 

over time in response to permafrost thaw. At Stordalen Mire, we flew a fixed-wing UAS in July 

of each of four years, 2014 through 2017, over a 1 km x 0.5 km area. High precision GPS ground 

control points were used to georeference the imagery. Randomized square-meter plots were 

measured for vegetation composition and individually classified into one of five vegetation cover 

types, each representing a different stage of permafrost degradation. Using these training data, 

each year of imagery was classified by cover type in Google Earth Engine using a Random 
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Forest Classifier. Textural information was extracted from the imagery, which provided 

additional spatial context information and improved classification accuracy. Twenty five percent 

of the training data were held back from the classification and used for validation, while the 

remaining seventy five percent of the training data were used to classify the imagery. The overall 

classification accuracy for 2014-2017 was 80.6%, 79.1%, 82.0%, and 82.9%, respectively. 

Percent cover across the landscape was calculated from each classification map and compared 

between years. Hummock sites, representing intact permafrost, decreased coverage by 9% from 

2014-2017, while semi-wet sites increased coverage by 18%. This four-year comparison of 

vegetation cover indicated a rapid response to permafrost thaw. The use of a UAS allowed us to 

effectively capture the spatial heterogeneity of a northern peatland ecosystem. Estimation of 

vegetation cover types is vital in our understanding of the evolution of northern peatlands and 

their future role in the global carbon cycle.  
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1. INTRODUCTION 

Warming trends in sub-arctic regions are resulting in permafrost thaw, which is causing 

changes to plant communities and emissions of radiatively important trace gases. Arctic and sub-

arctic regions are highly vulnerable to climate change as they are expected to experience greater 

warming than anywhere else on the globe (Kattsov et al., 2005 in ACIA, 2005, IPCC senarios A2 

and B2). In these arctic regions, increases in global temperatures have caused and are continuing 

to cause thawing of permafrost peatlands (permanently frozen ground). Mean annual air 

temperature has increased by 2.5°C from 1913 to 2006, exceeding the 0°C threshold. 

Historically, mean annual temperatures have been below 0°C, above which permafrost is 

particularly vulnerable (Callaghan et al., 2010). Permafrost thaw has various implications from 

altering ecosystem dynamics to increasing greenhouse gas emissions (Deng et al., 2014, 

Christensen et al., 2004, Torbick et al., 2012). It is important to study these northern permafrost 

peatland ecosystems to better understand their role in global climate change and emission of 

radiatively important gases.  

Northern permafrost peatlands have been recognized as being a large stock for soil 

carbon, however, as permafrost thaw progresses these ecosystems may become a source of 

carbon to the atmosphere (Billings et al., 1982). Permafrost peatland soils currently hold 20-30% 

of all global soil organic carbon (Hugelius et al., 2014). The ability of these permafrost peatlands 

to act as a carbon-sink and accumulate organic carbon is due to high productivity and low 

decomposition rates (Bäckstrand et al., 2010). However, as permafrost thaws, soil carbon is 

available for decomposition and potentially released to the atmosphere as greenhouse gases 

(methane (CH4) and carbon dioxide (CO2)). These greenhouse gases are of concern as emissions 
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can cause positive feedbacks creating a warmer climate, thus increasing permafrost thaw 

(Christensen et al., 2004). Analyzing the changing permafrost dynamics proves vital in 

quantifying the global carbon system.  

Permafrost thaw influences vegetation composition, therefore changes in vegetation 

distribution can be used as a proxy for assessing permafrost dynamics. Vegetation composition is 

impacted through permafrost thaw via increases in the water table and deepening of the active 

layer (Deng et al., 2014). These vegetation changes provide new avenues of CH4 release, 

specifically through plant structure (Malmer et al., 2005). Therefore, changes in vegetation 

distribution on thawing peatlands can be an indicator of changes in greenhouse gas exchange. 

Several studies on carbon fluxes from vegetation to the atmosphere have shown high variability 

in C fluxes due to differences in plant composition (Malmer et al., 2005; Bäckstrand et al., 2010; 

Johannsson et al., 2006; Deng et al., 2014; McCalley et al 2014). To understand the magnitude of 

CH4 emissions in the northern regions, it is crucial to quantify vegetation at a landscape level. 

A difficulty with estimating vegetation in the northern latitudes is the high spatial 

variability of the landscape, with species distribution change at scales of centimeters to meters.  

Therefore, grouping species into vegetation cover types provides a simplified classification 

scheme which can be scaled to sub-arctic regions. Malmer et al. (2005) provided a classification 

scheme that relates to plant functional types, the hydrological state of the landscape, and methane 

emissions. Each cover type represents a different stage of permafrost degradation, which is 

useful for estimating permafrost dynamics across the landscape. Shifts in cover types must be 

analyzed at the landscape level over time to understand how CH4 emissions are changing across 

the landscape. To do so, it is essential to have appropriate tools that accurately measure the 

highly heterogeneous vegetation composition of the northern peatlands.  
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Remote sensing techniques have been used to map the vegetation of arctic regions, 

however there has been difficulty in capturing the heterogeneity due to low spatial resolution of 

satellites like MODIS and Landsat (Lees et al., 2018). With the coarse spatial resolution of 

satellite imagery, a single pixel may encompass a mixture of vegetation cover types, making it 

more difficult to estimate vegetation parameters (Matese et al., 2015). The use of high resolution 

optical satellites and lidar may provide insight into species composition at a large spatial 

coverage (Siewart 2018).  High resolution satellite data collection, however can be very 

expensive and is still limited by the lack of spatial resolution that is needed in these highly 

variable northern ecosystem landscapes. Also, satellite imagery may be impacted by cloud cover 

(Anderson and Gaston, 2013) and have issues studying time specific processes, such as 

phenology, as temporal resolution can vary (Matese et al., 2015).  

Plane-based airborne collection provides an opportunity to improve spatial resolution, but 

often at an inflated cost with limited collection periods.  Aircraft based color infrared (CIR) 

images of Stordalen Mire, Abisko Sweden from 1970 and 2000 were compared to estimate 

vegetation changes using the previously described classification scheme (Malmer et al., 2005). 

Stordalen Mire is a discontinuous permafrost peatland ecosystem, and therefore highly 

heterogenous. The 1 m spatial resolution of the aerial CIR images may have resulted in loss of 

the fine-scale spatial heterogeneity, which may cause error in estimating permafrost degradation.  

Unmanned Aerial Systems (UAS) have the potential to accurately characterize the high 

spatial variability of northern peatland ecosystems through the collection of high resolution 

imagery. The use of UASs for remote sensing in environmental studies is rapidly expanding in 

use (Anderson and Gaston, 2013). There has been a great deal of speculation about the benefits 

of using UAS imagery for ecological studies due to the limited spatial coverage and experience 
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required in deployment and flying (Anderson and Gaston, 2013). However, the use of a UAS 

provides a low cost, repeatable method for data collection (Matese et al., 2015). Image collection 

via UASs provide high spatial resolution without the issues of cloud cover. Coarser spatial 

resolution imagery, such as satellite imagery, will generally contain a mixture of vegetation 

cover types for an individual pixel, which increases the difficulty of accurately estimating 

vegetation cover (Lu, 2006). High resolution UAS imagery is therefore an effective tool for 

capturing small scale variations vegetation across a landscape. 

Remotely sensed imagery can be classified into categories using a variety of machine 

learning techniques (Khatami et al., 2016; Gislason et al., 2006). Supervised classification 

techniques involve the analyst selecting samples sites with known class types, also known as 

training samples. The spectral properties of each pixel in the image are then compared to this 

training data to classify the whole image (Li et al., 2014). Many machine learning classification 

techniques have been developed including artificial neural network, classification tree, random 

forests, and support vector machine (Li et al., 2014). However, a Random Forest Classifier (RF) 

has been shown to most accurately classify vegetation across a landscape when used in 

conjunction with training data (Lawrence et al., 2006, Khatami et al., 2016). The RF Classifier 

creates sets of Classification and Regression Trees (CARTs) to make a prediction based on a 

randomly selected subset of the training set (Breiman, 2001). RF classifier does not overfit the 

model, which is a major issue with single classification trees such as CART (Lawrence et al., 

2006). Also, it has been found that the RF classifier is more stable than a single classifier as it 

can handle large variations in the data (Belgiu and Drăguţ, 2016; Khatami et al., 2016).  

Including textural analysis in imagery classification can improve the overall classification 

by providing additional spatial context information (Khatami et al. 2016; Soares et al. 1997). 
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Textural analysis relates to the spatial variation of image tone values (Franklin and Wulder, 

2002) and is a technique used to improve image classification accuracy (Mongus and Žalik, 

2018). The relationship between each pixel and its neighbors are examined and therefore 

additional properties about the image are determined (Soares et al., 1997). Studies have found 

that incorporating texture metrics improves image classification by removing confusion among 

classes that are spectrally similar (Franklin et al., 2000; Mongus and Žalik, 2018).  

For this study, we developed a high resolution four-year UAS imagery analysis which 

incorporates textural components such as minimum, maximum, mean, standard deviation, 

entropy, angular secondary momentum, and evenness (Soares et al., 1997; Ouma et al., 2008). 

We used a RF Classifier to classify four years UAS imagery collected at Stordalen Mire, Abisko 

Sweden, from 2014 through 2017, to assess how vegetation dynamics have changed over time in 

response to permafrost thaw.  

The objective of this study is to analyze vegetation changes in a sub-arctic mire through 

four years of high resolution 3 cm UAS imagery. At Stordalen Mire, Abisko Sweden, field 

measurements of vegetation composition were linked with each year of UAS imagery to classify 

vegetation distribution using a Random Forest Classifier. The Malmer et al. (2005) vegetation 

classification scheme was used to characterize the landscape which allows this work to be linked 

to ongoing studies. This multi-year study (2014-2017) allows for a robust and thorough 

assessment of thaw which may be otherwise attributed to interannual variability during our 

shorter period of study. Results from the comparison of vegetation distribution between years 

indicates a rapid response to permafrost thaw. It is also shown that high resolution imagery is 

needed to capture the heterogeneity among the landscape.  
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2. METHODS 

2.1 Study site 

The study site, Stordalen Mire (68°21'N, 18°49'E), is located 10 km northeast of Abisko 

Scientific Research Station (Fig. 1). Stordalen Mire is in the sub-arctic region of discontinuous 

permafrost peatland ecosystems and has been rapidly undergoing permafrost thaw in the past 

decade. A mire is a wetland ecosystem, dominated by peat-forming plants. This heterogeneous 

discontinuous peatland region is characterized by close proximity variation in topography, 

hydrology, soil, and vegetation across the landscape (Deng et al. 2014). Research in Stordalen 

Mire has shown that sub-arctic peatland ecosystems have become wetter, which has led to 

changes in vegetation cover as well as changes in C fluxes (Christensen et al., 2004; Johansson et 

al. 2006). Stordalen Mire is a heavily researched study site and is an ideal location for this study 

as it encompasses vegetation relating to different stages of permafrost thaw.  

Average annual temperature and precipitation was measured at the nearby Abisko Scientific 

Research Station. Mean annual temperature (MAT) increased by 2.5°C between 1913 and 2006 

(Callaghan et al. 2010). This has led to mean annual temperatures above 0°C for the past few 

decades. Total precipitation from 1913–2009 was 306 mm and increased to 336 mm during the 

period 1980–2009 (Olefeldt and Roulet, 2012). The growing season is defined as the summer 

months with growing degree days above zero degrees Celsius (Christensen et al., 2004), which is 

generally from May-September (Johansson et al. 2006).  



7 

 

Fig. 1. Study site location in northern most Sweden (left) with an overview of the Abisko area 

showing Stordalen Mire (right). Adapted from “Decadal vegetation changes in a northern peatland, 

greenhouse gas fluxes and net radiative forcing,” by T. Johannsson, N. Malmer, P. Crill, T. Friborg, J, 

Åkerman, M. Mastepanov, and T. Christensen, 2006, Global Change Biology, 12(12). Copyright 2006 by 

The Authors.  

 

  

2.2 Temperature and Precipitation Data 

 Temperature and precipitation data was collected at Stordalen Mire from the ICOS 

Sweden station Abisko-Stordalen from 2014-2017 in ten-minute intervals. This ICOS Sweden 

Stordalen WeatherHawk 510 weather station is mounted 4m above the surface. The ten-minute 

data was averaged monthly for temperature and summed monthly for precipitation totals.  

2.3 Vegetation Cover at Stordalen Mire 

Stordalen Mire is a highly heterogeneous peatland ecosystem consisting of vegetation 

cover types related to various stages of permafrost thaw. These cover types differ in plant 

functional types and the hydrological state of the landscape (Malmer et al., 2005). The five 

vegetative cover types used to define the landscape include Tall Shrub, Hummock, Semi-Wet, 

Wet and Tall Graminoid, as developed from Malmer et al. (2005) (Table 1 and Fig. 2). The Tall 
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Shrub cover class is underlain with permafrost but mostly consists of dwarf shrubs and a bottom 

layer of Eriophorum vaginatum. A sizable portion of the mire consists of Hummock palsa cover 

type, which is characterized as drained elevated permafrost plateaus with diverse vegetation 

similar to the Tall Shrub cover, but lacking tall shrubs (Table 1 and Fig. 2).  These permafrost 

palsas are elevated about 1 m above the wet vegetated cover types and as permafrost thaws the 

palsas collapse into wet vegetation (Torbick et al., 2012). Semi-Wet is a wetter cover type 

carpeted with Sphagnum species but no visible open water areas. The areas characterized as Wet 

contain open water areas with floating Sphagnum species. Tall Graminoid areas consist of 

mostly Carex rostrata and Eriophorum angustifolium with high water table depth. The landscape 

at Stordalen is also comprised of rock and open water areas with no plant cover.  
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Fig. 2. The changes in vegetation cover type during permafrost degradation are represented 

as a sequence of increased thaw and deepening of the active layer (left to right). Fully 

thawed sites emit the greatest amount of CH4. Additional land covers include open water, 

other, and rock. Image credit: Clarice Perryman and Christina Herrick 
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2.4 UAS Image Data Collection 

Aerial imagery of Stordalen Mire (1 km x 0.5 km) was collected during the middle of the 

growing season using a fixed-wing unmanned aerial system with a mounted camera on July 11, 

2014, July 11, 2015, July 12, 2016 and July 25, 2017. Poor weather conditions in July 2017, i.e. 

high wind, rain and cloud cover, resulted in flights taking place about two weeks later in July 

than previous years. However, vegetation cover does not vary greatly enough during this two-

week time to result in error when comparing vegetation maps between years. The fixed-wing 

UAS was a Triton XL developed by Robota (www.robota.us), which is a small compact vehicle 

that allows for 0.5 kg of payload. The Robata Goose autopilot was used for automated flight line 

planning and flight tracking. The autopilot for the UAS allows for tracking of battery charge, 

airspeed, altitude, and other UAS mechanics during the flight. Flight lines were determined with 

Table 1. Characteristic species composition for each vegetation cover type 

Cover Type Species Typical at Each Site 

Tall Shrub 

(TS) 

Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, 

Eriophorum vaginatum, Dicranum elongatum, Sphagnum fuscum, 

Cornus canadensis, Salix lapponum, Vaccinium uliginosum, 

Vaccinium vitisidaea. 

Hummock 

(HM) 

Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, 

Eriophorum vaginatum, Dicranum elongatum, Sphagnum fuscum, 

Vaccinium uliginosum, Andromeda Polifolia. 

Semi-wet  

(SW) 

Eriophorum vaginatum, Carex rotundata, Sphagnum balticm, other 

mosses. 

Wet  

(WT) 

Eriophorum vaginatum, Carex rotundata, Sphagnum balticum, other 

mosses. 

Tall Graminoid 

(TG) 
Eriophorum angustifolium, Carex rostrata, Equisetum fluviatile 

Rock  

(RK) 
Granite rock and stone pits 

Open Water 

(H2O) Water covered soil: lakes and ponds 

Other Built objects: Human structures, boardwalk, and buildings. 
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appropriate overlap between images to allow for image stitching based on designated flight 

speed and altitude.  

 Procedures for imagery collection were consistent for all four years (2014-2017). 

Favorable weather conditions were required for flight including low wind and minimal to no 

cloud cover. Flights began at 12:00 (UTC +1:00) when the sun is at the highest point in the sky 

which reduces shadows. The UAS was flown at an altitude of 70 meters and airspeed of 12 

meters / second. During the flights, images were recorded every two seconds using an interval 

timer with up to 600+ images being captured during each 20-minute-long flight. Imagery was 

collected using a Panasonic Lumix-GM1 camera with three bands (red, green, and blue).  

To capture the highest quality imagery, the fixed-wing UAS was flown several times 

during the month of July of each year. The best flights were determined through visual 

inspection of images, based on the number of clear and non-blurry images and light levels. 

Images were stitched together using Photoscan Pro 1.2 by AgiSoft (www.agisoft.com) to create a 

sub-centimeter photo mosaic. Photoscan was also used to also estimate the quality of each image 

through examination of image sharpness.  

2.5 Georectification  

The fixed-wing UAS used did not contain a built-in GPS unit, therefore ground control 

points were needed to georeference the imagery. Ground control points were surveyed in 2015 

using a Trimble GeoExplorer 6000 handheld GPS unit with an attached Trimble Tornado 

antenna. These points were collected along intersections of the boardwalk used to walk through 

the mire. The white boardwalk is easily distinguishable from the imagery and remained in a set 

location over the four years of data collection.  Additional ground control points were collected 

at orange foam X’s (1 m in length) placed across the mire, which are also easily recognizable 
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from the imagery. GPS coordinates were collected at the center of each X. These X’s allowed for 

ground control points to be distributed across the mire as the boardwalk is concentrated around 

the edges of the area of interest. All ground control points were corrected for positional accuracy 

using SWEPOS® RINEX navigation files collected from a GNSS base station less than 2km 

away (Lantmäteriet, 2014).  The corrected ground control points were then used within ArcGIS 

to georectify the image using a second order polynomial transformation. 

2.6 Vegetation Plot Data Collection 

Vegetation plots were collected across Stordalen Mire 

and used as training data to classify the UAS imagery by cover 

type. In July 2015, randomized square-meter plots were 

measured for vegetation composition across the mire and 

individually classified into one of the five cover types (Fig. 2), 

each representing a different stage of permafrost degradation. 

Each plot was classified as one of the five cover types based on 

vegetation composition (Table 1) and the hydrological state, as 

previously described.  

One hundred random points distributed across the mire 

were generated in ArcMap (Fig. 3) and used as the locations for 

plot measurements to remove any bias in location choice. The 

random points were uploaded into the Trimble GPS unit to 

navigate to the points in the field. It was not feasible to collect 

data at all one hundred points, due to time and weather, 

therefore, plot data was collected at the first seventy-five 

Fig. 3. 2014 UAS Imagery of 

Stordalen Mire (1 km x 0.5 km) 

overlaid with 100 random 

points used for vegetation plot 

locations. 



13 

 

random points. At each plot, GPS coordinates were collected at all four corners. Each plot was 

situated in a way that it contained only a single cover type and did not consist of a mix of two 

cover types (i.e. not on the edge of one cover type transiting into another).  

2.7 UAS Image Classification  

Vegetation plots classified by cover type during the 2015 field season were used as 

training data to classify all four years of imagery. Plots collected in 2015 were individually 

inspected in ArcMap on the 2014, 2016 and 2017 UAS imagery to identify any difference in plot 

classification as the landscape changed. Any plots that appeared to have transitioned to a 

different cover type were removed from the classification. Also, if there was any uncertainty 

about whether a plot had maintained a cover class or not, then it was removed from the 

classification for that year (Fig. 4). Additional cover type plots were added to the training data 

which included rock, open water, and other (boardwalk and stations at the mire).  
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Code was developed in Google Earth Engine to classify the years of imagery using a 

Random Forest (RF) Classifier. The RF Classifier creates sets of Classification and Regression 

Trees (CARTs) to make a prediction based on a randomly selected subset of the training set 

(Belgiu and Drăguţ, 2016). Each classification tree is split based on this random subset. The final 

classification is determined by averaging the multiple tree class assignments (Fig. 5) (Breiman, 

2001). For this study, 500 decision trees were generated. When using the RF Classifier, this is a 

commonly used value as errors stabilize before these 500 trees are reached (Belgiu and Drăguţ, 

2016). Code was also developed to extract textural information from the imagery, which 

provides additional spatial context information and improves classification accuracy (Khatami et 

al. 2016). Textural analyses were only run on the green band due to the correlation between the 

red and blue spectral bands with the green band. We calculated minimum, maximum, mean, and 

Fig. 4. Panel A and B show examples of the manual vegetation plot analysis. Vegetation plots were 

collected in 2015 classified in the field. Before these plots could be used to classify the 2014, 2016 

and 2017 imagery they were individually inspected on each UAS image to determine if the cover 

type classification remained the same or not. Panel A shows a plot that transitioned from a semi-wet 

cover in 2015 to an open water cover type in 2016 and was therefore removed from the 2016 

training data. Panel B shows a plot that maintained the hummock cover type from 2015 to 2016.  
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standard deviation as a 0.5 m x 0.5 m kernel. This kernel size was chosen as it is equivalent in 

size to the square meter quadrat used for the vegetation sampling. Also, entropy and angular 

secondary momentum were derived from a 3 x 3 co-occurrence matrix and added to the 

classification. Entropy measures the disorder of an image and is largest in areas where the image 

is not texturally uniform (Soares et al., 1997; Ouma et al., 2008). Angular secondary momentum 

or energy is inversely related to entropy and is a measure of textural uniformity (Ouma et al., 

2008). 

The outputs from the RF classifier were classification maps based on cover type for all 

four years of UAS imagery. From these classification maps, histograms were produced in 

Google Earth Engine based on the number of pixels in each cover class across the imagery. In 

Excel, these histograms were used to calculate the percent cover in each class based on the total 

number of pixels in each image. This data was then compared between years to see how the 

landscape changed over time. 

 

Fig. 5. Training and 

classification phases of 

Random Forest classifier. i 

= samples, j = variables, p 

= probability, c = class, s = 

data, t = number of trees, d 

= new data to be classified, 

and value = the different 

values that the variable j 

can have. Adapted from 

“Random forest in remote 

sensing: A review of 

applications and future 

directions,” by M. Belgiu and 

L. Drăguţ, 2016, ISPRS 

Journal of Photogrammetry 

and Remote Sensing, 114(26). 

Copyright 2016 by ISPRS 

Journal of Photogrammetry 

and Remote Sensing 
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Validation data was used to analyze how well the classification performed, thus resulting 

in an overall classification accuracy value for each year of imagery. Twenty five percent of the 

training data was held back from the classification and used for validation. The remaining 

seventy five percent of the training data was used to classify the imagery. Error matrices were 

also developed in Google Earth Engine for each UAS classification. These matrices show how 

well each cover type was classified as well as which cover types may have been misclassified. 

We coarsened the UAS classification images from 3 cm spatial resolution to 12 cm 

resolution to reduce some noise in the classification and any speckling that may occur. 3 cm 

pixels are very high resolution and may be too high to accurately define the individual pixels by 

cover type. We are mostly concerned with the dominant cover class and 12 cm may better fully 

capture individual species characteristic of a cover type. This scale was chosen as the square 

meter quadrat used for vegetation sampling was sub divided in 64 squares, each representing a 

12.5 x 12.5 cm area. These individual squares were used to assess species composition 

characteristic of the cover types and fully captured individual species. The 12 cm scale was 

chosen to ensure that the imagery was coarsened by full pixels and not half pixels, which would 

had been the case if 12.5 cm was used. To coarsen the classified imagery, a focal mode sliding 

window function was used with a 12 cm kernel. 

2.8 Estimating Land Cover Change via Classification Maps 

Vegetation cover was used as a proxy for estimating permafrost dynamics based on these 

cover type classification maps. The vegetation cover types were grouped into two categories, 

permafrost and non-permafrost, based on the thaw stages (Table 2). In Google Earth Engine, 

three types of maps were developed representing permafrost areas, non-permafrost areas (i.e. 

thawed sites) and other (rock and other). These maps were developed for the 2014 UAS imagery 
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classification and the 2017 UAS imagery classification to assess permafrost loss over the four-

year period. The 2014 and 2017 permafrost and non-permafrost maps were compared on a per 

pixel basis. From this comparison, we were able to estimate the percent of the landscape where 

permafrost was lost, permafrost did not change, thawed areas that did not change and permafrost 

that was gained. For example, if a pixel was classified as permafrost in 2014, but was then 

classified as non-permafrost in 2017, then that pixel was determined to be a permafrost loss area. 

Permafrost gain is an unlikely scenario based on warming trends, however it is included in the 

analysis to assess the accuracy of the image classification.  

 

 
Table 2: Cover Type Groupings Based on Permafrost 

Thaw Stage 

Cover Type Groupings Cover Types 

Permafrost Tall Shrub and Hummock 

Non-permafrost Semi-wet, Wet, Open 

Water, and Tall Graminoid 

Other Other and Rock 
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3. RESULTS 

To characterize changes in vegetation distribution at Stordalen Mire, Abisko, Sweden we 

combined field-based measurements of species composition with four years of high resolution 

Unmanned Aerial System (UAS) imagery. These image classifications were compared to one 

another to analyze how the landscape changed each year from 2014-2017. Grouping the 

vegetation cover types based on intact permafrost or thaw we were able to estimate how 

permafrost dynamics changed over the study period.  

3.1 UAS Imagery Data Collection 

The number of images collected and used for image stitching varied slightly between 

flights. For the 2014 UAS imagery, 457 images were collected, 411 images were stitched, and 

161,125 tie points were used to create the mosaic. For the 2015 UAS imagery, 457 images were 

collected, 411 images were stitched, and 158718 tie points were used to create the mosaic. For 

the 2016 UAS imagery, 769 images were collected, 736 images were stitched, and 44,120 tie 

points were used to create the mosaic. Finally, for the 2017 UAS imagery, 589 images were 

collected, 559 images were stitched, and 1,213,608 tie points were used to create the mosaic. 

Differences in the total number of images collected varied due to minor differences in the flight 

plan used each year. We used medium to high settings for all Agisoft parameters for the stitching 

of photos.  These included parameters to align photos, build dense point cloud, build mesh, build 

texture, and build orthromosaic.  Different outputs on the number of photos aligned, tie points, 

and dense point cloud were a result of some images having more overlap or were more easily 

determined to have tie points. These differences did not alter the overall stitching
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of the orthomosaic image. Images collected that were blurry were not used for stitching. The 

final mosaicked UAS images were represented by 7608 by 20736 pixels. After georectification 

the final resolution of the images was 3 cm. Corrected GPS positions had a horizontal dilution of 

precision (HDOP) less than equal to 2 and RMSE errors between 0.36-1.40 cm (mean = 0.63 cm, 

standard deviation = 0.21cm).  

3.2 UAS Image Classifications 

The total number of 

vegetation plots used to 

classify the UAS imagery 

differed slightly between 

years. Plots collected in 

2015 were individually 

inspected on the 2014, 2016 

and 2017 UAS imagery to 

identify any difference in 

plot classification as the 

landscape changed. Any 

plots that appeared to have 

transitioned to a different 

cover type were removed 

from the classification. Also, if there was any uncertainty about whether a plot had maintained a 

cover class or not, then it was removed from the classification for that year (Fig. 4). After 

individually inspecting the 2015 plots on each year of UAS imagery, the final number of plots 

Fig. 6. This panel is displaying a zoomed in portion of the 2014 UAS 

imagery RGB (top) from Stordalen Mire and the 2014 UAS imagery 

classified by cover type (bottom). The white path seen in the imagery 

is the boardwalk used to walk through the mire and is connected to the 

white equipment shack. 
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used to train the classifications included 89 plots for 2014, 94 for 2015, 84 for 2016 and 81 for 

2017. Rock, Other and Open Water plots were added to the training data through manual 

interpretation from the UAS imagery. 

Using a Random Forest Classifier, each year of UAS imagery was classified by cover 

type and compared to one another to assess changes in vegetation. The output of this analysis 

included a classification map for each year of UAS imagery, which characterized the entire area 

of Stordalen Mire by the eight defined cover types (Fig. 6). Speckling across these maps were 

reduced by coarsening the classification from 3 cm to 12 cm spatial resolution (Fig. 7).  From 

these classification maps, the percent cover was quantified for each cover type and compared 

between years (Fig. 8). The hummock cover type, representing intact permafrost areas, decreased 

coverage over the four-year period. Hummock coverage was highest in 2014 and 2015 at 33% 

and lowest in 2017 at 24%. Tall shrub coverage varied over the study period but was 

significantly higher in 2014 compared to the following years. The Semi-wet cover type (i.e. 

collapsed hummock palsas) increased coverage by 18% from, 2014 to 2017. Percent coverage of 

the Wet cover type varied over the study period with a low of 2% in 2015 and highs in 2016 and 

2017 at 15%. The Tall graminoid cover type, representing fully thawed areas, decreased 

coverage by 8.5% from 2014 to 2017. Open water also varied over the study period with 2015 

having the highest percent cover at 11%. Percent coverage of the Rock cover type varied with 

the highest percentage coverage in 2017 at 7% and the lowest in 2016 at 1%. There were small 

variations in the percent cover of the Other class over the four years as values remained at about 

1%. Hummock was the dominant cover type in 2014, while semi-wet was the dominate cover 

type in 2015, 2016 and 2017.  
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Fig. 8. Percent coverage across Stordalen Mire of each cover type for the years 

2014, 2015, 2016 and 2017. HM = Hummock; TS = Tall Shrub; SW = Semi-

wet; TG = Tall Graminoid; H20 = Open Water. 

Fig. 7. This panel is comparing the 3 cm spatial resolution classified 2014 Stordalen Mire UAS 

imagery at (left) to the 12 cm spatial resolution classification (right). These images represent a 

zoomed in portion of Stordalen Mire. 
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3.3 Error analysis and cover class assessment 

Validation error for each UAS imagery was calculated in Google Earth Engine to provide 

insight into how well the Random Forest (RF) Classifier performed in assigning classes. From 

this, overall classification accuracy was calculated for each cover type map. The overall 

classification accuracy for 2014-2017 was 80.6%, 79.1%, 82.0%, and 82.9%, respectively. We 

also calculated error matrices to visually analyze the performance of the RF Classifier on each 

UAS imagery (Table 3). These matrices show how well the RF Classifier assigned classes as 

well as any misclassifications. The error matrix for the 2014 classification revealed that 

hummock was misclassified as wet and tall shrub, while tall shrub was misclassified as 

hummock and tall graminoid. The semi-wet cover type was often misclassified as hummock. For 

the 2015 classification, hummock was often misclassified as semi-wet, while semi-wet was 

misclassified as hummock and tall graminoid. Tall shrub and tall graminoid cover classes were 

often misclassified as one another. In 2016, the cover types tall shrub, semi-wet, and tall 

graminoid were misclassified as hummock. Hummock and tall shrub were misclassified as semi-

wet, while hummock was also often misclassified as rock. Finally, the 2017 classification error 

matrix revealed that semi-wet and tall graminoid were misclassified as hummock, while 

hummock was misclassified as semi-wet and tall shrub.  For all four classifications, the cover 

classes open water, rock and other were well classified.  
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Table 3: UAS Imagery Classification Error Matrices 2014 - 2017 

HM = Hummock, TS = Tall shrub, SW = Semi-wet, TG = Tall Graminoid, H20 = 

Open Water, RK = Rock, and OT = Other 

2014 UAS Imagery Classification Error Matrix 

Reference Data 

  HM TS SW WT TG H20 RK OT 

C
la

ss
if

ie
d
 D

a
ta

 

HM 61 4 0 13 1 0 0 0 

TS 5 18 2 0 6 0 0 0 

SW 7 1 60 0 3 0 0 0 

WT 0 0 0 14 0 4 0 0 

TG 4 0 4 0 32 0 0 0 

H20 0 0 0 0 0 22 0 0 

RK 2 0 1 0 0 0 21 0 

OT 0 0 0 0 0 0 0 9 

2015 UAS Imagery Classification Error Matrix 

Reference Data 

  HM TS SW WT TG H20 RK OT 

C
la

ss
if

ie
d
 D

a
ta

 

HM 45 6 11 0 8 0 0 0 

TS 2 28 0 0 4 0 0 0 

SW 4 3 66 0 4 0 0 0 

WT 2 0 0 19 0 3 0 0 

TG 3 5 3 0 28 0 0 0 

H20 4 0 0 0 0 19 0 0 

RK 0 0 0 0 0 0 24 0 

OT 0 0 0 0 0 0 0 7 
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2016 UAS Imagery Classification Error Matrix 

Reference Data 

  HM TS SW WT TG H20 RK OT 
C

la
ss

if
ie

d
 D

a
ta

 

HM 68 0 5 0 0 0 5 0 

TS 3 31 3 0 0 0 0 0 

SW 4 0 44 1 3 0 2 0 

WT 0 0 0 18 0 0 0 0 

TG 9 3 5 2 10 0 0 0 

H20 0 0 0 0 0 17 0 0 

RK 0 0 0 0 0 0 11 0 

OT 0 0 0 0 0 0 0 6 

2017 UAS Imagery Classification Error Matrix 

Reference Data 

  HM TS SW WT TG H20 RK OT 

C
la

ss
if

ie
d
 D

a
ta

 

HM 26 2 3 0 1 0 0 0 

TS 0 21 0 0 0 0 0 0 

SW 16 0 33 2 7 0 0 0 

WT 0 0 0 19 0 1 0 0 

TG 6 0 3 0 40 0 0 0 

H20 0 0 0 0 0 26 0 0 

RK 0 0 0 0 0 0 28 0 

OT 0 0 0 0 0 0 0 6 

3.5 Quantification of Land Cover Change  

Vegetation cover determined from the 3 cm resolution classification maps was used to 

estimate permafrost dynamics across the landscape over time. The amount of permafrost was 

quantified in the 2014 and 2017 imagery by grouping cover types underlain with permafrost. 
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From this grouping and comparison of the 2014 to 2017 UAS classification, we determined the 

percent of Stordalen Mire that (1) remained permafrost (2) transitioned from permafrost to thaw 

(3) remained thawed (4) gained permafrost. These results show that over the four-year period 

20% of the landscape thawed, 5% of the area remained intact permafrost, 66% of the area 

remained thawed, and 6% of the area increased in permafrost (Table 4). 

 

 

 

 

 

 

3.6 Temperature and Precipitation Trends 

 Temperature and precipitation data was collected at Stordalen Mire throughout the study 

period (2014-2017) to see how climate variability may have impacted vegetation distribution. 

The temperature data was collected in ten-minute intervals and averaged monthly for each year 

(Fig. 9). Due to instrumentation error, no values of temperature or precipitation are reported for 

January 2014. Average monthly temperature was greatest during the month of July for each year, 

except in 2015 where August had the highest value. December was the coldest month on average 

in 2014, however this may not be an accurate conclusion as data is missing for January of that 

year. Average temperature was lowest in January for 2015 and 2016, while February was the 

coldest month on average in 2017. There is no consistent trend in increasing temperature over 

time. As mentioned, the UAS imagery was collected during July of each year. 2014 had a 

Table 4:  Estimation of Permafrost Dynamics 2014 – 2017 
Vegetation cover types were grouped by thaw stage and used as a 

proxy to estimate changes in permafrost based on the 2014 and 

2017 UAS imagery classification maps. 

 Percent of Total Landscape 

Permafrost Loss 20.0% 

Permafrost No Change 5.2% 

Thaw No Change 66.3% 

Permafrost Gain 6.2% 
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significantly higher July average temperature compared to the following years. Monthly total 

precipitation was also collected at Stordalen Mire and compared between years (Fig. 10). For 

each year, July had the greatest total monthly precipitation, with 2016 having the greatest total 

and the lowest in 2014 during that month. Precipitation and temperature was greatest during June 

to September and lowest during December to March.  
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Fig. 10: 

Monthly total 

precipitation 

for the years 

2014-2017 
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Fig. 9: Monthly 

average air 

temperature in 

degrees Celsius 

for the years 

2014-2017 from 

the ICOS 

Sweden station 

Abisko-

Stordalen.  
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4. DISCUSSION 

 Four years of high resolution UAS imagery collected at Stordalen Mire allowed us to 

capture the complex spatial heterogeneity of the vegetation and assess vegetation changes in 

response to permafrost thaw. Ground level vegetation observations provide insight into plot scale 

thaw processes; however, they do not capture patterns of thaw across the landscape. Our 

methodology of collecting UAS imagery provides a low cost, repeatable method for studying the 

highly heterogenous northern peatland ecosystems. We combined field measurements of 

vegetation cover with the UAS imagery to classify study area by cover type using a Random 

Forest Classifier. These four cover type maps were compared to one another to analyze how the 

landscape changed from 2014-2017. These results indicate a rapid response to permafrost thaw.  

It was advantageous to group the vegetation into cover type classes to assess how the vegetation 

has changed at various stages of permafrost degradation.  

4.1 UAS Image Processing and Classification 

To accurately georectify the UAS imagery, the collection of high precision GPS points 

were crucial. Our methodology of placing and pinning down large foam X’s throughout the mire 

prior to flight allowed for control points to be distributed evenly across the study area. These X’s 

were inexpensive, easily visible from the imagery and were not destructive to the mire. After the 

imagery was georectified, the final spatial resolution was 3 cm. This high resolution captured 

small variations across the landscape, which was crucial for accurately classifying the 

heterogenous cover types.  
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Google Earth Engine allowed us to perform several operations on the UAS imagery 

including extracting textural information, classifying the imagery, running statistical analyses, 

and obtaining validation accuracies and error matrices. Therefore, it was advantageous using a 

single platform for various steps involved in image processing. The processing speed using 

Google Earth Engine was much greater than previous attempts. Textural analysis and an artificial 

neural network (ANN) classification was run on the 2014 UAS imagery in Python (v. 2.7) using 

Intel(R) Xeon(R) CPU 2.67GHz with 4 CPU Cores with 24 GB RAM. The textural analysis, 

including entropy, angular secondary moment, evenness, standard deviation, minimum, 

maximum, and range, took 72 hours to run. Coding the ANN took 24 hours to run and then 

another 12 hours to determine the classification error (M. Palace, personal communication, May 

15, 2018). Textural analysis, the random forest classification, and error analysis each only 

needed several minutes to run using Google Earth Engine.  

The Random Forest Classifier performed well classifying the years of UAS imagery as 

accuracies ranged between 79.1% and 82.9%. The high accuracy in this study is most likely due 

to the robust training data and higher spatial resolution of the imagery. Training data was 

especially useful for the cover types with variable species composition and water table depths, 

which may have been difficult to differentiate from the imagery alone. 

4.2 Vegetation Changes  

Using the four years of UAS classified imagery, we were able to assess differences in 

cover types across the landscape over time. The hummock cover type, representing intact 

permafrost areas, decreased coverage over the four-year period. Hummock coverage was highest 

in 2014 and 2015 at about 33% and lowest in 2017 at 24% (Fig. 8). Hummock class was mostly 

confused as Rock due to the spectral similarities of lichen in the hummock areas and that of 
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rocks. These hummock areas represent elevated palsa mounds underlain with permafrost. As 

permafrost thaws, these palsas collapse and the vegetation transitions into a sphagnum 

dominated composition represented as the semi-wet cover type. This decrease in the hummock 

cover type and increase in semi-wet over the four-year study period is an indication of 

permafrost collapse.  

Tall shrub coverage varied over the study period but was significantly higher in 2014 

compared to the following years. Decreases in tall shrub and hummock areas are consistent with 

the findings of Malmer et al. (2005), which compared vegetation maps of Stordalen Mire from 

1970 and 2000. A reduction in tall shrubs in these ecosystems can promote thaw as the lack of 

tall shrubs allows more solar radiation to reach the surface, thus increasing surface temperatures 

(Quinton et al., 2009; Chasmer et al., 2011). There is however, uncertainty associated with the 

interpretation of this class. The error matrices revealed that the tall shrub class was often 

misclassified as tall graminoid, similar to previous classification efforts (M. Palace, personal 

communication, May 15, 2018). The UAS imagery does not include the landscape topography, 

therefore plant heights were not used to differentiate classes. The tall shrub and tall graminoid 

classes differ in plant height and elevation as the tall shrubs are underlain with permafrost. 

Topographical analyses thus may aid in the separation of the tall shrub and tall graminoid class. 

Also, Betula nana, the dominate species in the tall shrub class, grows as tall as 5 -7 feet at 

Stordalen Mire, therefore it was not practicable to place the quadrats over these taller shrubs. 

This class may have been better differentiated if training data was collected at these taller stands.  

Percent coverage of the thawed vegetation cover types varied over the four-year study 

period, but overall the landscape is becoming wetter (Fig. 11). The Semi-wet cover type (i.e. 

collapsed hummock palsas) increased coverage by 18% from 2014 to 2017 (Fig. 8). This cover 
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type represents collapsed hummock areas, therefore this increase over the study period makes 

sense as hummock decreased. Percent coverage of the Wet cover type varied over the study 

period with a low of 2% in 2015 and highs in 2016 and 2017 at 15% (Fig. 8). This wetter 

landscape in 2016 and 2017 (Fig. 8) can be seen to correlate with the high July precipitation 

during those years (Fig. 10). We may also be seeing a lag effect from the warm, dry summer of 

2014, which are conditions that promote permafrost thaw. Hummock was the dominant cover 

type in 2014, while Semi-wet was the dominate cover type in 2015, 2016 and 2017. Open water 

also varied over the study period with 2015 having the highest percent cover at 11% (Fig. 8). 

These variations may be a result of vegetation such as sphagnum growing in and around the open 

water areas. In 2015, Wet coverage was significantly lower than the other years, while the open 

water coverage in 2015 was significantly higher than other years. This may be a result of open 

water and wet sites being missed classified with open water being over classified. 
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The Tall graminoid cover type, representing fully thawed areas, decreased coverage by 

8.5% from 2014 to 2017 (Fig. 7). This is contradictory to previous studies which found an 

increase in the tall graminoid cover class due to the landscape becoming wetter with thaw 

(Malmer et al., 2005). The tall graminoid areas do not necessarily represent areas that were once 

Fig. 11. This 

panel shows a 

four-year 

comparison of 

the same 

zoomed in 

portion of the 

mire as a visual 

representation of 

how wetness has 

increased over 

time. The darker 

areas indicate a 

wetter 

landscape.  
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intact permafrost. For the tall graminoid vegetation to develop, there must be flowing water and 

nutrients through the fen area. At Stordalen Mire, the tall graminoid cover class is clustered in a 

fen area where water drains through the fen into the northern lake Inre Harrsjön. In each 

classification map, tall graminoid was often misclassified as another cover type. There could be 

several reasons for these misclassifications. The tall graminoid vegetation consists of tall sedges, 

which shift easily with the breeze. Therefore, this area of the mire dominated by the tall 

graminoid cover type tends to have the most blur in the UAS images. These tall sedges may also 

cast shadows on surrounding sedges, resulting in misclassification of those shadowed pixels. 

Another probable reason for the error in tall graminoid is due to the higher water table, 

characteristic of the cover type. This water table may be visible from the imagery, thus causing 

these areas to be classified as Wet or Open water.  

  The Rock and Other cover classes represent the smallest portion of the landscape, but 

also varied slightly over the four years (Fig. 7). The small variations in Rock cover between the 

years may be due to changes in vegetation growing on these rocks. Also, shadow angle differed 

slightly between flights possibly due to slight differences in the timing of flights. Since the rocks 

vary in elevation across the landscape, different areas of a rock may have been shadowed and 

therefore misclassified. Percent cover of the Other class over the four years remained at about 

1% (Fig. 7). Small variations are most likely due to the boardwalk sinking as water table 

increases and the tall sedges growing over the boardwalk. Also, in 2016 construction on the 

boardwalk took place which increased its area.  

Permafrost thaw and subsequent vegetation changes are a result of changes in climate 

including increases in temperature and precipitation (Van Der Kolk et al., 2016). Temperature 

and precipitation trends over the past several decades, rather than only four years, may provide a 
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better insight into how the climate has been changing. The results presented in this study may be 

a resulting lag effect from years of increases in temperature and precipitation. During the last two 

decades, the Abisko area has experienced deeper snow cover and increased winter precipitation 

(Kohler et al., 2006). This can contribute to permafrost degradation as deeper snow cover acts as 

insulation, keeping the ground warmer and thus preventing colder temperatures to reach lower 

peat depths (Johannsson et al., 2006). 

Increases in summer precipitation can also impact the hydrological regime of the 

landscape, further promoting permafrost thaw. Increases in snow cover results in increased water 

inputs to the system in the form of melt water (Quinton et al., 2009). Permafrost plateaus 

(hummocky palsa mounds) serve as runoff sources as their thin active layer cannot absorb all 

water inputs. Additional water inputs are therefore drained to the surrounding fen areas resulting 

in increased landscape connectivity as the water table level increases (Bowling et al., 2003; 

Quinton et al., 2009; Quinton et al., 2011). Increased water levels strongly impact the rate of 

permafrost thaw, which is influenced by soil moisture. This is because wet peat, compared to dry 

peat, is a better conductor of energy from the ground surface to the frost table, thus promoting 

thaw (Quinton et al., 2009; Quinton et al., 2011). Therefore, a higher soil moisture content due to 

increased water inputs promotes permafrost degradation and results in changes to the vegetation 

(Torbick et al., 2012; Van Der Kolk et al., 2016; Quinton et al., 2009). To observe such changes 

at the landscape level, several more years of UAS imagery can be analyzed for changes in 

wetness. For a deeper understanding of drivers of vegetation changes, this imagery can be 

analyzed in conjunction with data on snow depth and water table levels across the landscape.  
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4.3 Implications on the Carbon Balance 

Vegetation changes as a result of permafrost thaw have implications on the physical 

environment and on the carbon balance. Several studies conducted at Stordalen Mire have linked 

vegetation changes over the past several decades to increases in carbon dioxide and methane 

emissions (Malmer et al., 2005; Bäckstrand et al., 2009; Christensen et al., 2004). The drier parts 

of the mire, associated with hummocky and tall shrub vegetation, have been shown to be 

significantly lower in CH4 emissions compared to wetter sites (Jackowicz-Korczyński et al., 

2010). Water table depth is another controlling factor of variations in CH4, as CH4 can be emitted 

through diffusion, ebullition or through vascular plants (Granberg et al., 1997). The results from 

this study indicate that the landscape is becoming wetter and vegetation underlain with 

permafrost is decreasing in dominance. Therefore, it would be beneficial to link the percent 

cover estimates from this study with measured methane flux rates from each cover type to better 

understand how the carbon balance at the mire is changing over time.  

4.5 Estimation of Land Cover Change  

Using vegetation as a proxy, the classified 2014 and 2017 UAS imagery were compared 

to one another to estimate how permafrost dynamics have changed. These results show that over 

the four-year period 20% of the landscape thawed, 5% of the area remained intact permafrost, 

66% of the area remained thawed, and 6% of the area increased in permafrost (Table 4). These 

results show how rapidly the landscape has changed over four years.  

4.6 Future Work 

 There are several areas of this study that can expanded upon for future work. The 2015 

vegetation plots were also measured for species composition. Therefore, this data can be used in 

conjunction with the UAS imagery to estimate species composition across the landscape. A 
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benefit of using Unmanned Aerial Systems (UAS) imagery is the ability for it to be linked with 

coarser satellite imagery at higher spectral and spatial coverage. Scaling up may increase the 

error of the classification as species diversity may increase. However, the classification scheme 

used in this study defines classes that remain structurally similar even if the vegetation varies.  

Scaling to a larger region of the northern ecosystems would allow for a better understanding of 

how the landscape and carbon dynamics of the region are changing in response to permafrost 

thaw. As mentioned, differences in topography may aid in differentiating cover types as 

vegetation differs in height. Intact permafrost areas are elevated surfaces compared to the thawed 

fen areas where permafrost has collapsed. Studying topography using Lidar, for example, could 

provide insight into difference in water table level at the various cover types. Also, observing 

trends in snow cover and water table depths at Stordalen Mire may provide better insight into 

causes of vegetation changes. Finally, measured methane emission rates from each cover type 

can be linked with the classification maps to estimate changes in emissions across the landscape 

over time.  
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5. CONCLUSION 

The spatial heterogeneity of Stordalen Mire was effectively captured through the 

collection of four years of high resolution spatial data using an Unmanned Aerial System (UAS). 

We combined field-based measurements of vegetation cover with four years of UAS imagery to 

examine vegetation changes in response to permafrost thaw. Using a fixed wing and automated 

flight plan allowed for a steady flight with consistent airspeed and height. High precision GPS 

data was needed to accurately georeference the aerial imagery. Google Earth Engine allowed for 

fast computations of several operations on the UAS imagery including extracting textural 

information, classifying the imagery, running statistical analyses, and obtaining validation 

accuracies and error matrices. The Random Forest Classifier was an effective tool for using the 

vegetation training to classify the UAS imageries. Grouping species into vegetation cover types 

provided a simplified classification scheme which can be scaled to coarser resolution imagery 

with a larger spatial coverage. Differences in percent cover of the vegetation types over the four 

years based on the UAS imageries revealed that the landscape is shifting towards wetter 

vegetation cover. Hummock cover type, representing intact permafrost areas, decreased coverage 

by 9%, while semi-wet cover, representing collapsed hummock, increased coverage by 18%. 

These results indicate a rapid response to permafrost thaw over the four-year period. This 

progression of thaw and increase in landscape wetness has impacts on the carbon balance as CH4 

emissions are greater at higher water table areas and wetter vegetation sites. Discontinuous 

permafrost regions are highly vulnerable to climate changes; therefore, it is crucial to understand 

ecosystem changes at the landscape level.  The use of a UAS allowed us to effectively study 

vegetation changes across Stordalen Mire in response to permafrost thaw.  
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