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Introduction 

Chemical oil dispersants are proprietary mixtures of surfactants and solvents which are 
directly applied to a spill in order to reduce the natural attractive forces of the oil. When 
oil treated with dispersants is exposed to mixing energy, typically from wind and wave 
action, it is broken up into small droplets which may then become entrained in the water 
column (Li et al., 2009a; Li et al., 2009b; Li, 2008; Lunel, 1995). Many of these droplets 
are small enough to be neutrally buoyant, and therefore, advection and diffusion forces 
dilute the plume and transport the droplets far from the site of the original spill. As 
compared to a surface oil slick or larger and more buoyant physically dispersed oil 
droplets, these chemically dispersed droplets are much easier for oil-degrading bacteria to 
colonize and break down (Venosa and Holder, 2007; Venosa and Zhu, 2003). In addition, 
small droplets enhance dissolution of soluble and semi-volatile compounds into 
surrounding waters, wherein biodegradation is carried out by aqueous phase microbes. 
Under these conditions, oil concentration are effectively reduced below toxicity threshold 
limits, and biodegradation becomes the most important process in reducing the total mass 
of petroleum hydrocarbons in the environment. By enabling rapid dispersion and 
biodegradation of surface oil slicks at sea, the use of chemical oil dispersants can be 
effective in preventing heavy oiling of sensitive coastal environments such as beaches 
and wetlands, and consequently mitigates risk associated with marine and terrestrial 
wildlife coming into direct contact with a slick. 

Biodegradation of Oil 

Any discussion on the biodegradation of chemically-dispersed oil must consider the 
degradation of the oil itself.  A variety of microorganisms in both terrestrial and marine 
environments have the capacity to utilize petroleum hydrocarbons as the sole source of 
carbon and energy (Head et al., 2006; Leahy and Colwell, 1990; Atlas, 1981, 1984; 
ZoBell, 1973 ). Recently a 181 genera of bacteria, 163 genera of filamentous fungi and 
yeast, and 22 genera of algae have been identified to have the ability to degrade 
hydrocarbons by metabolizing them in order to grow (Prince, 2010a,b). These findings 
are not surprising considering the fact that marine microorganisms have long been 
exposed to significant quantities of petroleum hydrocarbons from natural seepages.   

From 1990 to 1999, approximately 600,000 tons of petroleum were released into the 
world’s oceans per year from natural seepages (NRC, 2003; Stout and Wang, 2008). 
Biodegradation by indigenous microbial communities is the major process responsible for 
the weathering and eventual removal of oil from natural seeps that enters the marine 
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environment (Atlas, 1995; Atlas and Bartha, 1992; Leahy and Colwell, 1990). Within the 
marine environment, bacteria are the predominant hydrocarbon degraders (Head et al., 
2006; Venosa and Zhu, 2003). Studies from tropical to cold Antarctic and Arctic 
environments have verified their ubiquitous distribution and their ability to multiply 
rapidly upon the introduction of oil (Atlas, 1995). 

Biodegradation rates have been shown to be the highest for saturates, followed by light 
aromatics, with high-molecular-weight aromatics and polar compounds exhibiting 
extremely low biodegradation rates (Prince, 2010c). Co-metabolism plays an important 
role in oil biodegradation and may require microbial consortia or syntrophic interspecies 
cooperation (McInerney et al., 2008). Many complex branched, cyclic, and aromatic 
hydrocarbons, which otherwise would not be biodegraded individually, can be oxidized 
through co-metabolism in an oil mixture due to the abundance of other substrates that can 
be metabolized easily within the oil (Atlas, 1981). 

It is important to note that microorganisms produce extracellular biosurfactants to 
promote the formation of oil-in-water emulsions that aid in the uptake and subsequent 
degradation of hydrocarbons (Desai and Banat, 1997). The hydrophilic and hydrophobic 
components within the biosurfactants emulsify hydrophobic hydrocarbons, and allow for 
transport into the hydrophilic intracellular space for biodegradation (Southam et al., 
2001). In addition, the fatty acid moieties of biosurfactants promote the growth of 
microorganisms on the surface of oil droplets (Rosenberg et al., 1979). Nikolopoulou and 
Kalogerakis (2008) reported that the use of rhamnolipid biosurfactants increased removal 
of weathered petroleum hydrocarbons (96% removal of C19–C34 n-alkanes within a 
period of 18 days) and reduced the lag phase prior to the onset of biodegradation. Saeki et 
al. (2009) showed that addition of biosurfactant JE1058BS to seawater stimulated the 
degradation of weathered Alaska North Slope 521 crude oil by stimulating the activity of 
the indigenous marine bacteria and facilitating the removal of oil from the surface of 
contaminated marine sediments. 

In terms of the influence of environmental factors controlling natural oil biodegradation 
rates, field studies have shown that active microorganisms living in low-temperature 
environments are dominated by two groups: psychrophilic and psychrotolerant, which are 
sometimes called psychrotrophic (Atlas, 1984). As defined by Morita (1975), 
psychrophiles experience optimum growth at less than 15°C, with a maximum growth 
temperature below 20°C and a minimum growth temperature at or below 0°C. Despite 
living at these low temperatures, psychrophiles often have metabolic rates comparable to 
those displayed by the mesophiles adapted to more moderate temperatures. For example, 
Delille et al. (2009) reported that a temperature of 4°C in the Antarctic had little effect on 
biodegradation efficiency and that the nutrients, nitrogen and phosphorus, were the 
limiting factors. Results obtained by Siron et al. (1995) indicated that the temperature 
threshold for observing significant oil biodegradation was around 0°C. Decreases in 
solubility associated with low temperatures were considered to be a causal factor for the 
cases of observed recalcitrance of hydrophobic compounds in cold-water. However, 
recent reports have indicated that some bacteria may have adapted to the low solubility of 
hydrophobic environmental chemicals (Deppe et al., 2005; Wick et al., 2002). Indeed 
there is now evidence that hydrocarbon-degrading microbes may have novel uptake 
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mechanisms that enable them to degrade hydrocarbons at rates that exceed their rates of 
dissolution in the aqueous phase (Leahy and Colwell, 1990; Thomas et al., 1986). 

Throughout the world, the salinity of seawater averages about 35‰ (parts per thousand). 
Salinity variations, albeit small, are mainly caused by such factors as melting of ice, 
inflow of river water, evaporation, rain, snowfall, wind, wave action, and ocean currents 
that cause horizontal and vertical mixing of the saltwater (Lagerloef et al., 1995). Most 
marine species have an optimum salinity range of 25–35‰ (ZoBell, 1973) and species 
living in the transition environments are well adapted to fluctuations in salinity. 
Microorganisms requiring salt for growth are referred to as halophiles. Whereas 
halophilic hydrocarbon-metabolizing bacteria perform well in this salinity range, there 
have been reports of the isolation of bacteria capable of degrading hydrocarbons above a 
salinity of 35‰. Bertrand et al. (1990) reported the isolation from a salt marsh of an 
extremely halophilic archaea bacterium capable of degrading hydrocarbons in 204‰ 
NaCl, but not below 105‰. Diaz (2008) reported the isolation of a bacterial consortium, 
which mainly included members of the genera Marinobacter, Erwinia and Bacillus, from 
a crude oil sample from the Cormorant field in the North Sea. This consortium was able 
to metabolize petroleum hydrocarbons in a salinity range from 0 to 220‰ NaCl. Total oil 
degradation ranged from 48% to 75%, with the greater degradation occurring at the lower 
salinities. 

At the sea surface, wind and wave action maintain a constant supply of oxygen, thus 
aerobic catabolism of hydrocarbons is usually the preferred biochemical pathway (Leahy 
and Colwell, 1990). Oxygen may become limiting in subsurface sediments and anoxic 
zones of the water column. Oxygen limitation is also a concern for most fine-grained 
marine shorelines, freshwater wetlands, mudflats and salt marshes (Venosa et al., 2002a; 
Venosa and Zhu, 2003). It is commonly believed that biodegradation rates under 
anaerobic conditions are almost negligible, while aerobic biodegradation of hydrocarbons 
occurs rapidly. However, the importance of anaerobic biodegradation should not be 
underestimated as it has been shown to be a major process under certain conditions. In 
anoxic marine sediments, reductions of sulphate, Mn(IV) and Fe(III) are the primary 
terminal electron-accepting processes (Canfield et al., 2005; Finke et al., 2007). 
Hydrocarbon degradation coupled with sulphate reduction prevails in marine anoxic 
sediments (Lovley et al., 1997). 

With recent advances in analytical methods such as genomics, we are now able to 
determine the potential of whole microbial communities for oil biodegradation at low 
temperatures. New evidence as a result of advances in the field of environmental 
genomics suggests that crude oils are degraded by indigenous organisms in cold water 
environments at a higher rate than previously reported.  This is not surprising since 
natural oil seeps occur in the world’s oceans at great depths and low temperatures – 
microbes have become well adapted to their surrounding environment.  Studies have 
conclusively shown that elevated concentrations of hydrocarbons in the environment 
increase the number of catabolic-gene copies among the microbial community (Heiss-
Blanquet et al., 2005; Stapleton and Sayler, 2000; Whyte et al., 2002). 
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Biodegradation of Chemically Dispersed Oil 
The effect of chemical dispersion on the biodegradation rate of petroleum hydrocarbons 
has been studied for several decades, and it is generally agreed that chemically dispersed 
oil is biodegradable. However, the observed effects of chemical dispersants on the rate of 
oil biodegradation have varied significantly among studies (National Research Council, 
2005). Whereas some studies observed stimulation of biodegradation rates by the use of 
chemical dispersants (Swannell and Daniel, 1999; Traxler and Bhattacharya, 1978), 
chemical dispersion inhibited the biodegradation rate or had no effect in other studies 
(Foght and Westlake, 1982; Lindstrom and Braddock, 2002). The effect of chemical 
dispersion on the rate of oil biodegradation has been further complicated by substrate-
dispersant interactions associated with differences in the experimental test conditions, 
which caused the biodegradation of individual hydrocarbons to be stimulated by some 
dispersants and inhibited by others (Foght et al., 1987; Van Hamme and Ward, 1999). As 
a result, it is difficult to predict the effect of dispersants on the biodegradation of specific 
hydrocarbons based on chemical class (e.g., aliphatic vs. aromatic) (Foght et al., 1987; 
Lindstrom and Braddock, 2002). Similarly, the effects of specific dispersants on 
biodegradation cannot be predicted based on the chemical characteristics of the 
surfactants or the hydrophile-lipophile balance (HLB) of the mixture (Van Hamme and 
Ward, 1999; Varadaraj et al., 1995). 

Attempts have been made to predict the rate of oil biodegradation in the environment 
based on the results of laboratory studies using scalable, quantitative biodegradation 
kinetics models that treat oil as droplets suspended in water rather than as homogenous 
solutions of hydrocarbons in water and consider the growth of the organisms responsible 
for the biodegradation of oil (National Research Council, 2005). To date only two studies 
have made an attempt to estimate biodegradation kinetic parameters (Venosa and Holder, 
2007; Zahed et al., 2011), by measurement of first-order (in oil concentration or the 
concentrations of specific oil components) rate coefficients to enable comparison among 
treatments. However as only one independent rate coefficient was estimated for each 
treatment, treatment effects could not be rigorously evaluated.  

Conducting representative biodegradation studies on dispersed oil in microcosm-scale 
test systems has at least two important challenges that researchers need to consider as 
they develop test protocols (Lee et al., 2011). One challenge is to conduct tests at the low 
dispersed oil concentrations representative of field conditions. Many previous 
biodegradation studies were conducted at unrealistically high concentrations of dispersed 
oil in closed microcosms. Prior research either failed to recognize the rapid dilution that 
occurs at sea or employed methods that were not sufficiently sensitive to study low 
concentrations. Studying dispersed oil biodegradation at concentrations several orders of 
magnitude above expected at-sea concentrations in closed systems could limit 
biodegradation rates and total degradation by exhausting the available nutrients. Some 
researchers attempted to address this by adding nutrients to the system, but this can lead 
to unrepresentative modification of the microbial community.  

The second challenge with studying dispersed oil biodegradation in a closed system is the 
difficulty of maintaining a stable dispersion in the laboratory. Dispersed oil in the water 
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column exists as small droplets that neither surface nor sink, and the droplets become so 
scattered that they cannot coalesce. It is challenging to maintain stable dispersions of oil 
in closed systems during the often multi-week test periods required to conduct 
biodegradation studies. To simulate the dispersion of oil at sea, biodegradation studies 
require formation of a stable dispersion containing droplets no greater than 70 - 100 
microns and enough mixing energy to keep droplets from resurfacing during an 
experiment. 

A recent Joint Industry Program (McFarlin et al., 2011) on the biodegradation of oil 
under Arctic conditions has assessed biodegradation of chemically and physically 
dispersed Alaska North Slope oil as indicated by both primary degradation and 
hydrocarbon mineralization. The study was conducted under low ambient temperature 
conditions (-1oC – 2oC) and relatively low oil concentrations (10-12 ppm crude oil in 
seawater) and under low level nutrients (0.5 – 1% of the OECD recommended volume of 
Bushnell Haas Broth). The results of the study demonstrated that the use of dispersant 
increased the primary biodegradation of fresh oil from 37% to 56% and the 
mineralization from 12% to 27%. Further increment was due to the addition of nutrients 
by 10 % for both primary degradation and mineralization. 

Biodegradation of Dispersants 

Most studies on surfactant biodegradation focus on surfactants that are used in high-
volume consumer products, such as laundry detergents (e.g., linear alkyl sulfonates), or 
other cleaning agents which have known environmental health and safety concerns (e.g., 
alkylphenol ethoxylates). In general, the results of these have shown that most surfactant 
formulations are fairly readily biodegraded under aerobic (oxygen present) conditions by 
marine bacteria (Lee et al., 1985; Liu, 1983; Una and Garcia, 1983).  The rate of 
biodegradation under anaerobic (absence of oxygen) conditions tends to be much lower 
(Berna et al., 2007; Ying, 2006). Research into the anaerobic biodegradability of 
sulphonate-based (anionic) surfactants has shown that chemical composition and 
molecular orientation can play an important role in biodegradability of a particular 
compound. Through the use of anaerobic digesters and analyses of bacterial biogas 
production, Garcia et al. (2009) conducted a series of batch degradation experiments 
which revealed that the anaerobic biodegradability of branched alkyl sulphosuccinates 
such as those used in Corexit were much lower (≤50% mineralization after 50 days) than 
that of linear alkyl sulphosuccinates (≥ 80% mineralization after 50 days). It is clear that 
different types of surfactants, and even individual surfactants of the same class, can 
biodegrade at very different rates depending on the structural complexity of chemical 
branching. 

A report by the Fraunhofer Institute (2003) discusses in detail the anaerobic 
biodegradation of detergent surfactants such as those used in household cleaners. 
Unfortunately, little attention is paid to the surfactants commonly found in chemical oil 
dispersants. Generally speaking, the report states that non-ionic surfactants are readily 
biodegradable under both aerobic and anaerobic conditions. While anionic surfactants 
based on sulphosuccinate are readily biodegraded under aerobic conditions, data is 
limited concerning their anaerobic biodegradability. 
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The biodegradation of surfactants used oil spill treatment agents has been studied for  
years (Baumann et al., 1999; García et al., 2009; Lindstrom and Braddock, 2002; Liu, 
1983; Odokuma and Okpokwasili, 1992; Una and Garcia, 1983). Surfactant 
biodegradation studies usually distinguish between primary biodegradation, which was 
calculated from the overall mass balance of surfactant in the reactors (García et al., 2009; 
Una and Garcia, 1983), and ultimate biodegradation, which also considers the removal of 
the intermediate products, usually based on oxygen consumption (Odokuma and 
Okpokwasili, 1992) or carbon dioxide production (García et al., 2009; Lindstrom and 
Braddock, 2002) relative to the amount expected based on the compound structure. 
Extensive, but incomplete, primary biodegradation of the ethoxylated non-ionic 
surfactants used in Corexit 9527 and 9500, Tween 80 and Tween 85, was observed in 
pure cultures of marine bacteria isolated from an estuary in Spain (Una and Garcia, 
1983). Primary biodegradation of Span 80, the unethoxylated non-ionic surfactant used in 
both Corexit products, was less than 20% in the same study, but the authors suggested 
that the poor biodegradation may have been caused by substrate inhibition due to the 
extremely high surfactant concentration (5 g/liter), which likely would have impacted the 
integrity of bacterial membranes. Ultimate biodegradation of Tween 80 was about 50% in 
another study (Baumann et al., 1999), and DOSS (dioctyl sodium sulfosuccinate) was 
extensively biodegraded by activated sludge bacteria (García et al., 2009), but the 
observed oxygen consumption or carbon dioxide production were much lower than 
expected for Corexit 9527 (Odokuma and Okpokwasili, 1992) and Corexit 9500 (Foght et 
al., 1987), respectively, suggesting that biodegradation was incomplete within the testing 
period. Some studies have suggested that partial biodegradation of Tween 80 involves 
metabolism of the oleic acid portion of the molecule, leaving the polyethoxy groups 
untouched or only partially metabolized (Baumann et al., 1999; Kim and Weber Jr., 
2003). Note, however, that enzymatic oxidation and subsequent metabolism of 
polyethoxylate groups has been described (Nguyen and Sigoillot, 1997; Owen et al., 
1997).   

These results suggest that the fate of dispersant surfactants is highly dependent on the 
concentration and chemical characteristics of the surface-active compounds, the microbes 
available, the methods used to monitor biodegradability (as the separation of surfactants 
and the crude oil hydrocarbons remains a challenge in analytical chemistry), and hence 
again the critical importance of testing biodegradability at environmentally relevant 
substrate concentrations. Unfortunately, until the recent Deepwater Horizon oil spill in 
the Gulf of Mexico, little information is available on the fate of surfactants in the 
presence of natural microbial seawater communities at concentrations expected during 
actual spill response operations.  . 

Toxicity and Bioaccumulation of Dispersant Surfactants 

The toxicity of dispersants may influence trophic level dynamics including microbial 
processes responsible for oil degradation (Lee et al,, 1985).  The premise of dispersant 
use is based on the reduction of oil to concentrations below toxicity threshold limits. 
Based on the results of toxicity tests for EPA-approved dispersants such as Corexit 9527 
and 9500 listed on the National Contingency Plan (NCP) Product Schedule and the 



7 
 

recommended dispersant-to-oil (DOR) application rates, major environment impacts 
were not expected at the concentrations to be encountered during their operational use for 
the treatment of oil spills. A report from the Centers for Disease Control and Prevention 
(2010) also concluded that “because of the strict guidelines that must be followed to 
utilize dispersants, it is unlikely that the general public will be exposed (directly) to (the) 
product.” The report further states that “ingredients are not considered to cause chemical 
sensitization; the dispersants contain proven, biodegradable and low toxicity surfactants.” 

Despite the development of a regulatory approval mechanism for the support of their 
operational use, a  considerable amount of ongoing research has been funded to evaluate 
the toxicity of chemical oil dispersants in the marine environment.   Public concerns 
remain high in regards to this topic as the data collected to date has been highly variable 
due to factors such as differential sensitivity between species, the particular dispersant 
formulation used, and experimental conditions used (George-Ares and Clark, 2000; 
Lyons et al., 2011).  

Ramachandran et al. (2004) reported that cchemically-dispersing different crude oils 
increased the exposure of fish to the constituents of oil by 10 to 1000-fold in comparison 
to undispersed oil.  The enhanced exposure was demonstrated by an increased activity of 
liver enzymes that oxygenate compounds accumulated from water containing chemically-
dispersed oil droplets.  The implication of this work is that the toxicity of oil to fish 
increased following chemical dispersion in proportion to the extent to which the oil was 
dispersed.  It was noted that the amount of a solution of chemically-dispersed oil that 
caused toxicity was 100 times less than the amount of undispersed oil required to cause 
the same effect.  However, the measured concentrations of hydrocarbons that were toxic 
was virtually the same between solutions of dispersed and undispersed oil.  Thus, the 
effect of chemical dispersion was to transfer more compounds from oil to water, and not 
to make these compounds more toxic.  

A study conducted by Fuller et al. (2004) using two fish species, Cyprinodon variegatus 
and Menidia beryllina, one shrimp species, Americamysis bahia (formerly Mysidopsis 
bahia), and the luminescent bacteria Vibrio fisherithese indicated that the toxicity of 
chemically dispersed oil preparations was equal or less toxic than that of the oil alone. A 
separate study by Hemmer et al. (2010) looking at toxicity of Louisiana Sweet Crude 
(LSC), chemical oil dispersants, and chemically dispersed LSC on M. beryllina, and A. 
bahia reported that the toxicity of the dispersant alone was lower than that of LSC or 
dispersed LSC which both showed moderate to high toxicity. Similarly, Milinkovitch et 
al. (2011) found that while containment and recovery of spilled oil is optimal, there is no 
significant difference between the toxicity of naturally and chemically dispersed oil when 
looking at a series of biomarker responses in the gills of golden grey mullet (Liza aurata). 
Further work by Judson et al. (2010) has investigated the potential for chemical oil 
dispersants to interfere with hormone and other bio-chemical processes in marine 
organisms. The results of this study concluded that while some dispersants did show low 
potential for endocrine disruption, most (including Corexit) did not show any significant 
effect.  
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Brief pulses of chemically-dispersed oil can be just as toxic to fish embryos as prolonged 
exposures.  McIntosh et al. (2010) recently reported that exposures to chemically-
dispersed crude oil as brief as one hour prevented the fertilization of Atlantic herring 
embryos.  Similarly, one-hour exposures immediately following egg fertilization were 
sufficient to cause deformities, interfere with development, and kill herring embryos at 
oil concentrations typical of those measured near actual marine oil spills.   Thus, contrary 
to expectations, the primary concern about oil dispersion may not be the toxicity of 
chemical dispersants, nor the enhanced toxicity of oil.  Rather, it is the greatly increased 
exposure of highly sensitive embryos to the toxic components of oil.  As the result, there 
is the possibility that even brief exposures of fish embryos to dispersed oil can cause 
embryo toxicity at oil concentrations typical of actual spills.  The results of these 
laboratory studies have highlighted the need for future research to determine effects 
under the environmental conditions encountered under operational response operations.   

In light of the toxicity research study results obtained for chemical oil dispersants, it is 
suggested that factors such as toxicity of dispersed oil (rather than dispersant itself), 
dilution and degradation in the environment, species/resources requiring priority 
protection, potential adverse effects of all response options, and the potential for recovery 
of sensitive habitats and populations should weigh more heavily into the decision making 
process than dispersant toxicity alone George-Ares and Clark (2000).  Supporting this 
view, a recent review of the use of chemical dispersants in Europe found that ongoing 
improvement in dispersant formulation has now reached a point where the toxicity of the 
dispersant itself is much less important than the toxicity of the oil it is dispersing 
(Chapman et al., 2007).   

While the focus of studies on chemically dispersed oil has been on the induction of acute 
and/or chronic toxic effects for risk assessments associated with dispersant use, some 
consideration has also been given to the bioaccumulation of surfactants.  In a study on the 
uptake of two linear alkylbenzene sulfonates by a freshwater oligocheate (Lumbriculus 
variegatus) and a larval insect (Chronomus riparius) using radioactive tracers Mäenpää 
and Kukkonen (2006) reported that the surfactant residue in the body of the test 
organisms was more highly dependent on the organic content of the test sediment than on 
the initial exposure concentration.  It was concluded that the high organic content of the 
test sediment reduced body residue concentrations due to the adsorption of the surfactant 
to the organic material contained in the sediment. This result is consistent with earlier 
research that concluded surfactants of all classes are readily taken up across the gills but 
that environmental variables could reduce the concentration of surfactants associated with 
the test species (EOSCA, 2000).  

Following a comprehensive review on the bioaccumulation potential of surfactants, the 
European Oilfield Specialty Chemicals Association (EOSCA) concluded that although 
surfactants and their metabolites can be found in aquatic organisms following exposure, 
there is no evidence to support biomagnification of surfactants through the food chain 
(EOSCA, 2000). There is also evidence that non-ionic and anionic surfactants (such as 
those found in most oil dispersants) are biotransformed and eliminated via the gall 
bladder (Tolls et al., 1994)  As a result of surfactant metabolism, Comber et al. (2003) 
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suggested that linear alkylbenzene sulfonates, alcohol ethoxylates, and other structurally 
similar surfactants are unlikely to bioaccumulate to any significant degree.   

Dispersant Use During the DWH Spill Response 
The decision by the EPA, NOAA and BP to use chemical dispersants at the Deepwater 
Horizon spill site did not come lightly. The United States Clean Water Act specifically 
addresses the use of dispersants in response to oil spills in Section 311(d)(2)(G) which 
requires that the federal National Contingency Plan for oil spill response contain a 
schedule identifying: 

(i) dispersants, other chemicals, and other spill mitigating devices and 
substances, if any, that may be used in carrying out the Plan, 

(ii) the waters in which such dispersants, other chemicals, and other spill 
mitigating devices and substances may be used, and 

(iii) the quantities of such dispersant, other chemicals, or other spill 
mitigating device or substance which can be used safely in such waters, 
which schedule shall provide in the case of any dispersant, chemical, spill 
mitigating device or substance, or waters not specifically identified in such 
schedule that the President, or his delegate, may, on a case-by-case basis, 
identify the dispersants, other chemicals, and other spill mitigating devices 
and substances which may be used, the waters in which they may be used, 
and the quantities which can be used safely in such waters. 

Although Corexit 9527 and 9500 were both pre-approved by the EPA for use in the event 
of an oil spill, until the incident in the Gulf, little consideration was given to the 
suitability of these products for subsurface application. Subsurface injection of dispersant 
was considered as a means to reduce VOC levels and the volume of dispersant to be used 
(as application at the well head would improve contact between dispersant and the oil).  
Thus, regulatory approval subsurface application was withheld until its efficacy and 
potential effect on the environment could be assessed (EPA Press Conference Call, 
2010). 

Following a Net Benefit Environmental Analysis (NEBA) process, a decision was made 
to apply dispersions an operational countermeasure during the Deepwater Horizon 
response operations.  In Total, 43,884 barrels of Corexit brand chemical oil dispersant 
was applied (1); 25,505 barrels of Corexit 9527 and Corexit 9500A at the surface (by 
spraying from vessels at sea and aircraft) and 18,379 barrels of Corexit 9500 via 
subsurface injection (Federal Interagency Solutions Group, 2010).  
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Figure 1. Cumulative surface and subsurface dispersant use by day of spill response (Federal 
Interagency Solutions Group, 2010). 
 

Dispersant Transport and Fate following  the DWH Spill 

Corexit 9500 and 9527 were the main dispersants used in response to the BP-Deepwater 
Horizon oil spill. Detailed formulation and ingredient information on COREXIT 
dispersant products were released to the US EPA for its Gulf monitoring and 
environmental risk assessment program (Nalco, 2011). The surfactants in these products 
are similar, including several non-ionic compounds-sorbitan monooleate (Span 80), 
polyethoxylated sorbitan monooleate (Tween 80), and polyethoxylated sorbitan trioleate 
(Tween 85)—and the anionic surfactant diethylhexyl sulfosuccinate (DOSS) (Nalco, 
2011), but the relative proportions of these compounds may differ somewhat between 
products (Kujawinski et al., 2011). The biodegradability of chemical constituents was a 
criterion in the selection of their formulation by the manufacturer to minimize potential 
for risks to the environment or public health associated with its use. 

As	
   the	
   dispersants	
   could	
   be	
   broken	
   down	
   rapidly	
   in	
   seawater;	
   the	
   individual	
  
chemical	
   constituents	
   2-butoxyethanol, dipropylene glycol n-butyl ether (DPnB), 
propylene glycol, and dioctyl sodium sulfosuccinate (DOSS) were selected for analysis of 
water samples to determine the expanse of the Deepwater Horizon dispersed oil and 
Corexit (Operational Science Advisory Team, 2010).  These	
   compounds	
   represent	
  
major	
  constituents	
  of	
  Corexit,	
  including	
  those	
  with	
  known	
  toxicology	
  data,	
  and	
  also	
  
those	
  with	
  newly	
  established	
  analytical	
  methods.	
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Benchmark	
   levels	
   for	
   the	
   individual	
   compounds	
   are	
   established	
   to	
   explain	
   the	
  
relevance	
  of	
  measured	
  concentrations	
  (i.e.,	
  concentrations	
  above	
  benchmark	
  levels	
  
are	
  “levels	
  of	
  concern.”)	
  	
  The	
  benchmarks	
  were	
  based	
  on	
  available	
  biological	
  effects	
  
data	
  were	
  set	
  at	
  a	
  conservative	
  level	
  to	
  protect	
  aquatic	
  life.	
   	
  It	
  was	
  also	
  recognized	
  
that	
   the	
   target	
   compounds	
  were	
   also	
   used	
   in	
   other	
   commercial	
   products	
   besides	
  
Corexit.	
  	
  Thus,	
  the	
  other	
  sources	
  of	
  the	
  individual	
  chemicals	
  were	
  to	
  be	
  considered	
  if	
  
the	
  benchmark	
  values	
  were	
  exceeded.	
  	
  	
  

Except for offshore water column samples (79% positive), the dispersant indicators were 
observed in a small fraction (< 10%) of the samples that were tested. DPnB was one of 
the most commonly observed dispersant indicator compounds (57 of the 60 positive 
water samples), but its concentration  never exceeded 3 µg/L  (Table 1).    

 
Table 1. Samples from the Gulf of Mexico analyzed for the presence of Corexit dispersant indicators; 
data from the Operational Science Advisory Team (2010). 
 

Zone Profile Undetected Below Benchmark 
water column 4790 60 Nearshore 
Sediment 406 6 
water column 251 199 Offshore 
Sediment 242 1 
water column 3761 353 Deep Water 
Sediment 119 1 

* no exceedence of  EPA’s dispersant benchmarks were observed. 
 

Propylene glycol was the only dispersant indicator detected in the nearshore sediments. 
Concentrations of DPnB decreased over time (Figure 2), with all values less than 5 µg/L 
by July 30. The DPnB concentration was highest at the surface and subsurface between 
1000 and 1400 m (Figure 3). Deep water concentrations ranged from 0.0170 to 113.4 
ìg/L with a mean of 4.3 ìg/L (Operational Science Advisory Team, 2010).   



12 
 

 
Figure 2. Offshore DPnB concentration over time; the United States Environmental Protection 
Agency benchmark (chronic screening level) is 1 mg/L (Operational Science Advisory Team, 2010). 

 
Figure 3. Concentration of DPnB with depth in water samples collected in the deep water zone of the 
Gulf of Mexico, defined as water depths of greater than 200 m (Operational Science Advisory Team, 
2010). 
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Using advanced liquid chromatography Fournier transform ion cyclotron resonance mass 
spectrometry, DOSS was detected both during dispersant application, and up to 300 km 
from the wellhead 64 days after deepwater dispersant injection had ceased (Kujawinski et 
al., 2011). It was reported that the majority of the DOSS associated with the subsurface 
injection of Corexit 9500 moved to, and remained in the bottom water layer between 
1000 and 1200 m depth rather than rising to the surface (Figure 4). The possibility could 
not be dismissed that some dissolution with subsequent vertical transport, as well as 
partitioning with gas or hydrate, might have occurred. The near 1:1 correlation between 
DOSS and methane (which was found to act as a conservative marker in this situation) 
and the consistency between their release rates, indicated that DOSS was not biodegraded 
or otherwise lost near the well head during conditions of active flow, and thus was 
transported to the 1000-1200 m layer (Figure 5). The measured concentrations, ranging 
from 0.4 to 12 µg/L, were remarkably similar to the expected estimated concentrations. 
Based on the data, Kujawinski et al. (2011) concluded that although biodegradation might 
have occurred, the most significant factor that caused a decrease in DOSS concentration 
at depth was dilution. They calculated that biodegradation rates would have had to be 
approximately ten times the dilution rate in order for it to have been observed 
(Kujawinski et al., 2011). 

 

 
 
Figure 4. Depth profile of DOSS concentrations falling mainly in the high chromophoric dissolved 
organic matter zone which included high levels of methane (yellow area), during May and June, 
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2010, from samples collected by the research vessels Cape Hatteras (CH) and Walton Smith, with 
anomalous values from cast07 (Kujawinski et al., 2011). 
 

 
Figure 5. Bird’s-eye view of DOSS concentrations at the plume depth of 1000-1200 m in September 
(a) and May/June (b) with circle size and colour indicative of concentration: white is below detection; 
blue < 0.01 µg/L; cyan 0.011-0.1 µg/L; green 0.11-1.0 µg/L; yellow 1.0-9.0 µg/L; red > 9.1 µg/L; black 
indicates the samples were not taken in the plume layer; the star indicates the Deepwater Horizon oil 
spill site (Kujawinski et al., 2011). 
 

Oil Degradation following  the DWH Spill 

The recent DWH spill has highlighted the importance of natural oil degradation in the 
recovery of marine ecosystems impacted by crude oil spills. Hazen et al. (2010) reported 
that the disappearance of residual oil in the Gulf of Mexico from the DWH spill was 
associated microbial degradation processes based on the results of metagenomics. 
Temperature did not appear to be a major limiting factor as significant rates of oil 
degradation were observed within the subsea plume of dispersed oil at a depth of 1300 m 
and temperature below 4oC. Unlike oil spills occurring at the sea surface, during the 
DWH spill, petroleum hydrocarbons experienced a prolonged, buoyancy-driven ascent 
through the 1500 m water column (Hazen et al., 2010). Consequently a unique set of 
processes affected the released hydrocarbons during their trajectory in the deep sea. Some 
oil and gas never reached the sea surface, but instead formed hydrocarbon-rich plumes 
within the cold waters present at about 1100 m depth, supporting an active deep-sea 
microbial community (Hazen et al., 2010; Valentine et al., 2010). A  combination of 
integrated chemical, physical and biological processes regulated the transport and fate of 
hydrocarbons in the deep marine environment. Considering the natural levels of 
variability and the availability of data at this point of time, it is difficult to disentangle the 
role of natural processes from the effects of countermeasures such as the use of 
dispersants.  

A considerable amount of research has been focused on the resultant plume of dispersed 
oil and gas released from the well blow-out that extended southwest from the wellhead 
between about 1000 and 1200 m below the surface (Camilli et al., 2010; Diercks et al., 
2010; Hazen et al., 2010; Kessler et al., 2011; Valentine et al., 2010). This plume was 
identified based on fluorescence (Camilli et al., 2010; Diercks et al., 2010; Hazen et al., 

a b b 
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2010), light scattering (Diercks et al., 2010), or the concentrations of specific 
hydrocarbons (Camilli et al., 2010; Diercks et al., 2010; Kessler et al., 2011; Valentine et 
al., 2010) and was detectable up to 35 km from the MC252 wellhead (Camilli et al., 
2010). The average temperature in the plume was about 5 °C (Camilli et al., 2010; Hazen 
et al., 2010). Most of these studies also observed a local dissolved oxygen (DO) 
minimum in the vicinity of the hydrocarbon plume. Camilli and colleagues attributed this 
minimum to hydrocarbon interference with the in-situ DO probes that were used because 
Winkler titration data did not show oxygen depletion within the plume (Camilli et al., 
2010). Other studies, however, showed good agreement between data from the in-situ DO 
probe and Winkler titrations (Kessler et al., 2011; Valentine et al., 2010), suggesting that 
the rate of aerobic microbial metabolism within the plume was higher than in the 
surrounding water. Evidence supporting biodegradation of gaseous alkanes (e.g., 
methane, ethane, propane) (Kessler et al., 2011; Valentine et al., 2010) and higher 
molecular weight normal alkanes (Kessler et al., 2011) was obtained based on 
compositional changes that reflected preferential utilization of specific compounds and 
(for ethane and propane) changes in °C (Valentine et al., 2010). One study estimated that 
about 70% of the oxygen depletion that was observed within the plume was due to 
microbial metabolism of ethane and propane (Valentine et al., 2010). Microbial 
degradation of other hydrocarbons, including butane and longer chain alkanes, was 
responsible for the additional oxygen depletion. Hazen and colleagues estimated half-
lives between about 1.2 and 6.1 days for higher molecular weight normal alkanes based 
on in-situ and microcosm data (Comber et al., 2003). Because their biodegradation rate 
model did not include biomass concentration, however, and the in-situ half-lives did not 
consider dilution as a factor contributing to the observed changes in compound 
concentration, the similarity among the observed half-lives should not be over 
interpreted. 

Flocs from samples collected within the plume between May 25 to June 2 were rich in 
microbes, oil, and oil degradation products, and bacterial counts were elevated within the 
plume (Hazen et al., 2010). The abundance of genes involved in hydrocarbon degradation 
were significantly enhanced (p < 0.05 or 0.01) in plume samples, and there was a positive 
correlation with the concentration of low molecular weight components in the oil, 
suggesting that the composition of the bacterial community changed in response to the 
presence of oil (Hazen et al., 2010). Cloning and sequencing of 16S rRNA genes showed 
that the relative abundance of 16 taxa of ã-Proteobacteria, including representatives of 
known psychrophilic and psychrotolerant hydrocarbon degraders, were higher inside the 
plume. The most abundant species in samples from within the plume (comprising about 
90% of sequences) belonged to a single operational taxonomic unit that was closely 
related to Oceanospirillales (Hazen et al., 2010). Note that observations of samples 
collected in the same area by another research group about two weeks later, while oil was 
still being released from the wellhead, did not confirm high levels of Oceanospirillaceae, 
but the samples were dominated by other putative hydrocarbon degraders, especially 
relatives of Colwellia and Cycloclasticus, which were thought to be growing on propane, 
ethane, and butane (Valentine et al., 2010). 

Recently, Lu et al. (2011) showed that the microbial community functional composition 
and structure were dramatically altered in the deep-sea from the Deepwater Horizon spill. 



16 
 

A variety of metabolic genes involved in aerobic and anaerobic hydrocarbon degradation 
were highly enriched in the plume than outside the plume. Various other microbial 
functional genes that are associated with carbon, nitrogen, phosphorous, sulfur, and iron 
cycling, metal resistance, and bacteriophage replication were also enriched in the plume. 
The authors suggest that the indigenous marine microbial communities could have a 
significant role in biodegradation of oil spills in deepwater.  

In summary, the size and composition of the Gulf of Mexico microbial community was 
altered as microbes responded to the presence of oil. Bacterial cell densities were 
significantly higher in the plume, 105 cells mL-1, as compared to numbers outside the 
plume, which was 103 cells mL-1 (Atlas and Hazen, 2011). As the community responded, 
hydrocarbon degraders dominated, resulting in reduced community diversity. DNA 
surveys for bacterial 16S rRNA genes from samples collected in June revealed 
dominance of Cycloclasticus and Colwellia, likely degrading propane and ethane 
preferentially (Kessler et al., 2011; Valentine et al., 2010). Sixteen taxa of the γ- 
proteobacteria dominated by the order Oceanospirillales occurred in high numbers and 
dominated the community in plume samples collected in the same time frame (Hazen et 
al., 2010). Among these were Oliespira antarctica, Thalassolituus oleivorans, and 
Oliphilus messinensis, bacteria known to degrade hydrocarbons and tolerate low 
temperatures that occur in the deep sea. Samples collected later (September) indicated a 
shift away from these hydrocarbon degraders to methanotrophs, including 
Methylococcaceae, Methylophaga, and Methylophilaceae. The enhanced abundance of 
methanotrophs and bacteria containing the particulate methane monooxygenase gene 
(pmoA) indicated that methane was consumed later in the spill sequence by a different 
bacterial assemblage (Kessler et al., 2010).  

Propane and ethane were degraded relatively rapidly and likely before alkanes >5 carbons 
in length (Valentine et al., 2010). The occurrence of natural seeps in the area of the spill 
may have supported the development and persistence of microbial communities capable 
of degrading hydrocarbons. Dissolved propane and ethane may promote rapid 
hydrocarbon degradation and low diversity communities that can degrade other 
hydrocarbons as the nature of remaining hydrocarbons changes. Hazen et al. (2010) 
estimated biodegradation rates for hydrocarbons in the plume based on observed 
concentrations of C13-C26 alkanes from samples collected near the MC252 plume and 
from laboratory degradation studies at 5 °C. Based on these observations, degradation of 
alkanes was estimated to be 1.2–6.1 days. Rapid rates of biodegradation may be expected 
for alkanes, the least recalcitrant fraction among the complex mixture of compounds that 
makes up Sweet Louisiana Crude oil. Rapid degradation rates reported for Sweet 
Louisiana Crude in the region of the MC252 oil spill may be related to its relatively light 
character, containing a large volatile component and a large fraction of alkanes, both 
more amenable to degradation than heavier crude oil. Edwards et al. (2011) reported that 
microbes within the surface slick showed higher rates alkaline phosphate activity, 
indicating enhanced phosphate stress. Microbial respiration and lipase activity rates were 
also higher with the slick and the degradation of hydrocarbons was fairly rapid and 
supported the majority of respiration. The authors suggest that the microbial community 
possessed the potential to respire hydrocarbons at an unprecedented rate, potentially great 
enough to keep pace with the flux of oil reaching the surface from the Macondo well, and 
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the observed differences in microbial respiration and activity between stations within the 
slick and outside the slick is a testament to the rapid response of the microbes in surface 
waters of the Gulf of Mexico to oil from the Deepwater Horizon spill. 

The composition of the oil fraction from MC252 estimated by Reddy et al. (2011) 
indicated 74% saturated hydrocarbons, 16% aromatic hydrocarbons and 10% polar 
hydrocarbons. Gas chromatographic analysis for several monoaromatic compounds 
indicated benzene, toluene, ethylbenzene and total xylenes (BTEX) concentrations 
exceeding 50 µg L-1 within the plume in June 2010 (Camilli et al., 2010). Estimates for 
hydrocarbon degradation in the plume range from 2–7 µg L-1d-1, which translates to an 
estimated half-life of about 1 month for petroleum hydrocarbons (Reddy et al., 2011). 
Methane was estimated to take longer to degrade. Kessler et al. (2011) estimated the 
oxidative lifetime of methane resulting from the spill to be 120 days. 

Lessons Learned  from Deepwater Horizon Spill Response and Future Challenges 
About 2.1 million gallons of dispersant were used during the Deepwater Horizon spill 
response, and about 8% of the oil that was released is thought to have been chemically 
dispersed (Lubchenco et al., 2010).  Based on current knowledge, it is believed that most 
of the chemically dispersed oil, including the MC252-derived hydrocarbons in the deep 
plume, may have been biodegraded within the environment following its release. Indirect 
evidence consistent with the expected biodegradation included identification of genes 
known to be involved in hydrocarbon biodegradation, enrichment of 16S rRNA 
sequences related to known hydrocarbon degraders, and depletion of dissolved oxygen 
within the deep dispersed oil plume. In light of the large uncertainties associated with 
measurements of hydrocarbon fate following accidental spills, fate and transport 
modeling may offer the best means for evaluating the relative impacts and benefits of 
chemical dispersion in spill response.  

Due to the low concentrations of dispersant following its application in the Gulf of 
Mexico, as the result of physical dispersion and dilution processes, as well as the intrinsic 
levels of variability within an open-ocean environment, it is impossible to extract 
concrete evidence to support the hypothesis that the dispersant surfactants biodegraded 
rapidly in subsurface waters.  Additional research is warranted to enhance better and 
more quantitative understanding of the fate of dispersants and chemically dispersed oil, 
particularly in subsurface. In  terms of potential environmental risk, it is important to note 
that all of the surfactants used in Corexit 9500 and Corexit 9527 are known to be at least 
partially biodegradable under appropriate conditions. Indeed, dispersants themselves can 
enhance the initial rate of petroleum hydrocarbon degradation by being the first substrate 
utilized by the hydrocarbon degrading bacteria to grow and colonize dispersed oil 
droplets (Varadaraj et al., 1995). 
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