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Abstract. Increasing trends in vegetation productivity have been identified for the last three decades for

many regions in the northern hemisphere including China. Multiple natural and human factors are

possibly responsible for the increases in vegetation productivity, while their relative contributions remain

unclear. Here we analyzed the long-term trends in vegetation productivity in China using the satellite-

derived normalized difference vegetation index (NDVI) and assessed the relationships of NDVI with a

suite of natural (air temperature, precipitation, photosynthetically active radiation (PAR), atmospheric

carbon dioxide (CO2) concentrations, and nitrogen (N) deposition) and human (afforestation and improved

agricultural management practices) factors. Overall, China exhibited an increasing trend in vegetation

productivity with an increase of 2.7%. At the provincial scale, eleven provinces exhibited significant

increases in vegetation productivity, and the majority of these provinces are located within the northern

half of the country. At the national scale, annual air temperature was most closely related to NDVI and

explained 36.8% of the variance in NDVI, followed by afforestation (25.5%) and crop yield (15.8%).

Altogether, temperature, total forest plantation area, and crop yield explained 78.1% of the variance in

vegetation productivity at the national scale, while precipitation, PAR, atmospheric CO2 concentrations,

and N deposition made no significant contribution to the increases in vegetation productivity. At the

provincial scale, each factor explained a part of the variance in NDVI for some provinces, and the increases

in NDVI for many provinces could be attributed to the combined effects of multiple factors. Crop yield and

PAR were correlated with NDVI for more provinces than were other factors, indicating that both elevated

crop yield resulting from improved agricultural management practices and increasing diffuse radiation

were more important than other factors in increasing vegetation productivity at the provincial scale. The

relative effects of the natural and human factors on vegetation productivity varied with spatial scale. The

true contributions of multiple factors can be obscured by the correlation among these variables, and it is

essential to examine the contribution of each factor while controlling for other factors. Future changes in

climate and human activities will likely have larger influences on vegetation productivity in China.
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INTRODUCTION

Numerous studies have examined the dynam-
ics of vegetation productivity over the last two to
three decades at regional to global scales (Zhou
et al. 2001, Ichii et al. 2002, Xiao and Moody
2004a, 2005, Beck and Goetz 2011, Xiao et al.
2013a). Many studies have identified increasing
trends in vegetation productivity in many parts
of the world, particularly in the northern
hemisphere (Zhou et al. 2001, Xiao and Moody
2005). Climate change, particularly elevated air
temperature, is believed to be the dominant
driver (Zhou et al. 2001, Ichii et al. 2002, Xiao
and Moody 2005). The effects of human activities
on the increases in vegetation productivity have
received less attention (Song et al. 2008, Li et al.
2012), and the relative effects of environmental
factors and human activities also remain unclear
(Evans and Geerken 2004, Seaquist et al. 2009, Li
et al. 2012).

Many studies on vegetation dynamics are
based on the normalized difference vegetation
index (NDVI) derived from the advanced very
high resolution radiometer (AVHRR) instrument
onboard the National Oceanic and Atmospheric
Administration (NOAA) satellites. These studies
used NDVI as a proxy for vegetation productiv-
ity and identified increasing trends in vegetation
productivity in many parts of the world, includ-
ing Eurasia (Jeyaseelan et al. 2007), North
America (Beck and Goetz 2011), and Australia
(Donohue et al. 2009) as well as globally (Ichii et
al. 2002, Xiao and Moody 2005, de Jong et al.
2012). A number of studies have examined the
changes in vegetation productivity in China
(Xiao and Moody 2004a, Park and Sohn 2010,
Li et al. 2012, Xiao 2014). For example, Xiao and
Moody (2014a) used AVHRR-derived leaf area
index (LAI) to analyze the trends of vegetation
productivity in China and their responses to
temperature and precipitation from 1982 to 1998.
Park and Sohn (2010) used NDVI data to
examine the recent trends in vegetation cover
for northern China and other parts of East Asia,
and found a pronounced positive trend in NDVI
for northern and northeastern China. Other
approaches such as ecosystem models have also
shown increased vegetation productivity in
many regions (Hicke et al. 2002, Cao et al. 2003,
Nemani et al. 2003), many of which were in

agreement with with the increasing trends of
vegetation productivity inferred from NDVI
(Hickler et al. 2005).

The identified increases in vegetation produc-
tivity have coincided with rising air tempera-
tures. The global average land surface air
temperature has been systematically increasing
during the last three to four decades with the
greatest changes witnessed in the northern
middle and high latitudes (IPCC 2013). Elevated
air temperature can increase plant growth by
lengthening growing season (Nemani et al. 2002),
enhancing photosynthesis, and altering nitrogen
availability by accelerating decomposition or
mineralization (Melillo et al. 1993). The enhance-
ment of vegetation productivity has been mainly
attributed to elevated air temperature (Zhou et
al. 2001, Ichii et al. 2002, Xiao and Moody 2005).
Precipitation is only the dominant controlling
climatic factor in water-limited, semi-arid, and
arid regions such as the Sahel (Herrmann et al.
2005, Hickler et al. 2005, Xiao and Moody 2005),
Australia (Donohue et al. 2009), and northern
China (Xiao et al. 2013a, Zhang et al. 2014a).
Rising atmospheric carbon dioxide (CO2) con-
centrations and nitrogen (N) deposition can also
enhance plant growth (Ainsworth and Long
2005, Fleischer et al. 2013, Wang et al. 2014a, b),
and these two factors have been linked to
increased plant productivity in parts of China
(Mao et al. 2012).

Besides multiple environmental factors, hu-
man activities can also increase vegetation
productivity at the landscape scale. For example,
internal migration had a negative influence on
vegetation growth in China during the last two
decades of the twentieth century (Song et al.
2008). In contrast, forest plantations have in-
creased aboveground biomass carbon stocks
during this period (Fang et al. 2001, Wang et al.
2007). Policy-driven conversions of croplands to
forests and grasslands (i.e., the ‘‘Grain-for-
Green’’ Program) have led to increased plant
productivity on the Loess Plateau in China since
2000 (Lu et al. 2012a, Su and Fu 2013, Xiao 2014).
Mu et al. (2013) showed that the total net primary
productivity (NPP) of the Inner Mongolia grass-
land increased from 2001 to 2009 mainly because
of human activities (land conversion from desert
and cropland to grassland). Compared with
climate change, the effects of human activities
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such as agricultural management and afforesta-
tion have received less attention (Li et al. 2012).
The relative effects of multiple environmental
and human factors on the increases in vegetation
productivity remain unclear.

Here we combined NDVI observations, climate
data, atmospheric CO2 concentrations, N depo-
sition data, and provincial-level agricultural and
forestry statistics to examine the effects of
multiple natural factors and human activities on
the increases in vegetation productivity in China.
Increases in vegetation productivity at the
national and provincial scales result from both
enhanced plant growth and increases in vegeta-
tion cover. Potential drivers of NDVI trends
include temperature, precipitation, photosynthet-
ically active radiation (PAR), atmospheric CO2

concentrations, and N deposition. Human activ-
ities that alter landscapes mainly include culti-
vation, afforestation, deforestation, and
urbanization as well as improved agricultural
management practices (fertilization, irrigation,
and substitution of higher-yield crops for lower-
yield crops). Our study focused on the period
from 1982 to 2006 during which the data for the
natural and human factors were all available. The
objectives of this study were to analyze the
trends of vegetation productivity using the long-
term NDVI record at the national and provincial
scales and to assess the relative contributions of
the natural and human factors to increases in
vegetation productivity by combining NDVI,
climate data, atmospheric CO2 concentrations,
N deposition data, and agricultural and forestry
statistics.

DATA AND METHODS

AVHRR NDVI
The normalized difference vegetation index

(NDVI) is perhaps the most widely used vege-
tation index derived from satellite observations.
NDVI captures the contrast between the visible-
red and near-infrared reflectance of vegetation
canopies. The NDVI typically ranges from about
0.1 to 0.75 for vegetation and from about�0.2 to
0.1 for snow, inland water bodies, deserts, and
bare soils (Tucker et al. 1986), although sparsely
vegetated areas can have NDVI values lower
than 0.1.

NDVI is closely related to the fraction of

photosynthetically active radiation (fPAR) ab-
sorbed by vegetation canopies and is indicative
of the abundance and activity of chlorophyll
pigments (Asrar et al. 1984). NDVI has been
widely used to approximate vegetation produc-
tivity at various spatial scales (Zhou et al. 2001,
Xiao and Moody 2004b, 2005). Although admit-
tedly NDVI is only a proxy for vegetation activity
and has various sources of uncertainty, this
index, particularly the AVHRR-derived record,
provides perhaps the best empirical device for
examining the dynamics of vegetation produc-
tivity at large spatial and temporal scales (Xiao
and Moody 2004b, 2005).

We used annual gross primary productivity
(GPP) data from a synthesis flux database of the
United States-China Carbon Consortium
(USCCC) (Xiao et al. 2013b) to test the efficacy
of NDVI for approximating GPP. This synthesis
database consists of flux data from 22 eddy
covariance flux sites across China and has been
used to assess the spatial patterns and climatic
controls of ecosystem carbon fluxes at the
national scale (Xiao et al. 2013b). We used annual
GPP to assess how well NDVI from the 250 m
vegetation index data derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS)
could approximate GPP in China for the period
2006–2010. We tested MODIS NDVI rather than
AVHRR NDVI because the flux tower data were
mainly available for the period that overlapped
with that of MODIS NDVI. We obtained the
MODIS ASCII Subsets for each of the eddy
covariance flux sites from Oak Ridge National
Laboratory (ORNL)’s Distributed Active Archive
Center for Biogeochemical Dynamics (DAAC;
http://daac.ornl.gov/MODIS/), and calculated to-
tal annual NDVI by summing 16-day NDVI
values throughout the year. There was a strong
linear relationship between annual GPP and
annual NDVI across the sites (Fig. 1; y ¼
127.20x � 295.48, R2 ¼ 0.70, p , 0.0001),
demonstrating that NDVI is a good proxy for
vegetation productivity at the annual scale.

We obtained the Global Inventory Modeling
and Mapping Studies (GIMMS) NDVI dataset
(Tucker et al. 2004, 2005) from the Global Land
Cover Facility (http://www.landcover.org). The
GIMMS dataset consists of NDVI data at the
global scale for the study period from 1982 to
2006. This dataset is based on observations from
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the AVHRR instrument onboard the NOAA
satellite series 7, 9, 11, 14, 16, and 17 (Tucker et
al. 2004). It has a spatial resolution of 8 km, and
consists of two 15-day composites for each
month aggregated from the daily NDVI images
within the 15-day period to minimize the effects
of cloud contamination. It is well known that the
NDVI signals from the AVHRR instruments can
be biased by sensor calibration, view geometry,
volcanic aerosols, and other effects. These effects
are not related to vegetation change and have
been corrected in the GIMMS dataset (Tucker et
al. 2004).

We extracted the AVHRR NDVI data for China
from the GIMMS dataset. For each pixel, we
calculated the total annual NDVI by summing up
all the 15-day NDVI values throughout the year.
Negative NDVI values were not included in the
summation as they are indicative of non-vegeta-
tion. We produced spatially averaged time series
of annual NDVI for the entire nation for the
period of 1982–2006. We also produced spatially
averaged NDVI time series for each province,
municipality, or autonomous region for the study
period. Provinces, municipalities, and autono-
mous regions are referred to as provinces for
simplicity hereafter.

MERRA reanalysis data
We used air temperature, precipitation, and

PAR data from the Modern Era Retrospective-
Analysis for Research and Applications (MERRA)
reanalysis dataset (Rienecker et al. 2011) obtained
from the Global Modeling and Assimilation Office

(GMAO; http://gmao.gsfc.nasa.gov/). The spatial
resolution of the MERRA dataset is 0.5 degree 3

0.667 degree. We extracted air temperature,
precipitation, and PAR data for China from the
global MERRA dataset. For each pixel, we
calculated the annual mean temperature, annual
precipitation, and annual mean PAR for each year
from 1982 to 2006. Monthly mean air temperature
and monthly PAR were averaged throughout each
year to calculate annual mean air temperature and
annual mean PAR. We calculated spatially aver-
aged time series for temperature, precipitation,
and PAR at both the national and provincial
scales.

Atmospheric CO2 concentrations
We obtained atmospheric CO2 concentrations

measured at Mauna Loa Observatory, Hawaii
from the Global Greenhouse Gas Reference
Network (http://www.esrl.noaa.gov/gmd/ccgg/
trends/). The Mauna Loa CO2 data, measured
as the mole fraction in dry air, constitutes the
longest record of direct measurements of CO2 in
the atmosphere. The monthly measurements
were started by C. David Keeling of the Scripps
Institution of Oceanography in March of 1958
(Keeling et al. 1976). The seasonal cycle has been
removed to generate the annual mean CO2

concentrations over the duration of this study
(http://www.esrl.noaa.gov/gmd/ccgg/trends/).

N deposition
We used N deposition data from a gridded N

deposition dataset (Lu and Tian 2007, Lu et al.
2012b) for the study period. This dataset was
interpolated from sampling data of precipitation
chemistry and ambient air concentration from
site-network observations across China using the
Kriging interpolation technique (Lu and Tian
2007). Aqueous NO3

� and NH4
þ were included

for the estimation of wet deposition, and ambient
NO2 was involved in the prediction of dry
deposition (Lu and Tian 2007). Precipitation
concentration was multiplied by 20-year mean
precipitation amounts to generate wet deposition
fluxes, while dry deposition fluxes were products
of the interpolated ambient CO2 concentration
and deposition velocities modeled for the main
vegetation types (Lu and Tian 2007). The
resulting gridded dataset is currently available
at annual time step (kg N ha NO3

�1 yr NO3
�1)

Fig. 1. Relationship between annual GPP and annual

NDVI across eddy covariance flux sites in China.
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and 10 km spatial resolution for the period from
1901 to 2006 (Lu and Tian 2007, Lu et al. 2012b).
For each 10 km grid cell, total N deposition (kg N
ha NO3

�1 yr NO3
�1) was calculated by summing

wet and dry N deposition for each year over the
period 1982–2006. As with NDVI, temperature,
precipitation, and PAR, we averaged total N
deposition spatially to generate spatially aver-
aged N deposition for the entire nation and for
each province.

Agricultural and forestry statistics
We used agricultural statistics to assess the

effects of improved agricultural practices on
vegetation productivity. In China, the Rural
Socio-Economic Survey Division of the National
Bureau of Statistics conducts annual surveys of
planted area, crop yield, management practices,
and many other agricultural variables (e.g.,
livestock, farm machinery, household income).
Crops include grains (e.g., rice, wheat, corn,
millet, and sorghum), beans, potatoes, and sweet
potatoes. For each province, we obtained annual
agricultural statistics on cropland area, crop
yield, irrigated area, fertilizer use, and pesticide
use for each year from 1982 to 2006 from the
Compilation of Agricultural Statistics for the 30 Years
since the Reform and Opening-up (National Bureau
of Statistics of China 2009). Among these
variables, crop yield was chosen as the metric
of agricultural intensity for assessing the influ-
ence of improved management practices on
cropland productivity.

We also used forestry statistics to assess the
influences of forest plantations on the dynamics
of vegetation productivity. The State Forestry
Administration of China conducts national forest
inventories every five years, and reports forest
cover (%), forest volume, total plantation area,
plantation volume, and other forestry variables.
To date, China has accomplished a total of seven
national forest inventories: 1973–1976 (1st), 1977–
1981 (2nd), 1984–1988 (3rd), 1989–1993 (4th),
1994–1998 (5th), 1999–2003 (6th), and 2004–2008
(7th). We obtained data on forest area, forest
volume, total plantation area, and plantation
volume for each province from the seven
inventories (State Forestry Administration of
China 1977, 1983, 1989, 1994, 2000, 2005, 2009).
Among these variables, total plantation area was
chosen as the afforestation metric for assessing

the influence of afforestation on forest produc-
tivity. For the national scale, we obtained the
annual forest plantation area for each year from
1953 to 2006 from the 2011 China Forestry
Statistics Yearbook (State Forestry Administration
of China, 2012).

Data analysis
The linear trends of the annual NDVI were

determined by linearly regressing NDVI as a
function of time on a per-pixel basis (Zhou et al.
2001, Xiao and Moody 2005). We also analyzed
the trends of NDVI at the national and provincial
scales. Similarly, we analyzed the linear trends of
the three climate variables (annual mean tem-
perature, annual precipitation, annual mean
PAR) and total N deposition at both spatial
scales. The linear trends of crop yield and total
forest plantation area were also analyzed at both
spatial scales.

We examined the statistical relationships be-
tween NDVI and the environmental factors over
the 25-year period at both the national and
provincial scales. We conducted our analyses at
both scales because the agricultural and forestry
statistics were only available at the provincial
scale, which allowed us to examine the relative
effects of both natural and human factors on
vegetation productivity. For the correlation of
NDVI with each controlling variable, if both time
series exhibited increasing or decreasing trends
over the 25-year period, we detrended both time
series prior to the correlation analysis, following
previous studies (Wang and You 2004). Two
variables can be correlated with each other
simply because they both increase (or decrease)
over time, leading to ‘‘spurious correlation.’’ For
each variable, we determined the linear fit
between the variable and time and then removed
the linear fit from the variable. The detrended
time series is essentially the residuals from the
linear fit.

Agricultural and forestry statistics were used
to assess the effects of improved agricultural and
forestry management practices on vegetation
dynamics. We analyzed the changes of cropland
area, total crop yield, crop yield per unit area,
irrigated area, chemical fertilizer use, and pesti-
cide use for both the national and provincial
scales over the 25-year period. The statistical
relationships between annual NDVI and crop
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yield were then analyzed at both national and
provincial scales. The annual NDVI was inte-
grated from all vegetated areas, while the crop
yield statistics represent the productivity of
croplands only. Therefore, the relationship be-
tween annual NDVI and crop yield reflects how
much variance in NDVI is explained by crop
yield, and the proportion of the variance ex-
plained is measured by the coefficient of deter-
mination (R2). We also assessed the changes in
total forest cover, total forest volume, total forest
plantation area, and total plantation volume. The
statistical relationships between annual NDVI
and total plantation area were examined at both
national and provincial scales. Similarly, NDVI,
crop yield, and total plantation area were
detrended prior to the correlation analysis to
avoid spurious correlation.

The natural (temperature, precipitation, PAR,
atmospheric CO2 concentrations, and N deposi-
tion) and human (crop yield and afforestation)
factors can be correlated with each other. For a
given factor, its correlation with NDVI can be
influenced by other factors. Therefore, we also
conducted partial correlation analysis (Kim 2014)
for all the factors to assess the true contribution
of each factor to NDVI while controlling for other
factors. Partial correlation analysis measures the
degree of association of two random variables,
independent of other random variables. We
regressed annual NDVI against all the environ-
mental and human factors together and calculat-
ed the partial R2 value for each factor. Partial
correlation analysis was conducted for both
national and provincial scales.

RESULTS

Trends in vegetation productivity
The mean annual NDVI sums over the period

1982–2006 varied substantially over space across
China, and generally exhibited a decreasing
gradient from the southeast to the northwest
(Fig. 2A). The highest annual NDVI values
(;6.0–8.0) were observed in a large part of the
southeast and a part of the southwest. The
remainder of the southwest and the majority of
the northeast exhibited intermediate NDVI val-
ues (;3.5–5.0). The semi-arid and arid northwest
and the majority of the Qinghai-Tibet Plateau
had low NDVI values (;0.5–2.0).

Fig. 2. Magnitude, spatial patterns, and trends of

annual NDVI in China over the period 1982–2006: (A)

magnitude and spatial patterns of annual NDVI

averaged over the 25-year period; (B) trends of the

annual NDVI on a per-pixel basis; and (C) trend of the

annual NDVI averaged across China. The values of the

trends in (B) are given by percentages (%) with

positive values indicating increases in NDVI and

negative values indicating decreases in NDVI. The

solid and dashed lines in (C) stand for annual NDVI

and its linear trend, respectively.
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The magnitude of the trends in annual NDVI
over the 25-year period also varied over space
across China (Fig. 2B). Many areas in the north
and northwest and parts of the northeast and the
Qinghai-Tibet Plateau exhibited increasing
trends in annual NDVI, and some areas in these
regions also exhibited decreasing trends. Nota-
bly, the majority of the south and southeast and a
large part of the southwest did not exhibit
increases in annual NDVI and, instead, many
areas in these regions showed decreasing trends.

At the national scale, the spatially averaged
annual NDVI varied from year to year with a
particularly high value in 1990 and particularly
low values in 1984 and 2000 (Fig. 2C). Overall,
the annual NDVI exhibited an increasing trend
over the period of 1982–2006 (Fig. 2C; y¼ 0.0047x
� 5.14, R2¼ 0.29, p , 0.01). At the national scale,
the annual NDVI slightly increased over the 25-
year period with an increase of 2.7% (or an
absolute value of 0.11). At the provincial scale,
increasing trends in annual NDVI were observed
for a total of 11 provinces (Fig. 3). A decreasing
trend in annual NDVI was observed for Shanghai
(Fig. 3). The remaining 20 provinces exhibited no
significant trends in NDVI ( p . 0.05).

Effects of climate change, rising atmospheric
CO2, and N deposition

The annual mean temperature averaged across
China exhibited a moderate increasing trend over
the period 1982–2006 (Fig. 4A; y¼ 0.03x� 57.01,
R2 ¼ 0.44, p , 0.001). In contrast, the annual
precipitation exhibited a slight downward trend,
although not statistically significant (Fig. 4B; p ¼
0.66); annual mean PAR exhibited no significant
trend ( p ¼ 0.19). At the national scale, there was
a significant relationship between annual NDVI
and annual mean temperature over the 25-year
period (y ¼ 0.13xþ 3.21; R2 ¼ 0.51, p , 0.01). We
detrended the two times series (Fig. 4C) and
examined the statistical relationship between
these two variables again. There was still a
significant relationship between these two vari-
ables (Fig. 4D; R2 ¼ 0.31, p , 0.01). Annual NDVI
was not significantly correlated with annual
precipitation or PAR at the national scale.

The atmospheric CO2 concentrations had been
dramatically rising and exhibited a strong in-
creasing trend over the period 1982–2006 (Fig.
5A; y ¼ 1.63x � 2892.79; R2 ¼ 0.99, p , 0.001).

Fig. 3. Trends of annual NDVI at the provincial scale

over the period 1982–2006: (A) absolute changes in

annual NDVI and (B) relative changes (%) in annual

NDVI. The shaded areas are provinces (municipalities,

autonomous regions) with significant trends in annual

NDVI. All of these provinces except Shanghai have

positive trends. The following provinces were assessed

in this study: Heilongjiang (HLJ), Inner Mongolia (IM),

Xinjiang (XJ), Jilin (JL), Liaoning (LN), Gansu (GS),

Hebei (HB), Beijing (BJ), Shanxi (SX, east), Tianjin (TJ),

Shaanxi (SX, west), Ningxia (NX), Qinghai (QH),

Shandong (SD), Xizang (XZ), Henan (HN, north),

Jiangsu (JS), Anhui (AH), Sichuan (SC), Hubei (HB),

Shanghai (SH), Zhejiang (ZJ), Hunan (HN, south),

Jiangxi (JX), Yunnan (YN), Guizhou (GZ), Fujian (FJ),

Guangxi (GX), and Guangdong (GD). Taiwan (TW),

Hainan (HN), Chongqing (CQ), Hongkong, and

Macau were not included in this study due to lack of

data.
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There was a significant relationship between
annual NDVI and atmospheric CO2 concentra-
tions prior to detrending (Fig. 5B; R2¼ 0.29, p ,

0.01). However, the detrending of both time
series eliminated the relationship and the de-
trended NDVI was not significantly correlated
with the detrended CO2 (Fig. 5C; p ¼ 0.83).
Similarly, total N deposition showed a strong
increasing trend during the 25-year period (Fig.
5D; y ¼ 0.21x � 394.49; R2 ¼ 0.94, p , 0.001).
Although there was a significant relationship
between annual NDVI and N deposition prior to
detrending (Fig. 5E; R2 ¼ 0.29, p , 0.01), the
detrended NDVI was not significantly correlated
with the detrended N deposition (Fig. 5F; p ¼
0.76).

At the provincial scale, annual mean temper-

ature exhibited an increasing trend for the
majority of the provinces; annual precipitation
exhibited an increasing trend for four provinces
(Xinjiang, Gansu, Ningxia, and Sichuan) and a
decreasing trend for Heilongjiang; PAR exhibited
an increasing trend for Heilongjiang, Inner
Mongolia, Zhejiang, Hunan, and Jiangxi and a
decreasing trend for Gansu, Ningxia, and Si-
chuan (Fig. 6). There was a significant relation-
ship between detrended annual NDVI and
detrended annual mean temperature for seven
provinces: Gansu, Qinghai, Sichuan, Chongqing,
Hubei, Yunan, and Hunan, with R2 values
ranging from 0.15 to 0.29 (Fig. 7A). There were
no significant relationships between these two
variables for the remaining provinces. Among
the 11 provinces that exhibited increases in NDVI

Fig. 4. Trends of annual mean temperature and annual precipitation and the relationships of these two climate

variables with annual NDVI over the period 1982–2006: (A) trend of annual mean temperature (R2 ¼ 0.44, p ,

0.001); (B) trend of annual precipitation ( p ¼ 0.66); (C) detrended NDVI and detrended temperature; and (D)

relationship between detrended NDVI and detrended temperature (R2 ¼ 0.31, p , 0.01). For (A) or (B), the solid

line stands for annual mean temperature or annual precipitation, and the dashed line stands for the trend line.
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(Fig. 3), only two provinces—Qinghai and Henan
exhibited significant relationships between NDVI
and temperature (Fig. 7A). At the provincial
scale, there was a significant positive relationship
between detrended annual NDVI and detrended
annual precipitation for Xinjiang (Fig. 7B). No
province exhibited a significant relationship
between detrended NDVI and detrended PAR.

At the provincial scale, there was a significant
relationship between detrended annual NDVI
and detrended atmospheric CO2 concentrations
for two provinces: Shandong and Sichuan, and
there was no significant relationship between
these two variables for the remaining provinces
(Fig. 7C). Total N deposition exhibited an
increasing trend for each province that we
analyzed (Fig. 6). Detrended NDVI was correlat-
ed with detrended N deposition for four prov-
inces: Beijing, Tianjin, Hubei, and Fujian with R2

values ranging from 0.17 to 0.31 (Fig. 7D). The
correlation between NDVI and N deposition was
positive for Beijing, Tianjin, and Hubei and

negative for Fujian.

Effects of agricultural activities and afforestation
The trends in China’s crop yield, cropland area,

crop yield per unit area, irrigated area, and usage
of both chemical fertilizers and pesticides from
1982 to 2006 are illustrated in Appendix: Fig. A1.
The total crop yield of China exhibited a strong
increasing trend over the 25-year study period,
although the total cropland area exhibited a
declining trend. The total crop yield was 4.983108

tons in 2006, about 40.3% higher than that of 1982
(3.553108 tons), while the total cropland area
declined by 7.5% from 1982 (11.353107 ha) to
2006 (10.503107 ha). In the meanwhile, the crop
yield per unit area exhibited a strong increasing
trend from 1982 to 2006 and was elevated from
3.12 tons/ha to 4.75 tons/ha with an increase of
52.2%. The total irrigated area of China also
strongly increased during the 25-year study
period. The total irrigated area increased by
26.2% from 1982 (4.423107 ha) to 2006 (5.583107

Fig. 5. Trends of atmospheric CO2 concentrations and N deposition and the relationships of these two variables

with annual NDVI over the period 1982–2006: (A) trend of annual mean CO2 concentrations; (B) relationship

between annual NDVI and atmospheric CO2 concentrations prior to detrending (R2 ¼ 0.29, p , 0.01); (C)

relationship between detrended NDVI and detrended CO2 concentrations ( p¼ 0.83); (D) trend of annual total N

deposition; (E) relationship between annual NDVI and N deposition prior to detrending (R2 ¼ 0.29, p , 0.01); (F)

relationship between detrended NDVI and detrended N deposition ( p ¼ 0.76). For (A) or (D), the solid line

stands for annual mean atmospheric CO2 concentrations or N deposition, and the dashed line stands for the

trend line.
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ha). Similarly, the total usage of both chemical

fertilizers and pesticides in agriculture had

dramatically increased. The total fertilizer use

increased by 226.5% from 1982 (1.513107 tons) to

2006 (4.933107 tons) and the total pesticide use

increased by 100.0% from 1991 (0.773106 tons) to

2006 (1.543106 tons).

The changes in China’s forest plantation area,

total forest area, total plantation volume, and

total forest volume are illustrated in Appendix:

Fig. A2. The annual forest plantation area ranged

between 1.0 and 9.23106 ha per year since 1953,

and was above 4.03106 ha per year for most

years. According to the seven national forest

inventories, the total forest area had systemati-

cally increased from 1973 to 2008. From the first

(1973–1976) to the seventh (2004–2008) invento-

ry, the total forest area increased by 0.733108 ha

(59.8%). The total plantation volume elevated

from 1.643108 m3 in 1973–1976 to 19.613108 m3

in 2004–2008 with a 12-fold increase. Within this

time domain, the total forest volume increased

from 86.563108 m3 to 137.213108 m3 with an

increase of 58.5%.

At the national scale, there was a significant

relationship between annual NDVI and total

crop yield over the period 1982–2006 (Appendix:

Fig. A3; y ¼ 0.03x þ 3.82, R2 ¼ 0.33, p , 0.01).

However, the detrending of the two time series

eliminated the relationship between the two

variables (Appendix: Fig. A3; p ¼ 0.17). Similarly,

at the national scale, there was a significant

relationship between annual NDVI and the total

forest plantation area over the period 1982–2006

(Appendix: Fig. A4; y ¼ 0.085xþ 4.02, R2 ¼ 0.30,

p , 0.01). The detrending of the two time series

also negated the relationship between detrended

NDVI and detrended plantation area (Appendix:

Fig. 6. Trends in annual mean temperature, annual precipitation, PAR, N deposition, crop yield, and

afforestation at the provincial scale over the period 1982–2006. Upward bars indicate significant increasing

trends, downward bars indicate decreasing trends, and no bars indicate insignificant trends.

v www.esajournals.org 10 November 2015 v Volume 6(11) v Article 233

XIAO ET AL.



Fig. A4; p ¼ 0.49).
At the provincial scale, crop yield exhibited an

increasing trend for 17 provinces and a decreas-
ing trend for three provinces (Beijing, Shanghai,
Zhejiang); total forest plantation area exhibited
an increasing trend for the majority of the
provinces (Fig. 6). The relationship between
detrended NDVI and detrended crop yield
varied by province (Fig. 8). Detrended NDVI
was correlated with detrended crop yield for
seven provinces: Inner Mongolia, Heilongjiang,
Jilin, Liaoning, Shanxi, Ningxia, and Gansu, and
all these provinces exhibited positive correla-
tions. Among the 11 provinces with significant
increases in NDVI (Fig. 3), three of them
exhibited significant relationships between an-
nual NDVI and total crop yield: Inner Mongolia,
Liaoning, and Shanxi (Fig. 8). We also examined

the relationship between detrended annual
NDVI and detrended total forest plantation area
at the provincial scale, and there was no
significant relationship between these two vari-
ables for any province.

Relative contributions of natural
and human factors

We calculated the partial correlation for each of
the environmental (temperature, precipitation,
PAR, atmospheric CO2 concentrations, and N
deposition) and human (crop yield and affores-
tation) factors with annual NDVI at the national
scale while controlling for other environmental
and human factors. The partial R2 values and the
associated p values are summarized in Table 1. At
the national scale, temperature made the greatest
contribution to annual NDVI; afforestation made

Fig. 7. Relationships of annual NDVI with annual mean temperature (A), annual precipitation (B), atmospheric

CO2 concentrations (C), and N deposition (D) at the provincial scale in China over the period 1982–2006. The

shaded areas stand for provinces (municipalities, autonomous regions) with significant relationships between

NDVI and temperature (or precipitation, atmospheric CO2 concentrations, N deposition). The numbers stand for

the R2 values. All the relationships are positive except the relationship between annual NDVI and N deposition

for Fujian (FJ).
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moderate contribution to increased NDVI; crop
yield made a minor contribution. Precipitation
and PAR were statistically significant but their
partial R2 values were nearly 0. Atmospheric
CO2 concentrations and N deposition were not
statistically significant.

We also calculated the partial correlation for
each of the environmental and human factors
with annual NDVI at the provincial scale while
controlling for other factors (Fig. 9). A total of 23
provinces had partial R2 � 0.14 for at least one
factor. Temperature and precipitation exhibited
partial R2 � 0.14 for six provinces each, with
partial R2 values ranging from 0.14 to 0.18 and
from 0.14 to 0.40, respectively. Atmospheric CO2

concentrations, N deposition, and afforestation
had partial R2 � 0.14 for 4 provinces each. PAR
and crop yield exhibited partial R2 � 0.14 for 10
and 11 provinces, respectively. Crop yield had
relatively high partial R2 values with most values
ranging from 0.25 to 0.49. Three or more of the
environmental and human factors all exhibited

R2 � 0.14 for seven provinces: Xinjiang (temper-
ature þ precipitation þ afforestation), Beijing
(precipitation þ PAR þ CO2), Tianjin (CO2 þ N
deposition þ crop yield), Hebei (CO2 þ N
deposition þ crop yield þ afforestation), Shan-
dong (PAR þ CO2 þ crop yield), Anhui (temper-
atureþ precipitationþ PARþN deposition), and
Hunan (PAR þ crop yield þ afforestation).

DISCUSSION

Effects of natural factors
on vegetation productivity

The overall increasing trend in vegetation
productivity for China over the period 1982–
2006 was generally consistent with previous
NDVI-based studies (Xiao and Moody 2005,
Park and Sohn 2010). Several studies showed
that vegetation productivity exhibited increasing
trends in China at the national scale (Xiao and
Moody 2004a, Park and Sohn 2010), and some
studies showed increasing trends in different
parts of the country such as northwestern China
(Ma et al. 2003, Xiao et al. 2013a), Loess Plateau
(Xiao 2014), and Inner Mongolia (Brogaard et al.
2005). The increases in vegetation productivity
inferred from NDVI were also generally consis-
tent with results based on other approaches. For
example, the analyses of national forest invento-
ries and crop yield statistics showed that the total
forest biomass carbon stocks and cropland NPP
increased nationally during the 1980s and 1990s
(Fang et al. 2001, Huang et al. 2007). Modeling
studies have also indicated that the NPP of
China’s terrestrial ecosystems increased during
the two decades (Cao et al. 2003, Wang et al.
2007).

At the national scale, air temperature was the
leading climatic factor driving the increases in
vegetation productivity. Previous studies showed
similar findings (Zhou et al. 2001, Xiao and
Moody 2005, Xiao et al. 2013a). Elevated air
temperature can advance the leaf-out (or green-

Fig. 8. Relationship between annual NDVI and crop

yield at the provincial scale in China over the period

1982–2006. The numbers stand for the R2 values. The

shaded areas stand for provinces (municipalities,

autonomous regions) with significant relationships

between annual NDVI and crop yield.

Table 1. Partial correlation coefficients, R2, and p-values of the environmental and human factors with annual

NDVI at the national scale for China over the period 1982–2006.

Statistics Temperature Precipitation PAR CO2 N deposition Crop yield Afforestation

R 0.61 �0.09 �0.01 0.13 0.11 0.40 0.50
R2 0.37 0.01 0.00 0.02 0.01 0.16 0.25
p-value ,0.01 ,0.01 ,0.001 0.58 0.65 0.07 0.01
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up) date and/or delay the senescence date,

thereby lengthening the growing season in China

(Song et al. 2010), and a longer growing season

can in turn increase annual GPP and NPP (Zhang

et al. 2008). A recent synthesis study based on

eddy covariance flux observations across China

demonstrated that the growing season length is

one of the key factors controlling the spatial

patterns of carbon and water fluxes for China’s

terrestrial ecosystems (Xiao et al. 2013b). At the

provincial scale, however, air temperature only

made a significant contribution to the increases

of NDVI for a very limited number of provinces

while controlling for other factors. At the

national scale, annual precipitation exhibited a

downward trend and made no significant con-

tribution to the increases in vegetation produc-

tivity. Previous studies showed that the effects of

precipitation on increases in vegetation produc-

tivity are likely limited to certain water-limited

areas (Dan et al. 2007, Yan et al. 2009). However,

our results showed that precipitation not only

enhanced vegetation productivity in Xinjiang, a

semi-arid and arid region, but also contributed to

the increases in NDVI in humid provinces in

eastern China while controlling for other factors

likely because the increase in precipitation

reduced the duration of drought over the

growing season.

PAR alone was not correlated with NDVI at

both national and provincial scales; while con-

trolling for other factors, PAR was significantly

correlated with NDVI for 10 provinces in the

eastern half the country. PAR did not significant-

Fig. 9. Partial R2 of annual mean temperature, annual precipitation, PAR, atmospheric CO2 concentrations, N

deposition, crop yield, and afforestation with annual NDVI at the provincial scale in China over the period 1982–

2006. All time series were detrended prior to correlation analysis. The numbers stand for the R2 values. The

shaded areas are provinces (municipalities, autonomous regions) with significant relationships between NDVI

and at least one factor.
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ly increase in most of these provinces where
annual average surface-level PM2.5 concentra-
tions were relatively high (de Sherbinin et al.
2014). Diffuse radiation exhibited an increasing
trend in China (Ren et al. 2013) likely due to air
pollution and the increase in aerosols (PM2.5).
Diffuse radiation can result in higher light use
efficiency by plant canopies and therefore have
advantages over direct radiation (Gu et al. 2002).
The increase in diffuse radiation is likely respon-
sible for the enhancement effects of PAR on plant
growth at the provincial scale. Atmospheric CO2

concentrations and N deposition made no sig-
nificant contribution to the increases in vegeta-
tion productivity at the national scale, while they
significantly contributed to the increases in
vegetation productivity for several provinces in
northern, eastern, and southeastern China while
controlling for other factors. Rising atmospheric
CO2 concentrations can enhance vegetation
productivity locally or regionally. For example,
the Free-air CO2 enrichment (FACE) experiments
showed that elevated atmospheric CO2 enhanced
photosynthesis, and trees were more responsive
than other plant functional types (Ainsworth and
Long 2005). A previous modeling study showed
that rising atmospheric CO2 made a significant
contribution to the increase in carbon storage in
China (Tian et al. 2011). The discrepancy between
our results and these previous studies can be
partly attributed to the differences in the spatial
scales and to the fact that our results showed the
effects of atmospheric CO2 on GPP as approxi-
mated by NDVI, while other studies examined
net carbon uptake or carbon storage

The effects of N deposition on the carbon cycle
at broad scales have been controversial (Nadel-
hoffer et al. 1999, Magnani et al. 2007). One of
these two studies showed that N deposition
made a minor contribution to the carbon sink
(Nadelhoffer et al. 1999), while the other con-
cluded that the forest carbon sink was over-
whelmingly driven by N deposition (Magnani et
al. 2007). Another recent modeling study showed
that atmospheric CO2 and N deposition en-
hanced China’s land carbon sink for the period
1961–2005 (Tian et al. 2011). Our results showed
that despite the widespread increase in N
deposition in China, its enhancement effects on
vegetation productivity at the provincial scale
were limited to some regions with large increases

in N deposition (Lu et al. 2012b).

Effects of human activities
on vegetation productivity

Besides multiple environmental factors (cli-
mate change, atmospheric CO2 concentrations,
and N deposition), human activities including
afforestation and agricultural management also
increased productivity across the landscape.
Afforestation and reforestation have been nation-
wide efforts in China since the early 1950s. More
recently, the ‘‘Grain for Green’’ program
launched in 1999 converted agricultural lands
on steep slopes to forests and grasslands.
According to the national forest inventories, the
persistent, nationwide efforts on forest planta-
tions led to the increase in total forest area by
;60%. China now has the largest area of forest
plantations in the world. Afforestation has
contributed to the increases in vegetation pro-
ductivity inferred from NDVI. Previous studies
showed that the conversions of farmlands to
forests and grasslands have increased plant
productivity as approximated by NDVI and
enhanced vegetation index (EVI) (Chen et al.
2007, Li et al. 2011, Lu et al. 2012a, Xiao 2014) and
enhanced NPP, biomass, and carbon sequestra-
tion (Wang et al. 2007, Su and Fu 2013, Liu et al.
2014). At the national scale, afforestation ex-
plained 25.5% of the variance in NDVI while
controlling for other factors, although forest
plantation alone was not significantly correlated
with NDVI after detrending. At the provincial
scale, afforestation contributed to the increases in
NDVI for some provinces while controlling for
other factors. Our results showed that forest
plantations were partly responsible for the
increases in vegetation productivity inferred
from NDVI.

At the national scale, crop yield explained
15.8% of the variance in NDVI, although crop
yield alone was not significantly correlated with
NDVI after detrending. At the provincial scale,
crop yield was significantly correlated with
NDVI for most provinces with increasing NDVI.
Agriculture is one of the most important sectors
of the economy in China and tremendous efforts
have been made to improve agricultural produc-
tivity. For example, China has built more than
80,000 reservoirs across the country since the
foundation of the People’s Republic of China in
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1949 (Ministry of Water Resources of China
2013). The improvement of irrigation infrastruc-
tures led to the substantial increase in irrigated
area, which has facilitated the development of
agriculture and the growth of crop productivity
(Li et al. 2011). Meanwhile, the application of
chemical fertilizers and pesticides in agriculture
has dramatically increased. Moreover, higher-
yield crop types gradually replace lower-yield
crop types. As a result, the crop yield per unit
area increased by ;50% because of these
improved management practices. Therefore, Chi-
na’s crop yield had considerably increased
although the total cropland area declined due
to urbanization and conversions of cropland to
forests and other land uses. The analysis of crop
yield statistics showed that the total cropland
NPP increased in China (Huang et al. 2007). Our
results show that elevated crop yield contributed
to the increases in vegetation productivity at both
national and provincial scales.

Relative contributions of natural
and human factors

Although numerous studies have used satel-
lite-derived NDVI to examine vegetation dynam-
ics, most of these studies only analyzed the
contribution of climate change (Zhou et al. 2001,
Ichii et al. 2002, Xiao and Moody 2005). Few
studies also examined the influence of rising
atmospheric CO2 concentrations (Tian et al. 2011)
or N deposition (Mao et al. 2012) at regional
scales. The relative effects of environmental
factors and human activities remain unclear
(Evans and Geerken 2004, Seaquist et al. 2009,
Li et al. 2012). We assessed the relative effects of
multiple environmental (climate change, rising
atmospheric CO2 concentrations, and N deposi-
tion) and human (improved agricultural practic-
es and afforestation) factors on vegetation
productivity in China. Our results showed that
their effects varied by spatial scale. At the
national scale, temperature was the leading
driver, followed by afforestation and crop yield.
Altogether, temperature, plantation area, and
crop yield explained 78.1% of the variance in
vegetation productivity as approximated by
NDVI, indicating that the increasing productivity
in China was mainly driven by elevated air
temperature, afforestation, and improved agri-
cultural management practices. At the national

scale, precipitation, PAR, rising atmospheric CO2

concentrations, and N deposition played no
significant role in enhancing productivity.

At the provincial scale, the effects of the
environmental and human factors varied not
only by province but also by factor for several
reasons. First, the magnitude and direction of
long-term trends in each factor varied with
province. Second, different vegetation types
may exhibit different responses to these natural
and human factors, while the distribution of
vegetation types substantially varied with prov-
ince. Third, the importance of some factors,
particularly crop yield and afforestation, varied
across provinces. Although crop yield and
afforestation exhibited increasing trends for
many provinces, cropland and total forest plan-
tation area may only account for small percent-
ages of the vegetated area. Finally, the influences
of these factors may cancel each other, compli-
cating the assessment of their relative contribu-
tions to increases in vegetation productivity.
Previous studies have examined the effects of
one or more factors on vegetation productivity
for different regions in China (Xiao and Moody
2004a, Dan et al. 2007, Yan et al. 2009, Tian et al.
2011), and taken together, these studies also
showed that the influences of the controlling
factors vary with space. Our results show that
each factor explained a part of the variance in
NDVI for some provinces, and the dynamics of
NDVI for some provinces could be attributed to
the combined effects of three or more factors. At
the provincial scale, PAR was positively correlat-
ed with NDVI in more provinces than tempera-
ture or precipitation, indicating that PAR was the
leading climatic factor at this scale; temperature
and precipitation were equally important at the
provincial scale. Crop yield was correlated with
NDVI for more provinces than was temperature,
precipitation, rising atmospheric CO2 concentra-
tions, N deposition, or afforestation at the
provincial scale. Overall, crop yield and PAR
significantly contributed to increased productiv-
ity for more provinces than other natural and
human factors.

Our results showed that the effects of natural
and human factors on vegetation productivity
varied with spatial scale, and the dominant
factors of increased vegetation productivity
differed at the national and provincial scales.
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Our results also indicated that it is important to
remove the potential ‘‘spurious correlation.’’
Moreover, assessing the partial correlation of
each driving factor with NDVI while controlling
for other driving factors can better quantify the
true contribution of each factor to increases in
vegetation productivity.

Challenges and limitations
Disentangling the relative effects of environ-

mental and human factors on vegetation dynam-
ics remains a challenge. First, these factors
influence vegetation productivity at different
spatial and temporal scales. Second, the increases
in vegetation productivity at the national and
provincial scales include both enhanced plant
growth and increase in vegetation cover that are
challenging to differentiate from each other at
these scales, although their controlling factors are
likely different. Third, detailed information on
human activities is not as readily available as
climate data. Fourth, the gridded information on
land use change is typically too coarse to capture
the types of land use conversions. Finally, the
datasets on climate change and human activities
are characterized by different spatial units and
formats. Unlike climate data, which are typically
point-based or gridded, agricultural and forestry
statistics are typically based on administrative
units (e.g., provinces) and provide no informa-
tion on the exact magnitude and locations of the
variables such as crop yield, fertilizer use, and
forest plantations within those units.

Our statistical approach combined gridded
satellite observations, climate data, atmospheric
CO2 concentrations, N deposition data, and
provincial statistics on agriculture and forestry.
This approach allowed us to examine the effects
of environmental factors and human activities on
the increases in vegetation productivity inferred
from NDVI and to assess the relative contribu-
tion of these factors from the provincial to the
national scale. Despite its effectiveness, our
approach has several limitations. First, NDVI is
a proxy for GPP and cannot measure NPP or
NEP well, while the translation from GPP to NPP
(and/or NEP) is important for carbon cycling
studies (Huang et al. 2007, Xiao et al. 2009).
Second, the attribution of NDVI increases to
enhanced plant growth or increase in vegetation
cover remains challenging. Third, our statistical

approach lacks mechanistic understanding of
ecosystem function and processes. Finally, each
province typically spans a large land area, and
the effects of the climatic and human factors
could cancel out over space and mask the
variability of productivity within each province.
Spatially explicit information on agricultural
management and afforestation that is more
detailed than the provincial scale is essential for
better understanding of the responses of in-
creased vegetation productivity to agricultural
management and afforestation.

Ecosystem models have also been used to
assess the effects of climate change and human
activity in China (Tian et al. 2011, Mu et al. 2013).
Ecosystem models can provide a mechanistic
understanding of ecosystem function and pro-
cesses and conduct ‘‘experiments’’ to test the
relative effects of different drivers on plant
productivity (Xiao et al. 2009, Tian et al. 2011).
Ecosystem models can explicitly the effects of
climate change (Zhang et al. 2014b, Huang et al.
2015, Thorn et al. 2015) and disturbance (Wang et
al. 2014, Zhang et al. 2015). Despite their
complexity and mechanistic nature, ecosystem
models can lead to substantial uncertainty in
plant productivity (Schaefer et al. 2012, Raczka et
al. 2013, Xiao et al. 2014). Remote sensing proxies
(e.g., NDVI) and data-driven, statistical ap-
proaches can have similar or slightly higher
performance than process-based ecosystem mod-
els for simulating GPP (Raczka et al. 2013, Verma
et al. 2014). In addition, it is still a challenge for
process-based ecosystem models to simulate the
effects of human activities because of the lack of
spatially explicit, gridded data on agricultural
and forest management practices. Further efforts
are needed to further disentangle the effects of
climate change and human activity. Empirical
and process-based approaches are complemen-
tary approaches, and can provide independent,
alternative perspectives on the attribution of
increased vegetation productivity. The future
intercomparison of these different methods can
also lead to improvement to both approaches.

CONCLUSIONS

We assessed the effects of multiple natural and
human factors on vegetation productivity as
approximated by NDVI in China. The contribu-
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tions of these factors to increases in vegetation
productivity varied with spatial scale. At the
national scale, elevated air temperature made the
greatest contribution (36.8%) to increases in
vegetation productivity, followed by afforesta-
tion (25.5%) and crop yield (15.8%); the remain-
ing factors made no significant contribution.
Altogether, temperature, afforestation, and crop
yield explained 78.1% of the variance in NDVI.
At the provincial scale, crop yield and PAR were
correlated with NDVI for more provinces than
other factors, indicating that elevated crop yield
resulting from improved agricultural manage-
ment practices and increasing diffuse radiation
associated with air pollution and high concen-
trations of aerosols were more important than
other factors in increasing vegetation productiv-
ity. Each factor explained a part of the variance in
NDVI for some provinces, and the increases in
NDVI for many provinces could be attributed to
the combined effects of multiple factors. The true
influences of the natural and human factors can
be obscured by the correlation among these
variables, and it is essential to examine the
contribution of each factor while controlling for
other factors.

Climate is expected to continue to change in
China during the remainder of the 21st century
(IPCC 2013). Meanwhile, human activities such
as improved agricultural management practices,
forest plantations, urbanization, and policy-driv-
en land use conversions and ecological restora-
tion are also expected to rapidly occur. These
projected changes will likely have larger influ-
ences on vegetation productivity in China.
Future efforts are needed to further disentangle
the effects of environmental factors and human
activities by improving empirical and modeling
approaches and developing more fine-scaled and
more accurate datasets on vegetation dynamics
and the associated environmental and human
factors.
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