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Abstract

Human activity recognition has been a hot topic for some time. It has several challenges,

which makes this task hard and exciting for research. The sparse representation became

more popular during the past decade or so. Sparse representation methods represent a

video by a set of independent features. The features used in the literature are usually low-

level features. Trajectories, as middle-level features, capture the motion of the scene, which

is discriminant in most cases. Trajectories have also been proven useful for aligning small

neighborhoods, before calculating the traditional descriptors. In fact, the trajectory aligned

descriptors show better discriminant power than the trajectory shape descriptors proposed

in the literature.

However, trajectories have not been investigated thoroughly, and their full potential has

not been put to the test before this work. This thesis examines trajectories, defined better

trajectory shape descriptors and finally it augmented trajectories with disparity information.

This thesis formally define three different trajectory extraction methods, namely interest

point trajectories (IP), Lucas-Kanade based trajectories (LK), and Farnback optical flow

based trajectories (FB). Their discriminant power for human activity recognition task is

evaluated. Our tests reveal that LK and FB can produce similar reliable results, although

the FB perform a little better in particular scenarios. These experiments demonstrate which

method is suitable for the future tests. The thesis also proposes a better trajectory shape

descriptor, which is a superset of existing descriptors in the literature. The examination

reveals the superior discriminant power of this newly introduced descriptor. Finally, the

thesis proposes a method to augment the trajectories with disparity information. Disparity

information is relatively easy to extract from a stereo image, and they can capture the

3D structure of the scene. This is the first time that the disparity information fused with

trajectories for human activity recognition.

To test these ideas, a dataset of 27 activities performed by eleven actors is recorded and

hand labelled. The tests demonstrate the discriminant power of trajectories. Namely, the
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proposed disparity-augmented trajectories improve the discriminant power of traditional

dense trajectories by about 3.11%.
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CHAPTER 1

Introduction

1.1 Artificial Intelligence and Computer Vision

Artificial intelligence (AI) is the process of making machines to represent similar intelli-

gence as human beings or at least pretend it1. Most of the work in this area, is dedicated to

creation of specific domain tasks; sometimes called weak AI. For example, machine vision

is the process of enabling machines to view the world similar to human beings.

Nowadays, cameras are available and used for many different tasks; from surveillance

systems to smartphones and even on many gaming consoles. Cameras capture the visual

world and transform it into digital data. Arguably, their task is quite similar to the human

eye. A computerized system can compress, store or retrieve these data in different image

or video formats2.

Computer vision, on the other hand, is the process of analyzing digitalized images and

videos to add semantical meaning to them. For example object detection aims to identify

different objects in an image, or the scene categorization in which the algorithm should

determine if a particular picture shoots in a beach or an office.

Computer vision usually incorporates (and sometimes enhances) the algorithms and

tools from other branches of AI, namely machine learning and pattern recognition disci-

plines, which are specialized tools for learning from experience. The learning process is

usually done by presenting many instances of different classes to the algorithm. Learning

process aims to identify the type of new samples provided to it. The learning algorithms

is split into two major sub-categories: supervised and unsupervised. If the instances pre-

1Refer to Turing Test and Chinese room argument
2A video here is merely a sequence of static images.
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1. INTRODUCTION

sented during learning phase has the class labels with them, it is called supervised learning.

Otherwise, the algorithms are referred to as unsupervised learning. Most of the work in

machine vision uses supervised machine learning. The ultimate goal of supervised learn-

ing algorithms is to create a model that generalizes the training samples to a broader model

and detect the unseen samples (in addition to seen samples) correctly.

Human activity recognition is a trivial task for almost any human. It is often easy for

a person to say what other people do only by watching them performing the activity. This

simple task is moderately challenging for a computer vision algorithm.

1.2 Human Activity

Humans perform different tasks every day. Each of these tasks usually involves the human

body movements in a certain amount. For instance, walking and running involve movement

of the majority of human limbs, while typing on a computer usually solely contains move-

ments of fingers and eyes. Some of the human body movements have particular meaning

for other humans. As a result, they usually have a name. On the other hand, other move-

ments do not have a name.

Arguably human movements can be divided into four categories based on their level of

complexities:

1. Gestures

2. Actions or activities

3. Interactions

4. Group activities

The simplest form of human movements are the gestures, which are separate move-

ments of parts of human body. They usually only contain hand movements. Hand waving

and American sign language (ASL) are good examples of gestures.

Actions or activities are particular movements of a single human that usually require the

whole body and often have a meaningful interpretation. In other words, there is a phrase

2
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in a natural language that can be used to describe it. For example: “walking” or “shooting

a ball”. Although some authors believe that activities are more complicated than actions,

others used these words interchangeably. Throughout this dissertation, we consider them

the same as it is difficult to draw a line between them.

Interactions are activities that can not be done solely by a single person. Human-human

and human-object interactions are two main types of interactions. Typical examples are

two persons fighting or a person carrying a suitcase.

Group activities are the most complicated form of human motion. Group activity re-

ferred to a group of people, usually more than two, interacting to achieve a common objec-

tive. For example a group of people playing football or a group of people cooperating to

steal a suitcase.

1.3 Problem Statement

Automatic human activity recognition (HAR) is the task of analyzing human movements in

a video, especially the analysis of the whole body movement, to detect the type of activity

he or she is doing. In a more specific form, it can be considered as the task of labeling

unknown video clips, while each of them contains a single human performing a single

activity. Here we are interested in analyzing the whole body movements.

1.4 Applications

HAR has many potential applications. Here we name four groups of application:

1. Video surveillance

2. Human-computer interaction (HCI)

3. Automatic video content analysis

4. Animation synthesis.

3
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Video surveillance has several applications nowadays. Patient monitoring and public

area surveillance help to protect human lives every day. Traditionally, cameras capture live

videos from the area under the surveillance, and a group of security experts monitors these

videos for potential threats. Human monitoring is expensive, and it is also prone to error.

In an ideal situation, a software might replace the human surveillance totally, but it can also

be used as an assistant to humans. For example, the system may draw attention to some

abnormal activities in a crowded terminal by raising a red flag.

Human-computer interaction (HCI) is another potential application for human activity

recognition. Human-computer interactions have been changed several times during the his-

tory: punch cards, keyboards, mice, and touchable screens are just some examples. Nowa-

days, there are some off-the-shelf cameras that can take pictures when people smile in front

of them. Some game consoles follow player movements and respond to them accordingly.

The human-like robots in the labs need to analyze human actions to communicate with

them more effectively. Automatic human activity recognition technologies could lead to

the design of next generations of human-computer interfaces.

Another application of HAR is the analyzing of existing videos contents. With the

growth of the internet and with the help of web 2.0 technologies, there is a great deal of

online digital content, including images and videos. Most of them are either not tagged or

tagged poorly by human subjects. Annotating online videos can help search engines a lot,

which enables people to search videos based on their content. A very sophisticated system

might be able to produce a full report for a complex sports activity like tennis or soccer or

even analyzes the game.

Finally, analyzing human movements from videos enables artists to produce more real-

istic animations or games, by synthesizing human actions based on real human activities.
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1.5 Challenges

Despite the significant amount of work that has been done in this area, during the past

twenty years or so, there are still little off-the-shelf products available3. There are many

challenges in the creation of a human activity recognition system. Namely two groups of

problems should be considered: natural and vision based.

Natural difficulties caused by human movement nature and can not be avoided. Here

we name a few of these difficulties:

• Definition: There is no precise definition of human activity. Some human body move-

ments are considered an action and have a name, while other movements do not have

a name. Sometimes, even known human activities are hard to distinguish. For in-

stance, there is no clear cut between jogging and walking, and interestingly many

methods confuse these two.

• Complexity: Different activities may have varying amounts of complexities. For

example, walking is sometimes considered a more complicated activity compared to

sitting down because it contains different movements, is a cyclic activity, and usually

takes longer time. Some methods perform better in the detection of cyclic actions,

while others better model more straightforward activities and creating a model, that

is flexible enough to handle different complexity levels, is challenging.

• Variations in shapes and speed: Many human activities do not have a predefined

pattern and people perform them in different forms and rates. In fact, each person

might have his/her unique style of doing a specific activity. For example, there are

methods to identify humans using their gait [27]. A human activity recognition, on

the other hand, should ignore these differences and focus on detecting human activity

regardless of the person that performs it.

• Parallelism: People can perform activities simultaneously. For example, they can

handwave while walking. It means that the created models not only should be able

3There are few products in the entertainment industry. Like Microsoft Kinect, which only works indoor
and in certain range.

5



1. INTRODUCTION

to distinguish between different activities, but also they should detect if these two

activities are performing at the same time. Few researchers have focused on detection

of simultaneous events, for example [28, 29, 30].

Different sensors can be used for HAR [31]. This dissertation focuses on vision-based

HAR. Vision has its own challenges, so when a camera is used as the primary sensor, these

challenges should be taken into account.

• Background, color, and texture: The input of a vision based system is a video, which

contains a lot of irrelevant information. The background, colors, and textures are

not directly related to the activity in the video and should be eliminated. Markers

on the human body, background subtraction, and human silhouettes are some of the

methods used to remove unwanted details.

• Human shapes and scales: Humans have different shapes (big, thin, tall, etc.) and

their relative distance to the camera can cause them to appear smaller or larger in

the video. This kind of information is irrelevant to HAR. Other methods, like sparse

representations and human skeletons, can remove this unrelated visual information

as well [32].

• Change of view point: When the angle between the camera and human subject

changes, the visual information extracted from the video also changes. The visual

clues, which are usually used for human activity recognition, will vary by the shift in

the viewpoint [32].

• Clutter: Clutter exists in many different computer vision applications. Few methods

can cope with temporal clutter like [12]. There are even fewer methods that can work

when the partial human body is visible. Sparse representations seem robust to this

issue, but most of the time, extracted clues are not enough for a reliable HAR.

• Multiple humans: Many proposed methods in the literature assume that there is only

one activity of interest in the field of view, and many of them bear no other human

(even no other movement) in the video. The presence of multiple humans, doing
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arbitrary different activities, makes the process harder. Even though some methods

[15, 30] can handle this kind of situations, but those approaches need more compu-

tational resources.

1.6 Contributions

In an exciting experiment, Johansson et al. [2] attached between five and thirteen markers to

the main human joints and recorded videos from humans doing different activities in front

of a camera. The cameras recorded only the movements of these markers. The footage

of these white points moving on a black screen was shown to different groups of people.

Subjects could tell that the markers are attached to the human body, and almost in all cases,

they could tell what activity was done by the actor.

It is still unclear if human brain uses only the two dimensional (2D) location of these

points for classification or it creates a three dimensional (3D) model of the points during the

recognition process. It is hard to answer this question directly, but this dissertation shows

that using some 3D data can improve the classification results4(See chapter6 for details).

The cameras project 3D space to 2D space and the direct analysis of images produces 2D

data. To map a 2D point to 3D, at least two views of the same point are required. Then

multiple view geometry can map these 2D points to 3D.

The main contributions of this dissertation are as follows:

• Trajectories for human activity recognition: Although the use of trajectories for hu-

man activity recognition is not entirely new, we have shown that trajectory shapes

can be beneficial for human activity recognition. In particular, we have formally

defined three different trajectory extraction algorithms and compared their discrim-

inant power with each other. The trajectory extraction is the first step in extraction

of appearance-based descriptors. As a result, trajectories can decrease the computa-

tion time compared to traditional trajectory-aligned appearance-based methods. This

work is published in the paper [33] and explained in Chapter 4.

4At least in certain scenarios
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• Better trajectory shape descriptors for human activity recognition: This dissertation

proposes a new trajectory shape encoding algorithm, which is a superset of existing

trajectory shape extraction algorithms. It demonstrates that the current methods in

the literature usually capture only the velocity of trajectories, our proposed method

capture acceleration and higher order information in addition to the velocity of the

motion. Our tests confirm that this method can improve the classification results.

This contribution is published in [34] and explained in Chapter 5.

• Disparity-augmented trajectories for human activity recognition: Disparity can be

calculated for a point with at least two views, and it can be translated into the depth

of field. Disparity is not the same as 3D data, but it has beneficial 3D information.

Disparity information is easier to extract compared to 3D data. For a complete Eu-

clidean 3D reconstruction of a scene, the camera parameters are required, which are

hard or impossible to extract in certain scenarios. Although the full 3D Euclidean

reconstruction of the scene can be beneficial for human activity recognition, it might

be unnecessary. This research proposes to use disparity information in addition to

2D trajectory information for human activity recognition. The method and results

are explained in Chapter 6.

• Stereo dataset for HAR: To demonstrate the effectiveness of the proposed method,

we have created a stereo dataset for human activity recognition. This dataset has a

total of 27 different activities performed by eleven volunteers in different scenarios.

The details of proposed dataset are explained in Chapter 6.

1.7 Organization

Chapter 2 reviews the state of the art in the area. Chapter 3 proposes the micromovements

for human activity recognition. Micromovements are a particular form of trajectories, and

a multi-view setting can be used to augment micromovements with disparity data. This

chapter introduces and examines the idea of using stereo vision to improve the accuracy

of a human activity recognition system. Chapter 4 compares different trajectory extraction
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algorithms for human activity recognition process and shows the pros and cons of trajec-

tories. Chapter 5 proposes a better trajectory shape encodings, which is the process of

encoding the shape of motion into a metric space in a way that the similar trajectories are

close on that space. The chapter also compares the proposed method with traditional tra-

jectory shape encoding algorithms, and shows the effectiveness of the approach. Chapter 6

proposes to augment the trajectories with disparity information. The latter can reflect the

depth of field, and adds additional information to 2D trajectories. That chapter shows that

disparity-augmented trajectories can outperform the 2D trajectories with a good margin. It

also explains a new stereo dataset created for human activity recognition. A conclusion are

provided in Chapter 7.
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CHAPTER 2

Previous Works

2.1 Introduction

This chapter reviews some of the existing methods for human activity recognition in the

literature. Many different approaches for human activity recognition have been proposed

and tested in the literature. In this chapter, we focused on vision-based methods which

target the identification of single human performing single task.

Some methods in the literature are trying to solve the HAR problem hierarchically. [32]

coined and explained hierarchical approaches versus single layered approaches. Single-

layered approaches attempt to detect activities, directly from the set of features extracted

from the video. On the other hand, hierarchical methods, break down the movement into

several smaller/simpler actions, each of which may be split into even simpler sub-activities.

At the bottom line, there are atomic activities, which are simple activities that can not

be broken into simpler forms. Most of the hierarchical approaches used single layered

methods for detecting these atomic activities. This chapter focuses on the single-layered

approaches only.

This chapter is organized as follows. Section 2.2 puts existing methods into five dif-

ferent categories. As there are many methods proposed in the literature, we have a quick

overview over them. One of this categories are sparse representation methods, which has

been more popular recently and the methods proposed in this dissertation can be considered

a subset of these methods. Therefore a more detailed overview of the sparse representa-

tion methods provided in Section 2.2.5. Section 2.3 discusses trajectory-based methods

(the most relevant work) with a lot of details. Finally, Section 2.4 describes two popular

methods used in the lierature to prepare data for learning sparse features.

10
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2.2 Representation Methods

Feature extraction is the core of any machine learning system. The feature extraction should

eliminate irrelevant details while keeping the main discriminative information. The input of

human activity recognition system is the video(s) of human subjects. These videos should

be converted into vectors in a metric space so that they can be discriminated by an existing

machine learning method.

Based on the way that different methods extracted the features, we put them in five

different categories:

1. Human skeleton methods are the ones that extract human skeleton before the ex-

traction of features. The human skeleton might be represented in two or three-

dimensional space.

2. Body parts tracking methods tried to detect and follow the human body parts in the

video.

3. Silhouette based approaches try to represent the activity as a single image.

4. Actions as 3D objects refers to the methods that concatenate the silhouettes and tries

to create a 3D shape of action.

5. Sparse Representation approaches which represents a video by a set of local features.

Each of these methods are explained in its own section.

2.2.1 Human Skeleton Based Methods

The work of Johansson [2] inspired many researchers to use joint locations for HAR. He

attached between 5 and 13 labels to the human body and recorded the movement of these

labels with a camera (Figure 2.2.1). He showed that all human subjects could tell that

the moving points are attached to the human body, and they can name the activity which

was performing. It is not clear if humans make a 3D model in their mind or just use 2D

information in the recognition process.
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Figure 2.2.1: Johansson’s joint model [2]

Human Skeleton Extraction

The first step and the main challenge of human skeleton based methods, is the estimation of

human joint locations. Some early methods rely mostly on special motion capture equip-

ment (like MoCap sensor) or special markers on human body [4, 7, 35]. Human skeleton

extraction is still challenging, but there are active cameras (like Microsoft Kinect) that can

facilitate this step.

Depth cameras produce new opportunities in machine vision in general and human ac-

tivity recognition in particular. For example Shotton et al. [3] consider each part of human

body as a 2D object (Figure 2.2.2) and by using randomized decision forests, each pixel of

the image is assigned to different classes with a different probability. These probabilities

demonstrate the chance of a particular pixel belonging to a different body part. By project-

ing this information back to the depth image, several hypotheses’ about the joint locations

are calculated, and the mean shift algorithm is used to assign a confidence measure to each

one of these hypotheses.

In another attempt, Uddin et al. [5] have used stereo vision cameras and the method

which was proposed in [36], for extraction of disparity image. Later triangulation was used

to calculate depth. They have used object tracking and face detection to locate person’s

body, face, torso, and hand positions. They co-registered their model to the 3D data using

expectation maximization (EM) algorithm.
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Figure 2.2.2: Skeleton extraction proposed in [3]

3D Joint Methods

These methods use 3D joint location information for human activity recognition. One of

these attempts done by Campbell and Bobick [4], who attached 14 markers to the human

body and a commercial system found the location of them in the 3D space (Figure 2.2.3).

They defined a body phase space, in which, each dimension represents one of the human

posture independent parameters (e.g., each joint position or angle). Now, each human pose

is mapped to a point, and every human activity is represented by a curve in this space. These

curves are then remapped to a 2D subspace, where the distance of the unknown posture (a

point in this space) with the curve measured to identify different activities.

In another attempt, Uddin et al. [5] designed a human kinematic with fourteen body

segments and nine joints with 24 degrees of freedom (Figure 2.2.4). As a result, 24 param-

eters can describe a posture of this human kinematic. They used stereo vision to map the

human body into this kinematic model. To achieve better discrimination, the 24 parameters

of the model are mapped to another space using linear discriminant analysis (LDA). Later,

these feature vectors are clustered into different codebooks. The cluster number was used

as the input of a hidden Markov model (HMM), which performs the final classification of

activities.

In another effort, Xia et al. [6] utilized a spherical coordinate system to make their de-

scriptor. First, the spherical coordinate system is attached to the person’s hip (Figure 2.2.5).

This spherical space is split into several bins based on different angles. The radial distance

is ignored to remove the scale effect. Then, probabilistic voting is used to smooth the joint

location estimations and to improve robustness. LDA and K-means are used to cluster these
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Figure 2.2.3: 3D joint models proposed in [4]
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Figure 2.2.4: Human kinematic proposed in [5]

Figure 2.2.5: Spherical coordinate system aligned with human hip [6]

histograms into visual words. This way, each activity is represented as a series of observed

words. Finally, an HMM is used for clustering these movements.

Barnachon et al. [37, 38] used MoCap [39] to capture the 3D skeleton of human body

and create a list of poses. Then, the Hausdorff distance is used for binning the pose space

and creating a histogram of poses. This histogram determines which poses are more likely

for each activity. Then a cumulative sum of these histograms is used to calculate the integral

histogram, which represents the likelihood of an action over time. The Bhattacharyya

distance gives the similarity of two cumulative histograms. These integral histograms broke

into several sub-histograms, which are then employed to learn an HMM model for online

detection of activities.
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2D Joint

Another group of methods used is the 2D joint location for HAR. For instance, Sheikh et

al. [7] used motion of 13 landmarks of human body in video (see Figure 2.2.6) for activity

recognition. Each video is summarized in a matrix of joint positions. Then each activity is

considered as a linear combination of spatiotemporal action bases. By assuming an affine

transformation between word and image coordinate system, a matrix for each activity in

dataset is created. Each of these matrices represents a subspace and the angle between

these subspaces is used for recognition. This model needs a lot of learning samples to

cover the whole action space.

Another method proposed by Yilmaz and Shah [35] focused on solving the camera

movement problem. 13 landmarks are attached to the human body, and the 2D location

of these marks is recorded in the video. The multi-view geometry is incorporated to cre-

ate a temporal fundamental matrix. The camera motion and subject motion are modeled

separately. The reconstruction error used as a distance measure for activity recognition.

Human joint information is compelling in describing human movement, and it can be

used for analyzing human activity. This information may be the joint location, angles

between joints, the rate of change in position or angle, or join trajectories. Most of the

methods that used the human skeleton are view-invariant. On the downside, these methods

need special equipment to extract joint locations, and the accuracy of these methods is

affected directly by the accuracy of joints location estimations.

2.2.2 Body Part Tracking Methods

Although human skeleton based methods are among first solutions proposed, the final re-

sults are not satisfactory for most cases. Another challenge for skeleton-based methods is

the extraction of the human skeleton. The performance of skeleton based methods highly

depend on the accuracy of the human skeleton extraction method.

Another group of methods in the literature tried to solve the HAR problem with the

detection of human part locations instead of joint location.

For example, Rao and Shah [8] used hand trajectories for specific domain activity
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Figure 2.2.6: Representation of an activity as a linear combination of action bases [7]
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Figure 2.2.7: Hand trajectories and their flattened representation [8]

recognition. The skin area is detected by using lookup-tables and connected component

analysis. Then the 2D trajectory of hand movements is created and flattened (Figure 2.2.7).

These trajectories are analyzed for speed, direction, acceleration, and curvature. This in-

formation is used with a rank-nullity theorem based method for activity recognition. Al-

though the authors prove that some specific information extracted from trajectories are

view-invariant, this information is not enough for activity recognition.

The body part tracking has useful information for human activity recognition, but these

methods also suffer from the shortcomings of skeleton based methods. Some methods

that proposed to track face and hand can not collect enough discriminant information for a

reliable human activity recognition.
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2.2.3 Silhouette Based Methods

Another solution proposed to avoid human skeleton extraction was the use of human sil-

houettes. Human silhouettes can be extracted easily from stationary cameras, and they

can remove much irrelevant and misleading information such as background, color, and

the texture. Besides, silhouettes extraction does not need multiple camera or specialized

equipment.

Figure 2.2.8: Silhouettes sequence and the grid used for HAR [9]

Yamoto et al. [9] introduced the use of silhouettes for activity recognition. A mesh put

on the human silhouette and the ratio of black pixels to white pixels in each cell is calculated

(Figure 2.2.8). Quantization of these values forms a descriptor for each frame. An HMM

is used to make a model for activity recognition. This method can produce relatively good

result in some tests, but it is sensitive to the shape of the actors. When different actors are

used for training and testing, the performance is decreased.

Figure 2.2.9: Star skeleton extraction [10]

In a more successful attempt, Chen et al. [10] proposed to make star skeletons from the

extracted silhouettes. After extracting human silhouette, human boundary are extracted and

flattened (see Figure 2.2.9). After smoothing it with low pass filter, the five extremes should

represent human head and four limb positions. By connecting the center of the silhouette to

the extremes a star skeleton is created. They used vector quantization to map each skeleton
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to a state. This way, each activity is represented as a sequence of states. Finally, the HMM

is used to create the model of activity.

Figure 2.2.10: MHI (center) and MEI (right) [11]

Bobick and Davis [11] proposed to use human silhouettes to make temporal templates,

which contain only 2D information. Namely, they have extracted the motion history im-

age (MHI) and the motion energy image (MEI) (see Figure 2.2.10). MHI and MEI is the

average and weighted average of consecutive silhouettes images, respectively. This way,

each activity can be compressed in time and be represented by two 2D images. These

images show where and how a human motion is going on. The authors extracted seven

hu-moments [40] for shape analysis. They have defined a descriptor on that moments and

used it for matching.

Figure 2.2.11: MHI (center) and MII (right) [12]

In order to calculate MHI/MEI, a decaying parameter and a time instance need to be

defined. These parameters control the temporal fading effect of MHI and, therefore, are
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depended on the speed in which the action is going on. Also, MHI will change drastically

in the existence of temporary occlusion. To address these issues, Diaf [12] proposed a

similar representation called motion intensity image (MII) (see Figure 2.2.11). In his work,

after extracting human silhouette, the center of each silhouette is found and aligned before

calculating MHI. This eliminates the position information and makes the algorithm more

robust.

Using MHI, MEI, and MII have many advantages. It is easy to extract and store these

features. There are near real-time implementations for these methods. These methods

eliminate the time factor, hence the temporal complexities are deleted, and as a result,

much simpler learning methods can be used for action recognition. Silhouettes are robust

to lighting and clothing conditions as well [15]. Neglecting temporal information, on the

other hand, made these methods suitable for short-time activities, and they can not model

complex actions. Another issue with these methods is that silhouettes are view-dependent,

size-dependent and shape-dependent (e.g., big or thin person). Besides, most of silhouette

extraction algorithms, assume that camera has no motion and it is static.

2.2.4 Actions as 3D objects

Silhouette-based methods showed excellent performance, especially in MHI, MEI, and

MII, but these methods ignore the time factor, and so they are unable to model complex

activities. Instead of calculating the mean of silhouettes as an image, some research at-

tempts proposed to make a 3D object by stacking up the silhouettes in the spatiotemporal

domain and creating a 3D object of each activity. Later, 3D shape matching is used for

activity recognition.

For example, Yilmaz and Shah [13] considered each activity as a 3D object in the 3D

spatiotemporal space. First, the boundaries of human body are extracted, then by relating

the points on the boundary of consecutive frames, a 3D sketch or 3D object is created. This

object is regarded as a rigid object (Figure 2.2.12). Action descriptors are defined as a set

of straight, convex, and concave contours.

Finding point correspondence between adjacent frames is a very time-consuming task.

21



2. PREVIOUS WORKS

Figure 2.2.12: Action sketch [13]

Figure 2.2.13: 3D shape of an action [14]
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To solve this issue, Blank et al. [14] proposed a method for 2D shape matching using

Poisson’s equation. After the extraction of the 3D object of the human silhouette, the

solutions of the Poisson’s equation are used to define the new descriptors, which used for

classification.

Figure 2.2.14: Super-voxels used for HAR [15]

Extracting the 3D XYT human action object is not always possible. Ke et al. [15]

proposed that this object may not be even needed for activity recognition. Instead, they

suggested extracting super-voxel shapes, which are 3D shapes in spatiotemporal domain.

These 3D shapes boundaries should align with object boundaries. By using a similarity

measure for 3D shapes, these 3D objects can be classified into different activity classes.

This method is very CPU intensive, and it can not provide good performance for simple

datasets (e.g., KTH).

Representing action as a 3D object is more descriptive compared to MHI and MEI

because it contains temporal information as well. Although these methods are not view-

invariant, they are robust to change of viewpoint, and these methods usually better handle

the low-resolution images. On the down side, these methods are view dependant and are

not flexible enough to cope with different variations exists in the human movements.

2.2.5 Sparse Representations

Sparse representation is one of the most popular methods in HAR. The idea is to represent

each activity by a set of independent features which reappear in different instances of the

activity. This way, each video is converted to a set of features.
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Three kinds of sparse features are used in the literature: low-level, mid-level and high

level. Low-level features are mostly appearance-based features. These kinds of features

are extracted directly from pixel grayscale values. High-level features are features that

are obtained from high-level representations like the human skeleton. Mid-Level features

are features that are derived from other representations like trajectories. The researchers

investigated low-level features thoroughly during the past decade or so. On the other hand,

high level and mid-level features are more recent, and there are fewer works in this area.

Sparse Low-Level Features

These features are mostly appearance-based features and are normally extracted from the

spatiotemporal representation of the video. Two main problems should be addressed in this

regard, which pixels in spatiotemporal space are the most informative points and how to

represent them. Feature points, by definition, are the most informative points in spatiotem-

poral volume, and descriptors are their signatures.

Figure 2.2.15: Gabor filters used for defining a vision based local descriptor [16]

Feature point Detector Appearance-based feature points are defined as the most infor-

mative points in the spatiotemporal space of a video. In the 2D image processing paradigm,
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it is shown that edges carry more information than homogeneous areas and corners carry

even more information. 3D corners in spatiotemporal space are defined as spatial corners

which change the direction of their movement in the temporal domain.

One of the earliest works which used appearance-based features for activity recognition

is the work of Chomat and Crowley [16]. They proposed to use a Gabor filter bank to

calculate scale invariant local spatiotemporal appearance-based features (Figure 2.2.15),

which later passed into a multidimensional histogram to create probability density function

for each activity. Activity recognition is done by using Bayes rule.

Figure 2.2.16: Sample of feature points extracted in [17]. The circles represent the location
of extracted corners.

Later, Laptev and Lindeberg [17, 41] extended the Harris interest point extraction op-

erators to the 3D spatiotemporal space and proposed a spatial and temporal scale invariant

feature extraction method. Their Harris interest point detector uses the second-moment

matrix to find spatial locations in a 2D image with high variation in both directions (cor-

ners) and significant variations in spatial domain. In other words, the corners of the spatial

domain with a change in the direction of movement selected (see Figure 2.2.16). Then, a

Gaussian kernel is used to capture the neighborhood signature. K-means clustering is used

to group interest points with similar background. They propose a matching method based

on the distance between these clusters.
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Figure 2.2.17: Sample of feature points extracted from different scales in [18]

In a separate work, Laptev et al. [18] proposed to use dense scale sampling. Accord-

ingly, different scales are used to extract the points of interest. Histogram of Gaussian

(HOG) and histogram of flow (HOF) are used as the descriptor. They concluded that

HOG is more robust than HOF. A sample of their extracted feature points is visible in

Figure 2.2.17.

Figure 2.2.18: Samples of feature points extracted in [19]

The spatiotemporal corners are very robust feature points, but they are rare in video.

Besides, these interest points do not appear in all kinds of human activity video. Dollar

et al. [19] noticed these limitations and introduced another local feature point extractor

named cuboid (Figure 2.2.18). The cuboid feature points are extracted by using a response

function. The authors believed that cuboid locations and types should be sufficient for
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many recognition tasks. The response function is defined as:

R = (I ∗ g ∗ hev)
2 + (I ∗ g ∗ hod)

2 (2.2.1)

hev(t, τ, ω) = − cos(2πtω)e−t2/τ2 (2.2.2)

hod(t, τ, ω) = − sin(2πtω)e−t2/τ2 (2.2.3)

First, the image is convolved with g, a Gaussian smoothing function in the spatial do-

main, then the results convolved with hev and hod, in the temporal domain. These functions

produce a strong response in locations with spatially distinguishing characteristics. These

functions generate a lot of interest points, which are clustered with K-means clustering

algorithm into few different types. Typically each activity has its own set of these types.

A prototype calculated for each cluster, which represented that cluster cuboid type. Con-

sequently, each activity is represented by a histogram of these prototypes. Matching is

performed by Euclidean and χ2 distance measures.

Figure 2.2.19: Sample of feature points extracted in [20]

In another attempt, Willems et al. [20] proposed a more efficient feature detector based

on cuboids. They extended the existing Hessian saliency measure into the spatiotemporal

domain. The integral image and better implementation details, lead to a faster feature

detector (Figure 2.2.19). The speeded up robust features (SURF) is used to encode their

feature points.

Even though feature points extraction algorithms are popular, Scovanner et al. [23]
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showed that random sampling could produce a comparable result to these algorithms. They

have extended 2D SIFT descriptor to 3D, by treating temporal domain the same as spatial

domain. They have used random sampling of points for feature points.

Figure 2.2.20: Sample of feature points extracted in [21]

Wang et al. [21] pointed out the differences between spatial and temporal domain and

proposed to treat them accordingly. They offered to use optical flow field to track densely

sampled interest points in time. Since the tracking of homogenous areas in the video is

impractical, the points with low texture are detected and removed before the tracking (Fig-

ure 2.2.20). The neighborhood around these tracked feature points is stacked, and then

HOG, HOF and motion boundary histograms (MBH) are calculated. MBH neutralizes the

camera motion effect. In static camera scenarios, MBH and HOF produced similar results.

HOG yielded better results for sports activities. Apparently, the HOG takes advantage of

the background information, as the background for different sports activities is different,

HOG could outperform other methods.

Camera movement produces unwanted trajectories (Figure 2.2.21). Wang and Schmid [22]

proposed a model to capture the camera movement and remove unwanted trajectories. They

used SURF features, which are robust to motion blur and optical flow. They assumed

that there is a homography that can describe the camera motion between two consecutive

frames, this excludes any independent moving object. This homography is estimated and

used to remove the trajectories that are similar to the camera motion.

Feature point Descriptors After finding the interesting points in spatiotemporal space,
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Figure 2.2.21: Unwanted trajectories produced by camera movement [22]

29



2. PREVIOUS WORKS

each of them should be represented by a signature. Many different ways to define a local

signature are proposed in the literature. Here we name a few popular methods.

Histogram of Oriented Gradient (HOG) and Histogram of Flow (HOF), are two com-

monly used feature descriptors in HAR domain. Inspired by the success of Gradient in

calculating SIFT descriptors, Dalal et al. [42] proposed HOG for images. HOG captures

the visual appearance features while HOF captures the dynamic of an activity. To calculate

HOG, first, a dense grid is put around each interest point. Then a local histogram of ori-

entation for each cell is calculated, and by combining these Histograms, a 1-D descriptor

is made. A contrast-normalization is typically done on overlapping blocks to make the de-

scriptor more robust. HOF is very similar to HOG but, instead of gradient information, it

encodes optical flow information.

Figure 2.2.22: 2D-SIFT versus 3D-SIFT descriptor [23]

By treating the temporal domain the same as spatial domain, Scovanner et al. [23]

defined a 3D-SIFT descriptor which is the extension of well known SIFT descriptors [43].

This descriptor is identical to 2D-SIFT, except there is one more angle for the gradient

direction (Figure 2.2.22). The descriptor is calculated as follows: A neighborhood direction

is assigned to each interest point. Later, this direction is described as two angles in 3D

spatiotemporal space. After rotating the neighborhood to align with this direction, a 3D
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grid is put around the point of interest, and finally, for each cell, a histogram of Gaussian is

created.

Figure 2.2.23: Quantizing the 3D direction as proposed in [24]

Inspired by the success of HOG in describing 2D still images domain, Klaser and

Marszalek [24] proposed HOG3D, which is the extension of HOG to 3D. In their method, a

3D grid put around the interest-point and the mean gradient for each pixel is calculated. A

dodecahedron (12-sided) and an icosahedron (20-sided) was used to quantize the directions

and creating a histogram of direction (Figure 2.2.23).

Figure 2.2.24: Aligning neighbourhood before calculating descriptor [22]

In an inspiring work, Wang and Schmid [22] proposed to use tracking information to

improve local feature descriptors. They have argued that the movement of interest points

may result in a poor descriptor. For example, the same point of interest, which undergoes

different motion, may result in different descriptors. In their proposed method, each point
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of interest is tracked. They aligned the neighborhood based on tracking information and

only then calculated the HOG, HOF and MBH descriptors. Figure 2.2.24 illustrates this

idea. The authors showed that the descriptors, calculated after aligning the neighborhood,

are more robust.

Sparse Mid-Level Features

Middle-level sparse features refer to features that are not directly extracted from pixel val-

ues, but they have no other high-level interpretations as well.

Figure 2.2.25: Cloud of interest points extracted in [25]

For example, Bregonzio et al. [25] proposed to use spatial and temporal locations of

interest points for action classification. A cloud of interest points in spatiotemporal space

is calculated and used for activity recognition (Figure 2.2.25). A bank of Gabor filters with

different orientations is employed to extract the interest points. The authors claimed that

detected interest points with this method are more related to human movement than those

proposed in [19]. The authors also defined a descriptor to describe the cloud of interest

points. Their descriptor involves the shape, speed and density of clouds on one side, and
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the width/height ratio and speed of foreground object for each frame on the other hand. By

concatenating these descriptors for all frames, a high dimension descriptor for an activity

is created. The authors showed that their method is comparable to most of the methods in

the literature.

Sparse High-Level Features

High-level sparse features are the last group of sparse features. These features are usually

extracted from high-level representations of the human body. For example, these features

may be extracted directly from the human skeleton.

Li et al. [44] proposed to use high-level information for scene classification. The au-

thors mentioned that despite NLP applications, image processing paradigm used low-level

or mid-level information. They have proposed to use “Object Bank” for scene categoriza-

tion.

Inspired by the success of object bank, Sadanand and Corso [45] proposed to use action

detection for action recognition, they called their method “Action Bank”. They have used

action spotting method, originally proposed in [46], to calculate a correlation volume for

each action, then by using max-pooling they have built a descriptor for each volume. A

standard SVM classifier used for classification of these sparse features and it produced

good results for more realistic datasets.

Figure 2.2.26: Feature descriptors extracted from skeleton [26]

Even though the appearance based methods, notably sparse feature descriptors, are sim-

ple methods and perform relatively good in complex situations, humans are questionable to

use this kind of clues for activity recognition. Yao et al. [26] showed that even in the pres-

ence of noise, most of the features extracted from articulated human poses could outper-
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form appearance-based methods using the same learning algorithm. The authors propose

that using a combination of appearance-based and pose information may lead to a better

classifier. As a result, a descriptor defined based on the joints locations, their speeds and

their distances to the body plane 1.

In a similar experiment, Jhuang et al. [47] mentioned that despite the success of low-

level features on easy datasets, their performance on more challenging datasets, are not

satisfying. To find the best method for activity recognition the authors compared low-level,

mid-level and high-level features for activity recognition. They first selected images that

contain 21 single human activities, then annotated them with ground truth information of

the 2D joint position, scale, viewpoint, segmentation, puppet mask, and puppet flow. The

extracted descriptors from high-level pose feature outperformed visual-based descriptors.

They have also shown that context information will not improve the results if the pose

features are correctly extracted. By adding some noise to the ground truth joint position,

they proved that their proposed pose features are robust to errors in the estimation of joint

positions.

In another work, Pishchulin et al. [48] applied dense trajectories [21, 22] and human

pose information [49] to the challenging dataset of “MPI Human pose.” They showed that

dense trajectories are more suitable when the number of classes is high (namely 491 activity

class). They mentioned that pose based methods and dense trajectory methods are extract-

ing different types of information, so by combining this information, higher performances

could be achieved. Besides, they have claimed that extracted information from the back-

ground (context) can help the classifier to achieve higher performance. They discovered

that dense trajectories performance increases in the presence of multiple persons.

2.3 Trajectories as mid-level sparse features

Trajectories have been used in the literature for human activity recognition. This section

focuses more on the research methods that benefitted from trajectories for human activity

recognition.

1The body plane determined by three other joint locations.
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Matikainen et al. [50] used KLT tracker to track a fixed number of feature points in

time. They defined a trajectory snippet as S = {Pt − Pt−1, Pt−1 − Pt−2, ..., Pt−l+1 −

Pt−1}. This snippet merely captures the displacements that happen for each frame. Then,

k-Means with a standard Euclidean distance metric is used to cluster these trajectories in

different clusters. They call each of this clusters a trajecton. In this sense, each trajecton

is the quantized version of a trajectory and represents a specific category of trajectory.

Later, these trajectons are used in a standard BOW method for classification of different

activities. They have also argued that trajectories that are representing similar motions in

spatially close areas should belong to the same body moving in front of the camera. The

authors proposed a method to find the center of this cluster and add affine transformation

information to trajectories to represent the motion of various parts of the body. Finally, the

standard BOW method and SVM are used for clustering.

In a similar work, Messing [51] used KLT to track key points of a video. They argued

that KLT has fast, and even real-time performance implementation over GPU. The velocity

of each feature’s point over time, is calculated and quantized into “velocity history”. They

also augmented their trajectories with additional information. They augmented the original

trajectory descriptor with information about the absolute position, appearance, and color

to improve its classification power. They created a generative model on their augmented

trajectories.

Wang et al. exploit trajectories in separate contributions [21, 22, 52]. By using the

Farnback optical flow, the optical flow field of video is calculated. This step is the most

time-consuming step. A dense grid on top of each frame is used to dense sample the field

of view. In the ideal situation, all of these points should be tracked in time, but some

points lack enough texture and therefore are not easy to track. These points, have a small

self-similarity measure. The points that the smaller eigenvalue of their autocorrelation

matrix is less than a threshold were removed from tracking procedure. They have also

removes points with sudden movement or stationary trajectories as these points are erro-

neous and noninformative. They have also defined a trajectory shape descriptor to encode

local motion patterns. Having a trajectory of length l, specified by a sequence of points

T = (Pt, Pt+1, Pt+2, ..., Pt+l). The shape descriptor proposed by Wang et al. [52] defined
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as:

S ′ =
(∆Pt, ...,∆Pt+l−1)

Σt+l−1
j=t ||∆Pj||

(2.3.1)

In which ∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt). Equation 2.3.1 captures the

normalized displacements over time. They have also defined trajectory aligned descriptors,

which are merely traditional HOG, HOF and MBH descriptors calculated on the aligned

neighborhood of each trajectory.

To improve the dense trajectories robustness, Wang et al. [22] proposed to model the

camera motion between each consecutive frames. They assumed that there is a homography

that can describe the motion between two frames. They argue that this assumption holds

when the camera motion is not significant between two frames. The independent moving

objects in the scene, should not affect this homography. They employed and matched

SURF features, which are robust to motion blur, to find the correspondence between any

two consecutive frames. To estimate the homography robustly, they have employed the

RANSAC method. This homography then used to cancel out the camera motion before

calculating the trajectories and other descriptors.

Sun et al. [53] proposed to track scale-invariant feature transform (SIFT) feature points.

They have suggested using SIFT feature descriptors to match each frame feature point to

the next one. They captured the point-level context by averaging SIFT descriptors over the

course of each trajectory. To capture the dynamics of motion, they used an HMM to model

displacements of a trajectory over time. They have extracted features at different levels and

used multichannel nonlinear SVM for human activity recognition.

Deep learning methods have gained more attention recently, and they can perform very

good in many different tasks. However, they need a large and correctly labelled dataset

for the task in question. One of the best methods in this area is the ConvNet [54] that

models the temporal and spatial space in two separate neural networks. The ConvNet can

produce comparable results to dense trajectories [21]. The amount of data that deep models

need to train can explain the reason why ConvNet could not outperform dense trajectories.

The deep models usually need huge datasets, while most of the existing datasets for hu-
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man activity recognition is small, compared to the number of different ways that humans

can perform an activity. Another important thing is that the ConvNet treat the spatial and

temporal channels separately without trying to find a connection between them.

A more successful approach for deep learning based methods is trajectory-pooled deep-

convolutional descriptor (TDD) [55]. Although it is not directly relevant to trajectory shape

descriptor, this method, proposed to use trajectories introduced in [22], to align neighbor-

hood before calculating the ConvNet descriptors. They demonstrated that TDD descriptors

could achieve the state of the art performance.

2.4 Learning from a set of sparse features

Sparse representation methods, represent a video by a set of independent features. For-

mally, a video can be represented by a set of feature descriptors as:

S = {Dk|Dk ∈ RN} (2.4.1)

where N is the dimension of the local descriptors.

Existing machine learning methods in general and SVM in particular, expect data as a

vector of predetermined size. As a result, each set of these features should be represented

by a vector. Different methods have been proposed in the literature. Here we explain two

favorite techniques in the literature.

2.4.1 Bag of Words

One of the conventional methods to convert sparse sets to a vector is based on the bag

of words (BOW). It is inspired from the text processing paradigm, where a collection of

significant words are extracted from the text and are placed in different bags [56]. The

descriptor for a bag is created based on the number of times each word appears in the bag.

Since vectors representing local features are continuous, K-Means or a similar algo-

rithm can be used to quantize the vectors. First, K-means is trained by a sample of all

videos. Then, this model is used to cluster all the feature vectors of each set. The number
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of items in each cluster is used to create a descriptor.

More formally, K-Means is used to cluster local descriptors into N clusters, where N

is called the number of words. For each video j a descriptor Cj is defined as:

Cj ≡ (cj1, cj2, ..., cjN), cji ∈ N0 (2.4.2)

where, cji is the number of trajectories of video j that are clustered in cluster i.

These values are then normalized based on their min and max values from all learning

videos.

nji ≡
cji −mink∈L cki

maxk∈L cki −mink∈L cki
, nji ∈ [0, 1] (2.4.3)

where L represents the set of learning video indices.

Finally, each video j is represented by a vector Vj:

Vj ≡ (nj1, nj2, ..., njN) (2.4.4)

2.4.2 Fisher Vector Encoding

Fisher Vector Encoding (FVE) is another method that produced good results. In FVE, the

generative and discriminative mathods are combined [57] and, the first and second order

statistics have been used for encoding [22] (in contrast to first order statistics of BOW).

Instead of using K-Means for clustering, Expectation Maximization (EM) is used to

cluster data into K Gaussian Mixtures. The created Gaussian mixture model (GMM) is

used to estimate the means, variances and prior probabilities of the mixtures. Let θk =

{µk, σk, ωk} represent the parameters for component k. Then, the posterior probability of

observations xi with respect to to k, qik, is calculated as follows:

qik =
exp[−1

2
(xi − µk)

TΣ−1
k (xi − µk)]∑k

t=1 exp[−
1
2
(xi − µk)TΣ

−1
k (xi − µk)

(2.4.5)

This information is used to calculate the mean deviation uk and covariance deviative

vk.
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ujk =
1

N
√
ωk

N∑
i=1

qik(
xji − µjk

Σjk

) (2.4.6)

vjk =
1

N
√
2ωk

N∑
i=1

qik[(
xji − µjk

Σjk

)2 − 1] (2.4.7)

where j spans over the vector dimension and k spans over different components of the

mixture model.

The size of uk (or vk) is K ×D, which only depends on the number of Gaussians (K)

and dimension in which data is represented (D) (not the number of samples N ). The final

descriptor is created by concatenating these two vectors, and thus has a dimension of 2DK.

Usually, further improvement is achieved by l2 normalization and the use of a nonlinear

additive kernel.

2.5 Conclusion

Numerous methods have been proposed for human activity recognition in the literature.

The most popular methods are based on sparse representation, which is robust to most of

vision based difficulties. These Methods can work in more realistic situation, where the

camera is not stationary.

Low-level features are trendy and well studied in the literature. In some experiments,

these features have benefited from background information. The strength of these methods

come from ignoring spatial and temporal information. There is another face to this igno-

rance. Since activity is represented as a set of isolated features, sparse methods are unable

to model long or complicated activities. These methods have another limitation. When

the number of action classes increases, the low-level representation performance decreases

fast.

Instead of throwing away useful structural information, mid-level and high-level rep-

resentations can take advantage of them. For example, in sparse high-level representation,

some authors used human skeleton angles or positions for activity recognition. This way

sparse high-level representations are more discriminative than low-level sparse representa-
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tions. The cost of this improvement is the use of depth camera or mocap sensors.
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CHAPTER 3

The Bag of Micro-Movements for Human Activity

Recognition

3.1 Introduction

This chapter covers the first experiment with disparities in human activity recognition. It

proposes a new method for human activity recognition based on the bag-of-words (BOW)

method [58], which is inspired by the success of BOW assumption in document classifica-

tion problem. BOW states that the topic (or class) of a document can be determined solely

by looking at the words that appeared in that document1, regardless of their place of ap-

pearance. In vision community, sparse features from input videos are extracted and treated

as words in a text. Since the obtained features usually are not discrete, some quantiza-

tion (clustering) method is used to assign the continuous feature descriptors to the discrete

words (clusters). The bag of words algorithm tries to match two documents based on the

words that appear in both documents. In vision community, this translates into matching

two videos based on the same words (similar neighborhoods) appearing in two videos.

BOW is a powerful method because it removes complexities related to the duration of an

activity or the speed of it.

Different feature point extraction methods have been proposed in the literature [17,

18, 19, 21, 22], each of them have their pros and cons, but almost all of them follow

the same approach. First, the points of interest (usually corners) are extracted [17, 18,

19, 20, 58]. Then, a descriptor for each interest point is calculated by looking into its

1More accurately by the number of times a word appeared in a document compared to the number of
times it appeared in other documents
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neighbourhood [17, 19, 43]. These descriptors are calculated directly or indirectly from

pixel values around a feature point. Here we call them appearance based feature points

because these descriptors encode the appearance of their neighborhood. Even though BOW

showed promising results, the type of features that was used is unlikely to be used by

humans for activity recognition.

This chapter proposes a new descriptor, which encodes the motion information in a

way that could be used efficiently by BOW algorithms. Our work is inspired by [52]

which have introduced the motion trajectory descriptors. Our contribution is to combine

disparity maps with motion information to improve the motion descriptors that we refer to

them as micro-movement descriptors. Disparity maps, used in this chapter, are solely the

Euclidean distance between similar points in left and right images, which are very easy to

extract, and they do not need camera calibration, while they still provide a depth clue. We

believe that disparity maps have enough discriminative information for many applications

including HAR. The result of this research published in [59]. A more accurate method for

disparity calculation with image rectification proposed in Chapter 6.

3.2 Motivations

The motion is a good clue for activity recognition and many different methods used motion

information for human activity recognition with different approaches [4, 5, 7, 8, 11, 12, 13,

14, 35]. Some methods have tracked the location of human joints in 3D space[4, 5]. Other

methods tried to track joint locations in 2D image plane[7, 13]. These methods usually rely

on human skeleton extraction, but skeleton extraction directly from 2D images is still prone

to errors. Some other methods have used only parts of the body for activity recognition. For

example, [8] tracked the hand positions of a human and used these trajectories for activity

recognition. This method is limited to activities that could be done only by hands. Some

methods [14, 35] extracted 3D objects in spatiotemporal space. Other techniques used the

compression of the motion into rigid 2D images [11, 12].

One of the most successful methods for activity recognition, which showed promising

results, is the bag of words (BOW) [58]. This method is based on the sparse representation
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of activities; i.e., each activity video is represented by a set of isolated feature descriptors.

Traditionally, these feature descriptors were directly or indirectly calculated based on the

appearance of the neighborhoods around the feature points [17, 18, 19]. Their 2D image

counterparts inspired most of these descriptors. That explains why most of the sparse fea-

ture extractors used appearance based information and simply neglected the motion. One

exception is the method proposed in [52]in which they used dense trajectories and defined a

trajectory descriptor. They have also used these trajectories to align feature point neighbor-

hood frames and made a traditional feature point over the aligned neighborhood. In their

experiment, trajectory aligned vision-based feature points showed better performance and,

later [21, 22] they only used motion to align the feature point neighborhood frames.

It has been suggested in [52] that tracking interest points in a 2D image using KLT

tracker yields high-grade results. The captured movements happen in the x-y image plane

and can be expressed in the number of pixels. Each image interest point (x, y) represents

a space point (X,Y, Z) and the relationship can be expressed by the distance of the space

point to the camera and intrinsic and extrinsic parameters of the camera. So the captured

movement depends on the depth of scene points changes, which is unknown. We believe

that combining depth information with 2D trajectory information can improve the results.

One solution is to capture the depth with the help of active cameras. Although off the

shelf active cameras are useful, their functionality is limited. Since they are using time of

flight (TOF) calculation to estimate the depth, they can work in low to moderate resolution,

and they can cover a specific range (between one and three meters depth). Besides, existing

active cameras are limited to indoor environments.

Another solution is to use stereo cameras and triangulation. Let us assume a space point

P is mapped to P1 in the first image and P2 in the second image. It is possible to calculate

the coordinates of P in the scene coordinate system by having the coordinates of P1 and

P2 in the image plane coordinate systems. Furthermore, let us assume that the two cameras

have the same orientation and the images are horizontally aligned and coplanar. In this situ-

ation, it can be shown that the depth of point P depends only on the baseline2 and the focal

2The distance between two centers of projections
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length3 of two cameras. In practice, one should have the camera calibration information,

including effective focal length and lens distortion parameters. Such configuration is hard

or impossible to achieve in some applications.

Even though the 3D information is beneficial in transforming motion in image coor-

dinate system to motion in scene coordinate system, this information is hard to extract.

Furthermore, disparities are much easier to obtain and there is no need for camera calibra-

tion. In this chapter, we proposed to use disparity instead of 3D information to represent

motion in a new coordinate system, which is similar to scene coordinate system.

3.3 Micro-movement descriptors

Our method captures the motions of interest points as the main clue. First the interest

points from both left and right frames are extracted, and for each of them a descriptor is

calculated. Here we have used opencv implementations of FAST corner detector [61] for

interest point detection and SIFT descriptors [43] for feature descriptor calculation. Then

this descriptors are used to match feature points between the left and right frames. Having

the point correspondences, this descriptor is no longer needed. Each interest point is now

represented as I (xli, yli, di) in which Pl (xli, yli) represents pixel coordinate of interest

point i in left image and di is the distance between left and right frame calculated as an

Euclidean distance:

di =

√
(xri − xli)

2 + (yri − yli)
2 (3.3.1)

If we assume the cameras are aligned such that there is no y-displacement, i.e., yri−yli = 0,

then the above distance will be reduced to di = |xri−xli|which is x-disparity. Since we are

trying to reduce any precondition over camera placements, we have used the 2D Euclidean

distance.

We have used KLT tracker to track the interest points in the left and right frames. We

tracked the interest points for l consecutive frames before recalculating the interest points

for the l + 1 frame. This way several trajectories of length l have been created.

After extracting trajectories, the displacement vector calculated based on the amount of
3The distance between the center of projection and the image plane
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movement that each point has undergone. For example, if l = 3 and a sample trajectory Ti

given by:

Ti = ([x1, y1, d1] , [x2, y2, d2] , [x3, y3, d3]) (3.3.2)

Then the displacement Di is calculated as:

Di = ([x2 − x1, y2 − y1, d2 − d1] , [x3 − x2, y3 − y2, d3 − d2]) (3.3.3)

Note that each displacement calculated between two consecutive frames (not left and right

frames). The displacement contains the motion information that existed in the video. In

general case:

Dij = Ii(j+1) − Iij (3.3.4)

Where Dij represents the component j of trajectory i and Iik represents the interest point

triplets (xik, yik, dik) in trajectory i. Note that when the length of Ti is l then the length of

Di would be l − 1 .

We have defined an energy measurement for each trajectory, given by:

ei = Σl−1
k=1|Dik|2 Where |Dik| =

√
x2
ik + y2ik + d2ik (3.3.5)

The energy of a displacement determines the amount of movement of the corresponding

trajectory. Low energy trajectories will represent steady feature points in a video. These

points are usually background points or points on the human body which are not moving in

l consecutive frames. These points have no discriminative information; therefore they are

removed by simple thresholding. This eliminates the trajectories with very low information.

The remaining of the displacements are mapped onto a three-dimensional space (M(X,Y, Z))

which has the characteristics of scene coordinates. From the stereo camera model and tri-

angulation, it can be deduced that:

Z = fB/d ∝ 1/d (3.3.6)

X = uZ/f ∝ uZ ∝ u/d (3.3.7)
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Y = vZ/f ∝ vZ ∝ v/d (3.3.8)

In which f is focal length and B is the baseline distance. Assume D (u, v, d) represents

a point in displacement coordinate system measured in pixel values. We calculated our

micro-movement descriptor by normalizing a displacement as follows:

M (X,Y, Z) = (u/d, v/d, 1/d) (3.3.9)

Where M (X,Y, Z) is represented in an independent coordinate system. Movements in

this space are similar to movements in the scene coordinate system.

3.4 Experimental Result

To the best of our knowledge, there is no stereo vision dataset for human activity recog-

nition. Hence, it is hard to compare our proposed method to other methods in the litera-

ture. To demonstrate the effectiveness and discriminative power of our proposed micro-

movements representation, we have created our own stereo-dataset. The latter contains 12

different simple activities.

Each activity is done four times by two volunteer actors, a male, and a female. The

videos are recorded with two off the shelf cameras attached to a rigid bar. The videos are

captured and recorded in VGA quality. Some sample frames of the dataset are shown in

Figure 3.4.1. Figure 3.4.2 shows the cameras used to capture the movements. Figure 3.4.3

demonstrates the feature points extracted from the corresponding left and right frames and

the points matching result.

After extracting the micro-movement descriptors, we cluster them using the well known

K-Means clustering algorithm. In particular, each cluster represents a word. For each

instance of activity in our dataset, we have counted the number of times each word appears

in it. Then, we have made a vector of length w words, where w represents the number

of clusters. For this experiment, we fixed the length of trajectories to l = 9 frames and

w = 400 as a rule of thumb. We have used “Bayes Net” for classification of activities

based on the word count vector. We were able to correctly classify 73.47% of the activities
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Figure 3.4.1: Sample frames from dataset demonstrating: walking left, hand waving, sim-
ple exercise and sitting down

Figure 3.4.2: The stereo camera setup
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Figure 3.4.3: The left and right extracted feature points and their matching result on a
sample frame
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Table 3.4.2: Six activity confusion matrix

Activity Name Class a b c d e f

Walking a 36 1 3 0 0 1
Hand Waving b 1 11 0 4 1 0
Jumping c 1 2 13 0 0 0
Sitting Down d 0 0 2 27 2 0
Standing Up e 0 0 0 4 25 0
Jumping Jack f 0 1 0 1 0 10

without any parameter tuning. It is hard to compare this value with other works. The

nearest work to ours is the image plane motion descriptors of [52]. They achieved 67.2%

accuracy on YouTube dataset. Their trajectory aligned descriptor hit 83.9% which is the

state of the art.

The confusion matrix of twelve activities are represented in Table 3.4.1. We should

emphasize that our result is preliminary and we improve them in the next chapters. The

main goal here is to demonstrate that trajectories have discriminative information.

Our test setting neither designed nor optimized for online processing, however with

current setting the extraction of features is done in 8.3 frames per second on a single thread

ran on a 2.8 GHz Core i7 CPU. With some improvements, one might be able to implement

it in real time, but the original BOF algorithm should also be altered to work in an online

manner.

To further demonstrate the flexibility of our classifier, considering that some of the

activities in our dataset are very similar and they typically have the same name in our natural

language, we have combined the similar classes to examine the discriminative power of our

descriptors. We summarized our activities into six different classes. Using same Bayes Net

classification method without parameter tuning, we have achieved 83.56% accuracy. The

confusion matrix of this experiment is shown in Table 3.4.2.

3.5 Conclusion

This chapter proposed and implemented the bare idea of using disparity information and

fusing it with trajectories. Although the proposed descriptor is easy to extract and can
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discriminate between different activities, its performance needs to be improved. This de-

scriptor is not bound to human activity recognition task. It is useful for any other video

analysis problem, where the movement is the discriminative clue. By using disparity infor-

mation, we are taking advantage of 3D structural data, while eliminating the requirement

for calibrating the cameras. A big dataset should be created to assess the effectiveness of

the proposed method, properly. Chapter 6 covers the proposed bigger dataset.
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CHAPTER 4

Trajectories for Human Activity Recognition

4.1 Introduction

The previous chapter showed that adding disparity information to trajectories can improve

the trajectory discriminant power. This chapter goes into different trajectory shape extrac-

tion methods and compares them with each other. These experiments aim to discover which

approach for 2D trajectory extraction is better in specific scenarios and why.

As we discussed earlier, the sparse representation methods were more popular in the

past decade. Sparse feature vectors can represent low-level, mid-level or high-level infor-

mation. There is a handful of research done on low-level features [16, 17, 18, 19, 23, 42,

52, 58]. Although the low-level features can produce relatively good results, they usually

use the appearance-based information in small neighborhoods, which makes them dataset

dependent. Besides, high-level features, like the human skeleton, have shown promising

results [37, 62]. However, they are not easy to extract from video and, the best existing

methods are still prone to error [26, 45, 63]. Moreover, mid-level features can be eas-

ily extracted with good confidence, and they represent higher level information than their

low-level counterparts.

Trajectories, as mid-level sparse features, are the flow of 2D interest point locations in

time. They are relatively easy to extract, and they capture the motion shape (Section 4.2).

Trajectories have been proven useful to align small neighborhood frames before calculat-

ing traditional descriptors like Histograms of Oriented Gradients (HOG), Histograms of

Optical Flow (HOF), or Motion Boundary Histograms (MBH) [52]. Trajectory shape de-

scriptors are also shown to have useful information for human activity recognition.

There are at least two reasons to believe that trajectory-based shape descriptors can still
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4. TRAJECTORIES FOR HUMAN ACTIVITY RECOGNITION

be used for human activity recognition.

1. It has been shown in [2] that human subjects can guess the type of activity performed

by another human subject, only by watching a video of moving points attached to the

actor. Hence it is safe to assume that trajectories carry the discriminant information.

2. Traditional sparse feature descriptors, like HOG, HOF, and MBH, encode low-level

information that is unlikely to be used by humans for activity recognition. On the

other hand, trajectories can be mapped to existing motions in a video, making them

mid-level features.

This chapter emphasizes the importance of trajectories for human activity recognition

and introduces three different trajectory extraction methods for HAR. In particular, it com-

pares these methods with each other and with the trajectory-based method proposed in

[52]. It also lists the pros and cons of using trajectories for human activity recognition.

Moreover, it investigates the effect of trajectory length on the classification accuracy (Sec-

tions 4.4.1, 4.4.3). The comparisons demonstrates that sparse sampling can produce com-

parable results to dense sampling, with the advantage of using fewer data.

4.2 Proposed Trajectories for Human Activity Recogni-

tion

Trajectories are trails of 2D spatial feature points in time (Figure 4.2.1). 2D feature points

could be extracted by any feature detector algorithm. Formally, a trajectory Tk is an ordered

list of spatial locations, in l + 1 consecutive frames, where l is called the length of the

trajectory.

Tk ≡ (p0, p1, p2, ..., pl), pi ∈ R2, i = 0..l (4.2.1)

There are different methods for extracting trajectories from videos. Here we used three

extraction algorithms to produce different trajectories, as shown in Figure 4.2.2. We have
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Figure 4.2.1: Tracking of feature points for l consecutive frames in spatiotemporal space
(best seen in color)

examined these trajectories and have explained the pros and cons of each of them in Sec-

tion 4.4.3.

4.2.1 Interest Point Tracking

The first algorithm is the tracking of 2D Interest Points based on their appearance; we call

it “IP algorithm”. There are two assumptions for this algorithm: (1) interest points remain

similar in appearance and, (2) their positions do not change a lot between consecutive

frames.

We have first extracted interest points from each frame of the video, using FAST method

[61]. Then, SIFT descriptor is calculated for each of these points [43]. Starting from the

beginning of the video, for all interest points of the current frame, the best matches in the

next frame are found, based on spatial distance and the points’ descriptors. Once matched,

they are to form trajectories. Interest points in the following frame that did not match any

point from the current frame are considered starting points of new trajectories. When a

trajectory length reaches l, we consider it as a full trajectory and the endpoint will not be

matched against next frame feature points.

4.2.2 Lucas-Kanade Trajectories

This method is based on Lucas-Kanade (LK) optical flow algorithm [64]. First, interest

points in each frame are extracted, using FAST method [61]. For each interest point in
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Figure 4.2.2: From top to bottom: sample output of IP, LK, and FB trajectories extracted
for walking from left to right (best seen in color)
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the current frame, the Lucas-Kanade feature point tracking algorithm is used to find the

most probable location of this point in the next frame. These two points are connected as

being part of a trajectory. In the next frame, these locations and other new feature point

locations will be mapped to their next frame locations as well. The process continues until

the trajectory reaches length l, when it is considered a full trajectory.

4.2.3 Farnback Trajectories

The third algorithm used here is based on the Farnback (FB) optical flow algorithm. Farn-

back is a newer optical flow algorithm compared to Lucas-Kanade. The main advantage of

the Farnback method is that it calculates a dense optical flow field.

The algorithm is quite similar to LK trajectory extraction algorithm (Section 4.2.2).

First, interest points of each frame are extracted. Then the optical flow field is calculated

for the video. The location of current frame interest points in the next frame is found based

on the optical flow field. These points are connected as being part of a trajectory. The

process continues similar to LK algorithm until trajectories reach length l.

4.3 Trajectory Shape Descriptor

After extracting the trajectory, its shape should be encoded in a vector. Similar to [52], we

have defined the trajectory shape descriptor as the normalized derivative of the trajectory.

Dk ≡
(d1, d2, ..., dl)

Σi‖di‖
, di ≡ pi − pi−1, i = 1..l (4.3.1)

where Dk is a simple shape descriptor for trajectory Tk, {pi} belong to Tk (from Equa-

tion 5.3.1) and ‖.‖ denotes the L2 norm. We have used this descriptor to cluster trajectories

into different categories. Despite its simple nature, the trajectory shape descriptors are very

efficient. They capture the way the trajectory behave while ignoring the spatial place of it.

This way, each video will be represented as a set of trajectory shape vectors. The

cardinality of these sets are not the same, and it makes the video matching hard. One of the

well-known approaches proposed in the literature to cope with the similar situation is the
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Bag of Word method.

4.4 Experiments

4.4.1 Setup

To calculate the accuracy, we have used the leave one out method, which is similar to N-

Fold cross-validation. All instances of one actor are taken out from the dataset, and the

rest are used for learning. At the test stage, only those specific samples are classified.

The process is repeated for all actors, separately, and the overall classification accuracy is

calculated by considering all classifications.

For the learning part, the standard BOW algorithm is used, and as suggested in [52], the

number of words is set equal to 4000 and, only 100K samples are used to learn the KMeans

models. For classification, libSVM [65] with RBF Kernel was used, and the C-SVC cost

set to 1500.

All of the related code has been implemented in C++ using OpenCV. The tests were

run on a 3.7 GHz 8 core UNIX-based computer.

4.4.2 Dataset Used

Originally we are working on stereo vision, and there are only a few specific datasets avail-

able for this reason, so we have created a stereo dataset for human activity recognition that

involves 11 actors performing many different activities. The dataset has been recorded in

real life everyday office setting with complex background. Each actor repeated each ac-

tivity at least five times. The dataset recorded by two off-the-shelf similar video cameras

pointed at the subject from the same direction with a slight angle. Chapter 6 provided the

full description of the dataset.

For the tests performed in this chapter, we only need videos from one camera. We have

selected ten activities of three different actors from left camera. The selected activities are

hand clapping, jumping, skipping, picking up, pushing, running, sitting down, standing up,

walking and jumping jack. Whenever the selected activities contained movement (such
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Figure 4.4.1: Comparison of different algorithms with different length, note that the chart
is cut for better visibility

as walking, running, or jumping), all the instances were selected in a way that all the

movement happens from left to right (e.g., walking from left to right).

4.4.3 Obtained results

Figure 4.4.1 and Table 4.4.1 summarize the results of our different tests. As it can be seen

in Table 4.4.1, Lucas-Kanade (LK) and Farnback (FB) trajectory extraction algorithms are

producing competitive results, while interest point tracking (IP) on the other hand is not

as good. The best result obtained was 97.03% by FB, with length 11. The LK algorithm

produces comparable results with a 96.69% recognition rate. The best result of the IP

algorithm yield a modest 80.13% recognition rate. We believe that there are at least two

reasons for IP’s poor result. First, the number of trajectories extracted by the IP algorithm

is quite low. Second and more importantly, the IP tracking algorithm is not producing good

trajectories (from the visual point of view).

Table 4.4.1 has the dense trajectory results in addition to our proposed sparse algo-

rithms. The dense trajectories are extracted using Wang implementation of dense trajectory

extraction, then a similar approach (as explained in Section 4.4.1) was used to evaluate the
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Table 4.4.1: Results obtained by different tracking algorithms and different trajectory
length over recognition rate.

Length of Trajectory

Category Algorithm 7 9 11 13 15 17

Sparse
IP 80.13% 80.13% 78.15% 77.48% 76.82% 76.82%
FB 90.73% 95.36% 97.35% 95.37% 95.37% 94.04%
LK 93.38% 96.03% 96.69% 96.69% 94.04% 94.04%

Dense Trajectories 92.72% 92.72% 93.38% 94.04% 94.04% 95.36%

Table 4.4.2: Comparison of dense sampling and sparse trajectories

Category Algorithm Accuracy

Sparse
IP 80.13%
FB 97.35%
LK 96.69%

Dense

Trajectories 94.04%
HOG 86.76%
HOF 97.35%
MBH 96.03%

accuracy.

One might expect that the dense trajectory results be similar to FB algorithm since the

algorithms are very similar. However, Table 4.4.1 suggests that FB almost always produced

slightly better results compared to dense trajectories. This can be explained by the fact that

FB trajectory extraction algorithm employed here, used a simple corner detector instead of

dense sampling and these points are more comfortable to track. All in all, dense sampling

trajectories could reach 95.26% accuracy while FB sparse trajectories reached 97.35%.

Table 4.4.2 summarizes the traditional appearance-based descriptors. The length of

trajectory is set to 15 (as suggested in [52]) for all dense results reported in Table 4.4.2. As

it can be seen, the FB and LK trajectories produced comparable results to HOF and MBH

algorithms, while HOG, which only uses appearance based information, could not exceed

87%. Recall that FB and LK are using sparse sampling, in contrast to dense sampling for

HOG, HOF, and MBH.

Figure 4.4.2 shows the confusion matrix of the best obtained classification. As it can
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Figure 4.4.2: The sample confusion matrix

be seen, the most confused classes are the PS (Push heavy object on the floor from left

to right) and WK (Walking from left to right), which are very similar. In particular, PS is

essentially walking from left to right while pushing an object. The other error came from

confusing JP (jumping), SU (Stand up) and JJ (Jumping Jack). Even though these classes

share some level of similarity, they can be put in different classes. This reveals that in some

situations, trajectories might not be discriminant enough. This is the case for activities

that are similar form the motion point of view, for example, Jumping, jumping jack and

standing up produce upward trajectories, are confusing at the classification stage.

4.5 Conclusion and Future work

This chapter compared three different trajectory-based algorithms for human activity recog-

nition: the Interest point (IP), Lucas-Kanade (LK) and Farnback (FB) trajectories. These

trajectories are easy to extract, and they capture the motion information of the video.

The tests done in this chapter, demonstrate that trajectories carry good discriminant

information and therefore are useful for HAR. More specifically, FB and LK algorithm
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proposed here could reach 97.35% and 96.69% accuracy respectively while the Dense Tra-

jectories proposed by Wang only reached 95.36%. It is also worth mentioning that FB and

LK used corner detector on moving parts of the video instead of processing the whole field

of view, which makes this approach faster for real-life applications.

On the other hand, we have also found out that trajectories might not be the best choice

for HAR. Some activities are similar from motion point of view; these activities yield

similar trajectories, and hence trajectories are not useful in this situations.

Enriching trajectories by adding another kind of discriminant information might lead

to better classification performance. Moreover, the shape descriptor we have used here is a

simple one and defining a better shape descriptor might also improve the overall classifica-

tion performance. Next chapter, investigate this further.
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CHAPTER 5

Improving Trajectory Shape Encoding

5.1 Introduction

The previous chapter demonstrated the effectiveness of trajectories for human activity

recognition. On the downside, the naive trajectory shape encoding algorithm used in that

chapter is not able to capture all the discriminant information the trajectories have. This

chapter investigates this problem further and proposes a better trajectory shape descriptor,

which is a superset of existing trajectory shape encoding algorithms.

As it has already mentioned, sparse representation methods describe a given video by a

set of sparsely sampled features, regardless of their location (spatial and temporal). Then,

this feature set is mapped to a fixed-sized vector so that it can be used by any existing

machine learning method. Many sparse representation methods proposed in the literature

rely on local appearance information. Few other methods have used the motion of feature

points for this matter (see Section 5.2).

The previous chapter defined trajectories as the trails of interest point over time. Trajec-

tories are also useful for aligning small neighborhoods in consecutive frames for extraction

of traditional local features.

Although the trajectory aligned descriptors can produce comparable, or slightly bet-

ter results, they are more demanding regarding computations. Once the trajectories are

obtained, one has to align the frames based on trajectories and then calculate traditional

descriptors. There are many such trajectories in a video, which means a lot of processing

time is needed. This chapter aims at overcoming this issue by finding a better way of using

trajectory shape information directly for classification.
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5.2 Related Works

Sparse representation represents each video by a set of independent features. Each one of

these features usually captures the characteristics of a small neighborhood in the spatiotem-

poral space of the video. A vector of the same size often represents these features, but the

number of these features might be different for each video. Hence, in sparse representation,

each video will be represented by a set of independent features. To be used by any existing

learning method, these features should be mapped into a vector of fixed-size. Initially, the

bag of words (BOW) have been used for this purpose, but recently, the Fisher Vector (FV)

encoding is used as it outperforms the BOW by a good margin [66]. Finally, an SVM [65]

or a similar learning method can be used for classification.

Traditionally, sparse feature points are extracted in two steps. The first step, called

feature extraction, is used to find the locations (spatial and temporal) in the video that

are interesting. Having these interest points, the second step, called feature descriptor

extraction, aims at encoding the information in the video around these feature points. These

descriptors should be as discriminant as possible.

5.2.1 Feature Extraction Methods

In 2D still images, feature points are defined as points that carry more texture information.

These are points with severe changes in the intensity. From the visual point of view, this

could be a boundary line. Corners have even more information as they have intensive

changes in both directions. This simple idea leads to several corner detectors algorithms to

find interest points (e.g. Harris interest point detector). In the video paradigm, the same

idea inspired the invention of many algorithms.

Laptev et al. [17, 41] used the idea behind standard Harris interest point detector and

extended it to the 3D spatiotemporal space. Laptev et al. looked for significant changes

in both spatial and temporal domain. In other words, they looked for spatial corners with

meaningful motion (non-constant motion) [41].

The spatiotemporal corners are very robust feature points, but they are rare in videos.

Furthermore, these interest points do not occur in all kinds of human activity videos. Dol-
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lar [19] mentioned these limitations and introduced another local feature point extractor

named cuboid. The cuboid feature points are extracted by using a response function. The

authors mentioned that cuboid locations and types should be sufficient for many recognition

tasks.

Another approach that interestingly produced a comparable result is the random se-

lection of interest points. Instead of searching videos for interest points, Scovanner et al.

proposed to use random points as interest points [23].

Trajectory features are slightly different from traditional appearance-based feature points,

as the only critical component for them is the frame and the spatial location in which they

are starting. Only a few works have been done on trajectory descriptors. One of the signif-

icant works on trajectories was proposed by Wang et al. [22].

In particular, they have shown that dense sampling could outperform other methods.

The dense sampling is straightforward to implement and is fast to calculate. These methods

usually put a grid on top of each frame; then the grid corners are examined to find out how

much visual information exists in each area. If these grid points happen to be on a smooth

area of an image (no texture), they are not suitable for tracking, and they are removed. This

method usually produces lots of feature points, which increases the computation time of

next steps.

Some methods might provide more interest points compared to others. As a rule of

thumb, more interest points means more accurate results, but also more CPU time for

further processing. OpenCV implementation of FAST [61, 67] corner detector is used for

finding the initial locations of trajectories. FAST corner detector is a simple corner detector,

which is based on a machine learning method and selects points that are brighter or darker

from the majority of their neighborhoods.

5.2.2 Feature Description Methods

Different sparse feature descriptor methods have been proposed in the literature. This sec-

tion only covers the most important ones. Namely, HOG and HOF, proposed by Laptev [17,

18], Motion Boundary Histograms, proposed by Dalal et. al. [68] and Trajectory shape de-
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scriptors, proposed by Wang [21].

Histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF), are two

popular methods of sparse feature extraction [18], where HOG captures the visual appear-

ance information and HOF captures the dynamics of an action in consecutive frames. To

calculate HOG, a dense grid is put around each interest point first. Then, a local histogram

of orientation for each cell is calculated separately. By combining these histograms, the

ultimate HOG feature descriptor is obtained. To make a more robust descriptor, a contrast

normalization is usually done on overlapping blocks (spatial regions larger than individual

cells). HOF is very similar to HOG but, instead of appearance information, optical flow

information is used to build the histogram.

Dalal [68] proposed to calculate the optical flow derivatives for horizontal and vertical

directions separately. This leads to MBHx and MBHy components, which will be com-

bined later. Wang et al. [21] argued that the motion captured by HOF may come from

different sources (object motion v.s. camera motion), so the camera movement can degrade

the accuracy of HOF. They proposed and showed that since MBH uses derivatives, the

constant camera motion will be removed.

Trajectory shape descriptors proposed by Wang were compared to HOG, HOF, and

MBH. Also in their tests, dense sampling outperformed other sampling methods. They

showed that the trajectory aligned HOF, HOG, and MBH could beat other descriptors,

including the trajectory shape descriptor.

5.3 Proposed Method

The shape descriptor proposed by Wang is a simple but effective one. To better formulate

the trajectory shape, let us define the trajectory.

Trajectories are trails of 2D spatial feature points in time (Figure 5.3.1). Any feature

detector algorithm could be used to extract these 2D points. Formally, a trajectory Tk is an

ordered list of spatial locations, in l + 1 consecutive frames, where l is called the length of

the trajectory.
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Figure 5.3.1: Tracking of feature points for l consecutive frames in spatiotemporal space

Tk = (p0, p1, p2, ..., pl), pi ∈ R2, i = 0...l (5.3.1)

In other words, each trajectory is simply the trails of a spatial point (feature point)

in time. Each trajectory can be denoted by a function in a small domain. Let us define

Tk : time → R2 where Tk(i) = pi. In fact, this function pinpoints the feature point

location in relative time, so it is a 2D position. If we differentiate it with respect to time,

we get the instance velocity at that particular moment of that particular trajectory. Since

the measurements have been done in discrete times (frames), the differentiation should be

defined in discrete space. We have used the forward difference for this matter.

Vk(t) =
dTk

dt
= lim

t→0

Tk(t+ dt)− Tk(t)

dt
(5.3.2)

The smallest value for t is the difference between two consecutive frames (usually be-

tween 30ms and 40ms). Since the videos usually have a fixed frame rate, we can measure

the time in frames, instead of seconds. This change of unit makes our calculations easier.

Hence, the smallest value for t mapped to one, making dt = 1 and we can write:

Vk(t) = Tk(t+ 1)− Tk(t) (5.3.3)

Alternatively, we may write all the values of the velocity function as:

Vk = (v0, v1, ..., vl−1), vi = pi+1 − pi, pi = Tk(i), i = 0...l − 1 (5.3.4)
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Let Vk be the velocity representation of the trajectory Tk. The following equation shows

the shape descriptor proposed by Wang as defined in their paper [52].

Wk =
(w0, w1, ..., wl−1)

Σi‖wi‖
, wi = pi+1 − pi, pi = Tk(i), i = 0...(l − 1) (5.3.5)

where ‖.‖ denotes the L2 norm. As it can be seen, the wi’s are simply defined the same

way as instant velocities, i.e., vi = wi. So from (5.3.4) and (5.3.5), it is easy to show that:

Wk =
Vk

Σi‖vi‖
(5.3.6)

This means that the trajectory shape descriptor proposed by Wang et al. [52] can be

interpreted as the normalized version of velocity that is proposed in this chapter. From the

physical point of view, Wang’s descriptors still have the sense of velocity.

The velocity can be differentiated one more time to obtain the acceleration.

Ak =
dVk

dt
= (a0, a1, ..., al−1), ai = vi+1 − vi, vi = Vk(i), i = 0...(l − 2) (5.3.7)

We call Ak the acceleration representation of trajectory Tk. In theory, one may continue

to proceed with higher order differentiations. Each level of differentiation introduces pos-

sibly new information, but it also increases the effect of noise. In our experiments, we have

tested up to the seventh derivative. It is expected that derivatives, after the third order, will

not add much information, as human activities do not consist of very complex motions.

On the other hand, after the third derivation, the effect of noise will affect the results and

reduces the accuracy of the system.

Having the derivatives, we have proposed different descriptors by concatenating them.

For example, the first descriptor D1 is simply the first derivative. The second descriptor

D2 is the concatenation of first and second descriptors together, and the third one D3 is the

concatenation of D1, D2 and D3 derivatives together, and so on. We have also defined the

zero order derivative to be the same as trajectory minus its starting location. The zero order
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descriptor D0 only contains zero order derivatives.

5.4 Experiments

We have tested our new method against our challenging dataset. Our dataset contains 27

different activities, performed by 11 different actors and each actor repeated each activity

four times. The dataset recorded with two off the shelf cameras, originally intended for

stereo vision, but to run tests of this chapter, we have only used one camera output only.

The cameras are fixed in the everyday office environment. The dataset is challenging since

it has many activities and some activities are similar from motion point of view.

The tests ran over various trajectory lengths. Fisher Vector is used to prepare data for

learning and a multi-class C-SVM used for classification. The reported results obtained by

N-Fold cross-validation, where N is the number of actors. In each run, we left all instances

of one actor out and trained the SVM with the other actors; then the tests have been done

on the left out actor.

Table 5.4.1 summarizes the results. Each row represents one encoding method, while

each column is dedicated to a particular trajectory length.

Table 5.4.1: The effect of encoding on different trajectory lengths (the reported values are
accuracies)

Trajectory Length

Method 11 13 15 17

D0 83.24% 81.21% 83.32% 84.08%
D1 84.50% 85.72% 84.37% 84.54%
D2 85.80% 87.46% 86.48% 86.94%
D3 85.30% 87.95% 87.07% 89.09%
D4 84.84% 88.42% 88.55% 88.42%
D5 84.08% 85.68% 88.21% 87.11%
D6 84.79% 86.18% 86.44% 86.20%
D7 82.10% 83.15% 84.96% 85.43%

Wang Method [21, 52] 83.78% 82.84% 84.58% 85.89%

The baseline for comparison is the last row of the table. This row represents the results

obtained by method proposed in [21, 52] trajectory encoding algorithm (represented in
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Equation 5.3.5). The proposed algorithm has outperformed Wang’s in almost all cases.

As expected, D0 results are below the baseline. D1, which is the non-normalized version

of Wang’s descriptor, performs similar or better. This means normalization of trajectory

might remove some of the discriminant information. This makes sense as the magnitude of

trajectories can be discriminative for some types of activities. In all cases, D2 outperforms

D1 and in most cases, D3 outperforms D2.

As it can be seen, D3 and D4 outperforms other trajectory descriptors. For example,

D3 produces best results for length 17, with more than 89% accuracy. It is a 3.2% im-

provement, compared to the baseline. For trajectory length of 13, D4 reaches more than

88.42% accuracy, which is a 5.58% improvement over the baseline. After D4, there is no

significant improvement. This is because human activities do not have (or have a little)

higher order complexities. Furthermore, differentiation increases the effect of noise which

results in losing the accuracy.

Table 5.4.2: Dense sampling versus sparse sampling

Trajectory Length

Method / Encoding 11 13 15 17

Dense Trajectory / Wang’s Encoding 89.54% 88.90% 88.74% 87.80%
Sparse Trajectory / Proposed Encoding 85.80% 88.42% 88.55% 89.09%

We also compared our method with dense sampling results as well. Dense sampling

uses much more sampling points, compared to our sparse sampling technique. The best

results we obtained by our method compared with dense sampling results are presented in

Table 5.4.2. As can be seen, with new trajectory encoding algorithm, we can obtain com-

petitive results with the ones using dense trajectories. Note that this is not a fair comparison

as the number of dense trajectories are higher than the sparse trajectories and as a result,

they need more CPU time, while sparse trajectories are lighter and faster.
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5.5 Conclusion

This chapter has reviewed different encoding methods used in the literature for human

activity recognition. It examined the trajectory shape encoding method more intensively

and proposed a new encoding method, which is a superset of the existing trajectory shape

encoding. It also proposed to define the trajectories as functions and formally defined

the new descriptors. Moreover, it also provided rational reasons to justify that this new

encoding method is a superset of the existing methods, and why it should provide more

accurate results.

Finally, the experiments have shown that the new encoding method outperforms the

existing encoding method with a good margin. It also demonstrated that the new encoding

method applied to sparse sampling could achieve competitive results to dense sampling

method with fewer computations.
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CHAPTER 6

Disparity-Augmented Trajectories for Human

Activity Recognition

6.1 Introduction

The disparities can boost the performance of trajectory-based methods. To calculate dis-

parities, two slightly different views of the subject are required. This chapter employs the

trajectory extraction algorithm proposed in Chapter 4 to extract trajectories from left and

right view. Then, these trajectories are matched against each other. The matched trajecto-

ries are mapped to a rectified image plane, where the disparity between them is calculated

and fused with the actual trajectory, to create disparity-augmented trajectory (DAT). Fi-

nally, the trajectory shape descriptors proposed in Chapter 5 is used to encode the shape of

DATs. Figure 6.1.1 demonstrates this process in a block diagram.

This chapter also improved the performance of the proposed method by limiting the

Extract Trajectories Extract Trajectories

Preprocessing Preprocessing

Left Video Right Video

Map 2D to 3D

VLFeat

SVM

Figure 6.1.1: The block diagram of the stereo vision system
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processing to the regions of interest, instead of the whole images. Our regions of interest

consist of the parts in the video frames that contain movement. In particular, the graph

connected component analysis algorithm can select the active areas in frames.

Note that in theory, it is possible to adequately calibrate the cameras, obtain pixel dis-

parities, reconstruct the trajectories in the 3D space and, then perform HAR on the recon-

structed trajectories. However, it is challenging in practice to keep a pair of cameras fully

calibrated, because of autofocusing and other issues.

On the other hand, pixel disparities carry some 3D information and are relatively ef-

fortless to obtain. This chapter demonstrates that adding the disparity information to the

2D trajectories, can be beneficial for human activity recognition. In particular, disparity-

augmented trajectories have improved classification rates by 3.11% in our tests.

This chapter is organized as follows: Section 6.2 reviews related works. Section 6.3

describes the method used for detecting human activity areas in video frames. Section 6.4

provides details for three different algorithms we have used to extract 2D trajectories and

describes how the disparity information is added to the 2D trajectories. Section 6.5 de-

scribes the proposed trajectory shape encoding algorithm. Section 6.6 and Section 6.8

presents the experimental results and the conclusion, respectively.

6.2 Related works

Trajectories have proven to be useful for aligning consecutive frames before extracting

low-level features [52]. Even the extraction of deep learning feature vectors benefited from

trajectory alignment [55]. Trajectory shapes can also be used directly for human activity

recognition.

Wang et al. [21, 22, 52] exploited trajectories in separate contributions. In their works,

a grid was used to dense sample video frames. Eigenvalues of the autocorrelation matrix

was utilized to filter out the samples that were not easy to track. Dense optical flow field,

proposed by Farnback [69], was applied to track these sample points in time. This flow

was then employed to align the interest points neighborhoods before calculating the two

features, HOG and HOF. They also proposed a trajectory shape descriptor, which did not
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outperform the other two.

Matikainen et al. [50] used the technique of Kanade Lucas Tomasi (KLT) [70] to track a

number of points and created a trajectory for each of these points. Then, they used K-Means

method to cluster the obtained trajectories in different clusters (words). They have also

proposed to augment these trajectories by adding some affine transformation information,

which represents the motion of various parts of the body. Finally, they have used a standard

bag of words (BOW) method and SVM for clustering.

In another similar work, Messing et al. [51] used KLT to track keypoints of a video and

created a generative model on the velocity history of these keypoints.

Sun et al. [53] proposed to track Scale Invariant Feature Transform (SIFT) points. They

have suggested using SIFT descriptors to match each keypoints across frames. They have

extracted features at different levels and used multichannel nonlinear SVM for human ac-

tivity recognition.

Recently, [33, 34] demonstrated that good sparse trajectories could produce competitive

results to low-level features, but with less computation. Besides, trajectories are a better

choice for HAR as they encode the motion of a body, while low-level features usually

encode the texture or movement in small neighborhoods in spatiotemporal space. This

makes low-level features more dataset dependent.

6.3 Preprocessing

We have implemented a simple, yet effective method for detecting the regions of interest

(moving parts in the videos) to reduce the overall processing time. The following steps

describe how we detect and remove static or stable regions from videos.

1. Estimate background with a mixture of Gaussian

2. Subtract estimated background from current frame

3. Highlight the moving parts of video by erosion and dilation operations

4. Extract the contours of motion

73



6. DISPARITY-AUGMENTED TRAJECTORIES FOR HUMAN ACTIVITY RECOGNITION

5. Find rectangular regions of interest as follows:

(a) Find a bounding box for each contour

(b) Create a graph where each node represents a bounding box and, if two boxes

overlap or are close enough, have an edge between them

(c) Use connected component labeling algorithm similar to the one in [71] to find

the connected components of this graph

(d) Combine the boxes of each connected components. Each combined box repre-

sents a separate region of interest

The above algorithm allows the extraction of all nonstatic (motion) areas.

6.4 Trajectories for Human Activity Recognition

Trajectories are defined as the trail of 2D or 3D spatial feature points in time. The disparity-

augmented trajectories are similar to 3D trajectories except that they have the disparity in

addition to 2D information. Formally, a trajectory is defined as an ordered list of locations,

sampled over l + 1 time steps, where l is the length of the trajectory. In a single video, for

example, the frame rate determines the distance between sampling times. So, a trajectory

T in dimension n can be defined as:

T = (p0, p1, p2, ..., pl), pi ∈ Rn, i = 0...l (6.4.1)

Note that throughout this paper we assume that n ∈ N, but in practice and in our tests,

n ∈ {2, 3}.

To create a disparity-augmented trajectory, the corresponding 2D trajectories from two

views of a subject are extracted and combined. Section 6.4.1 provides more details of how

these 2D trajectories are extracted. Then, Section 6.4.2 explains disparity is added to our

2D trajectories.
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6.4.1 2D Trajectory Extraction

A 2D trajectory T is an ordered list of 2D spatial coordinates p = (x, y) in l+1 consecutive

frames, formally defined as:

T = (p0, p1, p2, ..., pl), pi ∈ R2, i = 0..l (6.4.2)

Authors in [33] compared three different trajectory extraction algorithms and showed

that a combination of FAST corner detector and Farnback optical flow for trajectory extrac-

tion outperformed other trajectory extraction algorithms. More details is given below for

each of the three methods.

Interest Point Tracking

This algorithm tracks feature points in time based on their appearance. We refer to this

method as “Interest Point Tracking” (IP).

First, the interest points of the video are extracted and a local descriptor is defined for

each of them. Starting from the first frame, the interest points are tracked across frames to

make trajectories. When a trajectory reaches a length of l + 1, it is considered a complete

trajectory. The full description of this process is given in Algorithm 1.

To better understand the algorithm, some definitions are given here. For each frame It,

a set of feature points is defined as:

Pt = {p|p ∈ R2} (6.4.3)

Although any image point could be considered as an interest point, we are interested in

points that are easy to track across frames, for example, Harris corners.

For each member of Pt, a feature descriptor is calculated based on the appearance of the

interest point neighborhood. Again, the algorithm could consider any feature descriptor.

We define a mapping Ψt : Pt → Rk, where

Ψt = {(p, v)|p ∈ Pt, v ∈ Rk} (6.4.4)
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Algorithm 1 IP Trajectory Extraction
Input the video
Output the set of trajectories

1: procedure IPTRAJECTORYEXTRACTION(video)
2: T ← {}, τ ← {} . T has incomplete and τ has completed trajectories
3: for ∀It ∈ video do . For all frames of video
4: Pt ← ExtracFeaturesPoints(It) . Extract IP’s of current frame
5: for ∀tr ∈ T do . For all incomplete trajectories
6: lp← tr last point . Note that: lp ∈ Pt−1

7: Nt(lp)← FindNeighborsInCurretnFrame(Pt, lp)
8: bm = FindBestMatch(lp,Nt(lp))
9: if Could not find the best match then

10: T ← T − {tr} . removes tr from T
11: else
12: Add bm to the end of tr trajectory
13: Pt ← Pt − {bm} . removes bm from Pt

14: if len(tr) = l then . If trajectory is completed
15: T ← T − {tr}, τ ← τ ∪ {tr} . move tr from T to τ
16: end if
17: end if
18: end for
19: ∀pi ∈ Pt tr = CreateNewTrajectoyFrom(pi), T = T ∪ {tr}

. Create new trajectories starting at pi
20: end for
21: return τ . Return all completed Trajectories
22: end procedure
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t is the frame number, v is the feature descriptor vector for point p and k is the dimension

of the descriptor (e.g., for standard SIFT descriptor k = 128).

The neighborhood of a point pi is given by

Nt(p0) = {p | p ∈ Pt, ∆1(p, p0) ≤ λ1} (6.4.5)

where ∆1(.) is a distance measure and λ1 determines the radius of neighborhood. In our

implementation, we have used the Manhattan distance.

The best match for p0 is found within the neighborhood Nt(p0), based on the appearance

of descriptors. To do so, for each pi ∈ Pt−1, a mapping Mt(p0) : Nt(p0)→ R is defined as

follow:

Mt(p0) = {(p, d)|p ∈ Nt(p0), d = ∆2(Ψt−1(p),Ψt(p0))} (6.4.6)

where ∆2(.) is a distance measure in descriptors space.

In our case, we used the Euclidean distance, where the closest match is considered the

best match.

BestMatch = argmin{Mt+1(pi)} (6.4.7)

It is possible that more than one point from previous frame are a match for a single

point in the current frame. In order to keep the reliable matches, we removed such points.

In addition, if the similarity difference between the first and second best matches is small,

the match is not robust and is thus removed. An example of the resulting trajectories is

displayed on Figure 6.4.1 left (best seen in color).

Lucas-Kanade Feature Point Tracking

We refer to this method as “Lucas-Kanade Trajectory” (LK), as it is based on Lucas-

Kanade optical flow algorithm [64]. First, the feature points of each frame of the video are

extracted. Then, Lucas-Kanade optical flow algorithm is used to find the location of each

of these feature points in the next frame. Based on tracking information, a trajectory will
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Figure 6.4.1: Three different 2D trajectory extraction algorithms (best seen in color) : IP
(left), LK (middle), FB (right). The green box is the active detected area by preprocessing
algorithm.
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be created. The full details are given in Algorithm 2.

Algorithm 2 LK Trajectory Extraction
Input the video
Output the set of trajectories

1: procedure LKTRAJECTORYEXTRACTION(video)
2: T ← {}, τ ← {} . T has incomplete and τ has completed trajectories
3: for ∀τt ∈ video do . For all frames of video
4: Pt ← ExtracFeaturesPoints(It) . Extract Feature points of current frame
5: CP = {}
6: for ∀tr ∈ T do
7: CP = CP ∪ lastPoint(tr)
8: end for
9: CP = CP ∪ Pt

10: NP = FindNextPointsWithLucasKanade(CP, It, It−1)
11: for ∀p ∈ NP do
12: if previous point of p is part of a trajectory then
13: Add p to that trajectory
14: else
15: Create New Trajectory Starting at p
16: end if
17: end for
18: end for
19: return τ . Return all completed Trajectories
20: end procedure

Since the details of LK algorithm and Farnback feature point tracking are very similar,

we explain only the latter in the next section. An example of the resulting LK trajectories

are displayed on Figure 6.4.1 (middle).

Farnback Feature Point Tracking

This algorithm is based on the Farnback optical flow algorithm [69], we call it “Farnback

Trajectory” (FB). Farnback optical flow algorithm is newer than Lucas-Kanade algorithm,

and it has shown better performance [52, 69]. Farnback optical flow algorithm is also able

to provide the dense optical flow field, while Lucas-Kanade optical flow was designed to

track sparse feature points. This gives FB an advantage, especially when the selected points

are not good feature points. Our tests revealed that FB yields competetive results to LK,

and both performed much better than IP.
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First, the Farnback optical flow field is calculated before the feature points of each

frame are extracted. Starting from the first frame, the location of each point in the next

frame is predicted, thanks to the optical flow field. These points are then connected as a

trajectory. When each point is tracked in l+1 frames, the trajectory is considered complete.

Algorithm 3 provides the details of this method.

Algorithm 3 FB Trajectory Extraction
Input the video
Output the set of trajectories

1: procedure FBTRAJECTORYEXTRACTION(video)
2: T ← {}, τ ← {} . T has incomplete and τ has completed trajectories
3: for ∀It ∈ video do . For all frames of video
4: Pt ← ExtracFeaturesPoints(It) . Extract feature pints of current frame
5: OFt = Farnback(It, It + 1)
6: TP = Pt . TP is going to keep the point to track
7: for ∀tr ∈ T do . Add the last point of all active trajectories
8: TP = TP ∪ lastPoint(tr) . to the tracking set
9: end for

10: NP = FindTheCorrespondinPoints(TP,OFt)
11: for ∀p ∈ NP do . Combine new found points with existing trajectories
12: if previous point of p is part of a trajectory then
13: Add p to that trajectory
14: else
15: Create New Trajectory Starting at p
16: end if
17: end for
18: end for
19: return τ . Return all completed Trajectories
20: end procedure

where, OF is the optical flow, and OFt is its corresponding frame.

The interest points of each frame are extracted using OpenCV implementation of FAST

algorithm [61]. The dense optical flow field is obtained using Farnback motion estimation

method [69]. The trajectories created by this algorithm are shown on Figure 6.4.1 (right).

All interest points in first frame are considered active tracking points. Their locations in

the next frame are estimated by the optical flow field. The interest points in the next frame,

that are not already being tracked, are added to the list of active tracking points. Once

each trajectory in the active tracking set reaches the length l + 1, it is removed from the
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set and added to the complete trajectory set. Trajectories created this way are shown on

Figure 6.4.1.

6.4.2 Disparity-Augmented Trajectory

After the extraction of the 2D trajectories from the left and right videos, matching the tra-

jectories is achieved based on local descriptors (Section 6.4.2). The matched trajectories are

then mapped to their corresponding rectified planes (Section 6.4.2). Finally, their disparity

is fused with the 2D spatial information (Section 6.4.2).

Finding Matching Trajectories

Each trajectory starting point, in the left and right videos, are encoded with a SIFT descrip-

tor and the best match of this descriptor is found by using the algorithm from [43]. Starting

from the first frame of the video, for each descriptor in the left frame, its best match is

found in the right frame. To make the matching robust, we repeat the process between the

right to the left frames and, as we only keep the matches that works both ways.

Video Rectification

In this step, we estimate the Fundamental Matrix F , relating left and right frames, and the

rectification matrixes Hl and Hr [72]. The rectification is the process of mapping an images

to a plane, where the y disparity becomes zero and only the x disparity remains. If p and p′

represent two matching points, between the left and right images, the fundamental matrix

F is the matrix that satisfies:

pFp′ = 0 (6.4.8)

The eight-point algorithm is used to estimate F [73]. The FAST algorithm is used to

find the feature points. The same algorithm, as explained in Section 6.4.2, is used to match

the feature points between the left and the right video frames.

The calculation of F and rectification matrices highly depend on the quality of matched

points. To address these issues, we propose the following technique to find the best estima-
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Figure 6.4.2: Sample stereo trajectories. Left image shows a sample trajectory as seen
in the left and right views. Right image shows another stereo trajectory rectified by the
proposed method (best seen in color).

tion of F , Hl and Hr. First, m random frames of the stereo video are selected. For each pair

i of these stereo frames, F i, H i
l and H i

r are calculated. If p = (x, y, 1)T and p′ = (x′, y′, 1)T

represent a matching point, then q = H i
l p = (u, v, 1)T and q′ = H i

rp
′ = (u′, v′, 1)T rep-

resents the mapping of these corresponding points on the rectified plane, where ideally

v − v′ = 0. Considering the matched trajectories from Section 6.4.2, the best estimate of

F is the one that maximizes the number of trajectories that will be rectified with the ac-

ceptable y disparity. Figure 6.4.2 shows samples of two matching trajectories, one before

rectification and the other one after rectification. In addition, because the calculation of

F is susceptible to outliers, we have also used the random sample consensus (RANSAC)

method to make its calculation robust.

Calculating Disparity-Augmented Trajectories

Having the rectification matrices Hl and Hr, it is now easier to calculate the rectified left

and right trajectories, tl and tr.

tl = HlTl (6.4.9)

tr = HrTr (6.4.10)
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where Tl and Tr are the homogeneous representation of the left and right trajectories, re-

spectively.

Each column of tl or tr represents a rectified trajectory image plane point. Consider

two corresponding points q = (u, v, 1)T and q′ = (u′, v′, 1)T on left and right trajectories,

respectively. The corresponding disparity augmented point (xm, ym, d) will be given by:

xm = u (6.4.11)

ym = v (6.4.12)

d = u− u′ (6.4.13)

6.5 Trajectory Shape Descriptor

The method we used to create a descriptor for trajectories is an extension of [34]. In simple

words, we record the locations of interest points in 2D or 3D spaces, and encode them

into trajectories. Traditionally, a trajectory is considered as an ordered set of points. Here

we treat them as discrete functions that map time values to a point coordinates. The first

derivative of this function with respect to time is the velocity of the interest point. The

second derivative represents the acceleration. Higher order derivatives encode higher order

motion information. The final descriptor is obtained by concatenating these derivatives. In

our experiments, we have used derivatives up to the 7th order, for single views and up to

5th order for multiple views.

Formally, each trajectory, defined in Equation 6.4.1, can be interpreted as a function of

time that map time values to locations in Rn space.

T : time→ Rn (6.5.1)

T (t) = P (
t− t0
∆t

) (6.5.2)

P (i) = pi ∈ Rn (6.5.3)
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where ∆t is the time between two consecutive frames and t0 is the starting time of trajectory

Tk.

The first derivative of this function is given by:

V (t) =
dT

dt
= lim

t→0

T (t+ dt)− T (t)

dt
(6.5.4)

Usually, video have a fixed frame rate, which means frames of video are sampled with

a fixed interval between them. Therefore, the smallest value of dt is the distance between

two consecutive frames (∆t). Changing the unit of measurement from seconds to frames

makes dt = 1. Hence, the velocity Equation 6.5.4 can be rewritten as:

V (t) = T (t+ 1)− T (t) (6.5.5)

V = (v0, v1, ..., vl−1) (6.5.6)

vi = pi+1 − pi, i = 0...(l − 2) (6.5.7)

Similarly, the acceleration is given by

A(t) =
dV (t)

dt
= V (t+ 1)− V (t) (6.5.8)

A = (a0, a1, ..., al−1), (6.5.9)

ai = vi+1 − vi, i = 0...(l − 2) (6.5.10)

Higher order functions can be defined as follows:

∇(n) =
dnT (t)

dtn
(6.5.11)

The actual descriptor is created by the concatenation of these derivatives. For example,

descriptor D1 is given by the velocity (∇(1)), descriptor D2 is given by the concatenation

of∇(1) and ∇(2) and, descriptor D3 is given by the concatenation of ∇(1), ∇(2) and∇(3).

ut it will converge to zero very fast (since it is simple physical movement). Another

84



6. DISPARITY-AUGMENTED TRAJECTORIES FOR HUMAN ACTIVITY RECOGNITION

one might calculate the degree of movement: The number of times movements can be

differentiated without converging to zero (my best guess is 3).

6.6 Experiments

In addition to the results, this section provides details on the dataset we have used and on

our experimental setup.

6.6.1 Dataset

Since there were no suitable stereo datasets for HAR, we had to create our own to show the

effectiveness of our proposed method.

Despite the amount of work that has been done on human action recognition, there is no

globally accepted definition of human action. This is especially more visible in the different

datasets that have been created so far. Some actions, like walking, running and jumping, are

widely accepted [74, 75]. A single person usually performs these activities, with some of

them containing human and objects/environment interactions, like riding a bike or shooting

a basketball [76], playing cello and mopping the floor [77]. Some researchers went beyond

this and created datasets for cooking different recipes [78].

To create a dataset for HAR, one need to decide which activities are suitable for the

dataset. We considered actions to be sole movements of human body, regardless of the

background, environment or tools they might be using. Besides, we studied activities that

contain the whole human body movement as actions. We have considered 27 different

actions for this dataset. The activities were selected based on the frequency of their ap-

pearance in other human datasets. Besides, we added activities that can be performed in

an office setting. We did not use tools much. For example, for recording throwing, the

actor does not throw anything, he/she simply acts like throwing. The only exception was

for pushing/pulling of objects, where a chair has been used.

Actions were performed by eleven different volunteer actors in an everyday office set-

ting. Some activities were performed in different scenarios. For example, walking was

performed four times by each actor: walking from left to right, walking from right to left,
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Figure 6.6.1: Sample images from dataset (best seen in color)

86



6. DISPARITY-AUGMENTED TRAJECTORIES FOR HUMAN ACTIVITY RECOGNITION

Table 6.6.1: The list of activity classes in the proposed dataset

Crossing Arms Exchange Object Hand Clapping
Hand Shaking Hand Waving High Five

Hitting Jumping Over Gap Jumping Jack
Kick the Ball Kicking Lay Down
Pickup(Floor) Pull Pointing
Pickup(Table) Push RaiseHand

Running Scratch Head Sitdown
Situp Skipping Standup

Throwing Turning Walking

walking toward the camera and walking away from the camera. We used off-the-shelf

cameras to record these activities. The stereo cameras were placed roughly at 30cm from

each other. The camera and background were stable during each session of recording. In

total, five hours of activities were recorded by each camera. A total of 4076 stereo video

clips were extracted, from which 1188 were selected to represents 27 different activities.

The latter were performed four times by each of the eleven actors. Table 6.6.1 presents

information about the recorded activities. Some samples of these activities are presented in

Figure 6.6.1.

6.6.2 Experimental Setup

All the tests are carried out on a Ubuntu machine, with eight 3.8 GHz cores and 8G of

RAM. The video processing part, including trajectory extraction, is implemented in C++,

using OpenCV library. The trajectory aligning algorithm is implemented in Python.

After obtaining a set of trajectory descriptors for each video, and since [22] has shown

the effectiveness of fisher vectors over other methods, we used fisher vectors to prepare

data before passing it to a standard support vector machine (libSVM [65]).

The data used for training and testing was split as follows. For each action, all videos

of one actor are used for testing, while the remaining videos from other actors are used for

training. A confusion matrix is calculated for each action. The blending of these matrices

represents the overall confusion matrix. The accuracy, reported in the tables, is the ratio of

correctly classified instanced to the total number of samples, directly calculated from the
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Figure 6.6.2: The perfomance of IP, LK and FB 2D trajectories on the left, right and both
camera

overall confusion matrix.

6.6.3 2D Trajectories

Table 6.6.2 summarizes the obtained results of our HAR tests using 2D trajectories. Each

column represents one of the algorithms proposed in this paper, where “both camera” col-

umn refers to the stacking of left and right descriptors without any further processing. The

descriptors of the trajectories were calculated using the algorithm proposed in [21]. As

it can be seen, FB outperforms the other two in most cases. LK closely follows FB and

beats it in some cases. The reason why FB and LK are yielding similar results is because

the selected feature points are the corners, which are easy to follow for both algorithms.

Both FB and LK track pixels at subpixel accuracy, yielding smoother trajectories. On the

other hand, IP algorithm uses pixel accuracy that degrades its results, as it can be seen on

Figure 6.6.2.

The optimum trajectory length was 21 or 23 for LK and FB. Figure 6.6.3 compares

the best results obtained from left, right and both cameras. As it can be seen, there is no

significant difference between them. In other words, adding up trajectories seen by the left

and right cameras did not improve the results.
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Table 6.6.3: The effect of proposed shape descriptor algorithm on the accuracy of 2D
Trajectories

Trajectory Shape Descriptor

Length D1 D2 D3 D4 D5 D6 D7

11 84.50% 85.80% 85.30% 84.84% 84.08% 84.79 82.10
13 85.72% 87.46% 87.95% 88.42% 85.68% 86.18 83.15
15 84.37% 86.48% 87.07% 88.55% 88.21% 86.44 84.96
17 84.54% 86.94% 89.09% 88.42% 87.11% 86.20 85.43

6.6.4 Effect of Shape Descriptor

The proposed trajectory shape descriptor in this paper has improved the classification re-

sults. Table 6.6.3 shows the effect of the new algorithm on the accuracy. In the absence of

noise, higher order derivatives might provide new information. So, higher order descriptors

should produce better results in general. However, in practice the effect of noise and out-

liers is amplified by the derivatives. Besides, human activities do not have very complex

motions. As a consequence, the accuracy has a local maximum bound. Table 6.6.3 and

Figure 6.6.4 illustrate this effect. As it can be seen, D3 and D4 produced the best accuracy

for trajectories, with length 17 and 15, respectively. As expected, higher order derivatives

do not improve performance.

6.6.5 Disparity-Augmented Trajectories

Table 6.6.4 summarizes the obtained results for disparity-augmented trajectories. Each

row represents a trajectory length while each column represents an encoding algorithm.

We have tested trajectory lengths that range between 9 and 27, and encoding up to the fifth

degree. As it can be seen, the added disparity information increased the accuracy by around

2% in all cases. The best obtained result was for trajectory length 19 and encoding degree

three. The general trend is that increasing the length of trajectory increases the accuracy of

the classification. This trend is more obvious on Figure 6.6.5. The best results (91.85%)

were obtained with D2 and D3 encoding, at trajectory lengths of 21 and 19, respectively.

Figure 6.6.6 illustrates the confusion matrix of a sample test. The actual classes repre-

sented on each row and each column represent the predicted classes. The number of correct
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Figure 6.6.6: Sample confusion matrix for 27 classes (indexed a to z and A). Each row
represents the actual class, and each column is the predicted class (best seen in color).
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Table 6.6.4: The accuracy of disparity-augmented trajectories (DAT) on human activity
recognition

Trajectory Shape Descriptor

Length D1 D2 D3 D4 D5

9 88.98% 89.72% 88.89% 88.70% 88.43%
11 90.09% 90.83% 89.26% 89.54% 87.41%
13 89.44% 88.80% 86.85% 87.87% 87.31%
15 90.37% 90.65% 89.91% 89.72% 89.26%
17 89.91% 91.48% 90.56% 88.89% 89.35%
19 90.67% 91.39% 91.85% 91.11% 90.00%
21 89.23% 91.85% 90.41% 90.19% 90.83%
23 90.57% 90.93% 89.54% 91.39% 91.02%

classification is normalized between zero and one. It is also worth noting that the classes

in our dataset are balanced, which means the number of samples for each activity classes is

the same for all classes. The misclassified instances of a matrix give interesting information

about the behavior of the trajectories for HAR. For example, the most confused classes in

this figure are “pointing” and “raise hand”. The fact that for pointing to something, one

should raise his/her hand shows that trajectories are capable of finding this similarity, but

they are unable to distinguish between them in some cases. Another example is the classes

“kicking a fixed object” and “kicking the ball”, these classes have very similar motions and

it is expected that these classes might be confused by any method that uses motion-based

information for HAR.

From another point of view, it is also true to assume that human activities have no pre-

cise definitions. In particular, many human activities do have some overlaps. For example,

someone may raise the hand to point to something or to wave. So, it is evident that there is

a conceptual overlap over the definition of these classes and it is not easy to separate them

conceptually.

6.7 Comparison

To the be best of our knowledge, we are the first ones to use disparity for human activity

recognition. As a result it is hard to compare disparity-augmented trajectories (DAT) with
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Table 6.7.1: Comparison of our method against other states of the art methods

Method Accuracy

Trajectory based
Sparse Trajectories 87.80%
Dense Trajectory 88.74%
DAT (Ours) 91.85%

Trajectory aligned
HOG 89.54%
HOF 92.72%
MBH 92.22%

other similar works. Table 6.7.1 shows the performance of our proposed method compared

to the state of the art. The closest works to DAT are 2D dense trajectories [22] and 3D

trajectories [1]. The former uses dense trajectory extraction, in contrast our proposed al-

gorithm uses sparse feature points. Sparse methods usually produce less number of feature

points compared to dense methods as a result they are faster. We applied the algorithm

proposed in [52] on sparse feature points and the result reported as sparse trajectories in

Table 6.7.1. As it can be seen our proposed method can outperform the dense and sparse

trajectory methods with a good margin. Moreover, DAT produced better result compared

to HOG, and comparable results to HOF and MBH. It should be noted that HOG, HOF

and MBH are aligned by using trajectories, which means they need more computation in

comparison with DAT.

Koperski et al.[1] used depth information to create 3D trajectories. They ran their tests

on MSR DailyActivity 3D dataset, which has similar setting as our dataset, but recorded

with an rgb-depth camera. It is not possible to run their algorithm on our dataset, nor we

can run our method on their dataset. Just as a point of comparison, we repeated their result

in Table 6.7.2. As it can be seen, they could not improve the performance of 2D trajectories

by using 3D data only. They improved performance by combining 2D and 3D data. This

shows the effectiveness of our proposed trajectory shape descriptor.
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Table 6.7.2: 3D trajectories proposed by Koperski et al. [1].

Method Accuracy

2D TSD 78%
3D TSD 74%
2D TSD+3D TSD 85%

6.8 Conclusion

We have presented and compared three popular trajectory-based human action recognition

methods. We have also enhanced the conventional trajectory encoding algorithms by con-

sidering higher order derivatives of individual trajectories. Furthermore, we have proposed

a new method based on disparity-augmented trajectories for video content analysis. Be-

cause disparities carry the scene’s three-dimensional clues, we anticipated an improvement

in the HAR. To the best of our knowledge, we are the first to include stereo-based disparity

information in a HAR method that uses trajectories. In particular, we have fused the dis-

parity information with motion-based features. Finally, all described methods have been

evaluated on a newly created dataset, that included stereo-frame videos. We have obtained

improved results, when compared to traditional trajectory-based methods.

We have also demonstrated that trajectories are useful for video content analysis in

general, and for human activity recognition in particular. The proposed shape encoding

algorithm has improved the accuracy of activity recognition by about 1.5%. The disparity

information added to trajectories has also enhanced the results by another 2.5%.

We have also discussed some limitations associated with trajectory-based activity recog-

nition. Activities that are similar, from the movement point of view, might be confused. We

believe that some actions are conceptually overlapping and are hard to be distinguished,

when using the human movement information only.
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CHAPTER 7

Conclusions

Trajectories have been proven in the literature to be useful for HAR by aligning the small

neighborhoods before calculating the traditional low-level features, namely histogram of

Gaussian (HOG), histogram of flow (HOF) and motion boundary histogram (MBH). The

trajectory shape has also been used for human activity recognition in some works, but none

of them could perform as good as known descriptors, like trajectory aligned HOF.

This dissertation has investigated extensively trajectories, as mid-level features for HAR.

The main focus is to improve HAR performance through a better extraction and represen-

tation of trajectories, and their augmentation with the disparity information. The latter

contains the scene’s 3D structure clues without requiring a full 3D reconstruction. We

avoided the use of RGB-depth sensors because of their limitations and associated costs.

7.1 Contributions

The following contributions have been made by this dissertation.

1. We extensively investigated the potentials of trajectories for human activity recog-

nition. We showed that trajectories have useful information for HAR, and we also

provided the limitation of such representation.

2. We proposed three modified versions of trajectory-based methods for human activity

recognition, namely interest point trajectories (IP), Lucas-Kanade based trajectories

(LK), and Farnback optical flow based trajectories (FB). We evaluated the discrimi-

nant power of these algorithms, and demonstrated that the LK and FB can produce

similar accuracy for HAR, if the selected tracked points represent good features.
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3. We proposed a better trajectory shape descriptor extraction algorithm, and proved

that it is a superset of the existing trajectory shape descriptors. We proposed to treat

the trajectories as functions, this enabled us to formally define the new trajectory

descriptor. We showed that the traditional trajectory shape descriptors represent the

speed of trajectories, while the proposed descriptor can capture the speed, accel-

eration, and higher order information. The experiments demonstrated the superior

performance of this method over other existing methods in the literature.

4. We proposed disparity-augmented trajectories (DAT) as a method for human activity

recognition. We proved that simple disparity information can be beneficial to human

activity recognition. Disparity information captures the 3D structure of the scene

without the 3D Euclidean reconstruction. We fused the disparity information within

the 2D trajectories and demonstrated the discriminant power of disparities for human

activity recognition. To the best of our knowledge, this is the first time that disparity

augmented with trajectory for HAR.

5. We created a new stereo dataset for human activity recognition, to demonstrate the

effectiveness of the proposed methods. A stereo dataset of 27 different activities have

been recorded and hand labelled. To the best of our knowledge, this dataset is unique

in its kind.

The extensive experiments we have carried out demonstrates that our method, based on

disparity-augmented trajectories (DAT), outperforms other trajectory-based methods with

a good margin. We have also shown that DAT can produce results better than HOG, and

competetive to HOF and MBH. Disparities can be an excellent depth clue of the scene, that

are useful to HAR.

7.2 Limitations and future work

Our Extensive use of trajectories also reveals that the trajectories are not the best descrip-

tors to differentiate between certain activities. There are human activities that have overlap-

ping motion, which confuses any method that uses motion as the main clue. For example,
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scratching head and hand waving both involve raising hands. These classes are easily con-

fused by any method that uses motion as the only clue. From another point of view, it can

be argued that some activities are conceptually overlapping. For example, our classifiers,

sometimes confused pushing heavy object with walking. The pushing of a heavy object,

conceptually overlaps with walking, as it involves a human pushing a heavy object while

walking. These examples demonstrate the limitations of motion-based activity recognition.

We can see the following potential possible improvements to our work.

• Fusing the DAT trajectories with low-level features, HOG for instance, should im-

prove the final classification results. As motion alone is not enough to separate certain

activities that are conceptually overlapping, some low-level information, especially

the appearance based descriptors, can be fused with DAT trajectories to improve their

classification power.

• The methods proposed in this dissertation did not cope with camera movements. If

the camera is not fixed, some unwanted trajectories may appear in the scene. There

are methods in the literature that can be used to model the camera motion and extract

the actual human motion.

• Trajectories are relatively easy to extract and they can be used for other classification

tasks as well. The methods discussed in this dissertation can be adapted and applied

to any other video classification task. The only requirement is that the motion of the

video is discriminant.
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