
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2018

Energy Efficient Route Planning Using VANET Energy Efficient Route Planning Using VANET

Nazmul Sumon
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Sumon, Nazmul, "Energy Efficient Route Planning Using VANET" (2018). Electronic Theses and
Dissertations. 7398.
https://scholar.uwindsor.ca/etd/7398

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7398?utm_source=scholar.uwindsor.ca%2Fetd%2F7398&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Energy Efficient Route Planning Using VANET

By

Nazmul Huq Sumon

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2017

©2017 Nazmul Huq Sumon

II

Energy Efficient Route Planning Using VANET

By

Nazmul Huq Sumon

APPROVED BY:

K. Tepe

Department of Electrical and Computer Engineering

M. Kargar

School of Computer Science

R. D. Kent, Co-Advisor

School of Computer Science

A. Jaekel, Advisor

School of Computer Science

Dec 5, 2017

III

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other

material from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted

for a higher degree to any other University or Institution.

IV

ABSTRACT

One of the key challenges in conducting dynamic route planning is the process of collecting and

disseminating instantaneous travel data in real time. Recent studies are evaluating VANET

(Vehicular Ad Hoc Network) and its associated WAVE (Wireless Access in Vehicular Environment)

standards to facilitate this process. In these studies, travel data accumulated from vehicle OBUs

(on board unit) are shared with other vehicles over DSRC (dedicated short- range communication)

medium using centralized or distributed approach. In most studies, data collection and

dissemination process are not scalable enough for high density traffic environment. Specifically,

with a centralized approach, if traffic management center (TMC) or Road Side Unit (RSU)

performs route planning for vehicles, there will be many bidirectional communications between

the centralized entity and vehicles, leading to higher channel congestion in heavy traffic areas.

With a distributed approach, information shared by other vehicles might not be useful or

pertinent for some vehicles, leading to wastage of channel bandwidth. Methods used for data

collection also need to be intelligent to count in nontraditional circumstances to achieve

accuracy. In this thesis, we have proposed a three tiered architecture for data collection, analysis

and dissemination. In addition, 1) we demonstrated the concept of queuing delay at intersection

for travel time calculation and developed a hybrid metric that considers average travel time and

occupancy rate, 2) we offload the computation of route planning to vehicle OBUs and 3) we

developed an algorithm that determines the area of propagation for data that needs to be

disseminated. We evaluated the performance of our approach progressively using VEINS, SUMO

and OMNET++ simulators.

V

ACKNOWLEDGEMENTS

 I would like to express my deepest appreciation to my supervisor Dr. Arunita Jaekel and

my co-supervisor Dr. Robert D. Kent for their support and inspiration during my Master’s program

at the University of Windsor. Dr. Kent, you have taught me how to pause, take a step back and

assess my current standing before setting future goals. Dr. Jaekel, you have always inspired me

by teaching how to correct and test small steps before trying a large one. I have had the chance

to meet some very talented colleagues who have taught and supported me during my years at

the university. Special thanks to Bryan St. Amour and Paul Preney for sharing their deep

understanding on programming languages with me.

 To my wife Sharmina, without your unconditional support, I couldn’t have come this far.

I highly value your patience, encouragement and kindness and I owe you a lot for that.

VI

DEDICATION

Dedicated to my beloved parents and sister for their support and sacrifice.

VII

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

ACKNOWLEDGEMENTS V

DEDICATION VI

LIST OF FIGURES IX

LIST OF TABLES X

1. Introduction ...1

1.1 ITS and VANET: .. 1

1.2 Motivation:.. 2

1.3 Problem statement: .. 3

1.4 Solution outline: .. 5

1.5 Thesis organization: .. 7

2. Background ..8

2.1 Terminology .. 8

2.2 Dynamic Route Planning ... 11

2.2.1 Tools used for performance evaluation ... 12

2.3 Literature review on route planning based on VANET: .. 17

3. Proposed Fuel Efficient Route Planning ... 20

3.1 Traffic Management Center (TMC) Functionality ... 23

3.1.1 Create Edge to RSU association ... 23

3.1.2 Maintain Current Traffic Information .. 26

3.2 Vehicle OBU Functionality .. 30

3.2.1 Send Travel Time Updates ... 30

3.2.2 Update Vehicle Route .. 30

3.3 RSU Functionality .. 34

4. Experiment Setup and Results .. 36

4.1 Experiment Setup .. 36

4.1.1 ‘.net’ file generation ... 37

VIII

4.1.2 Graph node and edge extraction ... 37

4.1.3 Internal junction and edge elimination ... 38

4.1.4 Node, edge and RSU association, and driving permissibility ... 38

4.1.5 RSU placement selection ... 38

4.1.6 Database setup .. 39

4.1.7 TMC setup .. 40

4.1.8 Vehicle setup .. 41

4.1.9 Vehicle – RSU interaction ... 42

4.1.10 Route file / Demand generation .. 42

4.2 Results ... 43

5. Conclusion ... 47

5.1 Future Work .. 47

References ... 49

Vita Auctoris .. 53

IX

LIST OF FIGURES

Figure 2.1 DSRC/WAVE protocol stack 1 ... 9

Figure 2.2 Control (CCH) and Service (SCH) Channels of DSRC Spectrum ... 10

Figure 2.3 A map in .osm format as viewed in SUMO ... 13

Figure 2.4 Simulation capture showing internal junctions and edges, and signalized intersection 14

Figure 2.5 a very high level overview of connections between SUMO, VEINS and OMNET++ 16

Figure 3.1 High level overview of proposed approach 1 .. 21

Figure 3.2 Edge-RSU relationship using n=2. The colored RSUs will broadcast metric value of prospective

edge ‘e’ with start node ‘j’ for nearby vehicles to influence route planning ... 24

Figure 3.3 TMC process flow chart ... 29

Figure 3.4 Vehicle application flowchart .. 31

Figure 3.5 Driving permissibility is required to be consulted for correct operation of FERP 33

Figure 3.6 RSU application process flowchart .. 35

Figure 4.1 High level setup of the experiment 2 ... 41

Figure 4.2 Screen capture of the simulation run from OMNET++ 1 ... 44

X

LIST OF TABLES

Table 3.1 Terminologies used for proposed approach 1 .. 22

Table 4.1 Notations used in experiment 1 .. 36

Table 4.2 Tables used in the database1 .. 40

Table 4.3 Summary of simulation properties1 ... 43

Table 4.4 Result of setup 1 .. 44

Table 4.5 Result of setup 2 1 ... 45

Table 4.6 Performance comparison with no dynamic route planning and no queueing delay 46

1

1. Introduction

1.1 ITS and VANET:

Intelligent Transportation System (ITS) - was first envisioned in the early 1980’s primarily for

surface transportation with the purpose of improving safety, efficiency and convenience [1]. ITS

was first officially recognized by Transportation Equity Act (TEA-21), passed by the US Congress

in 1988 [2]. Three main disciplines of ITS are Advanced Traveler Information System (ATIS),

Advanced Vehicle Control and Safety System (AVCSS) and Advanced Transportation Management

System (ATMS) [2]. While the ATMS discipline addresses monitoring and management of real-

time traffic, detections of traffic pattern, driver error, system performance and vehicle state are

addressed by AVCSS. ATIS provides notifications on incidents, road conditions, restrictions,

weather etc. through variable message signs in roads and highways.

With the advent of Controller Area Network (CAN) bus [3] that are installed in vehicles 1996

and newer, a wide array of vehicle’s system state and performance data can be tracked and

recorded such as velocity, acceleration, different engine state, wheel state, brake state etc.

Additional state data can also be gathered using Radio Detection And Ranging (RADAR), Light

Detection And Ranging (LIDAR), and other sensor devices [31]. Vehicular Ad Hoc Networking

(VANET) [1] brings in new dimension to ITS since these state data can be disseminated and shared

among cars using On Board Units (OBU) that are installed in vehicles and, or infrastructure

services like Road Side Units (RSU) for analytics that can facilitate all three disciplines of ITS.

2

VANET got a large boost in its development when US allocated dedicated short range

communication (DSRC) channel for vehicular operation in 1999 [2]. VANET got more formal

specification with DSRC’s 802.11p amendment to the traditional 802.11 standard along with

other standard extensions of 1609.x in WAVE [1][2]. Apart from VANET’s safety application to

assist with collision avoidance and accident data dissemination, numerous research is being

conducted to develop applications that can aid Traffic Information/Management Centers

(TIC/TMC) to address efficient route management, route planning and diversions [21].

1.2 Motivation:

One of the key contributing factors of global warming is traffic congestion due to

overloaded and inefficiently planned road infrastructure and traffic management system. Apart

from pollution, congestion costs an estimated $160 billion of lost productivity in the USA alone

[4]. Canadian cities are not behind [5] and by 2050 an estimated 9 billion people with 2.9 billion

cars will share the road [6][7]. More vehicles require more well-planned traffic management

system along with a balanced and efficient infrastructure expansion plan. ITS comprising of a set

of emerging technologies for surface transportation can be an effective tool to assist

policymakers in building such a plan. VANET - now an integral part of ITS, is capable of sharing

pertinent information of road and vehicular data with other vehicles and Road-Side Units in ‘real

time’. These disseminated data then can be analyzed by the central traffic monitoring system to

coordinate route planning and scheduling of vehicles. This will result in reduced congestion on

roads and provide faster, fuel efficient trip time for vehicles. However, it is important to also

consider network usage and scalability factor as they directly impact efficiency of such setup.

3

1.3 Problem statement:

At present, route planning using traditional Global Positioning System (GPS) [8] advises

drivers on the shortest trip based on static route database and with the help of subscribed data

feed over ‘Radio Data System’ that broadcasts current traffic congestion over ‘Traffic Message

Channel’ [9] and more recently using push notifications over the internet [11]. The inefficiencies

of such route planning are mainly as follows -

 Does not consider the results of aggregated load on alternative lighter paths where the

vehicles are rerouted to [10]

 Due to low bit rate of traffic message channel [9], delay in broadcasting such information

is considerably high leading to route planning using outdated information

 Use of internet service requires data subscription

 The timing is important since the current congestion doesn't mean it will remain

congested for an indefinite period. If infrequent or, occasional congested routes that gets

cleared in short time are considered during initial route plan, vehicles will be subscribed

into frequently congested route leading to further poor traffic distribution.

 One way to tackle the problem of outdated data is to have instantaneous road data for each

road segment that can be analyzed in centralized or distributed manner. The parameterized road

segments represented as graph edges can also be recalibrated for dynamic weight redistribution

to meet the demand of traffic monitoring center if necessary. The instantaneous road data can

4

be collected using a combination of roadside units, and OBUs installed in the vehicles. Vehicles

then can be rerouted based on some decision-making process and on the basis of gathered road

data that are usually converted into metrics. The decision making can be conducted either by the

ego vehicle alone or, by a cluster of adjacent vehicles that are in certain close proximity to each

other or, by a centralized traffic monitoring center or, by any combination of them

[12][13][15][20].

A commonly used road data for calculating edge weight is the average trip time of vehicles

collected as they pass through edges [12][13][15][17][19]. However, proper considerations need

to be taken on - how trip time data are collected, where those data are assessed and how the

assessed data are disseminated. These considerations are important to achieve maximum route

planning efficiency with minimum channel congestion and bandwidth stress on the network. For

example consider the following cases –

 If route planning is performed by the traffic monitoring center, there will be numerous

one to one communication between the vehicles and the traffic monitoring center which

is not scalable.

 If the route planning is performed by ego vehicles, analyzed data from traffic monitoring

center needs to be disseminated in proper areas that are applicable to ego vehicle.

 If trip completion time for edges is used as the method for calculating travel time, vehicles

‘stuck on an edge due to prolonged congestion at approaching intersection or onward

5

edges’ provides delayed feedback of that edge resulting erroneous reporting of that edge

to be congestion free.

1.4 Solution outline:

In this paper, we closely followed the work of Hamed et al. [12] in collecting real-time trip data

where travel time are collected instantaneously on edges and used immediately for road metric

calculation. In addition, we proposed three modified approaches in collecting travel time data,

calculating edge metrics and disseminating the data as follows -

A. Offload route planning computation to OBUs:

We offload the tasks of performing ‘travel time calculations of individual edges’ and ‘route

planning’ to the vehicles themselves instead of RSUs or traffic monitoring centers. In other

words, OBUs are responsible for receiving travel time for all vehicles, process and send

them to TMC. TMC, in turn, send updated Current Trip Time (CTT) to RSU for broadcast.

Vehicles do not query RSU/TMC for route planning, rather they do the planning by

themselves using updated CTTs.

B. Develop an RSU-EDGE relationship:

This method is for choosing how far the congestion data of a particular edge should be

disseminated, so a vehicle can determine whether that edge should be selected in its route

plan or, not. This is achieved by binding of an RSU R, with an edge set E, where R is

responsible for broadcasting metrics for E. By using this three-tiered structure, we limit the

size of distant edge-metrics-data packets an ego vehicle receives and thus put less stress on

6

the network. The decision of choosing the boundary of such dissemination is empirical since

having too short boundary means vehicles might choose locally optimum path and face

heavily congested areas down the route plan that are not known to them in advance.

Having the boundary too broad can also be a problem as sparsely and occasionally

congested distant areas that quickly become uncongested might alter initial route plan of

vehicles to choose lower degree of congested areas that are persistently congested.

C. Consider intersection queue or red light delay in computing edge metrics:

If there is a long queue at an intersection due to traffic backlog on next edge and/or, traffic

light phasing, vehicle(s) may not able to deliver travel time updates to RSUs. This is the case

when vehicle broadcasts the travel time for the previous edge, upon getting into a new

edge. This results in RSUs erroneously assuming that the edge is free of congestion. An

alternative approach is that vehicle waiting in the queue sending travel time that equals to

the time to reach current position plus delay time that is beyond certain threshold.

 In this thesis, we have used SUMO [22] as road traffic generator and OMNET++ [23] with

VEINS [24] for DSRC’s WAVE stack simulation. Using the simulations, we evaluated the

performance of our approach compared to the methods used previously by other researchers.

Several simulations are run using different value of queuing delay and RSU-EDGE relationship as

described above. The results indicate that the proposed approach will lead to better aggregated

fuel efficiency and shorter trip time for vehicles.

7

1.5 Thesis organization:

The rest of the paper is organized as follows. Chapter 2 discusses related terminology and

literature review relevant to this area. Chapter 3 demonstrates our proposed approach, setup,

and algorithms. Chapter 4 provides the result analysis. In chapter 5 we conclude and summarized

our work with possible future research in this area.

8

2. Background

In this chapter we review some basic terminology and fundamental concepts to ITS and

VANET. We also describe in-depth the current techniques for dynamic route planning available

in the literature that are most relevant to this thesis.

2.1 Terminology

WAVE (Wireless Access in Vehicular Environment) refers to collective standards of 802.11p - an

extension of traditional 802.11 for operation in high speed vehicular environment with low

latency and 1609.x – that defines the additional OSI equivalent layers necessary to support such

communication using DSRC (Dedicated Short Range Communication) [25]. In most papers WAVE

protocol and DSRC protocol are used to refer same set of standard interchangeably.

DSRC refers to the ‘dedicated 75 MHz spectrum in the 5.9 GHz band allocated by US Federal

Communications Commission for automotive use’ and the corresponding set of protocols and

standards to support the communication using that spectrum [25]. The primary motivation of

DSRC was to facilitate the development of collision avoidance application [32]. The application

will rely on data from vehicle states such as speed, acceleration, position, brake states etc. and

data from road side infrastructure. Road side infrastructure often termed as RSUs can act as

communication relay point for distant vehicles and can also act as an intermediary between

vehicles and traffic management center. Using a set of message syntax defined by SAE’s (Society

9

for Automotive Engineer) J2735 standard, vehicle state data are encapsulated with WSM (WAVE

Short Message) for dissemination. For data dissemination purpose, all equipment such as OBUs

and RSUs needs to be of DSRC standards to maintain interoperability of such communication.

Figure 2.1 depicts the WAVE protocol stack in general. DSRC equipped devices need to maintain

communication with two channels instead of one as in traditional LAN based communication.

Therefore, DSRC incorporates an additional MAC sublayer for channel coordination and switching

as defined by the 1609.4 standard.

Figure 2.1 DSRC/WAVE protocol stack 1

CCH and SCH refers to control and service channels of the DSRC spectrum. Out of the 75 MHz

spectrum 5MHz is used for guard band and rest is divided into 7 channels – each with 10 MHz

spectrum. The control channel is used for carrying management and higher priority messages

using WSMP while the service channel are used for other types of data using TCP/UDP. Security

of payload using either WSMP or TCP/UPD is provided by WAVE’s 1609.2 standard suit as

10

depicted in figure 2.2. Channels 174, 176 can be combined to form one 20 MHz channel – 175.

Similarly channels 180 and 182 can be combined to form a 20 MHz channel – 181.

Figure 2.2 Control (CCH) and Service (SCH) Channels of DSRC Spectrum 1

WSM refers to WAVE Short Message that uses either control or service channel of DSRC to carry

time-sensitive, high-priority information using WAVE Short Message Protocol [25]. WSM contains

extension like channel number, data rate, and transmit power so the upper layer can indicate the

purpose the message usage [33]. The syntax of such time sensitive messages is defined using

SAEJ2735 standard. Basic Safety Message (BSM) is an example which is delivered using WSMP

with a WSM header extension. BSM has two sets of information where set 1 is mandatory for

initial deployment of DSRC in USA and set 2 is optional. Set 1 of BSM is the information set that

contains space and time critical states of vehicles for the development of safety applications [33].

CAN BUS is a computer network, interconnecting embedded systems that control the vehicle and

vehicle’s performance. CAN in general refers to the protocol of using such bus where the protocol

works by exchanging messages between the components independently without the use of a

host computer for coordination.

11

2.2 Dynamic Route Planning

Route planning in general involves the process of selecting a set of roads connecting

source and destination with some constraints involved such as fastest, shortest or most fuel

efficient route to destination. Each of these constraint imposes different ways of selecting one

or more metrics based on which the route planning algorithm decides the best route. The typical

metric stored in route planning instrument such as a GPS is travel time. Dividing a given road

segment’s length by posted speed of that segment produces travel time of the respective

segment. While travel time provides the fastest route to destination, an even simpler metric –

travel distance which is the actual length of road segments - can provide shortest route to

destination. Routing planning that considers travel cost makes fuel efficient route calculation

that can include additional metric such as road slope, length of idle time during transit etc. [27].

Route planning can also consider easiness of driving as described in [34] that factors in driver’s

preference for number of signals, number of turns and road width of the planned route.

Advanced route planning may also consider statistical traffic patterns possibly involving historical

data analysis along with current probe data to estimate future travel time [28][29].

Route planning using GPS make use of preloaded map data for route determination. The

validity of some data such as road closure, new road development etc. are dependent upon how

recently the map was loaded into the GPS unit. GPS can also receive some basic road state

information over RDS-TMC (Radio Data System – Traffic Message Channel) [34]. Due to limited

channel bandwidth [9], data received over RDS-TMC cannot be used to make real time route

planning decision.

12

Route planning using VANET involves the process of probing current road and vehicle

state data and disseminating the probed data for use of other vehicles using distributed and, or

centralized approach. In distributed approach vehicles share data with adjacent vehicles with the

formation of a cluster [13] and in centralized approach data is directly sent over to a centralized

entity for further processing [17]. The data probed, can be sourced from vehicle’s CAN bus, GPS,

passenger’s electronic devices and other available sensors such as camera, radar, LIDAR etc.

while the centralized entity can be road side units and, or traffic monitoring center. VANET also

brings new possibilities in route determination such as cooperative route planning [REFs] that

distributes traffic to reduce congestion but also factors in driver’s historical and current

preference such as avoidance of toll routes, highways etc. [36][37].

Performance evaluation of route planning methods in most cases involves the use of

simulated environment as setting up practical testbed for a large scale research is expensive and

unfeasible [26]. For VANET based route planning, a network simulator that implements the

VANET infrastructure for communication along with a road traffic generator is necessary.

2.2.1 Tools used for performance evaluation

Open Street Map is an open source editable world map database that gets build upon

community contribution of volunteered geographic information. The maps are downloadable for

free in .osm format which is also an acceptable map format for road traffic generator SUMO.

13

Figure 2.3 a map in .osm format as viewed in SUMO 1

 SUMO is a road traffic generator that is microscopic and multimodal - meaning different

transport such as vehicles, pedestrians and public transport are modeled explicitly [22]. SUMO

build its road map by using node and edge definition files named ‘*.node.xml’ and ‘*.edge.xml’.

Alternatively, it can also import open street map format and covert it to ‘.net’ file which

represents the map. Edge definition includes shape, lane, speed, length and traffic type of

respective edges where node definition includes intersection type, coordinates and included

lanes for respective nodes. Traffic generation is done through the definition of ‘*.route’ file. For

demand generation, route file can be constructed using ‘Activity-based demand generation’,

random trips, O/D matrices defined by the traffic assignment zones etc. [22].

14

Figure 2.4 Simulation capture showing internal junctions and edges, and signalized intersection 1

TraCI refers to SUMO’s online interaction server that provides interface to query, regulate

or control traffic parameters or characteristics during simulation.

TMC – throughout this paper, is referred to as Traffic Monitoring Center that processes

‘data sent by vehicles and RSUs’, analyze those data, store the analyzed data for future use and

purge obsolete data as necessary.

Junction refers to regular road’s intersection in SUMO with predefined or imported traffic

priority behavior from map. Traffic priority defines which traffic has the right of way through the

use of stop sign and, or signalized intersection.

15

Internal Junctions and Internal Edges create links between lanes of two different road

segments inside a junction. During graph construction and query regular Junctions are treated as

nodes and regular Roads are treated as edges.

Traffic light phasing refers to the duration of different states such as green, amber and

red for traffic lights in an intersection.

Network Simulator in general simulates protocol specific communication between nodes

(or, hosts). The protocol definition and behavior of such communication are programmed into

the simulators. A user of the simulator has the ability to choose a protocol and to define

parameters of the communication and node’s characteristics using the simulator’s API, descriptor

or configuration files. OMNET++ is a network simulator that is modular and component based

and is extensible to suit most network protocols [23]. OMNET++ enables user to model existing

network protocols or user defined custom protocols that are used in communication network.

Modules that controls the behavior of the protocols, are programmed with C++. Interaction

between modules and their behaviors are set by the user using ‘*.ini’ (initialization) and ‘*.ned’

(network descriptor) files.

VEINS – a framework written in C++ - translates SUMO’s road traffic vehicles into network

nodes in OMNET++ and provides the mobility factor to them in adherence to WAVE’s working

mechanism. It provides the base for vehicular network simulation that closely implements

‘WAVE architecture and different models like physical layer, channel switching, interference,

propagation, antenna pattern, obstacle shadowing etc.’ to make the simulation very close to real

world [24]. At the physical layer, it extends OMNET’s implementation of 802.11 to 802.11p to

16

support VANET. In addition it implements Path Loss Model and Obstacle Shadowing Model to

bring real world radio propagation scenario. Models are also defined for channel sensing, radio

switching, and transmission window. A specific 1609.4 module is defined to support Enhanced

distributed Channel Access, (EDCA) which is responsible for frame queuing and transmission

based on priority.

Figure 2.5 a very high level overview of connections between SUMO, VEINS and OMNET++ 1

VEINS also provides bi-directionally coupled simulation by which control of vehicle in respect to

its changing network environments and based on user specified demand can be reflected back

to the road traffic simulator. This way road traffic and network simulation framework can work

17

together giving a notion of single simulation behavior [26]. Figure 2.5 depicts a very high level

overview of connectivity between SUMO, VEINS and OMNET++.

2.3 Literature review on route planning based on VANET:

In [13], Joshi et al. used clustering algorithm for vehicles for collecting real time

congestion information using GPS and for propagating the collected information using epidemic

diffusion - also known as rumor model [14]. The system was developed around the principle that

only vehicles - ‘deviating from posted speed limit combined with the prior knowledge of frequent

congestion history of a given road segment’ - needs to communicate the information. The

downside of this decentralized approach is ‘occasional congestion that are sparsely formed’ may

not be communicated to the distant traffic in sufficient time for alternate route planning.

In [15], Keshavarzi et al. proposed a system that amalgamates information on congestion

from sensors installed on the road and from inter vehicle communication through rumor. A cost

function that considers dynamic metric on segments along with expiry, delay and uncertainty

was proposed. The main limitation of this approach is how much congestion information on what

roads are to be exchanged between ‘road side units and vehicles’ and between the vehicles was

not clear. If congestion information on every roads of a locality or city are to be exchanged, the

packet size for transferring such data would be considerably high resulting in bandwidth stress

[16].

In [17], Collins et al. proposed a traffic management system that collects traffic data

directly from vehicles, process the data and using ‘generalized Floyd shortest path algorithm’,

18

suggests best routes to the vehicles based on their current positions and destinations. The

problem with this system is the centralized single tier approach where vehicles are directly

reporting to a central server and the central server directly proposing routes to vehicles. Apart

from scalability issue, this approach would put significant of stress in network bandwidth because

of the noisy communication overhead unless other approaches to mitigate the channel

congestion is used [18].

In [12], Noori et al. the authors proposed a method where RSUs on each end of roads

calculates passing vehicle’s travel time, averages the travel time for certain number of vehicles

and broadcast the data to other vehicles and traffic information center. To calculate the travel

time for a road segment, a bidirectional communication scheme between the vehicles and RSU

is established. First as a vehicle enters an edge which hosts an RSU, it receives a timestamp from

RSU. The timestamp is carried by the vehicle and delivered to next RSU upon arriving on the end

of the edge. RSU then calculates the travel time by subtracting the timestamp from the current

time and share this with other RSUs. Vehicles query RSUs for route planning of their sources and

destinations, RSUs in turn consults with traffic information center to provide such route planning

back to vehicles. The communication scheme for this approach is also have the same problem of

being quite chatty because of the bidirectional inquiries between vehicles and traffic information

center for determination of route planning. Also vehicle OBUs are underutilized since they do not

perform route planning and travel time calculation of their own as TMC and RSU do those

processing on vehicles’ behalf.

19

In [19], Change et al. proposed a hybrid approach that considers recent congestion data

from google map and data gathered and shared between vehicles to estimate future travel time

and make route planning decision. First, data from a proposed App installed in driver’s

smartphones are utilized in calculating travel time, average speed and fuel consumption. Next,

the collected data are shared using VANET with vehicles within a certain distance and up to a

certain time. Progressively, as more data are collected, more accurate picture of the road status

of a surrounding area is realized for an ego vehicle. The ego vehicle then also collects information

on congestion from Google Map and calculates final metrics for road of its surrounding area that

gets feed into an A* algorithm for route plan. The limitation of this approach is, the shared data

from a vehicle might be useless for a cluster of vehicles who will not use the roads of which the

data was shared. In addition, in an area populated by heavy traffic, this scheme also can

contribute to channel congestion due to the large amount of information shared between

vehicles.

20

3. Proposed Fuel Efficient Route Planning

The purpose of our proposed approach is to be fuel efficient in terms of lower aggregated

emission and lower aggregated trip time for all vehicles. The functionality of the proposed

approach is implemented in 3 different components, as shown in Figure 3.1. Each component is

responsible for carrying out its own functions and communicating with the other components to

transmit/receive information as necessary. The main tasks implemented each component are

discussed below.

1. TMC functionality: The TMC is responsible for traffic analysis based on the

information relayed over from the RSUs. TMC performs calculation of road metric

using average travel time, intersection delay factor and occupancy window. To

determine the set of road segments an RSU is responsible for, ‘Edge to RSU

association’ algorithm is used which stores the association dictionary in TMC’s

database for RSU’s use. TMC also purges outdated information from the database

to minimize query time for the RSUs.

2. Vehicle functionality: Each vehicle is responsible for calculating travel time for

each road segment it has travelled, and broadcasting them. In addition route

planning algorithm run (section 3.2.2) to calculate the desired route is carried out

by the OBU of each vehicle independently.

3. RSU functionality: Each RSU is responsible for receiving travel time updates (ttu)

from the vehicles and transfer the updates to TMC’s database. The transmitted

travel time are accumulated in TMC via transit RSUs. Each RSU then queries the

21

metrics of road segments that the respective RSU is responsible for and broadcasts

them for vehicle use.

Fig 3.1 shows the high level interaction between three main components of our proposed

approach. The map container on the right shows interactions between RSU and Vehicles and

their message format for communication.

Figure 3.1 High level overview of proposed approach 1

22

In the following subsections we will discuss each of the above three components in detail. Table

3.1 introduces some of the terminology that will be used in the following sections.

Table 3.1 Terminologies used for proposed approach 1

Term used Purpose

‘BaseWaveAppLayer’ Refers to VEIN’s parent class that emulates DSRC’s WAVE protocol stack.

‘edge_entry_log’
A table that holds timestamps of the entries of vehicles as they enters a

given edge. Use for calculation of ‘occupancy_rate’.

‘first_timestamp’ and

‘last_timestamp’

Time stamp of the first and last entries queried by TMC’s application that

falls both within the ‘max_update_entries’ and ‘max_update_interval’

‘max_update_entries’
Maximum number of ‘ttu’ entries that are considered in ‘ttu table’ to

calculate average travel time for an given edge

‘max_update_interval’
The offset from current time step to a time step in past. The offset value

indicates how recent the update entries should be considered.

‘occupancy_rate’
Percentage of length of an edge that is occupied by vehicles during the

‘occupancy_window’ of that edge.

‘occupancy_window’
A time window that spans the standard travel time for an edge in the past

from the current time

‘queuing_delay’ Number of seconds that a vehicle stuck in an intersection

‘tmc_run_frequency’ Interval in seconds on which TMC application runs

‘ttu table’ A table that holds all ‘ttu’ message entries from vehicles

‘tum’ Traffic Update Message, sent by RSUs

‘ttu’ Travel Time Update Message, sent by vehicles

‘validity_bit’

A ‘ttu’ message with ‘validity_bit’ set to 1 indicates this message is

originated from a vehicle that is stuck in an intersection for a time beyond

configurable ‘queuing_delay’ threshold.

23

3.1 Traffic Management Center (TMC) Functionality

3.1.1 Create Edge to RSU association

In our proposed approach, RSUs do not perform route planning on behalf of the vehicles

rather the vehicles themselves do so by receiving the edge cost information of a limited

surrounding area of around the respective ego vehicle. It is thus important to cap the amount of

edge cost information being broadcasted by a particular RSU, specifically the edge set of which

the cost information is broadcasted must be relevant to the surrounding area of interest of the

vehicle receiving the broadcast.

We therefore developed an algorithm that establishes relationship between an edge and

a set of RSUs where the RSUs are responsible for broadcasting metrics for that particular edge.

When determining an edge ‘e’ that will be associated to a set of RSUs ‘R’ - taken a given RSU ‘r’

‘s junction as center point ‘c’ where ‘c’ ‘s outgoing edge is ‘e’, we are interested for adjacent

junctions that are ‘n’ hops away from ‘c’ that can reach ‘c’ using their outgoing edges. The ‘n’ is

configurable based on user’s requirement to set for desired number of hops. The higher the

number of hops, the further a particular edge’s metric will be broadcasted by the RSUs. It is to

be noted that, although the computational complexity of this algorithm is O(n3), it is calculated

only once for a given map before the simulation run. Thus, the simulation runtime is not impacted

by this algorithm’s higher computational complexity.

24

Figure 3.2 Edge-RSU relationship using n=2. The colored RSUs will broadcast
metric value of prospective edge ‘e’ with start node ‘j’ for nearby vehicles to influence route planning

1

Proposed Algorithm for Edge-RSU Relation

Input:

Node set, V

Edge set, E

Graph G = (V, E)

Max_hops = n

Result:

For any given directed edge e (v1, v2), find node set A, such that ∀v ∈ A, v can reach v1, in

n hops, using their outgoing edges, if there exists such an edge. The node set is analogous

to RSU set here.

Initialize dictionary D ← ∅, for edges as key and set of associated nodes as value

For each node v ∈ N do

Initialize outgoing edge set, O

 Find O for v such that ∀e (v1, v2) ∈ O, v=v1

25

 for each outgoing edge, g ∈ O do

 Initialize queue Q

 Q.enqueue ((g, 0))

 while Q is not empty do

 current_node ← Q.front.first

 hop_count ← Q.front.second

 if hop_count > Max_hops then

 Q.dequeue ()

 Continue

 if g is a key in D then

 if current_node is not in D[g] then

 Initialize temp ← ∅

 temp ← D[g]

 temp.push_back (current_node)

 D[g] ← temp

 else if g is not a key in D then

 Initialize temp ← ∅

 temp.push_back (current_node)

 D[g] ← temp

 Q.deque ()

 for each edge e (v1, v2) ∈ E, do

 if v2 = current_node

 Q.enqueue (v2)

 done

 done

 done

done

26

3.1.2 Maintain Current Traffic Information

TMC plays the central role for the overall setup in our approach by calculating edge travel

time and occupancy window, maintaining different table updates that can be queried by RSUs

and purging obsolete information to minimize different dynamic table entries reducing query

time. TMC runs in every ‘tmc_run_frequency’ interval indefinitely. This interval can be configured

to maximize or relax the degree of precision by which the information is processed and updated

in the central database.

The travel time sent by vehicles via RSU can be stored in a dynamic table – ‘ttu table’ in

which outdated data that are no longer needed gets deleted. For each edge, TMC first looks into

the ‘ttu table entries’ associated with that edge. It takes the latest ‘n’ number of entries that falls

into ‘m’ update interval. Both ‘n’ and ‘m’ can be variable and are configurable using ‘max update

entries’ and ‘max update interval’.

TMC application’s high level pseudocode

Start: For each edge in edge set -

I. Query travel time update entries up to the number of ‘max_update_entries’

II. For entries that fall in range of ‘max_update_interval’, calculate average travel time

III. For entries that are queueing delay update and within ‘max_udpate_interval’, set

average travel time equal to latest entry’s travel time

IV. Calculate occupancy rate within occupancy window

V. Calculate compound metric

VI. Delete outdated entries from the tables

VII. Go back to Start

27

 The idea behind the ‘max update entries and interval’ restrictions is to limit how many

table entries should be considered in calculating the average travel time and during what window

these entries should be considered as valid, both in respect to the corresponding edge. These

restrictions provides granular control over how recently the data that are gathered should be

considered.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 max _𝑢𝑝𝑑𝑎𝑡𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

=
∑ 𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒

max _𝑢𝑝𝑑𝑎𝑡𝑒_𝑒𝑛𝑡𝑟𝑖𝑒𝑠
𝑖=0

max _𝑢𝑝𝑑𝑎𝑡𝑒_𝑒𝑛𝑡𝑟𝑖𝑒𝑠
 (3.1)

During the scanning of ‘ttu table’ entries, TMC also checks if any of the entries has its

‘validity_bit’ set to 1 which indicates that the given entry’s update came from a vehicle stuck

longer than 1 one ‘intersection traffic light phase cycle’ duration or, any other configurable time

based on the simulation requirement. Since an ego vehicle only transmits a ‘ttu’ when it

completes an edge trip, vehicles stuck in an intersection due to onward congestion never gets to

transmit that. A ‘ttu update’ with its ‘validity_bit’ set to 1 solves this problem by differentiating a

regular ‘ttu’ with a ‘ttu’ transmitted by a stuck vehicle. The necessity becomes more obvious

when TMC considers a ‘ttu table’ entry of a particular edge without meeting the requirement of

‘max_update_entries’ as there wouldn’t be enough entries to consider during as intersection

queuing delay. If TMC finds multiple entries with the ‘validity_bit’ set to 1, it considers the entry

with the latest timestamp. This can be achieved by having the ‘last_timestamp’ of the entries

ordered ascendingly by timestamp values of the entries.

28

The ‘average_travel_time’ is calculated using equation 3.1 and in the case where the

number of entries for an edge had not reached ‘max_update_entries’ but there was an entry

with the ‘validity_bit’ set to 1, the travel time posted by such entry is immediately considered

and set as the travel time for that edge.

Once the travel time is calculated, an ‘occupancy_rate’ value is measured for given edge

within the ‘occupancy_window’ – a time window that spans standard travel time for that edge.

‘occupancy_rate’ itself reflects how much length of an edge is occupied with vehicles. From

empirical point of view, higher occupancy should result in longer ‘intersection queuing delay’

resulting in longer wait time. So, we have considered this rate to be counted in the final metric

calculation of edges.

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑙𝑎𝑡𝑒𝑠𝑡_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 −
𝑒𝑑𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ

𝑒𝑑𝑔𝑒_𝑠𝑝𝑒𝑒𝑑
 (3.2)

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒 =
(𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑤𝑖𝑛𝑑𝑜𝑤 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑙𝑒𝑛𝑔𝑡ℎ)

𝑒𝑑𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ
∗ 100

 (3.3)

The ‘compound_metric’ is finally calculated with full weight of ‘average travel time’ and

partial weight of ‘occupancy_rate’. The weight is configurable as desired by setting the value to

‘occupancy_weight’ variable. The rationale for not considering a full weight of ‘occupancy_rate’

is to cap the metric value as there exists edges of short length in simulation that can produce

close to 100% occupancy rate with a few vehicles present.

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑_𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒 + 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒 ∗ 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑤𝑒𝑖𝑔ℎ𝑡 (3.4)

29

Figure 3.3 TMC process flow chart 1

30

3.2 Vehicle OBU Functionality

3.2.1 Send Travel Time Updates

As a vehicle enters an edge, it stores the ‘start time’ on that edge which is subtracted

from the ‘end time’ as the vehicle completes travelling that edge for finding the travel time. On

completion, it construct ‘ttu’ packet that holds the travel time for last completed edge and

broadcast it over the DSRC medium. In case of last edge being empty where the vehicle just

started its trip or, the last edge is an internal edge adjoining intersections, it ignores travel time

calculation for that edge. The ego vehicle also keeps track of idle time on any edge to find if it’s

waiting more than the queuing delay threshold. The threshold in this case is a value that is

configurable and ideally set to the total phase time of traffic light of the given intersections in the

simulation run. If the ego vehicle is waiting over this threshold in an edge, it immediately

construct ‘ttu’ message without completing travel on that edge. During ‘ttu’ packet construction,

it identifies the delay by setting the ‘validity_bit’ of the packet to 1. In such case, it also sets the

travel time equal to the combined time it spent on that edge at idle and mobile state.

3.2.2 Update Vehicle Route

If the ego vehicle receives a ‘tum’ message from RSU, it creates copy of its map (i.e. Graph)

and update the edge cost(s) as retrieved from the ‘tum’ message into the copied graph. It then

calculate new route using the proposed Fuel Efficient Route Planning (FERP) algorithm. FERP uses

an A* search algorithm to calculation the ‘best’ route from the ego vehicle’s current location its

destination. Once the new route is calculated, it submits the route as active in TraCI and discard

the copied graph. The new route remains active until a new traffic update message with new

31

edge metric is received by the ego vehicle. Figure 3.4 depicts the high level process flow chart for

the vehicle application.

Figure 3.4 Vehicle application flowchart 1

 A benefit of A* over Dijkstra’s algorithm use for our purpose is to limit the algorithm’s

search to find shortest path only towards the specified destination. A* also overcomes

32

shortcoming of Greedy Best First Search algorithm (that occasionally miscalculates the shortest

path) by using both actual distance from starting point and estimated distance to goal instead of

just considering estimated distance alone. The proposed heuristic (FERP) uses –

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

𝑤ℎ𝑒𝑟𝑒, ℎ(𝑛) = |𝐴 − 𝐵| 𝑚𝑜𝑑 𝑙

Here f(n) is heuristic function, g(n) represents actual cost to current point, h(n) is the

heuristic cost to reach the destination from current point and A and B are location coordinates

of current point and destination. To make the heuristic function admissible i.e. to prevent

overestimation we mod of the absolute distance of two points by the shortest edge length in the

simulation.

Although our implemented graph engine constructs the graph using nodes and directed

edges, queries to FERP was made through both nodes and edges rather than one of them alone.

The node based adjacency and construction allows the graph to store coordinates for individual

nodes that are required to produce heuristic function values for FERP, whereas edge adjacency

list was consulted for neighbors and shortest path trace back for reason of driving permissibility

– which defines whether permission to enter an edge is valid from the current edge. This is

important since, there are traffic restrictions that disallow driving from an edge to another edge.

This is analogous to the real life traffic restriction scenarios such as ‘no left or right turn is

allowed’. Figure 3.5 further demonstrates the scenario where i → j → k → m path looks promising

33

as there are valid edges and lower metrics, but infeasible since right turn is not allowed from

edge i → j to edge j → k.

Figure 3.5 Driving permissibility is required to be consulted for correct operation of FERP 1

FERP algorithm pseudocode

Define ‘start’ and ‘end’ edge for source and destination

For trace back of already crossed edges, define dictionary, C ← ∅

For holding minimum cost to reach an edge so far, define dictionary M ← ∅

For travel time from ‘start’ to current edge, define g

For lowest estimated travel time from current edge’s end node to ‘end’ edge’s end node, define h

Define f , which holds combined cost of g and h

For current edge, define c

For holding explored edges and cost of reaching those edges, define Priority Queue, Q ← ∅

 Q.enque ((start, 0))

34

 C[start] ← none

 M[start] ← 0

 While Q is not empty do

 c ← Q.deque ()

 if c is ‘end’ then

 break

 for each driving permissible neighbor k of edge c do

 g ← M[start] + actual cost to reach k from c

 If k is not in M and g < M[k] then

 M[k] ← g

 f ← g + h(k, end)

 Q.enque(k, f)

 C[k] ← c

3.3 RSU Functionality

RSU application is hosted in the fixed RSU nodes in selected junctions as will be described

in section (4.1.5). It acts as a bridging point for receiving ‘ttu’ packets from nearby vehicles and

transfer them over to TMC for processing. Once the application is initialized and connection to

TMC’s database is made, RSU application processes two kind of messages. The first type is a self-

message set at predefined regular interval which prompts a given RSU to query TMC’s database

for metric updates of edges that the RSU is responsible for. If metric updates are available, the

metrics are encapsulated in ‘tum’ message and broadcasted over the DSRC medium. The second

type is a ‘ttu’ message broadcasted by an ego vehicle. The ‘ttu’ message contains information of

a vehicle’s entry timestamp to the current edge, travel time for previous edge and whether the

travel time posted is a result of queuing delay experienced by the vehicle. These information are

35

updated to the TMC’s database for further analysis. A high level process flowchart for this

application is depicted in figure 3.6.

Figure 3.6 RSU application process flowchart 1

36

4. Experiment Setup and Results

4.1 Experiment Setup

To experiment our proposed approach, we used three simulation tools, SUMO, OMNET++

and VEINS as introduced in section 2.2. For traffic generation, SUMO requires a set of xml files

that describes the road network and traffic demand. The network file also needs to be converted

to graph form so the vehicle application can query routes using A* algorithm. In the following

subsections, we will describe the processes used for extracting necessary files for the experiment

setup. Table 4.1 introduces some terminologies that will be used in the following sections.

Table 4.1 Notations used in experiment 1

Notation Description

‘.net’ Used by SUMO to realize map database

‘.osm’ Open Street Map file extension

NETCONVERT A python script that generates 'net' file from .osm format

‘xml_to_txt.py’

A python script that extracts sets of relevant junction and edge parameters

from the 'net' file.

‘.ned’

Network descriptor file used by OMNET to define parent and sub modules

of the network simulation

‘.ini’

An initialization file that describes parameters for modules defined in

'.ned'

‘omnet_coord.txt’ Text file containing OMNET specific coordinates of junctions

‘traci_coord.txt’ Text file containing TraCI specific coordinates of junctions

‘inter_junction_finder.py’

A python script that selects candidate junctions from 'net' file for RSU

placement

‘junc_coord_extract.py’

A python script that generates RSU coordinates in format acceptable to

'.ned' and '.ini' files

37

‘graph_input.txt’ produced by 'xml_to_txt.py' script and used for graph construction

‘rsu_junction_bind.txt’ Text file containing junction id and RSU id pairs

‘Edge_RSU_Relation.h’

An application that associates edges to RSUs in a many to many

relationship and exports the relationship into TMC's database

‘VEINS Extraction Run’

A simulation run in which 'omnet_coord.txt' and 'traci_coord.txt' files are

created and populated. Actual vehicle simulation run is skipped

‘VEINS Simulation Run’ Vehicles are simulated in this run

4.1.1 ‘.net’ file generation

.net file is an XML file that mainly defines how the junctions and edges are associated,

what are the connections between edges and between internal and external edges, what lanes

are available to each edges and their types, direction and permissions. The .net file is generated

using the NETCONVERT tool where input is a 4x4 square kilometers of University of Windsor’s

surrounding area map with .osm extension (OSM stands for Open Street Map). In our simulation,

the .net file is processed using ‘xml_to_txt.py’ python script.

4.1.2 Graph node and edge extraction

The ‘xml_to_txt.py’ script extracts the XML elements using python’s ‘ElementTree XML

library’ and produces three text files as output – ‘graph_input.txt’, ‘graph_edges.txt’ and

‘edge_adjacency.txt’. These output files are then processed using other scripts and graph engine

(a C++ file that maintains the graph) for graph creation and references to adjacencies of nodes

and edges. In our simulation, junctions represent graph nodes and roads represents graph edges.

38

4.1.3 Internal junction and edge elimination

Connectivity between lanes through junctions are defined using internal junctions and

internal edges and these falls under the same tree element in the .net file as normal junctions

and edges. These internal junctions and internal edges are eliminated during the processing of

the three above mentioned output files by the ‘xml_to_txt.py’ python script since they will not

be used during graph construction. Also, edges that are only for pedestrians, trams, rails and

bicycles are also eliminated during processing of output files since vehicles will avoid those

routes.

4.1.4 Node, edge and RSU association, and driving permissibility

The graph engine maintains ‘list of nodes’ as junction dictionary and ‘list of edges’ that

holds the junction pairs to form directed edges between them. In addition, an ‘edge adjacency

list’, constructed by the ‘xml_to_txt.py’ script, is maintained that determines whether an edge is

associated to another edge in terms of ‘driving permissibility’ - as described in section 3.2.2. Also,

this ‘edge adjacency list’ filters out the edges that are dead ends and as such, those edges are

not associated with any other edges. The ‘Edge_RSU_Relation.h’ from the graph engine takes

care edge-RSU association using our proposed algorithm in 3.1.1.

4.1.5 RSU placement selection

RSUs are placed at every junctions except where the junction itself represents node of a

dead-end edge. This is done through the use of a python script ‘inter_junction_finder.py’ which

produces a text output file ‘inter_junction.txt’. The text output later used by another python

39

script ‘junc_coord_extract.py’. The purpose of this script is to define the placement of junction

definitions according to the corresponding formats acceptable by .ned (Network Descriptor) and

.ini (OMNET initializer) files. When producing the formats, the ‘junc_coord_extract.py’ script

cross reference ‘inter_junction.txt’ file for selecting the junction set for RSU placement that

intersects with the set of junctions listed in the text file.

‘junc_coord_extract.py’ script also takes two other files as input – ‘traci_coord.txt’ and

‘omnet_coord.txt’, for the purpose of producing corresponding coordinates accepted by the .ned

and .ini files mentioned above. The differences in such coordinates between OMNET and SUMO

for any point in the playground (the area where simulation runs) comes from the fact that the

point of origin for each systems are calculated differently. Thus an RSU’s placement coordinates

that works for SUMO will not work for OMNET and hence needs the above adjustment. The text

files ‘traci_coord.txt’ and ‘omnet_coord.txt’ are produced by Car node’s extraction run which will

be explained in section 4.1.8.

4.1.6 Database setup

MySQL version 4.1 is used for simulation parameter recordings as this version integrates

well with OMNET++. A series of pre-configured signals is emitted during simulation run from

OMNET++ which subsequently gets captured by ‘cMySQLOutputVectorManager’ and

‘cMySQLOutputScalarManager’ libraries of OMNET++. The captured signals are recorded directly

in vector and scalar form into the MySQL’s ‘test’ database.

40

While the simulation vector data and scalar data such as trip time, CO2 emission, speed,

acceleration etc. automatically gets recorded into ‘test’ database during simulation runs, an

additional database named ‘traffic_monitoring_center’ records data sent by RSUs and data

processed by TMC application. It is to be noted that CO2 emission is calculated by VEINS using

statistical model proposed in [30].

Table 4.2 Tables used in the database1

Table Purpose

‘all_edges’ Holds edge properties such as ‘edge_id’, length and speed

‘edge_entry_log’ * Timestamps of vehicles entering edges, for ‘occupancy_rate’ calculation

‘edge_traveltime’ * Edge metrics for broadcasting

‘junction_edges’ Edges that a junction’s RSU is responsible for

‘rsu_junctions’ RSUs to junctions bindings

‘ttu’ * Travel Time Update for respective edges

* indicates entries are dynamically saved and purged

4.1.7 TMC setup

TMC application is developed using C++ and it interfaces with central database hosted in

MYSQL. As updates are pushed from RSUs to the central database interfacing TMC, TMC process

the updates through a series of steps described in section 3.2 to acquire relevant information,

store the information into relevant tables which in turn will be queried by RSUs for dissemination.

Figure 4.1 shows the high level setup for TMC and its interaction with other components.

41

Figure 4.1 High level setup of the experiment 1

4.1.8 Vehicle setup

Vehicle application is a C++ program that defines the behavior of a vehicle during

simulation run. In addition to that, this application also facilitates extracting OMNET++ and SUMO

coordinates for RSU placements as they are differently setup and have different values for

corresponding .ini and .ned files described earlier in section 4.1.5. In the application itself, an ego

vehicle can query TraCI server of SUMO for any vector values that are function of the simulation

42

time such as speed, acceleration, current edge etc. along with other simulation parameter values

using VEINS internal framework tool known as ‘TraCICommandInterface’.

4.1.9 Vehicle – RSU interaction

Vehicles interacts with RSU using two types of messages – ‘ttu’ (Travel Time Update) and

‘tum’ (Traffic Update Message). ‘ttu’ is sent by the ego vehicle to advertise the last completed

edge’s travel time whereas ‘tum’ is sent by the RSUs to advertise travel time information of a set

of prospective edges that the ego vehicle can choose for its route planning. Both of these

messages are an extension of WSM (Wave Short Message), which is the default message type

from the WAVE protocol stack using WSMP protocol. The messages add relevant information

such as completed edge ID, current edge ID, travel time, vehicle ID etc. based on the message

type before encapsulation down to MAC layer for transmission over 802.11p medium.

4.1.10 Route file / Demand generation

Route file describes when and which vehicles are inserted into the simulation containing

predefined edges to be taken. In our experiments, we have used route file generated by SUMO’s

built in script ‘randomtrips.py’ where the input is University of Windsor’s surrounding area’s .net

file. Two route files were generated for experiment – first, with an insertion rate of 1 vehicle per

0.20 second and insertion window of 0 to 400 seconds of the simulation run and second, with an

insertion rate of 1 vehicle per 0.15 second and insertion window of 0 to 500 seconds of the

simulation run. A ‘fringe factor’ of 10 is used during the demand generation which indicates

43

source and destination of demand routes are 10 times more likely to be on the map edges rather

than on the center of the map.

4.2 Results

We have run two sets of simulations with the scenario summarized in table 4.3. The first

set of runs was with 2500 vehicles and the second set of runs with 3300 vehicles. With the first

set as shown in table 4.4, we found the best result with the combination of 55 seconds queuing

delay and 2 hops of Edge-RSU relationship. Since the improvement was marginal, we run the

second set of simulations with 3300 vehicles to put more stress into the road network.

Table 4.3 Summary of simulation properties1

Number of edges for vehicles 465

Total edge length for vehicles 98.09 km

Number of RSUs 200

EDGE-RSU associations with 2 hops 4230

EDGE-RSU associations with 3 hops 7536

EDGE-RSU associations with 4 hops 11579

EDGE-RSU associations with 5 hops 16171

RSU query TMC at every 4 sec

With the second set as shown in table 5.5, we found the best result with the combination

of 55 seconds queuing delay and 5 hops of Edge-RSU relationship. This resulted in 8% decrease

in C02 emission and 21% decrease in aggregated trip time for all vehicles ran in the simulation.

44

Figure 4.2 Screen capture of the simulation run from OMNET++ 1

We compared this best result without the presence of queuing delay factor. The result

shows with queuing delay factor we can achieve better efficiency in terms of aggregated trip time

and C02 emission. The result is summarized in table 4.6.

Table 4.4 Result of setup 1

Setup 1
Number of vehicles 2500 with insertion window 0 - 400 sec

Dynamic
Route
planning

Queuing Delay Edge-RSU relationship Aggregated trip
time of all vehicles
(in seconds)

Total C02
emission

No No 2 hops 82835 283836.58

Yes 35 seconds 2 hops 112206 309496.65

Yes 45 seconds 2 hops 104263 295971.14

Yes 55 seconds 2 hops 81996 279397.81

Yes 65 seconds 2 hops 81493 279068.95

Yes 75 seconds 2 hops 96870 294694.28

45

Table 4.5 Result of setup 2 1

Setup 2
Number of vehicles 3330, insertion window 0 - 500 sec

Dynamic
Route
planning

Queuing Delay Edge-RSU
relationship

Aggregated trip time
of all vehicles (in
seconds)

Total C02
emission

No No N/A 193701 508309.84

Yes 45 seconds 2 hops 157452 474846.65

Yes 55 seconds 2 hops 171688 490034.15

Yes 65 seconds 2 hops 157552 476243.29

Yes 75 seconds 2 hops 166634 480298.64

Yes 45 seconds 3 hops 154439 470269.69

Yes 55 seconds 3 hops 151234 465187.23

Yes 65 seconds 3 hops 157005 474678.55

Yes 75 seconds 3 hops 174675 491239.55

Yes 45 seconds 4 hops 159098 474087.41

Yes 55 seconds 4 hops 159626 474617.39

Yes 65 seconds 4 hops 197380 521643.51

Yes 75 seconds 4 hops 209215 534864.04

Yes 45 seconds 5 hops 176426 497980.34

Yes 55 seconds 5 hops 151673 464810.08

Yes 65 seconds 5 hops 190239 509266.38

46

Table 4.6 Performance comparison with no dynamic route planning and no queueing delay1

Dynamic

Route

planning

Queuing

Delay (in

seconds)

Aggregated

trip time of

all vehicles

(in seconds)

Total C02
emission

Decrease in

aggregated

trip time (%)

Decrease in

Total C02

emission (%)

Yes* No 170034 484709.77 12.22 4.64

Yes* 55 seconds 151673 464810.08 21.70 8.55

 * With 5 hops of edge-RSU relationship and with 3300 vehicles

47

5. Conclusion

 In this thesis we proposed a three-tiered architecture for travel data collection, analysis

and dissemination using DSRC’s WAVE stack implementation. In addition, 1) we have considered

the queuing delay factor in intersection and used average travel time and occupancy rate for

calculation of edge metric, 2) we have offloaded the task of route planning to vehicle OBUs

instead of a central entity and 3) we have proposed an algorithm that determines the area of

propagation for data that needs to be disseminated by RSUs. We have tested our approach with

2, 3, 4 and 5 hops of edge-RSU relationship and with a range of 45 to 75 seconds queueing delay.

Our results shows an improvement of 21% decrease in aggregated trip time and 8% decrease in

CO2 emission for 3300 vehicles running in a 4x4 square kilometers of city area with dynamic route

planning and queuing delay when compared with the setup with no dynamic route planning and

queueing delay.

5.1 Future Work

 Our approach was tested using VEINS framework with an input area of 4x4 square

kilometers. A larger size map area can be considered in future works to test the scalability of the

proposed approach. In addition, an average traffic light phasing duration was used to estimate

queuing delay threshold for all edges in the scenario. In real world, traffic light phase durations

vary depending on the intersection size and vehicle flow. Thus, the threshold beyond which an

ego vehicle should consider itself to be stuck in an intersection should vary too. Future work can

48

consider some mechanism for finding this threshold value on a per intersection basis rather than

using an average one which should improve accuracy of edge metric calculation. Furthermore,

the process of finding an optimal edge-RSU association value based on any given map that can

achieve maximum route planning efficiency without oversubscribing the channel bandwidth may

also be an informative future study for VANET based route planning.

49

References

[1] Hartenstein, Hannes, and Kenneth Laberteaux, eds. “VANET vehicular applications and inter-

networking technologies. Vol. 1.” John Wiley & Sons, 2009.

[2] L. Figueiredo, I. Jesus, J. A. T. Machado, J. R. Ferreira and J. L. Martins de Carvalho, "Towards

the development of intelligent transportation systems," ITSC 2001. 2001 IEEE Intelligent

Transportation Systems. Proceedings (Cat. No.01TH8585), Oakland, CA, 2001, pp. 1206-1211.

[3] Voss W., “A comprehensible guide to controller area network”, Copperhill Media, 2008.

[4] http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-2015.pdf

[5] https://www.tomtom.com/en_gb/trafficindex/list

[6] https://www.iea.org/media/workshops/2013/egrdmobility/DULAC_23052013.pdf

[7] http://www.navigantresearch.com/research/transportation-forecast-light-duty-vehicles

[8] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. “Global positioning system: theory and

practice”. Springer Science & Business Media, Austria, 1993

[9] S. R. Ely, "RDS-ALERT: a DRIVE project to develop a proposed standard for the Traffic Message

Channel feature of the radio data system RDS," IEE Colloquium on Car and its Environment - What

DRIVE and PROMETHEUS Have to Offer, London, 1990, pp. 8/1-8/6.

[10] A. Casteigts, A. Nayak, I. Stojmenovic, “Communication protocols for vehicular ad hoc

networks”, Wirel. Commun. Mob. Comput. 11 (5), 2011, pp. 567-582

[11] http://www8.garmin.com/traffic/index.html

50

[12] H. Noori and M. Valkama, "Impact of VANET-based V2X communication using IEEE 802.11p

on reducing vehicles traveling time in realistic large scale urban area," 2013 International

Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, 2013, pp. 654-661.

[13] S. Dornbush and A. Joshi, "StreetSmart Traffic: Discovering and Disseminating Automobile

Congestion Using VANET's," 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring,

Dublin, 2007, pp. 11-15.

[14] Peter Reiher and Jerry Popek and Michial Gunter and John Salomone and David Ratner,

“Peer-to-Peer Reconciliation Based Replication for Mobile Computers”, European Conference on

Object Oriented Programming, Second Workshop on Mobility and Replication, 1996

[15] A. H. Khosroshahi, P. Keshavarzi, Z. D. KoozehKanani and J. Sobhi, "Acquiring real time traffic

information using VANET and dynamic route guidance," 2011 IEEE 2nd International Conference

on Computing, Control and Industrial Engineering, Wuhan, 2011, pp. 9-13.

[16] S. Panichpapiboon and G. Ferrari, "Irresponsible forwarding," 2008 8th International

Conference on ITS Telecommunications, Phuket, 2008, pp. 311-316.

[17] K. Collins and G. M. Muntean, "An Adaptive Vehicle Route Management Solution Enabled by

Wireless Vehicular Networks," 2008 IEEE 68th Vehicular Technology Conference, Calgary, BC,

2008, pp. 1-5.

[18] J. T. Willis, A. Jaekel and I. Saini, "Decentralized congestion control algorithm for vehicular

networks using oscillating transmission power," 2017 Wireless Telecommunications Symposium

(WTS), Chicago, IL, 2017, pp. 1-5.

51

[19] Chang IC, Tai HT, Yeh FH, Hsieh DL, Chang SH. “A VANET-Based A* Route Planning Algorithm

for Travelling Time-and Energy-Efficient GPS Navigation App”, “International Journal of

Distributed Sensor Networks, 2013 Jul 18;9(7):794521

[20] Little TD, Agarwal A., “An information propagation scheme for VANETs”, InProc. IEEE

Intelligent Transportation Systems, 2005 Sep 13 (pp. 155-160).

[21] Al-Sultan S, Al-Doori MM, Al-Bayatti AH, Zedan H., “A comprehensive survey on vehicular ad

hoc network”, Journal of network and computer applications. 2014 Jan 31; 37:380-92.

[22] http://sumo.dlr.de

[23] https://omnetpp.org/

[24] http://veins.car2x.org/

[25] J. B. Kenney, "Dedicated Short-Range Communications (DSRC) Standards in the United

States," in Proceedings of the IEEE, vol. 99, no. 7, pp. 1162-1182, July 2011

[26] C. Sommer, R. German and F. Dressler, "Bidirectionally Coupled Network and Road Traffic

Simulation for Improved IVC Analysis," in IEEE Transactions on Mobile Computing, vol. 10, no. 1,

pp. 3-15, Jan. 2011.

[27] Rotz DJ, Ziegler M, inventors; Daimler Trucks North America Llc, assignee, “Fuel efficient

routing system and method”, United States patent application US 12/973,764, 2010 Dec 20.

[28] Chu L, Oh S, Recker W. “Adaptive Kalman filter based freeway travel time estimation”, In84th

TRB Annual Meeting, Washington DC, 2005 Jan 9.

[29] Jenelius E, Koutsopoulos HN. “Travel time estimation for urban road networks using low

frequency probe vehicle data”, Transportation Research Part B: Methodological, 2013 Jul

31;53:64-81

52

[30] A. Cappiello, I. Chabini, E. K. Nam, A. Lue and M. Abou Zeid, "A statistical model of vehicle

emissions and fuel consumption," Proceedings. The IEEE 5th International Conference on

Intelligent Transportation Systems, 2002, pp. 801-809.

[31] W. J. Fleming, "Overview of automotive sensors," in IEEE Sensors Journal, vol. 1, no. 4, pp.

296-308, Dec 2001.

[32] National Highway Traffic Safety Administration, “Identify Intelligent Vehicle Safety Applications

Enabled by DSRC”, in Vehicle Safety Communications Project Task 3 Final Report, DOT HS 809 859, March

2005

[33] C. Campolo et al. and L. Lin, J. A. Misener, “Vehicular ad hoc Networks: Standards, Solutions, and

Research”, page 104 and page 146, 2015

[34] B. Chakraborty, T. Maeda, and G. Chakraborty, “Multiobjective route selection for car navigation

system using genetic algorithm”, Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft

Computing in Industrial Applications, SMCia/05., pp. 190195, 2005.

[35] D. Kopitz and B. Marks, “RDS: The Radio Data System,” Artech House Books, UK, November 1998.

[36] M. Kimura, Y. Taoda, Y. Kakuda, S. Inoue and T. Dohi, "A novel method based on VANET for alleviating

traffic congestion in urban transportations," 2013 IEEE Eleventh International Symposium on Autonomous

Decentralized Systems (ISADS), Mexico City, Mexico, 2013

[37] M. Wang, H. Shan, R. Lu, R. Zhang, X. Shen and F. Bai, "Real-Time Path Planning Based on Hybrid-

VANET-Enhanced Transportation System," in IEEE Transactions on Vehicular Technology, vol. 64, no. 5, pp.

1664-1678, May 2015

53

Vita Auctoris

 Nazmul Sumon completed his Bachelor of Computer Science General degree from

University of Windsor in 2004. He worked as a network professional in IBM, AT&T, ATB Bank and

TELUS for 7+ years before returning to school to complete Hons. in Computer Science with

Mathematics and MSc in Computer Science. He currently works as Senior System Engineer at

General Dynamics – a multinational Aerospace and Defense Corporation.

	Energy Efficient Route Planning Using VANET
	Recommended Citation

	tmp.1519765928.pdf.Od9x9

