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ABSTRACT 

 

Permanent magnet synchronous machines (PMSMs) attract considerable 

attention in various industrial applications, such as electric and hybrid electric 

vehicles, due to their high efficiency and high-power density. In this thesis, the 

mathematical model of PMSM and two popular control strategies, field-oriented 

control (FOC) and direct torque control (DTC), are analyzed and compared. The 

results demonstrated that the DTC has better dynamic response in comparison to 

FOC. Moreover, DTC can eliminate the use of position sensor, which will save the 

cost of the PMSM drive system. Therefore, this thesis focuses on the design and 

implementation of high-performance DTC for PMSMs with a Gallium Nitride (GaN) 

based high switching frequency motor drive. 

First, the characteristics and operation principles of a PMSM are introduced. 

Then, the mathematical models of a PMSM under different coordinate systems are 

investigated. Consequently, a PMSM model is developed based on the dq rotating 

reference frame and implemented in the MATLAB/Simulink for validation.  Two 

advanced PMSM control strategies, FOC and DTC, are investigated and compared 

in terms of control performance through comprehensive simulation studies and the 

results demonstrate that DTC has better dynamic performance. 

Conventional DTC contributes to higher torque ripple in the PMSM due to 

the limited switching frequency in a conventional semiconductor-based motor drive, 

which inevitably deteriorates the drive performance. Therefore, this thesis aims to 

reduce the torque ripple in the DTC based PMSM drive by using the new generation 

wide bandgap switching devices. More specifically, DTC is improved by using the 

optimized space vector pulse width modulation strategy and a higher switching 

frequency contributed by the GaN based motor drive. 

Finally, the proposed DTC-SVM based PMSM control strategy is 

implemented on the digital signal processor (DSP) and evaluated on the laboratory 

GaN based PMSM drive. Both the simulation and experimental results show that the 

proposed improvement in the DTC can further improve the PMSM drive 

performance.  
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NOMENCLATURE 

usd, usq : d- and q- axis stator voltages (V) 

isd, isq : d- and q- axis stator currents (A) 

ψsd, ψsq : d- and q- axis stator flux linkages (V·s) 

Ld, Lq : d- and q-axis inductances (H) 

usα, usβ : α- and β- axis stator voltages (V) 

isα, isβ : α- and β- axis stator currents (A) 

ψsα, ψsβ : α- and β- axis stator flux linkages (V·s) 

δ : Load angle (rad) 

ψs : Stator flux linkage (V·s) 

ψf : Rotor flux linkage (V·s) 

p : Number of pole pairs 

Te : Electromagnetic torque (Nm) 

fsw : Switching frequency (Hz) 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Motor control systems play an important role in the development of modern industry and society. 

The applications range widely from general purpose variable-speed drives, such as water pumps, 

wind fans and conveyors, to high-performance drives, e.g., robotics, CNC machines and electric 

vehicles. In the last century, for a long time, direct-current (DC) motor drives dominated the 

adjustable-speed drive market because of their excellent control performance, e.g., fast torque and 

speed dynamic response, and precise torque control in four-quadrant operations. There are two key 

control variables for the DC machine the excitation flux and electromagnetic torque which are 

naturally orthogonally decoupled so that they can be easily controlled by regulating the field and 

armature currents, respectively [1]. During DC motor drives dominated the market, the advanced 

control theory of alternating-current (AC) machines has not been developed and there are 

limitations in using the semiconductor devices for variable speed drives. As the result, the market 

for AC motor control systems was limited to undemanding applications, although AC machines 

have the advantages of simple structure, reliable operation, and easy maintenance. However, in 

recent years, the development of power electronics technology, microelectronics, and modern 

control theory has created favorable conditions for the development of AC motor drives. This 

makes AC motor drives more competitive in terms of performance and economy when compared 

with DC motor drives [2]. Due to their wide range of uses, there are many different types of AC 

motor drives. 

 

Fig. 1.1. Suppliers of vehicle traction motors [4].  

Among various types of motor drives, permanent magnet (PM) brushless motor drives as well as 

the PM synchronous motor drive are currently the most attractive ones for electric vehicle (EV) 
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propulsion. Their key features, namely high-power density and high efficiency are attributed to the 

use of high-energy PM material. PMSMs are becoming dominant in the market share of EV motor 

drives. [3]. It is reported that 83% of the vehicle traction motor manufacturers supply PMSMs [4], 

as shown in Fig. 1.1. Only 11% of the manufacturers supply induction machines (IMs) and 6% 

produce both PMSMs and IMs. Due to their popularity, more and more researchers have focused 

on the design and development of advanced control methodologies for PMSM drives, which 

significantly improves the dynamic performance, system robustness and reduce the complexity of 

control systems for PMSM drives.  

1.2 Introduction of PMSMs 

In general, PMSMs can be divided into two types according to the shape of back electromotive 

force (EMF): one with approximately sinusoidal back EMF, which normally adopts the distributed 

windings. The other with square or trapezoidal back EMF, is normally called brushless DC motor 

(BLDCM), which adopts the concentrated windings.  

The one with sinusoidal back EMF can be broadly divided into non-salient-pole PMSMs (surface-

mounted PMSMs) and salient-pole PMSMs (interior PMSMs), based on PM placement and rotor 

construction. As Fig. 1.2 shows, surface-mounted PMSMs have the PMs mounted on the surface 

of the rotor core. Consequently, the manufacturing and assembly of this type of machine is 

relatively simple [5]. On the other hand, interior PMSMs have the PMs buried deeply inside the 

rotor so that the rotor iron can effectively protect the PMs against centrifugal forces. Such rotor 

construction is more suitable for high-speed, flux-weakening operations [6]. 

Although there are distinct features between the two types of PMSMs, both are applied to the drive 

systems of EVs, such as Ford Focus with IPMSM drive and TM4 SPMSM drive for commercial 

vehicles. While the design is important, the focus of this thesis is the control strategies, which is 

outlined in the next section. 
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Fig. 1.2. Different rotor configurations for PMSMs. (a) Surface magnets type (b) Interior magnets type [6]. 

1.3 Control Theory of PMSMs 

PMSMs are able to run at different speeds driven by a variable frequency drive. Typically, the 

classic control theory of PMSMs can be divided into three categories: scalar control, field-oriented 

control (FOC), and direct torque control (DTC). Each control theory is introduced in the following 

three sub-sections, respectively. 

VFD

Scalar 

Control

Vector 

Control

v/f FOC DTC
 

Fig. 1.3. Overview of key competing VFD control platforms. 

1.3.1 Scalar Control 

Scalar control, which is also called v/f control, is popular in general purpose industrial AC motor 

drives. A schematic diagram of a PMSM drive system equipped with a scalar control scheme is 

shown in Fig. 1.4. [6]. In the v/f control, the speed of PMSM is controlled by the adjustable 

magnitude of stator voltages and frequency. A voltage modulator is used to convert the three-phase 

voltage references to gate signals for the inverter. Since the scalar control focuses only on the 

steady-state dynamic and no feedback loop, the drive system’s transient behavior will not be 

satisfied. Also, the electromagnetic torque cannot be controlled directly. However, in some simple, 

low cost and sensorless motion implementation, PMSM drives with scalar control can achieve an 

acceptable steady-state response. As a result of that, scalar control is widely used in low-demand 

applications, such as pumps and fans [6]. 
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Fig. 1.4. Block diagram of scalar control for PMSM. 

1.3.2 Field-Oriented Control 

Operation theory of the DC motor shows that the produced torque and the flux can be independently 

tuned. However, AC machines do not have the same features as the DC motor. This becomes a 

barrier to AC drives to be widely accepted in the market. The issue was not solved until the 1970s 

when the FOC technique was first proposed for induction machines. Studies of AC machines 

showed that the mechanisms of torque production in AC and DC machines are quite similar [9]. 

With the help of the Park transformation, the current components corresponding to the field-

magnetizing flux and torque generation in AC machines can be decoupled orthogonally so that the 

field-magnetizing flux can be controlled without affecting the dynamic response of the torque and 

vice versa. This is the basic principle of the FOC [10]. In FOC, the flux and torque of AC machines 

can be separately controlled as DC motors.  

Shortly after it was proposed, FOC was successfully applied to synchronous motors. With the speed 

and current feedback, PMSM drive with FOC can achieve precise speed control and frees itself 

from the mechanical commutation drawbacks. Over the years, FOC drives have achieved a high 

degree of maturity in a wide range of applications. They have established a substantial worldwide 

market which continues to increase [11]. FOC can be divided into: air gap magnetic field orientated, 

stator magnetic field oriented, and rotor magnetic field oriented depending on the selected 

directional magnetic field. For the PMSM, due to the constant magnetic flux of the permanent 

magnet in the rotor, the rotor magnetic field oriented control is generally adopted. At present, the 

research and application objects mainly focus on sinusoidal PMSMs compared with the trapezoidal 

PMSMs. A schematic diagram of a PMSM drive system equipped with FOC is shown in Fig. 1.5. 

[6]. 
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Fig. 1.5. Block diagram of field-oriented control for PMSM. 

The control of the motor is essentially the control of the motor output torque, while the PMSMs 

FOC achieves indirect control of the torque by controlling the orthogonal current. According to the 

different control objectives, the specific control method of the stator orthogonal axis current can be 

divided into the following categories: 

(1) Id=0 control: this method is to control the direct axis current to be zero, so there is no direct 

axis armature reaction. Regardless of the surface PMSM or interior PMSM, the torque is 

only proportional to the quadrature axis current, and the control structure is simple. The 

disadvantage is that the motor power factor decreases as the load increases, and the 

inverter's capacity requirements are higher. 

(2) Maximum torque per ampere (MTPA) control is a control method that strives to find the 

optimum points of operation to provide a specific torque and speed with minimum current. 

For surface PMSM, MTPA is equivalent to Id=0 control. For interior PMSM, this control 

can make full use of the reluctance torque component of the motor. 

(3) Unity power factor control: this method considers unity power factor as the control target 

to achieve a high-power factor operation of the motor by controlling the motor's orthogonal 

axis current component to reduce the inverter capacity. The disadvantage is that the 

maximum output torque is limited during the operation of the motor. 

From above, different current control modes of FOC can be used to achieve different control targets. 

However, there is a fundamental commonality between these control methods, that is, traditional 

FOC methods mostly rely on the current loop to achieve indirect control of the motor torque. 



 

6 

 

1.3.3 Direct Torque Control 

After proposed FOC, around 20 years later, direct torque control (DTC) was introduced by 

Takahashi and Noguchi in Japan [12], and Depenbrock in Germany [13,14]. Although the 

emergence of DTC was later than FOC, it had long been regarded as a revolutionary control scheme 

and a promising alternative to FOC for AC machines [15]. This method is first proposed for 

induction machines. However, for PMSMs, unlike induction machines, because there is no slip, it 

can not directly duplicate the DTC control scheme of the induction machines. In [16], through 

research on the torque generation mechanism of PMSMs, it shows that although there is no slip in 

PMSMs, the angle between the stator flux linkages and rotor flux linkages, which is the load angle, 

is very closely related to the electromagnetic torque of PMSMs. Under the condition that the stator 

flux amplitude is controlled to be constant, rapid control of the motor torque can be achieved by 

controlling the torque angle. The conventional DTC drive system is shown in Fig. 1.6 [6].  

 

Fig. 1.6. Block diagram of conventional direct torque control for PMSM. 

Different from FOC, DTC firstly observes the stator flux by flux observer, then determines the 

sector where the stator flux is located. Next, it calculates the electromagnetic torque, then the 

actual flux and torque will be compared with the reference, and a bang-bang control is usually 

adopted. Combing with the stator flux sector signal, appropriate voltage space vector is selected 

to control the stator flux amplitude to be constant and the change of the torque angle to achieve a 

direct torque control of the PMSMs.  

The conventional DTC has the following characteristics: 
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Stator flux linkage and electromagnetic torque are directly obtained in the two-phase stationary 

coordinates of the stator. There is no need to change into the rotating coordinate, and the position 

information of the rotor is not required so it is easy to implement as sensorless control. 

Also, DTC has low dependence on motor parameters. Stator resistance is the only parameter used 

when observing the flux linkage. The system has high robustness. Directly taking the motor torque 

as the control object eliminates the current control link and has good dynamic performance. In the 

report of ABB, it shows the torque dynamic response of a DTC drive system can be ten times faster 

than any other AC drive [17]. 

However, at the same time, it must be noted that the conventional DTC adopts an implementation 

similar as the bang-bang control, resulting in a large motor torque and flux linkage fluctuation, 

especially at low speed. Also, it also has other shortcomings, such as switching frequency is not 

fixed, noise, etc. 

1.4 Research Objective and Contributions 

The main objective of this thesis is to design and implement a high-performance control algorithm 

for a PMSM drive system with a digital processor. To this end, the control performance of FOC 

and DTC has been firstly investigated and compared from different aspects through 

MATLAB/Simulink simulation and laboratory experimental studies. Thereafter, the DTC is 

selected due to its better dynamic performance. Furthermore, issues encountered during DTC 

implementation in a GaN-based electric motor drive are discussed and resolved to achieve a 

satisfactory control performance. The main contributions of this thesis include: 

(1) Develop MATLAB/Simulink simulation model of FOC and DTC based on the control 

diagram. From the MATLAB/Simulink simulation, making a comparison of FOC and DTC 

from dynamic and static performance. 

(2) Based on the simulation results, further improvement of DTC control performance of 

PMSM would be discussed. An approach is to adjust the hysteresis control to reduce the 

torque ripple using GaN based inverter. The other approach is to apply SVPWM to DTC 

to achieve constant switching frequency which will make it feasible for hardware 

implementation.  

(3) Hardware implementation of FOC and DTC-SVM have been achieved by DSP based motor 

drive to control PMSM. A hardware implementation has been presented as flowchart to 

explain the structure of the program. Moreover, algorithms implementation in discrete 

system like low-pass filter and high-pass filter have also been introduced. 
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1.5 Outline of the Thesis 

The thesis is organized as follows. 

Chapter 2 presents a comprehensive literature review of the DTC of PMSMs. A comparison 

between FOC and DTC will also be discussed. Furthermore, the state-of-the-art DTC improvement 

techniques are reviewed comprehensively. Then the principle and limitation from the conventional 

DTC will be analyzed to clarify the motivations for the research conducted for this thesis. Finally, 

a solution will be proposed to improve the conventional DTC control performance. 

Chapter 3 presents the investigated simulation studies in MATLAB/Simulink for the comparison 

of FOC and DTC control performance of PMSMs. First, the simulation model of FOC is presented, 

then the simulation model of DTC is shown. In the end, the simulation results are compared to 

demonstrate that DTC has better dynamic response. 

Chapter 4 focuses on the optimization of conventional DTC of PMSMs in term of torque ripple 

minimization. First, the torque ripple analysis is presented to explain how the bandwidth of 

hysteresis controller would affect on the steady state behavior. Then, an optimization solution for 

torque ripple minimization is presented. In order to achieve the objectives, an innovative inverter 

based on Gallium Nitride (GaN) has been introduced to improve the switching frequency of the 

drive system for the implementation of high performance DTC. Then, the DTC-SVM with constant 

switching frequency has been developed and validated through MATLAB/Simulink simulation to 

demonstrate that the proposed approach is able to achieve the objective of torque ripple 

minimization. 

Chapter 5 presents the hardware implementation of DTC-SVM for PMSM using GaN based 

inverter. It mainly focuses on the process of hardware implementation. This chapter is divided into 

two parts: hardware implementation of DTC-SVM. First, the digital signal processer (DSP) 

TMS320F28335 build by Texas Instruments will be introduced. Then, hardware implementation 

of DTC-SVM is presented to demonstrate and validate the proposed improved DTC control strategy 

for PMSM drive. 
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Chapter 2 

PMSM Modeling and Control Strategies 

This chapter is divided into four parts. First, the mathematical model of PMSM in different 

reference frame is introduced. Secondly, comparative results on FOC and DTC are reviewed from 

the literature. Third, a comprehensive literature review of DTC techniques is presented. Eventually, 

the principle from the conventional DTC is analyzed to clarify the motivations for the research 

work 1cconducted in this thesis. 

2.1. Mathematical Model of PMSMs 

The mathematical model of AC machines is a time-variant, multivariable, nonlinear and coupling 

system. To obtain excellent control of PMSMs, their mathematical model needs to be established 

based on the hypotheses below: 

(1) Neglecting core saturation, irrespective of core eddy current and hysteresis loss; 

(2) The electric conductivity of permanent magnet material is zero; 

(3) No damper windings in rotor; 

(4) The excitation magnetic field generated by the permanent magnet and the armature reaction 

magnetic field generated by the three-phase winding are all sinusoidal distributed in the air 

gap. 

Generally, there are four Coordinate Systems below used to analysis the control of PMSMs: 

(1) Three-phase stationary reference frame abc 

In this reference frame, the abc axes are the three-phase winding axis of the motor, and the 

components of the motor voltage, current, and flux on the coordinate axis are the actual three-phase 

components of the motor. In this coordinate system, the motor equation is a variable coefficient 

differential equation, and the solution to the equation is more complicated. 

(2) Two-phase stationary reference frame αβ 

In the αβ two-phase stationary frame, the α-axis aligns with the α -phase winding, and the β-axis 

leads the α -axis by 90 degrees. 

(3) Two-phase stator flux synchronously rotating reference frame xy 

The xy reference frame is a coordinate system that rotates synchronously with the stator flux vector, 

where the direction of x-axis is the same as the direction of the stator flux vector, the y-axis leads 

the x-axis by 90 degrees, and the angle between the x-axis and the α-axis winding is θs. 
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(4) Two-phase rotor flux synchronously rotating reference frame dq 

In this coordinate system, the direction of the d-axis is the direction of the permanent magnet flux 

of the rotor, and the q-axis is 90 degrees ahead of the d-axis. The dq coordinate system rotates 

synchronously with the rotor permanent magnet flux, and the angle between the axis of the d-axis 

and the α -phase winding is θr. 

From the introduction to different reference frames, it can be seen that there are differences and 

connections between these reference frames. The relationship between different reference frames 

is shown as Fig. 2.1, ψs the stator flux linkage vector, ψr is rotor (magnet) flux linkage vector. The 

angle between the stator and rotor flux linkages δ is the load angle when the stator resistance is 

neglected. In the steady state, δ is constant corresponding to a load torque, and both stator and rotor 

flux rotate at the synchronous speed. In transient operation, δ varies and the stator and rotor flux 

rotate at different speeds [8]. 

 

Fig. 2.1. The stator and rotor flux linkage in different reference frames. 

In order to analyze different reference frames, a transformation will be used. The transformations 

for different reference frames are shown as below: 

(1) The transformation of abc↔αβ 

The conversion is known as Clarke Transformation. Assuming F represents the voltage, current 

and flux linkage, in abc reference frame are Fa, Fb, Fc and in αβ reference frame are Fα, Fβ. The 

transformation will be: 
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Where C is the coefficient before and after the transformation. For constant power conversion, 
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(2) The transformation of αβ↔dq 

The conversion is known as Park Transformation. Assuming F represents the voltage, current and 

flux linkage, in dq reference frame are Fd, Fq. The transformation is: 
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(3) The transformation of xy↔dq 

Assuming F represents the voltage, current and flux linkage, in xy reference frame are Fx, Fy. The 
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The well-known dynamic equations of a three-phase PMSM can be written in the dq reference 

frame as follows: 
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Where usd and usq are the d- and q-axis stator terminal voltages, respectively, isd and isq are the d- 

and q-axis stator currents, Rs is the resistance of stator windings, ωe is the rotor electrical angular 

speed. The d- and q-axis stator flux linkages of the PMSM ψsd and ψsq have the form of: 
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Where Ld and Lq are the d- and q-axis inductances of the PMSM. ψf is the flux linkage generated by 

the PMs.  

The electromagnetic torque Te generated by the PMSM can be calculated by: 
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Where p is the number of pole pairs. It can also be rewritten in terms of stator flux linkage and load 

angle, which is  
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Where |ψf| is the magnitude of the stator flux linkage. The electromagnetic torque consists of two 

terms. The first is the excitation torque, which is produced by the permanent magnet flux, and the 

second term is the reluctance torque. For a PMSM with saliency (Ld ≠ Lq), the difference between 

the asymmetrical flux paths in the d- and q-axis produces the reluctance torque which is not present 

in a nonsalient-pole PMSM [6]. 

Equation (7)-(10) can be transformed into the αβ stationary reference frame with the inverse Park 

transformation, which is given by: 
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Where usα and usβ are the α- and β-axis stator terminal voltages, respectively, isα and isβ are the α- 

and β-axis stator currents, ψsα and ψsβ are the α- and β-axis stator flux linkages.  

The electromagnetic torque eT  can also be calculated by: 

 
3

2
e s s s sT p i i                                                             (12) 

According to different control theory, mathematical models in different reference frames are used 

for analysis. For example, conventional field-oriented control is preferably implemented in the dq 

reference frame, while conventional direct torque control is preferably implemented in the αβ 

reference frame. A spatial illustration of the stator flux components in the αβ and dq reference 

frames is shown in Fig. 2.2 [6]. 

 

Fig. 2.2. Illustration of the stator flux components in αβ stationary and synchronously rotating dq reference 

frames [6]. 
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2.2 Comparison Between FOC and DTC Strategies for PMSMs 

Table. 2.1. summarizes and compares FOC and DTC from the aspects of the controllers’ features, 

dynamic performance, steady-state behavior and implementation complexity [18]. 

Table. 2.1. Summary of the comparison between FOC and DTC [18] 

Comparison property FOC DTC 

Dynamic response Fast Very fast 

Steady-state behavior Low ripple and distortion High ripple and distortion 

Switching frequency Constant Variable 

Parameter sensitivity High Low 

Requirement of rotor position Yes No 

Current control Yes No 

PWM modulator Yes No 

Coordinate transformation Yes No 

Control tuning PI gains Hysteresis bands 

Complexity and processing 

requirements 

Higher Lower 

 

This thesis mainly focuses on the dynamic response and steady-state behavior. From Table. 2.1, it 

can be known that for dynamic response, DTC is faster than FOC. However, for the steady-state 

behavior, FOC is better than DTC. 

In view of the deficiencies of the conventional DTC of PMSMs, researches and scholars from all 

over the world have conducted a series of studied and improvements and made a great progress. In 

the next subsection, there is a literature review on DTC of PMSMs. 

2.3 Literature Review of Existing DTC Techniques 

The DTC using hysteresis controllers to regulate the stator flux linkage and electromagnetic torque 

with only nonzero voltage space vector has been proposed in [8] and it shows a significant torque 

ripple. Large torque ripples will inevitably affect the stability of the low speed performance of the 

motor. Existing research has proposed many different ways to reduce torque ripples in the DTC 

based PMSM and induction machine drive systems [19-32]. Therefore, the corresponding research 

work on torque ripple investigation and reduction is also introduced in this review. 

Based on the conventional DTC, research is seeking to reduce torque ripple from the perspective 

of improvement and optimization of torque flux linkage regulators and switching table. In [19], 

after analyzing the effect of the voltage space vector on the torque, the zero-voltage vector is 
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introduced into the torque regulator, and the zero-voltage vector is used to maintain the torque to 

reduce the torque ripple. This method has achieved a good result of torque ripple minimization and 

has further improved the conventional DTC. However, it missed the further discussion about how 

long the zero-voltage vector should be applied. For digital control system, when using the 

conventional DTC, the voltage space vector selected by the flux linkage and torque regulators is 

applied to the entire control cycle. Once a non-zero vector has been selected, it can not be controlled, 

which inevitably brings the torque ripple issue. Therefore, some researches have proposed a method 

to reduce the torque ripple from the perspective of controlling the acting time the voltage space 

vector. [20] V. Ambrozic presents a method to calculate the non-zero voltage vector acting time 

through the difference between the actual torque and torque reference combined with the equation 

of torque in a control cycle. The rest would be the acting time for zero voltage vector used for 

torque ripple minimization. 

The conventional DTC only utilizes six non-zero voltage vector. However, synthesizing more 

voltage space vectors is becoming another method to achieve torque ripple minimization. This 

helps increase the control in the control cycle. In [21-24], the researchers make it possible to 

synthesize a higher number of voltage vectors with respect to conventional DTC scheme through 

using prefixed time intervals within a control cycle period. With the increase of the available 

voltage space vector, the torque error in the torque regulator can be divided into different levels. 

According to the magnitude of the torque error range, a suitable voltage space vector is selected 

from the synthesized voltage space vectors to compensate for the torque error. In practice, the 

extended switch table is pre-defined in the controller without extra calculation. Due to more voltage 

space vectors, multiple control of the motor flux linkage and torque can be achieved within one 

control cycle, thus increasing the control accuracy and effectively reducing torque ripple. 

Aside from synthesizing more voltage space vectors, there are some researches looking into how 

stator flux linkage sectors will effect on the torque ripple. In [25-27], Y. Kwak, S. S. Sebtahmadi 

and X. Liao analyze the effect of the voltage space vector on the torque and flux linkage in the 

conventional DTC. For the selected voltage space vector both the torque and flux control 

requirements are taken into consideration at the same time. The results show that the control effect 

of the voltage space vector on the amplitude and torque of the magnetic flux will also be affected 

as the stator flux linkages position changes. Therefore, it is difficult to achieve effective control of 

torque and stator flux linkages at the same time. In order to solve this issue, a method of 12 sectors 

division is used. Within each new sector, the voltage space vector selection table is determined 

based on the effect of each spatial voltage vector on the amplitude and position of the stator flux 
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linkages. This method improves the control effect of the flux linkage and torque and achieves the 

purpose of reducing torque ripple. 

Due to the hysteresis control, the sampling frequency of an inverter in DTC must be higher than 

that with FOC. Therefore, it is vital to determine the switching frequency of the inverter for DTC; 

taking into account that it varies with the operation point [28]. In [29] the relationship between the 

inverter switching frequency and the width of the hysteresis bands of the controllers was studied in 

detail, together with the impact of motor parameters and speed. Generally speaking, smaller torque 

hysteresis band will result in smaller torque ripple but higher switching frequency. However, this 

is limited by computational speed of digital control system and operational frequency of power 

switch. 

Although synthesizing voltage space vectors and stator flux linkage section division can help to 

reduce the torque ripple, the number of voltage space vectors and sections are not endless. Some 

researchers have learnt from the idea of vector synthesis and sector division and made further 

advances. The basic idea is to use space voltage vector modulation (SVM) technology to synthesize 

an optimal voltage space vector based on the motor torque and flux control requirements [30-37]. 

This will accurately compensate the flux linkage and torque error, and finally achieve the purpose 

of reducing torque ripple [35]. Conventional switching-table-based DTC utilizes one of a limited 

number of voltage vectors with fixed magnitudes and positions in each control period. However, 

DTC-SVM can synthesize an arbitrary reference voltage vector within its linear range with multiple 

vectors in each sampling interval [36]. SVM-based DTC can calculate the required voltage vector 

to simultaneously regulate the stator flux and torque of the PMSM which significantly reduces the 

torque ripple with constant switching frequency. The caveat is the usage of the SVM increases the 

computational burden as compared to the conventional DTC [37].  

In the past decades, modern control theories were widely used in power and dynamic control 

systems. Many new DTC controllers were realized by combining traditional DTC schemes with 

modern control methods such as fuzzy logic control, sliding mode and artificial neural network 

[28]. The development of the digital controller provides good conditions for the implementation of 

DTC methods based on modern control theory. 

In the conventional DTC, when the different voltage space vector is selected to act on the motor, 

the state of the switch of the inverter will change accordingly. With that change of state, the entire 

circuit structure also changes. From this perspective, the DTC system itself has a variable structure. 

Therefore, it is reasonable to apply sliding mode and variable structure control into DTC, since it 
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is well suited for nonlinear dynamic systems with uncertainties. Sliding mode control ideas have 

been investigated for the SVM-DTC of induction motors. They are characterized by the fact that 

enforcing a sliding mode leads to low sensitivity with respect to a class of disturbances and plant 

parameter variations [28]. In [38-39], variable structure control method is used for torque and stator 

flux control.  

In addition to sliding mode and variable structure control, fuzzy logic control has also been applied 

to DTC [40]. The errors of the torque, stator flux linkage and flux linkage angular position of the 

PMSM are fuzzified into several fuzzy subsets. This is done to select a suitable voltage space vector 

to obtain fast torque response and smooth the torque and flux linkage ripples simultaneously. The 

stator flux linkage vector angle is also mapped to a single reduced 60 degree region. This is based 

on the symmetry of the control rules for each 60 degree flux linkage angular region. As a result, 

the torque response performance can be improved because of the minimization of the number of 

fuzzy reasoning rules and hence the reasoning time.  

The neural network is well known for its learning ability and approximation to any arbitrary 

continuous function. Neural networks have recently shown good promise for application in power 

electronics and motion control system. It has been stated in the literatures that artificial neural 

network can be applied to DTC controller design, parameter identification and state estimation of 

motor control systems [28]. In [41], two kinds of neural network controllers were used to perform 

as the state selector of DTC for an inverter-fed IPMSM. The result indicates that it is possible to 

replace switching table of the DTC for permanent magnet synchronous motor by a neural network 

controller and achieve high torque dynamic response.  

2.4 Principle of DTC 

As aforementioned, DTC can achieve rapid control of the torque. In contrast to induction machines, 

there is no slip between stator and rotor of PMSMs. Therefore, the DTC used for induction 

machines cannot be directly applied to PMSMs. However, the angle between the stator flux 

linkages and rotor flux linkages, which is the load angle, is very closely related to the 

electromagnetic torque of PMSMs. Equation (10) with constant motor parameters, shows that the 

amplitude of torque depends on stator flux amplitude and load angle. Since the the reluctance torque 

exists in interior PMSMs, the d- and q-axis inductances will impact the torque.  

For surface-mounted PMSMs, there is no reluctance torque, thus the electromagnetic torque 

equation will be: 
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Equation (13) implies that the torque increases with the increase of δ. If the amplitude of stator flux 

linkage ψs is kept constant and the load angle δ is controlled within the range of -90°-90°. Then, the 

derivative of Equation (13) with respect to the load angle can be derived as: 
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The relationship between torque and load angle δ of surface PMSMs has been shown as Fig. 2.3. 

 

Fig. 2.3 The relationship between torque and load angle δ of surface PMSMs. 

From Fig. 2.3, shows within the range of -90°-90°, Equation (14) is always positive. This implies 

that the increase of torque is proportional to the increase of the load angle δ. In other words, the 

stator flux linkage should be controlled in such a way that the amplitude is kept constant and the 

rotating speed is controlled as fast as possible to obtain the maximum change in actual torque [8]. 

However, for interior PMSMs, since Ld ≠ Lq, the derivative of the electromagnetic torque with 

respect to the load angle will be: 



 

19 

 

 
3

2 cos 2 cos 2
4

e
s f q s q d

d q

dT p
L L L

d L L
      


   
                         (15) 

In interior PMSMs the torque increases with the increase of the load angle δ due to the reluctance 

torque as can be observed Equation (15). It is necessary to discuss the relationship between the 

amplitude of stator flux linkage and the derivative of the torque. Fig. 2.4. shows the relationship 

between torque and load angle of interior PMSMs when the amplitude of stator flux linkage is at 

0.5ψf, ψf, 1.5ψf, 2ψf.  

 

 

Fig. 2.4. The relationship between torque and load angle δ of interior PMSMs. 

Note that for the torque near the zero point, when ψs=2ψf, the derivative of torque is negative, so 

DTC cannot be applied in this case. In order to assure it is always positive, Equation (15) should 

satisfy the condition below (16). 
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Through the equations and discussions, the control of the stator flux linkage and load torque can be 

achieved by selecting the appropriate stator voltage vectors. Generally, two-level or three-phase 

voltage source inverter is used for PMSM drive systems. As shown below as Fig. 2.5, the primary 
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voltage Va, Vb, Vc are determined by the status of the three power switches, which called Sa, Sb, Sc 

here.  

C
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Fig. 2.5. A voltage source inverter-fed PMSM drive system. 

The Va, Vb, Vc can be presented in Equation (17) with the respect to Sa, Sb, Sc: 
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                                                (17) 

Through the different switching statuses, the controller generates eight voltage space vectors, six 

of them are non-zero voltage vectors, and the rest are zero voltage vectors, as Fig. 2.6. shows below. 

Each voltage space vector has the numerical label to show the status of power switches in order of 

Sa, Sb, Sc. To achieve the stator flux trajectory circular, the stator flux vector space in the αβ 

stationary reference frame is divided into six sectors equally, which is the dotted line in Fig. 2.6. 

The sector can be selected based on the position of the estimated stator flux, which can be obtained 

from the α-, and β-axis stator flux components, as Equation (18) shows below: 
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Where 𝜃 presents the angle of stator flux. 
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Fig. 2.6. Voltage space vectors and sectors in the αβ reference frame. 

For PMSMs, the stator flux vector in α-, and β-axis can be expressed by: 

      s s st V t R i t dt                                           (19) 

If neglecting the voltage drop on the resistor, Equation (19) can be simplified as 

 
0s s s t

t V t   


                                                (20) 

Figure 2.7 shows the illustration of the voltage space vectors effect on the torque and stator. This 

diagram will help in analyzing the effects of the voltage space vector on the variations in the toque 

and stator flux.  
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Fig. 2.7. Illustration of the voltage space vectors effect on the torque and stator flux. 

Assuming the PMSM is rotating at the counter-clock direction, the stator flux vector lies in Sector 

1. This also assumes the stator flux vector is ψs at this moment. From Fig. 2.7, the variations of the 

torque and stator flux is illustrated by applying different voltage space vector (V2, V3, V4, V5, V6). If 

V2 is applied, it will make the stator flux rotate counter clockwise, which will increase the load 

angle δ and stator flux magnitude. Therefore, according to Equation (10), the torque will increase. 

Similarly, if V5 is applied, both the load angle δ and the stator flux magnitude will decrease, thus 

torque will decrease. Again, when V3 is applied, the load angle δ will increase but the stator flux 

magnitude will decrease. Overall, the torque still increases because the weight of the load angle on 

the torque change is larger than that of the stator flux magnitude. Similarly, V6 reduces the load 

angle δ but increase the stator flux magnitude. Although the other active voltage space vectors V1 

and V4 can also increase or decrease the stator flux magnitude to effect on the change of torque, the 

signs of the associated torque variations are not consistent. That is why only four active voltage 

space vectors are used in the Sector 1. 

Similarly, in other different sector, there also exists four active voltage space vectors that can be 

selected. This is determined by the requirements of the stator flux linkage and torque changes. 

Figure 2.8. shows the control of stator flux linkage and torque. It demonstrates that the stator flux 

linkage is circular, and the width of the circle is decided by the band width of the hysteresis 

controller, which will be discussed later. 



 

23 

 

 

Fig. 2.8. The control of stator flux linkage and torque. 

For conventional DTC of PMSM, the closed-loop control of the stator flux linkage magnitude and 

torque is required. In the first proposed DTC of PMSM, the stator flux linkage and torque regulator 

were as follows [8]: 
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                                                      (21) 
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                                                         (22) 

Where |ψs|
* is the stator flux linkage reference, ϕ is the output of the stator flux linkage regulator. 

If ϕ=1 means the stator flux linkage need to be increase, then according to the sector appropriate 

voltage space vector will be selected. Else, the stator flux linkage needs to be decreased. Te
* is the 

torque reference, and τ is the output of the torque regulator. If τ=1 means the actual torque is smaller 

than the reference, else it is larger than the reference. According to the selection rules of voltage 

space vectors in different sectors, the switching table is obtained by combining the output of the 

stator flux linkage and torque regulators as follows: 
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Table. 2.2. Switching table in the conventional DTC 

   τ 
1   2  3  4  5  6  

1 1 
2V   3V  4V  5V  6V  1V  

-1 
6V   1V   2V  3V  4V  5V  

0 1 
3V   4V   5V  6V  1V  2V  

-1 
5V   6V  1V  2V  3V  4V  

 

Eventually, the DTC of PMSM schematic diagram is shown as Fig. 1.8. From the schematic 

diagram, the voltage and current are first sampled, then the components of the voltage and current 

in the stationary two-phase reference frames are obtained through coordinate transformation. 

According to the relationship between the voltage current and the stator flux components, the stator 

flux linkage of the PMSM is observed. Then the amplitude and sector of the stator flux linkage can 

be known. Combined with the sampled current, the actual torque can be calculated. And the torque 

reference is obtained by the speed regulator to be the input of the torque regulator. After comparison, 

the output of the torque regulator can be determined. Similarly, the flux regulator can be determined. 

According to Table. 2.2, appropriate voltage space vector will be selected to realize the DTC of 

PMSMs.  
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Chapter 3 

Investigations of FOC and DTC of PMSMs through Simulations 

In this chapter, the simulation studies were investigated using the MATLAB/Simulink software for 

the comparison of FOC and DTC control performance of PMSMs. First, the simulation model of 

FOC is presented, then the simulation model of DTC is shown. In the end, comparison studies are 

conducted based on the simulation results. 

3.1 Motor Parameters for Simulation of FOC and DTC 

The PMSM under test is from Estun Automation. Table. 3.1. below shows the parameters of the 

servo PMSM. 

Table. 3.1. Motor Parameters for Simulation of FOC and DTC 

Motor Part Number EMJ04APB22 

Rated voltage, Vrated 200 V 

Rated voltage, Irated 2.8 A 

Rated speed, nrated  3000 rpm 

Rated torque, Terated  1.27 Nm 

Stator resistance, Rs 2.35 Ω  

D-axis inductance, Ld 8.721mH 

Q-axis inductance, Lq 8.721mH 

Inertia, J 3.1×10-5
 kg·m2

 

Damping, B 5.3×10-5 Nms 

PM flux linkage, ψf 0.0617 Wb 

Number of pole pairs 4 

 

3.2 Simulation Model of FOC of PMSM 

Since the PMSM used for simulation is a surface-mounted PMSM, as mentioned before, the Id=0 

control is equivalent to MTPA. In this simulation model, Id=0 combined with SVPWM have been 

applied to achieve the FOC of PMSM. 

3.2.1 PI controller tuning for current loop 

Substitute Equation (8) into Equation (7), can obtain the equation below: 
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                                     (23) 

Through Laplace transformation, applying the PI controller for current control, the equation for d- 

and q -axis voltage will be: 
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* *
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 
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                             (24) 

The zero of the PI controller block equals to the pole of the simplified filter model 
1

s dqR sL
 and 

the current controller bandwidth can be made to be 1/10 of the switching frequency. The parameters 

of the current controller can be calculated as: 

2 /10

2 /10

pdq B dq sw dq

idq B s sw s

K L f L

K R f R

   


   
                                                    (24) 

3.2.2 PI controller parameter tuning for speed control 

For PMSMs, the mechanical equations are shown as follows: 

 
3

2

m e L m

e f sq d q sd sq

d
J T T B

dt

T p i L L i i

 
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
  


    

 

                                        (25) 

If considering the inner loop fully following and with no load torque condition with 0LT   and 

0sdi  , the equation above can be converted into: 

3
( ) 2

( )

f
m

sq

p
s

i s Js B







                                                           (26) 

Similar, the PI controller for speed loop can be obtained: 
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3.2.3 Simulation Diagram for FOC of PMSM 

From Fig. 1.7, the simulation model of FOC of PMSM in MATLAB/Simulink is built as Fig. 3.1. 

The simulation model consists of the function subsystem blocks including PI controller block, 

reference transformation block, SVPWM block, inverter block and PMSM. Through PI speed 

controller, the speed controller outputs the reference of q-axis current. Then the current PI 

controller outputs dq-axis reference voltages. Through inverse park transformation, abc frame 

reference voltages are obtained, and they can be the input of SVPWM block to generate the PWM 

switching signals that drive the PMSM.  

The SVPWM block is shown as Fig. 3.2,  

 

Fig. 3.2. Diagram of SVPWM block. 
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3.3 Simulation model of DTC of PMSM 

Figure 3.3 shows the conventional DTC of PMSM simulation model in MATLAB/Simulink. The 

stator flux linkage reference is set to be 0.078 Wb. Since the PMSM is surface PMSM, it will satisfy 

the requirement to keep the torque increases with the increase of load angle. Furthermore, the band 

width of hysteresis controller for flux is 0.004 Wb, which depends on the accuracy requirement for 

control performance, which can also be adjusted. The bandwidth of hysteresis controller for torque 

is 0.01 Nm. 

Figure 3.4 shows the calculation of α- and β-axis stator flux linkages.  

 

Fig. 3.4. α- and β-axis stator flux linkages calculation block. 

As aforementioned, the sector can be obtained through the α- and β-axis stator flux linkages. This 

can be achieved in s-function. Then combining with the outputs from flux and torque regulators, 

switching signals can be calculated in the switching table calculation block, which shows below as 

Fig. 3.5. 
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Fig. 3.5. Switching table calculation block. 

Figure 3.6. shows the actual stator flux trajectory from the simulation. It is similar with Fig. 2.8, 

which is also a circle with bandwidth. As mentioned before, the bandwidth is changed by adjusting 

the bandwidth of hysteresis controller. The amplitude of the α- and β-axis stator flux linkages are 

the reference given for the stator flux linkages. 

 

Fig. 3.6. Actual stator flux trajectory for DTC of PMSM. 
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3.4 Simulation Results and Analysis 

The simulations were justified to obtain comparative results of FOC and DTC. The model runs at 

discrete mode with 100kHz sampling frequency, and the switching frequency is 10 kHz. There 

are two methods applied to compare the dynamic response and steady-state performance of FOC 

and DTC.  

The first method is to make the speed reference continuously change. Here, the speed reference is 

generated by a function signal with different ramp. Also, the load torque is step changed from 0 

Nm to 1 Nm at 0.1 second. Fig. 3.7. shows the speed response comparison of FOC and DTC, here 

the FOC requires more time to reach the reference point, but DTC follows the speed reference 

much faster.  

 

Fig. 3.7. The speed response comparison of FOC and DTC with variable speed reference. 
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Fig. 3.8. The torque response comparison of FOC and DTC with variable speed reference. 

Figure 3.8. shows the torque response comparison of FOC and DTC. Although DTC still has a 

faster torque response than FOC, for the steady-state condition, the torque ripple of DTC is much 

larger than that of the FOC. Which is same as the conclusion from Table. 2.1.  

The second method is to fix the load condition, which is first with no load, then with full load, at 

variable speed references to make the comparison of FOC and DTC. Variable speed references 

taken are: 500 rpm,800 rpm and 1000rpm. The load is applied at 0.1 second. Table. 3.2. shows the 

comparison between the time required to attain steady state and steady state torque ripple for FOC 

and DTC control with reference to results shown in Fig. 3.9. to Fig. 3.14. 

Table. 3.2. Comparison at variable speed with full load. 

Speed Reference Type of Control 

Time to attain 

steady state (ms) 

(no load) 

Time to attain 

steady state (ms) 

(full load) 

Steady state 

torque ripple (%) 

500 rpm 
FOC 6.61 14.4 3.69 

DTC 0.08 2.1 20.92 

800 rpm FOC 6.42 12 3.14 
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DTC 0.14 0.3 20.92 

1000 rpm 
FOC 6.51 10.8 2.76 

DTC 0.08 0.3 19.85 

 

The conclusions drawn from Table. 3.2 are similar as Table. 2.1. From Fig. 3.9. to Fig. 3.14, the 

comparisons between FOC and DTC on speed and torque reference are presented as follows: it is 

very clear that DTC has faster dynamic response for speed and torque compared with FOC; 

regardless of load or no load. This proves that DTC has the advantage of fast dynamic response. 

However, the limitation of DTC is the steady state behavior. It has a larger torque ripple compared 

to FOC. Therefore, in order to optimize the DTC torque ripple, a torque ripple analysis is needed. 

 

Fig. 3.9. Speed response comparison of FOC and DTC at 500 rpm. 



 

35 

 

 

Fig. 3.10. Torque response comparison of FOC and DTC at 500 rpm. 

 

Fig. 3.11. Speed response comparison of FOC and DTC at 800 rpm. 
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Fig. 3.12. Torque response comparison of FOC and DTC at 800 rpm. 

 

Fig. 3.13. Speed response comparison of FOC and DTC at 1000 rpm. 
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Fig. 3.14. Torque response comparison of FOC and DTC at 1000 rpm. 
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Chapter 4 

Optimization of Conventional DTC for PMSMs Using GaN-based 

Inverter 

This chapter focuses on the optimization of conventional DTC for PMSMs to minimize the torque 

ripple. First, the torque ripple analysis is presented to explain how the bandwidth of hysteresis 

controller will affect on the steady state behavior. Then, based on the results an optimization 

solution for torque ripple minimization has been presented. In order to achieve the optimization 

method, an innovative inverter based on Gallium Nitride (GaN) has been introduced. Next, for 

feasible hardware implementation of DTC, DTC-SVM has been proposed and MATLAB/Simulink 

software is presented to achieve constant switching frequency and torque ripple minimization using 

SVPWM. 

4.1 Torque Ripple Analysis based on Conventional DTC 

For control of stator flux linkage and electromagnetic torque, hysteresis controllers are utilized in 

the conventional DTC. However, the control performance of these kind of controllers is affected 

by the bandwidth of the hysteresis controller. As the result of that, it is necessary to analyze the 

torque ripple in DTC based on the hysteresis bandwidth. From [29], a smaller bandwidth hysteresis 

controller can lead to less distortion and a smaller torque ripple but will also lead higher switching 

frequency. The simulation results from the previous chapter show two important facts: The 

bandwidth of the stator flux linkage hysteresis controller is 0.004 Wb and the bandwidth of the 

torque hysteresis controller is 0.01 Nm. If the bandwidth of the hysteresis controllers can be 

decreased, the torque ripple can be further reduced.  

In conventional DTC, until the status of the hysteresis controllers is updated, the voltage vectors 

are applied to the inverter. Before that, remains the same from the last control cycle. Again, the 

simulation models of the previous chapters reveal a vital fact: the estimated stator flux magnitude 

and electromagnetic torque are clearly controlled by the hysteresis controller, as long as they are 

within the bandwidth of those hysteresis controllers. That is DTC implemented in an analog system, 

the switching frequency is usually varied in order to control the estimated torque on the hysteresis 

bands ±Bw around the reference torque Te
*, as shown in Fig. 4.1(a). However, when the DTC is 

implemented in a discrete-time (digital) system, such as a DSP or an FPGA, the hysteresis band as 
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well as the sampling frequency affects system performance [41], which can be seen from Fig. 4.1(b). 

In order to make digital DTC systems perform the same as the analog DTC system a high sampling 

frequency is desired to achieve fast and precise control. Additionally, a high switching frequency 

is also required to implement DTC in the digital system. These are also done to reduce the torque 

ripple through adjustment of the bandwidth of the hysteresis controllers. For example, it was 

reported that the sampling frequency of the commercial DTC drive product ACS600 reached 40 

kHz [17]. 

 

(a) 

 

(b) 

Fig. 4.1. Comparison of the switching modes of the hysteresis torque controller in (a) an analog DTC 

system and (b) a discrete-time DTC system and the resulting torque ripples [6]. 
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Although the frequency is normally smaller than the sampling frequency, it can be one third of it 

or even less, for a high sampling frequency, the switching frequency is increased to reduce the 

torque ripple of the system. In conventional DTC, the voltage vectors are executed in the entire 

switching cycle, which is the main cause of torque and flux ripples. The ripples will be even larger 

when the switching frequency is lower because Ts becomes larger. Therefore, for a DTC-based 

PMSM drive system, the lower sampling frequency, the larger the torque ripples.  

Figure 4.2. compares the stator flux level in the MATLAB/Simulink simulation for a PMSM drive 

system controlled by the conventional DTC with 100 kHz and 1 MHz sampling frequencies. Figure 

4.3. compares the torque ripple level for the same operation condition. From the comparison results, 

it is very clear that a higher sampling frequency will effectively minimize the stator flux linkage 

magnitude ripple. It also further suppresses the torque ripple of PMSMs drive system controlled by 

the conventional DTC. 

A higher sampling frequency results in better control performance of conventional DTC. Therefore, 

it is also necessary to increase the switching frequency to accompany this change. Figure 4.4. 

compares the difference of the switching frequency when the sampling frequency is 100 kHz and 

1 MHz. The results validate that a higher sampling frequency will require higher switching 

frequency. Therefore, both a high sampling frequency and a high switching frequency are needed 

to achieve torque ripple minimization for the PMSM drive systems controlled by conventional DTC. 

Applying high sampling frequency and switching frequency to DTC is limited by the hardware 

capabilities. First, it requires a high operation frequency digital controller with high sampling 

capability. This achieves a smaller sampling time Ts and reduces the calculation time required to 

generate gate signals to the inverter that drives the PMSMs. Second, an inverter that can operate at 

high switching frequency is also needed to receive the gate signals. If these two conditions are 

satisfied, the torque ripple of the conventional DTC can be further reduced based on the analysis 

above. 
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(a) 

 

(b) 

Fig. 4.2 Trajectories of the stator flux vector in the stationary reference frame: 

(a) Ts=10us; (b) Ts=1us. 
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(a) 

 

(b) 

Fig. 4.3. Waveforms of the electromagnetic torque: 

(a) Ts=10us; (b) Ts=1us. 
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(a) 

 

(b) 

Fig. 4.4. Switching frequency comparison: 

(a) Ts=10us; (b) Ts=1us. 
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4.2 Introduction of Gallium Nitride (GaN) based inverter 

The semiconductor based IGBTs currently used for Electric and Hybrid Vehicles are usually 

limited by the switching frequency. This proves to be a burden if the conventional DTC needs to 

be applied to the PMSM drive systems with high sampling frequency and switching frequency. 

GaN powered devices are  becoming an alternative to Silicon based IGBTs. This new technology 

enables Innverters to be designed with higher frequencies and efficiencies than conventional Si 

devices. A comparison bewteen Si, Silicon Carbide (SiC) and GaN power devices is shown as Fig.  

4.5. SiC and GaN both belongs to wide bandgap (WBG) devices, which allows for high-frequency, 

high-efficiency power electronics [47]. The higher breakdown field of a WBG semiconductor 

enables devices to be optimized with thinner drift regions. This results in power devices with lower 

specific ON-resistance. The high mobility of GaN further reduces the ON-resistance allowing a 

smaller die size to achieve a given current capability. Therefore, there is lower input and output 

capacitances. Higher saturation velocity and lower capacitances enable faster switching transients. 

Overall, the material properties of WBG semiconductors results in a device with lower ON-

resistance and switching losses than a Si device with comparable voltage and current capabilities 

[43-47]. Though SiC excels in high-temperature applications, the material characteristics of GaN 

are superior in high-efficiency, high-frequency converters. GaN powered devices rated up to 650 

V have recently become commercially available, and GaN-based converter design has become a 

popular topic [47]. 

 

Fig. 4.5. Comparison of Si, SiC, and GaN for power semiconductor applications [43], [44]. 
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Recently, GaN semiconductors have been introduced with nano-second speed switching time. This 

is combined with innovative power electronics technology leading to the switching frequency 

changing from 100 kHz to 2 MHz with efficiency over 95%. For applications requiring 90% 

efficiency, the switching frequency can be up to100MHz . The maximum switching frequency is 

1GHz . With the increase of the switching frequency, switching loss becomes an important factor 

that cannot be neglected. Figure. 4.6 shows how the switching loss is generated.  

 

Fig. 4.6. Introduction of switching loss [48]. 

where VDS is the Drain-to-source voltage, ID is the drain currents. 

Due to the fast switching advantage of GaN, GaN switches faster than Si/SiC MOSFETs with 

100 /
dV

V ns
dt

 . That means GaN has a 4 times faster turn-on speed and about 2 times faster 

turn-on speed than state of art SiC MOSFET [49], which is shown below as Fig. 4.7. 

 

Fig. 4.7. The comparison between GaN and SiC for switching time [49]. 
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Since the faster switching, GaN has less area under the VDS - ID curve, which will bring less 

switching loss to make GaN much more efficient compared with SiC. Furthermore, there is a 

comparison between GaN, CoolMOS and IGBT at varies frequency, which is shown as Fig. 4.8. 

 

Fig. 4.8. Drive loss comparison between GaN, CoolMOS and IGBT at varies frequency [48]. 

Table. 4.1. shows the exact value for drive loss comparison between GaN, CoolMOS and IGBT at 

various frequencies. 

Table. 4.1. Drive loss comparison between GaN and CoolMOS at varies frequency [48]. 

 
DSV

 DSI
 DSONR

 

30kHz 300kHz  1MHz  10MHz 

GaN 650V  30A   55m  1mW   14mW  46mW  455mW  

CoolMOS 650V  33A  58m  23mW  230mW  770mW  7700mW  

From Table. 4.1, it can be noted that with the increase of the switching frequency, the drive loss 

increase. However, GaN still has the obvious dominant compared with MOSFET and IGBT, which 

more than 16 times lower drive loss at 1 MHz switching frequency. Since in general condition, the 
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topology of full bridge is mostly used in the conventional inverter. There is a full bridge power loss 

comparison between COOLMOS, IGBT, SiC and GaN simulated using Pspice model or calculated 

using datasheet parameters shown below as Fig. 4.9. The inverter system is 2 kW, 400 VDC input, 

240V/8.3A 60Hz output and the power factor is 0.9. 

 

Fig. 4.9. Full bridge power loss comparison between COOLMOS, IGBT, SiC and GaN [48]. 

From the figures and table above, GaN shows its dominant advantages in the high switching 

frequency range. In order to apply conventional DTC to PMSM drive systems with high sampling 

frequency and switching frequency, a GaN-based inverter is required to assist to solve the limit of 

switching frequency for hardware implementation. 

4.3 Optimization for Hardware Implementation of DTC 

During the research of hardware implementation of conventional DTC, there are some key issues 

have been found. First of all, because of hysteresis controller, the variable switching frequency will 

increases the difficulty for the PWM generation, which makes it almost impossible to utilize the 

PWM module to generate PWM to achieve control. If using general purpose I/O port instead of 

PWM to achieve control, it is also not acceptable because there is no way to set a dead-band to 

avoid the upside and downside power switch conducting at the same time. In order to address these 

issues, an optimization method which combines SVPWM with conventional DTC has been applied. 
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4.3.1 The DTC based on SVPWM (DTC-SVM) 

In the conventional DTC, the stator flux linkage amplitude ψs(k) and phase angle θ(k) can be 

calculated through Clarke transformation after α- and β-axis stator voltage and current have been 

sampled. After a control period, the stator flux linkage amplitude becomes ψs(k+1) and the phase 

angle becomes θ(k+1), with the angle between θ(k) and θ(k+1), is Δθ. As Fig. 4.10. shows, 

 

 

Fig. 4.10. The α- and β-axis flux vector for DTC-SVM. 

It can be seen from Fig. 4.10. that: 
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Through Equation (30), the ψref at α- and β-axis can be calculated. In order to compensate the error 

for ψref, an equivalent voltage vector reference Uref is needed. Since for the ψs, we have: 

      s s s st U t R i t dt                                                   (31) 

In the discrete system, through the discretization of Equation (31), it can be known that: 

        1ref s ss k s k s k s k
U R i T  


                                      (32) 

Then, the α- and β-axis voltage vector can be obtained: 

   

   

/

/

ref ref s sk k

ref ref s sk k

U U T R i

U U T R i

  

  





  


  

                                       (33) 

Substituting Equation (30) into Equation (33) to obtain Equation (34) as below: 

            

            

1

1

cos cos /

sin sin /

ref s sk s k s k k

ref s sk s k s k k

U U T R i

U U T R i

  

  

    

    





      



     


            (34) 

Based on the operation principle introduced above, the control diagram of DTC-SVM will be 

generated and shown below as Fig. 4.11.  

 

Fig. 4.11. The control diagram of DTC-SVM. 
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4.3.2 Space Vector Pulse Width Modulation (SVPWM) 

SVPWM regards PMSM and inverter as one object, providing PMSM with circular magnetic field 

with constant amplitude. According to ideal flux circle generated by three-phase symmetric 

sinusoidal voltage, use the effective voltage vector generated by different switch patterns of inverter 

to approximate the standard flux circle [50-53]. 

Define the following variables: 

1

2

3

3 1

2 2

3 1

2 2

ref

ref

ref

U U

U U U

U U U



 

 


 



 



  


                                                   (35) 

Then, the sector number N can be decided by Equation (36) 

1 2 3( ) 2 ( ) 4 ( )ref ref refN sign U sign U sign U                              (36) 

Where sign(x) is the sign function. 

The corresponding relationship between N and sector number is shown in Table. 4.2. 

Table. 4.2. Relationship between N and sector number. 

N 3 1 5 4 6 2 

Sector No. 1 2 3 4 5 6 

 

For voltage vector in different sectors, the conducting time T1, T2 of each switch pattern is different. 

It has been shown in Table. 4.3. 

Table. 4.3. Conducting time T1, T2 in different sectors. 

Sector No. 1 2 3 4 5 6 

1T   
-Z Y X Z -Y -X 

2T   
X Z -Y -X -Z Y 

 

Where: 
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3

3 3 1

2 2

3 3 1

2 2

s

dc

s

dc

s

dc

T U
X

U

T
Y U U

U

T
Z U U

U



 

 


 



 
    

 


      
 

                                              (37) 

For the switching point of voltage vector, define the following variables: 

 1 2

1

2

/ 4

/ 2

/ 2

a

b a

c b

T T T T

T T T

T T T

   


 
  

                                                 (38) 

Assign Tcm1, Tcm2 and Tcm3 according to Table. 4.4, where Tcm1, Tcm2 and Tcm3 are defined as the 

conducting time of phase A, B and C, respectively.  

Table. 4.4. Calculation of switch point.  

Sector No. 1 2 3 4 5 6 

1cmT   bT  aT  aT  cT  cT  bT  

2cmT  aT  cT  bT  bT  aT  cT  

3cmT  cT  bT  cT  aT  bT  aT  

 

The simulation model of DTC-SVM has been built in MATLAB/Simulink, the parameters of 

PMSM and load condition are the same as the conventional DTC simulation. Because of the 

advantages of SVPWM, it can achieve constant switching frequency which is 10kHz in this 

simulation, which will make it easier and more reliable for hardware implementation. Besides that, 

SVPWM can also achieve torque ripple minimization, which can not only keep the dynamic 

performance advantage of conventional DTC, but also compensate the static performance 

disadvantage of conventional DTC. The simulation result is shown as Fig. 4.12. below. 
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Fig. 4.12. Torque Response comparison of conventional DTC and DTC-SVM. 

From Fig. 4.12, it can be known that DTC-SVM has much smaller torque ripple compared with 

conventional DTC, and the dynamic response is the same. So, it is proved that DTC-SVM is 

feasible and more effective and will be a better application prospect. 
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Chapter 5 

Implementation and Experimental Investigations of the Proposed 

DTC-SVM 

In this chapter, the implementation of DTC-SVM for PMSM using GaN based inverter is presented. 

It mainly focuses on the process of implementation and experimental studies. This chapter can be 

divided into four sections:1) introductions of the hardware platform including the DSP and the GaN 

based motor drive; 2) implementation of FOC for reference of the proposed DTC-SVM; 3) 

implementation of the proposed DTC-SVM; and 4) experimental investigations and results using 

the improved DTC-SVM for PMSM control.  

5.1 The Introduction of DSP TMS320F28335 

A Digital Signal Processor is a specific device that is designed around the typical mathematical 

operations to manipulate digital data that are measured by signal sensors. The objective is to process 

the data as quickly as possible to be able to generate an output stream of “new” data in “real time” 

[54]. Depend on powerful calculation ability and fast speed processing of the current digital signal 

processor, plenty of industry applications are utilizing DSPs to implement control algorithm. The 

features of DSP TMS320F28335 used for hardware implementation are shown below [54-60]: 

(1) High-Performance Static CMOS Technology 

– Up to 150 MHz (6.67-ns Cycle Time) 

– 3.3-V I/O Design 

(2) High-Performance 32-Bit CPU  

– IEEE 754 Single-Precision Floating-Point Unit (FPU) 

– Harvard Bus Architecture 

– Fast Interrupt Response and Processing 

(3) On-Chip Memory 

– 256K × 16 Flash, 34K × 16 SARAM 

(4) Peripheral Interrupt Expansion (PIE) Block  

– Supports all 58 Peripheral Interrupts 

(5) Enhanced Control Peripherals 

– Up to 18 PWM Outputs 

– Up to 2 Quadrature Encoder Interfaces 

(6) Three 32-Bit CPU Timers 
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(7) 12-Bit ADC, 16 Channels 

– 80-ns Conversion Rate 

– 2 × 8 Channel Input Multiplexer 

– Single/Simultaneous Conversions 

(8) Up to 88 Individually Programmable, Multiplexed GPIO Pins with Input Filtering 

For hardware implementation of FOC and DTC, a well-developed control card as in Fig. 5.1 will 

be used. This control card can be plugged into mother board to be a time-effective solution and 

can also ensure the quality of the design. 

 

Fig. 5.1. DSP TMS320F28335 Experimental kit. 

According to the specified functionalities, the GPIOs of the DSP are assigned as Table. 5.1. 

Follow this assignment, the schematic and PCB layout of the control board are then designed. 

Table. 5.1. GPIO assignment of the DSP control card. 

GPIO 

No. 
Function Direction 

GPIO 

No. 
Function Direction 

0 PWM1A Output 1 PWM1B Output 

2 PWM2A Output 3 PWM2B Output 

4 PWM3A Output 5 PWM3B Output 

6 PWM Enable Output 16 SPI  

17 SPI  18 SPI  

19 SPI  20 QEPA Input 

21 QEPB Input 23 QEP Index Input 

29 /Fan ON Output 30 CANRX Input 

31 CANTX Output    
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5.2 Implementation of FOC  

According to control theory of FOC for PMSM drive system, it can be known that for hardware 

implementation, DSP should achieve the following functions: 

– Sampling the analog signal, i.e. DC voltage of the DC bus and AC currents fed to the 

PMSM from inverter. 

– Utilizing the sampling results from analog to digital conversion to do Clarke and Park 

transformation to achieve decoupling of d- and q-axis current components. 

– Utilizing the PI controllers to control d- and q-axis current components. 

– Utilizing the quadrature encoder to obtain the relative rotor position of the PMSM by QEP 

module. 

– Calculating the speed of the PMSM through the encoder signals. 

– Utilizing the PI controller to control the speed of PMSM. 

As aforementioned, FOC independently control the torque and flux of PMSM like DC motor 

operation. The overall block diagram of FOC with position sensor is depicted in Fig.5.2. 

 

Fig. 5.2. Overall block diagram of FOC with position sensor. 
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Since the project for hardware implementation of FOC is quite a complicate project, it requires 

many function modules and multiple interrupts running in the background loop. Therefore, the 

software design for hardware implementation of FOC is divided into three parts according to their 

functionalities: Fig. 5.3 is the flowchart of main function; Fig. 5.4 is the flowchart of ADC interrupt; 

Fig. 5.5 is the flowchart of Timer0 interrupt. 

Initialize s/w

modules

Peripheral Configuration

PWM,QEP

Initial RampGen, 

PWM, QEP, SpeedCal, 

PI controller module

Enable Interrupts 

Measurement and filter – ADCINT1 Trigger 50kHz

Transformation, calculation and control  –CPUTimer0 Trigger 10kHz

Background 

Loop

Main()

ADC- Vdc, Ia, Ib, Ic

Triggered by EPWM5

ADC INT

50kHz 

Timer0 INT

10kHz
 

Fig. 5.3. Main function flowchart of software design for hardware implementation of FOC. 
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In main function, after initial the basic core for the system control, the watchdog is enabled to 

protect the project from elapsing or time out. If due to a hardware failure or error happens in the 

program, the DSP fails to reset the watchdog, it will elapse and generate a timeout signal to initiate 

the corrective actions. Then disable all interrupts in order to assign interrupt as requirement. After 

that peripheral configuration is initiated to select the multiplex assignments of GPIO, such as PWM, 

QEP, etc. Then ADC, RampGen, PWM, QEP, Speed and PI module is initiated. Also, two kinds 

of interrupts are used to achieve calculation and control, which are ADC and CpuTimer0 interrupt. 

Both interrupts need to be enabled in the main function. ADC interrupt is triggered at the end of 

every sampling sequence, and Timer0 is triggered by the timer existing in the core of DSP. 

ADC INT

50kHz 

Sampling the DC voltage 

and AC currents

Take the average of the sampling results

Save contexts and 

clear interrupt flags

IsrTicker>=5000?
Save contexts and 

clear interrupt flags

N

DC offset 

measurement for 

ADC

Save contexts and 

clear interrupt flags

Save contexts and 

clear interrupt 

flags  

Y

 

Fig. 5.4. ADC interrupt flowchart of software design for hardware implementation of FOC. 
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In the background loop, ADC INT and Timer0 INT will work separately to implement the 

calculation and control algorithm. ADC INT is triggered at the end for sampling sequence, so the 

frequency is 50 kHz. In ADC INT, there are two functions. The first is offset measurement for 

ADC, which is sampling the DC offset value for every ADC channel at the start stage of project. 

Then the offset value will be used in calculation of the sampled value to process the sampled results. 

The second is processing the sample values. As mentioned before, the DC voltage and three phase 

AC currents need to be sampled by the ADC. To increase the accuracy of the sampled value used 

for calculation and control, the sampled values are filtered by using arithmetic mean of the sampled 

values. Since the frequency of the ADC INT is five times of the Timer0 INT, the sampled values 

can be accumulated for five times then take the arithmetic mean of the results. 

Timer0 INT

10kHz

Save contexts and 

clear interrupt flags  

RampGen generate a speed 

ramp for speed reference 

Execute the 

PI modules

PWM duty 

ratio 

calculation

Save contexts and 

return

Clark and Park 

Transformation

Execute the ipark and 

svgen modules

Electrical angle calculation 

using QEP module 

 

Fig. 5.5. Timer0 interrupt flowchart of software design for hardware implementation of FOC. 
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The main control and calculation of FOC will be implemented in Timer0 INT, which is triggered 

by timer in the core of the DSP with the frequency of 10kHz.  

In Timer0 INT, at first the speed reference will be given to a module called RampControl (RC), 

which can generate a ramp signal of the speed reference. Then the filtered results from ADC INT 

of three phase AC currents will be transformed to α- and β-axis by Clarke Transformation. Next, 

the results will be transformed to d- and q-axis by Park Transformation. The angle used for Park 

Transformation is obtained from QEP module, which can calculate the electrical angle through 

capturing the encoder signals.  

Then, the speed reference from the output of the RC module will given to the PI control module 

for speed control as the reference. The speed feedback value is calculated by the speed calculation 

module SpeedFR. The output of speed PI control module will be given to another PI control module 

for q-axis current control for as the reference. The q-axis current feedback value is from the output 

of Park Transformation. For d-axis current control, the reference of the PI control module is zero, 

since the Id=0 control is used in this project. The d-axis current feedback value is also from the 

output of Park Transformation.  

The outputs from d- and q-axis current PI control module then are sent to the inverse Park 

Transformation module to convert the regulated voltage from d- and q-axis to α- and β-axis. After 

the inverse Park Transformation, the α- and β-axis voltage will be sent to SVGEN module to 

execute the space vector generation to obtain the duty ratios of PWM signals.  

As mentioned before, the electrical angle used for transformation is calculated by the QEP module, 

then will be sent to the SpeedFR module to calculation the speed of the PMSM used for speed PI 

control module to achieve a close loop control of PMSM.  

At last, the duty ratios of PWM signals are sent to PWM signal generation module to generate the 

PWM signals for GaN-based inverter to drive the PMSM. 

The software design for hardware implementation of FOC for PMSM drive system. In the project, 

all the sampling, calculation and control is achieved based on the DSP TMS320F28335 of Texas 

Instruments. The project is programmed by C codes to control the PMSM fed by a GaN-based 

inverter. The software consists of digital IOs, ADC sampling, reference frame transformation, PI 

controllers, QEP position calculation, speed calculation, SVPWM generation and PWM drive 

module.  
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Before applying any of the above software design to control the PMSM using GaN-based inverter, 

they have been verified initially. Because the program developed by TI has been referred during 

the software design, the idea for testing the software is also referred during the validation. 

As Fig. 5.2 shows, the system can be gradually built in order for the final system can be confidently 

operated. Four phases of the incremental system build are designed to verify the major software 

modules used in the system. 

5.2.1 Level 1 Incremental Build 

For this level, there is no power flow through the inverter and PMSM. It is a simplest system check 

which used for verifying the system interrupt, inverse Park Transformation, SVGEN and PWM 

drive modules. The level can be defined to be 1 before the main function. Then debug the project 

and run.  

Once the program is running, the variable named “IsrTicker” will be incrementally increased as 

seen in watch windows to confirm the ADC interrupt for offset measurement and CpuTimer0 for 

calculation and control working properly. Then the counter called “ADCCNT” will change from 0 

to 5 to execute the sampling tasks after the offset measurement is done. 

The incremental system build block diagram for level 1 is shown below as Fig. 5.6. Using the 

assumed SpeedRef value to generate an angle signal to imitate the change of angel when the PMSM 

is rotating through RG_MACRO module. Then the assumed VdTesting and VqTesting values are 

used for inverse Park Transformation. The output of IPARK_MACRO module is given to the 

SVGEN_MACRO module to generate the duty ratios of three phase PWM signals. The three 

outputs from SVGEN_MACRO module are monitored via the graph window as shown in Fig. 5.7 

where Ta, Tb, and Tc waveform are 120° apart from each other. Specifically, Tb lags Ta by 120-

degree and Tc leads Ta by 120-degree. Check the PWM test points on the board to observe PWM 

pulses and make sure that the PWM module is running properly. 
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Fig. 5.6. Level1- Incremental system build block diagram [56]. 

 

Fig. 5.7. Output of SVGEN, Ta, Tb, Tc and Tb-Tc waveforms [56]. 

5.2.2 Level 2 Incremental Build 

The validation of level 2 is based on level 1 is completed successfully. In level 2, the ADC and 

reference frame transformation modules will be verified. At this level, the motor can connect to 

the inverter since the PWM signals are successfully proven at level 1 incremental build. Note that 

the open loop experiments are meant to test the ADCs, inverter stage, switching modules etc. 

Therefore, running motor under load or at various operating points is not recommended. Define 

the level to be 2, then debug the project and run.  

The incremental system build block diagram for level 2 is shown below as Fig. 5.8. 
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During the open loop tests, VqTesting, SpeedRef and DC Bus voltages should be adjusted 

carefully for PM motors so that the generated Bemf is lower than the average voltage applied to 

motor winding. This will prevent the motor from stalling or vibrating. First, the Clarke module 

will be tested. The three measured line currents are transformed to two phases d- and q-axis 

currents in a stationary reference frame. The outputs of this module can be checked from graph 

window. It should be noted that the clark1.Alpha waveform should be same as the clark1.As 

waveform. And the clark1.Alpha waveform should be leading the clark1.Beta waveform by 90-

degree at the same magnitude. The waveforms of SVGEN_dq1.Ta, rg1.Out, and phase A&B 

currents are shown below as Fig. 5.9. 

 

Fig. 5.9. The waveforms of SVGEN_dq1.Ta, rg1.Out, and phase A&B currents [56]. 

Also, in level 2, the PI controller limits for d- and q-axis currents can be adjusted. Note that the 

vectoral sum of d- and q-axis PI outputs should be less than 1.0 which refers to maximum duty 

cycle for SVGEN macro. Another duty cycle limiting factor is the current sense through shunt 

resistors which depends on hardware/software implementation. Depending on the application 

requirements 3, 2 or a single shunt resistor can be used for current waveform reconstruction. The 

higher number of shunt resistors allow higher duty cycle operation and better dc bus utilization. 

Run the system with default VdTesting, VqTesting and SpeedRef and gradually increase VdTesting 

and VqTesting values. Meanwhile, watch the current waveforms in the graph window. Keep 

increasing until you notice distorted current waveforms and write down the maximum allowed 

VdTesting and VqTesting values. Make sure that these values are consistent with expected d- and 

q-axis current component maximums while running the motor. After this build level, PI outputs 

will automatically generate the voltage reference and determine the PWM duty cycle depending on 
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the d- and q-axis current demand, therefore set pi_id.Umax/min and pi_iq.Umax/min according to 

recorded VdTesting and VqTesting values respectively. 

5.2.3 Level 3 Incremental Build 

The validation of level 3 is based the previous levels are completed successfully. In level 3, the PI 

controllers for d- and q-axis currents regulation and speed measurement modules. To confirm the 

operation of current regulation, the gains of these two PI controllers are necessarily tuned for proper 

operation. Define the level to be 3, then debug and run the project. 

The incremental system build block diagram for level 3 is shown below as Fig. 5.10. 

 In this level, the PMSM is running at open speed loop, and the PMSM is supplied by AC input 

voltage and the current is dynamically regulated by using PI module through the park 

transformation of the motor currents. For level 3, before closing the current loop, there are a few 

steps need to be done to verify the PI controller for d- and q-axis currents regulation: 

(1) Set SpeedRef to 0.3 pu, Idref to zero and Iqref to 0.05 pu. 

(2) Gradually increase voltage at variac / dc power supply to get an appropriate DC-bus voltage. 

(3) Check pi_id.Fdb in the watch windows with continuous refresh feature whether or not it 

should be keeping track pi_id.Ref for PI module.  

(4) Check pi_iq.Fdb in the watch windows with continuous refresh feature whether or not it 

should be keeping track pi_iq.Ref for PI module.  

(5) To confirm these two PI modules, try different values of pi_id.Ref and pi_iq.Ref or 

SpeedRef. 

(6) For both PI controllers, the proportional, integral, derivative and integral correction gains 

may be re-tuned to have the satisfied responses. 

(7) Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, 

taking the controller out of realtime mode and reset. Now the motor is stopping. 

During running this level, the current waveforms in the CCS graphs should appear as Fig. 5.11. 
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Fig. 5.11. Measured theta, rg1.out and Phase A & B current waveforms [56]. 

Then the QEP drive and speed calculation modules need to be verified. QEP drive macro 

determines the rotor position and generates a direction (of rotation) signal from the shaft position 

encoder pulses. The details related to these two modules have already been presented before. The 

steps to verify these two software modules related to the position and speed measurement can be 

described as follows: 

(1) Set SpeedRef to 0.3 pu. 

(2) Compile/load/run program with real time mode and then increase voltage at variac / dc 

power supply to get the appropriate DC-bus voltage. 

(3) Add the soft-switch variable “lsw” to the watch window in order to switch from current 

loop to speed loop. In the code lsw manages the loop setting as follows: 

– lsw=0, lock the rotor of the motor. 

– lsw=1, close the current loop. PMSM runs at open loop control. 

(4) Set lsw to 1. Now the motor is running close to reference speed. Check the “speed1.Speed” 

in the watch windows with continuous refresh feature whether or not the measured speed 

is around the speed reference. 

(5) To confirm these modules, try different values of SpeedRef to test the speed. 

(6) Check that both qep1.ElecTheta and rg1.Out are of saw-tooth wave shape and have the 

same period. If the measured angle is in opposite direction, then change the order of motor 

cables connected to inverter output. 

(7) Check from Watch Window that qep1.IndexSyncFlag is set back to 0xF0 every time it reset 

to 0 by hand. Add the variable to the watch window if it is not already in the watch window. 
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(8) Qep1.ElecTheta should be slightly lagging rg1.out, if the calibration angle needs to be 

adjusted due to the angle offset between index and locked rotor position. 

(9) Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, 

taking the controller out of realtime mode and reset. 

Next, the following steps are to verify and or perform calibration angle of the encoder. The 

steps are as follows: 

(1) Set SpeedRef to 0.3 pu. 

(2) Make sure EQep1Regs.QPOSCNT, EQep1Regs.QPOSILAT, Init_IFlag, 

qep1.CalibratedAngle, and lsw are displayed in watch window. 

(3) Compile/load/run program with real time mode and then increase voltage at variac / dc 

power supply to get the appropriate DC-bus voltage. 

(4) Now the rotor should be locked. Set lsw to 1 to spin the motor. When the first index signal 

is detected by QEP, the EQep1Regs.QPOSILAT register latches the angle offset in 

between initial rotor position and encoder index in the code. Later, 

EQep1Regs.QPOSILAT is set to maximum of EQep1Regs.QPOSCNT as it latches the 

counter value for each index signal. In the code qep1.CalibratedAngle keeps the initial 

offset value. This value can be recorded to initialize qep1.CalibratedAngle at the 

initialization section in main function.  

5.2.4 Level 4 Incremental Build 

The validation of level 4 is based the previous levels are completed successfully. In level 4, the PI 

controller for speed control will be verified. Define the level to be 4 to switch the build level, then 

debug and run the project. 

The incremental system build block diagram for level 4 is shown below as Fig. 5.12. 

The key steps can be explained as follows: 

(1) Set Compile/load/run program with real time mode. 

(2) Set SpeedRef to 0.3 pu. 

(3) Gradually increase voltage at variac to get an appropriate DC-bus voltage and now the 

motor is running with this reference speed (0.3 pu). 
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(4) Add the soft-switch variable “lsw” to the watch window in order to switch from current 

loop to speed loop. In the code lsw manages the loop setting as follows: 

– lsw=0, lock the rotor of the motor. 

– lsw=1, close the current loop. 
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– lsw=2, close the speed loop. 

(5) Set lsw to 1. Compare Speed with SpeedRef in the watch windows with continuous refresh 

feature whether or not it should be nearly the same. 

(6) To confirm this speed PI module, close the speed loop by setting lsw to 2 and try different 

values of SpeedRef. For speed PI controller, the proportional, integral, derivative and 

integral correction gains may be re-tuned to have the satisfied responses. 

During running this build, the current waveforms in the CCS graphs should appear as follows: 

 

Fig. 5.13. Measured theta, SVGEN duty cycle, and Phase A&B current waveforms. 

 under no-load & 0.3 pu speed [56]. 

5.3 Implementation of DTC-SVM 

Different from FOC, according to control theory of DTC-SVM for PMSM drive system, it can be 

known that for hardware implementation, DSP should achieve the following functions: 

– Sampling the analog signal, i.e. DC voltage of the DC bus and two-phase AC currents fed 

to the PMSM from inverter. 

– Processing the sampled results to achieve accuracy of sampling through filter. 

– Utilizing the sampled results to obtain the Va, Vb, Ia, Ib to do Clarke Transformation to 

obtain Vα, Vβ, Iα, Iβ. 

– Utilizing Vα, Vβ, Iα, Iβ to calculate the stator flux linkage on α- and β-axis, which is ψsα and 

ψsβ. 
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– Utilizing ψsα and ψsβ to estimate the stator flux linkage and angle. 

– Calculating the speed of the PMSM through the encoder signals. 

– Utilizing the PI controller to control the speed and electromagnetic torque of PMSM. 

– Utilizing reference flux calculator to calculate the α- and β-axis stator flux linkage 

reference. 

– Utilizing reference voltage calculator to calculate the α- and β-axis voltage reference. 

– Utilizing the SVPWM module to generate PWM wave for DTC-SVM of PMSM. 

The overall block diagram of DTC-SVM is depicted in Fig. 5.14. 

Similar with the hardware implementation of FOC, DTC-SVM also requires many function 

modules and multiple interrupts running in the background loop to execute the sampling, 

calculation and control command. Therefore, the software design for hardware implementation 

of DTC-SVM is divided into four parts according to their functionalities: Fig. 5.15 is the 

flowchart of main function; Fig. 5.16 is the flowchart of ADC interrupt; Fig. 5.17 is the 

flowchart of Timer0 interrupt and Fig. 5.18 is the flowchart of Timer1. 
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Initialize s/w

modules

Peripheral Configuration

PWM-123456

Initial PWM, QEP, 

SpeedCal, module

Enable Interrupts 

Measurement and filter – ADCINT1 INT 1MHz 

DTC-SVM main calculation and control  – CPUTimer0 INT 100kHz

Speed measurement – CPUTimer1 INT 10kHz

Background 

Loop

Main()

ADC- Vdc, Ia, Ib

Triggered by EPWM5

ADC INT

1MHz  

Timer0 INT

100kHz

Timer1 INT

10kHz
 

Fig. 5.15. Main function flowchart of software design for hardware implementation of DTC-SVM. 

In main function, after initial the basic core for the system control, the watchdog is enabled to 

protect the project from elapsing or time out. If due to a hardware failure or error happens in the 

program, the DSP fails to reset the watchdog, it will elapse and generate a timeout signal to initiate 

the corrective actions. Then disable all interrupts in order to assign interrupt as requirement. After 
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that peripheral configuration is initiated to select the multiplex assignments of GPIO, such as PWM, 

QEP, etc. Then ADC, PWM, QEP, Speed and PI module is initiated. The variables used for 

sampling, calculation and control need to be set to be the default value. Also, three kinds of 

interrupts are used to achieve calculation and control, which are ADC, CpuTimer0 and CpuTimer1 

interrupt. All the interrupts need to be enabled in the main function. ADC interrupt is triggered at 

the end of every sampling sequence, and Timer0 and Timer1are triggered by the timer existing in 

the core of DSP. 

ADC INT

1MHz 

Sampling the DC voltage 

and AC currents

Take the average of the sampling results

Save contexts and 

clear interrupt flags

IsrTicker>=5000?
Save contexts and 

clear interrupt flags

N

DC offset 

measurement for 

ADC

Save contexts and 

clear interrupt flags

Save contexts and 

clear interrupt 

flags  

Y

Obtain Vsa,Vsb,Isa,Isb 

Clark  

Transformation

 

Fig. 5.16. The flowchart of ADC interrupt. 
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In the background loop, ADC INT, Timer0 INT and Timer1 INT will work separately to implement 

the calculation and control algorithm. ADC INT is triggered at the end for sampling sequence. 

Different from the FOC, in order to increase control performance and minimize the torque ripple, 

the sampling frequency should be as high as possible. So, for this project, the frequency of ADC 

INT is 1MHz. In ADC INT, there are two functions. The first is offset measurement for ADC, 

which is sampling the DC offset value for every ADC channel at the start stage of project. Then 

the offset value will be used in calculation of the sampled value to process the sampled results.  

The second is processing the sample values. As mentioned before, the DC voltage and three phase 

AC currents need to be sampled by the ADC. To increase the accuracy of the sampled value used 

for calculation and control, the sampled values are filtered by using arithmetic mean of the sampled 

values. Since the frequency of the ADC INT is ten times of the Timer0 INT, the sampled values 

can be accumulated for ten times then take the arithmetic mean of the results. The filter results from 

ADC INT of DC voltage and two-phase AC currents will be then used for Clarke Transformation 

to be converted into α- and β-axis voltage and current. 

Timer0 INT

100kHz

Save contexts and 

clear interrupt flags  

Angle 

calculation

SVPWM 

generation

Save contexts and 

return

Stator flux linkage 

and electromagnetic 

torque estimation 

PI Controller

For torque control

Reference 

Voltage

Calculator

,s s  
calculation

Reference 

Flux

Calculator

 

Fig. 5.17. The flowchart of Timer0 interrupt. 
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The main calculation and control of DTC will be implemented in Timer0 INT, which is triggered 

by timer0 in the core of the DPS with the frequency of 100kHz. 

In Timer0 INT, at first the α- and β-axis voltage and current will be used for calculating the α- and 

β-axis stator flux linkage. Since the integration in DSP is quite different from the simulation, in this 

project, the integration will be achieving by using the equation below: 

     
0 0

s t s t s t
t t t t

t
  

  
  

                           (39) 

Where t  is the sampling time. 

After the α- and β-axis stator flux linkages are estimated, then take the inverse tangent of 
s

s








. The 

result can determine the angle of stator flux linkage. Then the stator flux linkage amplitude can be 

calculated by 2 2

s s   , and the electromagnetic torque can also be calculated by 

 
3

2
s s s sp i i     . 

The torque reference is decided by the output of the PI speed controller, then the calculated the 

electromagnetic torque will be compared with the torque reference. The error will be sent to the PI 

torque controller to generate the error angle. Then according to the operation principle from the 

previous chapter of DTC-SVM, through the reference flux calculator and the reference voltage 

calculator, the α- and β-axis voltage reference can be obtained then given to the SVPWM module 

to generate PWM to achieve DTC-SVM of PMSM. 

Unlike FOC, in this project, the QEP speed measurement is not included in the Timer0. Another 

CpuTimer1 is used to trigger the interrupt to measure the speed for speed control in Timer1. The 

speed loop should be slower than the electrical control loop, as the result of that, the frequency of 

Timer1 is set to be 10kHz. In this interrupt, QEP module will capture the encoder signals. Then the 

calculation of electrical angle will be done by the QEP module, then the Speed module will 

calculate the rotor speed, then send to Timer0 INT to achieve control of speed to generate torque 

reference for the PI controller for torque control. 
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Timer1 INT

10kHz

Save contexts and 

clear interrupt flags  

QEP speed 

measurement

Save contexts and 

return
 

Fig. 5.18. The flowchart of Timer1 interrupt. 

In the design of the software for DTC-SVM, there are some function modules need to be discussed. 

In the subsections below, there is an introduction of these function modules: 

5.3.1 Design of ADC Module for Sampling 

To achieve accurate control performance, achieving precise sampling is necessary to guarantee 

calculation and control will be correct. There are three methods to trigger the ADC module of DSP 

to start sampling: software trigger, PWM trigger and external trigger. At first, the software trigger 

is used to trigger the ADC to sample the DC voltage and three phase AC current. The sampling 

frequency can be set by the clock register of ADC. However, in the test, it has been found that the 

software trigger is not accurate, since the ADC is working at sequential cascaded mode, the actual 

sampling frequency will be the setting frequency divided by the number of sampling channel. That 

will affect practical sampling when the software runs in real-time, and it is difficult to get the 

arithmetic mean of the sampled value. As the result of that, PWM trigger is used for ADC module 

because it will have more accurate sample frequency. PWM5 is a vacant PWM, so it is used to 

trigger the ADC [55].  

To make sure the sampling result is correct, the offset values need to be removed from the 

calculation. Although the offset values can be measure online, it still requires offline measurement 

of the offset values to make sure the sampling circuit is functional as design.  
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For offset measurement, a 1st-order low-pass filter is used. To apply 1st-order low-pass filter in a 

discrete system is shown below: 

Since the transfer function of 1st-order low-pass RC filter in s-plane is: 

 

 

1

1

out s

in s

V

V RCs



                                                             (40) 

Then use z transformation, let 

11

s

z
s

T


 , sT  is the sampling time. Substituted into Equation 

(41), to get: 

 

   1 1

1

1 1
1

out z

in z s

s

V T

zV RC z T
RC

T

 
 

  


                                     (41) 

Then it can be converted to: 

       
1

in z out z out z out z

s s

RC RC
V V V z V

T T

                                   (42) 

Then the Equation (32) can be converted to differential equation, which is: 

    ( ) 1

s
out t in t out t

s s

T RC
V V V

RC T RC T


 
 

                                  (43)  

In the project, RC is assumed to be 0.05, which means the cut off frequency 

1
3.183

2
cf Hz

RC
  .  

5.3.2 Design of QEP Module for Position Calculation 

For TMS320F28335, the encoder signals A, B and Index is connected to the EQEP2A, EQEP2B 

and EQEP2I pin to capture the pulses generated by the encoder. Since the number of pulses 

generated by the sensor is proportional to the angular displacement of the motor shaft. For example, 

a complete 360-degree rotation of motor will generate 2500 pulses of each of the signals in encoder 

A and B. The QEP circuit counts both edges of the two QEP pulses. This means, for 2500 pulses 

for each of encoder A and B, the number of counter clock cycles will be 10000. 
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 Since the counter value is proportional to the number of QEP pulses, therefore, it is also 

proportional to the angular displacement of the motor shaft. When the QEP module is used to 

capture the encode signals, the position counter is obtained by QPOSCNT register. And the QDF 

bit in QEPSTS register is used to detect the rotational direction.  

The encoder Index pulse can reset the timer counter T2CNT and sets the index synchronization 

flag IndexSyncFlag to 00F0. Thus, the counter T2CNT gets reset and starts counting the QEP_CLK 

pulses every time encoder Index high pulse is generated. To determine the rotor position at any 

instant of time, the counter value (T2CNT) is read and saved in the variable RawTheta. This value 

indicates the clock pulse count at that instant of time. Therefore, RawTheta is a measure of the rotor 

mechanical displacement in terms of the number of clock pulses [56].  

As the example above, the maximum number of clock pulses in one revolution is 10000, so a 

coefficient called MechScaler can be used to obtain the mechanical displacement of the rotor, which 

is MechTheta. Then the electrical displacement ElecTheta can be calculated using polepairs 

multiplied by MechTheta. In this way, the electrical angle can be acquired for the speed calculation 

and reference frame transformation. 

The offset value also need to be considered in the position calculation. In this project, PMSM will 

start to rotate at a starting position. The starting position is decided through switching on the upside 

switch of phase A, and switching on the bottom switches of phase B and C to let rotor aligns with 

winding of phase A. When the first index signal is detected by QEP, the EQep1Regs.QPOSILAT 

register latches the angle offset in between initial rotor position and encoder index in the code. 

Later, EQep1Regs.QPOSILAT is set to maximum of EQep1Regs.QPOSCNT as it latches the 

counter value for each index signal. In the code QEP1.CalibratedAngle keeps the initial offset value. 

This value can be recorded to initialize QEP1.CalibratedAngle at the initialization section in the 

main function or it can be detected in the code each time the motor is restarted [56].  

5.3.3 Design of Speed Calculation Module 

The QEP peripheral includes an integrated edge capture unit to measure the speed. There are two 

methods used for speed measurement target towards low and high speed.  

For low speed measurement, the method is to measure the elapsed time between the unit position 

events to calculate the speed. This method has the following equation: 
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 
   1

x x
v k

t k t k T
 

  
                                               (44) 

Where, x is the unit position is defined by integer multiple of quadrature edges; ΔT is the elapsed 

time between unit position events and v(k) is the velocity at time instant k. 

The QEP capture timer (QCTMR) runs from prescaled SYSCLKOUT and the prescaler is 

programmed by the QCAPCTL[CCPS] bits. The capture timer (QCTMR) value is latched into the 

capture period register (QCPRD) on every unit position event and then the capture timer is reset, a 

flag is set in QEPSTS: UPEVNT to indicate that new value is latched into the QCPRD register. 

Software can check this status flag before reading the period register for low speed measurement 

and clear the flag by writing 1. 

Time measurement (ΔT) between unit position events will be correct if the following conditions 

are met: 

– No more than 65,535 counts have occurred between unit position events. 

– No direction changes between unit position events. 

The capture unit sets the eQEP overflow error flag (QEPSTS[COEF]) in the event of capture timer 

overflow between unit position events. If a direction change occurs between the unit position events, 

then an error flag is set in the status register (QEPSTS[CDEF]) [56]. 

For high speed measurement, the method is to measure the incremental position movement in fixed 

unit time. This method has the following equation: 

 
   1x k x k x

v k
T T

  
                                               (45) 

where, x(k-1) is the position at time instant k, x(k-1) is the position at time instant k-1, T is the 

fixed unit time and Δ x is the incremental position movement in unit time. 

Capture Timer (QCTMR) and Capture period register (QCPRD) can be configured to latch on 

following events. The read of QPOSCNT register will be saved even if the QEPCTL[QCLM] bit 

is cleared, then the capture timer and capture period values are latched into the QCTMRLAT and 

QCPRDLAT registers, respectively, when the CPU reads the position counter (QPOSCNT). If the 

QEPCTL[QCLM] bit is set, then the position counter, capture timer, and capture period values are 

latched into the QPOSLAT, QCTMRLAT and QCPRDLAT registers, respectively, on unit time 
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out. Unit time (T) and unit period(x) are configured using the QUPRD and QCAPCTL[UPPS] 

registers. Incremental position output and incremental time output is available in the QPOSLAT 

and QCPRDLAT registers [57]. 

For the speed measurement in this project, the second method used to calculate the speed. It is 

necessary process the calculation results to reduce the amplifying noise generated by the pure 

differentiator. A simple 1st -order low-pass filter is used, then the actual rotor speed to be used is 

the output of the low-pass filter. 

5.3.4 Optimization of Stator Flux Linkage Estimation 

For stator flux linkage estimation, it can be achieved with an integrator in the simulation model. It 

is can be seen from Equation (31) that this method is simple and low parameter dependent. However, 

when it is in the real-time experiment, since there will be sampling error from ADC during the 

sampling stage. This issue will bring saturation by DC drift during the stator flux linkage estimation 

which will impact the accuracy of the calculation and control. In order to solve this issue, a high 

pass filter has been used series with the integrator, which can filter the DC component of the signals. 

To apply 1st-order high-pass filter in a discrete system is shown below: 

Since the transfer function of 1st-order high-pass RC filter in s-plane is: 

 

 

1

1
1

out s

in s

V

V

RCs





                                                             (46) 

Then use z transformation, let 

11

s

z
s

T


 , sT  is the sampling time. Substituted into Equation 

(46), to get: 

       11
out z out z in z

T
V V V

RC z
 


                                     (47) 

Then it can be converted to: 

       
1 11

out z out z in z in z

T
V z V V z V

RC

  
    

 
                                (48) 

Then the Equation (47) can be converted to differential equation, which is: 
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      ( ) 1 1out t out t in t in t

RC RC
V V V V

RC T RC T
 

  
 

                                  (49)  

In the project, RC  is assumed to be 0.02, which means the cut off frequency 

1
7.958

2
cf Hz

RC
  .  

5.3.5 Optimization Software Design for Accelerating the Calculation 

According to the ADC INT flowchart above, here are the tasks need to be finished in the ADC INT: 

– Processing the sample result from ADC to get the value in propriate value. 

– Take mathematical mean of the sample results to filter the sample results. 

– Utilizing Clarke Transformation to convert the sample results to α- and β-axis voltage and 

current. 

Since the frequency of ADC INT is related to the ADC sampling frequency. In order to achieve 

higher sample frequency, the time used for calculation in ADC INT should be as small as possible. 

At first, after simplifying the calculation, it still requires about 283 CPU clock to finish the 

calculation. As the result of that, the sampling frequency of ADC is set to be 500 kHz at the 

beginning [55]. 

After investigation of Clarke Transformation, it is found that it can use two-phase voltage and 

current to do the transformation. After solving the matrix of Clarke Transformation, it proves that 

less clock will be consumed if Clarke Transformation is rewritten in equation format not matrix 

format. After the optimization, the clock for calculation is reduced to 133. So, the sampling 

frequency can be doubled, which is 1MHz, and the sample results will be more precise. 

5.4. Experiment Results and Analysis  

After the implementation design for DTC-SVM of PMSM, an experiment has been conducted in 

CHARGE LAB using DSP TMS320F8335 to evaluate the DTC-SVM control of PMSM. The dc-

link voltage is 170 V and the switching frequency is 10 kHz. Some experimental results are 

obtained from the digital to analog converter (DAC) circuit with the cutoff frequency of 328.83 Hz. 

Figure 5.19-5.21 below shows the experiment α- and β-axis stator phase voltages, currents and 

stator flux linkages estimation using DTC-SVM. Then Fig. 5.22-5.23 below shows the experiment 

torque response at the starting point and the varying speed response using DTC-SVM. 
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Fig. 5.19. Experiment α- and β-axis stator phase voltages using DTC-SVM at 900 RPM. 

 

Fig. 5.20. Experiment α- and β-axis stator phase currents using DTC-SVM at 900 RPM. 
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Fig. 5.21. Experiment α- and β-axis stator flux linkages using DTC-SVM at 900 RPM. 

 

 

Fig. 5.22. Experiment torque response using DTC-SVM at starting point. 
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Fig. 5.23. Experiment varying speed response using DTC-SVM. 

From the experiment results, the DTC-SVM of PMSM is successfully implemented using DSP 

TMS320F28335. The α- and β-axis stator phase voltages, currents and flux linkage estimation have 

constant amplitude and the frequency is relative to the speed of PMSM.  
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Chapter 6 

Conclusions and Future Work 

6.1. Conclusions  

This thesis focuses on the design and implementation of high-performance DTC for PMSMs for a 

GaN based high switching frequency motor drive, which will be the next-generation motor drive 

for the future applications. 

First, the characteristics and operation principles of a PMSM are introduced. Then, the 

mathematical models of a PMSM under different coordinate systems are investigated. 

Consequently, a PMSM model is developed based on the dq rotating reference frame and 

implemented in the MATLAB/Simulink for validation.  Two advanced PMSM control strategies, 

FOC and DTC, are investigated and compared in terms of control performance through 

comprehensive simulation studies and the results demonstrate that DTC has better dynamic 

performance. 

Conventional DTC contributes to higher torque ripple in the PMSM due to the limited switching 

frequency in a conventional semiconductor-based motor drive, which inevitably deteriorates the 

drive performance. Therefore, this thesis aimed to reduce the torque ripple in the DTC based PMSM 

drive by using the new generation wide bandgap switching devices. More specifically, DTC is 

improved by using the optimized space vector pulse width modulation strategy and a higher 

switching frequency contributed by the GaN based motor drive. 

Finally, the proposed DTC based PMSM control strategy is implemented on the DSP and evaluated 

on the laboratory GaN based PMSM drive. Both the simulation and experimental results show that 

the proposed improvement in the DTC can further improve the PMSM drive performance. The 

effectiveness of the DTC-SVM schemes developed has been demonstrated and validated by 

simulation results as well as experimental studies on an 400W PMSM drive system.  

6.2. Future Work 

Recommendations for future work are summarized as follows: 

(1) The control performance of DTC depends on the accuracy of the stator flux estimation. 

Both the amplitude and phase would be impact through the filter. Therefore, it is necessary 

to investigate precise stator flux estimation. Maybe a phase lock loop could be used to lock 

the amplitude and phase. 
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(2) Now for the DTC-SVM of PMSM, the speed calculation is still acquired through the 

encoder signals. In the future, it should be sensorless, so that there is no need for the 

encoder. 

(3) Investigate the dead band loss and switching loss associated with GaN inverter associated 

with the DTC-SVM. Especially, during the high switching frequency over 100 kHz. It will 

be very important to improve the control performance and investigate how the inverter 

could operate under high switching frequency condition and how the heat would effect on 

GaN. 
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