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ABSTRACT

Analyzing real-life networks is a computationally intensive task due to the sheer

size of networks. Direct analysis is even impossible when the network data is not

entirely accessible. For instance, user networks in Twitter and Facebook are not

available for third parties to explore their properties directly. Thus, sampling-based

algorithms are indispensable.

This dissertation addresses the confidence interval (CI) and bias problems in real-

world network analysis. It uses estimations of the number of triangles (hereafter ∆)

and clustering coefficient (hereafter C) as a case study. Metric ∆ in a graph is an

important measurement for understanding the graph. It is also directly related to C
in a graph, which is one of the most important indicators for social networks. The

methods proposed in this dissertation can be utilized in other sampling problems.

First, we proposed two new methods to estimate ∆ based on random edge sampling

in both streaming and non-streaming models. These methods outperformed the state-

of-the-art methods consistently and could be better by orders of magnitude when the

graph is very large. More importantly, we proved the improvement ratio analytically

and verified our result extensively in real-world networks. The analytical results

were achieved by simplifying the variances of the estimators based on the assumption

that the graph is very large. We believe that such big data assumption can lead to

interesting results not only in triangle estimation but also in other sampling problems.

Next, we studied the estimation of C in both streaming and non-streaming sam-

pling models. Despite numerous algorithms proposed in this area, the bias and vari-

ance of the estimators remain an open problem. We quantified the bias using Taylor

expansion and found that the bias can be determined by the structure of the sampled

data. Based on the understanding of the bias, we gave new estimators that correct the

bias. The results were derived analytically and verified in 56 real networks ranging

in different sizes and structures. The experiments reveal that the bias ranges widely

from data to data. The relative bias can be as high as 4% in non-streaming model

and 2% in streaming model, or it can be negative. We also derived the variances of

the estimators, and the estimators for the variances. Our simplified estimators can

be used in practice to control the accuracy level of estimations.
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CHAPTER 1

Introduction

1.1 Introduction

Most of the data in real-world are in the form of networks. Online social networks

such as Facebook, Twitter, and many more are examples of such network data. In

academia, co-authorship and citation networks are other examples. Such network

data are modeled by graphs. Analyzing such network graphs attracts increasing

attention from industry and academia in recent years. However, the nature of such

network graphs bring some challenges. This chapter outlines the main challenges in

analyzing real-life network graphs. It also reviews possible solutions in this direction.

Then, the main contributions of this dissertation will be outlined. The final section

will contain the structure of the rest of this dissertation.

1.2 Challenges in network graphs analytics

Many metrics such as network size, average degree, average shortest path length,

graph centralities such as PageRank, betweenness, Katz, the number of triangles, and

clustering coefficient have been utilized to analyze the complex structure of network

graphs. Moreover, a number of tools and APIs such as NoSQL, NetworkX, and

GraphX have been developed to compute such metrics in recent years. However,

computing exact values of graph metrics are computationally an intensive task or

even impossible in the following scenarios.

• Big data: When the size of the graph is large or even medium, exact com-

puting of most of the graph metrics is infeasible or even impossible due to the

time and space complexities of algorithms. Most of the real-world networks are

1



CHAPTER 1. Introduction

massive in their size. For example, Facebook had more than 2 billion monthly

active users as the second quarter of 2018 1. Another example is the Internet

with more than 5.48 billion web pages over the world by March 20192. Neuronal

networks, Protein-protein and DNA–protein interaction networks are other ex-

amples from the biology domain. Such network data result in constructing

graphs with millions of nodes and billions of edges. Thus, applying exact algo-

rithms on massive network graphs is computationally demanding. For example,

enumerating triangles using the best-known algorithm has a time complexity of

O(M3/2) [2,3], where M is the number of edges in the input graph. Obviously,

applying such a method for example on Facebook network graph with billion of

edges is inefficient.

• Hidden data: The entire data are inaccessible for third parties in most of the

real networks. For example, the network data of online social networks such

as Facebook and Twitter are hidden behind search-able interfaces due to the

privacy of their users. Hence, exact computing is impossible when the data are

not entirely available.

Thus, designing efficient methods to deal with such challenges are indispensable.

One possible solution is to utilize high-speed machines, and parallel and distributed

computations. However, such a solution is costly and not available for all. Further-

more, the exact computing is not essential in many real applications. Therefore, the

accuracy can be traded against computation time and memory usage. Thus, an es-

timation with confidence interval using reasonable time and memory is desired. In

such a case, sampling techniques have largely been utilized to estimate network graph

statistics [4–13]. Sampling methods take a small amount of data from a massive net-

work graph. Then, the properties of the sampled data are generalized to the entire

network. Obviously, the sampled data is much smaller than the original one. Thus,

analyzing sample data needs less CPU time and memory usage. Furthermore, the

entire data are not required in case of hidden data.

1 https://www.statista.com

2 https://www.worldwidewebsize.com/
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CHAPTER 1. Introduction

1. Take Samples

3. Generalization 2. Study subgraph g

Subgraph gOriginal graph G

Unknown metrics

X = N,M,∆, ...
Xg : X in g

e.g. ∆g: 7 triangles in g
X̂ : estimator for X

E(X̂) =?, |X̂ −X| =?

e.g. ∆̂ = 1, 623, 244, |∆̂−∆| =?

FIGURE 1.1: The framework of sampling approaches for network analytics.

1.3 Framework of sampling methods

Suppose network data are modeled by graph G and metrics of G such as the network

size N , the number of edges M , average degree 〈d〉, degree distribution, the number

of triangles ∆, clustering coefficient C, average shortest path length, etc are unknown.

The goal is to design a sampling method to take subgraph g from original graph G

and study the metrics of G using statistics of sampled graph g. The framework of

such a sampling technique is shown in Fig. 1.1. It takes samples from the original

graph G to create subgraph g and generalizes the properties of g to the original graph.

In other words, it aims to design estimator X̂ for metric X in G. The following steps

need to be considered to design estimator X̂.

1.3.1 Take samples

The first step is to take sample data to create subgraph g. Different sampling methods

can be used to sample data. Such methods depend on the way to access to the original

graph G. Methods can have random or sequential access to the whole or part of the

original graph data. Obtaining uniform random samples is desired.
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(A) Original graph G(V , E), N=11, M=13 (B) Random Node
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FIGURE 1.2: Examples of sampling methods.

Fig. 1.2 shows three graph sampling methods on a toy graph in Panel A. When

random access to graph G is available, Random Node (Panel B) or Random Edge

(Panel C) methods can be used to take samples. For example, 5 random nodes are

selected in Panel B. Random Walk (Panel D) is an option when the network data

is not entirely available. It starts from a node (node 1 in Panel D) at random and

explores the graph by randomly walking on the edges. Note that different sampling

schemes need to be designed to estimate different metrics. In other words, designing

a sampling method depends on the metric of interest.

Graph sampling approaches are categorized based on their access to the original

graph into two main models: streaming and none-streaming. In the former model, a

limited number of sequential passes over the stream of graph data are used to take

samples. In the later model, random access to the original graph data is available.

The goal of methods in both models is to obtain an accurate estimation using a

limited memory window to store sampled data.

1.3.2 Generalization

After taking sampled data, the next step is generalizing the properties of sampled

graph g to the original graph G. Estimators are used to generalizing the statistics in
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sampled data to the original network. Two important tasks need to be done in this

step.

• Unbiasedness vs biasness: The first task is to show that the estimation is

biased or unbiased. The desired estimator is unbiased, i.e. the expectation of

the estimations of a metric needs to be the same as the true value of the metric.

Let X̂ be an estimator for metric X. Estimator X̂ is unbiased if E[X̂] = X;

otherwise it is biased. For a biased estimator, the bias needs to be quantified

and corrected. Examples of unbiased and biased estimators are shown in Fig.

1.3. Suppose estimator X̂ is repeated k times and X̂i is the estimation in

repetition i. Panel (A) shows an unbiased estimator. When k is large enough,

E[X̂] = 1
k

∑k
i=1 X̂i = X. In contrast, the estimator X̂ in Panel (B) is biased

because the expectation of the estimations (E[X̂]) is far away from the true value

of metric X. Thus, for each estimator, one needs to prove the unbiasedness and

for biased estimators, the bias needs to be quantified and corrected.

• Confidence interval: The other important task is to construct the confidence

interval (hereafter CI) of the estimator. In other words, one needs to show that

the estimation is how far away from the true value with a specific confidence.

Suppose, for example, the number of complete subgraphs with size three (trian-

gles) in graph G needs to be estimated. As shown in Fig. 1.1, the estimation of

∆ in G is 1,623,244 using the number of triangles in g (∆g = 7). The question is

that how accurate is ∆̂ = 1, 623, 244 or |∆̂−∆| =?. To answer such a question,

one needs to construct the CI of the estimator. Thus, constructing the CI to

understand the error bound of an estimator with a certain confidence level is

an indispensable task.

Several methods have been used to form the CI. When the variance of an es-

timator is not available, Hoeffding’s inequality can be used [14]. Chebyshev’s

inequality is another option to have more accurate bound using the variance

of the estimator [15]. However, using such methods has several drawbacks on

large graphs. Firstly such inequalities are held for any distribution. Therefore,
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(A) unbiasness (B) biasness

E[X̂] = X E[X̂] 6= X

FIGURE 1.3: Examples of unbiased and biased estimators. Estimator X̂ is repeated
k times and the estimation of metric X in run i = 1, 2, .., k is shown by X̂i, and the
expectation is E[X̂] = 1

k

∑k
i=1 X̂i.

(A) (B)

FIGURE 1.4: Examples of estimations with small (Panel A) and large (Panel B)
variances.

the resulting bounds are not tight enough. More importantly, the properties of

the original graph G should be known in advance to use such inequalities. Note

that the properties of G are unknown in sampling scenario. Thus, we argue

that using (ε, δ)-approximation is not practically useful to control the accuracy

of estimators on massive networks. In practice, the properties of sampled graph

g need to be used to construct the CI.

1.3.3 Variance vs sample size

The main goal of sampling algorithms is to achieve an estimation with a small error

bound (variance) by using a small number of samples. Let n be the sample size of

estimator X̂. The relation between the variance of X̂ and its sample size n is:

var(X̂) ∝ 1

n
. (1)
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CI

Techniques

Models

Triple
Edge-Node

Neighborhood
Edge

Edge-Wedge

Streaming

Non-streaming

(ε, σ)-approximation

var
KDD’09 [7]

SIAM’13 [16]

SODA’02 [9]

COCOON’5 [17]

PODS’06 [10]

VLDB’13 [18]

KDD’16 [19]

KDD’15 [20]

KDD’14 [8]

KDD’13 [21]

FIGURE 1.5: The Confidence Interval problem of existing methods to estimate ∆.
The properties of the input graph need to be used to construct the confidence interval
using (ε, σ)-approximation and the variance.

According to Eq. 1, the variance of an estimator is inversely correlated with its

sample size, i.e. the variance increases by decreasing n. Thus, designing an estimator

to obtain accurate estimations (low variance) using small sample sizes is challenging.

The desired estimator needs to use a small number of samples to obtain estimations

with small variance. For example, suppose both the estimators in Panels (A) and (B)

in Fig. 1.4 use the same sample sizes to estimate X. The estimator in Panel (A) is

preferable due to the small variation of estimations.

1.4 Motivation

A number of sampling-based approaches have been proposed to estimate graph met-

rics such as network size, e.g. in [11, 12,22–24], average shortest path length [25,26],

the number of triangles ∆, e.g. in [1, 7–10, 19–21, 27, 28], clustering coefficient C

[1, 8, 29, 30], and many more. We visualized sampling methods to estimate ∆ in Fig.

1.5 and C in Fig. 1.6 in recent years. We make several observations as follows:

• Existing methods use properties of original network graphs to construct CI.

As shown in Fig. 1.5, earlier methods use (ε, σ)-approximation to construct
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JGAA05 [6], SDM13 [31]

VLDB’13 [18]
TKDD15 [29]

KDD’13 [21]

KDD’14 [8]
VLDB’17 [1]

TWEB15 [32]

WWW’13 [23]

FIGURE 1.6: The bias problem of existing methods to estimate C.

confidence interval. Later, the variance has been used by methods to obtain

tighter error bounds. However, both (ε, σ)-approximation and variance tech-

niques require the properties of the original network to construct the CI. Thus,

such techniques are not useful when the properties of the original network are

unknown which is the case in sampling scenarios.

• The random edge based methods are efficient to estimate metric C; but they

suffer from the bias problem as shown in Fig. 1.6. The bias problem was noticed

in the literature [1, 8, 29]. However, to the best of our knowledge, the bias was

not quantified and not corrected. Thus, it is left as an open problem.

• The estimation of ∆ and C is an active and hot topic in top-tier conferences

and journals. Thus, designing efficient estimators for the properties of real-life

networks is indispensable.

Motivated by those observations, this dissertation addresses the CI and bias prob-

lems in graph sampling methods. It uses two case studies, i.e. the estimation of the

number of triangles and its close metric, clustering coefficient, to study such prob-

lems. However, our techniques to construct CI and to quantify the bias can be used

for other sampling problems as well.
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Metrics ∆ and C are important to reveal the complex structure of real-world

networks specially online social networks. They have been used in many applications

such as community detection [33], graph clustering [34], link prediction [35], spam

detection [36], finding interesting individuals [37] , characterizing the structure of

balanced network [38], wireless and ad hoc networks analysis [39], blog analysis in

online social networks, DAN sequence analysis [40], prediction of essential proteins

[41], microarray data analysis for finding cancer genes [42, 43], identifying modular

formations in protein-protein interaction network [44], risk analysis in economy [45],

word-learning in education [46], and many others.

Based on the nature of real-life networks, different scenarios have been considered

to study the estimation of metrics ∆ and C [7,10,23]. In this dissertation, we assume

that the network data is modeled as an undirected and simple graph. Hereafter we

will use terms original and input graph interchangeably to call the input network

graph. Suppose G is an undirected and simple network graph. We will address the

following problems in the rest of this dissertation.

Firstly the estimation of ∆ and C will be discussed in a non-streaming model which

the random access to the original graph is provided. Thus, we define the problem as

follows:

Problem 1. Suppose that edges/nodes of original graph G are accessible uniformly

at random. Design a sampling method to estimate ∆ and C in graph G. What is the

best sampling method to estimate ∆ and C? How the sampled data can be used to

estimate the error bound of the estimation?

Next, we study the estimation of the metrics in a streaming model. The sequential

access to the network data is provided in this model instead of uniform random access.

The goal is to achieve an accurate estimation by storing a small fraction of data

using a single pass or a limited number of passes over the network data. Thus, our

second focus will be as follows.

Problem 2. Suppose that edges of graph G come in an arbitrary (random) order

in an edge stream. Design sampling methods to estimate ∆ and C using a limited
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FIGURE 1.7: Overview of our contributions to estimate ∆. The estimator of variance
used to construct confidence interval.

memory window to store the sampled data over a single pass on the stream.

1.5 Review of our contributions

This dissertation addressed the CI, and the bias problems in sampling methods to

analyze large-scale networks. The main contributions of this dissertation are summa-

rized as follows.

• To estimate ∆: We proposed two new methods to estimate the number of

triangles based on random edge sampling in both streaming and non-streaming

models (see Fig. 1.7). Our methods improve the traditional random edge sam-

pling by probing the edges that have a higher probability of forming triangles.

The methods outperform the existing methods consistently and can be bet-

ter by orders of magnitude when the graph is very large. The results were

demonstrated on 56 graphs, including the largest graphs we can find. More

importantly, we proved the improvement ratio and verified our result on all the

datasets. The analytical results were achieved by simplifying the variances of

the estimators based on the assumption that the graph is very large. We believe
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FIGURE 1.8: Overview of our contributions to estimate C. The bias quantified and
the bias-corrected estimators proposed for the first time.

that such big data assumption can lead to interesting results not only in triangle

estimation but also in other sampling problems.

• To estimate C: Biased-corrected estimators in the streaming and non-streaming

models were proposed (see Fig. 1.8). Although edge-sampling based methods

are efficient, they result in a biased estimator for C noticed in the literature,

e.g. in [1, 8, 21, 29]. However, the bias has not been quantified and not cor-

rected. Thus, we used quadratic Taylor expansion to quantify the bias of the

estimators. We found that the bias hangs on the structure of input graphs. To

the best of our knowledge, we are the first one who could quantify the bias of

such estimators. To sum up, our contributions in this direction are proposing

the estimators of the bias and the variance of the estimators for C. The bias

and variance phenomenon varies greatly from a graph to graph. To find out the

patterns behind, we conducted extensive experiments with many different kinds

of graphs. In total, we utilized 56 real-life graphs from a variety of areas such as

online social networks, web graphs, Co-authorship, and citation networks. The

graph size also varies from about 4× 103 (very small) to 65× 106 (very large).

The experiments reveal that the bias ranges widely from data to data. The

relative bias can be as high as 4% in the non-streaming model and 2% in the
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streaming model or can be negative. For most of the graphs, the bias is small,

although every graph does have a bias as quantified by our analytical results.

• Analytical results: We derived the theoretical results of the proposed esti-

mators. Moreover, we quantified the performance ratio between the methods

for the first time. We demonstrated that our results are data independent, i.e.

proposed methods can be run on any real-world network graph without any

restriction on the structure of the graph.

• Big data assumption: The analytical results of the estimators were simplified

to have better insight into them by assuming that the input graph is very large.

Furthermore, we derived the estimators for the variances of the estimators. Our

estimator for the variance has two main implications. First, it can be used to

quantify the performance ratio between the estimators not only for ∆ and C

but also for other metrics. Studying the literature shows that existing methods

were compared using experimental results [1,8,10,18,19,21,29]. The drawback

of such a comparison is that the results are data dependent and vary from data

to data. Thus, we were motivated to give an idea to quantify the performance

ratio between the estimators. Second, it can be used to control the accuracy

of the estimators in practice which is important for practitioners. To use an

estimator in real applications, one needs to decide about the sample size to

achieve an estimation in a given confidence interval. Our simplified estimators

for the variance can be used to determine the sample size of estimators to obtain

an estimation with a given error bound.

• Publicly available data and code: Obtaining ground truth and cleaning

data for a sampling purpose for large graphs are time-consuming tasks. Two

servers with 256GB memory and 24 cores each were used to complete such tasks.

To accelerate the research in this direction, we made the data and our codes

publicly available.
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1.6 The structure of the dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents our estimator

for ∆ in a non-streaming model. It contains our analytical and experimental results

for proposed and existing estimators. Our estimator for ∆ in a streaming model will

be discussed in Chapter 3. Furthermore, it presents the derivation of the analytical

results along with their validations using extensive experiments. Our bias-corrected

estimators for C are presented in Chapter 4. The conclusions of the dissertation along

with our future directions will be presented in Chapter 5.
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CHAPTER 2

Estimation of Triangles

2.1 Introduction

Graphs are used to model interactions in many applications in online social net-

works, biology, biochemistry, and many other domains. The counts of triangles in

such graphs is an important structural property. For example, in online social net-

works, it is used to measure with what probability friends of friends are also friends

(clustering coefficient [52, 53]). Counting triangles has also various applications such

as spam detection [36] in computer networks, community detection and blog analy-

sis [33] in social networks, protein identification [54], DNA sequence analysis [40] in

biology, study of systemic risk [45], tracking the evolution of international trade [55]

in economy, and more.

Enumerating triangles in massive graphs is not practical because the best-known

algorithm has a complexity of O(M1.41) in time and Θ(N2) in space using the fastest

matrix multiplication [3, 56], where N and M are the number of nodes and edges

in the input graph. Thus, sampling algorithms are indispensable. Substantial work

has been done on the streaming model where data items arrive sequentially and

there is a limited memory window [1,8,10,17–20,29,57]. Many streaming algorithms

are designed specially to tackle such sampling restrictions. This research focuses

on a more generic sampling scenario without the streaming restriction. It can be

potentially applied to the estimation of triangles in very large graphs, especially when

a graph in its entirety is not available. For instance, many large networks, such as

A short version of this chapter was published in CIKM’16 [28].
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Twitter and Facebook user network, are hidden behind searchable interfaces. Their

properties can be only estimated by taking a sample from them.

When estimating the number of triangles, the most natural, and a naive one,

is to take triplets (three nodes) uniformly at random, then check whether they form

triangles [9]. Obviously, this method is too costly to be of practical use. Most graphs,

especially the large ones, are sparse. Hence, the vast majority of the triplets have

zero to two edges. It means that the cost of observing even one triangle in this

method will be exorbitantly high. Buriol et al. ameliorate this problem by skipping

the cases for zero edges [10] called EN in this dissertation. They proposed to start

with one random edge, then check whether there are triangles surrounding this edge.

This method can be interpreted as starting with three random nodes, with the pre-

condition that there needs to be at least one edge already in the triplet. When a

random edge is given, there are numerous variations to check whether there is a

containing triangle. [10] takes a random node from the remaining set; [7] continues to

select more random edges hoping to obtain a triangle. The method proposed in [7]

can be regarded as a random edge method: it selects random edges, forms a subgraph

from the random edges. Then the count of the triangles in the subgraph is used to

estimate the number of triangles in the original graph.

Both methods in [10] and [7] still suffer from the scarcity of triangles in the

subgraph. In [10], although it skips the triplets with zero edges, it could be better

also to skip triplets with one edge only, by starting with the triplets that have at least

two edges. For [7], triangle count in the subgraph can increase if we check their edges

not only in the subgraph, but also in the original graph.

Motivated by these observations, we present a new sampling method that combines

the ideas from both [7] and [10]. The first step is the random edge sampling that is

the same as in [7]. Then, for every path of length two in the subgraph, we check the

existence of the third edge in the original graph.

In this dissertation, we give the unbiased estimator and its variance for our sam-

pling method. The variance is a long formula that involves several parameters, thereby

it does not provide useful insight into the estimator, nor can it be compared with other
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sampling methods. Hence, we simplify the formula based on the assumption that the

graph is very large. The simplified RSE (relative standard error) is 1/
√

3∆|g, where

∆|g is the number of triangles restricted to the subgraph g. Intuitively, from the

formula we can infer the 95% confidence interval by looking at the triangles in the

subgraph. After doing a similar treatment for the random edge method, we can com-

pare the performance of these two estimators analytically. The analytical analysis

demonstrates that our method is always better than the other method. This is con-

firmed by empirical experiments on 56 graphs, including the largest networks we can

find.

Our contribution is twofold, in both the result and the method. For the result,

we present a new estimator that outperforms the random edge method by orders of

magnitude; For the method, we use the big data assumption to simplify the variances

of various estimators. Thereby, performances of different triangle estimators can be

compared analytically for the first time.

In presenting our theorems, we do not use the ε − δ approximation notation as

most other papers do, as it is self-evident from Chebyshev’s inequality. What is more,

Chebyshev’s inequality is valid for any data distribution, hence it gives a loose range

that has little practical implication. Estimates produced by multiple runs follow a

normal distribution. This is implied by the central limit theorem and is verified

by our experiments. The central limit theorem can be applied in this case because

each estimation involves the summation (mean) of probabilities for all the triangles

being sampled. With such normal distribution, we have a much tighter confidence

interval, i.e., 95% confidence interval is within two standard deviations. Hence, in

the remaining part of the chapter only RSE and variance are discussed.

2.2 Related work

A number of methods have been proposed to estimate ∆ in streaming and non-

streaming models [1,7–10,16–21,29,47,58,59]. In a streaming model, methods have a

sequential access to the entire network data and estimate ∆ using one or several passes
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over the network data. In the later model, uniform random access to the network

data is required and the methods do not need to access the whole data. Thus, the

later model is more general and useful when the whole data are not available and this

is the case for real-life networks. Thus, in this chapter, we review methods in a non-

streaming model. We also adjusted methods in a streaming model to a non-streaming

when it is possible.

A naive method to estimate ∆ is triple sampling [9]. It selects three random nodes

to form a triplet and checks the existence of edges among the nodes. Suppose n is

the number of sampled triplets and v is identified triangles among them. Thus, an

unbiased estimator for ∆ is v
(
N
3

)
/n and its variance is

(
∆
(
N
3

)
−∆2

)
/n. Obviously,

this method suffers from the paucity of triangles in the sample in sparse graphs which

is the case for real-life networks. Thus, it has been improved by decreasing the sample

space from (N3 ) to M(N − 2) in [10] and called Edge and Node (EN) sampling here.

The idea is to construct a sampled triplet using two connected nodes (a random edge)

and a node from the remaining nodes. An unbiased estimator for ∆ using EN method

is vM(N − 2)/3n and its variance is ∆(MN − 2M − 3∆)/3n. Although EN has a

small variance compared to triple sampling, it still suffers from a scarcity of triangles

in the sample.

To increase the chance of identifying triangles in the sample, Edge sampling was

proposed [7]. It selects edges uniformly at random to form a subgraph g. The number

of triangles in the subgraph g is used to estimate ∆. The authors proved that the

estimator is unbiased, and derived its variance.

2.3 Methods

2.3.1 Motivation

Let G(V , E) be an undirected graph, where V is the set of nodes, and E the set of

edges. The graph is not a multi-graph and does not have self-loops. Suppose N = |V|,

M = |E|, and ∆ denote the number of triangles in G. A wedge W is a path u− v−w
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TABLE 2.1: Summary of the notations.

Notation Meaning

G(V , E) Original graph
N,M Number of nodes and edges in G
n Sample size
〈d〉 Average degree
∆ Number of triangles in G
Φ Number of triangle pairs that share an edge
g A subgraph of G
∆g Number of triangles in g
∆|g Number of triangles restricted in g
Eg Random edge sampling method
EG Our method that checks wedge closure in G

of length two, where u, v, w ∈ V , u 6= w, (u, v) ∈ E , and (v, w) ∈ E . A wedge W is

closed if (u,w) ∈ E . Otherwise it is open. Note that each triangle has three (closed)

wedges.

Given a subgraph g of G, we use ∆g to denote the number of triangles in g, and

∆|g the number of triangles restricted to the wedges in g, i.e., for every wedge u−v−w

in g, we check whether (u,w) ∈ E . More formally,

∆|g =
1

3
|{(u, v, w)| (u, v), (v, w) ∈ g, (u,w) ∈ G}|.

To estimate ∆, a straightforward algorithm is the random edge sampling proposed

by Tsourakakis et al. [60], which is called Doulin in [7], and called Eg in this disser-

tation because it depends on the triangles in the sample graph g. The process is as

follows: it selects random edges with an equal probability p to generate a subgraph

g. Then, the count of triangles in g is used to approximate ∆ in G with the estimator

∆̂Eg =
∆g

p3
. (1)

The problem of the method is the scarcity of triangles in the sample graph. We

can verify this by looking at the formula for the expected number of triangles in the
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sample graph g, which is

E(∆g) = ∆p3. (2)

Because of the cubic function for a small p, we can barely see triangles in a sample

graph. This problem is more acute when the graph is very large, henceforth the

sampling probability is very small. In our subsequent experiments, ∆ can be in the

order of 1010, and p is in the order of 10−5. In this scenario, it is obvious that it is far

from observing any triangles in g, let alone enough number of triangles to guarantee

the accuracy of estimation. It is necessary to devise a new sampling method that can

increase the expected number of triangles in the sample.

2.3.2 Our method

The main idea of our method is to sample edges that have a higher probability of

forming triangles. In social networks and other information networks, it is established

that friends of a friend have a higher probability of being friends as well. Thus, it

would be beneficial to sample the edges for open wedges in a partially sampled graph.

Following this rationale, our method divides the sampling into two steps. The first

step is the same as a normal random edge sampling [60]: we take random edges with

equal probability p. In the second step, in addition to counting the triangles in g, we

also look at the open wedges in g, and check the closeness of these open wedges in

the original graph. The estimator is no longer the one in the Eg method. Instead, we

give the estimator for EG as

∆̂EG =
∆|g
p2

, (3)

which will be proved in the next section. Intuitively, we count the number of triangles

that are restricted to g, then multiply it by a factor of 1/p2. Compared with the Eg

method, the number of observed triangles can be larger by a factor of 1/p under

similar sampling cost.
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FIGURE 2.1: Illustration of Eg and EG sampling.

Example 1. Fig. 2.1 illustrates our sampling method. In this graph G, ∆ = 3.

Suppose that the sampling probability p = 0.5, and six distinct edges are selected,

resulting in a subgraph g depicted in Panel (B). There is one triangle in g. Hence the

estimate using the random edge method Eg is

∆̂Eg =
∆g

p3
=

1

0.53
= 8. (4)

In our EG sampling, the first step is the same as Eg, i.e., six edges are selected with

an equal probability p = 0.5. Then, there is an additional step to check the closeness

of every open wedge. In the example, two wedges 3− 2− 1 and 4− 1− 2 are checked,

and it is found that wedge 3− 2− 1 is closed. Recall that there is already one triangle

in the subgraph, which is equivalent to three closed wedges. Hence, all together there

are four closed wedges, or ∆|g = 4/3. Note that in our sampling method, ∆|g does not

have to be an integer because it is 1/3 of the closed wedges observed. The sampling

cost is 8 because it checked 8 edges in total. The estimate is

∆̂EG =
∆|g
p2

=
4/3

0.52
=

16

3
. (5)

Our method applies extra checks in return for more triangles. One question is

whether these additional triangles are worth the checking cost. Intuitively, the check-

ing cost is proportional to C (clustering coefficient), which measures the probability

of seeing a triangle for an open wedge. If w is the number of open wedges in g, we

need to conduct closeness check w times. There will be on average w × C number of

additional triangles. In other words, 1 − C percent of the checks are wasted. Note
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FIGURE 2.2: Dependent wedges of two shared triangles.

that for most networks, C is well above 0.01. On the other hand, the vast majority

of the edges do not form triangles, especially when the graph is very large and the

sample size is small. In those large graphs in our experiments, we need sample edges

in the order of 105 to form one triangle. Compared with this small success ratio, the

cost of extra wedge probing is negligible.

In the following, we derive the variance of this estimator, and compare it with Eg.

2.3.3 Variance of EG

Let wi be an indicator for the ith closed wedge in the input graph G. wi is 1 when the

two edges in the ith closed wedge are sampled, otherwise it is 0. Since each triangle

has three wedges, there are 3∆ closed wedges. We label them from 1 to 3∆. The

number of triangles restricted to g ∆|g = 1
3

∑3∆
i=1 wi. For each wedge, the probability

of sampling is p2. The expected number of closed wedges in G that are sampled in g

is:

3E(∆|g) = E(
3∆∑
i=1

wi) =
3∆∑
i=1

E(wi) =
3∆∑
i=1

p2 = 3p2∆.

Therefore the unbiased estimator for EG sampling is

∆̂EG =
∆|g
p2

. (6)

The variance of the estimator is more complicated due to the covariance between

21



CHAPTER 2. Estimation of Triangles

wedges. By definition,

var(∆̂EG) = var

(
∆|g
p2

)
= var

(
1

3

3∆∑
i=1

1

p2
wi

)

=
1

9p4

3∆∑
i=1

3∆∑
j=1

cov(wi, wj)

=
1

9p4

(
3∆∑
i=1

var(wi) +
∑
i 6=j

cov(wi, wj)

)
(7)

Random variable wi follows a binomial distribution, whose variance is p2(1− p2).

The covariance of two independent variables wi and wj is zero. When wi and wj are

dependent, they share one edge in common. When this happens, there are four cases

as depicted in Fig. 2.2. Their covariance is cov(wi, wj) = E(wiwj) − E(wi)E(wj) =

p3−p4. Let K denote the total number of pairs of triangles that share one edge in G.

Considering that for each cov(wi, wj) there is an equal cov(wj, wi),
∑

i 6=j cov(wj, wj) =

8K(p3 − p4). Therefore, we present the following lemma:

Lemma 1. The variance of ∆̂EG is

var(∆̂EG) =
1

9p4

(
3∆(p2 − p4) + 8Φ(p3 − p4)

)
. (8)

This result provides little insight into the accuracy of estimator, since it depends

on a few parameters including p,Φ, and ∆. We can transform it into relative standard

error RSE =
√
var/∆ as follows:

RSE(∆̂EG) =

[
1

3∆|g

(
1− p2 +

8K

3∆
(p− p2)

)] 1
2

. (9)

When the sample size is small, i.e., when p is small, we can see that the first term in

Eq. 9 plays a dominant role. Hence, RSE of the estimator can be approximated by

the following:

Theorem 1. When the sample size is small, RSE of the EG estimator can be approx-
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imated by

R̂SE(∆̂EG) ≈ 1√
3∆|g

. (10)

This result is useful for the comparison with Eg method that will be discussed in

the next section. In addition to that, it gives us a practical guidance for conducting

estimations. For example, if we want to have an estimation with 95% confidence

interval of ∆±0.1×∆, then we need to have an RSE that is approximately 0.1/1.96 ≈

0.05. According to Eq. 10, the number of triangles we need to see is

∆|g =
1

3×RSE2
=

1

3× 0.052
= 133.

2.3.4 Variance of Eg

Although [7] gave the variance for the Eg estimator, it is a long formula that buries

intuitive interpretations. Similar to our previous treatment for the EG estimator, we

transform the variance to RSE and simplified it into the following theorem:

Theorem 2. When the sample size is small, RSE of the Eg estimator can be approx-

imated by

R̂SE(∆̂Eg) ≈ 1√
∆g

. (11)

Proof. Based on the variance of Eg, its RSE is as follows.

RSE(∆̂Eg) =

[
1

∆p3
(1− p3 +

2Φ

∆
(p2 − p3))

] 1
2

=

[
1

∆g

(1− p3 +
2Φ

∆
(p2 − p3))

] 1
2

. (12)

When a sampling probability p is small, the terms −p3 + 2Φ
∆

(p2 − p3) is neglectable.

Thus, the RSE of Eg is estimated by 1√
∆g

.

Next, we want to compare these two methods. One would be tempted to compare
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their RSE ratio given a fixed sampling percentage. This approach turns out not ideal

for two reasons: one is that given a fixed sampling probability, p is small for Eg could

be already a very large one for EG. Therefore it violates our small sample assumption.

Hence, we compare their sample size to achieve the same RSE. Comparing Eq.s

10 and 11, we obtained the performance ratio between the two methods:

Corollary 1. Let n
Eg

and nEG be the number of sample edges of Eg and EG respectively

for achieving the same RSE in the two methods. A relation between n
Eg

and nEG is:

n
Eg

nEG

≈
[

3M

n
Eg

] 1
2

(13)

Proof. Let p
Eg

and p
EG

be sampling probabilities of Eg and EG, respectively. We

aim at getting the same RSE for both methods. Therefore, for small sample sizes the

following equation holds

RSE(∆̂Eg) = RSE(∆̂EG
)

1√
∆g

=
1√
3∆|g

∆g = 3∆|g. (14)

Since ∆g = ∆p3
Eg

and ∆|g = ∆p2
EG

, we get

∆p3
Eg

= 3∆p2
EG

p3
Eg

= 3p2
EG
. (15)

By substituting p
Eg

=
n
Eg

M
and p

EG
=

n
EG

M
, in Eq. 15 the Corollary is proved.

Recall that M is the number of edges in G, which is always larger than sample size

nEG
. Therefore, Eg always needs more samples to achieve the same accuracy. When

the sample size becomes bigger and approaches the total data size, the difference

diminishes.
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TABLE 2.2: Properties of the networks in our experiments, sorted by graph size N .

Dataset N(×106) 〈d〉 C ∆(×106) Φ(×109) R(Φ/∆) Description
Ego-facebook [61] 0.004 43.69 0.519 1.6 0.228 141.9 OSN

CA-GrQc [61] 0.005 5.52 0.629 0.04 0.002 42.3 Collaboration
Wiki-vote [61] 0.007 28.32 0.125 0.6 0.04 66.6 OSN

AstroPh [62] 0.01 21.10 0.31 1.3 0.072 53.5 Citation
CA-CondMat [61] 0.02 8.08 0.264 0.17 0.002 13.5 Coauthorship

HepPh [62] 0.02 224.14 0.279 195.7 92.9 474.6 Coauthorship
Enron-email [62] 0.03 10.02 0.085 0.72 0.03 50.2 E-communication

Brightkite [61] 0.05 7.35 0.110 0.49 0.029 59.1 OSN
Facebook [62] 0.06 25.64 0.147 3.5 0.155 44.5 OSN
Epinions [62] 0.07 10.69 0.065 1.6 0.112 69.2 OSN

Slashdot-Zoo [62] 0.07 11.82 0.023 0.53 0.028 52.5 OSN
Prosper [62] 0.08 74.60 0.003 1.1 0.062 54.1 Interaction

Livemocha [62] 0.1 42.13 0.014 3.3 0.183 54.4 OSN
Douban [62] 0.1 4.22 0.01 0.04 0.0001 4.7 OSN
Gowalla [61] 0.1 9.66 0.023 2.2 0.122 53.8 OSN

Libimseti [62] 0.2 155.97 0.007 69.1 19.2 278.3 OSN
Digg [62] 0.2 11.07 0.061 14.2 3.3 233.3 OSN

Web-Stanford [62] 0.2 14.13 0.008 11.3 9.06 800.4 Web graph
Dblp-Coau [61] 0.3 6.62 0.306 2.2 0.105 47.2 Coauthorship

Web-NotreDame [61] 0.3 6.69 0.087 8.9 1.5 174.2 Web graph
Amazon [61] 0.3 5.53 0.205 0.6 0.003 5.2 Co-purchasing

Actor [62] 0.3 78.68 0.166 346.8 91.0 262.3 Collaboration
Citeseer [62] 0.3 9.03 0.049 1.3 0.015 11.6 Citation
Dogster [62] 0.4 40.03 0.014 83.4 42.0 503.8 OSN
Catster [62] 0.6 50.32 0.028 656.3 1,017.4 1,550.0 OSN

Web-Berkeley [62] 0.6 19.40 0.0069 64.6 105.0 1,623.6 Web graph
Web-Google [62] 0.8 9.87 0.055 13.3 0.621 46.3 Web graph

Youtube [61] 1.1 5.27 0.006 3.0 0.251 82.3 OSN
Dblp [62] 1.3 8.16 0.170 12.1 0.436 35.8 Coauthorship

Hyves [62] 1.4 3.96 0.001 0.75 0.029 39.2 OSN
Wiki-Polish [62] 1.5 55.17 0.01 1,134.0 697.4 614.9 Web graph
Trec-wt10g [62] 1.6 8.33 0.014 21.0 11.0 523.2 Web graph

Wiki-Portuguese [62] 1.6 48.19 0.022 1,266.0 958.6 757.1 Web graph
Wiki-Japanese [62] 1.6 69.82 0.021 1,287.9 685.8 532.4 Web graph

Pokec [62] 1.6 27.31 0.046 32.5 0.724 22.2 OSN
As-skitter [61] 1.6 13.08 0.005 28.7 20.5 713.3 Internet topology

Wiki-Italian [62] 1.8 72.90 0.024 3,139.8 2,511.8 800.0 Web graph
Wiki-En [62] 1.8 39.05 0.003 126.6 39.4 311.4 Web graph
Hudong [62] 1.9 14.54 0.003 21.6 5.5 256.9 Web graph

Hollywood [63,64] 1.9 24.51 0.152 204.7 27.2 132.9 OSN
Baidu [62] 2.1 15.89 0.002 25.2 4.7 186.8 Web graph

Flicker [62] 2.3 19.83 0.107 837.6 613.8 732.8 OSN
Flixster [62] 2.5 6.27 0.013 7.8 0.369 46.8 OSN

Wiki-Russian [62] 2.8 44.20 0.015 1,899.1 1,180.3 621.5 Web graph
Wiki-French [62] 3.0 55.21 0.015 2,281.1 4,237.8 1,857.7 Web graph

Orkut [62] 3.0 76.28 0.041 627.5 67.0 106.9 OSN
Wiki-German [62] 3.2 40.77 0.0088 966.5 560.1 579.5 Web graph

USpatent [62] 3.7 8.75 0.067 7.5 0.083 11.1 Citation
LiveJournal [61] 3.9 17.35 0.125 177.8 39.4 222.0 OSN

Orkut2 [63,64] 11 56.80 0.0002 223.1 34.6 155.3 OSN
DBpedia [62] 18 13.89 0.0016 328.7 107.0 325.7 Web graph

Web-Arabic [63,64] 22 48.70 0.031 36,895.3 112,260.9 3,042.6 Web graph
Gsh-2015 [63,64] 29 9.18 0.007 389.7 103.1 264.7 Web graph

Twitter [62] 41 57.74 0.0008 34,824.9 176,266.1 5,061.4 OSN
MicrosoftAc.G. [65] 46 22.61 0.015 578.1 19.5 33.8 Citation

Friendster [62] 65 55.06 0.017 4,173.7 185.1 44.3 OSN
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2.4 Experiments

Our analytical results are derived with approximations based on the assumption on

the data size and sample size. The experiments are designed to confirm the validity of

the analytical results, and empirically demonstrate how much better our method is.

In particular, analytical results do not include the cost of additional closeness check.

These experiments confirm that such cost does not affect our overall result.

2.4.1 Datasets

We used 56 real world graphs to evaluate the algorithms, whose statistics are summa-

rized in Table 2.2. We removed repeated edges and self-loops, and ignored the edge

directionality in directed networks. Therefore, some statistics may be different from

other papers working on the same datasets. For example, we found that the Twitter

contains 18% repeated edges. Such repeated edges have to be removed to guarantee

the accuracy of the sampling.

We included almost all the largest graphs that we could find. Examples are

the most recent academic citation graph released by Microsoft, which contains 46

million nodes, and the well-known Twitter user network that has 41 million nodes.

In addition to these large graphs, we also included some smaller graphs of various

scales for comparison. The types of the graphs are also diversified, covering various

areas. There are web graphs, online social networks, citation graphs, co-author and

co-purchasing relations etc.

The experiments are conducted on two servers with 256GB memory and 24 cores

each. The data and code are available on the website http://etemadir.myweb.cs.

uwindsor.ca/cikm2016/triangles.php.

2.4.2 Experimental setup

We verify Theorems 1 and 2 by comparing observed RSEs obtained from running

the estimators on the datasets and expected RSEs derived from Eq.s 10 and 11. To
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obtain observed RSE, we repeat the estimation k times using the same sample size,

each time obtain an estimate ∆i. Let µ = 1
k

∑k
i=1 ∆i. The observed RSE is calculated

using

RSE =
1

∆

√
1

k

∑
(∆i − µ)2. (16)

In our experiments, k = 1000 for all garphs.

For the sample size parameter, most existing methods, such as Doulion [7], use

a fixed range of sampling probability p or percentages of the edges sampled for all

graphs. Fixed percentage creates a wide variation for RSEs: one percent of sample

data may not be enough to have an accurate estimate for small graphs, but can achieve

very good (small) RSE for large graphs. Instead of fixed percentage, we target at a

fixed range of RSEs, and choose the sample size that can create the RSEs at the

desired range. RSE can reflect the confidence interval of the estimates, which is the

main concern of any estimator.

All the experiments target RSEs between the range of 0.05 and 0.4. Next, we

need to select sample size n so that the observed RSE would be in that range. Recall

that from Eq.s 10 and 11 we can derive ∆g and ∆|g from desired RSEs. However, we

still do not know what is the sample size n to obtain that number of triangles. We

derived the following theorem to decide the sample size for EG.

Theorem 3. In EG sampling, the relationship between n
EG

and ∆|g is

n
EG
≈
[

3N∆|g
2CΓ

] 1
2

, (17)

where C is the clustering coefficient, and Γ = CV 2 + 1, where CV is the coefficient of

degree variation.

Proof. Based on the estimator N̂ for graph node size [11], we obtain the relation
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FIGURE 2.3: The observed and estimated RSEs of estimator EG. Estimated values
are obtained from Eq. 10.

between N and the sample subgraph g as follows:

N =
1

wg

(
n

2

)
Γ. (18)

Here, n = 2 × nEg is the total number of times the nodes have been sampled. It is

the sum of all the degrees of the sample graph g, or number of edges times two. wg

is the number of collisions in [11], which can be interpreted as the number wedges in

g. After rearranging the above formula, we have:

n2 − n =
2Nwg

Γ
. (19)

Recall that wg = 3∆|g
C

, and approximate n− 1 with n, we get:
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n ≈
[

6N∆|g
CΓ

] 1
2

. (20)

The approximation n ≈ n− 1 can be applied because n is in the order of
√
N so that

collisions (wedges) can be observed in the sample graph. When N is large, say in

the order of 106, n is in the order of 103. Substituting n with 2× nEG
, we prove the

theorem.
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FIGURE 2.4: The observed and estimated RSEs of estimator Eg. Estimated values
are based on Eq. 11.

We want to emphasize that we do not need to know those parameters such as C,

Γ, N to estimate the number of triangles. Eq. 17 is used only in our experiment to

select the sample size so that we know the results are within a certain RSE range.

The triangle estimation itself only needs to know the sampling percentage and ∆|g.
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Under certain circumstances, such as in sampling hidden data sources, the sam-

pling percentage p is not known since it can not be derived from nEG
. We do know

nEG
, but p = nEG

/M depends on M , the number of edges in the graph. Note that

M = N × 〈d〉. Both number of nodes N and average degree 〈d〉 can be estimated

effectively using random edge sampling. We refer to [11] for the estimation of N ,

and [66] for the estimation of average degree.

2.4.3 Verification of Theorems

Due to the approximations made in our derivations, we need to show the impacts of

those approximations for different data sets.

Theorem 1. The observed RSEs and the projected RSEs are plotted in Fig. 2.3

for the EG method. We can make several observations:

• For all the graphs, Eq. 10 is a good approximation for the real RSE observed.

The approximation is lower than the actual value, because we omitted the

remaining terms in Eq. 9;

• the approximation is more accurate when the data is large. Recall that the

datasets are sorted in increasing order of data size;

• among the large graphs, Twitter and Web-Arabic demonstrate large deviation

than other large graphs. A closer check reveals that they both have very large

Φ’s, and large ratios between Φ and ∆. According to Eq. 9, the ratio Φ/∆

in the third term plays a key role on the impact of the approximation. Note

that Φ can be even larger than ∆, because it is the number of combinations of

triangles that share a common edge.

Theorem 2. Fig. 2.4 shows the observed RSEs vs the approximated values

derived from Theorem 2. Overall the approximation fits better with the real data

than the EG method. This is expected because the major term we omitted in Eq. 11
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is smaller. It is

2Φ

∆
p2, (21)

while the term omitted in Eq. 10 is

8Φ

3∆
p (22)

Corollary. Fig. 2.5 demonstrates the major result of this work: to what extent

our method improves the random edge sampling method. In the experiment, we

included the cost for checking wedge closures. Overall, our projected improvement

ratio fits well with the observed data. Again, in large graphs the projection fits better

with the real data. Two additional observations are:
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FIGURE 2.5: The observed and estimated ratio between the sample sizes of esti-
mators Eg and EG with the same RSE. Estimated value are obtained based on Eq.
13.
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• The advantage of our method grows with the RSE (or decrease with the desired

accuracy level). Our method is good when the sample size is small. When

a large portion of the data is sampled, our method may not be as good as

the random edge method. Recall that in all the derivations, we assumed that

the sampling probability p is small. Despite such assumption, our method is

consistently better than Eg in all datasets. RSE ranges from 0.05 to 0.4. 0.05

is a reasonable RSE from which we can obtain 95% confidence interval between

∆± 0.1×∆.

• The improvement grows with data size. When RSE=0.05, it improves by a

factor of four for Facebook, and a factor of 30 for Twitter. Fig. 2.6 plots the

improvement as a function of data size. It can be seen that the sample size ratio

is correlated positively with the data size. The Pearson correlation coefficient

is 0.88 for edge size, and 0.94 for triangle size, when both the data size and the

improvement ratio are in logarithmic scale. The unlogged correlation coefficient

is 0.64 for edge size and 0.69 for triangle size. We can see that the improvement

correlates with ∆ more stronger than M . This demonstrates that our method

is especially good for large graphs with a large number of triangles.

2.5 Discussions and conclusions

We propose a triangle estimation method that outperforms the previous one by a

factor of up to 30 when RSE is 0.05. The improvement can be higher when RSE

is bigger, or the required accuracy is reduced. We proved that the estimator is

unbiased, and derived its variance. The variance in the original form lacks intuitive

interpretation due to the long formula and multiple variables involved. Based on the

big graph (henceforth small sample) assumption, we simplified the RSE to (3∆|g)−1/2.

Such simplified result gives us practical guidance in sampling. We can derive the

confidence interval by looking at the triangles observed in the sample, hence we can

decide when to stop the sampling. Although several assumptions are made for our
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conclusions, we empirically showed that our approximation is still very close to the

real RSEs observed.

The simplified formula also allows us to compare our method with other meth-

ods analytically. In the past, performances for different methods, including various

streaming algorithms for triangle counting, are compared empirically. Those results

may vary from data to data. Our work is the first to study the performance ratio

analytically.

Our method is particularly suitable for very large graphs. It reduces the sample

size by orders of magnitude for large graphs. We showed that the performance im-

proves positively correlates with data size. When ∆ and improvement ratio are logged,

their Pearson correlation coefficient is as high as 0.94, almost a linear function for all

56 data sets.

The method is motivated by the scarcity of triangles in sampled graph when

the original graph is very large. We can increase the probability of observing more

triangles by checking the wedges in the sample graph. This strategy works very

well for several reasons: First, most networks tend to cluster together, as friend’s of

friend’s have a tendency to be friends as well. Thus, when checking the closeness of

a wedge, it has a high probability that the wedge is closed; Secondly, checking the

closeness of a wedge is more efficient than throwing a random edge in identifying a

triangle. Throwing a random edge in a very large graph may well end up with an

isolated edge, not even connecting with any other edge, let alone forming a triangle.

On the other hand, checking the closeness of a wedge works at least in the vicinity of

two connected edges. Its chance is higher to form a triangle when the sample size is

small.
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PES: Priority Edge Sampling in Streaming

Triangle Estimation

3.1 Introduction

Sampling-based algorithms are especially important in the era of big and hidden

data. There are numerous massive networks that have billions of nodes. For exam-

ple, Facebook as an online social network has over two billion users. Many networks

are dynamic, both users and connections between users can change over time. Fur-

thermore, networks are often hidden behind access interfaces, and data in its entirety

are not available. Therefore, it is essential to design sampling-based methods.

There are two types of methods that estimate triangles and the closely related

metric clustering coefficient. One is the direct-sampling that has random access to

the nodes/edges of the input graph [7,28,58]. The other is the streaming model that

scans the nodes/edges of the input graph in an arbitrary order over a stream. In the

streaming model, a constant number of passes over the stream are used to estimate ∆.

The key constraint in streaming models is a limited memory window [1,8–10,17,29].

When there is no limit to the number of passes, it is called a semi-streaming model [67].

This work addresses the estimation of ∆ in the streaming model.

This research proposes a new streaming algorithm, called PES (Priority Edge

Sampling). It is based on edge sampling and gives higher priority to edges that can

form triangles. We prove that our estimator is unbiased, and derive the variance of

the estimator so that the confidence interval can be obtained when an estimation

is given. Empirically, we compare it with the state-of-the-art GPS-In algorithm [1],

and demonstrate that PES outperforms GPS-In consistently on most of the 48 real
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networks that we have experimented with. More importantly, the performance gain

increases with the size of networks. The performance ratio can be as high as 11,

meaning that GPS-In needs 11 times more samples to achieve the same accuracy.

Performances of sampling algorithms are often data dependent, especially on the

structure of the graphs. To verify our result in addition to empirical comparisons,

we conduct analytical comparisons. GPS-In cannot give an analytical variance of

the estimation because its sampling probability changes in every step. Hence, the

comparison between PES and GPS-In cannot be analytical. To understand the ad-

vantage of PES, we compare it with NES (Naive Edge Streaming) that was proposed

in [28] [19] [20]. The analytical comparison between PES and NES can shed some

lights on understanding the difference between PES and GPS-In.

To summarize, our main contributions are that we have: 1) Given an efficient

algorithm PES. 2) Proved the unbiasedness of the estimator and derived variances

for PES and NES; 3) Compared PES and NES analytically.

3.2 Background and related work

Given a simple graph G(V , E), where V stands for the set of nodes, and E the set of

edges. Let N = |V|, M = |E|; ∆ and Λ denote the number of triangles and wedges in

G, respectively. Suppose that 1, 2, .., and M be the labels of the edges in E according

to their arrival times in a stream. E.g., edge 1 arrives at time 1 and so on. A wedge

W is a path (u, v, w) of length two, where u, v, w ∈ V , (u, v) ∈ E , and (v, w) ∈ E .

The wedge W is closed if (u,w) ∈ E . Otherwise it is open. A closed wedge W is

also called a triangle. Note that each triangle has three closed wedges. Table 3.1

summarizes the list of the notations used in the rest of this chapter.

Each sampling method takes some sample nodes or edges, or a combination of

them, into a subgraph. Then, the number of triangles in the subgraph is used to

estimate the triangle count. Depending on the way to take samples, the estimator

and its variance change. Intuitively, we want to observe the maximum number of

triangles while keeping the sample size small. The bottom line is that we need to
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TABLE 3.1: Summary of the notations

Notation Meaning

G(V , E) Input graph (undirected and no self-loops)
g A subgraph of G
N,M Number of nodes and edges in G
p, q Sampling probability
Λ # wedges in G
∆ # triangles in G
σ A wedge pool
n Size of pool σ
m Sample size
∆σ # triangles based on pool σ.
Λc # candidate wedges identified based on g
∆g # triangles based on g.
Φ # pairs of shared triangles in G

∆̂NES Naive edge streaming estimator

∆̂PES Priority edge sampling estimator

observe at least one triangle in order to give an estimate.

3.2.1 Node-based methods

The most naive method of triangle estimation is to sample three random nodes as a

potential triangle, then check the existence of edges among the nodes over a stream.

It is called triple sampling [9]. This approach needs to sample 4N3/(6ε2∆) number of

triplets to achieve an estimation in interval ∆± ε∆ with %95 confidence. Intuitively,

the complexity of three nodes combination is O(N3). Obviously, it is not a practical

method because the sample size is too large to observe even one triangle. The cost is

even higher than direct counting of the triangles.

A more practical method is to sample a random edge and a random node [10],

then check whether they form a triangle. This method improves the previous triple

sampling by assuming one edge always exists in the triplet. Hence, it only needs to

check the existence of the other two edges. Still, it needs to take 4MN/(3ε2∆) triplets

to have an estimation in the same confidence interval as in triple sampling.

Large real networks are mostly sparse, hence the probability of having a triangle

is still low among two random pairs of nodes. One improvement to the above method
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is, instead of choosing a random node in the entire graph, selecting a random node

from its neighbourhood. It is called neighborhood sampling [17, 18].

3.2.2 Edge-based methods

The most straightforward edge sampling is to take edges uniformly at random, then

count the triangles in the subgraph [7]. In the streaming model, the corresponding

streaming version of the algorithm is to take each edge with an equal probability

p over a stream and create a subgraph g. The number of triangles in g is used to

estimate ∆. Obviously, the sampling probability of a triangle in such method is p3.

The size of g needs to be 1.5M/(ε2∆)1/3 to obtain an estimation with an additive

error ±ε∆ with %95 confidence. When p is small, which is the case for very large

graphs, this algorithm is not efficient.

Instead of using equal probability among three edges, there are methods to assign

high probabilities for the second and/or the third edge. For instance, post-stream

priority sampling (GPS-Post) [1] takes this approach by sampling the third edge

with a higher probability.

Another technique is to take edges from the neighborhood of already sampled

edges with higher probability. A pair of connected edges (called a wedge) in the

sample can be a potential triangle, and its closeness is checked in the rest of the

stream [19–21]. Obviously, the probability of forming a wedge is p2 because its two

edges are required to be sampled. [8] improves the previous method as follows. When

an edge closes a wedge in a sample it is unconditionally added into the sample; if it is

connected to some sampled edges it is chosen with higher probability q; otherwise it

is taken with probability p. The number of triangles in the sample is used to estimate

∆. Obviously, this method samples triangles with different probabilities, i.e., pq, q2,

p, q, and 1. One shortcoming of this approach is that how one can determine q -

sampling probability of a neighbor edge. To overcome such an issue, in our method

q is dynamically adjusted using reservoir sampling [68].

More recently, another elegant approach has been proposed by [1] called in-stream

priority sampling (GPS-In). It preserves edges in a sample with different priorities.
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The number of sampled wedges closed by an edge is used as a measure to determine

the priority of the edge being preserved in the sample. For each new edge e, it

first counts the number of wedges closed by e in the sample and computes its priority.

Then, the edge is added into the sample. If the number of edges in the sample exceeds

the size limit, an edge with lower priority is removed from the sample. In each step,

the estimator for ∆ is updated if edge e completes some wedges in the sample. It

has been shown that GPS-In outperforms the existing methods [1]. Therefore, we

consider GPS-In as the state-of-the-art method in this context.

When random access to the input graph is available the ideal method is wedge

sampling. It selects some wedges uniformly at random and checks their closeness to

estimate ∆. Unfortunately, taking a wedge uniformly at random in a large graph is

costly. Three passes over an edge stream are required to implement wedge sampling

in the streaming model [9, 10,17].

Another direction is indirect sampling. Such methods have been applied when the

entire graph is not accessible. They use traversal-based sampling techniques to take

a sample from the input graph [23,27]. Moreover, several works have been conducted

to compute clustering coefficient closely related to ∆ [6,23,30,31].

3.3 Naive edge streaming (NES)

As a starting point for understanding our PES algorithm which is described in the

next section, we first present a naive algorithm based on edge sampling, called NES

(Naive Edge Streaming). It is similar to TRIEST [19] and MASCOT [20]. The

details of NES are shown in Alg. 1. For each edge in a stream, NES adds the edge

into subgraph g with probability p (Line 4). Then, the same edge is used to check

how many wedges in current g are closed by it. ∆g records the sum of such closed

wedges(triangles) (Lines 5-7).

The algorithm differs from the one in [28] in that we do not count the triangles

in g. Instead, it checks the closeness of wedges in g during the streaming process.

Clearly, the probability of forming a wedge in g is p2. Note that three edges of a
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closed wedge can appear in six different orders in a stream. In two of them, the third

edge appears after the first two and the associated closed wedge can be observed.

Thus, the probability of identifying a closed wedge is p2/3. Because each triangle has

three closed wedges, the sampling probability of each triangle is p2/3× 3 = p2. Note

that each identified closed wedge by NES is considered as a one triangle because only

one of three closed wedges of each triangle can be identified in a stream.

Suppose δi be an indicator for the ith triangle in the original graph G. Indicator δi

is one when the ith triangle is identified over the stream; otherwise it is zero. Recall

that ∆g is the number of triangles identified by NES based on g over a stream. The

expectation of ∆g is

E(∆g) = E(
∆∑
i=1

δi) =
∆∑
i=1

E(δi) =
∆∑
i=1

p2 = p2∆. (1)

Thus, the unbiased estimator for ∆ using NES is

∆̂NES =
∆g

p2
. (2)

Algorithm 1: Naive Edge Streaming (NES)

Input: p
Output: ∆̂, RSE(∆̂)

1 begin
2 ∆g = 0, g = φ.
3 while new edge e do
4 Add e into g with probability p.
5 foreach wedge w ∈ g closed by e do
6 ∆g+ = 1.
7 end

8 end

9 ∆̂NES = ∆g/p
2.

10 RSE(∆̂NES)≈ ∆
−1/2
g .

11 end

Next we need to understand the variance of ∆̂
NES

. Although MASCOT gave a

similar algorithm, they only give upper-bound of its variance. We derived the variance

of ∆̂
NES

and present it in the form of Relative Standard Error (RSE=
√
var/∆) in
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Theorem 1. We use RSE instead of variance that is commonly used. This is because

variance depends on the ground truth, which changes from data to data. This is

especially inconvenient when evaluating multiple data sets–a larger variance in one

data may be better than a smaller variance in another data. The variance of NES is

adapted but different from the direct sampling algorithm in [28] to accommodate the

streaming model. The main difference is that in NES, to identify a closed wedge over

a stream, first its two edges need to be added into g; then its third edge needs to be

visited in the rest of the stream.

Theorem 1. The RSE of ∆̂
NES

is estimated by

R̂SE(∆̂NES) ≈ ∆−1/2
g . (3)

Proof. Let ∆g be the number of triangles identified by the NES method based on

wedges in g. Lets δi be an indicator for ith triangle in the original graph. δi is 1 when

the ith triangle is identified; otherwise it is 0. Applying the variance on ∆̂NES we get:

var(∆̂NES) = var

(
∆g

p2

)
=

1

p4
var

( ∆∑
i=1

δi

)
(4)

=
1

p4

( ∆∑
i=1

var(δi) +
∑
i 6=j

cov(δi, δj)

)
. (5)

The probability of identifying triangle δi by NES is p2. Hence, the variance of δi is

E(δi)− E2(δi) = p2 − p4. Therefore the cost of the first term in Eq. 5 is ∆(p2 − p4).

Clearly, the covariance of two independent triangles is zero. Thus, we need to consider

the covariance of dependent pairs. Each pair of shared triangles has five edges. To

identify such a pair by NES, a shard edge and one of the other two edges of each

triangle need to be sampled with probability p. Therefore, a chance of identifying

such a pair is p3. Obviously, the five edges of a pair of shared triangles appears in

120 different orders in a stream; in 64 out of 120 cases, such a pair can be identified.

Clearly, the cost of covariance of two shared triangles is p3− p4. Recall that the total

number of pairs of shared triangles is denoted by Φ. Therefore, the cost of covariance
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term is 16
15

Φ(p3 − p4). Thus, by adding all the costs we have

var(∆̂NES) =
∆(1− p2)

p2
+

16Φ(1− p)
15p

. (6)

Translate Eq. 6 into RSE , we got

RSE(∆̂NES) ≈
[

1

∆p2
(1− p) +

16Φ

15∆2p2
(p− p2)

]1/2

.

When sampling probability p is small, terms −p and 16Φ
15∆

(p − p2) are neglectable.

Therefore, the RSE is (∆p2)−1/2. Replace ∆p2 by ∆g, we prove the theorem.

Theorem 1 shows that the variance depends on the number of triangles in the

sampled graph g. To reduce RSE with the same subgraph size g, we need to sample

more triangles while keeping the same sampling probability for the first edge. This

prompts us to increase the sampling probability for the second edge of a triangle.

3.4 Priority edge sampling (PES)

3.4.1 The algorithm

PES improves NES by increasing the probability of capturing triangles in the sample

graph. To do so, we maintain a pool of wedges as well as a subgraph g. Edges that

can form a wedge in g will have a higher priority being sampled. Hence, we call it

Priority Edge Sampling. It is impossible and not necessary to keep all the wedges.

Instead, we maintain a small fixed-size pool of wedges σ. For each triangle, the first

edge will be sampled with probability p, which is the same as NES. The difference

is in the second edge. When the second edge is scanned, the associated wedges are

added into σ with probability q. Later we will show that q is normally much larger

than p, especially when the graph is large. The closeness of wedges in the pool is

checked in the rest of the stream. Therefore, PES identifies a triangle with probability

pq, which is greater than p2 in NES.
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The details of PES are summarized in Alg. 2. Input p is the sampling probability

of edges, n is the pool size. In our experiments, we simply set n = |g| for the

convenience of performance comparison. Λc counts the wedges formed in g. Some of

these wedges may be added to σ with a changing probability q. Hence we call them

candidate wedges and denoted by Λc. ∆σ counts the triangles formed from σ and g.

When a new edge e is visited, it is added into subgraph g with probability p (Line

4). Then, the closeness of wedges in pool σ is checked (Lines 5-8). Once a closed

wedge is identified, the number of triangles ∆σ captured so far is increased by 1 (Line

7). Next, each candidate wedge formed using the new edge e and edge f in g like

w(e, f) is considered to be added into pool σ with probability q (Lines 9-21). Note

that probability q is dynamically computed over the stream using n and Λc (Line 14).

We explain the steps in the following illustrative example.

3.4.2 Example

We illustrate PES with a toy graph in Fig. 3.1 with detailed steps. Each row in the

table represents one step. Column e shows the edge stream. Column g displays the

sampled edges in subgraph g. In this example, each edge in the stream is added into g

with probability p = 0.2. When edge (1, 4) arrives, PES adds it to g with probability

p. Suppose that it is not added, and g remains empty. Next edge in the stream is

(6, 8). Suppose that it is added to g this time. It can not form any wedges in the

fourth column.

The third edge (6, 7) is not added into g, but we still check its neighbours in g

for closed wedges and candidate wedges. The candidate wedges constructed in each

step are demonstrated in the fourth column. When edge (6, 7) is encountered in step

3, a wedge (7, 6, 8) is formed since edge (6, 8) is already in the subgraph g. In the

pool for each wedge, we keep a label to show its closeness. The open wedge (7, 6, 8)

is denoted as (7, 6, 8)−. Column Λc records the number of such candidate wedges.

It can be larger than the pool size. When edge (6, 11) arrives, it forms a candidate

wedge (8, 6, 11), hence Λc is increased by one, but it is not added into the pool σ.

Not every candidate wedge is added into the pool. The pool has a fixed size,
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Algorithm 2: Priority Edge Sampling (PES)

Input: p, n.
Output: ∆̂, RSE(∆̂)

1 begin
2 Λc = 0, ∆σ = 0, σ = φ, g = φ.
3 while new edge e do
4 Add edge e into g with probability p;
5 foreach wedge w in σ closed by e do
6 label w as closed.
7 ∆σ+ = 1.

8 end
9 foreach wedge w(e, f) where edge f ∈ g do

10 Λc+ = 1.
11 if |σ| <n then
12 σ = σ ∪ {w}.
13 else
14 q = n/Λc.
15 if Random[0,1)< q then
16 Select random wedge w′ from σ.
17 if w′ is closed then ∆σ− = 1.
18 σ = σ − {w′}.
19 σ = σ ∪ {w}.
20 end

21 end

22 end

23 ∆̂PES = ∆σ/pq.

24 RSE(∆̂PES)≈ ∆
−1/2
σ .

25 end

functioning as a reservoir. In this example, its capacity is n = 2. The candidate

wedge is added into the pool unconditionally only when it is not full yet. Hence,

wedge (7, 6, 8) and the wedge in the subsequent step (1, 6, 8) are added into the pool.

When the pool is full, the candidate wedge will replace a random wedge in the

pool with probability q. In step 9, edge (6,10) forms a candidate wedge (8,6,10) with

edge (6,8). Now the forth wedge (8,6,10) can not be added into σ directly because the

pool has reached its limit 2. Instead, we replace one of the wedges in the pool with

a probability q = n/Λc = 2/4. Suppose that by chance, this wedge replaces (7,6,8)

in the pool. The candidate wedge in Step 10 does not replace any wedge in the pool

by chance. For the candidate wedge (9,6,8) in step 11, suppose that it replaces an
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existing wedge (1,6,8) in the pool. Step 12 has another wedge being replaced.

The last edge in the stream is (8,9). It closes the wedge (9, 6, 8)− that is obtained

in previous steps. Hence, the label of this wedge is changed to +; and ∆σ is increased

by 1. At this point, Λg = 8. This means eight candidate wedges are identified in

total over the stream; the probability of preserving a wedge in σ is q = 2/8. Thus,

the unbiased estimator for ∆ is

∆̂PES =
∆σ

pq
=

1

0.2× 0.25
= 20. (7)

1

2
3

4

5

6

7
8

9

10

11

(A) An example graph.

e g w(e, f), f ∈ g σ Λc q ∆σ

1 (1,4) φ - φ 0 - 0

2 (6,8) (6,8) - φ 0 - 0

3 (6,7) (6,8) (7,6,8) (7, 6, 8)− 1 1 0

4 (1,6) (6,8) (1,6,8) (7, 6, 8)−,(1, 6, 8)− 2 1 0

5 (6,11) (6,8) (8,6,11) (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

6 (2,3) (6,8) - (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

7 (9,10) (6,8) - (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

8 (1,2) (6,8),(1,2) - (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

9 (6,10) (6,8),(1,2) (8,6,10) (8, 6, 10)−,(1, 6, 8)− 4 0.5 0

10 (1,5) (6,8),(1,2) (2,1,5) (8, 6, 10)−,(1, 6, 8)− 5 0.4 0

11 (6,9) (6,8),(1,2) (9,6,8) (8, 6, 10)−,(9, 6, 8)− 6 0.33 0

12 (1,3) (6,8),(1,2) (2,1,3) (2, 1, 3)−,(9, 6, 8)− 7 0.28 0

13 (8,9) (6,8),(1,2) (6,8,9) (2, 1, 3)−,(9, 6, 8)+ 8 0.25 1

(B) Steps on the graph in Panel (A) with
p = 0.2, n = 2.

FIGURE 3.1: Steps of applying our PES on a toy graph.

3.4.3 The unbiased estimator

The proof that ∆̂PES is unbiased is presented in this section. Let δi be the indicator

function for the ith triangle in the input graph. It is one when the ith triangle is
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sampled; otherwise it is zero. For each triangle, the probability of sampling the first

edge is p, the probability of sampling the second edge is q. Note that the closeness of a

wedge is checked every time when a wedge emerges in the pool. Hence the probability

of sampling a triangle is pq. The expectation of δi is pq and the expectation of ∆σ is:

E(∆σ) = E(
∆∑
i=1

δi) =
∆∑
i=1

E(δi) =
∆∑
i=1

pq = pq∆. (8)

Thus, the unbiased estimator is as follows.

Theorem 2. The unbiased estimator for PES algorithm is

∆̂PES =
∆σ

pq
. (9)

An interesting part of the algorithm is that q decreases over time, and the sampling

probability of the second edge in Eq. 9 is the q in the final step, not the larger q values

in earlier steps. Intuitively, edges sampled in earlier steps have a higher probability

of being replaced during the process. The earlier the edge being scanned, the bigger

the q is at that moment. But it also has a higher probability of being replaced in a

later stage. Hence the overall probability is the same as the final q. Detailed proof is

similar to reservoir sampling [68] using inductive inference, and is given as follows.

For the last candidate wedge at arrival time Λc, it is easy to understand that the

second edge has a sampling probability q = n/Λc. Other wedges arrived before also

has a sampling probability q, following reservoir sampling [68] as explained in the

following inductive inference:

When Λc = n+ 1, the sampling probability for wedges arrived before time n is:

1×
(

1

n+ 1
+

n

n+ 1

n− 1

n

)
=

n

n+ 1
. (10)

This is because that there is a probability of 1/(n+ 1) that the new wedge won’t

replace any old wedge; and there is a probability of n/(n+ 1) that an old wedge will

be replaced. For each replacement, the probability of one particular wedge not being
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replaced is n− 1/n.

Suppose that the old wedges are kept with probability n/(n+x) when Λc = n+x.

When Λc = n+x+1, the sampling probability for wedges arrived before time n+x+1

is:

n

n+ x
×
(

1

n+ x+ 1
+

n+ x

n+ x+ 1
× n+ x− 1

n+ x

)
=

n

n+ x+ 1
. (11)

3.4.4 The variance

The variance of the estimator is complicated because of the involvement of two differ-

ent sampling techniques–uniform sampling and reservoirs sampling. In PES, a wedge

as a possible triangle is formed uniformly at random with probability p over an edge

stream; and it is preserved with probability q in pool σ. Applying the variance on

the estimator we get:

var(∆̂PES) = var

(
∆σ

pq

)
= var

( ∆∑
i=1

δi
pq

)

=
1

(pq)2

∆∑
i=1

∆∑
j=1

cov(δi, δj)

=
1

(pq)2

( ∆∑
i=1

var(δi) +
∆∑
i 6=j

cov(δi, δj)

)
. (12)

Recall that δi is the indicator for the ith triangle as defined before. By the definition

of variance, var(δi) is E(δi) − E(δi)E(δi); therefore, the cost of the first term in Eq.

12 is ∆(pq− (pq)2). For the covariance, let Φ be the number of pairs of triangles with

a common edge. To identify such a case by PES, the common edge should be added

into g with probability p. Furthermore, the other two edges need to be preserved in

pool σ with probability (n2−n)/(p2Λ2−pΛ). Thus, the probability of sampling such a

dependent pair is pq′2 where q′2 is (n2−n)/(p2Λ2−pΛ). Recall that n is the size of pool

σ. Each dependent pair has five edges and the common edge should be visited before

the other four and needs to be sampled with probability p. Clearly, the five edges can
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arrive in 120 different orders in a stream; and in one-fifth of them, the common edge is

the first one in the stream. Note that each dependent pair (δi, δj) appears twice in the

covariance term. Thus, the cost of Φ dependent cases is 2Φ
5

(pq′2− (pq)2). Because the

reservoir sampling is used to preserve wedges in pool σ we need to consider the cost

of (∆2 − 2Φ−∆) independent pairs. Obviously, the probability of selecting a pair of

independent triangles is p2q′2. By the definition of covariance, i.e. E(δiδj)−E(δi)E(δj),

the cost of independent cases is (∆2 − 2Φ−∆)(p2q′2 − (pq)2). Substituting the costs

in Eq. 12 and after some math simplification, the variance of the estimator is given

by the following theorem.

Lemma 1. Let ∆ be the true number of triangles and ∆̂PES be its estimation by PES.

The variance of ∆̂PES is

var(∆̂PES) =
∆(1− pq)

pq
+

2Φ(q′2 − pq2)

5pq2
+

Φ′(q′2 − q2)

q2
. (13)

where Φ is the number of pairs of shared triangles, q = n/pΛ, q′2 = (n2− n)/(p2Λ2−

pΛ), and Φ′ = (∆2 − 2Φ−∆).

The variance of the estimator depends on several metrics including ∆, Φ, p and

q. In practice, we do not have the knowledge of these metrics. For example, ∆ is

exactly what we are estimating. Hence, in order to know the performance of the

estimator, we need to estimate the variance. Thus, we simplify the variance to have

better insight into it. To do so, we translate the variance into RSE and use big data

assumption to present the following theorem.

Theorem 3. The RSE of ∆̂PES is estimated by

R̂SE(∆̂PES) ≈ ∆−1/2
σ . (14)

Proof. Translate var(∆̂PES) into the RSE=
√
var/∆. When the input graph is large,

approximating n− 1 ≈ n and pΛ− 1 ≈ pΛ are valid. Thus, we get:

RSE(∆̂PES) ≈
[

1

∆pq

(
1− pq +

2Φ

5∆
(q − pq)

)]1/2

. (15)
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TABLE 3.2: Properties of the networks in our experiments, sorted by graph size N .

Dataset N(×106) 〈d〉 C Type Dataset N(×106) 〈d〉 C Type
1. Ego-facebook [61] 0.004 43.69 0.519 OSN1 25. Youtube [61] 1.1 5.27 0.006 OSN
2. CA-GrQc [61] 0.005 5.52 0.629 COL2 26. Dblp [62] 1.3 8.16 0.170 COA
3. Wiki-vote [61] 0.007 28.32 0.125 OSN 27. Wiki-Polish [62] 1.5 55.17 0.01 WEB
4. AstroPh [62] 0.01 21.10 0.31 CIT3 28. Trec-wt10g [62] 1.6 8.33 0.014 WEB
5. CA-CondMat [61] 0.02 8.08 0.264 COA4 29. Wiki-Portuguese [62] 1.6 48.19 0.022 WEB
6. HepPh [62] 0.02 224.14 0.279 COA 30. Wiki-Japanese [62] 1.6 69.82 0.021 WEB
7. Enron-email [62] 0.03 10.02 0.085 ECO5 31. Pokec [62] 1.6 27.31 0.046 OSN
8. Brightkite [61] 0.05 7.35 0.110 OSN 32. As-skitter [61] 1.6 13.08 0.005 INT8

9. Facebook [62] 0.06 25.64 0.147 OSN 33. Wiki-Italian [62] 1.8 72.90 0.024 WEB
10. Epinions [62] 0.07 10.69 0.065 OSN 34. Hudong [62] 1.9 14.54 0.003 WEB
11. Slashdot-Zoo [62] 0.07 11.82 0.023 OSN 35. Hollywood [63,64] 1.9 24.51 0.152 OSN
12. Livemocha [62] 0.1 42.13 0.014 OSN 36. Flicker [62] 2.3 19.83 0.107 OSN
13. Douban [62] 0.1 4.22 0.01 OSN 37. Flixster [62] 2.5 6.27 0.013 OSN
14. Gowalla [61] 0.1 9.66 0.023 OSN 38. Wiki-Russian [62] 2.8 44.20 0.015 WEB
15. Libimseti [62] 0.2 155.97 0.007 OSN 39. Wiki-French [62] 3.0 55.21 0.015 WEB
16. Digg [62] 0.2 11.07 0.061 OSN 40. Orkut [62] 3.0 76.28 0.041 OSN
17. Dblp-Coau [61] 0.3 6.62 0.306 COA 41. Wiki-German [62] 3.2 40.77 0.0088 WEB
18. Web-NotreDame [61] 0.3 6.69 0.087 WEB 6 42. USpatent [62] 3.7 8.75 0.067 CIT
19. Amazon [61] 0.3 5.53 0.205 COP 7 43. LiveJournal [61] 3.9 17.35 0.125 OSN
20. Actor [62] 0.3 78.68 0.166 COL 44. DBpedia [62] 18 13.89 0.0016 WEB
21. Citeseer [62] 0.3 9.03 0.049 CIT 45. Web-Arabic [63,64] 22 48.70 0.031 WEB
22. Dogster [62] 0.4 40.03 0.014 OSN 46. Gsh-2015 [63,64] 29 9.18 0.007 WEB
23. Catster [62] 0.6 50.32 0.028 OSN 47. MicrosoftAc.G. [65] 46 22.61 0.015 CIT
24. Web-Google [62] 0.8 9.87 0.055 WEB 48. Friendster [62] 65 55.06 0.017 OSN
1 Online Social Network 2 Collaboration 3 Citation 4 Coauthorship 5 E-communication 6 Web Graph 7 Co-purchasing 8 Internet topology

When graph is large sampling probabilities p and q is very small and terms −pq and

+ 2Φ
5∆

(q − pq) in Eq. 15 are neglectable. Thus, Eq. 15 is simplified as
(
∆pq

)−1/2
.

Because ∆σ = ∆pq, the theorem thus follows.

3.5 Experiments

We conduct experiments to 1) compare our algorithms with the state-of-the-art al-

gorithms GPS-In and GPS-Post [1]. Other algorithms are not compared because

it is already demonstrated that they are inferior to GPS-In; and 2) to verify our

analytical results presented in Theorem 1 and 3. This is needed because there are

approximations in the derivation. The precise results are long formulas that depend

on the structure of the graph, such as the number of triangles (∆) and the count of

dependent triangles (Φ). Theorems 1 and 3 give more concise results by omitting

some terms in the long formula by assuming the graph is large and p is small. How

good is such approximation needs to be evaluated empirically.

The code along with all the data, including some intermediate data, are available
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at http://cs.uwindsor.ca/~etemadir/PES.

3.5.1 Data

Because the performance of sampling algorithms often varies from data-to-data, es-

pecially depends on the structure of the graphs, we verify our results extensively

with many (48) real networks with different size from varieties of domains. The size

ranges from 4 thousand to 65 million nodes. The domains include online social net-

works (OSN), web graphs, citation and co-authorship networks, etc. In some figures,

we only plot half of the datasets (24) to save space. Other datasets have similar

behaviours.

It is computationally costly to obtain the ground truth of large graphs. Luckily,

we have access to two servers each with 24 cores and 256 GB RAM to carry out such

intensive computing. Table 3.2 summarizes the networks and their statistics. The

graphs are sorted by their node size N . In the table 〈d〉 is average degree, and C is

clustering coefficient (C = 3∆/Λ). We executed the estimators on the graphs and

reported the results along with our observations in the following sections. The results

were obtained over 1000 independent runs for the graphs except for the four largest

graphs that are repeated 500 times.

3.5.2 Comparison with GPS-In and GPS-Post

Fig. 3.2 summarizes the comparison of PES with the state-of-the-art methods GPS-

Post (Panel A) and GPS-In (Panel B) [1]. We also compared NES and our PES

algorithm in Panel C. We set the sampling probability of the estimators to obtain the

same RSE. Here we report the ratios between sample sizes when RSE=0.2. Similar

phenomenon is observed for other RSEs. In each panel, the Y-axis is the ratios, and

the X-axis is the graph size that is represented by the node size N multiplied by

clustering coefficient. In all the methods, m is the ’sample size’. Algorithms differ in

the definition of ’sample size’ because some algorithms maintain a reservoir of wedges

in addition to subgraph g or use extra memory per sampled edge to store information
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FIGURE 3.3: Our PES uses less sample sizes compared to other methods to obtain
an estimation with the same RSE=0.2 on most of the graphs. Note that the sample
size include both the size of the subgraph and the reservoir for our PES but for GPS
methods extra memory per sampled edge was ignored.

about sampled edges in subgraph g. NES has g only. Hence the sample size m is the

number of edges (denoted by |g|), which is equal to pM . PES maintains a wedge pool

σ. Hence the sample size is |g| + |σ|. GPS -In and -Post also store subgraph g and

two additional values per edge in g. However,we consider their sample sizes as |g|.

In the panels, each marker represents one of the 48 graphs described in Table 3.2.

From the figure we make several observations:

• Our PES outperforms GPS-In and GPS-Post consistently in terms of sample

size. All the ratios are above one in Panel (A), meaning that PES needs fewer

samples than GPS-Post for all the datasets. For instance, take Orkut (labeled

43) in Panel A has ratio 73, meaning that GPS-Post needs 73 times more

sampled edges compared to our PES. Compare to GPS-In, our PES also needs

less sample size in most of the graphs. For example, LiveJournal (labeled 43)

in Panel A has the ratio 5.4, meaning that GPS-In requires 5.4 times more

sampled edges compared to PES to obtain an estimation with the same RSE.

The improvement margin is higher for GPS-Post, which is expected since GPS-

In improves GPS-Post. Take the same LiveJournal data for example, as shown

in Panel A, the ratio is 66, much higher than 5.4.

• The ratio grows almost exponentially with data size. In other words, compared

with PES, the sample size of other algorithms grows exponentially with graph
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size. This result has high implication for very large graphs: although other

algorithms can deal with current data, their performance will deteriorate expo-

nentially with graph size. The Pearson correlation coefficient between the ratios

and the size of data is 82 for GPS-In, 80 for GPS-Post, and 79 for NES.

4e+01 6e+02 1e+03

0.2

0.4

0.6

Ego-facebook

R
S
E

5e+01 6e+02 1e+03

0.2

0.4

0.6 CA-GrQc

1e+02 2e+03 4e+03

0.2

0.4
Wiki-Vote

6e+01 9e+02 2e+03

0.5

1 AstroPh

7e+01 1e+03 2e+03

0.2

0.4

0.6

0.8

1

CA-CondMat

7e+01 9e+02 2e+03

0.2

0.4

0.6

0.8

1

HepPh

2e+02 3e+03 5e+03

0.2

0.4
Enron-email

2e+02 3e+03 5e+03

0.2

0.4

0.6

Brightkite

1e+02 2e+03 3e+03

0.2

0.4

0.6

0.8

1

1.2
Facebook

R
S
E

3e+02 4e+03 7e+03

0.2

0.4

Epinions

7e+02 1e+04 2e+04

0.2

0.4
Slashdot-Zoo

1e+03 2e+04 3e+04

0.2

0.4

Livemocha

2e+03 2e+04 4e+04

0.2

0.4

Douban

7e+02 1e+04 2e+04

0.2

0.4
Gowalla

2e+03 3e+04 6e+04

0.2

0.4
Libimseti

3e+02 4e+03 8e+03

0.2

0.4

Digg

9e+01 1e+03 3e+03

1

2

3
Dblp-Coau

R
S
E

9e+01 1e+03 2e+03

2

4

Amazon

1e+02 2e+03 3e+03

0.5

1

1.5

2

Actor

2e+02 3e+03 6e+03

0.2

0.4

0.6Web-NotreDame

3e+02 5e+03 9e+03

0.5

1

1.5
Citeseer

1e+03 2e+04 3e+04

0.2

0.4

Dogster

6e+02 9e+03 2e+04

0.2

0.4
Catster

3e+02 4e+03 8e+03

0.2

0.4

0.6

0.8

1

1.2

Web-Google

1e+02 2e+03 3e+03

2

4

Dblp

R
S
E

7e+02 1e+04 2e+04

0.2

0.4

Wiki-Portuguese

7e+02 1e+04 2e+04

0.2

0.4

0.6

Wiki-Japanese

4e+02 5e+03 1e+04

1

2

3

Pokec

8e+02 1e+04 2e+04

0.2

0.4

0.6
Wiki-Italian

1e+02 2e+03 4e+03

2

4

Hollywood

2e+02 3e+03 5e+03

0.5

1

1.5 FLicker

1e+03 2e+04 3e+04

0.2

0.4

0.6

0.8 Flixster

1e+03 2e+04 4e+04

0.2

0.4

Wiki-Franch

R
S
E

Sample size

4e+02 6e+03 1e+04

2

4
Orkut

Sample size

3e+02 4e+03 7e+03

2

4

6

USpatent

Sample size

2e+02 3e+03 6e+03

2

4
LiveJournal

Sample size

6e+02 8e+03 2e+04

0.5

1

1.5

Web-Arabic

Sample size

2e+03 3e+04 6e+04

0.5

1 Gsh-2015

Sample size

1e+03 2e+04 3e+04

2

4

6
MicrosoftAG

Sample size

1e+03 1e+04 2e+04

1

2

3

Friendster

Sample size

 

 

PES GPS-In

FIGURE 3.4: Our PES outperforms GPS-In in terms of RSEs when both methods
are using the same sample sizes. Note that for our PES, the sample size includes both
the size of subgraph g and reservoir size, i.e., |σ|. For GPS-In, we only considered the
size of subgraph g as a sample size, and ignored two additional values per sampled
edge in g.

Fig. 3.3 compares the actual sample sizes of the three methods side by side. The

sample sizes are the ones to achieve the same RSE=0.2. Take the Friendster data for

example, the samples for PES is 8,132, meaning that the subgraph size is 4,066, and

the reservoir size is 4,066 to achieve RSE=0.2. On the other hand, the sample size

of GPS-In is 88,654, meaning that |g| = 88, 654. Similarly, the sample size of NES

is 133,355, meaning that |g| = 133, 355. Note that even though GPS-In outperforms
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NES in terms of |g|, the overall cost including both g and extra data for sampled

edges in g is actually higher. As shown in the figure, our PES outperforms the other

methods in most of the graphs. It is obvious that,the performance ratios grow by

increasing the size of graphs. For example, all the methods need almost the same

sample sizes for Ego-facebook graph (the smallest graph in our dataset) to achieve

the estimation with the same RSE=0.2. Take the Friendster data as the largest graph

in the dataset, PES needs 10.9 times less sample size compare to GPS-In.
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FIGURE 3.5: The observed RSEs of ∆̂PES support our estimated RSEs based on Eq.
14.

Next, we investigate how the performance ratios between the methods change by

increasing the accuracy of estimators (decreasing the RSE). To do so, we set the

parameters of PES to obtain the RSEs between 0.1 and 0.4. Then, GPS-In was run

using the same sample sized used in PES. Note that we considered both the size of
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subgraph g and the pool σ as a sample size of PES. We only report the observed

RSEs of our PES vs. GPS-In in Fig. 3.4 because GPS-In is more efficient compared

to other existing methods. It can be seen that by increasing the sample size, the

gap between the RSEs of the methods diminishes. Still, PES outperforms GPS-In in

terms of obtaining accurate estimation using the same sample sizes for large graphs,

as we can see in the last row of the plot.
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FIGURE 3.6: The observed RSEs of ∆̂NES fit very well our estimated RSEs based
on Eq. 3.

3.5.3 Validation of Theorems 1 & 3

We conduct experiments to verify our approximations used in the derivations of The-

orems 1 & 3. Thus, sampling probability p of the PES and NES were initialized in

a way that the estimators achieve the RSEs between 0.1 and 0.4 to get estimations
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in range [∆ ± 0.8∆, ∆ ± 0.2∆] with 95% confidence. The observed and estimated

RSEs are reported in the plots of Fig. 3.5 and 3.6. We report the results for 24

representative graphs. Similar patterns are observed for the remaining data sets.

As shown in the plots, in both theorems our approximations work very well. It can

be seen that our estimated RSEs (blue lines in the plots) fit perfectly the observed

ones (red lines with circle markers) not only for large graphs but also for small-sized

ones. Thus, in practice the theorems can be used to control the accuracy of the

estimators. Moreover, they can be used to quantify the performance ratio between

the methods as in the following section.

3.5.4 An implication of Theorems 1 & 3

We use Theorems 1 & 3 to quantify the performance ratio between NES and PES.

Suppose p
NES

and p
PES

are sampling probability of NES and PES respectively to

achieve the same RSE. Using the result of Theorems 1 and 3, we need to have ∆
−1/2
σ ≈

∆
−1/2
g . Replace ∆σ = p

PES
q∆ and ∆g = p2

NES
∆. Recall that q is the sampling

probability of preserving candidate wedges in pool σ. Suppose the size of pool σ

is the same as the size of |g|, i.e. |σ| = |g|. Thus, q ≈ M/Λ. After some math

simplifications, we get

Corollary 1. Let pool size be |σ| = |g| = p
PES

M in PES. The ratio between sampling

probabilities of PES and NES to achieve the same RSE is given by

p
NES

p
PES

≈ M

p
NES

Λ
. (16)

Corollary 1 says that the sample size ratio between PES and NES depends on M ,

Λ, and sampling probability of NES (p
NES

). Recall that M and Λ are the number of

edges and the count of wedges in the input graph.

To verify the corollary, the parameters of the methods were set to achieve the

RSEs between 0.1 and 0.4. Note that we set up the size of pool as p
PES

M in PES,

i.e. |σ| = |g|. The observed and estimated ratios based on Eq. 16 are reported in Fig.

3.7. It can be seen that the observed ratios support our theoretical results in Eq. 16,
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FIGURE 3.7: Our PES outperforms NES. The observed and estimated ratios between
p
N

and p
D

when the methods achieve the same RSEs between 0.1 and 0.4. The
estimated ratios are obtained using Eq. 16.

i.e., the estimated ratios based on Eq. 16 fit the observed values very well in most

of the representative graphs. However, as expected there is a small gap between the

observed and estimated ratios in a few cases.

3.6 Conclusions and discussions

This work proposes a streaming algorithm called PES. It improves NES by increasing

the chance of observing a triangle over a stream from p2 in NES to pq, where q is

greater than p and it is automatically adjusted over the stream. PES outperforms

GPS-In consistently in all the datasets that have been tested. The performance ratio

can be as high as 11. An important observation is that the performance ratio grows
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exponentially with data size, indicating that we could observe higher performance

gain in larger datasets. We have tested on networks with 65 million nodes. Due

to the prohibitive cost to calculate the ground truths (such as triangle, wedges, and

shared wedges and triangles) of very large graph, we did not experiment with even

larger networks. We should note that real networks often have billions of nodes,

much larger than our experimented data. We expect that our algorithm would be

particularly useful in such very large networks.

In retrospect, the key to improve the performance is to identify triangles as many

as possible during the sampling process. In the streaming model, we need to scan each

edge anyway. Thus, NES fits naturally with the streaming model because the closeness

check almost comes free, especially because the sample size is small compared with

the original graph. PES improves NES further by increasing the sampling probability

of the second edge of the triangle. It improves GPS-In because GPS-In does not

always add the second edge as we did in PES.

Most algorithms are compared empirically only. This is limited, and conclusions

may not be true for other datasets. We compare NES and PES analytically, and

quantify the performance gain. The analytical comparison also gives us a deeper

understanding as for when PES is better. PES hinges on the value of q. Probability

q becomes larger than p when the graph becomes larger.
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CHAPTER 4

The Bias and Variance in Clustering Co-

efficient Estimation

4.1 Introduction

Clustering coefficient (C) is one of the important metrics to analyze networks. It

has been used in many applications including graph clustering and community detec-

tion [34], spam detection [69], link prediction [35], microarray data and DNA sequence

analysis [42, 43], word-learning [46], etc. Computing C on large networks is a com-

putationally intensive task. The time complexity of the state-of-the-art method is

Θ(M1.41), where M is the number of edges in the network [3]. Thus, sampling-based

algorithms are indispensable and studied extensively, e.g., in [1, 8, 21,29,30,70].

Despite extensive work in this area, there is a lack of formal analyses of the algo-

rithms, in particular the lack of estimators for the variance and bias of the estimation

algorithms. Most algorithms are compared empirically, e.g. in [1,8,21,29], thus their

performances are often data dependent. Some algorithms do discuss the bias and

variance problems, but they all fail to give the exact formulas. E.g., [1, 8] give a

variance that is generic for every problem; [1,8,21,29] mentioned about the existence

of the bias.

This chapter gives the bias and variance for both streaming and non-streaming

algorithms. In addition to the bias and variance formulas, a more important issue

is their estimation without the global data. In order to have the confidence interval

for an estimate, we need to know the variance and bias during the sampling and

A short version of this chapter was published in IEEE BigData’17 [30].
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estimation process, not the variance and bias that is derived from the knowledge of

the global data. In other words, we need to estimate the variance and bias.

We derived the variance and bias so that algorithms can be compared analytically.

The formulas are long and tedious, hard to be applied in practice. A more interesting

result of our work is the simplification of the formulas so that it can be applied

easily. Based on the assumption that the data is big, we show that the RSE (Relative

standard error, the normalized square root of variance) can be estimated by the

reciprocal of the square-root of the triangles observed in samples. In other words, the

accuracy grows at the rate of
√

∆g, where ∆g is the observed sample closed wedges

in the streaming process.

The simplified result is especially important in the era of big data. When net-

works are small, we can hardly predict the behaviour of the sampling algorithms.

However, when the data is big, the performance can be characterized simply by the

closed wedges observed in the process. This result is also supported by our extensive

experiments on 56 real networks of different size and structure.

Let Λ denote the number of wedges (or paths of length two), ∆ the number of

closed-wedges. Metric C is defined as the ratio between the two, i.e.,

C =
∆

Λ
. (1)

Note that here we restrict our discussion to the global C as defined above for the sake

of simplicity. There are other notions of Cs, such as local and average C, that are

beyond the scope of this work. However, our method can be easily extended to those

Cs.

Suppose that ∆̂ and Λ̂ are unbiased estimators for ∆ and Λ, respectively. In other

words, E(∆̂) = ∆, and E(Λ̂) = Λ. It has been taken for granted, e.g., in [8, 21, 23]

and [32], that the C estimator Ĉ is:

Ĉ =
∆̂

Λ̂
. (2)
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Unfortunately, this is a biased estimator as we can see from the fact that E(X/Y ) 6=

E(X)/E(Y ). More precisely, by applying expectation on the estimator, we have:

E(Ĉ) = E

(
∆̂

Λ̂

)
6= E(∆̂)

E(Λ̂)
=

∆

Λ
= C.

While it is easy to understand the existence of bias, quantifying and correcting

the bias is a challenging task. Recently, Jha et al. [21, 29] and Ahmad et al. [1, 8]

noticed the bias problem and left it as an open problem to solve. In 2017, Ahmad et

al. discussed the bias problem again, but could not quantify it [1].

The analysis of the bias needs to be embedded in a concrete sampling method.

We base our following discussions on random edge sampling and streaming sampling.

Random edge sampling has been widely used for estimating C [8, 21, 29], triangles

[7,10,17,20,28,71], and other graph properties [11,13,72]. It is also closely related to

other sampling methods. For example, random walk [23, 32, 73] is an approximation

of random edge sampling in that their node sampling probabilities are asymptotically

equal in undirected graphs. Random node sampling can also be associated with

random edge sampling–when we sample node with probability proportional to its

size (PPS), it is actually a kind of random edge sampling in the sense that sampling

probability of the node is the same in two sampling schemes.

For this random edge sampling scheme, we quantify the bias using the ‘power

method’ [74]. It involves a Taylor expansion that results in a long formula. The

intuitive understanding is lost in the complex formula without simplification. Hence,

we simplify the formula, and derive an adjusted estimator as follows:

Ĉ∗ =
∆̂

Λ̂

[
1 +

r

p

]−1

, (3)

where p is the sampling probability, r is a constant determined by the graph topology

that will be explained later in Section 4.3. Roughly speaking, r is dominated by the

ratio of the third moment and the square of the second moment of the degrees of the

graph. The corrected estimator in Eq. 3 highlights the importance of the problem
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particularly in the age of big data: when the graph is very large, only a small fraction

of the graph is needed to achieve high accuracy, resulting in a very small p. Although

r, in general, is a very small number, r/p may not be neglectable in this case. We

will show that r/p can be as high as 0.04 in certain cases.

Eq. 3 is good for understanding the nature of the bias problem. However, it

cannot be used for estimation in practice because r is unknown from the sample.

In other words, we also need to estimate r to correct the bias. Thus, we derive a

corrected estimator for random edge sampling as below:

Ĉ+ =
∆g

Λg

[
1 + rg

]−1

, (4)

where rg = 2Ψg/Λ
2
g − Ωg/∆gΛg. Variable Ψg is the number of shared wedges, Ωg

is the number of shared wedges and closed-wedges, all in sample graph g. We show

that the result can be simplified further by taking the first term only in the above

formula, assuming that the graph is large. Based on this, the bias can be quantified

by the second and third moments of the degrees of the nodes in the graph. Since

the simplified result is derived using several approximations, we need to empirically

evaluate the approximation using real graphs. The result is confirmed and explained

on 56 real-world graphs.

4.2 Background and related work

Let G(V , E) be a simple graph, where V and E are the set of nodes and the set of

edges, respectively. Let N = |V|, M = |E|, and each node is labeled as 1, 2, . . . , N .

Let di denote the degree of node i, for i ∈ {1, 2, . . . , N}. A wedge W is a triplet

(u, v, w), where u, v, w ∈ V are three distinct nodes, (u, v) ∈ E , and (v, w) ∈ E .

Wedge W is closed if (u,w) ∈ E . Otherwise it is open. A triangle consists of three

(closed) wedges. Let Λi = di(di − 1)/2 denote the number of wedges for node i, and

∆i the number of closed-wedges for node i. Clustering coefficient is defined as the
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TABLE 4.1: Summary of the notations

Notation Meaning

G(V , E) Input graph (undirected and no self-edges)
g A subgraph of G
N, M Number of nodes and edges in G
n Sample size
di Degree of node i in G
Λ # wedges in G
∆ # closed-wedges in G
Φ Number of triangle pairs that share an edge
Λg # wedges in g
∆g # closed-wedges in g. Closeness checked on G
Λi # wedges of node i
∆i # closed-wedges of node i
Ψ # pairs of shared wedges in G
Ω # pairs of a wedge and a closed-wedge

sharing one edge in G
Φg Φ counted in g
Ψg Ψ counted in g
Ωg Ω counted in g

〈d〉 Average degree of G. 〈d〉 = 1
N

∑N
i=1 di.

〈d2〉 Second moment. 〈d2〉 = 1
N

∑N
i=1 d

2
i .

〈d3〉 Third moment. 〈d3〉 = 1
N

∑N
i=1 d

3
i .

proportion of the wedges that are closed [6, 31], i.e.,

C =

∑N
i=1 ∆i∑N
i=1 Λi

=
∆

Λ
. (5)

Table 4.1 summarizes a list of notations used in this chapter.

4.2.1 Related work

A number of sampling-based methods have been proposed in recent years to estimate

C, e.g., in [1, 6, 8, 21, 23, 29]. Such approaches can be categorized into two models:

streaming and none-streaming. The former model requires a sequential access to

the edge/node list of the entire input graph. The goal is to achieve an accurate

estimation by storing small number of edges/nodes in a limited memory window

over one or several scans of the graph data. In contrast, non-streaming methods have

more general sampling scheme without streaming limitation and need to have random
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access to the nodes/edges of input graph. Similarly, they aim to obtain an accurate

estimation using small number of samples.

A none-streaming model: a straightforward method in this model is wedge

sampling [6]. It selects wedges uniformly at random and the fraction of closed ones is

used as an unbiased estimation for C. This method requires roughly 4/ε2C sampled

wedges to obtain an estimation in interval C ± εC with 95% confidence. To sample

a random wedge (u, v, w), the center node v needs to be taken proportional to Λv.

Recall that Λv is the number of wedges for node v. Then, the other two endpoint nodes

u and w need to be chosen from the neighborhood of node v uniformly at random.

Unfortunately, this method is not scalable on massive graphs because sampling a

random node proportional to the number of its wedges to build a random wedge is

an intensive task.

A scalable technique in this context is edge sampling. It samples some random

edges from input graph G to build subgraph g. Then, the number of triangles and

wedges in g are used to estimate C. A naive edge sampling technique is to sample

edges uniformly at random and create a subgraph g. Then, use the number of wedges

and closed ones in g to estimate C. Let p be the sampling probability to add edges

into g. Thus, probability of observing a closed wedge in g is p3 [7]. Similarly, sampling

probability of a wedge in g is p2. Let Λg and ∆g be the number of wedges and closed

ones in g respectively. Thus, using the unbiased estimators for ∆, i.e. ∆g/p
3 [7], and

for Λ as Λg/p
2, the estimator for C is

Ĉ =
∆g

pΛg

. (6)

To obtained an estimation with additive error ε with 95% confidence, the size of

subgraph g needs to be roughly 1.5M/(ε2∆)1/3. Unfortunately, such a technique

suffers from the paucity of closed wedges in the sampled graph g when sampling

probability p is small which is the case for very large graphs. Furthermore, such

estimator is biased. When graph data is not entirely available, indirect sampling

technique can be used to take samples from input graph G. Authors in [23] used
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random walk to sample nodes proportional to their degrees. Then, the number of

wedges and closed wedges in the sample are used to estimate C. Such an estimator

is biased and its bias has not been quantified. Furthermore, the variance of the

estimator has not been derived.

A streaming model: in this model, edges of the input graph are scanned one by

one from a stream of edges of the original graph. The goal is to obtained an accurate

estimation by storing sampled edges in a limited memory window over one or several

passes of whole graph data. To sample a random wedge in this model, two passes over

an edge stream are required. Furthermore, one additional pass over the edge stream

is needed to check the closeness of the random wedge [10, 17]. Therefore, sampling a

random wedge from a large graph is an intensive task. Akin to non-streaming model,

a scalable technique to estimate C in this model is edge sampling [1, 8, 21, 29].

Authors in [21,29] increased probability of identifying a triangle in the sample by

storing two separate pools–edge and wedge pools. Edges in the stream were preserved

in an edge pool with fix-sized n. By updating the edge pool, new wedges formed in

the pool were preserved in a wedge pool with fixed-sized k. The closenesses of wedges

in the wedge pool are also checked for each edge in the stream. Fraction of closed

wedges in the wedge pool is used to estimate C. Using Chernoff bound the authors

showed that the memory usage of the method is at most M/(ε2∆1/2) to have an

estimation with additive error ε. Note that the estimator still is biased as the author

mentioned it in [29]. To the best of our knowledge, there is no study for the variance

and bias of this estimator.

Next attempt to increase the chance of observing a closed wedge in g is to sample

edges from a stream with different probabilities, i.e. p, q, and 1 where q > p [8]. The

process is as follows. If a new edge e closes a wedge in g it is sampled unconditionally.

Otherwise if e connected into some edges in g it is chosen with probability q; otherwise

with p. The number of wedges and closed ones in g are used to obtain an estimation

of C. The bias of the estimator noticed but not quantified [8]. Furthermore, the

variance of the estimator was provided as a general equation using Delta method and

not studied in depth.
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More recently, priority sampling has been used in [1] to increase the chance of

observing a closed wedge in g. The idea is to give a high priority for edges that close

wedges in g. First technique called GPS-Post estimates wedges and closed wedges at

the end of a stream and then uses them to obtain an estimation of C. More efficient

method called GPS-In estimates wedges and closed wedges in the stream. In contrast

to the former method, GPS-In checks the closeness of wedges in g while scanning the

edges. Still such estimators are biased. However, the bias has not been quantified

nor corrected.

4.3 The bias and variance in a non-streaming model

4.3.1 The sampling scheme

Our sampling scheme is based on edge sampling. It selects n distinct edges from the

original graph G uniformly at random to generate a subgraph g. When interpreted

as a node sampling process, it is the same as PPS sampling, where nodes are sampled

with Probability Proportional to Size. In this sense, random walk sampling is an

approximation to random edge sampling.

Let Λg be the count of wedges in g, and ∆g denotes the number of closed-wedges

restricted to the wedges of g in which their closenesses are checked based on the

original graph G. The expectations of Λg and ∆g are

E(Λg) = Λp2, E(∆g) = ∆p2. (7)

Hence, the unbiased estimator for Λ and ∆ [28] are

Λ̂ =
Λg

p2
, ∆̂ =

∆g

p2
.

Under this sampling scheme, the biased estimator in Eq. 2 is instantiated as

Ĉ =
∆g

Λg

. (8)
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4.3.2 The bias

We quantify the bias using the classic power method [74]. By Taylor expansion, the

quadratic approximation of x/y in the neighbourhood of (a, b) is

x

y
≈ a

b
+

(
1

b
(x− a)− a

b2
(y − b)

)
+

(
a

b3
(y − b)2 − 1

b2
(x− a)(y − b)

)
.

Applying expectation on both sides of the equation yields:

E
(
x

y

)
≈ E

(a
b

)
+

1

b
(E(x)− a)− a

b2
(E(y)− b)

+
a

b3
E(y − b)2 − 1

b2
E(x− a)(y − b). (9)

Take a = E(∆g), b = E(Λg), x = ∆g, and y = Λg. Note that by definition

cov(∆g,Λg) = E((∆g − E(∆g))(Λg − E(Λg))), and var(Λg) = E(Λg − E(Λg))
2. Eq. 9

can be rewritten as:

E
(

∆g

Λg

)
≈ E(∆g)

E(Λg)
+

E(∆g)var(Λg)

E(Λg)3
− cov(∆g,Λg)

E(Λg)2
. (10)

Applying the fact that C = ∆/Λ = E(∆g)/E(Λg), the above equation can be

reformulated as

E(Ĉ) ≈ C
(

1 +
var(Λg)

E(Λg)2
− cov(∆g,Λg)

E(∆g)E(Λg)

)
. (11)

We can see that the bias hinges on the variance of Λg and covariance between

∆g and Λg. Before going into the derivation of the variance and covariance, we need

to understand the dependency between two wedges, and the dependency between a

wedge and a closed-wedge as illustrated in Fig. 4.1. Panel (a) is an example graph. In

the graph, two wedges (k,j,i) and (l,j,i) share a common edge (j,i). We use Ψ to denote

the number of such sharing in a graph. Panel (c) is an example of sharing between a
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j i

kl

(a) (b) (c) (d) (e)

FIGURE 4.1: Illustration of shared wedges and closed-wedges. (a) A sample graph;
(b) Wedge (l, j, i) shares with wedge (k, j, i); (c-d) Wedge (l, j, i) shares with closed-
wedges (i, j, k), (k, i, j); (e) Wedge (l, j, k) shares with closed-wedge (j, k, i). The
large node in the plot indicates the centre node of the closed-wedge. E.g., in Panel
(c) the closed-wedge is (k, j, i).

wedge and a closed-wedge: wedge (l,j,i) and closed-wedge (k,j,i) share a common edge

(j,i). Panels (d) and (e) are similar to (c), except that the center node in the wedges

is changed. Here we showcase the following distinction between a closed-wedge and

a triangle: a closed-wedge is similar to a triangle except that each triangle has three

closed-wedges, and correspondingly, a closed-wedge has a center node. We denote the

number of such sharing using Ω. In a graph, Ψ and Ω can be very large, much larger

than Λ and ∆.

Let λi be an indicator for the ith wedge in the original graph G. Indicator λi is

1 if the wedge is sampled in g; otherwise it is 0. Let 1, 2, ..,Λ be the labels for all

wedges in G. Λg =
∑Λ

i=1 λi. By applying var on both sides on the equation, we have

var(Λg) = var(
Λ∑
i=1

λi) =
Λ∑
i=1

Λ∑
j=1

cov(λi, λj)

=
Λ∑
i=1

var(λi) +
∑
i 6=j

cov(λi, λj). (12)

Variable λi follows a Bernoulli distribution with probability p2 and var(λi) =

p2 − p4. For the covariance, we need to consider the cases of dependent wedges.

Wedges λi and λj are dependent when they have a shared edge in graph G as illus-

trated in Panel (b) of Fig. 4.1. In such a case, E(λiλj) = p3, hence cov(λi, λj) =

E(λiλj)−E(λi)E(λj) = p3−p4. There are 2Ψ cases (each cov(λi, λj) has an equivalent

cov(λj, λi)) , we have the following by substituting var(Λi) and cov(λi, λj) in Eq. 12.

var(Λg) = Λ(p2 − p4) + 2Ψ(p3 − p4). (13)
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Next we derive cov(∆g,Λg). Let δi be the indicator for the ith closed-wedge in

graph G. The covariance between ∆g and Λg is

cov(∆g,Λg) =
∆∑
i=1

Λ∑
j=1

cov(δi, λj)

=
∆∑
i=1

Λ∑
j=1

E(δiλj)− E(δi)E(λj).

When δi and λj are independent, they share no edges, the covariance between them

is cov(δi, λj) = 0. There are two cases that δi and λj are dependent: the wedge

has either one edge or two edges shared with the closed-wedge. In the first case,

E(δiλj) − E(δi)E(λj) = p3 − p4. Note that it is not p4 − p5 because our sampling

method checks the closeness of a wedge whenever a wedge is encountered. Hence the

probability of seeing a closed-wedge in a sample is p2 instead of p3. In the second

case, the wedge is contained in the closed-wedge, and E(δiλj)−E(δi)E(λj) = p2− p4.

Since there are Ω number of one-edge sharing, and ∆ number of two-edge sharing,

the covariance is

cov(∆g,Λg) = ∆(p2 − p4) + Ω(p3 − p4). (14)

Substitute Eq. 13 and Eq. 14 into 11, and assume that 1−p ≈ 1−p2 ≈ 1 because

the sampling probability is very small for large graphs, we obtain

E(Ĉ) ≈C
(

1 +
2E(Ψg)

E(Λg)2
− E(Ωg)

E(Λg)E(∆g)

)
. (15)

Let relative bias RB = E(Ĉ)/C − 1. After rearranging the formula above, and

remember that E(Λg) = Λp2, E(∆g) = ∆p2, E(Ωg) = Ωp3, and E(Ψg) = Ψp3, we

quantify the bias as follows.
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Theorem 1. The RB of the estimator in Eq. 8 is approximated by

RB ≈ 1

p

(
2Ψ

Λ2
− Ω

Λ∆

)
, (16)

and it can be estimated by

R̂B =
2Ψg

Λ2
g

− Ωg

Λg∆g

. (17)

Correspondingly, we have the following bias-corrected estimators:

Ĉ∗ =
∆g

Λg

[
1 +

1

p

(
2Ψ

Λ2
− Ω

Λ∆

)]−1

, (18)

where p is the sampling probability, Ψ and Ω are the counts for shared wedges and

shared wedges and closed-wedges, respectively. The practical estimator based on

subgraph only is

Ĉ+ =
∆g

Λg

[
1 +

2Ψg

Λ2
g

− Ωg

Λg∆g

]−1

, (19)

where Ψg and Ωg are the corresponding counts for Ψ and Ω in subgraph g.

4.3.3 Counting Ψ and Ω

The estimator Ĉ+ relies on Ψg and Ωg. Ψ and Ω can be computed efficiently, especially

for sample graphs that are typically not very large. Ψ is counted by iterating through

all the edges using the following equation:

Ψ =
∑

e(j,k)∈E

[(
dj−1

2

)
+
(
dk−1

2

)
+ (dj − 1)(dk − 1)

]
, (20)

where j and k are end nodes of edge e and dx is the degree of node x for x = j, k.

This can be verified by looking at the three cases of shared wedges in Panel (a) of

Fig. 4.2. For two first cases, there are
(
dj−1

2

)
+
(
dk−1

2

)
shared wedges. For last case,
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Cases Overlap cases Ψ

For node j (
dj−1

2

)
= 1

For node k Empty
(
dk−1

2

)
= 0

Between j and k
(dj − 1)(dk − 1) = 2

(a) Example for counting Ψ by checking edge (j, k). Need to repeat
the process for every edge in the graph. For edge (j, k), Ψ =

(
dj−1

2

)
+(

dk−1
2

)
+ (dj − 1)(dk − 1) = 3.

Closed-wedge Overlap cases Φ

(i, j, k) dj − 2 for (j, k)

dj − 2 for (j, i)

(j, i, k) dj − 1

(j, k, i) dj − 1

(b) An example of counting Ω by checking node j. Need to repeat
the process for every node in triangles in the graph. Large nodes
indicate the center node of a closed-wedge. For node j, there are
2× (dj−2)+dj−1+dj−1 = 4dj−6 = 6 cases of overlaps between
a wedge and a closed-wedge.

FIGURE 4.2: An example for computing Ψ and Ω in the sample graph in Fig. 4.1
Panel (a).

there are (dj − 1)(dk − 1) shared wedges.

Metric Ω is computed by summarizing the overlaps for each node in all the triangles

using the following equation:

Ω =
∑

(i,j,k)∈∆

(4dj − 6), (21)

where i, j, k are nodes in graph G and (i, j, k) is a closed-wedge with center node j.

Note that dj ≥ 2, hence Ω is always a positive value.
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The equation can be explained using the example depicted in Panel (b) of Fig.

4.2. For node j, there are dj − 2 number of wedges that share edge (j,k) for the the

closed-wedge (i,j,k). Similarly, there are dj − 2 number of shared pairs with common

edge (j, i). Now, we need to look at other two closed-wedges (j,i,k) and (j,k,i). For

closed-wedge (j,i,k), there are dj − 1 number of wedges emanating from node j that

share one edge with the closed wedge. Similarly, for closed-wedge (j, k, l), there are

also dj − 1 shares. Hence, overall for each node j, there are 4dj − 6 shared pairs.

4.3.4 The variance

Next, we derive the variance of the estimator. To do so, we use the Delta method as

follows. Apply var on the estimator, we get:

var(Ĉ) = var

(
∆g

Λg

)
. (22)

The approximation of the variance of term ∆g/Λg in the neighborhood of (a, b) where

a = E[Λg], b = E[Λg] using Delta method is:

var

(
∆g

Λg

)
≈ var(∆g)

b2
+
a2 var(Λg)

b4
− 2a cov(∆g,Λg)

b3
. (23)

In our sampling scheme E(∆g) = ∆ p2, and E(Λg) = Λ p2; replace them in Eq. 23,

and we get:

var(Ĉ) ≈ var(∆g)

Λ2p4
+

∆2p4var(Λg)

Λ4p8
− 2∆p2cov(∆g,Λg)

Λ3 p6

=
var(∆g)

Λ2p4
+

∆2var(Λg)

Λ4p4
− 2∆cov(∆g,Λg)

Λ3 p4
. (24)

The variance formula in Eq. 24 is complicated and depends on several parameters.

To have better insight into it, we present the variance in the form of relative standard
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error (RSE=
√
var/C). Replace C = ∆/Λ; we get the RSE as:

RSE(Ĉ) ≈
[

Λ2var(∆g)

∆2Λ2p4
+

Λ2∆2var(Λg)

∆2Λ4p4
− 2Λ2∆cov(∆g,Λg)

∆2Λ3 p4

]1/2

=

[
var(∆g)

∆2p4
+
var(Λg)

Λ2p4
− 2cov(∆g,Λg)

∆Λ p4

]1/2

. (25)

The RSE relies on the variance of ∆g and Λg, and the covariance between them.

We derived terms var(Λg) and cov(∆g,Λg) in section 4.3.2. We also use the result

in [28], to rewrite the variance of var(∆g) as:

var(∆g) = ∆(p2 − p4) + 8Φ(p3 − p4). (26)

Variable Φ stands for the number of distinct pairs of dependent triangles in the

original graph. We refer to [28] for more details.

When the input graph is large, sampling probability p is very small. Thus, 1− p

and 1 − p2 is approximated by 1. Therefore, var(∆g), var(Λg) and cov(∆g,Λg) are

approximated as follows.

var(∆g) ≈ ∆ p2 + 8Φ p3, (27)

var(Λg) ≈ Λ p2 + 2Ψ p3, (28)

cov(∆g,Λg) ≈ ∆ p2 + Ω p3. (29)

Substitute Eq. 27, Eq. 28, and Eq. 29 in the RSE formula we get:

RSE(Ĉ) ≈
[

1

∆ p2
+

8Φ p3

∆2p4
+

2Ψ p3

Λ2p4
− 1

Λ p2
− 2Ω p3

∆Λ p4

]1/2

. (30)

The RSE formula in Eq. 30 depends on the properties of the original graph

G. Therefore, practitioners need to use the properties of sampled graph g to get

idea about the error bound of the estimator. To do so, substitute E(∆g) = ∆ p2,

E(Λg) = Λ p2, E(Φg) = 4Φ p3, E(Ψg) = Ψ p3, and E(Ωg) = Ω p3; after simplifying
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Algorithm 3: Naive edge streaming (NES)

Input: p
Output: ∆̂, RSE(∆̂)

1 begin
2 ∆g = 0, Λg = 0, g = φ.
3 while new edge e do
4 Add e into g with probability p.
5 foreach wedge w formed using e and edges in g do
6 Λg+ = 1.
7 end
8 foreach wedge w ∈ g closed by e do
9 ∆g+ = 1.

10 end

11 end

12 Ĉ = 3∆g(pΛg)
−1; R̂SE(Ĉ)≈ ∆

−1/2
g .

13 end

the result; we obtain:

RSE(Ĉ) ≈
[

1

∆g

+
2Φg

∆2
g

+
2Ψg

Λ2
g

− 1

Λg

− 2Ωg

∆gΛg

]1/2

. (31)

Obviously, the first term in above equation is dominant. Thus, we have:

Theorem 2. The RSE of Ĉ is obtained by

R̂SE(Ĉ) ≈ ∆−1/2
g . (32)

4.4 The bias and variance in a streaming model

4.4.1 Naive edge streaming (NES)

Having obtained the bias and variance estimators for random edge sampling, we

ponder whether the results can be extended to other sampling methods. The answer

is positive– the results are generic with small changes. As an example, we expand

the random edge sampling slightly to its streaming counterpart, which we call Naive

Edge Streaming (NES) as described in Alg. 3. It is also a special case of [1], where
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all edges are sampled with the same priority.

In NES, edges arrive in an arbitrary sequence over an edge stream of the original

graph G. Over the stream, NES samples some edges uniformly at random with an

equal probability p, and adds them into the subgraph g. Once a new edge e arrives,

the number of wedges closed by e in g is counted. Let ∆g denote the number of

such closed wedges observed in the stream. At the same time, the number of wedges

formed using e and edges in g is enumerated. Let Λg be the total number of such

wedges. Then, C is estimated using ∆g and Λg. A key difference with our non-

streaming method is that ∆g and Λg are counted along the streaming process, not

after the sampling.

Given a subgraph g of G, for every wedge (u, v, w) in g, we check whether or

not (u,w) is in the rest of the stream. For every closed wedge in G, if its two

edges are sampled in g, the probability of observing the third edge in the rest of

the stream is 1
3
. Thus, the probability of identifying a closed wedges by NES is

1
3
p2. Let δi be an indicator for the ith closed wedge in G. Variable δi is 1 when

two edges of the ith closed wedge are sampled and the third edge is observed in the

rest of the stream; otherwise it is 0. Recall that ∆g is the number of closed wedges

identified by NES over a single pass on an edge stream of G. The expectation of

∆g is: E(∆g) = E(
∑∆

i=1 δi) =
∑∆

i=1 E(δi) =
∑∆

i=1
1
3
p2 = 1

3
p2∆. Thus, an unbiased

estimator for ∆ is given by ∆̂ = 3∆g

p2
. Similar estimators for ∆ have also been proposed

in [19,20,28].

Next, we give an unbiased estimator for the number of wedges in G. To sample

a wedge by NES, one of its two edges needs to be added into g with probability p,

and its second edge is required to be observed in the rest of the stream. Thus, the

probability of identifying a wedge based on g is p. Suppose λi is an indicator for

the ith wedge in the input graph. Clearly, λi is 1 when its two edges are observed;

otherwise it is 0. Recall that Λg is the number of wedges identified based on g by

NES. Its expectation is E(Λg) = E(
∑Λ

i=1 λi) =
∑Λ

i=1 E(λi) =
∑Λ

i=1 p = pΛ. Thus, an

unbiased estimation for Λ is given by Λ̂ = Λg

p
.

Now we can use the unbiased estimators for ∆ and Λ to estimate C. Although
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both ∆̂ and Λ̂ are unbiased, the following estimator is biased as we will correct it

later in this chapter.

Ĉ =
∆̂

Λ̂
=

3p∆g

p2Λg

=
3∆g

pΛg

. (33)

4.4.2 Estimator of the variance

We derive the variance of the estimator using the Delta method. Applying var on

Eq. 33, we get:

var(Ĉ) = var

(
3 ∆g

p Λg

)
=

9

p2
var

(
∆g

Λg

)
. (34)

Applying Taylor expansion in the neighbourhood of (a, b), we have:

var

(
∆g

Λg

)
≈ 1

b2
var(∆g) +

a2

b4
var(Λg)−

2a

b3
cov(∆g,Λg).

Let a = E(∆g) and b = E(Λg), and using the fact that E(∆g) = 1
3
∆p2, and E(Λg) =

Λp, we obtain the variance and present it in the form of relative standard error

(RSE=
√
var/C) as follows:

RSE(Ĉ) ≈
[

9 var(∆g)

∆2p4
+
var(Λg)

Λ2p2
− 6 cov(∆g,Λg)

∆Λp3

]1/2

.

The RSE depends on the variance of ∆g and Λg, and the covariance between them.

Note that this is where [1, 8] stops. We continue the derivation of the variances and

covariances in Appendix. When the networks are large, p is a very small value. Hence,

we can assume that 1 − p ≈ 1 − p2 ≈ 1, and the results of the Lemmas 1, 2, and 3

are simplified as follows:

var(∆g) ≈
1

3
∆ p2 +

16

15
Φ p3, (35)

var(Λg) ≈
2

3
Ψ p, (36)

cov(∆g,Λg) ≈
5

12
Ω′ p2. (37)
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Here Φ is the number of pairs of dependent triangles, Ψ is the number of pairs

of shared wedges, and Ω′ is the number of pairs of wedges and triangles with one

common edge in the original graph G. Replace Eq. 35, Eq. 36, and Eq. 37 in the

RSE above; we obtain the RSE as:

RSE(Ĉ) ≈
[

9
(

1
3∆ p2 + 16

15Φ p3
)

∆2p4
+

2
3Ψ p

Λ2p2
−

6
(

5
12Ω′ p2

)
∆Λp3

]1/2

=

[
3

∆p2
+

48Φp3

5∆2p4
+

2Ψ p

3Λ2p2
− 5Ω′p2

2∆Λp3

]1/2

. (38)

The RSE in Eq. 38 depends on the properties of the original graph G, i.e. ∆, Λ, Φ,

Ψ, and Ω′. Note that those properties are unknown for the third party. However,

practitioners need to know the error bound of the estimator using the properties in

the sample. To do so, we give the estimation of the variance as follows.

Based on NES sampling scheme we have: E(∆g) = 1
3
∆p2, E(Λg) = Λp, E(Φg) =

8
15

Φp3, E(Ψg) = 2
6
Ψp, and E(Ω′g) = 5

12
Ω′p2. Thus, substitute ∆, Λ, Φ, Ψ, and Ω′ in

Eq. 38 by their estimations, we obtain the estimator of the RSE as:

R̂SE(Ĉ) ≈
[

1

∆g

+
2Φg

∆2
g

+
2Ψg

Λ2
g

−
2Ω′g

∆gΛg

]1/2

. (39)

where Φg is the number of pairs of dependent triangles, Ψg is the number of pairs

of shared wedges, and Ω′g is the number of pairs of wedges and triangles with one

common edge observed based on subgraph g. The RSE in Eq. 39 hangs on several

variables in the sample, i.e. ∆g, Λg, Φg, Ψg, and Ω′g. To have better understating the

RSE of the estimator, we need to simplify it further. We claim that when sampling

probability p is small, the first term in Eq. 39, i.e. ∆−1
g , is dominant. Therefore, we

give the following Theorem as a simplified estimator for the RSE of C.

Theorem 3. When p is small, the RSE of Ĉ is approximated by

R̂SE(Ĉ) ≈ ∆−1/2
g . (40)
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4.4.3 The bias-corrected estimator

To quantify the bias, we apply the expectation on Ĉ:

E
(
Ĉ
)

= E
(

3∆g

pΛg

)
=

3

p
E
(

∆g

Λg

)
. (41)

The approximation of E
(
∆g/Λg

)
using the quadratic Taylor expansion of ∆g/Λg in

the neighborhood of (a, b) is:

E
(

∆g

Λg

)
≈a
b

+
a

b3
var(Λg)−

1

b2
cov(∆g,Λg). (42)

Replace a = E
(
∆g

)
and b = E

(
Λg

)
and take E

(
∆g

)
= ∆p2/3 and E

(
Λg

)
= Λp;

substitute Eq. 42 in Eq. 41, and use C = ∆/Λ we obtain:

E
(
Ĉ
)
≈C
(

1 +
var(Λg)

Λ2p2
− 3cov(∆g,Λg)

∆Λp3

)
. (43)

To quantify the bias of Ĉ, the relative bias, i.e. RB= (E
(
Ĉ
)
− C)/C, is used. By

substituting Eq. 43 in RB, and simplifying the result we obtained:

RB ≈ var(Λg)

Λ2p2
− 3cov(∆g,Λg)

∆Λp3
. (44)

The bias depends on the variance of Λg and the covariance between ∆g and Λg.

Using the same treatment in the variance of Ĉ for the var(Λg) and cov(∆g,Λg), i.e.

Eq. 36 and Eq. 37, and replacing them in Eq. 44 we have:

RB ≈ 2Ψ p

3Λ2p2
− 5Ω′ p2

4∆Λp3
. (45)

Thus, we summarize our result in the following theorem.
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Theorem 4. The RB of the estimator in Eq. 33 is approximated by

RB ≈ 1

p

[
2Ψ

3Λ2
− 5Ω′

4∆Λ

]
. (46)

and its estimation is:

R̂B ≈ 2Ψg

Λ2
g

−
Ω′g

∆gΛg

. (47)

Using R̂B, a bias-corrected estimator of Ĉ is

Ĉ+ =
Ĉ

1 + R̂B
. (48)

The bias-corrected estimator depends on the structure of sampled graph g. There-

fore, using a single pass over an edge stream of the input graph we need to count ∆g,

Λg, Ψg, and Ω′g. Recall that Ψg is the number of pairs of shared wedges and Ω′g is

the number of pairs of wedges and triangles with one common edge observed based

on subgraph g. Note that Ω′ = (Ω− 6∆)/2.

4.4.4 The variances of ∆g and Λg and their covariance

This section presents the derivations of the variances of ∆g and Λg and their covariance

used to estimate the variance of Ĉ and its bias.

Lemma 1. Let ∆g be the number of closed wedges identified based on g using NES.

The variance of ∆g is

var(∆g) =
1

3

(
∆(p2 − 1

3
p4) + 8Φ(

2

5
p3 − 1

3
p4)

)
. (49)

Proof. var(∆g) = var(
∆∑
i=1

δi) =
∆∑
i=1

var(δi)+
∑
i 6=j

cov(δi, δj). The probability of identify-

ing a closed wedge by NES is 1
3
p2. Hence, the cost of the variance term is ∆(1

3
p2− 1

9
p4).

The covariance between two independent closed wedges is zero. Thus, we need to find

the covariance between dependent closed wedges. The probability of identifying such
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a dependent case is 2
15
p3. Recall that the total number of pairs of shared triangles

is denoted by Φ. For each pair of shared triangles there are four dependent closed

wedges. Thus, in the summation above, there are 8Φ pairs of shared closed wedges.

Thus, the covariance is 8Φ( 2
15
p3 − 1

9
p4). Adding the costs, we obtain the Lemma.

Lemma 2. Let Λg be the number of wedges identified based on g using NES. The

variance of Λg is obtained by

var(Λg) = Λ(p− p2) +
2

3
Ψ(p− p2). (50)

Proof. var(Λg) = var(
Λ∑
i=1

λi). =
Λ∑
i=1

Λ∑
j=1

cov(λi, λj) The probability of identifying a wedge

by NES is p. When i = j holds, the covariance term is equal to the variance of λi,

which is p − p2. Thus, we get var(Λ̂) = Λ(p − p2) +
∑
i 6=j

cov(λi, λj). Next, we need to

understand the covariance between two wedges. When the two wedges wi and wj

are independent the covariance between them is zero. Hence, we need to consider

the covariance between dependent wedges. The probability of identifying a pair of

dependent wedges is p. Thus, the covariance between two shared closed wedges is

(p− p2). Suppose Ψ is the number of pairs of dependent wedges in G. The chance to

identify such a dependent case is 1/3. Because cov(λi, λj) = cov(λj, λi) , we need to

multiply the covariance term by 2. Thus, the lemma is proved.

Lemma 3. Covariance between ∆g and Λg is given by

cov(∆g,Λg) = 2∆(p2 − p3) +
5

12
Ω′(p2 − p3). (51)

Proof. cov(∆g,Λg) =
∆∑
i=1

Λ∑
j=1

cov(δi, λj). Suppose Ω′ is the exact number of pairs of

wedges and triangles with one common edge in G. The sampling probabilities of such

a pair is p2. Moreover, the chance to identify such a pair in the streaming model by

NES is 5/12. Therefore, the total cost is 5
12

Ω′(p2−p3). In addition, each closed wedge

of a triangle shares an edge with the other two wedges in the triangle. The total cost

for such cases is 6∆(1
3
p2 + 1

3
p3). Therefore, the lemma thus follows.
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4.5 Experiments

4.5.1 Datasets

The bias and variance phenomenon varies greatly from graph to graph. To find out

the patterns behind, we need to experiment extensively with many different kinds of

graphs. In total, we use 56 real graphs from a variety of areas such as online social

networks, web graphs, Co-authorship, and citation networks. The graph size also

varies from about 4× 103 (very small) to 65× 106 (very large). The directionality of

directed graphs is ignored and self-edges are removed. The properties of the graphs

are summarized in Table 4.2. The codes along with the intermediate data are available

on the website http://cs.uwindsor.ca/~etemadir/cc. We used two servers each

with 24 cores and 256 GB RAM to calculate ground truth for weeks for large graphs.

4.5.2 The bias in the non-streaming model

First, we demonstrate the existence of bias using Fig. 4.3. In the plot, the observed

bias is obtained by repeating the estimation for 5×104 times except for the very large

datasets with 104 repetitions. X-axes are sampling probability p. We can see that

the range of p varies from data to data. We do not set a fixed range of p because, for

different data sizes, the required sampling probability is different to achieve the same

accuracy. Larger data normally requires smaller sampling probability. Hence, we fix

the RSE (Relative Standard Error) to be within the range of 0.1 to 0.4. Then, p is

derived from RSE using the formula provided in [28].

We can use Eq. 16 to interpret our experiments. From the equation, we can tell

that the bias depends on the sampling probability p. Thus, we can expect that the

bias diminishes with the increase of sample size, as verified by all the datasets. When

the graph is very large, p could be very small to achieve accurate estimation. For

instance, in WebArabic, p is in the order of 10−5 to achieve 95% confidence interval

C ± 0.1C. Secondly, the bias depends on the structure of the graph characterized by

r = 2Ψ
Λ2 − Ω

Λ∆
. Empirically, r is a small value that ranges from 10−5 to 10−9 among 56
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TABLE 4.2: Properties of the networks in our experiments, sorted by graph size N .

Dataset N(×106) 〈d〉 C ∆(×106) Λ(×109) 〈d3〉 (×106) 〈d2〉(×103) 2Ψ
Λ2 - Ω

∆Λ
2Ψ
Λ2

Ω
∆Λ

Description

Ego-facebook [61] 0.004 43.69 0.519 4.8 0.009 1.09 4.6 1.2e-5 7.4e-5 6.2e-5 OSN

CA-GrQc [61] 0.005 5.52 0.629 0.1 0.0002 0.003 0.09 -7.0e-5 5.2e-4 5.9e-4 Collaboration

Wiki-vote [61] 0.007 28.32 0.125 1.8 0.014 1.2 4.1 -3.7e-6 5.9e-5 6.3e-5 OSN

AstroPh [62] 0.01 21.10 0.31 4.0 0.012 0.17 1.3 4.8e-6 3.2e-5 2.7e-5 Citation

CA-CondMat [61] 0.02 8.08 0.264 0.5 2 0.01 0.1 2.5e-5 8.3e-5 5.8e-5 Coauthorship

HepPh [62] 0.02 224.14 0.279 587 2 184 149 1.0e-7 1.8e-6 1.7e-6 Coauthorship

Enron-email [62] 0.03 10.02 0.085 2 0.025 0.8 1.4 1.6e-5 5.2e-5 3.5e-5 E-communication

Brightkite [61] 0.05 7.35 0.110 1.4 0.013 0.15 0.4 1.8e-5 5.8e-5 3.9e-5 OSN

Facebook [62] 0.06 25.64 0.147 10.5 0.07 0.43 2.2 1.0e-6 8.3e-6 7.2e-6 OSN

Epinions [62] 0.07 10.69 0.065 4.8 0.07 1.3 1.9 3.5e-6 2.3e-5 1.9e-5 OSN

Slashdot-Zoo [62] 0.07 11.82 0.023 1.6 0.06 1.1 1.7 5.2e-6 2.2e-5 1.7e-5 OSN

Prosper [62] 0.08 74.60 0.003 3.4 1.1 30 24 -1.9e-7 2.6e-6 2.8e-6 Interaction

Livemocha [62] 0.1 42.13 0.014 10.0 0.716 12 13 -2.5e-7 3.2e-6 3.5e-6 OSN

Douban [62] 0.1 4.22 0.01 0.1 0.011 0.01 0.1 -4.7e-6 1.6e-5 2.1e-5 OSN

Gowalla [61] 0.1 9.66 0.023 6.8 0.290 24 2.9 4.9e-5 5.6e-5 7.1e-6 OSN

Libimseti [62] 0.2 155.97 0.007 207 28 2,203 255 1.3e-7 6.5e-7 5.1e-7 OSN

Digg [62] 0.2 11.07 0.061 42 0.69 15 4.9 5.1e-6 9.7e-6 4.6e-6 OSN

Web-Stanford [62] 0.2 14.13 0.008 33 3.94 536 27 7.1e-6 9.7e-6 2.5e-6 Web graph

Dblp-Coau [61] 0.3 6.62 0.306 6 0.021 0.008 0.1 -4.5e-7 8.3e-6 8.7e-6 Coauthorship

Web-NotreDame [61] 0.3 6.69 0.087 26 0.304 8.3 1.8 2.5e-5 2.9e-5 4.5e-6 Web graph

Amazon [61] 0.3 5.53 0.205 2 0.009 0.002 0.06 5.5e-6 1.0e-5 5.2e-6 Co-purchasing

Actor [62] 0.3 78.68 0.166 1,040 6.26 36 32 5.1e-8 5.3e-7 4.8e-7 Collaboration

Citeseer [62] 0.3 9.03 0.049 4 0.081 0.14 0.4 5.1e-6 8.8e-6 3.6e-6 Citation

Dogster [62] 0.4 40.03 0.014 250 17 1,742 82 1.5e-6 2.4e-6 8.7e-7 OSN

Catster [62] 0.6 50.32 0.028 1,969 69 11,637 222 1.2e-6 1.5e-6 2.2e-7 OSN

Web-Berkeley [62] 0.6 19.40 0.0069 194 27.9 3,348 81 2.2e-6 2.9e-6 6.5e-7 Web graph

Web-Google [62] 0.8 9.87 0.055 40 0.727 4.5 1.6 6.3e-6 7.5e-6 1.1e-6 Web graph

Youtube [61] 1.1 5.27 0.006 9 1 30 2.6 1.2e-5 1.5e-5 3.9e-6 OSN

Dblp [62] 1.3 8.16 0.170 36 0.214 0.067 0.3 1.2e-6 2.4e-6 1.1e-6 Coauthorship

Hyves [62] 1.4 3.96 0.001 2 1.4 45 2 2.9e-5 3.0e-5 9.5e-7 OSN

Wiki-Polish [62] 1.5 55.17 0.01 3,402 308 81,387 404 1.2e-6 1.3e-6 6.5e-8 Web graph

Trec-wt10g [62] 1.6 8.33 0.014 63 4.3 63 5.4 4.3e-6 5.3e-6 1.0e-6 Web graph

Wiki-Portuguese [62] 1.6 48.19 0.022 3,798 170 17,635 213 9.1e-7 9.7e-7 5.5e-8 Web graph

Wiki-Japanese [62] 1.6 69.82 0.021 3,863 180 15,595 223 6.9e-7 7.7e-7 8.0e-8 Web graph

Pokec [62] 1.6 27.31 0.046 97 2.08 3.8 2.5 1.2e-6 1.5e-6 2.3e-7 OSN

As-skitter [61] 1.6 13.08 0.005 86 16 341 18 1.5e-6 2.2e-6 6.9e-7 Internet topology

Wiki-Italian [62] 1.8 72.90 0.024 9,419 388 47,127 416 5.3e-7 5.8e-7 4.6e-8 Web graph

Wiki-En [62] 1.8 39.05 0.003 379 122.9 10,112 131 9.6e-7 1.2e-6 2.9e-7 Web graph

Hudong [62] 1.9 14.54 0.003 64 18.7 358 18 1.7e-6 2.0e-6 3.3e-7 Web graph

Hollywood [63,64] 1.9 24.51 0.152 614 4 1.5 4 -4.4e-9 3.01e-7 3.06e-7 OSN

Baidu [62] 2.1 15.89 0.002 75 30.8 1,600 28 3.0e-6 3.6e-6 5.9e-7 Web graph

Flicker [62] 2.3 19.83 0.107 2,512 23 84 20 7.5e-8 4.4e-7 3.6e-7 OSN

Flixster [62] 2.5 6.27 0.013 23 1.7 0.88 1.3 6.0e-8 8.3e-7 7.7e-7 OSN

Wiki-Russian [62] 2.8 44.20 0.015 5,697 370 39,457 259 7.7e-7 8.2e-7 5.1e-8 Web graph

Wiki-French [62] 3.0 55.21 0.015 6,843 455 35,771 301 4.7e-7 5.2e-7 4.9e-8 Web graph

Orkut [62] 3.0 76.28 0.041 1,882 45 194 29 2.2e-7 3.0e-7 8.1e-8 OSN

Wiki-German [62] 3.2 40.77 0.0088 2,899 328 40,234 203 1.1e-6 1.2e-6 5.3e-8 Web graph

USpatent [62] 3.7 8.75 0.067 22 0.33 0.011 0.1 7.2e-8 5.2e-7 4.5e-7 Citation

LiveJournal [61] 3.9 17.35 0.125 533 4 3.1 2.1 5.0e-7 7.7e-7 2.7e-7 OSN

Orkut2 [63,64] 11 56.80 0.0002 669 2,543 36,715 441 2.3e-8 6.6e-8 4.3e-8 OSN

DBpedia [62] 18 13.89 0.0016 986 583 19,199 63 9.7e-7 1.0e-6 5.6e-8 Web graph

Web-Arabic [63,64] 22 48.70 0.031 110,686 3,531 86,644 310 1.5e-7 1.5e-7 4.7e-9 Web graph

Gsh-2015 [63,64] 29 9.18 0.007 1,169 164 1,000 11 9.9e-7 1.1e-6 1.1e-7 Web graph

Twitter [62] 41 57.74 0.0008 104,474 123,435 5,659,930 5,927 1.8e-8 2.0e-8 1.4e-9 OSN

MicrosoftAc.G. [65] 46 22.61 0.015 1,734 115 203 4.9 7.1e-7 7.2e-7 1.07e-8 Citation

Friendster [62] 65 55.06 0.017 12,521 720 23 22 1.5e-9 4.3e-9 2.8e-9 OSN
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FIGURE 4.3: The observed vs. estimated RB of Ĉ. The results were obtained over
5 × 104 independent runs for all graphs except for the large graphs in the last row
with 104 independent repetitions. The estimated RBs are obtained using Eq. 17.

graphs we explored.

To verify our estimated bias, we plot the estimated bias given in Eq. 17 side by side

with the observed bias. Overall, the observed and estimated biases fit well. Observed

bias fluctuates for some data sets, because of the low bias (hence high variation)

of the estimations. For graphs with larger bias (e.g., RB> 1%), our equation fits

the observed RB smoothly. This confirms that two approximations made during the

derivation are valid, i.e. 1) it is good enough to take the quadratic expansion of the

Taylor expansion; 2) It is valid to assume that 1− p ≈ 1.

The most important result of this research work is the bias-corrected estimator

Ĉ+. Fig. 4.4 compares the RB of Ĉ+ and Ĉ. We can see that Ĉ+ corrects the bias

consistently for all the datasets. For the same reason explained above, RBs fluctuates

because the bias is very small, hence we see the large variation. For data sets where
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bias is large (above 1%), such as Gowalla, Web-Stanford, Web-NotreDame, Web-

Google, and all the graphs from Wiki, RBs are more smooth.

Fig. 4.5 gives another perspective for understanding Eq. 16. This time we put

56 data sets in one plot, and demonstrate how good Eq. 16 is to quantify the bias.

Panel (A) plots observed RB against the estimated ones. The observed RB is taken

for anticipated RSE=0.2. We can see that observed RBs fit Eq. 16 well. It is not

a perfectly straight line because the estimation varies for each run. There are a few

data sets that have their relative biases larger than 1%. In most cases, the RB is very

small value that is close to zero. In some cases, the bias is negative.
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FIGURE 4.4: The bias-corrected estimator Ĉ+ vs. biased estimator. The observed
RBs were obtained over 5× 104 independent runs for all graphs except for the large
graphs in the last row with 104 independent repetitions.

4.5.3 Positive and negative bias

We observed that there are both positive and negative biases, although most of the

datasets demonstrate positive bias. We should note that by Jensen’s inequality,
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E(1/X) ≥ 1/E(X), thus we may have the wrong impression that there is positive

bias only. However, Jensen’s inequality can not be applied to our result because we

are looking at the bias of Y/X, not 1/X. Therefore, in our case, we can have both

positive and negative biases.

Next, let’s check when negative bias can occur. According to Eq. 16, the negative

bias occurs when 2Ψ
Λ2 <

Ω
Λ∆

. In other words, it happens when Ω is large compared with

other metrics. Empirically, it happens only for seven graphs among 56. These graphs

are CA-GrQc, Wiki-vote, Prosper, Livemocha, Douban, DBLP-coau, Hollywood. All

these graphs are (online) social networks with relatively high clustering coefficients.

Recall that terms 2Ψ
Λ2 and Ω

Λ∆
are resulted from the first two terms of Taylor

expansion. The relationship between these two terms decides not only the positive

and negative bias, but also the size of the bias. When the two terms are close, the

overall bias would be small. Hence, we use Fig. 4.5 Panel (B) to show the role of the

first term. The figure plots observed bias against the first term. We can see that the

first term can describe the RB for most data sets. However, there are some outliers.

We plotted the labels for the first 12 graphs describe in Table 4.2. Recall that we

sort the graphs by their (node) size. Overall, we can see that the smaller the graph

is, the farther away it deviates from the linear fit. In other words, for large graphs,

we can use the first term 2Ψ
Λ2 to approximate the bias.

The next question is, if we focus on large graphs only, can we simplify 2Ψ
Λ2 further?

Estimation is needed only for very large graphs. Hence the assumption on large

graphs is valid. The values of Ψ and Λ lack intuitive interpretation. Even though

it is easy to estimate them from a sample graph, it would be helpful to give a more

intuitive understanding of the values as described in the next subsection.

4.5.4 Characterizing bias using second and third moments

When the graph is large, interestingly Λ and Ψ can be approximated by the second

and third moments of the degrees of the graph. Recall that
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Λ =
N∑
i=1

Λi =
N∑
i=1

(
di
2

)
.

When the graph is large, d2
i dominates, and the above can be simplified as

Λ ≈0.5N〈d2〉. (52)

Similarly,

Ψ =
∑

(i,j)∈E

[ (
di−1

2

)
+
(
dj−1

2

)
+ (di − 1)(dj − 1)

]

=
N∑
i=1

di
(
di−1

2

)
+
∑

(i,j)∈E

(di − 1)(dj − 1) ≈ 0.5N〈d3〉.

Therefore, we can approximate the bias by ignoring the second term:

RB ≈ 4〈d3〉
pN〈d2〉2

, (53)

where 〈d2〉 =
∑N

i=1 d
2
i /N , and 〈d3〉 =

∑N
i=1 d

3
i /N .

Although this result is not rigorous, we can demonstrate that 2〈d3〉
N〈d2〉2 can approx-

imate Ψ
Λ2 well using Fig. 4.6. A visual inspection reveals that, among all 56 graphs

including those small ones, all the data points are aligned well along the line. The

Pearson correlation coefficient between those two is 0.99 for both logged and unlogged

data points. We show the log-log plot only here. The unlogged version will have most

data points cramped on the left lower corner due to the uneven distribution of those

values.

This result tells us that the bias can be mostly determined by the third and second

moments of degrees of the graph when the graph is large. We want to emphasize that

when estimating clustering coefficient using Ĉ+, we only need to know the Ψ and Ω

in the sample graph. There is no need to calculate the second and third moments for
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the entire graph. Eq. 53 is used only to understand the nature of the bias– the bias

is large only when the third moment of the degree is large.

4.5.5 When the bias is large

Practitioners need to know what kind of graphs may have a large bias. Our results

point out that when the bias is large, Ψ is relatively large while Ω is relatively small.

This happens for web graphs, such as a Stanford Web depicted in Fig. 4.7. The

figure shows only a sampled graph obtained from a random walk. Yet it can reveal

the overall structure of the graph: It contains a ball (s) that has a very high degree.

Therefore, Ψ (or, equivalently, 〈d3〉) is large. At the same, there are no triangles in

the ball structure, Ω will not increase for this node. This explains why the web graphs

often have higher bias, as indicated in Fig. 4.3.

4.5.6 Verification of Theorem 2

To evaluate the RSE of the estimator, we tuned p to obtain the RSE between 0.1 and

0.4. The estimator repeated 100 times and the observed RSEs are reported in Fig.

4.8. The estimated RSEs in the plots are obtained using Eq. 32. Our estimation

for the RSE based on Eq. 32 fits perfectly the observed RSE not only on the large

graphs but also on the small ones, as shown in the plots.

4.5.7 Verification of Theorem 3

To verify the approximations made in the derivation of the RSE of the estimator in

Theorem 3, the parameters of the estimator were set up to obtain the RSEs between

0.1 and 0.4. First, we report the observed RSEs along with its estimations based on

Eq. 39 in Fig. 4.9. Only 4 representative graphs are reported for lack of space. Similar

pattern are observed for other graphs. We make several observations as follows.

• The estimated RSEs based on Eq. 39 fit perfectly the observed RSEs not only

for large graphs when p is small but also for small ones. Take Ego-facbook, for
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FIGURE 4.5: RB depends on the first term and second term of the Taylor expansion.
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FIGURE 4.8: The observed vs. the estimated RSEs. Estimated RSEs are obtained
based on Eq. 32 over 100 independent runs.

example, the smallest graph in our datasets, the observed RSEs (red circles) fit

very well our estimations based on Eq. 39.

• When p is small the first term in Eq. 39, i.e. 1/∆g, is a dominant term

compared to the remaining three. The reason is as follows. Firstly, when p

is small, the probability of identifying shared triangles, i.e. Φg, and pairs of

triangle and wedge with one common edge (Ω′g) based on the sampled g is very

small. Note that E(Φg) = 8
15

Φp3, and E(Ω′g) = 5
12

Ω′p2. Moreover, the term

2Ψg/Λ
2
g is neglectable due to the fact that their expectations depends on the

sampling probability p. Therefore, in the sample Ψg << Λ2
g.

• By increasing sampling probability p, terms +2Φg/∆
2
g and −2Ω′g/∆gΛg are in-

creasing in the same order. Surprisingly that the two terms neutralize each

other. Furthermore, term 2Ψg/Λ
2
g remains neglectable compared to the other

terms.
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FIGURE 4.9: The observed RSEs of Ĉ fit perfectly the estimated RSEs based on Eq.
39 in representative graphs.
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FIGURE 4.10: The estimated RSEs obtained based on Eq. 40 are apt estimations
for the observed RSEs of Ĉ.

The observations above support our claim in Theorem 3 to simplify the RSE of the

estimator. To verify the result in Theorem 3, we report the observed RSEs and

their estimations based on Eq. 40 in Fig. 4.10. It can be seen that the observed

RSEs support our estimations not only for large graphs but also for small ones. In a

few small graphs, i.e. Web-Standford, Web-Berkeley, and As-skitter, there are small

gaps between the observed and estimated RSEs. However, by increasing the size of

networks (see the last row in the figure) the estimated RSEs match perfectly the

observed ones. Thus, we believe that our result in Theorem 3 can be used in practice
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FIGURE 4.11: The observed RBs of Ĉ (biased estimator) support our estimations of
RB based on Eq. 47.
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FIGURE 4.12: Our biased-corrected Ĉ+ removes the bias perfectly.

to determine the size of samples to achieve a given accuracy level of the estimation.

4.5.8 The bias in the streaming model

To understand the bias, we set the parameters of the estimator to achieve the RSEs

between 0.1 and 0.4. The estimator run on the graphs and the observed RBs (relative

bias) and the estimated ones based on Eq. 47 were computed. The results were

reported in Fig. 4.11 for the graphs with the RB more than 0.7%. We make several

observations as follows: 1) The observed RBs support the estimated RBs based on

Eq. 47 for all graphs; 2) Both negative and positive biases are observed; 3) The

largest RBs were observed on small graphs and it can be as high as 2%;

We also report the observed RBs of our biased estimator and the bias-corrected

one in Fig. 4.12. It can be seen that the bias of Ĉ+ was removed in all the plots.
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FIGURE 4.13: Comparison of sample sizes, i.e. number of sampled edges, of the
methods when RSE=0.2. The sample size of NES is comparable with GPS-In [1].

4.6 Discussions and conclusions

We addresses the estimation of the bias and variance in both non-streaming and

streaming algorithms for estimating clustering coefficient. Essentially it is about

estimating the properties of an estimator. It is important since it is the only way to

know how good an estimate is during the estimation process.

Our result is obtained based on two simplifications. One is the Taylor expansion–

we take only the first two terms. The other is 1 − p ≈ 1 − p2 ≈ 1, assuming that

sampling probability is very small if the data is very large. With such simplifications,

we can characterize the variance in both non-streaming and streaming models with

a single variable, i.e., ∆g. Although in theory, variances depends on graph structures

characterized by Φ, Ψ, and Ω, all these variables can be neglected when estimations

are performed on very large graph. This simple yet powerful result is very useful in

practice – we can give a confidence interval when an estimate is given.

Bias is a perplexing problem in estimating graph properties in general [11] and

clustering coefficient in particular [21]. It is difficult to observe because, for many

graphs, especially small ones, the bias is almost negligible. Therefore, it has been

taken for granted to use biased estimators by practitioners as well as researchers

[23, 32]. It only became a more prominent problem recently, when people started to

estimate very large graphs.

Bias for clustering coefficient estimation is difficult to quantify and correct [8,29].
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It involves two variables, i.e., Λg and ∆g. We use Taylor expansion to approximate

the bias, and show that quadratic expansion is good enough for the approximation.

The quadratic expansion involves the variance and covariance of wedges and closed-

wedges in the sample graph. We show that they can be quantified by Ψ and Ω and

estimated by Ψg and Ωg. Based on this result, we propose a bias-corrected estimator

Ĉ+ in non-streaming model.

Bias for clustering coefficient estimation is difficult to understand. We observe

positive and negative biases for different graphs. It can be as large as 4% for some

graphs. On the other hand, it can be small even if the graph is very large. To

understand negative bias, we find that the second term dominates the equation only

when the network is relatively small, and they are (online) social networks. In other

words, their clustering coefficient is high.

Our result is simple and elegant: first we quantify the bias as RB ≈ 1
p

(
2Ψ
Λ2 − Ω

Λ∆

)
.

This is much simpler than the original Taylor expansion because of our assumption

that 1 − p ≈ 1. The assumption is valid when the graph is large. In most of

the data sets we experimented with, p is typically in the order of 10−4 to achieve

reasonable accuracy. Furthermore, we demonstrate that RB can be simplified further

by ignoring the second term when the graph is large, i.e., RB ≈ 2Ψ
pΛ2 . Based on this,

we can simplify the result further by approximate the bias using the second and third

moments of the degrees of the graph, i.e., RB ≈ 4〈d3〉
pN〈d2〉2 . This is instrumental in

helping us identify the type of graphs that have high bias.

For the bias part in streaming model, we conclude that it is small overall, and it

is more observable for smaller graphs. Interestingly, the bias can be either positive

or negative, depending on the graph structure.

Although our result is developed on NES algorithm, the same method can be

extended to numerous other streaming algorithms. Besides, NES itself is a very

powerful algorithm. Despite its simplicity, its performance is comparable to the state-

of-the-art algorithm GPS-In as illustrated in Fig.4.13. Hence, the variance estimator

and NES are a good combination to be used in practice.
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Conclusions and Future Directions

5.1 Introduction

The estimation of metrics ∆ and C in different sampling scenarios have been used

as case studies to address the challenges of sampling methods to analyze real-world

network graphs in the previous chapters. This chapter will summarize what has

been accomplished in this dissertation. It will also contain the conclusions of the

dissertation. Furthermore, it discusses future work in this direction.

5.2 Discussions and conclusions

We addressed the CI and bias problems of sampling methods to analyze massive real-

life networks. Reviewing existing methods revealed that the CI of estimators were

constructed using properties of original network data which are unknown in sampling

scenarios [1, 7, 8, 10, 18–21, 23]. Furthermore, we found that efficient estimators for C

suffer from a bias problem [1,8,18,21,29]. Thus, motivated by those observations we

used the estimation of ∆ and C as case studies to address such problems. We believe

that our techniques to construct the CI , and to quantify and correct the bias based

on sampled data can be used in other sampling domains.

First, an edge sampling-based method was proposed to estimate ∆ in a non-

streaming model. The variance of the estimator was derived as well. To have a

better understanding of the performance of the estimator we simplified the variance

using big data assumption. We also derived the estimator of the variance of the

estimator. We also used the same treatment to get the estimator of the variance of

the existing method. Our analytical results show that the variance of the estimators
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can be estimated using the number of triangles in the sample. Furthermore, the

performance ratio between the methods was quantified for the first time. To verify

our assumptions in the analytical results, extensive experiments on 56 real-world

graphs were conducted.

Second, the estimation of ∆ was addressed in a streaming model. The combination

of uniform random edge sampling and reservoir sampling were used to estimate ∆

in such a model. Moreover, the variance of the estimator was derived. The same

treatment in our first study was used to derive the estimator of the variance of the

estimators. The variance estimators were utilized to construct the confidence interval

of the estimators. Moreover, they were used to quantify the performance ratio of the

methods. To verify our analytical results, extensive experiments on real-life networks

from varieties of domains with different sizes were conducted.

Then, the estimation of C in both streaming and non-streaming models was stud-

ied. Edge sampling-based methods have been used to estimate C. However, we found

that such estimators suffer from a bias problem which is noticed in several works

but not quantified. Therefore, we quantified the bias in both streaming and non-

streaming models using the Taylor extension method. Then, the biased-corrected

estimators were proposed based on sampled data. Furthermore, the variances of the

estimators were derived.

Last but not least, we proposed a new technique to obtain analytical comparisons

of the methods in this context. By investigating the literature in this direction, we

found that the sampling methods were compared using experimental results. The

main disadvantage of such an experimental comparison is that the results depend on

the network data and vary from data to data. Thus, we were motivated to quantify

the performance ratio between the methods. To do so, we used big data assumption

to derive the estimator of the variance for the estimators. Our estimator of the

variance of the estimators has two main implications. First, they are useful to derive

the analytical comparisons of sampling-based methods. Second, they can be used to

construct the confidence interval of the estimators using the properties of sampled

data.
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5.3 Impact of our dissertation research

This dissertation proposed efficient methods to estimate the number of triangles and

clustering coefficient in network graphs. Counting the number of triangles and com-

puting clustering coefficient are fundamental problems in graph theory with many

applications. Metrics ∆ and C are also most useful properties of real-life network

graphs. For example, ∆ and C can help practitioners to determine whether a graph

looks like a social network or not. A social-network graph is expected to have ∆ much

greater than the value for random graphs [38]. Moreover, they can be used to study

the properties of communities in a social network. It is directly correlated with the

age of a community. Thus, our estimators to ∆ and C can be used to develop scalable

tools to analyze massive real-world networks.

Metrics ∆ and C have been widely used for data mining tasks such as link predic-

tion. One example of such a task is friend suggestion in online social networks such

as Facebook, Orkut, and Linkedin [35, 75, 76]. Another example is protein-protein

interactions prediction for drug design in bioinformatics [42,54]. Obviously, the exact

values of measures ∆ and C are not required in those tasks. Thus, our methods to

estimate ∆ and C can be used in such applications.

Other applications of our methods are graph clustering in data mining, spam de-

tection in computer networks, wireless and ad hoc networks analysis in computer

networks, blog analysis and finding interesting individuals in online social networks,

DAN sequence analysis, prediction of essential proteins, microarray data analysis for

finding cancer genes, and identifying modular formations in protein-protein interac-

tion network in biology, risk analysis in economy, word-learning in education, and

many more.

5.4 Looking into the future

Our approaches in this dissertation can be extended in the following directions:

• Counting ∆ in directed networks: This dissertation studied the estimation
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of ∆ and C in simple undirected real-world networks in depth. Estimation of

structural metrics of directed network graphs can be a future study in this

direction.

• Counting motifs and cliques: A triangle is a complete graph with size three

(K3) or a 3-clique. Our methods to estimate ∆ can be easily applied to count

larger useful structures such as k-clique (k=4,5,..), or other pattern subgraphs.

• Estimate other structural metrics: The average shortest path length is an

important metric to understand the information follow in a network. However,

some research has been conducted to estimate such a metric on large networks.

Sampling methods can be used to design efficient estimators in this context as

well.

• Graph clustering and community detection: Metric ∆ has been used to

improve the results of graph clustering and community detection tasks [33, 77,

78]. Metrics ∆ and C can be used as heuristics to design sampling methods to

preserve community structure of massive networks in a sampled data.
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