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ABSTRACT

Bit-parallel multiplication in GF (2n) with subquadratic space complexity has been

explored in recent years due to its lower area cost compared with traditional parallel

multiplications. Based on ’divide and conquer’ technique, several algorithms have

been proposed to build subquadratic space complexity multipliers. Among them,

Karatsuba algorithm and its generalizations are most often used to construct mul-

tiplication architectures with significantly improved efficiency. However, recursively

using one type of Karatsuba formula may not result in an optimal structure for many

finite fields. It has been shown that improvements on multiplier complexity can be

achieved by using a combination of several methods.

After completion of a detailed study of existing subquadratic multipliers, this

thesis has proposed a new algorithm to find the best combination of selected meth-

ods through comprehensive search for constructing polynomial multiplication over

GF (2n). Using this algorithm, ameliorated architectures with shortened critical path

or reduced gates cost will be obtained for the given value of n, where n is in the range

of [126, 600] reflecting the key size for current cryptographic applications. With dif-

ferent input constraints the proposed algorithm can also yield subquadratic space

multiplier architectures optimized for trade-offs between space and time.

Optimized multiplication architectures over NIST recommended fields generated

from the proposed algorithm are presented and analyzed in detail. Compared with

existing works with subquadratic space complexity, the proposed architectures are

highly modular and have improved efficiency on space or time complexity. Finally

generalization of the proposed algorithm to be suitable for much larger size of fields

is discussed.
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1 Introduction

Currently, the popularization of smart devices makes the world at people’s fingertips.

More and more daily activities, such as chatting and shopping, are involved with using

the Internet. However, people enjoy the enormous convenience brought by the rapid

development of information techniques, while their private information is threatened

by potential attackers. In order to protect the data being transmitted over a high

risk network, such as the Internet, cryptographic services have been widely used in

government, military, culture, education, business, finance and many other fields.

Cryptography is considered as a core technology for network security since the net-

work communication is inseparable from the transmission and storage of encrypted

information. According to the keys types, the modern cryptosystems are usually cat-

egorized into symmetric key cryptosystems and public key cryptosystems (or called

asymmetric key cryptosystems). Taking the advantage of low computational intensity

and high throughput, symmetric key systems are often applied in the cryptographic

services, such as confidentiality, authentication and data integrity. Since such systems

complete the encryption and decryption process with a single key, one inherent prob-

lem faced by these systems is how to safely exchanged the key between the sender

and receiver.

Public key technique was initially introduced to address the key issue. In public

key cryptosystems, a pair of keys, including a public encryption key and a private

decryption key, is owned by each user. Anyone who wants to communicate with the

others in the system can encrypt the message with the receiver’s public key. And the

private key can be used by the receiver to decrypt the message. Practically both sym-

metrical and public key systems work together to provide the message confidentiality

service. For example, when bulk confidential data streams, such as media streams and

scientific data streams, are transmitted through the Internet, symmetric key systems

are responsible for encrypting the data and the key exchange between two involved

1



parties is realized by public key technique. Moreover, public key cryptography not

only can be used to transmit the symmetric keys, it also can independently provide

above security mechanisms as well as two unique and indispensable services, digital

signature and key management, in network security.

In addition, in such a fast-developing digital society, the speed of computing and

network transmission is constantly increasing, and public key cryptography is bound

to play an increasingly important role. As more business activities begin to penetrate

into the Internet and the potential threat posed by quantum computers, it will be

extended to provide reliable security services that covers people’s social life. However,

intensive computation required in public key cryptosystems is the main issue faced

by the promotion of such systems. Therefore, fast algorithms and efficient implemen-

tations for public key cryptography have been extensively studied and researched in

recent years.

1.1 Motivation

Elliptic Curve Cryptography (ECC), belonging to public key cryptography, has been

proposed by N. Koblitz [1] and V. Miller [2] in 1984 and 1985, respectively. Similar to

other public key cryptosystem, ECC is also based on a hard mathematic problem. Its

security depends on the difficulty of solving elliptic curve discrete logarithm problem

(ECDLP), while ECDLP is considered as a much more difficult problem than integer

factorization. By far no efficient algorithm has been found to solve this problem.

When the key size is large enough (more than 160 bits), it has been shown that ECC

is secure against mathematic attacks in terms of current computing capabilities.

In an elliptic curve cryptosystem, encryption and decryption require point mul-

tiplications (or called scalar multiplications) on the elliptic curve. The lower level

operations used to realize point multiplication are point addition and point doubling,

and they can be further decomposed into finite field arithmetic operations. Finite
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field arithmetic required in computing elliptic curve point operations contains addi-

tion, multiplication and inversion. Addition is straightforward and can be realized

with bit-wise XOR operation between two input field elements, while solving inverse

can usually be realized with several multiplications. Therefore, the cost of multipli-

cations plays a decisive role in the time and space complexity of an ECC system.

There are two important families of finite field, prime fields and extension fields,

both of which can be used to define ECC systems. Among the extension fields, there

is one special class of fields called binary extension field and denoted as GF (2n). It

is often used to define and implement ECC systems due to its carry-free arithmetic

and suitability for hardware implementation.

Consequently, many works have concentrated on designing a finite field multiplier

over GF (2n) with improved efficiency on area and speed. It is worth noting that

finite field arithmetics can be applied not only in cryptography, but also in a variety

of applications, such as error-correcting code and quantum error correction.

1.2 Objective

The architectures of finite field multiplication are generally categorized into three

types: bit-serial, digit-serial and bit-parallel. Bit-serial multipliers are designed to

be most compact, but suffer the longest latency. The bit-parallel structure usually

has the smallest latency at expense of large space complexity. Digit-serial multipliers

offer trade-offs between time and space complexities. The multipliers also can be

subdivided based on the representation of elements. There are several representation

bases that have been used for construction of finite field multiplier and reported

in literatures, such as polynomial basis (PB), shift polynomial basis (SPB), normal

basis (NB), dual bases (DB), weakly dual bases (WDB), and triangular bases. Among

them, PB is probably the most commonly discussed and it has been utilized in many

cryptographic applications, such as NIST standards for cryptography. Other bases

3



usually have advantages in certain applications, for example, the squaring operation

in normal basis is cost free.

Parallel multiplication is often desired to be used in real-time systems due to its

high processing speed. Many applications, such as chip cards, however, require imme-

diacy as well as small area. An effective method to reduce the area of parallel multi-

plier, called subquadratic space complexity multiplier (called subquadratic multiplier

in short), is considered to be most advisable and has been explored in many liter-

atures. Compared with traditional parallel multiplier, which has a quadratic space

complexity, multiplications built with subquadratic methods have a space complexity

of O(nk) with 1 < k < 2. In addition, both of these two types parallel multipliers

have logarithm time complexity.

Since Karatsuba algorithm (KA), a ’divide and conquer’ technique for efficient

integer multiplication, was extended to finite field multiplication with subquadratic

space complexity [3], many improvements to this method have been made during the

past few years. Specifically, the improvements can be summarized into two subfields:

one attempts to improve the architecture of KA with an optimized reconstruction pro-

cess, and the other focuses on generalizing Karatsuba formulas with reduced number

of sub-multiplications.

In [4] and [5], reconstructed KA is independently proposed with improved space

complexity. At the same time, a time efficient KA is presented with an application

of overlap-free approach [6]. Then inspired by four-way split KA recommended in [4]

and improved in [7], an optimized structure of s layers two-way split KA is suggested

in [8]. However, original KA is more efficient in the case that field size n is a power

of 2. When field size n is not a power of two, Karatsuba-like formulas are introduced.

Three-way split formula, considered as the first extension of KA, can be found as

early as in [9]. Then more optimized Karatsuba-like are discussed later in [4], [10],

[11], [12], [13], [14] and [15].
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For current security requirements, several binary extension fields [16] are suggested

by National Institute of Standards and Technology (NIST) of US. If an appropriate

combination of above methods is applied to forming multiplication in these fields,

significantly more improvements can be achieved than using a single method. Several

multipliers [4], [15], [17], [18], [19], [20], [21], [22] have been constructed by using such

combined methods with improved efficiency.

In this thesis, a comprehensive study and classification of the existing methods

on building bit-parallel subquadratic multipliers is presented. Then a new algorithm

is proposed to search for and find a combination of these methods to achieve GF (2n)

multiplication with lowest subquadratic space complexity in the range of 160 ≤ n ≤

600. The proposed algorithm provides options of constraints on the inputs such

that more architectures are obtained with a trade-off of time and space complexity.

Additionally, detailed analysis for the multiplication architectures generated from

the proposed algorithm over NIST recommended fields is presented. A comparison

with the existing methods has shown that the proposed works are advantageous for

different practical requirements that either space or latency is more prominent.

1.3 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents the mathematic

preliminary of finite field and its arithmetics. A brief introduction of three types of

multiplications is also demonstrated in this chapter. In the following chapter, a com-

prehensive review of existing works of subquadratic space complexity multiplication is

introduced. Chapter 4 presents the new work and it starts with an analysis and sum-

mary of methods used in proposed algorithm. After introducing the new algorithm

in section 2, detailed decomposition and complexity computation of multiplication

architectures over NIST fields are discussed as well as a comparison to the existing

works in this area. Finally, a summary of our main contributions is given in Chapter

5



5, and some future works at both of circuits and algorithm levels are suggested.
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2 Preliminary

In this chapter, fundamental concepts of abstract algebra including finite fields are

first introduced. Binary extension fields is reviewed as a special class of finite field. In

the later section of the chapter, arithmetics in GF (2n), especially finite field multipli-

cation, are discussed in detail with specific attention given to multiplication operation

and different styles of multiplication architectures.

2.1 Fundamental Algebraic Concepts

This section briefly presents the definition of three important concepts in abstract

algebra: groups, rings and fields.

Definition 2.1. A group, denoted as G, is an algebraic system comprising a set of

elements together with a binary operator (∗) defined on it. A group must satisfy the

following properties[23]:

• For any elements a, b ∈ G, the result of a ∗ b ∈ G.

• For any elements a, b, c ∈ G, (∗) is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c.

• For any elements a ∈ G, there is an identity element e ∈ G such that, a ∗ e =

e ∗ a = a.

• For any elements a ∈ G, an inverse element a−1 ∈ G exists, and a ∗ a−1 =

a−1 ∗ a = e

If the binary operator (∗) is commutative and for any elements a, b ∈ G, a∗b = b∗a,

the group G is called abelian group[23].

Definition 2.2. A ring, denoted as R, is an algebraic system comprising a set of

elements together with two binary operator (·) and (+) defined on it. A ring must

satisfy the following properties[23]:

7



• R is an abelian group in term of (+) operation.

• For any elements a, b, c ∈ G, (·) is associative: a · (b · c) = (a · b) · c.

• For any elements a, b, c ∈ G, (·) and (+) are distributive: a · (b+ c) = a · b+a · c

and (b+ c) · a = b · a+ c · a.

Definition 2.3. A field, denoted as F, is an algebraic system comprising a set of

elements together with two binary operator (·) and (+) defined on it. A field must

satisfy the following properties[23]:

• F is a ring in term of (·) and (+) operation.

• For any elements a, b ∈ F , (·) is commutative: a · b = b · a.

• Nonzero elements of F respect to (·) operation form an abelian group.

2.2 Finite Fields

Finite field, also called Galois field, is a field consisting of finite number of elements.

It is commonly denoted as GF (q) or Fq, where q is the number of elements in this

field. The characteristic x of a finite field GF (q) is defined as the least positive integer

x and ax = 0 for any element a ∈ GF (q)[23]. There are two important class of finite

field.

• Prime fields, denoted as GF (p), is a set of {0, 1, 2, ..., p− 1}, where p is a prime

number. In GF (p), the binary operator (·) is defined as mod-p multiplication

and (+) refers to mod-p addition.

• Finite extension fields, denoted as GF (pn), is a set of polynomials of degree

up to n-1 with coefficients belonging to GF(p), and where the variable of these

polynomials is a root of irreducible polynomial: f(X) =
∑n

i=0 fiX
i, for fi ∈

GF (p). It is noted that p is prime number and n is a positive integer which

8



is greater than 1. In GF (pn), the binary operator (·) refers to mod-f(x) and

mod-p multiplication and (+) is defined as mod-p addition.

An irreducible polynomial in finite field can be defined as a polynomial that can not

factorized into two smaller polynomials in the same field. In the next section, the

irreducible polynomial over the ground field GF (2) will be discussed in detail.

2.3 Arithmetic in Binary Extension Fields

Binary extension field, denoted as GF (2n), is a special class of finite extension fields

with characteristic 2. Elements in this fields can be generated with an irreducible

polynomial f(X) of degree n. If X is the root of f(X), a polynomial base can be

represented as:

{1, X, X2, ..., Xn−1}

And any elements in GF (2n) can be represented using above basis, such that

A(X) =
n−1∑
i=0

aiX
i = ao + a1X + · · · · · ·+ an−1X

n−1,

where ai ∈ [0, 1].

Excepting PB, there are many other bases that can be used to represent the

elements in GF (2n), such as SPB, NB, DB, WDB, redundant basis and Dickson

polynomial. And NB can be further categorized into several types, such as Gaus-

sian normal basis (GNB) and optimal normal basis (ONB). Different representation

methods will have a significant impact on the efficiency of the arithmetic in GF (2n)

with specific applications. For example, NB is attractive because it is almost cost-free

for implementing squaring operation in GF (2n). PB is probably the most popular

one discussed and recommended by standard organizations, such as NIST [16]. This

thesis will focus on efficient finite field arithmetic represented in PB.
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For a given value of n, usually more than one irreducible polynomial exists in

GF (2n). Among them, some special types of irreducible polynomials can be used

to achieved a lower complexity of arithmetics in GF (2n). Irreducible trinomial is

often discussed in the literatures since it only contains three non-zero coefficients,

which can result in a low complexity modular operation. In some cases, no irreducible

trinomial exists in the field, irreducible pentanomial is recommended as an alternative

option. It is proved that at least one irreducible trinomial or pentanomial exists for

n ∈ [3, 10000][24]. There are two more classes of irreducible polynomials, equally-

spaced polynomials (ESP) and all one polynomials (AOP), used with other algorithms

to provide improved architectures. The general expressions of these four irreducible

polynomials is shown in the following table.

Table 2.1: Expression of Typical Irreducible Polynomials

Expression
Trinomial f(X) = Xn +Xk + 1, 1 < k < n

Pentanomial f(X) = Xn +Xk2 +Xk1 +Xk0 + 1, 1 < k0 < k1 < k2 < n

ESP f(X) = Xn +X(m−1)k + · · ·+Xk + 1, n = mk, 1 < k < n
2

AOP f(X) = Xn +Xn−1 + · · ·+X + 1

Since the arithmetic in GF (2n) is very suitable for hardware implementation, it

is widely used in applications such as realizing ECC cryptosystem. In the following

subsections, addition, multiplication and inversion will be discussed in GF (2n).

Let A(X) and B(X) be two elements in GF (2n), then

A(X) +B(X) =
n−1∑
i=0

(ai + bi)X
i mod 2

Since one bit modular 2 addition is equivalent to XOR operation, additions in GF (2n)

can be defined as bit-wise XOR operation of the coefficients with same power. Addi-

tionally, the implementation of GF (2n) addition requires only n XOR gates.

There exists a multiplicative inverse of A(X) mod f(X), denoted as A−1(X), in
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this field and

A(X)A−1(X) ≡ 1 mod f(X) mod 2.

One popular way to calculate inversion can be based on Fermat’s little theorem [25]

and only multiplication is involved in this methods.

The multiplication of A(X)B(X) can be represented as

C(X) = A(X)B(X) = (
2n−2∑
k=0

∑
i+j=k

0≤i,j≤n−1

aibjX
k) mod f(X) mod 2

The above finite field multiplication can be realized into two steps:

• Polynomial multiplication: the partial products of aibj with the same exponen-

tiation are added together.

• Modular reduction: results from polynomial multiplication do the modular

f(X) and modular 2 operations.

As mentioned before, there are three classes of polynomial multiplications based on

the input and output modes. An introduction and comparison of these multiplications

will be briefly presented in the next section.

In[26], the complexity bound of modular reduction is (n − 1)(r − 1), where r is

the non-zero terms in irreducible polynomial f(X). When irreducible trinomial or

pentanomial is considered, this step will only cost at most 2(n− 1) or 4(n− 1) XOR

gates, respectively.

Additionally, there is a special case of polynomial multiplication. Let A(X) be

an element in GF (2n) with irreducible polynomial f(X). The square of A(X) can be

given in the following expression.

A2(X) =
n−1∑
i=0

aiX
2i mod f(X)
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Hence, only modular reduction is required in squaring operation and it can be realized

with less gates compared with polynomial multiplication.

2.4 Multiplication and Its Architectures

Space and time complexities are often applied to measure the efficiency of GF (2n)

multiplier. In GF (2), polynomial addition can be realized by a 2-input XOR gate

and polynomial multiplication can be implemented with a 2-input AND gate. So the

space complexity of multiplier based on binary finite field can be represented by the

total number of required AND gates and XOR gates. Let S⊗ and S⊕ denote the cost

of AND gate and XOR gate, respectively. And the delays incurred by one 2-input

AND gate and one 2-input XOR gate are represented with TA and TX , respectively.

The symbol ”D” is used to denote the critical path of the multiplier. These symbols

will also be used in the rest of thesis.

In the three schemes of polynomial multiplication in GF (2n), the fully parallel and

serial structures usually achieve a lowest time and space complexity, respectively; and

the digital-serial architectures is a combination of serial and parallel methods and will

result in trade-off between time and space.

2.4.1 Bit-Parallel Multiplication

Bit-parallel multipliers are usually recommended for applications with a requirement

of high performances because of its large throughput and it can generate result within

one clock cycle.

The classical method (or called school-book method) to compute polynomial mul-

tiplication is a typical parallel structure. In this approach, all inputs are entered

and computed in parallel. The detailed computation steps of classical polynomial

multiplication can be shown in the following table [26].
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Table 2.2: Classical Method for Computing Polynomial Multiplication

Signal S⊗ S⊕ D
c0 a0b0 1 0 TA
c1 a0b1 + a1b0 2 1 TA + TX
...

...
...

...
...

cn−2 a0bn−2 + · · ·+ an−2b0 n− 1 n− 2 TA + dlog2 (n− 1)eTX
cn−1 a0bn−1 + · · ·+ an−1b0 n n− 1 TA + dlog2 neTX
cn a1bn−1 + · · ·+ an−1b1 n− 1 n− 2 TA + dlog2 (n− 1)eTX
...

...
...

...
...

c2n−3 an−2bn−1 + an−1bn−2 2 1 TA + TX
c2n−2 an−1bn−1 1 0 TA

Total n2 (n− 1)2 TA + dlog2 neTX

Although the school-book method is the fastest structure among the GF (2n) mul-

tipliers, the applications are limited due to its large space complexity, especially for

large fields. So main works in bit-parallel multiplication is to obtained a optimal

space complexity with an acceptable critical path delay and it can be summarized

into two subfields in terms of the space complexity. The first one focuses on quadratic

space complexity multipliers which aims to reduce the space complexity with a slight

increase in time complexity. It usually comes with methods such as non-recursive

KA[27], Chinese reminder theorem (CRT) [28] and Mastrovito matrix [29]. Recently,

a large number of parallel architectures has been proposed in the literature to con-

struct subquadratic space complexity multipliers since it achieves a same asymtotic

time complexity with a dramatic decrease in gate cost.

2.4.2 Bit-Serial Multiplication

In the bit-serial multiplication, although final results are obtained after ’n’ clock

cycle, the lowest area cost make it competitive in the applications with constrained

resources. Efforts made in this field are to reduce the latency and maintain a linear

space complexity. Based on the input and output sequence, there are four types of

bit-level multiplication [30].
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• BL-SISO: bit-level serial input and serial output

• BL-SIPO: bit-level serial input and parallel output

• BL-PISO: bit-level parallel input and serial input

• BL-PIPO: bit-level parallel input and parallel output

2.4.3 Digital-Serial Multiplication

In digital level architecture, one operand is separated into multiple digits with a same

length. For each clock cycle, each digit is computed with another operand and the

result bits are accumulated to form the final sequence. The complexity of this kind

of multiplication depends on the size of digit. By choosing a different value of digit

length, a wide range of applications can be covered with a consideration of both speed

and area.

The following table will present a complexity comparison of these three types of

polynomial multiplication.

Table 2.3: Asymtotic Complexity Comparison of Polynomial Multiplication with
Different Architecture Styles

Architecture Style S(n) Latency
Bit-serial O(n) O(n)

Digit-serial Between O(n) and O(n2) Between 1 and O(n)

Bit-parallel
Quadratic Space Complexity O(n2) 1
Subquadratic Space Complexity O(nk), 1 < k < 2 1

The research focus in this thesis is the optimization of bit-parallel binary polyno-

mial multiplication with subquadratic space complexity.

2.5 Elliptic Curve Cryptography

Elliptic curve cryptosystem is a popular public key system as it uses a much shorter

key compared to other public key techniques when providing the same level of security
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strength. The following graph shows the methodology of designing ECC systems. An

ECC system can be implemented with the point operations defined on it and the fun-

damental layer contains the three finite field arithmetic. In this section, elliptic curves

defined over GF (2n) and point operations performs on the curves are introduced.

Fig. 2.1: ECC Design Methodology

There are many types of elliptic curve that can be defined in GF (2n). For cryp-

tographic purposes, an elliptic curve E over GF (2n) can be simplified as [31]

y2 + xy = x3 + ax2 + b

where a and b belong to GF (2n).

Consider the curve E and two points P = (x1, y1) and Q = (x2, y2) ∈ E. Two

basic point operations are defined on this curve.

• Point addition: P +Q = (x3, y3) in case of P 6= Q;

• Point doubling: P +Q = (x4, y4) in case of P = Q.

Then the result of point addition ((x3, y3)) is computed with the following equa-

tions [31]: 
λ = y2+y1

x2+x1
;

x3 = λ2 + λ+ x1 + x2 + a;

y3 = λ(x1 + x3) + x3 + y1.
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And the result of point addition ((x4, y4)) can be defined as [31]


λ = x1 + y1

x1
;

x3 = λ2 + λ+ a;

y3 = x1
2 + λx3 + x3.

The points on the curve E with point addition operation form an abelian group.

The identity element in this group is ∞, called point at infinity and it is defined as

P+(−P ) = P−P =∞, for any point P ∈ E. If P = (x1, y1), then −P = (x1, x1+y1).

In figure 2.1, the second layer of an ECC system is point multiplication (also called

scalar multiplication), which can be built with point addition and point doubling.

Consider the curve E defined in above, an integer k and two different points P and

Q on this curve. The point multiplication is defined as following:

Q = kP = P + · · · · · ·+ P︸ ︷︷ ︸;
k times

The point multiplication is the major operation in elliptic curve based crypto-

graphic protocols, such as elliptic curve Diffie-Hellman key exchange scheme, elliptic

curve digital signature and elliptic curve key transport protocols. And the efficiency

of the point multiplication is mainly determined by the cost of finite field multipli-

cations. Therefore, algorithm and architecture with lower complexity are desired for

finite field multiplication.
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3 An Overview of Bit-Parallel Multiplication in

GF (2n) for Composite n with Subquadratic Space

Complexity

This chapter contains two sections according to the bases used to represent elements in

GF (2n). Firstly, subquadratic space complexity GF (2n) multiplication using polyno-

mial basis will be reviewed. In this section, Karatsuba method and its generalizations

are firstly introduced when n is a power of small prime. A block recombination based

structure is discussed later with further improvements on asymtotic multiplication

complexity. Then subquadratic multipliers constructed with a mix of quadratic and

subquadratic methods are reviewed with improved efficiency for general binary ex-

tension fields. In the second section, subquadratic multiplication algorithms using

other bases will be briefly reported.

3.1 Subquadratic Space Complexity Binary GF (2n) Multipli-

cation Using Polynomial Representation

The method of design subquadratic space complexity multiplication can be traced

back to early 1960, when KA [32] was first discovered by Anatoly Karatsuba for

fast integer multiplication. KA was later adapted to be applied to polynomial mul-

tiplication in early 1980s [9]. After ECC proposed with wide attentions, KA was

extended to build GF (2n) multiplier for cryptographic applications [33]. The current

works mainly focus on the design of efficient polynomial multiplication algorithms or

structures using improved Karatsuba formulas.
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3.1.1 Karatsuba Algorithm

Let A and B be two polynomials of degree n− 1, where n = 2m(m > 1). In KA [3],

the input operands A and B are split into two parts shown as:

A =
n−1∑
i=0

aiX
i = A1(X)X

n
2 + A0(X);

B =
n−1∑
i=0

biX
i = B1(X)X

n
2 +B0(X),

where Ai(X) and Bi(X) are polynomials of degree n
2
− 1 in X. Then C = AB can

be computed as

C =AB

=A0(X)B0(X) + A1(X)B1(X)Xn + (A0(X)B1(X) + A1(X)B0(X))X
n
2 (1)

=P0 + P1X
n + (P2 + P1 + P0)X

n
2 , (2)

where


P0 = A0(X)B0(X); P1 = A1(X)B1(X);

P2 = (A0(X) + A1(X))(B0(X) +B1(X)).

(3)

From (1), C can be computed from four sub-polynomial multiplications and two

polynomial additions with half size. However, (2) shows that C can be obtained from

three sub-polynomial multiplications of degree n
2
− 1 and five polynomial additions

because of reusing P0 and P1. Therefore, one sub-multiplication can be saved at

expense of three more polynomial additions in above KA two-way splitting formula.

Specifically, supposing that one iteration of Karatsuba formula is applied to con-

struct the polynomial multiplication and the sub-multiplications are computed with
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school-book method, the gate cost can be given as:

S⊗(n) = 3(
n

2
)2; S⊕(n) = 3(

n

2
− 1)2 + 4n− 4.

As mentioned in previous chapter, computing AB with equation (1) will consume n2

AND gates and (n − 1)2 XOR gates. So, (n
2
)2 AND gates and (n

2
− 1)2 XOR gates

will be saved on computing one polynomial multiplication of degree n
2
− 1. And the

increased part of polynomial additions will only cost 2n− 1 more XOR gates.

For the convenience of complexity analysis, Karatsuba-based multiplication shown

in equation (2) can be decomposed into three separate blocks: CPF, CM, and R, which

are given by

• CPF: A0(X) + A1(X), B0(X) +B1(X);

• CM: Computing Pi;

• R: Constructing C with P0 + P1X
n + (P2 + P1 + P0)X

n
2 .

And a comprehensive view of KA is presented in the following diagram.

Fig. 3.1: Block Decomposition of Karatsuba Algorithm

It is noted that the computation of P2 is separated into CPF and CM block. The
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component addition is completed in CPF block. In CM block, only multiplication

operation is considered.

Time complexity: From equation (2), in the first step, P0 + P1 and P2 can be

calculated concurrently within the delay of D(n
2
)+TX , where D(n

2
) represents the time

delay of polynomial multiplication of degree n
2
− 1. Then by reusing the result from

P0+P1, one more TX is required to compute the expressions in brackets in (2). Finally,

one XOR gate delay is consumed to compute the overlap part of (P2 + P1 + P0)X
n
2

and P0 + P1X
n. Hence, the time complexity of recursive Karatsuba Algorithm is

3TX +D(n
2
) for n ≥ 4.

Space complexity: If the space complexity of computing Pi in CM block is denoted

as S⊗(n
2
) + S⊕(n

2
), then the total cost of CM block are 3 times of this value. The

computation of CPF part in this iteration will cost n XOR gates, and 3n−4 XOR gates

are required in reconstruction part. It is noticed that the computation of multiplying

of X only requires shift operation, which is cost-free in hardware design. So no logic

gates are required to calculate (P2 + P1 + P0)X
n
2 and P1X

n. Furthermore, because

the highest exponent of P0 is smaller than the lowest exponent of P1, the summation

of P0 + P1X
n doesn’t cost XOR gates. Therefore, the space and time complexity of

recursive Karatsuba Algorithm can be summarized as:

• Space Complexity 
S⊗(n) = 3S⊗(n

2
);

S⊕(n) = 3S⊕(n
2
) + 4n− 4.

(4)

• Time Complexity 
D⊗(n) = D⊗(n

2
);

D⊕(n) = D⊕(n
2
) + 3TX .

(5)

If this kind of ”Divide and Conquer” method is recursively applied into the compu-

tation of CM block until the length of sub-polynomial is 1, the GF (2n) multiplication
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can be achieved with subquadratic space complexity. The non-recursive form of space

and time complexity for iterative KA can be derived based on lemma 3 with the fol-

lowing initial values.(It is noticed that when n = 2, there is no overlaps occurred in

this process.)

S⊗(2) = 3; D⊗(2) = 1TA;

S⊕(2) = 4; D⊕(2) = 2TX .

Hence, non-recursive form of equations (4) and (5) to solve the space and time

complexity of KA based parallel polynomial multiplication can be represented as



S⊗(n) = nlog2 3;

S⊕(n) = 6nlog2 3 − 8n+ 2;

D⊗(n) = 1;

D⊕(n) = 3 log2 n− 1.

(6)

Let S⊕,CPF (n), S⊗,CM(n) and S⊕,R(n) denote the total gates required in CPF,

CM, and R blocks over all iterations, respectively. The following table summarizes

the space complexity of these blocks in both recursive form and non-recursive form.

(CPF part is considered as two parts, the formation of A and B.)

Table 3.1: Space Complexity of the Construction Blocks

S⊕,CPF (n) S⊗,CM(n) S⊕,R(n)
Recursive formula n

2
+ 3S⊕,CPF (n

2
) 3S⊗,CM(n

2
) 3n− 4 + 3S⊕,R(n

2
)

Non-recursive formula nlog2 (3) − n nlog2 (3) 4nlog2 (3) − 6n+ 2

Total gates 2S⊕,CPF (n) + S⊕,R(n) + S⊗,CM(n) = 6nlog2 (3) − 8n+ 2

3.1.2 Reconstructed Karatsuba Algorithm

In 2009, Bernstein [4] and Zhou [5] have independently proposed a reconstructed

Karatsuba formula with improved space complexity. Their proposed work can be
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shown in the following expressions:

C =AB

=P0 + P1X
n + (P2 + P1 + P0)X

n
2 ,

=(P0 + P1X
n
2 )(X

n
2 + 1) + P2X

n
2 , (7)

where

P0 = A0(X)B0(X); P1 = A1(X)B1(X);

P2 = (A0(X) + A1(X))(B0(X) +B1(X)).

From (7), it is noticed that the difference between two formulas lies in the re-

construction part. The computations of the other two types of blocks (CPF and

CM) remain unchanged. Then, one iteration of Karatsuba Algorithm based on re-

constructed approach can be depicted in four steps:

1. CPF {A0(X) + A1(X), B0(X) +B1(X)}; CM {A0(X)B0(X), A1(X)B1(X)};

2. CM {(A0(X)+A1(X))(B0(X)+B1(X))}; R {A0(X)B0(X)+A1(X)B1(X)X
n
2 ;};

3. R {(A0(X)B0(X) + A1(X)B1(X)X
n
2 )(1 +X

n
2 )};

4. R {(A0(X)B0(X) + A1(X)B1(X)X
n
2 )(1 + X

n
2 ) + (A0(X) + A1(X))(B0(X) +

B1(X))X
n
2 }.

Time complexity: For each iteration, totally three XOR gate delay will be required

excepting CM block. Therefore, the time complexity of the reconstructed formula is

same with original KA.

D(n) = (3 log2 n− 1)TX + TA

Space complexity: In this architecture, the computation of CPF and R blocks need
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n and 5n
2
− 3 XOR gates, respectively. Then the space complexity can be specified

recursively as

S⊗(n) = 3S⊗(
n

2
);

S⊕(n) = 3S⊕(
n

2
) +

7n

2
− 3.

If this reconstructed algorithm is applied recursively, n
2
− 1 gates can be saved in

the first iteration. And the next one will save 3( n
22
− 1). The general formula for

computing reduced gates in ith iteration can be shown as

3i−1(
n

2i
− 1)

So, compared with KA, the total number of saved XOR gates for this reconstructed

structure is 1
2
nlog2 3 − n+ 1

2
.

The detailed space complexity for each block in reconstructed KA is summarized

in the following table.

Table 3.2: Space Complexity of the Construction Blocks in Reconstructed KA

S⊕,CPF (n) S⊗,CM(n) S⊕,R(n)
Recursive formula n

2
+ 3S⊕,CPF (n

2
) 3S⊗,CM(n

2
) 5

2
n− 3 + 3S⊕,R(n

2
)

Non-recursive formula nlog2 (3) − n nlog2 (3) 7
2
nlog2 (3) − 5n+ 3

2

Total gates 2S⊕,CPF (n) + S⊕,R(n) + S⊗,CM(n) = 11
2
nlog2 (3) − 7n+ 3

2

3.1.3 Overlap-Free Karatsuba Algorithm

In [6], Fan has proposed a new KA based on overlap-free approach, which can reduce

the time complexity of the KA based binary extension field multiplier without in-

creasing its space complexity. In term of two-way split method, the time complexity

of overlap-free KA is 33% better. This algorithm can eliminate the overlap addition

required in the original KA with a new segmentation method in which the original

version of Karatsuba formula divides the operands into the most significant part and

the least significant part, and this new approach provides a way of splitting based on

the parity of the X’s exponent.
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Let A and B be two polynomial of degree n−1 overGF (2n), where n = 2m(m > 1),

operands A and B can be expressed as:

A =
n−1∑
i=0

aiX
i = A1(X)X + A0(X);

B =
n−1∑
i=0

biX
i = B1(X)X +B0(X),

where

A0 =

n
2
−1∑

i=0

a2iX
2i; A1 =

n
2
−1∑

i=0

a2i+1X
2i

B0 =

n
2
−1∑

i=0

b2iX
2i; B1 =

n
2
−1∑

i=0

b2i+1X
2i

Hence, A0 and B0 are n
2

terms polynomial with all the odd exponent elements in A.

Similarly, A1 and B1 contains the rest n
2

even items. Let Y = X2 , then

C =AB

=A0(Y )B0(Y ) + A1(Y )B1(Y )Y + (A0(Y )B1(Y ) + A1(Y )B0(Y ))X

=P0 + P1Y + (P2 + P1 + P0)X (8)

where

P0 = A0(Y )B0(Y ); P1 = A1(Y )B1(Y );

P2 = (A0(Y ) + A1(Y ))(B0(Y ) +B1(Y )).

The overall structure of overlap-free KA is same with the original version, except

the different way of splitting the inputs. There are four operations required in this

algorithm – multiplication, addition, shift and insert, where shift and insert operations
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are cost-free in hardware implementation. So the one iteration overlap-free KA can

be described as:

1. CPF {A0(Y ) + A1(Y ), B0(Y ) +B1(Y )}; CM {A0(Y )B0(Y ), A1(Y )B1(Y )};

2. CM {(A0(Y ) + A1(Y ))(B0(Y ) +B1(Y ))}; R {A0(Y )B0(Y ) + A1(Y )B1(Y )Y ;

A0(Y )B0(Y ) + A1(Y )B1(Y )};

3. R {((A0(Y ) + A1(Y ))(B0(Y ) +B1(Y )) + A0(Y )B0(Y ) + A1(Y )B1(Y ))X};

4. Component Interleaving.

Space complexity: From above procedure, it it easy to remark that the cost of CPA

and CM block in both original and overlap free KA are same because of the same

length of operands. Moreover, the reconstruction parts also need the same amount of

XOR gates. Instead of spending n−2 XOR gates on overlap part in original approach,

overlap-free KA requires n− 2 XOR gates to perform A0(Y )B0(Y ) +A1(Y )B1(Y )Y .

Therefore; the space complexity of overlap-free KA is exactly same with original one

which is shown in section 3.1.1.

Time complexity: Compared with KA which requires 3TX + D⊕(n
2
), overlap-free

method only need 2TX + D⊕(n
2
). Step 1 and 2 shown above can be finished in

TX + D⊕(n
2
). Reconstruction in step 3 costs one XOR delay and the final step is

cost-free. For each iteration, one Tx is saved in overlap-free method. So, the iterative

formula of time complexity is expressed as

D⊗(n) = D⊗(
n

2
);

D⊕(n) = D⊕(
n

2
) + 2TX .

and the non-iterative form is

D⊗(n) = 1TA;

D⊕(n) = 2 log2 n.
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3.1.4 Three-Way Split Formula

Another formula proposed to build subquadratic space complexity multiplication is

based on three-way split technique in [9]. It is more appropriate when the key size is

a power of 3. Consider two polynomials of degree n− 1, where n = 3m(m > 1). The

input operands A and B can be equally divided into three parts:

A =
n−1∑
i=0

aiX
i = A2(X)X

2n
3 + A1(X)X

n
3 + A0(X);

B =
n−1∑
i=0

biX
i = B2(X)X

2n
3 +B1(X)X

n
3 +B0(X).

Then C = AB can be expended with the following expression:

C =AB

=P0 +R1X
n
3 +R2X

2n
3 +R3X

n + P2X
4n
3 , (9)

where 
P0 = A0(X)B0(X); P3 = (A1(X) + A2(X))(B1(X) +B2(X));

P1 = A1(X)B1(X); P4 = (A0(X) + A1(X))(B0(X) +B1(X));

P2 = A2(X)B2(X); P5 = (A0(X) + A2(X))(B0(X) +B2(X));

(10)

R0 = P0 + P1; R2 = P5 + P2 +R0;

R1 = P4 +R0; R3 = P3 + P2 + P1.

Totally six scalar multiplications are required in equation (9). And the recursively

complexity can be represented as:
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• Space Complexity

S⊗(n) = 6S⊗(
n

3
);

S⊕(n) = 6S⊕(
n

3
) +

22n

3
− 10.

• Time Complexity

D⊗(n) = D⊗(
n

3
);

D⊕(n) = D⊕(
n

3
) + 4TX .

By reconstructing R block in three-way split formula, a lower space complexity

is reached in [7] without changing its time complexity. The idea of the new recon-

struction process is decomposing the results from sub-multiplications and eliminating

redundant computations. Supposing P0, P1 and P2 in equation (10) are split into two

equal parts, where Pi = Pi,0 + Pi,1X
n
3 . The final result of C can be computed as

R0,1 = P0,1 + P1,0; R0,2 = P1,1 + P2,0;

R1,1 = P0,0 +R0,1; R1,2 = R0,2 +R1,1;

R1,4 = P2,1 +R0,2; R1,3 = R1,4 +R0,1;

C = (P0,0 +R1,1X
n
3 +R1,2X

2n
3 +R1,3X

n +R1,4X
4n
3 + P2,1X

5n
3 )

+ P3X
n
3 + P4X

2n
3 + P5X

n

This is a space optimized three-way split formula, and its recursively space com-

plexity can be represented as:

S⊗(n) = 6S⊗(
n

3
);

S⊕(n) = 6S⊕(
n

3
) + 6n− 6.

In [7], another time optimized three-way split formula is also suggested based on

overlap-free approach. In this method, the operands is split as follows:

A = A2(Y )X2 + A1(Y )X + A0(Y ),
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where Y = X3. Let the scalar multiplications Pi be defined similar to (10), then C

can be computed as:

R0 = P0(Y ) +XP1(Y ) +X2P2(Y ); R1 = R0(1 +X +X2)

C = R1 +XP3(Y ) +X2P4(Y ) +X3P5(Y )

It is observed that there are some redundant bit additions in computing R1. By

reforming the computation process of R1, the following complexity results can be

obtained for this time optimized three-way split formula.

• Space Complexity

S⊗(n) = 6S⊗(
n

3
);

S⊕(n) = 6S⊕(
n

3
) + 7n− 9.

• Time Complexity

D⊗(n) = D⊗(
n

3
);

D⊕(n) = D⊕(
n

3
) + 3TX .

There is another three-way split formula with five scalar multiplication proposed

in [4] and later it is improved in [34]. It achieves a lower asymptotic complexity

compared with the above reviewed version. However, the large coefficients of the big

(O) representation make it more competitive when n is a large number which is not

considered in this thesis. Additionally, the higher time delay is another reason that

this formula is not chosen in proposed method.

3.1.5 Four-Way Split Formula

Supposing that a polynomial multiplication is expanded by two layers of two-way split

KA (Section 3.1.2), a further improvement can be done by optimizing the construction

sequence. This kind of four-way split method is proposed in [4], and it can achieve a

lower space and time complexity.
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Consider two polynomials A and B, which can be equally split into four parts:

A =
n−1∑
i=0

aiX
i = A3(X)X

3n
4 + A2(X)X

n
2 + A1(X)X

n
4 + A0(X);

B =
n−1∑
i=0

biX
i = B3(X)X

3n
4 +B2(X)X

n
2 +B1(X)X

n
4 +B0(X),

where Ai and Bi are sub-polynomials of size n
4
−1. The regular four-way split method

constructs the polynomial multiplication AB by applying two recursions of two-way

split KA with 9 recursive polynomial products. The scalar multiplications can be

represented as:



P0 = A0(X)B0(X); P1 = A1(X)B1(X);

P2 = (A0(X) + A1(X))(B0(X) +B1(X));

P3 = A2(X)B2(X); P4 = A3(X)B3(X);

P5 = (A2(X) + A3(X))(B2(X) +B3(X));

P6 = (A0(X) + A2(X))(B0(X) +B2(X));

P7 = (A1(X) + A3(X))(B1(X) +B3(X));

P8 = (A0(X) + A1(X) + A2(X) + A3(X))(B0(X) +B1(X) +B2(X) +B3(X)).

(11)

With the same CM and CPF block as conventional four-way split formula, Bernstein’s

new method constructs C based on the following expression.


R0 = P0 + P1X

n
4 + P3X

n
2 + P4X

3n
4 ;

R1 = R0(1 +X
n
4 ) + P2X

n
4 + P5X

3n
4 ;

C = R1(1 +X
n
2 ) + ((P6 + P7X

n
4 )(1 +X

n
4 ) + P8X

n
4 )X

n
2 .

(12)

From equation (11) and (12), the following recursive formulas can be derived for space
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and time complexity.

• Space Complexity

S⊗(n) = 9S⊗(
n

4
);

S⊕(n) = 9S⊕(
n

4
) +

17n

2
− 11.

• Time Complexity

D⊗(n) = D⊗(
n

4
);

D⊕(n) = D⊕(
n

4
) + 5TX .

Compared with two layers of KA , the Bernstein’s four-way split method saves n
4
− 1

XOR gates and one gate delay of XOR. This formula can be considered as a space

optimized KA with four-way split.

Another alternative four-way split formula has been proposed in [7] and it is a

time optimized method with reduced space complexity. The idea of this method is

to apply the equation (12) into two recursions of overlap-free KA.

Let Y = X4, then two n-terms polynomials A and B are decomposed into four

blocks based on overlap-free split method, which can be shown as:

A =
n−1∑
i=0

aiX
i = X3A3(Y ) +X2A2(Y ) +XA1(Y ) + A0(Y );

B =
n−1∑
i=0

biX
i = X3B3(Y ) +X2B2(Y ) +XB1(Y ) +B0(Y ),

where Ai(Y ) =
∑n

4
−1

j=0 ai+4jY
j and Bi(Y ) =

∑n
4
−1

j=0 bi+4jY
j. The CPF and CM blocks

can be computed in a similar way shown in equation (11). After obtaining the 9

recursive polynomial multiplication products, C = AB can be formed by the following
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expression.

R0 = P0(Y ) + P1(Y )X + P3(Y )X2 + P4(Y )X3;

R1 = R0(1 +X) + P2(Y )X + P5(Y )X3;

C = R1(1 +X2) + ((P6(Y ) + P7(Y )X)(1 +X) + P8(Y )X)X2.

By eliminating the overlap part, this time optimized four-way split KA reduces

one more XOR gate delay compared with Bernstein’s approach, but with an increase

of 3n
2

XOR gates.

• Space Complexity

S⊗(n) = 9S⊗(
n

4
);

S⊕(n) = 9S⊕(
n

4
) + 10n− 17.

• Time Complexity

D⊗(n) = D⊗(
n

4
);

D⊕(n) = D⊕(
n

4
) + 4TX .

3.1.6 2s-Way Split with Optimized Karatsuba Reconstruction

With Bernstein’s reconstruction and Fan’s overlap-free method, KA has been im-

proved on space and time, respectively. Although it cannot concurrently apply these

two methods together in original two-way Karatsuba formula, it can be expected that

both of the space and time complexity can be improved together in an extension of

two-way split KA. This is revealed by the above reviewed time optimized four-way

split formula[7]. Moreover, inspired by Bernstein’s idea on two-way and four-way

Karatsuba formulas, an optimization of reconstruction process in s iterations of 2-

term KA has been proposed by Negre [8] in 2014.

The recursive Karatsuba-based structure also can be viewed as three independent

blocks as shown in figure 3.2. In recursive CPF of depth s, the operands in a higher
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layer are split into two halves and then form three half size polynomials, which can

be further separated later. Finally, 2 ∗ 3s terms of operands can be obtained during

these recursions. Moreover, the intermediate value in each layer will be entered into

CM block to generate the multiplication partial products used in R block.

Fig. 3.2: Block Decomposition of Recursive KA

The s layers of R block is presented in a tree structure in [8]. The following graph

shows the original construction tree based on reconstruction formula in two-way split

KA. Each node in the higher layer can be extended into three lines. From left to

right, these lines are corresponding to P0, P2 and P1 in equation (3), respectively.

Fig. 3.3: Reconstruction Tree of Depth s Based Original Two-Way Split KA [8]

In [8], a modified reconstruction tree of depth s is proposed based on the gener-

alization of Bernstein’s four-way split reconstruction formula (12) and an algorithm,
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named a generalized Bernstein’s reconstruction(GBRs), has been proposed to con-

struct this three structure. The modified tree structure is shown in figure 3.4.

Fig. 3.4: Modified Reconstruction Tree of Depth s Based on GBRs [8]

Based on above structure, the following recursive complexity formula can be de-

rived.

• Space Complexity

S⊗(2sn) = 3sS⊗(n);

S⊕(2sn) = 3sS⊕(n) + (
13 · 3s − 12 · 2s − 1

2
)n− 5 · 3s − 5 + 2s

4
.

• Time Complexity

D⊗(2sn) = D⊗(n);

D⊕(2sn) = D⊕(n) + (2s+ 1)TX .

When s = 1 or 2, the above complexity is consistent with Bernstein’s two-way and

four-way split formula. With the increase of s, the space and time complexity will

continuously reduce until s = log2 n and the results are better than those of other

existing 2-way split methods. Moreover, a combination of this work of s = log2 n− 2

depths and classical method for building 4-bit sub-multiplication will achieve a lowest

complexity for GF (22m) compared with existing works [4], [5] [6], [7], [35], [36], [37].
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The following table shows the complexity achieved in [8].

Table 3.3: Complexity of 2s-Way Split Structure with Optimized Karatsuba Recon-
struction

# AND # XOR Delay
s = log2 n nlog2 3 5.25nlog2 3 − 6nlog2 3 + 0.75 (2 log2 n+ 1)TX + TA

s = log2 n− 2 with classical method 1.78nlog2 3 3.75nlog2 3 − 6n+ 0.25− 0.5 log2 n (2 log2 n− 1)TX + TA

3.1.7 k-term Karatsuba-Like Formula

Since KA and three-way split method are more appropriate to form subquadratic

multiplication where n is a power of 2 or 3, an extension class of k-term KA has

been discussed in many papers for practical cryptography applications, where k =

5, 6, 7, · · · . The construction of subquadratic multiplications based on the recursive

Karatsuba series formulas can also be summarized as three blocks..

1. CPF: Splitting n-term polynomials into k parts and forming components used

in the scalar multiplication with corresponding parts;

2. CM: Computing the sub-multiplications recursively;

3. R: Constructing the final result with sub-multiplication products based on the

formula;

Assuming that M(k) represents the minimum scalar multiplication required for

a CM block, many works focus on improving the upper bound of M(k), which can

significantly reduce the complexity. In [17], detailed analysis of classical KA are pre-

sented for polynomial of arbitrary size and a generalized formula has been proposed

for computing two k-term polynomial multiplication by ’divide and conquer’ tech-

nique. In this article, Weimerskirch and Paar also carefully studied the complexity

of two n-term polynomial multiplication. A upper bound of M(n) is generated up to

polynomials of degree 127 using the following expression: if n is a composite number
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which can be factorized into some small prime number.

M(n) 5M(k0)M(k1) · · ·M(ki), (13)

where n = k0k1 · · · ki and if n = 2m+ 1, then

M(n) 5M(m) + 2M(m+ 1). (14)

In [38], Sunar has proposed a similar work of generalized subquadratic algorithm

derived from Winograd short convolution algorithm, which is identical with KA but

with improved efficiency in some aspects.

However, as n increases, optimizing the structure of the generalized formula be-

comes very complicated. Some later works focus on reducing scalar multiplications

required in k-term Karatsuba formula, when k is a small integer. Then a lower bound

of M(n) for large number of n can be achieved by recursively using k-term Karatsuba

formula. In [10], five, six and seven-term Karatsuba-like formulas has been presented

by Montgomery with fewer multiplications. Montgomery’s Karatsuba-like formula is

the first time to reach the best result in term of M(5),M(6),M(7). Although a lower

M(5) can be obtained by using three-way splitting with five scalar multiplications in

[11], the large coefficients of O(n) make it uncompetitive for the size of n considered

in this thesis.

When k > 7, the upper bound of M(K) are improved with CRT by Fan and Hasan

[39]. Then a better upper bound for some M(n) are presented by Cenk et al. [12].

Later, Fan et al. [13] presents more 4, 5, 6, 7, 8, 9-term Karatsuba-like formulas based

on CRT with the same number of scalar multiplications. Furthermore, these bounds

for some n > 7 are reduced by exhaustive search method proposed by Oseledets [14].

Previous results of M(n) are defined over the ground field GF (2). In [11], a better

upper bound of M(n) over an arbitrary nontrivial ring are proposed for some n and
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corresponding Karatsuba-like formula are derived based on the ring. The following

table presents a summary of M(k) over GF (2), when 2 6 k 6 11. More results of

M(n) can be found in the reference shown in the table.

Table 3.4: Selected Upper Bound for M(k) Over GF (2)

k M(k) k M(k)
2 3 7 22 [10, 39, 12, 14]
3 6 8 26 [39]
4 9 9 30 [12, 14]
5 13 [10, 12] 10 35 [39, 14]
6 17 [10] 11 39 [12, 14]

3.1.8 Subquadratic Multiplication Based on Block Recombination Ap-

proach

Another technique to reduce the asymptotic space complexity for subquadratic mul-

tiplier is block recombination. It was initially applied into TMVP based multiplier.

Then Cenk et al. [7] extended this method to Karatsuba-based polynomial Multiplier.

Block Recombination method is based on a structure called ”Two Multiplications and

Add”. Specifically, it considers the problem of computing two polynomial multipli-

cations with a same structure in parallel followed by an addition. So this method is

independent of KA, TMVP or other subquadratic methods, and it can be used in any

improvement on these algorithms

The ”Two Multiplications and Add” architecture can be defined as

S = AB + A′B′.

A straightforward method to solve S in a parallel architecture is computing two

multiplications by KA; and then add the two final multiplication products together.

However, in this ’Two Multiplications and Add’ structure, the computation of the re-

construction block and component addition block can be reversed. The new structure
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performs the component addition of two Karatsuba expansion results first and then

constructs the sum through Karatsuba formula. The following lemma is specified

to reduce the space complexity of computing S by recombining two reconstruction

blocks appeared in ”Two Multiplications and Add” structure.

Lemma 1. Let R(Ĉ) and R(Ĉ ′) be the reconstruction function of two multiplications

AB and A′B′, separately, where Ĉ and Ĉ ′ are vectors of nlog2 3 bits. Then

R(Ĉ) +R(Ĉ ′) = R(Ĉ + Ĉ ′).

The proof of 1 is shown in appendix. Then the new architecture can be shown in

the following graph.

Fig. 3.5: Two Multiplications and Add Architecture Based on Block Recombination
Approach

Compared to the architecture shown in figure 3.5 with straightforward method,

the cost of XOR gates are increased in CA block. It is noted that CA part in the

reconstructed structure cost nlog2 3 XOR gates to combine the vector Ĉ + Ĉ ′ and the

straightforward structure requires 2n − 1 XOR gates in this block. However, one R

block is saved in the new structure and the saved gates in this block is more than
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the raised gates in CA block. According the complexity analysis in block decompo-

sition, at least 5
2
nlog2 3 − 3n + 1

2
XOR gates will be saved in the recombined ’Two

Multiplications and Add’ architecture.

In order to apply the above recombined architecture into the Karatsuba multi-

plication, Cenk et al. [7] has expended AB with school-book method first, which is

represented as following equation.

C = AB = A0B0 + A1B1X
n + (A0B1 + A1B0)X

n
2 .

Obviously, A0B1+A1B0 can be implemented with the structure expressed in figure 3.5.

The explicit non-recursive complexity formula of recombined Karatsuba Multiplier

can be shown in the following table.

Table 3.5: Complexity of Recombined Karatsuba Multiplier

Recombined Formula # AND # XOR Delay
KA 4

3
nlog2 3 17

3
nlog2 3 − 10n+ 4 (3 log2 n− 2)TX + TA

Overlap-free KA 4
3
nlog2 3 17

3
nlog2 3 − 10n+ 4 (2 log2 n− 1)TX + TA

Reconstructed KA 4
3
nlog2 3 31

6
nlog2 3 − 17

2
n+ 5

2
(3 log2 n− 2)TX + TA

Compared to the complexity before and after applying block recombination ap-

proach, it is noted that number of increased AND gates is less than that of the

decreased XOR gates. Furthermore, Cenk [7] et al. indicated that one two-input

XOR gate is twice as large as one two-input AND gate when the ASIC environment

is considered. So the overall space complexity of recombined Karatsuba multiplier is

reduced.

In [37], a new block recombination has been proposed for overlap-free KA and

both of these two block recombination approaches can be applied together. Supposing

that AB is expended by the school-book method accompanied with overlap-free split

approach.

C = AB = A0B0 + A1B1X
2 + (A0B1 + A1B0)X.
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Then the new block recombination is used to compute A0B0 + A1B1X
2 by further

decomposing the results from CM blocks. And with the increase in the number of

decomposition layers, more XOR gates will be saved. Let the number of decomposed

recursions be denoted as t. The final complexity results can be represented as:

Table 3.6: Complexity of New Recombined Karatsuba Multiplier

# AND # XOR Delay
4
3
nlog2 3 14

3
nlog2 3 + 2t

3t
nlog2 3 − 10n+ 2t+1 + 2 (2 log2 n+ (t− 1))TX + TA

When t = 1 and t = m − 1, the space complexity results are better than the

block recombination based overlap-free KA and reconstructed KA, respectively. The

reviewed methods in this section also can be extended to three-way and four-way split

formula to obtain better complexity results. A comprehensive complexity results for

KA with block recombination can be found in [37].

3.1.9 Subquadratic Multipliers Using Mixed Methods

It has been shown that classical multiplications are more effective than subquadratic

multiplications within a certain range. Then some new parallel multipliers (or called

hybrid structure in some literatures) in GF (2n) have been proposed by combining

KAs and classical method to gain an improved complexity.

In [18], a new Karatsuba-based multiplier was presented for GF (2233). For com-

puting polynomial multiplication with 233 bits, it pads seven zeros at the most sig-

nificant bits of the operands and factorizes the 240 bits into 2∗3∗40. This multiplier

consists of three 80 bits sub-multipliers which is serially used twice to complete 6

scalar multiplication in three-way split KA. And the 80 bits multiplier is built with

three traditional multiplier of size 40 by two-way split KA. In 2005, a similar 240 bits

multiplier, factorized as 240 = 2 ∗ 2 ∗ 2 ∗ 30, was proposed [19]. It combines two-way

split KA and school-book method. And in [20], two Karatsuba-based subquadratic

multipliers have been proposed for GF (2n) in the case of n = 2im and n = 2i + d,
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respectively, where i, d,m are integers.

In [17], a summary table has been presented for the cost of polynomial multipli-

cation up to 128 bits by Weimerskirch and Paar. The results shown in this table

contain the number of required multiplication and addition operations (in terms of

binary extension fields, they are equivalent to XOR and AND operations, respec-

tively), and the way of decomposition for different values of n. As mentioned in the

section 3.1.7, a generalization of Karatsuba formula has been proposed in this paper.

It also indicates factorizing n into small numbers can achieve improved efficiency, and

for the large prime number, a decomposition can be made after padding appropriate

number of zeros at the most significant bits of the operands. In addition, the authors

also studied a better combination sequence when multiple Karatsuba formulas are

used.

Later, a new method for constructing polynomial multiplier in GF (2n) has been

proposed in [15] with reduced space complexity and power consumption. In order to

achieve such results, two algorithms are introduced in this article. One is to examine

Karatsuba-like formulas with optimized reconstruction sequence. Another algorithm

focuses on the optimal order of combing the Karatsuba-like formulas used in the new

architecture. Improvements of 5, 6, 7-term Karatsuba-like formulas are presented in

this paper with corresponding recursive space complexity formulas. New multipli-

ers for NIST recommended fields are built by combining 2, 3, 4, 5, 6, 7-term KAs and

classical method with an optimal process sequence. Although the time complexity of

these multipliers are not shown in the result table, their space complexity are better

than the methods reviewed in above.

In [21], a new padding algorithm is proposed for subquadratic multiplications.

With an application of this algorithm and Bernstein’s reconstructed two-way split KA,

efficient multiplication structures are raised for NIST fields. The space complexity

of these multipliers are a little worse than the results shown in [15]. An updated
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padding method used in our proposed work is derived from this paper.

To our best knowledge, the current best bounds (denoted as S(n)) of the bit

operations (XOR and AND) required to multiply two n-term polynomials are kept

in [4], [56] and [22]. Similar with other works reviewed in this section, combinational

techniques are utilized by these two research groups to form subquadratic multipliers

for GF (2n). In these papers, S(n) has a significant improvement due to Bernstein’s

three-way split KA with five scalar multiplications [4], its improved version [22], and

the improved 5-way split method [22]. The main contribution of [56] is the improved

bound of small n, which provides an efficient foundation for building large multipliers.

Most of the optimized results of S(n) can be found in table 2 in [22] and some new

results are presented in [56].

In this section, exiting works for constructing subquadratic multipliers with a

combination of multiple methods have been reviewed. Although the asymptotic space

complexity of these multipliers are not improved in these papers, their proposed

multipliers are more efficient for current cryptographic systems.

3.2 Subquadratic Space Complexity Multiplication Based on

Other Representations

The representation of elements in GF (2n) plays an important role in the design of

multipliers. All of the above methods used to form subquadratic space complexity

multiplication are referred to polynomial based multiplication. Although most works

related to subquadratic multiplier are based on the polynomial representation due

to its simplicity and flexibility, there are some other bases that can be applied with

improved efficiency for some applications.
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3.2.1 Toeplitz Matrix-Vector Product

In 2007, a novel parallel multiplication with subquadratic space complexity is pro-

posed by Fan and Hasan [35]. This new multiplier takes the advantage of Toeplitz

matrix-vector products which also can be accelerated by ’divide and conquer’ scheme.

And both of its asymptotic space and time complexity match the best results in above

three version of two-way split KA. Moreover, this approach can be extended in dual

or weakly dual or triangular bases, which is the first time to build subquadratic

multiplier based on these representations.

In order to take the advantage of TMVP approach, a shifted polynomial basis

and the coordinate transformation technique are applied to form the Toeplitz matrix.

In [40], a Mastrovito multiplier for all trinomials is proposed based on SPB. In that

paper, detailed derivations are proposed to form Mastrovito matrix based on SPB

and it also provides the formula to complete basis conversion between PB and SPB.

The construction of the TMVP based subquadratic multiplier can be summarized

into the following steps:

1. Form the SPB Mastrovito matrix based on corresponding irreducible trinomial

2. Convert the SPB Mastrovito matrix into Toeplitz Matrix

3. Recursively build the matrix-vector multiplication with TMVP approach

4. Convert the result from step 3 into the final result

In above procedure, step 2 and 4 are based on coordinate transformation technique

which is cost-free. Step 1 only cost one XOR gate delay and at most n − 1 XOR

gates. The final complexity of subquadratic multiplier based on TMVP approach can
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be summarized into the following expressions.

S⊗(n) = nlog2 3;

S⊕(n) = 5.5nlog2 3 − 5n− 0.5;

D⊗(n) = 1;

D⊕(n) = 2 log2 n+ 1.

The proposed multiplier is only applicable for irreducible trinomials and some spe-

cial pentanomials; However, irreducible trinomials don’t exist in all GF (2n), where

1 6 n 6 10000 [24]. So a later work presented a TMVP based multiplier for all irre-

ducible pentanomials [41, 42], where there is no irreducible trinomial exists. Moreover,

in [43] and [44], a multiple way split formula and its improved version are presented

based on TMVP approach, respectively.

Some further works also extend TVMP approach to other basis such as ONB

[45, 46, 47, 48, 49], nearly all one polynomial [50], dual, weakly dual and triangular

basis [51] and these multipliers provide more choices for different applications.

3.2.2 Subquadratic Multiplication Using Dickson Polynomial

Since there is almost no cost to constructing a squaring operation with finite field

elements expressed on a NB, many works focus on providing effective polynomial

multiplication based on this representation. When the multiplier with subquadratic

space complexity has been proposed, it is desirable to design this kind of finite field

multiplier over an NB. In order to further improve the efficiency, ONB (or GNB) are

most considered in the design of subquadratic algorithms. However, this basis doesn’t

exist in some binary extension fields. In this case, Dickson polynomial is an alternative

way to develop an subquadratic multiplier first proposed by Hasan and Negre [52].

And the complexity result of parallel multiplier for irreducible Dickson binomials or

trinomials using TMVP approach is acceptable in today’s ECC cryptographic system.
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Later, a new GNB multiplier [53] are developed using Dickson-Karatsuba decom-

position with improved space complexity. Moreover, there are two similar representa-

tions, called Charlier polynomials and Hermite polynomials, are presented in [54] and

[55], receptively. The first one is proposed with Karatsuba formula and the second

one builds subquadratic multiplier with TMVP method.

Since our work concentrates on polynomial representation, explicit complexity

formulas for multipliers based on the ONB and Dickson polynomials are not shown

in this paper due to their different features in practical applications. In case of

comparing multipliers using these basis, the comparison should be established on the

an entire ECC system.
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4 Proposed Bit-Parallel Multiplication with Sub-

quadratic Space Complexity in GF (2n)

In previews chapter, multiplication algorithms with subquadratic space complexity

have been reviewed as well as how to combine these methods to construct efficient

subquadratic multipliers over GF (2n). Our works will continuously focus on inves-

tigating the optimized multiplication architectures with a combination of existing

methods for current cryptographic purposes.

This chapter begins with an analysis of KA-based subquadratic multipliers and

the general idea to construct such architecture with improved efficiency. Then a new

algorithm is proposed to design optimized multiplication architectures in GF (2n),

where n ∈ [160, 600], with mixed methods. Examples of these new architectures are

given later on NIST recommended fields and the corresponding complexity results are

compared with current works. Finally, the idea of proposed algorithm is extended to

construct subquadratic multiplier with a lager field size.

4.1 General Idea

Using Karatsuba algorithms, a multiplier with larger operands can be constructed

with several smaller sub-multipliers. In a simple KA-based recursive structure, if

the highest level is defined as the final results, the lowest layer should be degree one

polynomial multiplications. Let A and B be polynomials with the size of n, where

n = k1k2 · · · km, the following ’top-down’ architecture demonstrates the construction

of KA-based multiplier.
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Fig. 4.1: ’Top-down’ Architecture of KA

In picture 4.1, the subscript shown beside A and B is the length of the operands

in that iteration and superscript means the number of layers. From the top to bot-

tom, the multiplication of A and B is broken down into smaller multiplications and

additions by ki-term Karatsuba series formula layer by layer. In this structure, the

complexity of modules in upper layer is determined by the gates required in lower

layer modules and the reconstruction process.

In some case, padding algorithm is required in above KA-based structure and could

result in an improved efficiency. The traditional padding strategy is to add enough

zeros at the most significant bits and extend the operands to a desired length, for

example: lengthen GF (22m+k) to GF (22m+1
), where k < 2m. Instead of supplementing

all zeros at the first iteration, the padding methods proposed in [21] prolong the length

of operands to a multiple of 2 at each layer. Through this approach, some redundant

operations can be eliminated. Similarly, in the proposed multiplication, a suitable

number of zeros will be padded at the most significant bits of the operands layer by

layer.

The key idea of constructing efficient subquadratic space complexity multiplica-

tion is to find a better decomposition of n. For a given value of operands size n

padding with appropriate zeros, different methods can be found to decompose the

multiplication due to the variety of Karatsuba series formulas, and the independence

and flexibility of the CM modules.
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For example, 233 bits operands can be factorized into 2 ∗ 3 ∗ 3 ∗ 13 with padding

one zero at the most significant bits. In this case, the multiplication can be built with

a combination of 2, 3-way split KAs and 13-bit classical multiplication modules. Or it

can be decomposed as 2∗2∗2∗(14+15)+1. This architecture can be constructed with

232-bit subquadratic multiplication and classical method, where the 232-bit multiplier

is built with 2-way split KA and optimized 14, 15-bit multiplication modules.

Therefore, in terms of different Karatsuba series formulas and CM modules used

to construct the multiplier, there are many KA-based architectures for a specific n.

In order to find a desired complexity result among these multiplication architectures,

existing Karatsuba series formulas and optimized fundamental multiplication modules

are needed to be examined and selected.

4.1.1 Selection of KAs

In this section, existing Karatsuba formulas with the best complexity results will be

selected to construct subquadratic multiplier in GF (2n) for composite n. Two cases

are discussed when n cannot be directly factorized with selected KAs.

In chapter 3, several Karatsuba formulas are reviewed for polynomial multiplica-

tion and the current best bound of M(n) for some n are mentioned in table 3.4. The

asymtotic complexity of these formulas are shown in the following table.

Table 4.1: Asymtotic Complexity of M(n)

n Asymtotic Complexity n Asymtotic Complexity
2 O(n1.58) 7 O(n1.59)
3 O(n1.63) 8 O(n1.57)
4 O(n1.58) 9 O(n1.54)
5 O(n1.59) 10 O(n1.54)
6 O(n1.58) 11 O(n1.52)

It has been shown that the asymptotic complexity will gradually decrease with an

increase of n, and when n tends to infinity, the asymtotic complexity tends to linear
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level [38]. Although lower asymtotic complexity means less multiplications required

for multiplying two n-term polynomial, the corresponding construction process will be

more complicated and result in the large coefficients of the O(n), which also indicated

large space complexity for practical cryptographic applications. In addition, as the

value of n increasing in Karatsuba-like formulas, the structure of the formula is also

intricate; concurrently, the critical path for reconstruction block will be extended.

In contrast, 2, 3, 4-way split formulas have been detailedly derived with im-

proved efficiency. They are selected to construct GF (2n) subquadratic multipliers

in proposed algorithm due to its simplicity and low complexity. A summary of these

Karatsuba formulas is shown in the following table.

Table 4.2: Karatsuba Formulas Used in Proposed Work

Split Recursive Space Complexity Recursive Time Complexity
2 [4] & [5] S(2n) = 3S(n) + 7n− 3 D(2n) = D(n) + 3TX

2 [6] S(2n) = 3S(n) + 8n− 4 D(2n) = D(n) + 2TX
3 [7] S(3n) = 6S(n) + 18n− 6 D(3n) = D(n) + 4TX
3 [7] S(3n) = 6S(n) + 21n− 9 D(3n) = D(n) + 3TX
4 [4] S(4n) = 9S(n) + 34n− 11 D(4n) = D(n) + 5TX
4 [7] S(4n) = 9S(n) + 40n− 17 D(4n) = D(n) + 4TX
2s [8] S(2sn) = 3sS(n) + (13·3

s−12·2s−1
2

)n− 5·3s−5+2s
4

D(2sn) = D(n) + (2s+ 1)TX

In the case n is not a multiple of 2, 3, 4, the following two cases may be used to

achieve a low complexity. Supposing A and B are two polynomials in the field of

GF (2n), where n = km± i and i is less than both k and m.

For the case n = km + i, A and B are split into k + 1 segments, with k terms in

the size of m and one term owing i bits.

AB = A1B1X
2km + (A0B1 + A1B0)X

km + A0B0 (15)

In (15), A0B0 can be expanded by k-way split Karatsuba-like formula and the rest

parts are computed directly. Within suggested range of fields, i is selected as 1. And
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the following complexity equations are given for i = 1.

S⊗(n) = S⊗(n− 1) + (2n− 1)

S⊕(n) = S⊕(n− 1) + (2n− 3)

D(n) = D(n− 1) + TX ,

In the case of n = km− i, A and B are separated into k parts with one block size

very close to m. Due to that the CM blocks in KA-based multiplier are independent

of each other, the multiplication of the smaller block can be constructed using a

different method than other m-term multiplications. Then S(n) is equal to (q −

1)S(m) +S(m− i) plus the cost of construction part, where q is the number of scalar

multiplications required in k-way split KA.

In term of the space optimized Karatsuba-series formulas used in the proposed

work, exactly complexity formulas for the case n = km− i, where k = 2, 3, 4, can be

shown in table 4.3. It’s noted that 2i and 2(k − 1)i redundant XOR operations will

be removed in R block and CPF block, respectively. Additionally The results can be

easily extended to time optimized KAs used in proposed algorithm.

Table 4.3: Complexity for GF (2km−i)

Case #AND # XOR

n = 2m− 1 2S⊗(n+1
2

) + S⊗(n−1
2

) 2S⊕(n+1
2

) + S⊕(n−1
2

) + 7(n+1)
2
− 7

n = 3m− i 5S⊗(n+i
3

) + S⊗(n−2i
3

) 5S⊕(n+i
3

) + S⊕(n−2i
3

) + 6(n+ i)− 6i− 6

n = 4m− i 8S⊗(n+i
4

) + S⊗(n−3i
4

) 8S⊕(n+i
4

) + S⊕(n−3i
4

) + 17(n+i)
2
− 8i− 11

4.1.2 Fundamental Multiplication Modules

Efficiency of sub-multiplications in the lowest recursion also dominate the complexity

of the multiplications. For example, 4-bit classical multiplication, required 16 AND

gates and 9 XOR gates, is more efficient than 4-bit Karatsuba multiplier, which costs

9 AND gates and 23 XOR gates. The following table shows a complexity comparison
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of Bernstein’s two-way split KA with KA Combined with Traditional Method.

Table 4.4: Comparison of Iterative KA (1) and KA Combined with Traditional
Method (2)

Methods #AND # XOR Time

(1) [4] nlog2 (3) 5.5nlog2 (3) − 7n+ 1.5 D(n) = (3 log2 n− 1)TX + TA
(2) 1.78nlog2 (3) 3.94nlog2 (3) − 7n+ 1.5 D(n) = (3 log2 n− 4)TX + TA

It can be concluded that an efficient sub-multiplication module in the lowest layer

can lead to an improved complexity in KA-based multipliers.

Table 4.5 presents the optimized multipliers in GF (2n), where n ≤ 15. In the

case of n = 2, 3, 4, 5, 7, results are achieved by school-book method. The complexity

of 11, 12, 15 and the corresponding architecture can be found in [56]. For the rest of

n, the results can be easily obtained by a mixed method and the way of decompo-

sition also shown in the table. These optimized multiplication modules are used in

the proposed work to build subquadratic multiplications with improved complexity.

Although more multiplication architectures can be found in [56] and [22] for larger

n, they are not used in the proposed work due to its complicated structure and long

critical path.

Table 4.5: Optimized Multiplier Modules in GF (2n), where n ≤ 15

n S⊗(n) S⊕(n) D(n) Decomposition
2 4 1 TA + TX 2
3 9 4 TA + 2TX 3
4 16 9 TA + 2TX 4
5 25 16 TA + 3TX 5
6 27 30 TA + 5TX 2 ∗ 3
7 49 36 TA + 3TX 7
8 48 52 TA + 6TX 2 ∗ 4
9 54 72 TA + 6TX 3 ∗ 3
10 75 80 TA + 6TX 2 ∗ 5
11 78 108 TA + 7TX 11 [56]
12 81 126 TA + 7TX 12 [56]
13 106 149 TA + 8TX 12 + 1
14 147 154 TA + 6TX 2 ∗ 7
15 140 172 TA + 9TX 15 [56]
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4.2 Proposed Algorithm for Designing Subquadratic Multi-

pliers

By combining above formulas and methods, a new algorithm 4.1 is proposed to explore

an optimal combination of above approaches for constructing efficient multiplication

architectures for GF (2n) where n is in the interval of [16, 600].

Algorithm 4.1 The Proposed Algorithm to Design Efficient Multiplication

Architectures in GF (2n)

Input:

The set of required XOR gates for n shown in table 4.5: S⊕(n);

The set of required AND gates for n shown in table 4.5: S⊗(n);

The set of time delay for n shown in table 4.5: D(n);

The set of k(n) denotes the way of decomposition;

Output:

S⊕(n), S⊗(n), D(n), k(n) for n ∈ [16, 600];

1: for n = 16 to n = 600 do

2: for s = 9 to s = 3 do

3: if n = 2s then

4: Tem0 S⊕(n) = 3.75nlog23 − 6n+ 0.25− 0.5log2n;

5: Tem0 S⊗(n) = 16
9
nlog23;

6: D0(n) = TA + (2log2n− 1)TX ;

7: k0(n) = s.1;

8: else if n mod 2s = 0 and n 6= 2s then

9: Tem0 S⊕(n) = 3sS⊕( n
2s

) + (13·3
s−12·2s−1

2
) n
2s
− 5·3s−5+2s

4
;

10: Tem0 S⊗(n) = 3sS⊗( n
2s

);

11: D0(n) = D( n
2s

) + (2s+ 1)TX ;

12: k0(n) = s. n
2s

;

13: Break;

14: end if

15: end for

16: Tem1 S⊕(n) = S⊕(n− 1) + (2n− 3);

17: Tem1 S⊗(n) = S⊗(n− 1) + (2n− 1);

18: D1(n) = D(n− 1) + TX ;

19: k1(n) = 1.(n− 1);
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20: if n mod 2 = 0 then

21: Tem2 S⊕(n) = 3S⊕(n
2
) + 7n

2
− 3;

22: Tem2 S⊗(n) = 3S⊗(n
2
);

23: D2(n) = D(n
2
) + 3TX ;

24: k2(n) = 2.(n
2
);

25: else

26: Tem2 S⊕(n) = 2S⊕(n+1
2

) + S⊕(n−1
2

) + 7n
2
− 7

2
;

27: Tem2 S⊗(n) = 2S⊗(n+1
2

) + S⊗(n−1
2

);

28: D2(n) = max {D(n+1
2

), D(n−1
2

)}+ 3TX ;

29: k2(n) = 2.(n+1
2

);

30: end if

31: if n mod 3 = 0 then

32: Tem3 S⊕(n) = 6S⊕(n
3
) + 6n− 6;

33: Tem3 S⊗(n) = 6S⊗(n
3
);

34: D3(n) = D(n
3
) + 4TX ;

35: k3(n) = 3.(n
3
);

36: else

37: i = 3bn
3
c − n;

38: Tem3 S⊕(n) = 5S⊕(n+i
3

) + S⊕(n−2i
3

) + 6n− 6;

39: Tem3 S⊗(n) = 5S⊗(n+i
3

) + S⊗(n−2i
3

);

40: D3(n) = max {D(n+i
3

), D(n−2i
3

)}+ 4TX ;

41: k3(n) = 3.(n+i
3

);

42: end if

43: if n mod 4 = 0 then

44: Tem4 S⊕(n) = 9S⊕(n
4
) + 17n

2
− 11;

45: Tem4 S⊗(n) = 9S⊗(n
4
);

46: D4(n) = D(n
4
) + 5TX ;

47: k4(n) = 4.(n
4
);

48: else

49: i = 4bn
4
c − n;

50: Tem4 S⊕(n) = 8S⊕(n+i
4

) + S⊕(n−3i
4

) + 17n
2

+ i
2
− 11;

51: Tem4 S⊗(n) = 8S⊗(n+i
4

) + S⊗(n−3i
4

);

52: D4(n) = max {D(n+i
4

), D(n−3i
4

)}+ 5TX ;

53: k4(n) = 4.(n+i
4

);
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54: end if

55: Compare above five sets of results based on overall space complexity, and Assign

the best one to S⊕(n), S⊗(n), D(n), k(n);

56: for l = (n− 1) to 1 do

57: if The overall space complexity of S(n) is smaller than S(n− 1) then

58: Assign the results corresponding with n to S⊕(n−1), S⊗(n−1), D(n−1),

k(n− 1);

59: else

60: Break;

61: end if

62: end for

63: return S⊕(n), S⊗(n), D(n), k(n);

64: end for

In order to obtain a KA-based multiplier with improved efficiency, multiplications

in every intermediate layer should be optimized. Therefore, the algorithm should

start with designing optimized 16-bit multiplication, and then build larger multiplier

with existing multiplier with small operands. Depending on the value of n, different

methods are compared to obtain a best result by applying some constraints. From

line 2 to 15, the condition of n = 2sm are checked for some n with optimized 2s-way

Karatsuba reconstruction. Then the following four lines compute the first situation

shown in section 4.1.1. From line 20 to 30, 31 to 42 and 43 to 54, reconstructed

2, 3, 4-way are used to decompose n, and the results are calculated based on the above

reviewed formulas. In the last part, all of results are compared based on overall space

complexity in algorithm 4.1. Here, the overall space complexity is approximately

estimated by the following expression: 1.5S⊕ + S⊗, where the size of 2-input XOR

gate is considered as 1.5 times of 2-input AND gate. The coefficient 1.5 can be found

in related article [48] on finite field multiplier and the corresponding data comes from

NanGate’s Library Creator [57].

It is noted that the KAs used in above algorithm is space optimized. Moreover, the

Karatsuba formulas based on overlap-free approach also can be used in this algorithm
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to achieve a time efficient structure.

4.3 Proposed Multipliers in NIST Recommended Fields

In this section, the proposed work is applied to build efficient polynomial multi-

plication over NIST recommended fields GF (2163), GF (2233), GF (2283), GF (2409),

GF (2571) and detailed derivation for the complexity will also be presented. At the

end, the complexity results will be compared with exiting works.

4.3.1 Multiplier in GF (2163)

Consider that A(X) and B(X) are polynomials with the degree of 162. By using the

’Dividing and Conquer’ techniques, the multiplication of A(X)B(X) can be decom-

posed as:

1. 163 bits multiplication with Bernstein’s 4-way split formula: 163 = 40 + 41 +

41 + 41;

2. 41 bits multiplication with the method shown in section(4.1.1): 41 = 1 + 40;

3. 40 bits multiplication with optimized 2n-way split KA: 40 = 8 ∗ 5;

4. 5 bits classical multiplication;

Then the above structure can be seen as the diagram 4.2. At the lowest layer of

the multiplication, totally 243 5-bit classical multiplier modules are formed with cor-

responding coefficients based on the expansion of Karatsuba formula. These multi-

plication results are then reconstructed into nine 40-bit multipliers with 4-way split

KA. In the next step, 8 of the 40-bit multipliers are extended to 41-bit multipliers.

And these 81-bit outputs are used to construct final results with the rest one 40-bit

multiplication.
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Fig. 4.2: Proposed Structure of GF (2163) Multiplication Based on Combinational
Methods

With the recursively complexity formulas shown in above sections, the detailed

computation steps and final results can be presented as:

S⊕(163) = 8S⊕(41) + S⊕(40) +
17 ∗ 164

2
− 8 ∗ 1− 11

= 8(S⊕(40) + 41 ∗ 2− 3) + S⊕(40) + 1375

= 9(27S⊕(5) +
127 ∗ 40

8
− 34) + 2007

= 11304;

S⊗(163) = 8S⊗(41) + S⊗(40)

= 8(S⊗(40) + 41 ∗ 2− 1) + S⊗(40)

= 243S⊕(5) + 648 = 6723;

D(163) = D(41) + 5TX = D(40) + 6TX = D(5) + 13TX = TA + 16TX ;

4.3.2 Multiplier in GF (2233)

In this section, polynomial multiplication are consider over GF (2233). Let A(X)

and B(X) be polynomials with the degree of 232. By using proposed combinational

techniques, firstly, the multiplication of A(X)B(X) can be decomposed as:

1. 233 bits multiplication with Bernstein’s 4-way split formula: 233 = 56 + 59 +
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59 + 59;

2. 59 bits multiplication with Bernstein’s 4-way split formula: 59 = 14 + 15 + 15 +

15;

3. 56 bits multiplication with optimized 2n-way split KA: 56 = 8 ∗ 7;

4. 15 bits multiplication with the architecture shown in [56];

5. 14 bits multiplication with Bernstein’s 2-way split formula: 14 = 2 ∗ 7;

6. 7 bits classical multiplication;

Then the above structure can be seen as the diagram 4.3. At the lowest layer of the

multiplication, totally 51 7-bit classical multiplier modules are formed with corre-

sponding coefficients and 64 15-bit multipliers are built with the structure presented

in [56]. Then 27 of 7-bit multipliers are used to construct one 56-bit multiplier and

the rest results are reconstructed into eight 14-bit multipliers, which can be combined

with 15-bit multipliers to complete eight 59-bit multiplication. Finally, one 58-bit and

eight 59-bit multiplications are utilized to construct the last output.

Fig. 4.3: Proposed Structure of GF (2233) Multiplication Based on Combinational
Methods
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The detailed computation steps and final results is shown as following:

S⊕(233) = 8S⊕(59) + S⊕(56) +
17 ∗ 236

2
− 8 ∗ 3− 11

= 8(8S⊕(15) + S⊕(14) +
17 ∗ 60

2
− 8 ∗ 1− 11) + S⊕(56) + 1971

= 64S⊕(15) + 51S⊕(7) + 7122

= 19966;

S⊗(233) = 8 ∗ S⊗(59) + S⊗(56) = 64 ∗ S⊕(15) + 51S⊗(7) = 11459;

D(233) = D(59) + 5TX = D(15) + 10TX = D(15) + 10TX = TA + 19TX ;

4.3.3 Multiplier in GF (2283)

In this section, proposed GF (2283) multiplier will be talked in detail. Let A(X) and

B(X) be polynomials with the degree of 282. Firstly, the multiplication of A(X)B(X)

can be decomposed as:

1. 283 bits operands are extended to 288 bits, then with optimized 2n-way split

KA: 288 = 25 ∗ 9

2. 9 bits multiplication with 3-way split KA in [7]: 9 = 3 ∗ 3;

3. 3 bits classical multiplication;

The structure of proposed GF (2283) multiplier is straightforward. At the lowest layer,

totally 1458 3-bit classical multiplier modules are formed with corresponding coeffi-

cients based on the expansion of the Karatsuba formula. Then these multiplication

results are used to construct 243 9-bit multipliers. After that, final results can be

obtained based on the architecture of five layers of 2-way split KA with optimized

reconstruction process. The structure of this multiplier can be represented in the

diagram 4.4.
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Fig. 4.4: Proposed Structure of GF (2283) Multiplication Based on Combinational
Methods

The detailed computation steps and final results is shown as following:

S⊕(283) = 243S⊕(9) +
1387 ∗ 288

32
− 305 = 29674;

S⊗(283) = 243 ∗ S⊗(9) = 13122;

D(233) = D(9) + 11TX = TA + 17TX ;

4.3.4 Multiplier in GF (2409)

This section will discuss the proposed GF (2409) multiplier. Let A(X) and B(X) be

polynomials with the degree of 408. Firstly, the multiplication of A(X)B(X) can be

decomposed as:

1. 409 bits multiplication with Bernstein’s 2-way split formula: 409 = 204 + 205;

2. 205 bits multiplication with Bernstein’s 4-way split formula: 205 = 49 + 52 +

52 + 52;

3. 204 bits multiplication with Bernstein’s 4-way split formula: 204 = 51 + 51 +

51 + 51;

4. 52 bits multiplication with Bernstein’s 4-way split formula: 52 = 13 + 13 + 13 +
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13;

5. 51 bits multiplication with Bernstein’s 4-way split formula: 51 = 12 + 13 + 13 +

13;

6. 49 bits multiplication with the method shown in section(4.1.1): 49 = 48 + 1;

7. 48 bits multiplication with optimized 2n-way split KA: 48 = 16 ∗ 3;

8. 13 bits multiplication with the method shown in section(4.1.1): 13 = 12 + 1;

9. 12 bits multiplication with the architecture shown in [56];

10. 3 bits classical multiplication;

In above structure, the lowest layer consists of two small multiplier modules. One is

3-bit multiplier which later is used to build as 48 bits multiplier. Another one is 12-bit

multiplication formed with the architecture shown in [56]. Then 12-bit multiplication

is extend to 13-bit and these two module are used to construct the results of 51

and 52-bit multiplication. At the same time, the results of 48-bit multiplication are

also extended to the length of 49-bit with some input bits. In the next recursion,

two 49-bit multipliers are reconstructed with corresponding 16 52-bits multiplier to

obtained two 205 bits multiplier. And one 204-bit multiplication is built with nine

51-bit multiplication. Finally, these three results are used to construct the output of

409-bit multiplication by applying two-way split KA. The diagram of above process

is shown in 4.5.
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Fig. 4.5: Proposed Structure of GF (2409) Multiplication Based on Combinational
Methods

The detailed computation steps and final results is shown as following:

S⊕(409) = 2S⊕(205) + S⊕(204) +
7 ∗ 410

2
− 4− 3

= 2(8S⊕(52) + S⊕(49)) + 9S⊕(51) + 6617

= 216S ⊕ (13) + 2S⊕(48)) + 9S⊕(12) + 17510

= 225S ⊕ (12) + 162S⊕(3) + 24854 = 53852;

S⊗(409) = 2 ∗ S⊗(205) + S⊗(204)

= 16S⊕(52) + 2S⊕(49) + 9S⊕(51);

= 216S⊕(13) + 2S⊕(48) + 9S⊕(12) + 194;

= 225S⊕(12) + 162S⊕(3) + 5594 = 25277;

D(409) = D(205) + 3TX = D(52) + 8TX = D(13) + 13TX

= D(12) + 14TX = TA + 21TX ;

4.3.5 Multiplier in GF (2571)

The structure of proposed GF (2571) multiplier is similar to the proposed multiplier

over GF (2283). Let A(X) and B(X) be polynomials with the degree of 570. Firstly,
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the multiplication of A(X)B(X) can be decomposed as:

1. 571 bits operands are extended to 576 bits, then with optimized 2n-way split

KA: 576 = 26 ∗ 9

2. 9 bits multiplication with 3-way split KA in [7]: 9 = 3 ∗ 3;

3. 3 bits classical multiplication;

Compared with the GF (2283) multiplier discussed above, the proposed GF (2571) mul-

tiplier has one more layer of two-way split KA. At the lowest layer, totally 4374 3-bit

classical multiplier modules are formed with corresponding coefficients based on the

expansion of the Karatsuba formula. Then 729 9-bit multipliers are constructed with

these multiplication results. After that, in the light of the architecture of six layers of

2-way split KA with optimized reconstruction process, final outputs can be obtained.

The structure of this multiplier is shown in the diagram 4.6.

Fig. 4.6: Proposed Structure of GF (2571) Multiplication Based on Combinational
Methods
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The detailed computation steps and final results is shown as following:

S⊕(571) = 729S⊕(9) +
2177 ∗ 576

32
− 913 = 90761;

S⊗(571) = 729 ∗ S⊗(9) = 39366;

D(571) = D(9) + 13TX = TA + 19TX ;

4.4 Time Efficient Multiplication Architectures for NIST Rec-

ommended fields

As mentioned before, if the overlap-free KA in table 4.1 is used in the proposed

algorithm, another fast structures can be found with increased space complexity. In

this section, the decomposition route will be introduced for these speed improved

multiplications.

The following graph shows how to divide the 163-bit multiplication into sub-

multiplications. First, the final result can be constructed with two 82-bit and one

81-bit multiplication. Then these multiplications can be further split with four-way

split method. In the final recursion, 21-bit multiplier is built with six 7-bit classical

multipliers. And 3, 4, 5-bit modules are used to form 19-bit and 18-bit multipliers.

Fig. 4.7: Time Efficient Decomposition of GF (2163) Multiplication

The complexity results of architecture in 4.7 can be computed by similar steps

demonstrated in above sections, with replaced Karatsuba formulas based on overlap-

free approach. In addition, the time efficient structure for the rest fields are presented
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in the following graph and the complexity results will be presented in the next section.

(a) (b)

(c) (d)

Fig. 4.8: Time Efficient Decomposition of GF (2163), GF (2233), GF (2283), GF (2409),
GF (2571) Multiplication

4.5 Complexity Comparison

Table 4.6: Comparison of Existing Works on GF (2163) Multiplier

Multiplier
S⊗

(#AND)
S⊕

(#XOR)
C

(1.5S⊕ + S⊗)
C

(%)
T

(Latency)
T

(%)
C × T

(%)
Classical 26569 26244 65935 290 % TA + 8TX 69 % 169 %
[21],2011 9801 11997 27796.5 122 % TA + 13TX 108 % 111 %
[15],2012 7938 11751 25564.5 113 % TA + 15TX 123 % 117 %
[22],2015 5052 11776 22716 100 % TA + 194TX 1500 % 1264 %
[22],2015 5916 12003 23920.5 105 % TA + 24TX 192 % 171 %

Proposed-1 6723 11304 23679 104 % TA + 16TX 131 % 115 %
Proposed-2 7938 12676 26952 119 % TA + 12TX 100 % 100 %
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Table 4.7: Comparison of Existing Works on GF (2233) Multiplier

Multiplier
S⊗

(#AND)
S⊕

(#XOR)
C

(1.5S⊕ + S⊗)
C

(%)
T

(Latency)
T

(%)
C × T

(%)
Classical 54289 53824 135025 344 % TA + 8TX 60 % 159 %
[21],2011 11664 23589 47047.5 120 % TA + 20TX 140 % 129 %
[15],2012 12150 21066 43749 111 % TA + 17TX 127 % 103 %
[22],2015 8955 20201 39256.5 100 % TA + 273TX 1827 % 1408 %
[22],2015 8804 22577 42669.5 105 % TA + 42TX 287 % 240 %

Proposed-1 11459 19966 41408 105 % TA + 19TX 133 % 108 %
Proposed-2 11667 26184 50943 130 % TA + 14TX 100 % 100 %

Table 4.8: Comparison of Existing Works on GF (2283) Multiplier

Multiplier
S⊗

(#AND)
S⊕

(#XOR)
C

(1.5S⊕ + S⊗)
C

(%)
T

(Latency)
T

(%)
C × T

(%)
Classical 80089 79524 199375 382 % TA + 9TX 67 % 200 %
[21],2011 19683 28447 62353.5 119 % TA + 19TX 133 % 125 %
[15],2012 13122 30091 58258.5 112 % TA + 19TX 133 % 117 %
[22],2015 10809 27623 52243.5 100 % TA + 413TX 2760 % 2170 %
[22],2015 12111 30357 57646.5 110 % TA + 44TX 300 % 260 %

Proposed-1 13122 29674 57633 110 % TA + 17TX 120 % 104 %
Proposed-2 15561 33922 66444 127 % TA + 14TX 100 % 100 %

Table 4.9: Comparison of Existing Works on GF (2409) Multiplier

Multiplier
S⊗

(#AND)
S⊕

(#XOR)
C

(1.5S⊕ + S⊗)
C

(%)
T

(Latency)
T

(%)
C × T

(%)
Classical 167281 166464 416977 453 % TA + 9TX 63 % 217 %
[21],2011 35721 56218 120048 131 % TA + 21TX 138 % 138 %
[15],2012 29700 54418 111327 121 % TA + (12 +Q)TX >163 % >151 %
[22],2015 17958 49326 91947 100 % TA + 584TX 1713 % 1313 %
[22],2015 22443 53776 103107 112 % TA + 45TX 269 % 231 %

Proposed-1 25277 53852 106055 115 % TA + 21TX 125 % 111 %
Proposed-2 33606 57519 119884.5 130 % TA + 15TX 100 % 100 %
* Q > 13 refers to the time delay of the 7-term Karatsuba-like formula presented in [15].

Table 4.10: Comparison of Existing Works on GF (2571) Multiplier

Multiplier
S⊗

(#AND)
S⊕

(#XOR)
C

(1.5S⊕ + S⊗)
C

(%)
T

(Latency)
T

(%)
C × T

(%)
Classical 326041 324900 813391 527 % TA + 10TX 65 % 258 %
[21],2011 59049 87424 190185 123 % TA + 22TX 135 % 126 %
[15],2012 37179 93383 177253.5 115 % TA + (15 + E)TX >165 % >143 %
[22],2015 26148 85473 154357.5 100 % TA + 869TX 5118 % 3876 %
[22],2015 33498 92563 172342.5 112 % TA + 48TX 288 % 244 %

Proposed-1 39366 90761 175507.5 114 % TA + 19TX 118 % 101 %
Proposed-2 46659 104778 203826 132 % TA + 16TX 100 % 100 %
* E > 13 refers to the time delay of the 6-term Karatsuba-like formula presented in [15].
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In table 4.6, 4.7, 4.8, 4.9, 4.10, the time and space complexity of proposed two

works are presented with the comparison of classical multiplication and existing works

on multiplication with subquadratic space complexity. The results shown in these ta-

bles contain the number of required AND and XOR gates, space complexity, Latency

as well as the product of space complexity and latency. The space complexity is

computed rS⊕ + S⊗ and the coefficient r is determined by the area cost of 2-input

AND gate and XOR gate and it can be varied in term of using different techniques

on different platforms. It is chose as 1.5 in proposed works. Since the time clock of

parallel multiplication is 1, the latency of proposed multiplier is equal to time com-

plexity. In the last column, the product of space complexity and latency, denoted as

C × T is used to estimate the overall performance of the multiplier by considering

both of time and space.

Among the existing works, multipliers in [21] and [15] have a better overall per-

formance by considering the product of C × T . And two multiplication architectures

are presented in [22] with reduced space complexity using optimized three-way split

KA with five scalar multiplications, or called Bernstein’s three-way split formula.

Although one of them achieves the lowest space complexity in all of five NIST recom-

mended fields, its linear time complexity results in a high product of C×T . The other

one architecture in [22] has obtained a logarithm time complexity with a increase of

space complexity. Its product of C × T is still higher than the works in [21] and [15]

due to the lager latency.

Compared with all existing works on subquadratic multipliers,

• In GF (2163) and GF (2233), the proposed multiplier-2 has the lowest latency and

their products of space complexity and latency are 11 % and 3 % lower than

existing best result, respectively.

• In GF (2283), GF (2409) and GF (2571), the proposed architecture-1 achieves a

lower product of space complexity and latency with a trade-off between space
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and time complexity. And the proposed architecture-2 has the lowest latency

and their products of space complexity and latency are 17%, 38% and 26% lower

than the existing best result.

In addition, the proposed multiplier-1 has lower space complexity than the pro-

posed multiplier-2 in all of the five NIST fields. In the field of GF (2283), GF (2409)

and GF (2571), it has a lower product of space complexity and latency than existing

works as well as a lower space complexity than proposed architecture-2.

4.6 Generalized Procedure for Constructing Efficient Finite

Field Multiplication

When a field is used in practical cryptography, its size is usually a large prime number.

And with the increasing of n, especially not limited in above proposed fields, more

decomposition paths can be found with different ’divide and conquer’ technologies.

In order to find a better combination for a specific field, a general procedure to form

subquadratic multiplication over GF (2n) is summarized in this section.

Before extending the proposed algorithm to a general construction process for

multiplication, it is important to figure out the features of different construction

methods. For example, the first case shown in 4.1.1 is very suited for the condition

when n = km + 1 and the second case is used when n is not a multiple of the number

of split blocks.

Karatsuba-series formulas is the core component of the subquadratic multiplica-

tion, and there are three important parameters to evaluate its efficiency. The first one

is the asymptotic space complexity, which is determined by the number of required

scalar multiplications M(n). When n is close to infinity, the value of M(n) is the

most effective factor. However, n is not usually large enough in current cryptographic

demands, such as several hundred bits. Then the cost of XOR gates in construction
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process will also be considered. The following recursive complexity equation of two

six-way split methods will discuss the relation between these two parameters.

S⊕(6n) = 18S⊕(n) + 75n− 21;

S⊕(6n) = 17S⊕(n) + 96n− 34;

(16)

In above equation, the first expression is a simple combination of two-way and three-

way split formula. It requires one more sub-multiplication with less cost in recon-

struction part. When the cost of S⊕(n) starts to be greater than 21n, the second

algorithm [15] will have a better performance on area. The last parameter is the

time complexity spent on constructing the formula. Calling for the table 4.1 and the

conclusion presented in [38], although the relative asymtotic space complexity is tend

to decrease from two-way split formula to k-way formulas, the construction process

tends to be more complex, which means the time delay will grow in number. Example

also can be given based on above two 6-way split methods. The first one will cost

7TX for each iteration and the second will require more than this value. Therefore,

for different sets of n and specific requirement in term of space and time, different

formulas need to be examined in detail.

For constructing efficient finite field multiplication over GF (2n):

• Select construction methods for different sets of n;

• Replace the formulas or add more formulas in the proposed algorithm based on

the requirements;

• Change the comparison constrains in proposed algorithm for specific time and

space requirement as well as the consideration of the implementation environ-

ment;

• Use the modified proposed algorithm to obtain the expected combinational

approaches.
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• Start from the fundamental module, and form the multiplier layer by layer.
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5 Conclusions

In this chapter, we summarize the main contributions in this thesis and propose

possible future research works in the related areas.

5.1 Summary of Contributions

Bit-parallel multiplication with subquadratic space complexity has been investigated

in this thesis when n is within the range of practical application of elliptic curve

cryptography. Our main contributions are summarized as following.

With a suitable combination of some of the following works, namely, 2, 3, 4-

way split Karatsuba algorithms along with Bernstein reconstruction and overlap-free

approach, efficient padding algorithm, classical method and some optimal funda-

mental multiplication modules under 16 bits, a new algorithm is proposed to design

an improved architecture of subquadratic multiplier for a specific GF (2n), where

n ∈ [160, 600]. This algorithm takes advantage of the independence of CM blocks in

KAs and the construction process starts with an optimized CM block in the lower

layer of the architecture. A generalization of the proposed algorithm to be suitable

for larger fields is also discussed.

As the results from the proposed algorithm, two multiplication architectures have

been presented for each of NIST recommended fields optimized for area complexity

and time complexity, respectively. Compared with all existing works on subquadratic

multipliers,

• The proposed multiplier-2 has lower latency in all of the five NIST fields;

• The proposed multiplier-2 has lower product of space complexity and latency

in all of the five NIST fields;

• The proposed multiplier-1 has lower product of space complexity and latency

in the NIST fields (2283), (2409) and (2571);
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• The proposed multiplier-1 has lower space complexity than the proposed work-2

in all of the five NIST fields.

The proposed works have applications in ECC cryptosystems and other security

system requiring finite field based computations. Since multiplication is the most

expensive and dominate arithmetic operation in GF (2n), it is expected the proposed

work can significantly improved efficiency for the applied ECC and other related

cryptosystems. Additionally, these structures also can be used as a submodule to

construct multiplication with larger operands in some applications, such as homo-

morphic cryptosystem and post quantum cryptography.

5.2 Future Works

Subquadratic space complexity multiplication reflects the most recent research efforts

on parallel finite field multiplication. It will dramatically reduce the required gates

with an increase in critical path. The further optimization of subquadratic space

complexity can be quested in the following areas and aims to continuously reduce the

area cost within an acceptable time delay. In the next two sections, potential works

will be discussed from the gate level implementation to architecture design.

5.2.1 Further Optimization on Circuits Modules

In term of the algorithm design for subquadratic multiplication, complexity is eval-

uated based on two basic components: 2-input AND and XOR gates. When an

algorithm is proposed at the architecture level, it is assumed that the comparison

is based on same modules of logical gates and synthesized in a same implementa-

tion environment. One most straightforward improvement that can be explored on

the hardware is efficient and specific design of logic gates. For a customized cell li-

brary for finite field arithmetic, inputs constrains should be updated in the proposed

algorithm to obtain more efficient multiplication structures.
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Additionally, it has been shown that the efficiency of sub-multiplications is one

governing factor to influence the performance of KA-based multiplication. For exam-

ple, in section 4.3.5, totally 4374 3-bit classical multiplier modules are required to con-

struct proposed GF (2571) multiplication. Improvements on the 3-bit multiplication

modules will have a significant impact on proposed GF (2571) multiplier. Therefore,

it is desirable to create basic multiplication modules with shortened latency, compact

area and reduced power consumption.

5.2.2 K-way Karatsuba-like Formula with Optimized Construction Pro-

cess

Since Karatsuba-based multiplier is formed with fundamental modules layer by layer,

the construction process is another foremost block that guaranteed its efficiency. For

the larger field, the Karatsuba formulas used in the proposed algorithm may not

be efficient enough. In this case, it is expected to design improved multiplication

architectures using improved k-term Karatsuba-like formulas, where k > 4.

Many existing works related to k-term Karatsuba-like formulas only focus on min-

imizing the upper bound of M(n) without premeditating additions. These formulas

cannot be used in the proposed algorithm with improved efficiency due to its unop-

timized R block. Reducing the expanse of R block in these Karatsuba-like formulas

and using them in the proposed work may obtain more efficient multiplication archi-

tectures for some binary extension field. Moreover, with an increase of k, the KA-like

formulas becomes more complicated. Therefore, the improved R block may not only

mean a decrease in space complexity, it also implies a simple and organized structure

with fast speed.

In conclusion, the further work on GF (2n) multipliers with subquadratic space

complexity can be concurrently searched in efficient ’divide and conquer’ technologies

and specific hardware design.
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APPENDIX A

Lemma 2. The i-th term of a geometric sequence with initial value a and common

ratio r is given by

ai = ari−1

Then a geometrics series, defined as the sum of numbers in a geometric progression,

can be represented as

S = a+ ar + ar2 + · · · · · ·+ ari−1

=
a(ri − 1)

r − 1

(17)

where r 6= 1.

The derivation of equation (17) is very simple. Let S multiply the common ratio

r and then minus S. (17) can be obtained by deforming the result of (r − 1)S.

Lemma 3. Let a, b, c, d, e and n be positive integers, where a 6= b, a 6= 1 and

n = bm. There is a recurrence relations
R1 = R(b) = e;

Rm = R(n) = aR(n
b
) + cn+ d.

(18)

The non-recursive form of Rm is

Rm = (
e(a− 1) + d

a(a− 1)
+

cb2

a(a− b)
)nlogb a − bc

a− b
n− d

a− 1
. (19)

Proof. The following part shows the derivation of lemma 3.

(18) is first-order non-homogeneous recurrence formulas with variable coefficients.

The expansion of the recurrence relations shown in Equation (18) can be represented
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as 

R1 = e;

R2 = aR1 + cb2 + d;

...

Rm−1 = aRm−2 + cbm−1 + d;

Rm = aRm−1 + cbm + d.

(20)

Let both sides of the equation (20) multiply am−i (i denotes the number of recursions.).



am−1R1 = am−1e;

am−2R2 = am−2(aR1 + cb2 + d);

...

aRm−1 = a(aRm−2 + cbm−1 + d);

Rm = aRm−1 + cbm + d.

(21)

Then the left and right sides of the formula in Equation (21) are added respectively.

Rm +
m−1∑
i=1

aiRm−i =
m−1∑
i=1

aiRm−i + c
m−2∑
i=0

aibm−i + d
m−2∑
i=0

ai + am−1e. (22)

After both sides eliminate the term of
m−1∑
i=1

aiRm−i, Rm can be expressed as the sum-

mation of two geometric series and one exponential term.

Firstly, let

S1 = c

m−2∑
i=0

aibm−i;

S2 = d
m−2∑
i=0

ai.
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According to lemma 2,

S1 =
c(am−1b2 − bm+1)

a− b
;

S2 =
d(am−1 − 1)

a− 1
,

where a 6= 1 and a 6= b.

Replacing m with logb n, Rm can be given by

Rm = (
e(a− 1) + d

a(a− 1)
+

cb2

a(a− b)
)nlogb a − bc

a− b
n− d

a− 1
.

�
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APPENDIX B

Proof. The induction method is applied to prove lemma 1.

When n = 1, the proof of lemma 1 is simple. The polynomial multiplication

C = AB = R(Ĉ) = Ĉ for all C, which implies that R(Ĉ) +R(Ĉ ′) = R(Ĉ + Ĉ ′).

When n = 2m, it is assumed that the lemma is true for n = 2m−1. It is noted from

the graph 3.5 that Ĉ and Ĉ ′ can be decomposed into three parts, where

Ĉ = {Ĉ0; Ĉ1; Ĉ2};

Ĉ ′ = {Ĉ ′0; Ĉ ′1; Ĉ ′2}.

According to the definition of R,

R(Ĉ) = [R(Ĉ0), R(Ĉ1), R(Ĉ0) +R(Ĉ1) +R(Ĉ2)];

R(Ĉ ′) = [R(Ĉ ′0), R(Ĉ ′1), R(Ĉ ′0) +R(Ĉ ′1) +R(Ĉ ′2)].

Then based on the induction hypothesis and previous property, following derivation

process is expressed.

R(Ĉ) +R(Ĉ ′) =[R(Ĉ0) +R(Ĉ ′0), R(Ĉ1) +R(Ĉ ′1),

R(Ĉ0) +R(Ĉ ′0) +R(Ĉ1) +R(Ĉ ′1) +R(Ĉ2) +R(Ĉ ′2)];

=[R(Ĉ0 + Ĉ ′0), R(Ĉ1 + Ĉ ′1), R(Ĉ0 + Ĉ ′0) +R(Ĉ1 + Ĉ ′1) +R(Ĉ2 + Ĉ ′2)];

=R(Ĉ + Ĉ ′).
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