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ABSTRACT 

The automotive industry is one of the world's most important economic sectors in terms 

of revenue and employment. The automotive supply chain is complex owing to the large 

number of parts in an automobile, the multiple layers of suppliers to supply those parts, 

and the coordination of materials, information, and financial flows across the supply chain. 

Many uncertainties and different natural and man-made disasters have repeatedly stricken 

and disrupted automotive manufacturers and their supply chains. Managing supply chain 

risk in a complex environment is always a challenge for the automotive industry.  

This research first provides a comprehensive literature review of the existing research work 

on the supply chain risk identification and management, considering, but not limited to, the 

characteristics of the automotive supply chain, since the literature focusing on automotive 

supply chain risk management (ASCRM) is limited. The review provides a summary and 

a classification for the underlying supply chain risk resources in the automotive industry; 

and state-of-the-art research in the area is discussed, with an emphasis on the quantitative 

methods and mathematical models currently used. The future research topics in ASCRM 

are identified.  

Then two mathematical models are developed in this research, concentrating on supply 

chain risk management in the automotive industry. The first model is for optimizing 

manufacturer cooperation in supply chains.  OEMs often invest a large amount of money 

in supplier development to improve suppliers’ capabilities and performance. Allocating the 

investment optimally among multiple suppliers to minimize risks while maintaining an 

acceptable level of return becomes a critical issue for manufacturers. This research 

develops a new non-linear investment return mathematical model for supplier 
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development, which is more applicable in reality. The solutions of this new model can 

assist supply chain management in deciding investment at different levels in addition to 

making “yes or no” decisions. The new model is validated and verified using numerical 

examples.  

The second model is the optimal contract for new product development with the risk 

consideration in the automotive industry. More specifically, we investigated how to decide 

the supplier’s capacity and the manufacturer’s order in the supply contract in order to 

reduce the risks and maximize their profits when the demand of the new product is highly 

uncertain. Based on the newsvendor model and Stackelberg game theory, a single period 

two-stage supply chain model for a product development contract, consisting of a supplier 

and a manufacturer, is developed. A practical back induction algorithm is conducted to get 

subgame perfect optimal solutions for the contract model. Extensive model analyses are 

accomplished for various situations with theoretical results leading to conditions of 

solution optimality. The model is then applied to a uniform distribution for uncertain 

demands.  Based on a real automotive supply chain case, the numerical experiments and 

sensitivity analyses are conducted to study the behavior and performance of the proposed 

model, from which some interesting managerial insights were provided. The proposed 

solutions provide an effective tool for making the supplier-manufacturer contracts when 

manufacturers face high uncertain demand. 

We believe that the quantitative models and solutions studied in this research have great 

potentials to be applied in automotive and other industries in developing the efficient 

supply chains involving advanced and emerging technologies.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation  

The automotive industry has been driven to optimize its supply chain performance by it's 

demanding and fiercely competitive business environment. However, many uncertainties 

and natural and man-made disasters have repeatedly stricken and disrupted automotive 

OEMs and their supply chains. In order to protect themselves against the harmful effects 

of the supply chain uncertainties and disruptions, automotive OEMs have turned their 

attention to supply chain risk management. Unfortunately, the research work and 

publications have not kept up the same pace that the automotive industry requires. There 

are limited amounts of the published research papers which directly address the automotive 

supply chain risk management. To lay a foundation for further research in the area, this 

research first provides a review of the existing research work on the supply chain risk 

identification and management, considering the characteristics of the automotive supply 

chain. Then, the research tries to model the optimal contract for product development with 

the risk consideration for the automotive industry, and to model optimizing manufacturer 

cooperation in the supply chain.  

1.2 Research Objective and Methodologies 

The purpose of this research is to find (1) the underlying supply chain risk management 

problems in the automotive industry; (2) the theoretical models to help the decision-making 

of supply chain managers in uncertain situations. The characteristics of the automotive 

supply chain are discussed in the literature review. It also summarizes the theoretical work 

and practices related to or applicable to automotive supply chain risk identification and 

classification, as well as examines the methodologies of supply chain risk assessment. The 

theoretical models, the qualitative approaches and practical tools for supply chain risk 

management are reviewed. It is pointed out in this research that implementing an 

automotive supply chain risk assessment is a complex and challenging task. The 

mathematical models for real-time supply chain disruption management still need 

development. More research is needed to model uncertain situations in order to mitigate 

risk impacts. 
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This research includes two mathematic models for automotive supply chain risk 

management:  

1.2.1 Model for supplier development and manufacturer cooperation with a 

nonlinear return to minimize risks. 

The automotive supply chain is a multiple layer and complex network, so the relationship 

between supply chain members is very important for risk management. Supplier 

development is a long-term, resource-consuming business activity that requires 

commitment from both manufacturer and suppliers. Automotive manufacturers often 

invest heavily in supplier development to improve their supplier’s capabilities and 

performance. How to allocate the investment optimally among multiple suppliers to 

minimize risk while maintaining an acceptable level of return is a critical issue faced by 

automotive OEMs. Talluri et al. (2010) applied Markowitz’s model to manufacturer 

cooperation in supplier development under risk. Talluri’s model assumes that the return of 

investment to the supplier is proportional to the investment. However, in most situations, 

the return is nonlinear. This research extends Talluri’s work and presents a new 

mathematical model for supply chain development by revising investment return from 

linear to non-linear and applies it to the auto industry.  

1.2.2 Optimal contract model for product development with risk consideration 

(penalty and compensation). 

As a common ex-ante strategy in risk management, supply chain contracts play an 

important role for supply chain members, such as OEMs and suppliers, to coordinate, and 

to share risks arising from various sources of uncertainty. In the automotive industry, when 

developing new products, e.g., electric cars, the demand is highly uncertain. Generally, the 

manufacturer forecasts the demand and shares the information with suppliers. At the same 

time, the manufacturer needs to provide the planned yearly order quantity O, and then the 

supplier needs to decide the capacity Q according to order O. As a part of the procurement 

contract, the manufacturer can claim compensation or penalty to prevent profit loss caused 

by the supplier’s delivery shortage. We model a single–period make-to-order supply chain 

consisting of a supplier and a manufacturer with demand uncertainty. The purpose is to 

determine the optimal contract variables, capacity Q and order O. Based on the newsvendor 
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model and Stackelberg game theory, we develop a mathematical model for the product 

development contract, where both demand uncertainty and compensation are considered. 

The analytical solution for the situation that the demand follows uniform distribution is 

developed, and computational tests, as well as sensitivity analyses, are also reported. The 

proposed solution provides an effective tool for supplier-manufacturer contracts when the 

manufacturer faces highly uncertain demand. 

1.3 Structure of the Dissertation 

The dissertation is organized as follows: Chapter 2 is a literature review of supply chain 

risk identification, assessment, and management in the automotive industry. Chapter 3 

studies manufacturer cooperation in supplier development under risk with nonlinear return. 

Chapter 4 studies the optimal contract for product development with risk consideration 

(penalty and compensation). Chapter 5 studies the optimization for product development 

with risk consideration in uniform demand distribution. Finally, Chapter 6 provides a 

conclusion on the research and the future work for automotive supply chain risk 

management. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction  

The automotive industry is one of the world's most important economic sectors in terms 

of revenue and employment. According to automotive industry statistical data from OICA 

(2016), almost 95 million cars and commercial vehicles were produced in the world in 

2016, with over 8 million direct jobs in the assembly and manufacture of components, 

representing over 5% of the world’s industrial employment, and almost five times more 

indirect jobs (González-Benito et al., 2013).  

The automotive supply chain is complex owing to the large number of parts assembled into 

an automobile, the multiple layers of suppliers to supply those parts, and the coordination 

of materials, information, and financial flows across the supply chain. Over the past 

decades, automotive supply chains in the world have been stricken and disrupted repeatedly 

by natural and human-made disasters, such as earthquakes, tsunamis, hurricanes, strikes, 

economic crises, SARS, plant fires and explosions, terrorist attacks, and other disruptive 

events. Such supply chain disruptions can detrimentally impact a firm’s short-term 

performance. At the same time, the automotive business has become increasingly more 

complex as globalization has become an industry norm. Other new practices, such as just-

in-time (JIT) delivery, lean manufacturing or lean production (Nakashima and 

Sornmanapong, 2013), and supplier consolidation, are also employed. As a result, 

automotive supply chains have become increasingly more vulnerable to various risks. 

Thus, supply chain risk management (SCRM) plays a critical role in the automotive 

industry.  

The automotive industry is well known for its efforts to improve its supply chains based 

on its demanding business environment and to protect against the harmful effects of supply 

chain disruptions to the companies through SCRM. However, research work and 

publications have not caught up with the pace required by the industry. We searched related 

articles on ASCRM, mainly from Scopus, SCI, SSCI, and ABI/INFORM, and some related 

materials available on the Internet. A search using “automotive supply chain/logistics risk 

management” as the keywords generated 111 document results from the Scopus database 
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by September 2018. Our review is not limited to these articles. Figure 2.1 shows the 

chronological distribution of papers and a generally increasing trend from 2008. However, 

there is no review literature devoted to ASCRM. 

 

Figure 2.1. Chronological distribution of papers from 2000 to Sept.2018 from Scopus 

To lay a foundation for further research in the area, this study provides a review of the 

general research work on supply chain risk identification and management for the 

automotive supply chain where the literature is available and seeks the answers to two key 

questions: (1) What are the underlying supply chain risk resources in the automotive 

industry? (2) How have they been addressed in the current literature, with a focus on 

quantitative methods and mathematic models? This review is based on 125 papers and 

websites addressing SCRM for the automotive industry and other related industries.  

SCRM is "the process of risk mitigation achieved through collaboration, coordination, and 

application of risk management tools among the partners, to ensure continuity coupled with 

long-term profitability of the supply chain" (Faisal et al., 2007). It should be noted that risk 

cannot be completely eliminated from supply chains, but strategies can be developed to 

manage these risks if the dynamics between the variables related to risks in a supply chain 

are understood (Faisal et al., 2006). The main objective of SCRM is to maximize the 

expected profit or minimize the expected loss when a supply chain disruption occurs (Tang, 

2006). Risk management has become an essential tool in addressing risk issues in supply 

chain management. 

In general, the SCRM process consists of four components (Hallikas et al., 2004): risk 

identification, risk assessment, risk management decisions and implementation 
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(prioritization of risks), and risk monitoring. In line with these classifications, this review 

presents a summary and analysis with emphasis on the first three aspects of ASCRM and 

provides quantitative models and future research directions as well.  

The rest of this literature review is organized into six sections. Section 2 discusses the 

characteristics of the automotive supply chain. Section 3 studies automotive supply chain 

risk identification and classification. Section 4 examines the methodologies of supply chain 

risk assessment. Section 5 reviews the theoretical models, the qualitative approaches, and 

practical tools for risk management. Some future research directions are discussed in 

Section 6. Finally, Section 7 concludes the literature review.  

2.2 Automotive Supply Chains and Literature Distribution on Automotive Supply 

Chain Risks 

The automotive supply chain includes raw material manufacturers, multilayer part 

suppliers, car manufacturers, dealers, and customers. There are about 20,000 parts in a car, 

and if even only one of these parts is not available, then the vehicle cannot be assembled 

or shipped. Typically, there are three to five layers in an automotive supply chain, which 

comprises thousands of suppliers. Figure 2.2 displays the schematic automotive supply 

chain (Timothy, 2011).  

In the past 30 years, the automotive industry has undergone major changes in its supply 

chains. Competitive pressure has forced automotive original equipment manufacturers 

(OEMs) to improve the quality, to strive to reduce the product development time, and to 

lower the development and manufacturing costs of their products. Many Asian and Eastern 

European countries, with cheap and skilled labor, offer attractive opportunities for reducing 

the supply chain costs. However, these globalization and outsourcing opportunities come 

with significant risks, including the cultural and linguistic differences, foreign exchange 

rate fluctuation, duty and customs regulations, quality problems, and political and 

economic stability. The international logistics (inventory management, border-crossing 

procedures, and transportation delays) involve more challenges that could impact the 

product availability than domestic logistics. 
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Figure 2.2. Automotive supply chain (Timothy, 2011) 

For decades, the automotive industry has employed the different ways to cut the costs for 

gaining the competitive advantage. Several common methods include the following: 

 adopting just-in-time (JIT) principles to create lean supply chains,  

 single-sourcing most subassemblies to maximize scalability, 

 outsourcing to emerging countries, and 

 globalizing and following the OEMs to their international market.  

These practices result in the low inventories, increase the additional dependence on 

suppliers, add to the network complexity, and increase the supply chain risks (Thun and 

Hoenig, 2011; Nakashima and Sornmanapong, 2013).  

 In summary, the automotive industry is characterized by low margins, high volumes, high 

costs, global supply chains, and multilayer suppliers (Simchi-Levi, 2010; Singhal et al. 

2011). Automotive supply chains are deep and broad. Cost reduction efforts such as JIT, 

single-sourcing, outsourcing, and globalization add to the network complexity and increase 

the supply chain risks in the automotive industry. The automotive supply chain risks 

considered here include the different risks that come from sourcing, supply, production, 

storage, logistics, and distribution in the automotive supply chain.  
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ASCRM has attracted considerable attention in the past decade. The review reported here 

is based on 111 articles found by searching “automotive supply chain 

management/logistics risk,” mainly in the Scopus database. The distributions of those 

articles and journal impacts are summarized in Table 2.1. 

TABLE 2.1 DISTRIBUTION OF ARTICLES BY JOURNAL TITLE  

Group Journal Title Articles 
Management 

and Production 
Research 

International Journal of Applied 
Management Science  

Sharma and Bhat (2014a) 

International Journal of Operations 
and Production Management 

Davarzani et al. (2015) 

International Journal of Production 
Economics 

Dubey et al. (2018); Mohammaddust et al. 
(2017); Häntsch and Huchzermeier (2016); 
Matsuo (2015); Pernot and Roodhooft (2014); 
Sun et al. (2012); Thun and Hoenig (2011a); 
Doran et al. (2007); Yang et al. (2017) 

International Journal of Production 
Research 

Yoon et al. (2018); Grötsch et al. (2013); Hsu 
et al. (2011); Thun et al. (2011b); Canbolat et 
al. (2008); Caux et al. (2006); Singh et al. 
(2005) 

Journal of Cleaner Production Schöggl et al. (2016); Govindan et al. (2014);  
Lee (2011); Zimmer et al. (2017); de Oliveira 
et al. (2017) 

Management Decision Neumüller et al. (2016) 

Production Planning and Control Zhang et al. (2018); Xie et al. (2009) 

Productivity Management Hanenkamp (2013) 

Greener Management International Oldham and Votta (2003) 

Supply Chain 
Management 

International Journal of 
Procurement Management 

Hellström et al. (2011) 

International Journal of Supply 
Chain Management 

Nakashima et al. (2014) 

International Journal of Information 
Systems and Supply Chain 
Management 

Sharma et al. (2017) 

Journal of Purchasing and Supply 
Management 

Kırılmaz and Erol (2017); Caniëls et al. (2013) 

Supply Chain Management Selviaridis and Norrman (2014); Hofmann 
(2011) 

Supply Chain Management: An 
International Journal 

Blos et al. (2009); Towill et al. (2000) 

The IUP Journal of Supply Chain 
Management 

Sharma and Bhat (2014c) 

Logistics 
Management 

International Journal of Physical 
Distribution and Logistics 
Management 

Fan and Stevenson (2018); Friday et al. (2018); 
Hohenstein et al. (2015); Durach et al. (2015); 
Bell et al. (2013); Wieland and Wallenburg 
(2012); Lin and Zhou (2011); Blackhurst et al. 
(2008); Lippert and Forman (2006); Lalwani et 
al. (2006); Svensson (2004) 

International Journal of Logistics 
Systems and Management 

Pandey and Sharma (2017) 
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Industrial 
Engineering 
and 
Management 

International Journal of Quality and 
Reliability Management 

Cagnin et al. (2016) 

Journal of Industrial Engineering 
and Management 

Abolghasemi et al. (2015); Cedillo-Campos et 
al. (2017) 

International Journal of Industrial 
Engineering and Management 

Saueressig et al. (2017) 

Journal of Japan Industrial 
Management Association 

Nakashima and Sornmanapong (2013); Chino 
et al. (2017)  

Operations 
Management 

International Journal of Services 
and Operations Management 

Shimizu et al. (2013) 

Journal of Operations Management Sroufe and Curkovic (2008) 

Manufacturing and Service 
Operations Management 
 
 

Swinney and Netessine (2009) 

Operations 
Research 

Interfaces Simchi-Levi et al. (2015) 

European Journal of Operational 
Research 

Rezapour et al. (2017) 

Risk Research Journal of Disaster Research Montshiwa et al. (2016) 

Journal of Risk Research Ceryno et al. (2015) 

Industrial 
Management 

Industrial Management and Data 
Systems 

Lockamy (2014); Lockamy and McCormack 
(2012); Lee and Cheong (2011) 

Automotive Automotive Industries AI Barclay (2008); Richardson (2005) 

International Journal of Automotive 
Technology and Management 

Belzowski et al. (2006) 

Manufacturing International Journal of Advanced 
Manufacturing Technology 

Chen et al. (2016); Diabat et al. (2013);  
Elmaraghy and Majety (2008) 

Journal of Manufacturing 
Technology Management 

Lotfi and Saghiri (2018); Palanisamy and 
Zubar (2013) 

Manufacturing Computer Solutions Tinham (2004) 

Manufacturing Engineer Cervi (2007) 

IT, Computer Applied Soft Computing Journal Zarbakhshnia et al. (2018) 

Computers and Industrial 
Engineering 

Ghadge et al. (2017) 

Journal of Global Information 
Management 

Seth et al. (2017)  

International Journal of Information 
Technology and Management 

Lippert (2008) 

Environmental Management of Environmental 
Quality 

Munguía et al. (2010); Cebrat et al. (2008) 

Resources, Conservation and 
Recycling 

Naini et al. (2011) 

Business Benchmarking Sharma and Bhat (2014b); Datta et al. (2013) 

International Journal of Managing 
Projects in Business 

Fernando et al. (2018) 

Global Business Review Sharma and Bhat (2016) 

Science, 
Engineering 

Advanced Science Letters Hudin et al. (2015) 

Advanced Engineering Informatics Mo and Cook (2018) 
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Key Engineering Materials Rewilak (2015) 

Open Engineering Marasova et al. (2017) 

Mathematical Problems in 
Engineering 

Vujović et al. (2017) 

IEEE IEEE Transactions on Engineering 
Management 

Azevedo et al. (2012); Wagner and Silveira-
Camargos (2012); Kull and Talluri (2008) 

IIE Transactions (Institute of 
Industrial Engineers) 

MacKenzie et al. (2014) 

Other aspects Biomass and Bioenergy Dal-Mas et al. (2011) 

Journal Européen des Systèmes 
Automatises 

Giard and Sali (2014) 

Scientia Iranica  Hsieh et al. (2016); Davarzani et al. (2011) 

Wirtschaftsinformatik Strassner and Fleisch (2005) 

2.3 Automotive Supply Chain Risk Identification and Classification 

Risk identification is the first step and a subjective component within the SCRM process. 

To reduce supply chain risks, firms should understand the universe of risk categories as 

well as the events and conditions that drive them. We analyzed the resources of supply 

chain risks existing in the automotive industry, and classified the risks into 10 categories 

shown in the fishbone diagram in Figure 2.3. Table 2.2 illustrates the automotive industry 

risk profile, risk events, and references.  

 
Figure 2.3. Automotive supply chain risk fishbone diagram 

TABLE 2.2 AUTOMOTIVE INDUSTRY SUPPLY CHAIN RISK CLASSIFICATIONS, EVENTS, AND REFERENCES 

Automotive Supply 
Chain (SC) Risks  

Risk Events Reference 

Disruption/disaster Natural disaster:  
Thailand’s devastating 2011 floods;  
Great East Japan Earthquake 2011.  

Hsieh et al. (2016); Matsuo (2015); 
MacKenzie et al. (2014); Davarzani 
et al. (2011); Thun and Hoenig 
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Human-made disaster: 
geopolitical risk, 911 terrorist attack. 

(2011a); Rezapour et al. (2017); 
Simchi-Levi et al. (2015) 

Supply “Upstream” activities in SC: 
a) purchasing risks, production  
capacity, supplier relationship, 
b) supplier dependence risk, single  
sourcing, 
c) supply chain transparency risk. 

Thun and Hoenig (2011a); Simchi-
Levi et al. (2015); Hudin et al. 
(2015); Häntsch and Huchzermeier 
(2016); IBM Global Services 
(2009); Sharma and Bhat (2014a); 
Davarzani et al. (2011); Kull and 
Talluri (2008)  

Demand “Downstream” activities in SC: 
demand uncertainty, forecast/planning 
accuracy, high inventories or capacity 
risk. 

Chopra and Meindl (2010); Simchi-
Levi (2010); Sharma and Bhat 
(2014a); Sharma and Bhat (2014c) 

Logistics Transportation, delivery problem, delay, 
border crossing, and customs 
regulations. 
 

Rice et al. (2003); Xie et al. (2009);  
Sharma and Bhat (2014a)  

Quality  Recall issues, defects and corrective  
actions, engineering change, result in 
customer dissatisfaction, and market 
share shrinkage.  

Sun et al. (2012); Rewilak (2015); 
Haefele (2014); Thun and Hoenig 
(2011a, 2011b); 

Globalization Geographically more diverse, more 
vulnerable to supply disruption, 
exchange-rate and energy-price risks, 
culture and language differences, trade 
regulations, and political and economic 
stability. 

Thun and Hoenig (2011a); 
Richardson (2005); Sharma and 
Bhat (2014b); Canbolat et al. (2008); 
Zimmer et al. (2017) 

Environmental and  
social impact 

Global production systems have 
ecological impacts globally both 
“upstream” and “downstream” of a 
specific manufacturer or supplier.  

O'Rourke and Dara (2014); Sharma 
and Bhat (2014a); Caiazzo et al. 
(2013); Schöggl et al. (2016); 
Häntsch and Huchzermeier (2016); 
Caniëls et al. (2013); Diabat et al. 
(2013); Lee and Cheong (2011); 
Naini et al. (2011); Munguía et al. 
(2010); Zimmer et al. (2017) 

IT system IT infrastructure, system breakdown, 
RFID has "three high problems," 
information sharing,  

Tinham (2004); Choi et al. (2017); 
Huang et al. (2012); Lippert (2008); 
Chopra and Meindl (2010); 
Strassner and Fleisch (2005); 
Hellström et al. (2011); Seth et al. 
(2017)  

Technology 
changes 

Software breakthroughs; new energy 
sources. 

Hill et al. (2015); Cebrat et al. 
(2008) 

 
Financial 

Financial instability, insolvency or  
bankruptcy; untimely payment and 
exchange-rate risk.  

Sharma and Bhat (2014a); Isidore 
(2009); Faisal et al. (2007); Bullis 
(2012)  

2.4 Automotive Supply Chain Risk Assessment and Measures 

Once risks are identified, their impacts and probabilities must be assessed. Risk assessment 

involves “a set of logical, systematic, and well-defined activities that provide the decision 

makers with a sound identification, measurement, quantification, and evaluation of the risk 

associated with certain natural phenomena or man activities” (Haimes, 2004). In this 
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section, the models and methods used in the literature for assessing the automotive supply 

chain risk are presented.  

2.4.1 Probability Impact Matrix 

The international engineering standard ISO14971 defines and assesses a risk R as the 

product of probability and the harm of an event e: R = Pe Se, where Se and Pe refer to the 

severity and probability of e, respectively (Heckmann et al., 2015; ISO 14971:2007). 

Supply chain risk assessment aims to estimate the risk probability of occurrences and their 

adverse effect on the entire supply chain. In practice, the exact quantification of these 

values is often difficult because a precise assessment of the probability of occurrence and 

its effect is hardly possible; however, a qualitative method is advisable to evaluate the 

identified risk. The probability impact matrix is a qualitative risk assessing tool that has 

two dimensions: “probability” (from low to high) and “impact” (from weak to grave) based 

on a Likert scale. Through their survey in India, Sharma and Bhat (2014c) concluded that 

a likelihood/impact matrix is a widely used method of risk assessment in the automotive 

industry.  

2.4.2 Fuzzy Assessment Method 

Ghadimi et al. (2012) developed a weighted fuzzy assessment method for product 

sustainability assessment. A case study of an automotive component was conducted to 

illustrate the efficiency of the developed method. The results show how a simple 

replacement in the product material can lead a manufacturer toward producing more 

sustainable products and achieving the ultimate goal of sustainable manufacturing. Zimmer 

et al. (2017) developed a fuzzy analytical hierarchy process to estimate and assess social 

risks along global supply chains. Their model was applied to a case study of a German 

premium car manufacturer and showed a great benefit for practitioners in purchasing 

functions of focal companies. 

 Vujović et al. (2017) applied fuzzy logic to classify risk factors in production supply 

chains with uncertain data from the automotive industry. Palanisamy and Zubar (2013), 

Datta et al. (2013), and Diabat et al. (2013) also utilized fuzzy logic for their ASCRM 

research.  
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2.4.3 Mean-Variance Analysis 

Mean-variance analysis introduced by Markowitz (1959) has been a standard tool for risk 

management. It tries to achieve a balance between the expected return and the specific risk 

measured by variance (Wu et al., 2010). Talluri et al. (2010) applied Markowitz’s model 

to manufacturer cooperation in supplier development under risk. They presented a set of 

optimization models that address supplier development undertaken by manufacturing firms 

to improve their suppliers’ capabilities and performance. The objective function is to 

minimize the risk of the manufacturer’s investments to suppliers. Zhang and Zhu (2012) 

extended Talluri’s manufacturer cooperation model to the automotive industry where the 

return is nonlinear. Many automotive OEMs have implemented supplier development 

programs to assist suppliers. When cooperating, firms share resources, benefits, as well as 

cost and risk.  

However, some other traditional quantitative risk assessment tools, such as value at risk 

and conditional value at risk, have rarely been applied to the automotive supply chain.  

2.4.4 Bayesian Networks 

A Bayesian network is a probabilistic graphical model that represents a set of random 

variables and their conditional dependencies via a directed acyclic graph. Lockamy and 

McCormack (2012) and Lockamy (2014) used Bayesian networks to assess supply disaster 

risks in the automotive industry. The empirical data of design/methodology/approach are 

from 15 casting suppliers to a major US automotive company. They found that Bayesian 

networks can be used to develop supplier risk profiles, which can assist managers in 

making decisions regarding current and prospective suppliers. Abolghasemi et al. (2015) 

proposed a Bayesian method based on supply chain operations reference (SCOR) metrics. 

The method can manage supply chain risks and to improve supply chain performance. It 

was applied to one of the biggest automotive companies in Iran.  

2.4.5 Other Risk Assessment Methods  

Schöggl et al. (2016) provided a conceptual framework and an aggregation method for 

supply chain sustainability assessment using quantitative and qualitative indicators. Their 

results are based on a literature review of sustainability assessment in supply chains as well 

as on focus group workshops with experts from the European automotive and electronics 
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industry. Their paper contributes to the theory and practice of sustainability assessment in 

supply chains. Methods for assessing risk are also addressed in supplier evaluation and 

selection (Cagnin et al., 2016; Canbolat et al., 2008; Kull and Talluri, 2008).  

Sharma and Bhat (2014c) also investigated the tools and techniques used in supply chain 

risk assessment practices by Indian automobile companies. For risk identification and 

assessment, scenario planning, a likelihood/impact matrix, and checklists are the most 

frequently used tools. Other risk assessment tools included failure mode effects and 

analysis, Six Sigma, simulations, and analytical hierarchy and network processes. 

Marasova et al. (2017) applied heuristics to risk assessment within the automotive industry 

supply chain.  

A summary of the risk assessment and management methodology reviewed in this paper is 

given in Table 2.3. 

TABLE 2.3: SUPPLY CHAIN RISK ASSESSMENT METHODOLOGY 

SC Risk Assessment 
Methodology 

Reference in Automotive 

Probability/likelihood 
impact matrix 

Thun and Hoenig (2011); Sharma and Bhat (2014b) 

Fuzzy logic 
Palanisamy and Zubar (2013); Datta et al. (2013); 
Ghadimi et al. (2012); Diabat et al. (2013); Zimmer et al. 
(2017); Vujović et al. (2017) 

Mean–variance Zhang and Zhu (2012) 

Bayesian network 
Lockamy and McCormack (2012); Lockamy (2014); 
Abolghasemi et al. (2015) 

Risk-exposure model (TTR, 
TTS, PI) 

Simchi-Levi et al. (2014, 2015) 

Other risk assessment 
methods 

Schöggl et al. (2016); Cagnin et al. (2016); Canbolat et al. 
(2008); Kull and Talluri (2008); Sharma and Bhat 
(2014b); Marasova et al. (2017) 

2.5 Automotive SCRM, Modeling, Methods, and Tools 

Motivated by the requirements of real-world practice, SCRM has attracted increasing 

attention from academia and industry (Tang, 2006; Wu et al., 2011; Simchi-Levi et al., 

2014). This section provides a review of SCRM, modeling, methods, and tools for the 

automotive industry. 
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2.5.1 Optimization Mathematical Modeling 

Optimization modeling is one of the widely used quantitative approaches used to manage 

automotive supply chain risk. These models include the following:  

 linear programming (Kırılmaz and Erol, 2017, Caux et al., 2006), nonlinear programming 

(Zhang and Zhu, 2012, Cedillo-Campos, et al. 2017), mixed integer programming (Häntsch 

and Huchzermeier, 2016; Ghadge et al., 2017), mixed integer nonlinear programming 

(Rezapour et al., 2017; Mohammaddust et al., 2017), and stochastic models (Nakashima et al., 

2014)  

 multi-objective models (Häntsch and Huchzermeier, 2016);  

 game theory (Naini et al., 2011; Swinney and Netessine, 2009); and 

 newsvendor models (Nakashima and Sornmanapong, 2013).  

Kırılmaz and Erol (2017) developed a linear programming model for a procurement plan 

by considering the cost criterion as the first priority and the risk criterion as the second 

priority to mitigate supply-side risks. The proactive approach to SCRM is applied to an 

international automotive company.  

Dal-Mas et al. (2011) presented a multi-echelon mixed integer linear program (MILP) 

model for strategic design and investment capacity planning of the biofuel ethanol supply 

chain under price uncertainty. Linear/mixed integer multicriteria optimization models were 

used by Elmaraghy and Majety (2008) for determining the identified supply chain design 

parameters in an automotive powertrain supply chain design. Mixed integer nonlinear 

(MINL) models were used by Rezapour et al. (2017) to find the most profitable resilient 

network and risk mitigation policies and by Mohammaddust (2017) to evaluate risk 

mitigation strategies for a four-tier SC in a competitive automotive supply chain.  

Häntsch and Huchzermeier (2016) presented a multiperiod, multi-objective optimization 

model that enables robust production network and location planning during times of 

increased market uncertainty and risk exposure in the automotive industry.  

Nakashima and Sornmanapong (2013) used the newsvendor model to determine the 

optimal order quantity to maximize the expected profit under different scenarios. 

Nakashima et al. (2014) studied stochastic inventory control systems with consideration 
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for the view of second-tier semiconductor suppliers in automotive industries using a 

simulation approach. 

Game theory was used by Naini et al. (2011) to design a mixed performance measurement 

system for environmental supply chain management that measures and evaluates business 

operations. The authors applied their proposed method to a case study of the supply chain 

of one of Iran's biggest automotive companies, SAIPA. Swinney and Netessine (2009) 

applied game theory to model a contracting game. 

2.5.2 Quantitative-Based Strategies  

 Supply Chain Coordination and Cooperation 

Because the automotive supply chain is a multilayer complex network, effective 

coordination between supply chain members is very important for risk management.  

Belzowski et al. (2006) surveyed the difficulties faced by automotive manufacturers and 

suppliers in managing their supply chains. With thousands of Tier-1 to Tier-N suppliers 

located across the globe, the external SCM linkages compound the complexity for both 

manufacturers and suppliers to manage their supply chain. Therefore, it is very critical for 

automotive companies to develop and execute internal integration and external 

collaboration strategies to survive challenges and to mitigate supply chain risks.  

Pernot and Roodhooft (2014) conducted a retrospective case study of an automotive 

supplier relationship and investigated whether the management control system design of 

supplier relationships is associated with good performance. Matsuo (2015) focused on a 

case of supply disruption of the automotive microcontroller units after the 2011 Tohoku 

Earthquake. An SCM framework hierarchy was applied to analyze the issues from the 

perspective of execution, design, strategy, and sustainability. Montshiwa et al. (2016) 

conducted a quantitative study that included supply chain cooperation as a term in their 

business continuity plan. The results of 75 automobile parts markers in disaster-prone 

regions (Asia and North America) were studied. 

 Dual Sourcing  

Dual sourcing is an important strategy to mitigate supply chain risk. Thun and Hoenig 

(2011a) pointed out that building up redundancies is an important way to create a resilient 

supply chain. As in other industries, automotive OEMs often use dual sourcing or multiple 
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sourcing to create redundancies. They statistically analyzed survey data from 67 

automotive manufacturing plants in Germany and concluded that dual sourcing or multiple 

sourcing is a valid and reliable factor in SCRM. Davarzani et al. (2011) studied strategies 

of single, dual, and multiple sourcing to handle potential disruptions. They proposed a 

sourcing model and demonstrated it in the decision-making process for a supply chain in 

the automotive industry. 

 Supply Contracts 

Supply chain contracts are used to coordinate supply chain members, OEMs, and suppliers 

to align their interests with those of the supply chain system and to achieve optimal supply 

chain efficiency. Supply chain contracts also play an important role in supply chain 

members sharing risks arising from various sources of uncertainty, such as demand, price, 

and product quality. Considerable research work has focused on pricing strategies and 

order allocation in multi-supplier systems. 

Ghadge et al. (2017) studied a supply chain risk-sharing contract to mitigate demand 

uncertainty and price-volatility-related risks in a globalized business environment. They 

developed and analyzed an integer programming model followed with an automotive case 

study to get insights into a buyer–supplier relationships while considering multiple buyer-

supplier power and dependence scenarios.  

Selviaridis and Norrman (2014) studied performance-based contracting (PBC) in service 

supply chains. Based on agency theory, they studied two cases of logistics service supply 

chains, one of which is in the automotive industry, and identified the key influencing 

factors. Swinney and Netessine (2009) investigated short-term contracts, long-term 

contracts, and dynamic contracts under the threat of supplier default, because contracting 

with suppliers prone to default is an increasingly common problem in some industries, 

particularly automotive manufacturing. Game theory was applied to model a two-period 

contracting game with two identical suppliers, a single buyer, deterministic demand, and 

uncertain production costs. They concluded that the possibility of supplier default offers a 

new reason to prefer long-term contracts over short-term contracts. 

 Supplier Selection  
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Supplier selection strategies have been identified as vital for risk mitigation in automotive 

companies (Chen et al., 2016). Multiple-criteria decision-making techniques such as fuzzy 

quality function deployment (FQFD), the mathematical modeling and analytical hierarchy 

process (AHP) (Kull and Talluri, 2008; de Oliveira et al. 2017), and the analytical network 

process (ANP) (Palanisamy and Zubar, 2013) are popular approaches used to evaluate as 

well as to select suppliers in the automotive industry. 

Chen et al. (2016) presented an automotive company case study and evaluated the results 

through weighted goal programming (WGP) and preemptive goal programming (PGP) 

methods.  

Cagnin et al. (2016) evaluated supplier selection methods in the automotive industry 

compared with the identified models in the literature. 

 Contingency Strategies 

Risk management strategies in supply chains can be divided into two categories: mitigation 

strategies and contingency strategies. The former focuses on taking precautions in advance 

of risk occurrence through strategic inventory and dual sourcing. The latter refers to the set 

of actions taken in post-disaster conditions, such as contingency rerouting and revenue 

management (Tomlin, 2006). Contingency rerouting is a cost-effective risk management 

strategy for major disruptions such as natural disasters. 

Grötsch et al. (2013) investigated antecedents that support proactive SCRM 

implementation from a contingency theory perspective. The hypotheses were developed 

and tested via content analysis in 63 interviews with representatives from the automotive 

industry. They found that a mechanistic management control system, a rational cognitive 

style, and relational buyer-supplier relationships have positive impacts on proactively 

managing supplier insolvency risks. Svensson (2004) examined key areas, causes, and 

contingency planning of corporate vulnerability in supply chains for a subcontractor in 

the automotive industry.  

MacKenzie et al. (2014) modeled a severe supply chain disruption and post-disaster 

decision-making process and applied the model to a simulation based on the 2011 Japanese 

earthquake and tsunami, which caused closure of several facilities of key suppliers in the 
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automobile industry and subsequently supply difficulties for both Japanese and US 

automakers. 

Giard and Sali (2014) studied optimal stock-out risk for a component in an automotive 

supply chain. The strategy is to trigger the use of an emergency supply before its occurrence 

to prevent stock-out propagation along the downstream part of the supply chain. Their 

model considers the cost of producing and maintaining a safety stock and the costs incurred 

by the emergency supply. Two alternatives emergency policies were compared in their 

analytical solutions. 

In addition to the theoretical models, the simulation approach is used in automotive supply 

chain disruption research (Lalwani et al., 2006; Canbolat et al., 2008; MacKenzie et al., 

2014).  

2.5.3 Qualitative Approaches 

 Empirical Approach 

Most research in automotive SCRM employs the empirical approach to analyze the risk 

and assess the risk management strategies qualitatively. González-Benito et al. (2013) 

concluded that the empirical approach includes three types: case studies, surveys, and 

secondary sources. They found that 60% of research on automotive supply chain risk 

employed the empirical approach, some of which combined different methods, such as case 

studies and surveys or case studies and mathematical modeling.  

Thun and Hoenig (2011a) conducted an empirical analysis of SCRM practices. The 

analysis was based on a survey of 67 manufacturing plants conducted in the German 

automotive industry. After investigating the vulnerability of supply chains in general and 

examining key drivers of supply chain risks, the study identified supply chain risks by 

analyzing their likelihood to occur and their potential impact on the supply chain.  

Thun et al. (2011b) used the same empirical approach and the same data as Thun and 

Hoeing (2011a) to analyze SCRM in small and medium-sized enterprises (SMEs). The 

analysis shows that SMEs predominantly focus on reactive instruments that absorb risks 

through the creation of redundancies instead of preventing risks.  
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Some researchers used empirical approaches for conducting regional ASCRM studies (e.g., 

Ceryno et al. (2015) for the Brazilian automotive industry, Sharma and Bhat (2014a, 2014b, 

2016) and Sharma et al. (2017) for the Indian automobile industry, Doran et al. (2007) for 

the French automobile industry, Towill et al. (2000) for the European automotive supply 

chain “health check” procedure, Singh et al. (2005) for the Australian automotive 

manufacturing industry, Blos et al. (2009) for the Brazilian automotive and electronic 

industries, Lin and Zhou (2011), Xie et al. (2009), and Barclay (2008) for the Chinese 

automotive industry supply chain, and Shimizu et al. (2013) and Chino et al. (2017) for the 

Japanese automotive industry). Their research offered an initial profile and revealed insight 

into the regional automotive industry SCRM and helped to improve it.  

Also, there is some research (e.g., Lippert and Forman (2006)) employing the empirical 

approach to study tiers of ASCRM. Lippert (2008) tested theoretical models through a 

survey of hundreds of supply chain members using an information technology innovation 

for part-level visibility and logistics operation along the entire first tier of a major US 

automotive supply chain.  

Davarzani et al. (2015) used the case study method to study the influence of economic and 

political risks (EPRs) to supply chains. They interviewed SC professionals for three cases 

from an automotive SC. Sroufe and Curkovic (2008) utilized case-based research for a 

sample of firms in the automotive industry to examine the ISO 9000:2000 standard and 

supply chain quality assurance. de Oliveira et al. (2017) verified that ISO 31000:2009 can 

be used as a standardized method to perform SCRM. They developed a pathway to apply 

ISO 31000:2009 risk assessment tools and techniques to integrate a procedure for SCRM 

based on AHP and provided an automotive supply chain example.  

 Risk Mitigation Strategies 

 Build a Resilient Supply Chain  

A resilient supply chain is critical to the success of an enterprise (Hsieh et al., 2016). 

Determining how to build a resilient supply chain to mitigate uncertainty is a priority for 

automotive companies (Chen et al. 2016). Recently, supply chain managers have changed 

their main focus from reducing costs to giving importance to supply chain continuity and 

resiliency (Kırılmaz and Erol, 2017). Rezapour et al. (2017) studied resilient supply chain 
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network design under competition using a real-life case study in a highly competitive 

automobile supply chain. They recommended three policies used to mitigate disruption 

risk: (1) keeping emergency stock at the retailers, (2) reserving backup capacity at the 

suppliers, and (3) multiple sourcing.  

 Increase Flexibility 

Flexibility is commonly associated with the ability to change or react. Owing to the 

importance of flexibility for achieving a competitive advantage and mitigating risks, 

researchers increasingly study how entire supply chains can deliver flexibility to their 

customers. Flexibility includes production diversification, geographic diversification, 

increased overall flexibility, flexible input sourcing (e.g., dual sourcing), backup suppliers, 

localized sourcing, flexible supply contracts, flexible manufacturing, and flexible 

distribution (Ceryno et al., 2015; Chopra and Sodhi, 2004; Tomlin, 2006; Chopra and 

Meindl, 2010; Thun and Hoening, 2011a).  

Thomé et al. (2014) studied supply chain flexibility in the automotive industry based on 

empirical research on three Brazilian automotive supply chains. A multiple case study was 

designed for the research with internal and external validity checks, within-case analysis, 

and cross-case comparisons. 

 Rethink the Global Supply Chain 

During recent years, offshoring and outsourcing have transformed automotive sectors into 

global networks of design, production, and distribution across the global value chains 

coordinated by the major automotive OEMs (Bailey and De Propris, 2014). As 

manufacturing activities tended to be shifted to low-labor-cost locations in Asia, Africa, 

and Latin America, high-end design, research and development, and product development 

have stayed and been anchored mostly to high-cost and high-knowledge-intensive home 

economy locations. However, very recently the weaknesses and risks inherent in such 

global value chains have been exposed, triggering attempts to rethink their nature and also 

raising possibilities to insource some manufacturing activities to home countries. Even 

Science Magazine had a special section entitled “Rethink the Global Supply Chain” in its 

June 2014 publication. Bailey and De Propris (2014) studied reshoring for opportunities 

and limits for manufacturing in the UK automotive sector. Thun and Hoenig (2011a), 
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Richardson (2005), Sharma and Bhat (2014b), Canbolat et al. (2008), and Zimmer et al. 

(2017) identified globalization risks in the automotive industry.  

 Implement Green Supply Chain Management 

As the public becomes more aware of environmental issues and global warming, the 

environmental and social impact of supply chains has attracted considerable research 

attention. Green supply chain management (GSCM) has emerged as an important 

organizational philosophy and a proactive approach to reduce environmental risks. To ease 

the increasing pressures resulting from globalization and stricter regulations, address 

increased community and consumer pressures, and cope with developing countries' aims 

to enter the World Trade Organization (WTO), automotive supply chain managers have 

been considering and implementing GSCM practices to improve both their economic and 

environmental performances (Diabat et al. 2013).  

There has been considerable research on GSCM for the automotive industry. Lee and 

Cheong (2011) and Lee (2011) used qualitative methods of interviews and document 

analysis to collect data on Hyundai Motor Co. and its key first-tier supplier in the Korean 

automobile industry. They developed a carbon footprint measurement and evaluation 

program in the supply chain and provided a track record to improve carbon and energy 

efficiency. Diabat et al. (2013) explored green supply chain practices and performances in 

the automotive industry using a fuzzy multiple-criteria decision-making method. Govindan 

et al. (2014) used an empirical approach to investigate the impact of lean, resilient, and 

GSCM practices on supply chain sustainability. They simultaneously studied the three 

dimensions of sustainability (environmental, social, and economic) and the lean, resilient, 

and GSCM paradigms considered strategic for supply chain competitiveness. Munguía et 

al. (2010) identified pollution prevention opportunities in the Mexican automotive 

refinishing industry to improve environmental and occupational conditions in developing 

countries.  

Other researchers, such as Azevedo et al. (2012) and Caniëls et al. (2013), also proposed 

some theoretical frameworks and empirical approaches for the analysis of the influence of 

green and lean upstream supply chain management practices on business sustainability.  
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2.5.4 Practical Tools in ASCRM  

Proactive SCRM can lead to greater customer satisfaction, lower total cost, improved 

delivery performance, and higher quality outcomes. Some practical tools have been 

developed for SCRM that have shown promising application results in automotive 

industries. 

 Risk-Exposure Model 

Simchi-Levi et al. (2014, 2015) developed a new risk-exposure model to identify risks and 

mitigate disruptions in the automotive supply chain quantitatively. Unlike traditional 

SCRM methods, which rely on knowing the likelihood of occurrence and the magnitude 

of impact for every potential event that could materially disrupt a firm’s operation, they 

developed a mathematical model that focuses on the impact of potential failures at nodes 

along the supply chain, rather than the cause of the disruption. In their model, a supply 

chain network was created first. Each node stands for a supplier facility, a distribution 

center, or a transportation hub. Three parameters need to be determined for each node: (1) 

time to recovery (TTR), (2) performance impact (PI), and (3) the risk exposure index (REI). 

TTR is the time it would take for a particular node to be restored to full functionality after 

a disruption. Because accurate TTR information is not available in many cases, Simchi-

Levi et al. (2015) introduced the time-to-survive (TTS) concept. TTS means the maximum 

amount of time that the system can function without performance loss if a particular node 

is disrupted. PI is a measure of the disruption at the node during TTR. REI measures how 

severe the risk exposure of each node is, and its value ranges between 0 and 1 (least to 

largest). Simchi-Levi et al.'s model allow companies to identify areas of hidden risk in the 

supply chain effectively. 

 Failure Mode and Effect Analysis  

Failure mode and effect analysis (FMEA) has been suggested as an SCRM tool (Canbolat 

et al., 2008; Curkovic et al. 2013; Rewilak, 2015; Sharma and Bhat 2014b; Pandey and 

Sharma, 2017). FMEA is commonly used in the automotive industry to collect information 

related to risk management decisions in an engineering capacity, but not typically in a 

supply chain capacity. 
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Based on FMEA, Canbolat et al. (2008) developed a risk assessment and management 

method for sourcing components and subsystems to emerging markets for automotive 

OEMs. They used a process failure mode effect analysis (PFMEA) structure to characterize 

the risks and developed a simulation model to quantify risk factors so that an automotive 

OEM can evaluate risk mitigation strategies.  

Curkovic et al. (2013) surveyed 67 industrial companies, including four automotive OEMs, 

to identify how companies manage risks through supplier assessment and selection and 

whether FMEA plays a role in the process. They found that some companies used the 

FMEA model to select and assess suppliers.  

Pandey and Sharma (2017) applied an FMEA-based interpretive structural modeling 

approach to model automotive supply chain risk. A tractor manufacturing company was 

studied as an example. First, 17 potential modes of failures or risk sources were identified 

through the literature and weighted risk priority numbers (WRPNs) were calculated and 

then 11 failure models were selected as key learning aspects based on higher WRPN values. 

A further interpretive structural modeling approach was used to model the structural 

relationship among these key risks.  

 Multiple-Criteria Decision-Making Models 

In the literature, we found that multiple-criteria decision making (MCDM) or multiple-

criteria decision analysis (MCDA) is used for risk assessment in the automotive industry, 

such as in supplier ranking and selection (Kull and Talluri, 2008; Palanisamy and Zubar, 

2013; Datta et al., 2013; Neumüller et al., 2016).  

Blackhurst et al. (2008) developed a multicriteria scoring procedure (also called a factor 

weighting procedure) to create risk indices for parts and suppliers in the automotive 

industry. The procedure has three steps: (1) Assign a weight to parts and suppliers; the 

weights are based on the probability of each category of disruption occurring and its 

impact. (the weights are based on the probability of occurrence and the impact of each 

category of disruption) (2) Calculate part- and supplier-specific risk indices to form a heat 

graph. (3) Track risk indices over time to identify trends toward higher risk levels.  

Diabat et al. (2013) explored green supply chain practices and performances in the 

automotive industry using a fuzzy multiple-criteria decision-making method. Datta et al. 
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(2013) utilized fuzzy logic in an MCDM process for evaluation and selection of third-party 

reverse logistics providers for a reputed Indian automobile part manufacturing company. 

Other ASCRM research topics include managing risks in JIT and sequence supply 

networks (Wagner and Silveira-Camargos, 2012), lean process supply chains (Cervi, 2007; 

Azevedo et al., 2012), optimized programming by resource management (Hanenkamp, 

2013), entrepreneurial SCM competence and performance of manufacturing SMEs (Hsu et 

al., 2011), natural hedging as a risk prophylaxis and supplier financing instrument in 

automotive supply chains (Hofmann, 2011), and an economic P-chart model considering 

due date and quality risks to mitigate quality risks (Sun et al., 2012). 

Other practical tools in ASCRM include a strategic materials positioning matrix (SMPM) 

(Saueressig et al., 2017). Using a case study method, SMPM was applied to two families 

of items (bolts and plastic finishing) purchased by an automotive industry company in 

southern Brazil. The materials were organized by SMPM into four classes: noncritical, 

strategic, risk, and competitive. The result of the analysis showed a significant reduction 

of shortages in the assembly line and storage facility units required for warehousing. 

2.5.5 Summary 

A summary of the literature reviewed for risk management in this paper is shown in Figure 

2.4. The SCRM research methodologies reviewed are given in Table 4. 
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Figure 2.4. Summary diagram of the literature reviewed for risk management in this study 
 

TABLE 2.4: SUPPLY CHAIN RISK MANAGEMENT (SCRM) MODEL, STRATEGY, AND TOOLS 

SC Risk Research Methodology Reference in Automotive 

Mathematical 
Modeling 

Linear programming  Kırılmaz and Erol (2017); Caux et al. 2006 

Nonlinear programming  Zhang and Zhu (2012) 

Mixed integer linear 
programming 

Dal-Mas et al. (2011); Elmaraghy and Majety (2008)  

Mixed integer nonlinear 
programming 

Rezapour et al. (2017); Mohammaddust et al. (2017) 

Stochastic model Nakashima et al. (2014) 

Game theory  Naini et al. (2011); Swinney and Netessine (2009), Yang et 
al. (2017)  

Newsvendor Nakashima and Sornmanapong (2013) 

Simulation  Lalwani et al. (2006); Canbolat et al. (2008); MacKenzie et 
al. (2014); Nakashima and Sornmanapong (2013) 

Quantitative-
based Strategy 

Supply chain 
coordination and 
cooperation 

Belzowski et al. (2006); Zhang and Zhu (2012); Matsuo 
(2015); Montshiwa et al. (2016) 

Dual sourcing Davarzani et al. (2011) 

Supply Chain Risk Management, Modeling, Methods, and Tools 

Supply Chain 
Coordination 

Emergency Sourcing 

Inventory 

Modeling Approaches Qualitative Approaches Practical Tools 

Risk-Exposure 
Model 

FMEA Method 

MCDM Method 

Empirical Approach: Case 

Study Surveys 2nd Sources 

Risk Mitigation Strategies 

Build Resilient SC 

Increase Flexibility 

Increase Info Transparency 

Rethink Global SC 

Green SC Management 

Dual Sourcing 

Supply Chain Contract 

Supplier selection 
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Supply chain contract Swinney and Netessine (2009); Selviaridis and Norrman 
(2014); Ghadge et al. (2017) 

Supplier selection Kull and Talluri (2008); Palanisamy and Zubar (2013); 
Datta et al. (2013); Chen et al. (2016); Cagnin et al. (2016) 

Contingency strategy  Grötsch et al. (2013); MacKenzie et al. (2014); Svensson 
(2004) 

Inventory Nakashima et al. (2014) 

Qualitative  
Approach 

Empirical approach González-Benito et al. (2013); Thun and Hoenig (2011a); 
Thun et al. (2011b); Ceryno et al. (2015); Sharma and Bhat, 
(2014a, 2014b, 2016); Doran et al. (2007); Towill et al. 
(2000); Singh et al. (2005); Blos et al. (2009); Lin and Zhou 
(2011); Xie et al. (2009); Shimizu et al. (2013); Lippert and 
Forman (2006); Lippert (2008); Davarzani et al. (2015); 
Sroufe and Curkovic (2008); Govindan et al. (2014) 

Risk 
Mitigation  
Strategy 

Build resilience Hsieh et al. (2016); Chen et al. (2016); Kırılmaz and Erol 
(2017); Rezapour et al. (2017) 

Increase flexibility Thun and Hoening (2011a); Ceryno et al. (2015); Thomé et 
al. (2014)  

Rethink globalization, 
reshore  

Bailey and De Propris (2014); Science (June 2014) 

Implement green supply 
chain  

Lee and Cheong (2011); Lee (2011); Diabat et al. (2013); 
Govindan et al. (2014); Munguía et al. (2010); Azevedo et 
al. (2012); Caniëls et al. (2013); Oldham and Votta (2003) 

Increase information 
transparency 

Simchi-Levi et al. (2014) 

Practical 
Tools 

Risk-exposure model Simchi-Levi et al. (2014, 2015) 

FMEA method Canbolat et al. (2008); Curkovic et al. (2013); Rewilak 
(2015); Sharma and Bhat (2014b); Pandey and Sharma, 
(2017) 

(Fuzzy) MCDM, AHP  Kull and Talluri (2008); Palanisamy and Zubar (2013); 
Datta et al. (2013); Neumüller et al. (2016); Blackhurst et 
al. (2008); Diabat et al. (2013); Sharma and Bhat (2014b); 
de Oliveira et al. (2017) 

Other tools: SMPM Saueressig et al. (2017) 

2. 6 Conclusion and Future Research  

This study reviewed the existing research work on ASCRM. We first classified the risks 

into ten categories and discussed risk assessment methods, and then focused on 

summarizing the research on ASCRM’s mathematic modeling, quantitative approaches, 

qualitative approaches, and practical tools.  

In the modeling approach, optimization models are widely used; these include linear and 

nonlinear programming, mixed integer programing, and multi-objective models. 

Newsvendor models are used for formulating the problem with uncertain demands, and 

game theory are also employed for supply chain coordination and supply contracts. 
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Qualitative approaches include empirical approaches and risk mitigation strategies. The 

empirical approach is a popular method in ASCRM research. About 60% of the research 

employs the empirical approach to analyze risk and to assess risk management strategies 

qualitatively in the automotive industry (González-Benito et al., 2013). Also, some new 

research trends in risk mitigation strategies can be applied to the automotive supply chain; 

these include building a resilient supply chain and addressing the environmental impact of 

supply chain risks. Some practical tools such as multiple-criteria decision-making methods, 

FMEA, and PFMEA simulation models, and risk-exposure models have been utilized to 

mitigate risk in automotive supply chains.  

The major conclusions from this study of ASCRM are as follows: (1) Research on ASCRM 

has been increasing in recent years. (2) Most papers are published in the following journals: 

International Journal of Production Economics, International Journal of Production 

Research, Journal of Cleaner Production, International Journal of Physical Distribution and 

Logistics Management, Industrial Management and Data Systems, and International 

Journal of Advanced Manufacturing Technology. (3) The main mathematical models 

include optimization models, such as linear and nonlinear programming, mixed integer 

programming, multi-objective models, newsvendor models, and game theory; tools such 

as value at risk and conditional value at risk have rarely been used. (4) The automotive 

industry recognizes the importance of ASCRM and expends considerable effort on its 

investigation, but academic research is thus far insufficient. (5) The automotive industry 

has a very complex, multitier SCM and the risk sources of automotive supply chains are 

widespread. (6) There are some practical tools and risk mitigation strategies, such as 

MCDM and FMEA, but there is a lack of real-time risk alarm systems and tools for supply 

chain resilience. 

Based on the reviewed papers in ASCRM, we propose a few important future research 

directions as follows:  

1). Study and development of systematic methods and systems to analyze ASCRM by 

integrating the different risk sources: The automotive supply chain is a huge multitier 

suppliers network. A typical automotive OEM has up to 10 tiers between itself and its raw 

materials. For example, Ford has 1,400 Tier-1 suppliers across 4,400 manufacturing sites 
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and hundreds of thousands of lower-tier suppliers (Simchi-Levi et al., 2015). Most research 

work in the automotive industry is based on specific points of views, i.e., the supplier’s or 

manufacturer’s. There is no systematic method to analyze and integrate different ASCRM 

strategies, such as how to choose supply locations, transportation, to optimize the 

objectives for both manufacturers and suppliers as a system and to reduce geographic or 

political risks in the automotive supply chain in the global environment. The existing 

research on the impact on the automotive network resulting from supply chain risk has not 

been sufficient. This area requires more related research to be conducted in the future.  

2). Use of data- and big-data-based ASCRM: One of the major automotive supply chain 

risks is nontransparency resulting from the multiple layers in the supply chain. Typically, 

OEMs have substantial data about Tier-1 suppliers, but they lack data from Tier-2 to Tier-

N suppliers. Nontransparency makes it very difficult to monitor risks and issue warnings. 

Big-data analytics can provide a basis for transparency in automotive supply chains. With 

the help of real-time big data availability, OEMs and suppliers can improve their supply 

chain transparency, monitor the occurrence of risks, provide early warnings and responses, 

and enable managers to use the developed risk mitigation strategy to prevent the risks. Big-

data-based sense-and-respond systems for ASCRM are worth further research.  

3). Study of the downstream risks to the automotive supply chain: There is not enough 

research on automotive-industry-specific models. The special aspect of the automotive 

supply chain is its complexity owing to the huge number of multitier suppliers and 

globalized network. Further study is required on downstream risks to the automotive supply 

chain besides demand uncertainty, such as call-back risk and how to build a resilient 

network. 

4). Implementation of more quantitative models: Through a literature review, we found 

that the majority of research on automotive supply chain risk employs empirical 

approaches. There is a real demand in the automotive industry to use quantitative models 

to evaluate supplier risks in terms of different tiers and different type of suppliers. Some 

quantitative models just address simple two-layer supply chains owing to the lack of deep 

downstream suppliers’ information. Various mathematical models have been developed to 

assist in planning under uncertainties with simplified real-life situations (Singhal et al., 
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2011). Proposed future work includes quantitative model development for complex 

ASCRM and improvement of the mathematical models to cope with real-life situations. 

Traditional risk modeling, including the use of the utility function, variance, standard 

deviation, mean–variance, value at risk, and conditional value at risk, has rarely been 

applied to ASCRM. These modeling methods can be applied to ASCRM. 

5). Addressing advanced technology challenges: In recent decades, revolutions in 

information technology and telecommunications has brought about dramatic changes in 

our daily lives and the automotive industry as well. Automakers continuously offer new 

high-technology features in their products (e.g., GPS, telematics, various sensors, ADAS, 

RFID, etc.). These high-technology features present many technological challenges in the 

automotive supply chain. One of these challenges is the risk posed to vehicle design, 

production, quality, and after-sales services by the short product development cycle and 

the long useful life of vehicles. Automotive manufacturers must mitigate risk through their 

component suppliers. Future research needs to be done on car manufacturers' selection of 

proper suppliers and on improving coordination and cooperation among supply chain 

vendors. 

6). Research on autonomous cars and car-sharing services: In recent years, autonomous 

cars have emerged as the future of the automotive industry. Experts have predicted that 

fully autonomous cars will arrive at the market by 2025 to 2030 (Liuima, 2016). Car-

sharing services using autonomous vehicles could be attractive for many private buyers as 

well. It is suggested that new-car sales in the US could be eroded by as much as 40%. Like 

any new product, autonomous cars will have demand uncertainty because of many 

obstacles, such as adoption rate, technological challenges, liability disputes, laws, and 

regulations. Demand uncertainty implies overcapacity risk or under capacity risk. Future 

work includes improving forecast accuracy to optimize contracts and production capacity 

and to reduce supply chain risk. 

This research tries to fill the research gap that lacks quantitative models for ASCRM. In 

the following chapters, we will implement two mathematic models for ASCRM research.  
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(1) Model for supplier development and manufacturer cooperation with a nonlinear 

return to minimize risk. The model and numerical experiment will be illustrated in Chapter 

3.  

 (2) Optimal contract model for product development with risk consideration (penalty 

and compensating). Chapter 4 will develop the mathematical model. Chapter 5 will apply 

the model to a uniform distribution case for numerical experiment and sensitivity analysis 

for a real-world ASCRM case.  
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CHAPTER 3 

OPTIMIZING MANUFACTURER COOPERATION IN SUPPLIER DEVELOPMENT 

UNDER RISK 

3.1 Introduction 

An automotive supply chain is a multiple layered, complex network, so the relationship 

between supply chain members is very important for risk management. Supplier 

development is a long-term, resource-consuming business activity that requires 

commitment from both manufacturers and suppliers. Manufacturers often spend a great 

amount of investment in supplier development to improve their suppliers’ capabilities and 

performances. The automotive industry is no exception. All of the automotive OEMs, such 

as Toyota, Honda, and the Big Three U.S. automakers, Chrysler, Ford, and General Motors, 

have implemented supplier development programs to assist suppliers (Liker & Choi, 2004), 

which have resulted in quality improvement and cost reduction. However, there is a risk 

due to the uncertainty of returns in supplier development. For example, for the same 

investment of resources, the return from each supplier can vary from the manufacturer’s 

expectation. Furthermore, supplier development poses potential opportunistic behavior on 

the part of the supplier (Wagner, 2006), which may lead to total failure or termination of 

the relationship earlier than expected. 

How to perform risk management in new product development and supplier development, 

or how to allocate the investment optimally among multiple suppliers to minimize risk 

while maintaining an acceptable level of return is a critical issue faced by manufacturers 

or automotive OEMs. This research tries to address these problems. This chapter is 

organized as follows. First, a literature review about risk management in new product and 

supplier development is provided in section 3.2. In section 3.3, Markowitz’s mean-variance 

portfolio theory and Talluri’s manufacturer investment portfolio model are introduced. The 

proposed non-linear return model in both SMMS and TMMS are developed in section 3.4. 

Moreover, numerical experiments and results are shown in section 3.5. Finally, a summary 

of this chapter is provided in section 3.6. 
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3.2 Literature Review 

We first review the available papers related to the keywords “risk management in new 

product and supplier development” searching from Scopus.  

Quigley, et al. 2018 studied supplier development decisions for prime manufacturers with 

extensive supply bases producing complex, highly engineered products. They proposed a 

novel modeling approach, a Poisson–Gamma model within a Bayesian framework, which 

can help/allow supply chain managers to decide the optimal level of investment and 

improve quality performance under uncertainty. The model helps to understand the 

relationship between the degree of epistemic uncertainty, the effectiveness of development 

programs, and the levels of investment. It was found that the optimal level of investment 

does not have a monotonic relationship with the rate of effectiveness. The expected optimal 

investment monotonically decreases if an investment decision was deferred until the 

epistemic uncertainty is removed, because the prior variance increases, but only if the prior 

mean is above a critical threshold. Several methods were developed to apply the model to 

industrial decisions in practice, which enables the model to be used with typical data 

available to major companies, and also with computationally efficient approximations that 

can be implemented easily. The model was applied to a real industry example. The results 

support the planning decisions (already in practice?): to learn more about supplier quality 

and to invest in improving supplier capability. 

Recently, Mizgier et al. (2017) published their work on multi-objective capital allocation 

for supplier development under risk. Due to the complexity of today’s supply chains and 

the globalization of businesses, the importance of supplier development has been increased 

significantly. Manufacturers need to make an informed decision to choose and develop 

only a fraction of the suppliers since their resources are limited. Furthermore, when 

choosing suppliers for a development program, manufacturers have the risk of uncertain 

returns from this investment. The authors proposed a multi-objective model for capital 

allocation for supplier development under risk. Their model was applied to an example of 

a global car manufacturer and supports the decision-making process about which suppliers 

are selected for the development program. A supplier’s performance is assessed by stock 

market returns and the cost of capital of suppliers. An informed decision about the tradeoffs 

between risk and cost of a supplier development program can be reached based on their 
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multi-objective model. In the paper, they demonstrated the different allocation schemes for 

supplier development depending on the risk averse-ness of the manufacturer. 

Proch et al. (2017) studied supplier development in a decentralized supply chain with a 

single manufacturer and a single supplier. Supplier development usually requires 

relationship-specific investments. It is crucial for the participating firms to decide the 

allocation of investment. The effects of relationship-specific investments on the efficiency 

and effectiveness of supplier development were investigated in the study referencing the 

relational view. Then they formulated and solved a continuous time optimal control model. 

The results characterized the decision to invest in supplier development and showed that 

the supplier's incentive to participate in supplier development depends critically on the 

manufacturer's share of investment costs. Through the numerical analysis, they also found 

that although the subsidy can lead to significant improvement in supply chain performance, 

subsidizing a constant share of investment costs is not always economically reasonable 

from the manufacturer's point of view. Therefore, they proposed a negotiation-based 

algorithm that assists the manufacturing firm in gradually increasing the share of 

investment costs to ensure an efficient level of subsidy, resulting in both perfect supply 

chain coordination and a win-win situation. 

Hosseininasab et al. (2015) introduced a two-phase supplier selection procedure for 

selecting a supplier portfolio based on value, development, and risk consideration. In most 

of the existing supplier selection research, the supplier selection decisions are based on 

supplier eligibility at the time of the decision making. The proposed two-phase method in 

this paper is based on the long-term trend of value, stability, and relationship of potential 

suppliers. In the first phase, a set of criteria are used to evaluate suppliers and assign a 

comparable value to them. In the second phase, this value is analyzed for the long term, 

using a multi-objective portfolio optimization model. A supplier portfolio is determined by 

maximizing the expected value for the development of suppliers and minimizing their 

correlated risk. Their procedure provides a new view of the supplier selection problem. 

Numerical tests using the proposed approach showed promising results by selecting for 

higher value suppliers with a lower risk of failure. 
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Chiang and Wu, (2016), studied early supplier involvement as well as contract design 

during new product development. Using upfront supplier resources and expertise, and 

allowing for risk sharing with suppliers have become vital for the new product 

development.  This is due to the intricacy of interfirm collaboration while dealing with 

unproven technology and market uncertainty. However, it remains difficult to achieve a 

successful implementation of early supplier involvement (ESI) in a new product 

development phase. In this paper, the game theoretical contracting strategies are proposed 

to achieve manufacturer objectives, such as predictable design timelines, sufficient supplier 

commitment, and radical in-process innovations. Based on real options analysis, an 

compatible incentive mechanism was designed to suggest which project stage to engage 

the supplier best, while considering various project factors, such as revenue forecast, 

technical uncertainty, market competition, and team capability. On the other side, the 

supplier can use the analysis to determine whether to participate and if so, the appropriate 

level of resource commitment. The equilibrium analysis provides managerial insights into 

how to best balance the time-to-market mandate with the need for accruing significant 

innovations through supply chain partnerships.  

Choi et al. (2008) studied mean-variance analysis of the newsvendor problem for inventory 

management with stochastic demand. The objective of a typical newsvendor problem is to 

either minimize the expected cost or maximize the expected profit. However, using the 

expected values to measure the performance alone is not sufficient for decision makers, 

because it ignores their risk preference. Authors conducted a mean-variance analysis of the 

newsvendor problem and developed analytical models and investigated the problem's 

structural properties. They also discussed a case with a stockout penalty cost and a safety-

first objective. The proposed solution schemes can help to identify the optimal solutions. 

Wei and Choi, (2010), extended the research work of Choi et al. 2008 on mean-variance 

analysis to supply chains under wholesale pricing and profit sharing schemes. The research 

explored the use of wholesale pricing and profit sharing scheme (WPPS) for coordinating 

supply chains under the mean-variance (MV) decision framework. First, the necessary and 

sufficient conditions for coordinating the centralized supply chain by WPPS were 

established analytically. Then they found that there exists a unique equilibrium of the 

Stackelberg game with WPPS in the decentralized case. They also discussed that in the 
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asymmetric information case, the retailer could pretend to be more risk-averse and benefit 

from it. As a result, a new measure was proposed for the manufacturer to prevent this 

cheating from happening. 

Grochowski and Ohlhausen, (2015), studied cooperation models as the success factor for 

interdisciplinary, inter-organizational research and development (R&D) in the automotive 

industry. The automotive industry has been challenged by the shortage of fossil fuels, the 

politics of global warming and rising competition from new markets nowadays. The stable 

success of automotive companies depends on the development of more efficient and 

alternative fuel vehicles with new technologies and materials that meet the individual 

requirements of the customers. The development of automobiles is so complex that it 

requires the skills of various engineering and science disciplines, which are spread all over 

the supply chain. Hence the only way to stay successful in the automotive industry is by 

cooperation and collaborative innovation. Therefore, cooperation models for 

interdisciplinary and interorganizational development are in high demand and are very 

critical in the automotive industry. This paper used a case study (research campus 

ARENA2036 in Germany) to analyze and evaluate the cooperation models according to 

the applicability to interdisciplinary, interorganizational development projects in the 

automotive industry. ARENA2036 is the largest and leading research platform for mobility 

in Germany, housing automobile manufacturers, suppliers, research establishments and 

university institutes. Based on interviews with the partners and the preceding analyses of 

cooperation models, suggestions for implementation are given to ARENA2036 for 

investments, agreements, communications, and flexible adaption tasks.  

Talluri et al. (2010) applied Markowitz’s model to manufacturer cooperation in supplier 

development under risk. The authors presented a set of optimization models that address 

supplier development undertaken by manufacturing firms to improve their suppliers’ 

capabilities and performances. They considered two scenarios: the single manufacturer and 

multiple suppliers (SMMS) case and the two manufacturers and multiple suppliers 

(TMMS) case. In the SMMS case, authors suggested optimal investments in various 

suppliers by effectively considering risk and return. In the TMMS case, they investigated 

whether manufacturers with differing capabilities could gain risk reduction benefits from 

cooperating with each other in supplier development.  
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From the literature review above, we can see the recent research trend in the area of risk 

management in new product and supplier development. Due to the complexity of modern 

supply chains and the globalization of businesses, the importance of supplier development 

has increased significantly recently (Mizgier et al. 2017). Also due to the resource limits 

and uncertainty in the supply chain, how to conduct risk management in new product and 

supplier development, or how to select, coordinate, cooperate with suppliers, and allocate 

the investment optimally among multiple suppliers to minimize risk while maintaining an 

acceptable level of return is getting more attention in academia and industry.   

In summary, the research topics for risk management in new product and supplier 

development are: optimal level of investment or capital allocation for supplier development 

under risk (Mizgier, et al. 2017, Quigley, et al. 2018); supplier selection (Hosseininasab, 

et al. 2015), early supplier involvement and contract design during new product 

development, with risk sharing with suppliers (Chiang and Wu, 2016); and cooperation for 

supplier development investments (Grochowski and Ohlhausen, 2015, Talluri et al. 2010). 

The mathematical models include Poisson–Gamma model within a Bayesian framework 

(Quigley, et al. 2018), game theory (Chiang and Wu, 2016), newsvendor (Choi et al. 2008), 

mean-variance analysis (Choi et al. 2008, Wei and Choi, 2010), Markowitz’s model 

(Talluri et al. 2010). Table 3.1 shows a summary of the literature review. During the 

literature review, we found that there is liited research that deals with optimizing 

manufacturer cooperation for supplier development under risk in the automotive industry. 

This research is conducted in order to fill the gap.  

Talluri et al. (2010) applied Markowitz’s model to manufacturer cooperation for supplier 

development under risk. Talluri’s model assumed that the return of investment to suppliers 

is proportional to the investment. Actually, in most situations the return is nonlinear. This 

research revised the above manufacturer cooperation model with a nonlinear return and 

intended to apply it to the auto industry. 
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TABLE 3.1: LITERATURE REVIEW SUMMARY. 

Authors Subject  Supply Chain  
Structure 

Model  Solution Approach 

Quigley, 
et al. 
(2018) 

Supplier quality 
improvement: The 
value of 
information under 
uncertainty 

prime 
manufacturers with 
extensive supply 
bases producing 
complex, highly 
engineered 
products 

a Poisson–Gamma 
model within a 
Bayesian 
framework, which 
can support supply 
chain managers to 
decide the optimal 
level of investment 
and improve 
quality 
performance under 
uncertainty 

the model is used with 
typical data available to 
major companies, and 
with computationally 
efficient 
approximations that are 
implemented easily 

Mizgier, 
et al. 
(2017) 

Multi-objective 
capital allocation 
for supplier 
development under 
risk 

Manufacturers 
need to decide to 
choose and develop 
some fraction of 
suppliers 

A multi-objective 
model for capital 
allocation for 
supplier 
development under 
risk 

The model was applied 
to a global car 
manufacturer and 
supported the decision-
making process to 
select which suppliers 
for the development 
program. A supplier’s 
performance is assessed 
by stock market returns 
and cost of capital of 
suppliers 

Proch, et 
al. (2017) 

A negotiation-
based algorithm to 
coordinate supplier 
development in 
decentralized 
supply chains 

a decentralized 
supply chain with a 
single 
manufacturer and a 
single supplier 

a continuous time 
optimal control 
model 

Numerical analysis, and 
proposed a negotiation-
based algorithm to 
assists the 
manufacturing firm in 
gradually increasing the 
share of investment 
costs to ensure a supply 
chain coordination and 
a win-win situation 

Hosseinin
asab, et al. 
(2015) 

Selecting a supplier 
portfolio with 
value, 
development, and 
risk consideration 

a two-phase 
supplier selection 
procedure for 
selecting a supplier 
portfolio using 
value, 
development, and 
risk consideration 

a multi-objective 
portfolio 
optimization model 

A supplier portfolio is 
determined by 
maximizing the 
expected value and 
development of 
suppliers and 
minimizing their 
correlated risk 

Chiang 
and Wu, 
(2016) 

Supplier 
Involvement and 
Contract Design 
during New 

Manufacturer and 
early supplier 
involvement for the 
new product 
development 

game theoretical 
contracting 
strategies 

The equilibrium 
analysis provides 
managerial insights into 
how to best balance the 
time-to-market mandate 
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Product 
Development 

with the need for 
accruing significant 
innovations through 
supply chain 
partnerships 

Choi et al. 
(2008) 

Mean-Variance 
Analysis for the 
Newsvendor 
Problem 

inventory 
management with 
stochastic demand. 

mean-variance 
analysis of the 
newsvendor 
problem and 
development of 
analytical models 

investigated the 
problem's structural 
properties 

Wei and 
Choi, 
(2010) 

Mean-variance 
analysis of supply 
chains under 
wholesale pricing 
and profit sharing 
schemes 

Manufacturer and 
suppliers in 
centralized, 
decentralized 
supply chain 

extended the 
research work of 
Choi, et al. 2008 on 
mean-variance 
analysis to supply 
chains under 
wholesale pricing 
and profit sharing 
schemes 

found that there exists a 
unique equilibrium of 
the Stackelberg game 
with wholesale pricing 
and profit sharing 
scheme (WPPS) in the 
decentralized case 

Grochows
ki and 
Ohlhausen
, (2015) 

Cooperation 
models as a success 
factor for 
interdisciplinary, 
inter-organizational 
research and 
development in the 
automotive 
industry 

automotive 
industry supply 
chain cooperation 
and collaborative 
innovation 

a case study to 
analyze and 
evaluate the 
cooperation models 
according to the 
applicability to 
interdisciplinary, 
interorganizational 
development 
projects in the 
automotive 
industry 

Based on interviews 
with partners and the 
preceding analyses of 
cooperation models, 
suggestions for 
implementation are 
given to ARENA2036 
for investments, 
agreements, 
communications, and 
flexible adaption tasks 

Talluri et 
al. (2010) 

Manufacturer 
cooperation in 
supplier 
development under 
risk 

SMMS - single 
manufacturer and 
multiple suppliers 

TMMS - two 
manufacturers and 
multiple suppliers 

Applied 
Markowitz’s model 
to manufacturer 
cooperation in 
supplier 
development under 
risk; the objective 
function is to 
minimize the risk 
while achieving the 
target return when 
the manufacturer 
allocates the 
investment 
amounts 

the mean-variance 
method with linear 
return  

 



40 
 

3.3 Mathematic Model 

3.3.1 Markowitz Model 

Markowitz model, or mean-variance analysis, also known as the modern portfolio theory 

(MPT), was introduced by economist Harry Markowitz in 1950’s, for which the author was 

later awarded a Nobel Prize in economics [1]. The model assembles a portfolio of assets 

mathematically to maximize the expected return for a given level of risk, defined as 

variance. The key point of the model is that an asset's risk and return should be assessed 

by how it contributes to a portfolio's overall risk and return. Markowitz model is used as 

risk measurement. Mossin (1973), Choi et al. (2008), and Wei and Choi (2010) studied 

problems in inventory and supply chain systematically using the mean-variance method. 

3.3.2 Talluri’s Model – Linear Return Model 

Talluri et al. (2010) applied Markowitz’s model to the manufacturer investment portfolio.  

Figure 3.1 shows the case where a single manufacturer engages in supplier development 

efforts with multiple suppliers (SMMS). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Single manufacturer and multiple supplier case (Talluri et al, 2010) 

x
j
: amount manufacturer invests in supplier j;  

R
j
: return rate from investing in supplier j from M1  

Supplier 1 

Supplier 2 

Supplier 3 

Supplier 4 

x1 

x2 

x3 

x4 

Manufacturer 

Manufacturer 
Investment portfolio 

𝑥 𝑅  
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In SMMS, the objective function is to minimize the risk  while achieving the target return 

when the manufacturer allocates the investment amounts. Risk is affected by variability of 

returns from suppliers and the amounts invested. 

We minimize this objective function: 

𝑉𝑎𝑟 𝑥 𝑅 = 𝑥 𝑥 σ =
1

𝑇
𝑟 − 𝑟 𝑥  

Subject to these constraints: 

𝑥 = 𝑋,
 

budget constraint 

𝑟 𝑥 ≥ ρ𝑋
 

return expectation constraint 

𝑙 ≤ 𝑥 ≤ μ , ∀𝑗 = 1~𝑛
 

manufacturer investment 
constraint 

 
Where j is the jth supplier; 

n the total number of suppliers;  

xj is the amount the manufacturer invests in supplier j;  

X is the total budget;  

μj is the maximum amount that can be invested in supplier j;  

lj is the minimum amount that needs to be invested in supplier j;  

Rj is the random variable representing “rate of return” from investing in supplier j;  

 ρ is the minimum overall expected rate of return required by manufacturer. 

3.4 Proposed Nonlinear Return Model 

Zhang and Zhu (2012) updated/replaced the above manufacturer cooperation model with a 

nonlinear return model and applied it to the auto industry. Talluri’s model assumes that the 

return of investment to a supplier is proportional to the investment. In fact, in most 

situations the return is nonlinear. For example, to improve the quality of products, a new 

technique should be used or new equipment with high performance should be purchased.   

This study extends the work by Talluri et al. (2010) by developing a new investment 

scheme and examining how Markowitz’s model can be used to help firms optimally 

allocate resources under nonlinear returns and then comparing the results to the linear case. 
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One example where the return rj and the investment xj follows a nonlinear relationship is 

shown below in Figure 3.2 (Zhang, 2010):  

  

Figure 3.2. A nonlinear relationship between investment xj and return rj 

3.4.1 The SMMS Model 

First, we extended Talluri’s SMMS model to replace the linear relationship with a non-

linear relationship between the return rate rj and the investment xj to. The goal of the 

manufacturer is to allocate investment amounts so that a target return is achieved at 

minimum risk. The risk is affected by the variability of returns from suppliers and amounts 

invested. The objective function is to minimize the variance of the supplier development 

investment portfolio:  

𝑉𝑎𝑟 𝑥 𝑅  (3.1) 

Subject to: 

𝑥 = 𝑋 (3.2) 

𝑟 𝑥 ≥ 𝜌𝑋 (3.3) 

𝑥 ≥ 𝑟 𝑦 ∀𝑖, 𝑗 (3.4) 

𝑥 ≤ 𝑟 𝑦 ∀𝑖, 𝑗 (3.5) 
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𝑦 = 1 ∀𝑗 (3.6) 

𝑦 =
1, if investor 𝑗 invests in level 𝑖
0, otherwise                                   

∀𝑖, 𝑗 (3.7) 

𝑥 = 𝑥 ∀𝑗 (3.8) 

𝑙 ≤ 𝑥 ≤ μ ∀𝑗 (3.9) 

𝑥 , 𝑥 ≥ 0 ∀𝑖, 𝑗 (3.10) 

Where R is the return rate; 

X is the total available budget for the next period; 

i is the ith investment level; 

ρ is the average return from n suppliers; 

𝑟  is the return lower limit; 

𝑟  is the return upper limit; 

𝑦 = 1 if supplier j invests ith level, 𝑦 = 0 otherwie 

To evaluate the objective function, (as Talluri et al. 2010, page 168), we have:     

Var 𝑥 𝑅 = (1/𝑇) 𝐸 𝑥 = (1/𝑇) 𝑟 − 𝑟 𝑥  (3.11) 

where 

𝐸 = 𝑦 (𝑟 − 𝑟 ) (3.12) 

𝐸 𝑥 = 𝑦 (𝑟 − 𝑟 ) 𝑥

= [𝑦 (𝑟 − 𝑟 ) + 𝑦 (𝑟 − 𝑟 )][𝑥 + 𝑥 ]

= [𝑥 (𝑟 − 𝑟 ) + 𝑥 (𝑟 − 𝑟 )]  

(3.13) 
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3.4.2 The TMMS Model 

Secondly, we apply a non-linear relationship between return rate rj and investment xj to 

Talluri’s TMMS model. 

We assume cooperation, and that the return rate depends on the sum of investment of two 

manufacturers. We wish to minimize 

Var 𝑥 𝑅 + 𝑥 𝑅  (3.14) 

Subject to: 

𝑥 = 𝑋 (3.15) 

𝑥 = 𝑋′ (3.16) 

𝑟 (𝑥 + 𝑥′) ≥ 𝜌𝑋 (3.17) 

 

 

 

 

 

 

             

 

 

 

 

 

 

Figure 3.3. TMMS model (Talluri et al, 2010) 
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𝑟′(𝑥 + 𝑥′) ≥ 𝜌′𝑋′ (3.18) 

max 𝑟 , 𝑟 𝑥 + 𝑥 ≥ max[𝜌, 𝜌 ] (𝑋 + 𝑋 )  (3.19) 

𝑥 + 𝑥′ ≥ 𝑟 𝑦 ∀𝑖, 𝑗 (3.20) 

Constraint (3.20) is used in the single manufacturer case. In the two-manufacturer case, it 

becomes (3.21) 

𝑥 + 𝑥 ≥ 𝑟 𝑦 + 𝑦 ∀𝑖, 𝑗 (3.21) 

𝑥 + 𝑥′ ≤ 𝑟 𝑦 ∀𝑖, 𝑗 (3.22) 

Constraint (3.22) is used in the single manufacturer case. In the two-manufacturer case, it 

becomes (3.23) 

𝑥 + 𝑥 ≤ 𝑟 𝑦 + 𝑦 ∀𝑖, 𝑗 (3.23) 

𝑦 = 1 ∀𝑖 (3.24) 

𝑥 = 𝑥 ∀𝑗 (3.25) 

𝑥′ = 𝑥′ ∀𝑗 (3.26) 

𝑙 ≤ 𝑥 ≤ 𝜇 ∀𝑗 (3.27) 

𝑙′ ≤ 𝑥′ ≤ 𝜇′ ∀𝑗 (3.28) 

𝑥 , 𝑥 ≥ 0 ∀𝑖, 𝑗 (3.29) 

𝑦 = {0,1} ∀𝑖, 𝑗 (3.30) 

To evaluate the objective function, (as Talluri et al. 2010, page 168), we have: 

𝑉𝑎𝑟 𝑥 𝑅 =
1

𝑇
𝐸 𝑥 + 𝐸 𝑥 =

1

𝑇
𝑥 + 𝑟′ − 𝑟 𝑥   

              (3.31) 

since 
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𝐸 = 𝑥 𝑟 − 𝑟  and 𝐸 = 𝑥′ 𝑟′ − 𝑟′  (3.32) 

3.5 Numerical Experiments and Results 

We use the data from Talluri et al. (2010)’s paper for our numerical experiments. 

Manufacturer 1’s historical return data in Table 3.2 are randomly generated from four 

normal distributions, N(0.15, 0.0225), N(0.2,0.04), N(0.25, 0.0625), and N(0.3, 0.09), for 

suppliers 1, 2, 3 and 4, respectively. The average return for manufacturer 1 from the four 

suppliers is ρ = 0.225. Manufacturer 1’s total investment budget is assumed to be X = 

$100,000. The maximum investment limit for every supplier is $50,000.  

Manufacturer 2’s historical return data in Table 3.3 are randomly generated for suppliers 

1, 2, 3, and 4 with Normal distributions, N(0.2,0.04), N(0.25, 0.0625), and N(0.3, 0.09), 

and N(0.35, 0.1225), respectively, with all coefficient of variation (CV) controlled at 1 (see 

Table 3.3). Manufacturer 2’s budget is also assumed to be $100,000. The average return 

for manufacturer 2 from the four suppliers is ρ = 0.275. 

TABLE 3.2. MANUFACTURER 1’S EXPECTED RETURNS AND ACTUAL HISTORICAL RETURNS BY THE SUPPLIER 

(SOURCE: TALLURI ET AL., 2010) 

Actual returns P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 rj 

Supplier 1 0.1725 0.1248 0.1706 0.1882 0.1229 0.1482 0.1521 0.1380 0.1301 0.1295 0.1500 

Supplier 2 0.2098 0.2053 0.2014 0.1815 0.2151 0.2140 0.2512 0.2611 0.2126 0.2586 0.2000 

Supplier 3 0.1132 0.2169 0.2103 0.2438 0.2549 0.2655 0.2272 0.2059 0.2188 0.1846 0.2500 

Supplier 4 0.2893 0.2385 0.2131 0.1262 0.2080 0.4015 0.3539 0.2041 0.2612 0.3659 0.3000 

Unit: $/per dollar invested.  
Expected return: rj.  

 

TABLE 3.3: MANUFACTURER 2’S EXPECTED RETURNS AND ACTUAL HISTORICAL RETURNS BY THE SUPPLIER 

(SOURCE: TALLURI ET AL., 2010) 

Actual returns P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 rj 

Supplier 1 0.2301 0.1911 0.2237 0.2163 0.1606 0.2421 0.2283 0.1553 0.2783 0.2331 0.2000 

Supplier 2 0.2578 0.3305 0.2412 0.2137 0.2860 0.3473 0.2654 0.2584 0.2522 0.2211 0.2500 

Supplier 3 0.3918 0.2606 0.3446 0.3401 0.1493 0.3325 0.4027 0.1415 0.2428 0.2583 0.3000 

Supplier 4 0.4882 0.3894 0.3991 0.5917 0.3724 0.3304 0.3304 0.1658 0.2380 0.3422 0.3500 

Unit: $/per dollar invested.  
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Manufacturer 2 is assumed to have the better capability in implementing supplier 

development initiatives than manufacturer 1 for every candidate supplier.  

In the following numerical experiment, we use a GAMS algorithm to model every case. 

The experiment has two steps. In the first step, the linear return model, or Talluri’s original 

model is studied to check if our GAMS algorithm is correct. In the second step, the 

nonlinear return model, or our proposed model is studied. Then a comparison is made 

between the results of both models.  

3.5.1 Results for SMMS Case 

Using GAMS on the model and the data from Table 3.2, we get the following SMMS 

results in Figure 3.4 below 

 Linear return, which is the same as a result of the Talluri et al. (2010) paper. It 

verifies our GAMS algorithm.  

 

Figure 3.4. Supplier allocation vs overall expected return (ρ) with investment limits 

 Nonlinear return: both expected return 𝑟 and actual return rijt are multiplied by 

[0.9, 1.0, 1.1]. Using GAMS to our proposed nonlinear return SMMS models, the 

nonlinear returns are given in Table 3.4 and Table 3.5.  
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TABLE 3.4 NONLINEAR RETURN INVESTMENT FOR SMMS. 

Investment range Nonlinear returns (multiplier) Investment level 

0 - 18788.0 0.9 1 

18788.1 - 34608.1 1 2 

34608.2 - 50000.0 1.1 3 

 

TABLE 3.5 NONLINEAR RETURN SOLUTIONS FOR INVESTMENT IN SMMS CASE WITH Ρ = 0.27 

Suppliers Manufacturer's investment allocation  Investment level 

S1 0 1 

S2 34608.2 3 

S3 27413.7 2 

S4 37978.1 3 

 

 

Figure 3.5. Supplier allocation vs overall expected return (ρ) with investment limit and nonlinear return 

Figure 3.4 and 3.5 show investments across the four suppliers at different levels of ρ when 

investment is restricted to a maximum of $50,000 for each supplier. It is evident from 

Figure 3.4 that at low levels of ρ the manufacturer needs to consider investing more in 

suppliers 1 and 2 and to a lesser degree in suppliers 3 and 4. As the ρ value increases the 

manufacturer must consider investing more in suppliers 3 and 4 and less in suppliers 1 and 

2. The managerial implication is that when high overall expected return is risky to achieve 

or is infeasible, the manufacturer may lower the expectation or adjust the investment 
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allocation based on the analysis from Figure 3.4. Nonlinear return in Figure 3.5 has a 

similar trend to linear return in Figure 3.4, but the performance is delayed for ρ. For 

example, in linear return, when ρ = 0.15 ~ 0.18, supplier allocation is kept the same, while 

in nonlinear, this happens when ρ = 0.15 ~ 0.19. In linear return, when ρ ≥ 0.23, supplier 1 

gets 0 investment, while in the nonlinear case, this happens when ρ ≥ 0.25. When ρ = 0.27, 

supplier allocation is more even in nonlinear return than linear return. It means that in high 

overall expected return ρ situation, nonlinear return solution is less risky than that of linear 

return.  

3.5.2 Results for TMMS Case 

Using GAMS on our proposed nonlinear return TMMS models, one example of the 

nonlinear solutions for investment is given in Table 3.6 and Table 3.7.  

TABLE 3.6 NONLINEAR RETURN INVESTMENT FOR TMMS. 

M1 investment range M2 investment range 
Nonlinear returns 
(multiplier) 

Investment level 

0-18788.0 0-18788.0 0.9 1 

18788.1- 34608.1 18788.1- 34608.1 1 2 

34608.2-50000.0 34608.2-50000.0 1.1 3 

TABLE 3.7 NONLINEAR RETURN SOLUTIONS FOR INVESTMENT IN TMMS CASE WITH Ρ = 0.29. 

Suppliers Manufacturer 1 Investment level Manufacturer 2 Investment level 

S1 0 0 34608.2  3 

S2 49700.7  3 37036.8 3 

S3 46844.9  3 2935.9 3 

S4 3454.3  2 25419.1  2 

From Table 3.6, we see that manufacturer 1 (M1) and manufacturer 2 (M2) have the same 

investment range in a nonlinear return situation. Table 3.7 shows the nonlinear return 

solutions for investment in TMMS case with ρ = 0.29. 

Using GAMS on the models and the data from Table 3.2 and Table 3.3, both TMMS results 

with linear and nonlinear return rates are shown in the following figures: Figure 3.7, Figure 

3.8, and Figure 3.9 (corresponding to Fig.4, Fig. 5, Fig. 6 from the original paper). 

In the original paper, Fig. 4 compares the case of cooperation and non-cooperation between 

two manufacturers with the linear return.  
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ρ 
Figure 3.7a. (original Fig.4) with linear return Cooperation vs. non-cooperation: TEB/risk vs. ρ. (with linear 

return) 

The vertical axis is TEB/Risk. Where TEB is Total Expect Benefit, which can be obtained 

from: 

For manufacturer 1 with non-cooperation, TEB = ∑ 𝑟 𝑥  

For manufacturer 2 with non-cooperation, TEB′ = ∑ 𝑥′ 

For M1 and M2 with cooperation  TEB′′ = ∑ max[𝑟 , 𝑟′](𝑥 + 𝑥′) 

The Risk in formula TEB/Risk can be obtained from Risk = √Var for each case 

The figure below shows the nonlinear return case: 

 

Figure 3.7b. Cooperation vs. non-cooperation: TEB/risk vs. ρ. (with nonlinear return) 
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Similarly, for nonlinear return, we have: 

For manufacturer 1 with non-cooperation, TEB = ∑ ∑ 𝑟 𝑥      (3.33) 

For manufacturer 2 with non-cooperation, TEB′ = ∑ ∑ 𝑟 𝑥     (3.34) 

For M1 and M2 with cooperation,  

𝑇𝐸𝐵′′ = ∑ ∑ max [𝑟 , 𝑟 ](𝑥 + 𝑥 )  (3.35) 

Moreover, Risk = √Var for each case  

Figure 3.7a compares the cases of cooperation and non-cooperation between the two 

manufacturers. It is evident from this figure that when manufacturer 1’s expectations of 

returns increase while manufacturer 2’s is held constant at 0.275, cooperating with 

manufacturer 2 is always beneficial to manufacturer 1 because the TEB/risk ratio is higher. 

High TEB to risk ratio indicates high benefit per unit of risk, which is preferred by 

manufacturers.  

The results with the linear return are the same as the results from the Talluri et al. (2010) 

paper. It verifies our GAMS algorithm for TMMS model. Nonlinear return in Figure 3.7b 

has a similar trend to the linear return in Figure 3.7a.  

In the original paper, Fig.5 examined the impact of various levels of expected returns on 

the TEB/Risk ratio from manufacturer 1’s perspective. The current expected returns for 

manufacturer 2 are (0.2, 0.25, 0.3, and 0.35). The expected return (ER) ratio indicates an 

increase or decrease of expected returns from these base level values at which the ER ratio 

is 1. The actual performance data listed in Table 1 and Table 2 is left unchanged when 

varying the ER ratio. Manufacturer 2’s ER ratio was varied from 0.8 to 1.5 while 

manufacturer 1’s ER ratio was set at 1.0 and ρ at 0.225. Using GAMS to model, we get the 

following TMMS results for Figure 3.8 corresponding to Fig. 5 in the original paper. 
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  Manufacturer 2 ER Ratio           Manufacturer 2 ER Ratio 

a. (original Fig.5) with linear return    b. with nonlinear return 
 

Figure 3.8. Cooperation vs. non- cooperation for manufacturer 1: TEB/risk vs. manufacturer 2 ER ratio. 

(corresponding to Fig. 5 in the original paper) 

From Figure 3.8, we can see that it is not always beneficial for manufacturer 1 to cooperate 

with the manufacturer 2. When the ER ratio of manufacturer 2 is ≥ 1.35 (original paper 

1.42), or ≤ 0.89 (original paper 0.92) manufacturer 1 should choose to not cooperate with 

manufacturer 2, because manufacturer 2 is relatively under-performing when compared to 

their expectations. In other words, in the linear return case, only if the manufacturer 2 ER 

ratio is from 0.89 to 1.35, should manufacturer 1 choose to cooperate with manufacturer 2. 

In the nonlinear return case, the cooperation region is smaller, which is from 0.94 to 1.28.  

Figure 3.9 provided similar analysis and strategies that must be pursued by manufacturer 

2. In this case, manufacturer 1’s ER ratio varied from 0.8 to 1.5, while manufacturer 2’s 

ER ratio was set at 1 and ρ at 0.275. The actual performance data listed in Table 1 and 

Table 2 is left unchanged when varying M1’s ER ratio. Using GAMS to model, we get the 

following TMMS results for Figure 3.9. 
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       a. (original Fig.6) with linear return    b. with nonlinear return  

Figure 3.9. Cooperation vs. non- cooperation for manufacturer 2: TEB/risk vs. manufacturer 1 ER ratio. 

(corresponding to Fig. 6 in the original paper) 

Figure 3.9 shows that when manufacturer 2 is a better-performing manufacturer, 

manufacturer 2 is likely to benefit from cooperating with manufacturer 1, unless 

manufacturer 1 is highly under-performing or over-performing. The results in Figure 3.9a 

(linear return) and Figure 3.9b (nonlinear return) show TEB/risk in the nonlinear situation 

is larger than that in a linear situation.  

3.6 Summary 

Since the automotive supply chain has multiple layers and is a complex network, the 

relationship between supply chain members is very important for risk management. 

Automotive OEMs often invest heavily in supplier development to assist suppliers, which 

have resulted in quality improvement and cost reduction. However, there is a risk for the 

manufacturer to implement supplier development. Manufacturers need to allocate the 

investment optimally among multiple suppliers to minimize risk while maintaining an 

acceptable level of return. Talluri et al. (2010) applied Markowitz’s model to manufacturer 

cooperation in supplier development under risk. Talluri’s model assumes that the return of 

investment from the supplier is proportional to the investment. Actually, in most situations 

the return is nonlinear. We revised the above manufacturer cooperation model with 

nonlinear returns and applied it to the automotive industry. The non-linear relationship 

between the return rj and investment xj is closer to a real situation. Using the same data in 
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Talluri’s study and GAMS program, we did a numerical experiment for our nonlinear 

return model. The revised nonlinear return models were subject to the same analyses as 

Talluri’s model, such as, investigate the SMMS and TMMS cases, study the collaborative 

supplier development, and identify if cooperation or non-cooperation are beneficial for 

manufacturers. Also, we compared the results of the numerical experiment for the linear 

model and the nonlinear model. The numerical experiments show that non-linear retunes 

algorithm has better results than linear return, such as less risk in high return situation for 

SMMS and higher TEB/risk in TMMS.  

The nonlinear model can be applied to auto OEMs to decide how to optimally allocate their 

supplier development investments among multiple suppliers to minimize risk while 

maintaining an acceptable level of return and corporate profitability. It also provides a 

novel method to assess the benefits of cooperating with other firms in supplier development 

efforts. Future work includes the application of the non-linear return supplier development 

model to the automotive industry, such as more suppliers (30 ~ 100), and more total 

investment amount. 
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CHAPTER 4 

OPTIMAL CONTRACT FOR PRODUCT DEVELOPMENT WITH RISK 

CONSIDERATION (PENALTY AND COMPENSATION) 

4.1 Introduction 

Automotive supply chains are complex due to the large number of parts assembled into an 

automobile, the multiple layers of suppliers to supply those parts, and the coordination of 

materials, information, and financial flows across the supply chain. There are many types 

of supply chain risks in the automotive industry. As a common ex-ante strategy in risk 

management, supply chain contracts play an important role for supply chain members, such 

as OEMs and suppliers, when coordinating and sharing the risks that arise from various 

sources of uncertainty, including demand, price, and product quality. 

Automotive product development has a long lead time from concept design to launch that 

requires more than 30 months as shown in Figure 4.1 (Hill, 2007) below.  

  

Figure 4.1. The automotive product development timeline (Source: Center for automotive research) 

There are many uncertainties and risks during the product development time frame (Zhu 

and Zhang, 2017). First, new product development necessitates significant investments 

from both OEMs and suppliers. For example, the suppliers of innovative parts need to build 
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new factories or assembly lines. However, the demand forecast for a new or innovative 

product, such as an electric car, is highly inaccurate due to the long lead time and 

uncertainty of customer’s preference for the new products. Thus, deciding upon a suitable 

production capacity for a new facility is challenging for both the manufacturer and supplier. 

This process involves a large investment, some workers, and facility/equipment building. 

It is of interest for both the manufacturer and the supplier to engage in a collaborative effort 

to reduce the risk. It is common practice that both partners sign a contract after the supplier 

is selected to provide the new parts (Asian and Nie, 2014). However, there is limited 

research on the capacity decision for product development with risk consideration in such 

kind of contracts, especially for the automotive industry (Zhang, 2015, Zhu and Zhang, 

2017). 

This study is based on a real case in the automotive industry. An OEM plans to develop a 

new vehicle model, namely an electric vehicle (EV). The demand is still highly uncertain, 

even though the various forecasting methods are utilized to estimate the demand for this 

new vehicle model. There are many new and innovative components and sub-systems 

required for a new EV, and the rechargeable battery pack is one of the most expensive and 

investment intensive sub-systems.  The total investment for developing the battery pack 

and establishing its production capacity is in the range of multi-millions of dollars. The 

battery pack supply contract signed between OEM and supplier normally sets up a planned 

annual volume based on the uncertain demand forecast. Thus, the OEM and the supplier 

need to decide a suitable capacity for the new battery pack production lines collaboratively 

for two reasons: to reduce the risk of over-capacity or under-capacity, and to maximize the 

profits for both sides.  

The objective of the research in this chapter is to design a supply contract when developing 

a new product in order to reduce the risks and maximize profits under uncertain demands. 

To reduce the risks and maximize their profits, this study investigates how to decide the 

supplier’s capacity and the manufacturer’s order in the supply contract when the demand 

of the new product is highly uncertain. Based on the newsvendor model and Stackelberg 

game theory, we developed a mathematical model for the product development contract 

where both demand uncertainty and compensation are considered. The analytical solution 

for the demand situation for uniform distribution is developed, and computational tests are 
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also reported. The proposed solution provides an effective tool for supplier-manufacturer 

contracts when the manufacturer faces highly uncertain demand.  

The remainder of this chapter is organized as follows: a literature review is presented in 

section 4.2; a proposed model based on Newsvendor model and Stackelberg game theory 

is developed in section 4.3; the constraint optimization is discussed in section 4.4; lastly, 

concluding remarks including a summary of the main results and some future work 

direction is given in section 4.5. Proofs of all propositions appear in section 4.6 

Appendix. 

4.2 Literature Review 

Automotive supply chains are multi-layered and complex networks. Supply chain contracts 

are used to coordinate supply chain members, OEMs and suppliers, in order to make their 

interests align with that of the supply chain system and to achieve optimal supply chain 

efficiency. Supply chain contracts also play an important role because they allow supply 

chain members to share risks arising from various sources of uncertainty, such as demand, 

price, and product quality. There are many studies on supply contracts under uncertainty 

(Chen et al. 2014, and Ghadge et al. 2017). However, to the best of our knowledge, there 

is limited research on optimal contract design specifically for product development in the 

automotive industry.  

In the following paragraphs, we will review the available papers related to the keywords 

“contract, demand uncertainty, product development” from Scopus in the period from 2001 

to 2018.  

Erkoyuncu et al. (2011) conducted a literature review and found that the current research 

did not consider cost uncertainty for an industrial product–service system. They analyzed 

the drivers of uncertainty, factors of the sustainability of a contract and the activities 

dealing with service delivery. They reviewed suitable methods for considering service 

uncertainty in cost estimation and proposed to substitute the traditional probability theory 

with Fuzzy set theory, taking advantage of its capability to assign probabilities to 

ambiguous events or vague knowledge, which suits whole life cycle applications.  
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Liu and Özer (2010) studied channel incentives in sharing new product demand 

information, which is often highly uncertain, as well as robust contracts. Distribution 

channels with a manufacturer and a retailer are considered in their paper. The authors 

investigated the impact of improved demand information for centralized and decentralized 

channels and modeled both channels using the newsvendor model. They found that the 

manufacturer's incentive to share its improved demand information depends on the supply 

contract signed with the retailer. Furthermore, mandating the manufacturer to disclose its 

improved demand information can reduce the total channel profit. Three types of widely 

used contract forms, price-only contracts, quantity flexibility contracts, and buyback 

contracts, are analyzed for their robustness under an unanticipated demand information 

update observed by the manufacturer. The results show that the quantity flexibility contract 

with a high return rate is not robust. The buyback contract is robust and always achieves 

information sharing while preserving channel performance.  

Kim and Netessine (2013) investigated collaborative cost reduction and component 

procurement by manufacturers and suppliers during the development of an innovative 

product under information asymmetry. They focused on two stages: the product 

development stage and the production stage. A game-theoretic model was developed to 

capture the incentive dynamics that arise when a manufacturer and a supplier exert 

collaborative efforts to reduce the unit cost of a critical component; however, the supplier 

may be unwilling to share its private cost information. They investigated how information 

asymmetry and procurement contracting strategies interact to influence the supply chain 

parties' incentives to collaborate. The main model is to maximize profit. The authors 

considered different procurement contracting strategies and identified the expected margin 

commitment (EMC) as a simple and effective strategy to promote collaboration. 

Reimann and Schiltknecht (2009) studied the interdependence of contractual and 

operational flexibilities from a manufacturers' point of view. Manufacturers in the market 

of specialty chemicals are exposed to high uncertainty and financial risk since their 

customers are granted a large degree of freedom concerning demand quantity and time. To 

deal with changing customer requirements, manufacturers can exploit their operational 

flexibility, i.e., the capability to adapt planning and production or place emphasis on the 

contractual flexibility represented by the capability to select the product portfolio or the 
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possibility proactively to obtain the advance demand information from customers. The 

authors used a two-stage stochastic program based on the newsvendor concept to quantify 

the effect of this contractual flexibility and relate it to the manufacturing flexibility 

concerning capacity allocation. The first stage occurs before the reveal-date where besides 

the demand distribution no precise information is available, and the second stage occurs 

after the reveal-date when the required amount of the product is known. To maximize the 

manufacturer’s expected profit, they combined the two-stage models into a stochastic 

mixed integer linear programming framework. Through the valuation of these flexibilities 

and a case study, the paper provides the first insights for the manufacturer about which 

customer requests to accept, how to set up the associated contracts with the customers and 

how to allocate capacity for a given portfolio of products. 

Chen et al. (2014) researched stable and coordinating contracts for a decentralized supply 

chain with a single retailer and multiple suppliers where the agents are risk-averse. CVaR 

is used as the objective function for each agent to capture the behavior of managerial 

decision making better. The Pareto optimality concept, which is equivalent to maximizing 

the sum of objectives of all agents, was used to solve supply chain optimality. They showed 

that the supply chain is coordinated only when the least risk-averse agent bears the entire 

risk and the lowest-cost supplier handles all production. Coordinating contracts allow 

flexible objective sharing among all the agents, but competition makes certain contracts 

unstable.  The concepts of contract core and contract equilibrium were introduced to study 

the stability of the coordinating contract. Contract core reflects the agents’ “bargaining 

power” and restricts the set of coordinating contracts to a subset which is “credible,” while 

contract equilibrium helps to characterize contracts that are immune to opportunistic 

renegotiation. Their research showed that the contract core concept imposes conditions on 

the share of profit among different agents, and the contract equilibrium concept imposes 

conditions on how the payment changes with the order quantity.  

Asian and Nie (2014) studied coordination in supply chains with uncertain demand and 

disruption risks using supply contracts. A supply chain problem is investigated where a 

buyer sources a short life-cycle product from two suppliers: a cheap but unreliable main 

supplier and a perfectly reliable but expensive backup supplier. The buyer wants to sign an 

option contract with the backup supplier to remedy supply and demand uncertainty. To 
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improve supply chain coordination, the option contract is reconstructed for optimization 

problems, which is modeled with the newsvendor concept. Results revealed under demand 

uncertainty and supply disruptions, the proposed mechanism led the backup supplier to 

choose an underproduction policy and provided an insight on the effectiveness of contract-

based mitigation strategies that enable firms to ensure responsive backup capacity. The 

idea of win-win coordination under demand uncertainty is analogous to our research, but 

the life-cycle and development phase in the automotive industry are quite different from 

the industry in Asian and Nie (2014). Therefore, the supply chain structures are quite 

different. 

The above contract optimization papers are not directly related to the automotive industry, 

however. We searched for further literature using the keywords “automotive supply 

chain/logistics risk management”, and found the following papers related to contracts in 

the automotive industry. 

In order to understand the buyer-supplier power and their dependence, Ghadge et al. (2017) 

developed a supply chain risk-sharing contract in a globalized business environment. The 

authors conducted an automotive case study with demand uncertainty and price volatility 

risks. The objective function is to minimize total purchase cost for the buyer and to 

maximize the commitment quantity for the supplier. To reflect the possible leverages 

involved in the decision-making, multiple buyer-supplier power and dependence scenarios 

are considered. Their risk-sharing contract model provides a relational perspective on the 

dynamics of supply chain design and collaboration which also potentially contributes a 

novel perspective on current theory in buyer-supplier power and dependence. Comparing 

with our research, their supplier’s objective function and modeling methodology are quite 

different.  

Selviaridis and Norrman (2014) studied Performance-Based Contracting (PBC) in service 

supply chains based on agency theory. The authors studied two cases of logistics service 

supply chains, one of which is in the automotive industry, and collected data through semi-

structured interviews with 30 managers of providers and sub-contractors and reviewed 35 

documents especially including contracts and target letters. The paper identified the factors 

that influence the provider’s willingness to bear the financial risk induced by PBC in 
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service supply chains. The authors’ research methodology is different from ours, as they 

focus on performance contract based on agency theory and use a qualitative method. 

Swinney and Netessine (2009) investigated the issues of contracting with suppliers prone 

to default, since it has become an increasingly common problem, particularly in automotive 

manufacturing. Game theory was applied to model a two-period contracting game with two 

identical suppliers, a single buyer, deterministic demand, and uncertain production 

costs. They found that the buyer prefers short-term contracts when a supplier’s failure is 

not possible or, on the other hand, the buyer prefers long-term contracts when a supplier’s 

failure is possible. They also found that dynamic long-term contracts allow the buyer to 

coordinate the supply chain in the presence of default risk. The authors concluded that the 

possibility of supplier default offers a new reason to prefer long-term contracts over short-

term contracts. Their research differs from our research, as they focus on contracting with 

suppliers prone to default rather than finding the buyer’s optimal order and supplier’s 

optimal production capacity under demand uncertainty.  

Yang et al. (2017) researched capacity investment strategy under cost sharing contracts for 

various industries including the automotive industry. Two capacity sharing contracts were 

proposed: the full capacity cost sharing contract (FCCSC) and the partial capacity cost 

sharing contract (PCCSC). In FCCSC, a retailer shares an agreed upon percentage of the 

capacity cost with the manufacturer. In contrast, a retailer shares capacity cost in PCCSC 

only when the manufacturer's capacity level exceeds a certain threshold. Their research 

found that the retailer would share more cost but a lower capacity in PCCSC than that in 

FCCSC. They also found the threshold of capacity level would decide the choices of 

FCCSC or PCCSC by the retailer and manufacturer, and only in a certain interval would 

both players choose the PCCSC. 

Table 4.1 summarizes our literature review on the topic of supply chain contracts. 
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TABLE 4.1  LITERATURE REVIEW SUMMARY. 

Authors Subject  
Supply Chain  
Structure 

Model  
Solution 
Approach 

Auto-
specific 

Erkoyuncu 
et al.  (2011) 

Understanding 
service  
uncertainties in 
industrial 
product–service 
system cost 
estimation 

Product–service 
system (PSS),  
service supply 
chain 

Literature review Fishbone 
diagram, 
diagrams, tables 

No 

Selviaridis 
and 
Norrman 
(2014) 

Performance-
based 
contracting in 
service supply 
chains: A service 
provider risk 
perspective 

Performance-
Based 
Contracting 
(PBC) in service 
supply chains 

Data were 
collected through 
semi-structured 
interviews with 
30 managers and 
review of 35 
documents. 

Identified the 
factors that 
influence the 
provider 
willingness to 
bear the financial 
risk induced by 
PBC 

Yes 

Ghadge et 
al. (2017) 

Using risk 
sharing contracts 
for supply chain 
risk mitigation: 
A buyer-supplier 
power and 
dependence 
perspective. 

Multiple buyer-
supplier power 
and dependence 
scenarios 

Risk sharing 
contract model.  
The objective 
function is to 
minimize total 
purchase cost for 
the buyer and 
maximize the 
commitment 
quantity for the 
supplier 

Integer 
programming 
model 

Yes 

Liu and 
Özer (2010)  

Channel 
incentives in 
sharing new 
product demand 
information and 
robust contracts 

A distribution 
channel with a 
manufacturer 
and a retailer  

Convex ordering 
and 
Newsvendor 
model. 
Expected 
channel profit in 
the centralized 
channel;  
The retailer's 
optimal order 
quantity, its 
expected profit, 
and the 
manufacturer's 
profit in the 
decentralized 
channel. 

Three widely 
used contract 
forms: price-only 
contracts, 
quantity 
flexibility 
contracts, and 
buyback 
contracts are 
analyzed in the 
decentralized 
channel. 
Mathematical 
proof, numerical 
experiments  

No 
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Kim and   
Netessine 
(2013) 

Collaborative 
cost reduction 
and component 
procurement 
under 
information 
asymmetry 

a manufacturer 
and a supplier  

Game –theoretic 
model with an 
objective 
function  
constraint 
functions 

Expected margin  
commitment 
(EMC), 
screening 
contract. 
Mathematical 
proof, 
numerical 
experiments  

No 

Swinney and 
Netessine 
(2009) 

Long-term 
contracts under 
the threat of 
supplier default 

A two-period 
contracting game 
with two 
identical 
suppliers, a 
single buyer, 
deterministic 
demand, and 
uncertain 
production costs 

Game theory; 
A benchmark 
model without 
failure; short-
term contracts, 
long-term 
contracts, and 
dynamic 
contracts under 
the threat of 
supplier default 

Mathematical 
proof. Concluded 
that the 
possibility of 
supplier default 
offers a new 
reason to prefer 
long-term 
contracts over 
short-term 
contracts  

Yes 

Reimann 
and  
Schiltknecht 
(2009)  

The  
interdependence 
of contractual 
and operational 
flexibilities in 
the market of 
specialty 
chemicals 

A manufacturer 
who can process 
multiple 
products, and 
multiple 
customers with 
different 
demands 

Two stage 
stochastic 
program based 
on the 
newsvendor 
concept. The 
objective is to 
maximize the 
expected profit 
with respect to 
the probability 
distribution of 
demands, subject 
to several 
constraints.  
Modeled 
flexibility 

The model is 
transferred to 
stochastic mixed 
integer linear 
program.  
Numerical 
analysis, 
case study 

Yes 

Chen et al. 
(2014) 

Stable and 
Coordinating 
Contracts for a 
Supply Chain 
with Multiple 
Risk-Averse 
Suppliers 

multiple 
suppliers, 
single retailer 
with uncertain 
demand. All 
agents are risk-
averse 

CVaR objective 
function  
for both retailer 
and suppliers as 
a risk measure 

Newsvendor 
Pareto optimality 
Mathematical 
proof 

No 

Asian and 
Nie (2014) 

Coordination in 
supply chains 
with uncertain 
demand and 
disruption risks: 
Existence, 
analysis, and 
insights 

A buyer who 
sources a short 
life-cycle from 
two suppliers, a 
cheap but 
unreliable main 
supplier and a 
reliable but 
expensive 
backup supplier 

Centralized 
Benchmark 
Model,  
Decentralized 
Benchmark 
Model,  
the option 
contract, 
win-win 
coordination 
mechanism 

Newsvendor,  
theorem, 
computational 
results, and 
analysis 

No 
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In summary, contracts for product development under demand uncertainty can be modeled 

using game theory, newsvendor, and stochastic theory. Supply chains include a 

manufacturer with one or more upstream members and one or more downstream members. 

The objective functions are usually to maximize the expected profit of the entire supply 

chain or separate supply chain members. Uncertain demand can be modeled by the 

probability distribution of demands with known mean and variation or known probability 

density 𝑓 and cumulative density function 𝐹 . The models can be solved by mathematical 

proof, stochastic mixed integer program, and numerical analysis in a case study. The works 

listed in Table 4.1 dealt with different kinds of supply chains and supply chain contracts in 

several industries: short-cycle product supply chains (Asian and Nie 2014), service supply 

chains (Erkoyuncu et al. 2011, Selviaridis and Norrman 2014), and supply chains in the 

chemical industry (Reimann and Schiltknecht 2009). Very few research dealt with supply 

chain contract models in the automotive industry. Swinney and Netessine (2009) studied 

long-term contracts under the threat of supplier default for auto industry supply chains, but 

this is out of the scope of our research. Limited research exists in contract modeling 

considering characteristics of the automotive industry, especially for how to decide a 

suitable production capacity of a new facility, which is a challenging problem faced by 

both the manufacturers and the suppliers. The purpose of our research is to try to fill the 

research gap to meet the demand of automotive industry supply chain risk management. 

Our research mainly focuses on contract models for new product development with 

uncertain demand in the automotive industry, to reduce the risk of over-capacity or under-

capacity and also to maximize the profits for both manufacturers and suppliers. 

Zhang (2015) formulated the first mathematical model for this problem but does not 

provide a solution nor numerical analysis. This work verifies the model, provides a solution 

approach and conducts numerical analysis. This chapter will focus on optimal production 

development for new products in the automotive industry for which the demand is 

uncertain.   
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4.3 The Model 

4.3.1 Problem Statement 

As mentioned previously, this study is motivated by a real case in the automotive industry. 

This problem also exists in many similar manufacturing situations, and can be stated as 

follows. 

Consider a two-stage supply chain that consists of one supplier and one manufacturer. 

Generally, the manufacturer forecasts the yearly demand of the new product, most of which 

is the planned order quantity, denoted as O, then shares this information with the supplier. 

Because the auto industry uses a make-to-order policy, the actual order quantity, denoted 

q, may be far different from the planned order quantity, depending on the realized demand. 

Considering the demand uncertainty, the supplier then needs to decide the capacity Q 

according to order O. As a part of the procurement contract; the manufacturer can claim  

compensation or penalty to prevent the profit loss caused by the supplier’s delivery 

shortage. 

The problem here is to determine the following two variables to reach an optimal contract 

under demand uncertainty: 

 For the supplier: the number of units the supplier can produce, i.e., the capacity of 

the part Q 

 For the manufacturer: the planned yearly order quantity O (as a reference for the 

capacity) 

4.3.2 Assumptions 

Based on the real-world problem in the auto industry, we have the following assumptions: 

 The demand for the finished product is uncertain but the distribution of the demand 

can be estimated. Our model is independent of the distribution functions. 

 The information about the demand and capacity is shared between the supplier and 

OEM. 

 The supplier needs to invest heavily to develop the production process to produce 

the component; building the facility with the designed capacity takes a long time. 
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 There is a penalty if the supplier cannot supply the amount of the component in the 

contract. 

 There is a compensation if the supplier can supply 20% above the contract amount 

if the actual demand is higher than expected (according to an automotive OEM 

supply chain expert). 

4.3.3 Model Structure and Notations 

We formulate the single period make–to-order supply chain contract consisting of a 

supplier and a manufacturer with demand uncertainty by using a Newsvendor model and 

Stackelberg game theory. The newsvendor model is a classical mathematical model in 

operations management and applied economics, used to determine optimal inventory levels 

under demand uncertainty. It is characterized by fixed prices and uncertain demand for a 

(perishable) product. We applied the newsvendor model to determine the supplier’s 

optimal capacity and the manufacturer’s optimal order. 

The Stackelberg game is a strategic game in which the leader moves first and then the 

follower moves sequentially, and they compete on quantity. The Stackelberg game can be 

applied in economics to consider the idea of a “Stackelberg equilibrium” in a duopoly 

(Stackelberg, 2011). The Stackelberg model can be solved to find the subgame perfect 

Nash equilibrium, i.e. the strategy profile that serves each player best, given the strategies 

of the other player; this means every player plays in a Nash equilibrium in every subgame. 

The Nash equilibrium is a solution concept of a non-cooperative game involving two or 

more players in which each player is assumed to know the equilibrium strategies of the 

other players, and no player has anything to gain by changing only their own strategy 

(Osborne and Rubinstein, 1994). In the Stackelberg game, backward induction is used to 

calculate the subgame perfect Nash equilibrium, i.e. we must first calculate the best 

response functions of the follower then consider the best response function of the leader 

[1][2], (Stackelberg, 2011, Fudenberg and Tirole, 1993). 

Applying the Stackelberg game to our study, the manufacturer as the leader decides yearly 

order quantity O, then the supplier as the follower determines its production capacity Q 

according to the order O. In Stackelberg games, each player makes its own decision, to 

maximize its individual profit or minimize the cost. In our model, the manufacturer’s 
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objective is to minimize the total cost related to that component that satisfies the demand, 

and the supplier tries to maximize the profit. We have these objective functions: 

 Maximize the supplier’s expected profit 

 Minimize the manufacturer’s expected cost 

For any given order from the manufacturer, the supplier has two options regarding its 

capacity: Q ≤ O, or Q > O. If the demand greatly exceeds expectations, i.e. the demand > 

1.2O and the supplier can provide this extra quantity, it receives a compensation. Thus, it 

has two sub-options for Q > O. Similarly, there are two options for Q ≤ O. The structure of 

the subgame perfect Nash equilibrium is given in Figure 4.2. 

 
Figure 4.2. The structure of the Stackelberg model for the contract 

Based on backward induction for determining the subgame perfect Nash equilibrium, we 

first calculate the supplier’s response for each of the manufacturer’s sub-options, and then 

find the best response for each option; next we compare the supplier’s response for each 

option to find the overall best response. However, it may be difficult to compare the 

performance of each option (or sub-option) because the performances depend on the 

parameters and distributions. Thus, we can compare the performances based on given 

demand distribution and given parameters.  

Notations 

The notation used in our model is shown below: 
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Parameters 

D Annual demand of the product at OEM 

cs Supplier's unit variable cost, including raw materials, purchased components, 

labour cost, variable overhead cost and transportation 

c0 Supplier’s unit fixed cost invested in equipment maintenance, supervisory costs 

and insurance and plant administration 

csb Supplier’s fixed cost for equipment at the beginning of development 

g0 Manufacturer’s unit fixed cost invested for the equipment 

gb Manufacturer’s fixed cost for equipment at the beginning of development 

p Unit price of the component the manufacturer pays to the supplier 

T Planning horizon, t =1,2, …, T, in this model T = 1 

h1 Unit compensating cost that manufacturer pays to supplier, if O >> Dt  

e1 Unit penalty that supplier pays to manufacturer, if Q < O and Dt > Q 

s1 Unit shortage cost of manufacturer if Dt > Q 

m1 Unit high production compensation M pays to S, if Q > O and Dt > 1.2O 

cm Manufacturer's unit variable cost, including labor cost and transportation 

π Supplier’s profit 

Decision Variables 

O The manufacturer's planned yearly order quantity, as a reference for the supplier's 

capacity 

Q The number of units the supplier can produce, i.e., the capacity of the component 

4.3.4 The Supplier’s Objective Function 

The objective function of the suppler is to maximize the its expected profit. For a given 

demand, the supplier’s profit can be formulated as follows: 

Supplier’s profit = min (demand, production amount) × (unit price – variable cost)  

                               – fixed cost – penalty + Compensation.  

Before formulating the model, we introduce the related revenue and each cost component. 

To simplify the written mathematics, we represent the demand D with x. Assume that the 

demand is a continuous nonnegative random variable with density function f (x) and 
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cumulative distribution function F(x). If Q ≤ x, all Q units are sold and a profit of Q(p-c) 

results. On the other hand, if Q > x, only x units are sold and a profit of x(p-c) results. 

The production cost of the supplier consists of two parts, variable cost cs and fixed cost 

𝑐 (𝑄) : cs is the supplier's unit variable cost, including raw materials, purchased 

components, labor cost, overhead cost and transportation; 𝑐 (𝑄) is the fixed cost of the 

supplier invested for the equipment, which is related to the supplier’s production capacity. 

The fixed investment cost is a yearly amount based on the total investment at the beginning 

of development. 

𝑐 (𝑄) = 𝑐 + 𝑐 × 𝑄 

Because the demand for the new product is highly uncertain, the actual demand is usually 

different from the manufacturer’s planned order quantity. The supplier’s production 

capacity depends on the manufacturer’s contracted order quantity. In practice, it is 

acceptable for the supplier if the difference between the actual demand and the contracted 

order quantity is less than 20%. However, the supplier may request some compensation 

due to investment lost if the actual demand is much lower than the contracted order quantity 

(more than 20%). The low demand compensation h(D, O, Q) is formulated as the 

following: 

ℎ(𝐷, 𝑂, 𝑄) = ℎ × (min(𝑂, 𝑄) − 𝐷 − 0.2 × min(𝑂, 𝑄)) = ℎ × (0.8 min(𝑂, 𝑄) − 𝐷)  

On the other hand, the supplier may decide to build the facility with a smaller capacity than 

the contracted order quantity from the OEM, which may result in paying the penalty e(Q, 

O) where 

𝑒(𝑄, 𝑂) = 𝑒 × (𝐷 − 𝑄)  

Thus, we have the supplier’s profit 

𝜋 = min(𝑄, 𝑥) × (𝑝 − 𝑐 ) − 𝑐 (𝑄) − 𝑒(𝑄, 𝑂) + ℎ(𝑥, 𝑂, 𝑄) 

The supplier has two options (or strategies): set the capacity less than the contracted order 

quantity, or set the capacity greater than the order quantity. Next, we will discuss the two 

cases respectively.  

Case 1:  Q < O 
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In this case, the supplier’s capacity is less than the contracted order quantity. Thus, the 

supplier has the risk of paying the penalty if the demand is more than the capacity. On the 

other hand, if the demand is far less than the capacity, the supplier will get the low demand 

compensation h(D, O, Q) from the manufacturer, which is simplified below: 

ℎ(𝐷, 𝑂, 𝑄) = ℎ × (0.8 min(𝑂, 𝑄) − 𝐷) = ℎ × (0.8𝑄 − 𝐷)  

The supplier’s expected profit can then be formulated as follows: 

𝐸(π) = ∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

− ∫ 𝑒 (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥 + ∫ ℎ (0.8𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥
.

 (4.1) 

As stated before, to calculate the subgame perfect Nash equilibrium with backward 

induction, we first calculate the follower’s (supplier’s) objective function to get their 

optimal solution, then consider the leader’s (manufacturer’s) objective function.  

To determine the value of Q that maximizes the supplier’s expected profit E(π), we apply 

Leibniz’s rule to equation (4.1) (see appendix A). We get:  

𝑑𝐸(𝜋)

𝑑𝑄
= 𝑄(𝑝 − 𝑐 )𝑓(𝑄) + (𝑝 − 𝑐 )[1 − 𝐹(𝑄)] − 𝑄(𝑝 − 𝑐 )𝑓(𝑄) − 𝑐 + 𝑒 [𝐹(𝑂) − 𝐹(𝑄)] + 0.8ℎ 𝐹(0.8𝑄)

= −(𝑝 − 𝑐 + 𝑒 )𝐹(𝑄) + 𝑝 − 𝑐 − 𝑐 + 𝑒 𝐹(𝑂) + 0.8ℎ 𝐹(0.8𝑄)

 

Setting 
( )

 = 0, we get the supplier’s optimal production capability Q* 

𝐹(𝑄∗) =
𝑝 − 𝑐 − 𝑐 + 𝑒 𝐹(𝑂) + 0.8ℎ 𝐹(0.8𝑄∗)

𝑝 − 𝑐 + 𝑒
 

 (4.2) 

To verify the solution, we check the second derivative of E(𝝿).  If  
( )

 ≤ 0, the function 

E(𝝿) has the max value in the optimal solution Q. Since   

𝑑 𝐸(𝜋)

𝑑𝑄
= −(𝑝 − 𝑐 + 𝑒 )𝑓(𝑄) + 0.64ℎ 𝑓(0.8𝑄) 

(4.3) 

It is difficult to check if the second derivative of E(𝝿) is negative at Q*. In Appendix A, 

we proved that in a uniform distribution, 
( )

 ≤ 0  is true. Thus, function (4.1) is 

concave in uniform distribution and has the max value in the optimal solution Q*. 
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It is noted that we require Q ≤ O, which is the constraint of Case 1. We will discuss the 

constraint solution later.  

To solve the manufacturer’s decision variable O, we assume the optimal solution is Q* = 

R(O). 

4.3.5 The Manufacturer’s Objective Function  

The manufacturer’s objective is to minimize the expected cost (Zhang, 2015). The 

manufacturer’s cost can be formulated as the follows. 

Manufacturer’s cost = min (Demand, production amount) × (unit price + variable cost)   

– fixed cost – penalty + Compensation + shortage cost 

                            = (p + 𝑐  ) × min(Q, x) + g(O) – e(Q, O) + h(x, O, Q) + shortage cost 

Where:  g(O) = gb + g0*O which is the manufacturer’s fixed cost. 

The manufacturer’s shortage cost is same to the supplier’s penalty cost (Nahmias, 2012, 

pp. 269), except the distribution regions are different.  

As we stated before, the supplier may have two options: Q < O or Q > O. Accordingly, the 

manufacturer also has these 2 cases. 

Case 1: Q ≤ O 

In Case 1, the supplier’s capacity is less than the contracted order quantity. If the demand 

is more than the capacity, the manufacturer may have the chance to get the penalty e(Q, O) 

from the supplier, which reduces manufacturer’s cost. On the other hand, if the demand is 

far less than the capacity, the manufacturer will pay the supplier low demand compensation 

h(D, O, Q), which increases the manufacturer’s cost. The manufacturer’s expected cost can 

be formulated as follows: 

𝐸(𝑐𝑜𝑠𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

− ∫ 𝑒 (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥 + ∫ ℎ (0.8𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥
 (4.4)  

 
Based on the Stackelberg model procedure, we substitute the supplier’s optimal solution 

Q* = R(O) to (4.4),  
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𝐸(𝑐𝑜𝑠𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥
( )

+ ∫ (𝑝 + 𝑐 )𝑅(𝑂)𝑓(𝑥)𝑑𝑥
( )

+ g + g · O

− ∫ 𝑒 (𝑥 − 𝑅(𝑂))𝑓(𝑥)𝑑𝑥
( )

+ ∫ ℎ (0.8𝑅(𝑂) − 𝑥)𝑓(𝑥)𝑑𝑥
. ( )

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥
( )

 (4.5) 

To determine the value of O that minimizes the manufacturer’s expected cost, we have 

( )
= 0 . Apply Leibniz’s rule to equation (4.5), and we get the manufacturer’s 

optimal order quantity O = O*, which is shown in Appendix B.      

𝑅′(𝑂)(𝑝 + 𝑐 + 𝑒 𝐹(𝑂) − 𝑠) + 𝑅′(𝑂) ⋅ 𝐹(𝑅(𝑂)) ⋅ (𝑠 − 𝑝 − 𝑐 − 𝑒 )

+𝑒 ⋅ 𝑓(𝑂)(𝑅(𝑂) − 𝑂) + 0.8ℎ ⋅ 𝑅′(𝑂) ⋅ 𝐹(0.8𝑅(𝑂)) + 𝑔 = 0
 (4.6)   

4.3.6 Model of Case 2 Q > O  

In Case 2, the supplier’s capacity is more than the contracted order quantity. The supplier 

does not have a risk to pay the penalty e(Q, O) even if the demand is more than the capacity, 

which means penalty e(Q, O) = 0. As it is in Case 1, if the demand is far less than the 

capacity, the manufacturer will pay the supplier low demand compensation h(D, O, Q). 

Since Q > O, low demand compensation becomes:  

ℎ(𝐷, 𝑂, 𝑄) = ℎ × (0.8 min(𝑂, 𝑄) − 𝐷 ) = ℎ × (0.8𝑂 − 𝐷_𝑡)  

On the other hand, we also need to consider high production compensation. According to 

the assumptions, there is compensation if the supplier can supply 20% above the contract 

amount when the actual demand is very high, which means when demand x > 1.2O and x 

< Q, the manufacturer will give high production compensation to the supplier. In 

emergency orders, some manufacturers pay three times more than the normal price for 

emergency orders. High production compensation can be formulated by 

𝑚(𝑂, 𝑄) = 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

 

where 𝑚  is high production compensation per unit. 

Case 2 also has two different subcases. Case 2a:  Q > 1.2O; and Case 2b:  O < Q < 1.2O. 

They are discussed separately as follows.   

 Case 2a: when Q > 1.2O 
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In this situation, the supplier’s capacity is more than the contracted order quantity by at 

least 20%. Thus the supplier may have chance to get the high production compensation, or 

m(O, Q) > 0.  

 The supplier’s objective functions for Case 2a is:  

                   
𝐸(π) = ∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

+ ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

 (4.7) 

Using the same steps in Case 1, apply Leibniz’s rule to equation (4.7), set 
( )

 = 0, we 

get the supplier’s optimal production capability Q*: (see Appendix A.)  

𝐹(𝑄∗) = 1 −
1

𝑝 − 𝑐
[𝑐 − 𝑚 (𝑄∗ − 1.2𝑂) ⋅ 𝑓(𝑄∗)] (4.8) 

Next, the second derivative is examined. (See Appendix A) 

𝑑𝐸 (π)

𝑑𝑄
= 𝑓(𝑄) ⋅ (𝑚 − 𝑝 + 𝑐 ) + 𝑚 ⋅ 𝑄 ⋅ 𝑓′(𝑄) (4.9) 

As proved in Appendix A, in uniform distribution U(a, b), and m1 satisfies m1 < p – cs = 

p (1– cs /p), we have 
( )

< 0, so E(𝝿) has the maximum value at Q*.  

 For manufacturer in Case 2a.  

If the manufacturer invests extra for more than O is assumed, manufacturer’s cost needs to 

add the item of ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥. 

𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

+ ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥 + ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

 (4.10) 

Substitute Q = R(O) to (4.10) and apply Leibniz’s rule to it to determine the value of O that 

minimizes the manufacturer’s expected profit E(cost), 

𝑑𝐸(cost)

𝑑𝑂
= (𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0.8ℎ 𝐹(0.8𝑂)

+ 𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹(1.2𝑂)

+ 𝑓(𝑅(𝑂)) ⋅ 𝑅(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔 + 1.2𝑚 )]
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set 
( )

 = 0, the optimal solution O* is obtained from  

                     
(𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0.8ℎ 𝐹(0.8𝑂)

+𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹(1.2𝑂)

+𝑓(𝑅(𝑂)) ⋅ 𝑅′(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔 + 1.2𝑚 )] = 0

 (4.11) 

( )
 will be examined later. 

 Case 2b: when O < Q ≤ 1.2O 

In this situation, supplier’s capacity is more than manufacturer’s order, but does not exceed 

20%. According to the assumption, the manufacturer will not give the high production 

compensation to the supplier. So m(O, Q) = 0. 

 The supplier’s objective function is: 

               
𝐸(π) = ∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

 (4.12) 

To determine the value of Q that maximizes the supplier’s expected profit E(π), we apply 

Leibniz’s rule to equation (4.12), and set 
( )

 = 0 the supplier’s optimal production 

capability Q* is 

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 (4.13) 

This result can also be found from (4.8) when setting m1 = 0. As shown in Appendix A, we 

always have 
( )

 < 0 in Case 2b, so E(π) has a maximum at Q*.  

From (4.13), we can see that Q* is a constant in Case 2b and it not related to O, which 

means Q ≠ R(O). R’(O) = 0. 

 The manufacturer’s objective function is: 

𝐸(𝑐𝑜𝑠𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

+ ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

 (4.14) 
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To determine the value of O that minimizes the manufacturer’s expected cost, we apply 

Leibniz’s rule to equation (4.12) and set 
( )

 = 0. But as shown in Appendix B, there 

is no O solution to satisfy 
( )

 = 0. Actually, 
( )

 > 0 in this case.  

 Mathematically, since the first derivative is always > 0, and the target function is to 

minimize the cost, the optimal solution is at the smallest O, i.e, O = 0.  For Case 2b O 

< Q ≤ 1.2O, boundary or constraint O = Q/1.2 is the smallest O.   

So the optimal solution or Case 2b is a constraint solution:  

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 (4.13) 

O* = 1/1.2 ∙ Q*        (4.17) 

This is a constraint optimization problem. We will discuss it in the next section.   

4.4 Constraint Optimization  

From above sections, the optimization solutions for subgame Case 1 Q < O and Case 2 Q 

> O are developed. In some subcases there are no optimal solutions, such as Case 2b, in 

which a boundary solution needs to be considered. In other cases, the solutions may not 

satisfy the assumptions.  The constraint optimization solutions are required to make the 

subgame perfect, since the contract mathematic model is based on some constraints, such 

as Q < O for Case 1, and Q > O for Case 2. To determine the subgame perfect equilibria, 

the backward induction method is applied to solve the constraint optimization problem [2].    

4.4.1 Case 1 Q < O 

For Case 1, we assume Q < O. For any given parameters, assuming Q* = R(O), Q* and O* 

can be calculated by the formula (4.2) and (4.6). 

where  

𝐹(𝑄∗) =
𝑝 − 𝑐 − 𝑐 + 𝑒 𝐹(𝑂) + 0.8ℎ 𝐹(0.8𝑄∗)

𝑝 − 𝑐 + 𝑒
 (4.2) 

                
𝑅′(𝑂)(𝑝 + 𝑐 + 𝑒 𝐹(𝑂) − 𝑠) + 𝑅′(𝑂) ⋅ 𝐹(𝑅(𝑂)) ⋅ (𝑠 − 𝑝 − 𝑐 − 𝑒 )

+𝑒 ⋅ 𝑓(𝑂)(𝑅(𝑂) − 𝑂) + 0.8ℎ ⋅ 𝑅′(𝑂) ⋅ 𝐹(0.8𝑅(𝑂)) + 𝑔 = 0
 (4.6)   
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Here demand distribution can be any type of distribution.  

Checking the results Q* and O, if the result is not within the constraints Q < O, the 

constraint solution is required to adjust the result.  

 If Q* > O*, let Q*= R(O) = O; which means R’(O) = 1, 

Substituting them to formula (4.6), when Q*= O, the optimal O* is obtained from (4.18) 

below: 

                  (𝑝 + 𝑐 − 𝑠) + 𝐹(𝑂) ⋅ (𝑠 − 𝑝 − 𝑐 ) + 0.8ℎ ⋅ 𝐹(0.8𝑂) + 𝑔 = 0 (4.18) 

Q*= O is the constraint solution if Q* > O in Case 1. 

4.4.2 Case 2 Q > O 

From Figure 4.2, Case 2 can be divided to 2 subcases: Case 2a Q > 1.2O, and Case 2b 

O<Q ≤ 1.2O. 

1)  For Case 2a Q > 1.2O,  

For any given parameters, assuming Q* = R(O), Q* and O*can be calculated by (4.8) and 

(4.11) below. 

𝐹(𝑄∗) = 1 −
1

𝑝 − 𝑐
[𝑐 − 𝑚 (𝑄∗ − 1.2𝑂) ⋅ 𝑓(𝑄∗)] (4.8) 

                

(𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0.8ℎ 𝐹(0.8𝑂)

+𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹(1.2𝑂)

+𝑓(𝑅(𝑂)) ⋅ 𝑅′(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔 + 1.2𝑚 )] = 0

 (4.11) 

Here the type of demand distribution is not specialized, which can be a uniform distribution 

or a normal distribution.  

The results Q* and O need to be checked to see if the result is within the constraints Q > 

1.2O or not. If not, the solutions need to be adjusted to meet the constraints. That means: 

 If Q* > 1.2O*, Q* is a solution from formula (4.8) and (4.11). 

 If Q* < 1.2O* from (4.11), we take Q*= 1.2O+1 since it is concave, so formula (4.8) 

and (4.11) is till the solution.   

2)  For Case 2b O<Q ≤ 1.2O,   
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In this situation, 𝑚(𝑂, 𝑄) = 0, supplier’s expected profit becomes 

𝐸(𝜋) = ∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

 (4.12) 

The supplier’s optimal solution from (4.12) is  

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 (4.13) 

Q* is not related to manufacturer’s production order, or Q*≠R(O). On the other hand, 

according to (4.16), the manufacturer’s objective function has no valid solution. The 

constraints are considered for the solution.  

 Constraint solution is: (from Q* to O) 

                      𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 

  O = 1/1.2 ∙ Q*     

Based on the constraint solution, the profit of the supplier and cost to the manufacturer can 

be calculated. The final solution can be determined by comparing the subcase results to get 

the subgame perfect equilibria. Table 4.2 summarized supplier’s profit model E(𝝿), 

manufacturer’s cost model E(cost), Leibniz’s rule application, and constraint optimization 

solution for Case 1 and Case 2 and their subcases. 

TABLE 4.2 SUMMARY OF SUPPLIER’S PROFIT, MANUFACTURER’S COST, LEIBNIZ’S RULE APPLICATION, AND 

CONSTRAINT OPTIMIZATION SOLUTION FOR CASE 1 AND CASE 2 AND THEIR SUBCASES. 

 Case 1: Assume Q ≤ O 

 

S. E(π) 
      

∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

− ∫ 𝑒 (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥 + ∫ ℎ (0.8𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥
.

                             (4.1)                            

 

M.E(cost) 
   

∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

− ∫ 𝑒 (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥 + ∫ ℎ (0.8𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥
                

(4.4)                                          
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Leibniz's 

( )
 = 0 

𝐹(𝑄∗) =
𝑝 − 𝑐 − 𝑐 + 𝑒 𝐹(𝑂) + 0.8ℎ 𝐹(0.8𝑄∗)

𝑝 − 𝑐 + 𝑒
 

(4.2) 

Q =R(O) 

Leibniz's 

( )
 = 0 

𝑅′(𝑂)(𝑝 + 𝑐 + 𝑒 𝐹(𝑂) − 𝑠) + 𝑅′(𝑂) ⋅ 𝐹(𝑅(𝑂)) ⋅ (𝑠 − 𝑝 − 𝑐 − 𝑒 )

+𝑒 ⋅ 𝑓(𝑂)(𝑅(𝑂) − 𝑂) + 0.8ℎ ⋅ 𝑅′(𝑂) ⋅ 𝐹(0.8𝑅(𝑂)) + 𝑔 = 0
                                                        

                                                                                                      (4.6)                                               

Case 1 

Optimal   

Solution 

 

If Q ≤ O  Q* form (4.2), O* from (4.6) 

Case 1 

Constraint 

Solution 

If Q* > O, let Q*= R(O) = O* 

                                                                                                                                 (4.18) 

 

 Case 2: Assume Q > O 

 Case 2a：Q ＞ 1.2 O 

 

𝑚(𝑂, 𝑄) ≠ 0  

Case 2b：O < Q ≤1.2 O 

𝑚(𝑂, 𝑄) = 0  

S.  

E(π) 

∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥

+ ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

+ ∫ ℎ (0.8𝑂
.

(4.7) 

∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 −

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

(4.12) 

 

M. 

E(cost) 

∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥

+ ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥 + ∫ 𝑚 (𝑥 − 1.2𝑂)
.

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)

(4.10) 

∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥

+ ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓

                                                     (4.14) 

Leibniz's 

( )
 = 0  

𝐹(𝑄∗) = 1 − [𝑐 − 𝑚 (𝑄∗ −

1.2𝑂) 𝑓(𝑄∗)]                                                                            

                (4.8)                                           

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 

                         (4.13) 
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Q =R(O) 

Leibniz's 

𝑑𝐸(cos𝑡)

𝑑𝑂
= 0 

(𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0

+𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹

+𝑓(𝑅(𝑂)) ⋅ 𝑅′(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔

                                                (4.11) 

𝑑𝐸(cos𝑡)

𝑑𝑂

= 𝑔 + 0.8ℎ 𝐹(0.8𝑂) + 𝑔 𝐹(𝑂)

− 𝑔 𝐹(𝑄) > 0 

Q ≠ R(O). No valid solution.  

Need to calculate constraint solutions. 

Case 2 

Optimal  

Solution 

Q* is from (4.8) and O* is from (4.11). 

If Q* >1.2O, this is the solution 

 

If O < Q*≤ 1.2O 

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 

O*= 1/1.2∙ Q* 

Case 2 

Constrain 

Solution  

If Q* < 1.2O, let Q* = 1.2O+1,  

O* is from (4.11). 

calculate the objectives  

Since the boundary constrains are always 

satisfied, no need to calculate boundary 

conditions 

  

4.5 Remarks 

It is common that the demand for any newly developed products is highly uncertain. How 

to reduce the uncertain demand risk faced by both the manufacturer and the supplier is a 

challenging problem. This research investigates the new product development in the 

automotive industry and designs a contract to reduce the risk. We developed the models to 

determine the manufacturer’s order quantity and the supplier’s planned production capacity 

so that both the supplier and the manufacturer can reach the optimal decisions in terms of 

supplier’s maximum profit and manufacturer’s minimum cost while taking into account 

the risk of market uncertainty. 

The Newsvendor model and Stackelberg game theory are applied to formulate the 

supplier’s profit and the manufacturer’s cost objective function.  The models are based on 

a single supplier, a single manufacturer, and a single period. Two cases are considered, 

Case 1 Q ≤ O, and Case 2 Q > O, which are described with Nash subgame perfect 

equilibrium. 

Our model shows that: 

 Case 2 can be divided to 2 subcases: Case 2a Q > 1.2O, and Case 2b O < Q ≤ 1.2O.  
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 Each case has its mathematical model, which is a constraint optimal problem. The 

constraint solution needs to be considered if the solution conflicts with the assumption. 

The final solution can be determined by comparing the subcase results to get the subgame 

perfect equilibria. 

4.6 Appendix 

Appendix A 

Supplier’s objective function:  

Case 1: Q < O 

Supplier’s objective function is to maximize its expected profit. The supplier’s expected 

profit can be expressed by 

                  
𝐸(π) = ∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

− ∫ 𝑒 (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥 + ∫ ℎ (0.8𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥
.  (4.1) 

Apply Leibniz’s rule (Nahmias, S. 2009) to equation (1) to determine the derivative of 

( )
. 

set 
( )

 = 0. We get the supplier’s optimal production capability Q* 

                  𝐹(𝑄∗) =
𝑝 − 𝑐 − 𝑐 + 𝑒 𝐹(𝑂) + 0.8ℎ 𝐹(0.8𝑄∗)

𝑝 − 𝑐 + 𝑒
 

 (4.2) 

Check if the second derivative is negative to ensure that the total expected profit is 

maximized at Q*.  

                
𝑑 𝐸(𝜋)

𝑑𝑄
= −(𝑝 − 𝑐 + 𝑒 )𝑓(𝑄) + 0.64ℎ 𝑓(0.8𝑄) 

(4.3) 

It is difficult to check if  
( )

  ≤ 0, or (4.3) < 0. For uniform distribution,  
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𝑓(𝑥) =  = f(Q) = f(0.8Q), so (4.3) becomes: 

𝑑 𝐸(𝜋)

𝑑𝑄
= [−(𝑝 − 𝑐 + 𝑒 ) + 0.64ℎ ]

1

(𝑏 − 𝑎)
 

Since  ≥ 0, considering real parameters value, we have  

−(𝑝 − 𝑐 + 𝑒 ) ≪ 0  Or: −(𝑝 − 𝑐 + 𝑒 ) ≪ 0.64ℎ , which results 
( )

 ≤ 0. It means 

function E(𝝿) is a concave function in a uniform distribution, and  has the max value in the 

optimal solution Q*.  

Case 2: Q > O (include Case 2a: Q > 1.2O and Case 2b:  O < Q < 1.2O) 

Case 2a: when Q > 1.2O, m(O, Q) > 0.   

               
𝐸(π) = ∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

+ ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

 (4.7) 

To determine the value of Q that maximizes the supplier’s expected profit E(π), we apply 

Leibniz’s rule (Nahmias, S. 2009) to equation (4.7) to determine the derivative of 
( )

. 

               
𝑑𝐸(π)

𝑑𝑄
= (𝑝 − 𝑐 )[1 − 𝐹(𝑄)] − 𝑐 + 𝑚 (𝑄 − 1.2𝑂) ⋅ 𝑓(𝑄) 

Set 
( )

 = 0, we get the supplier’s optimal production capability Q* 

                (𝑝 − 𝑐 )[1 − 𝐹(𝑄)] − 𝑐 + 𝑚 (𝑄 − 1.2𝑂) ⋅ 𝑓(𝑄) = 0 (4.8) 

Next, the second derivative is examined.  

               

𝑑𝐸 (π)

𝑑𝑄
= −(𝑝 − 𝑐 ) ⋅ 𝐹′(𝑄) + 𝑚 ⋅ 𝑓(𝑄) + 𝑚 ⋅ 𝑄 ⋅ 𝑓′(𝑄)

= − (𝑝 − 𝑐 ) ⋅ 𝑓(𝑄) + 𝑚 ⋅ 𝑓(𝑄) + 𝑚 ⋅ 𝑄 ⋅ 𝑓′(𝑄)

=𝑓(𝑄) ⋅ (𝑚 − 𝑝 + 𝑐 ) ⋅ +𝑚 ⋅ 𝑄 ⋅ 𝑓′(𝑄)

 

             
𝑑𝐸 (π)

𝑑𝑄
= 𝑓(𝑄) ⋅ (𝑚 − 𝑝 + 𝑐 ) + 𝑚 ⋅ 𝑄 ⋅ 𝑓 (𝑄) (4.9) 

For uniform distribution U(a, b),  
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                𝑓(𝑥) =
1

𝑏 − 𝑎
,                𝑓′(𝑥) = 0 

                
𝑑𝐸 (π)

𝑑𝑄
=

1

𝑏 − 𝑎
⋅ (𝑚 − 𝑝 + 𝑐 ) 

Since the denominator > 0, we need to analyze nominator.  Only if nominator (m1 + cs – p)  

< 0,  or m1 < p – cs ,  E(𝝿) has the maximum value at Q*, or E(𝝿) is a convex function is 

this situation.  

If m1 > p – cs, E(𝝿) has the minimum value at Q* which is not our objective.  

eg 1: If p = 9300, cs = 6000, m1 < p – cs = 9300 – 6000 = p – 0.645p = 0.355p. 

eg 2: If p = 9300, cs = 8000, m1 < p – cs =  p (1 – cs/p) = p (1– 0.86) = 0.14p. 

So choose m1 = p , 2p, or m1 > p (1 – cs/p)  are not valid, which results 
( )

 > 0.                   

E(π) becomes minimum at Q*.   

Case 2b: O < Q < 1.2 O  

The manufacturer will not give the supplier with high production compensation. So 

m(O, Q) = 0 

𝐸(π) = ∫ 𝑥(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 + ∫ 𝑄(𝑝 − 𝑐 )𝑓(𝑥)𝑑𝑥 − 𝑐 (𝑄)

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

                         (4.12)                        

Apply Leibniz’s rule (Nahmias, S. 2009) to equation (4.12) to determine the derivative of 

( )
. Set  

( )
 = 0 

We get the supplier’s optimal production capability Q* 

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 (4.13) 

This result can also be found from (4.8) when setting m1 = 0.  

To examine the second derivative of (4.12), we just simply substitute m1 = 0 to (4.9) 
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𝑑𝐸 (𝜋)

𝑑𝑄
= 𝑓(𝑄) ⋅ (𝑚 − 𝑝 + 𝑐 ) + 𝑚 ⋅ 𝑄 ⋅ 𝑓 (𝑄) = 𝑓(𝑄) ⋅ (−𝑝 + 𝑐 ) 

Since p > cs, we always have 
( )

 < 0, which proves that function (4.12) is a concave 

function, and E(π) has a maximum at Q*. The formula means Q*≠ R(O*). 

Appendix B 

Manufacturer’s cost function:  

Case 1: Q < O 

𝐸(cos𝑡) = (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂) − 𝑒 (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

+ ℎ (0.8𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

 

 (4.4) 

Assume: Q = R(O) 

𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥
( )

+ ∫ (𝑝 + 𝑐 )𝑅(𝑂)𝑓(𝑥)𝑑𝑥
( )

+ g + g ∗ O

− ∫ 𝑒 (𝑥 − 𝑅(𝑂))𝑓(𝑥)𝑑𝑥
( )

+ ∫ ℎ (0.8𝑅(𝑂) − 𝑥)𝑓(𝑥)𝑑𝑥
. ( )

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥
( )

  

 (4.5) 

Apply Leibniz’s rule (Nahmias, S. 2009) to equation (4.5) to calculate 
( )

.  

𝑑𝐸(cost)

𝑑𝑂
=

𝑑VI

𝑑𝑂
+

𝑑VII

𝑑𝑂
+

𝑑VIII

𝑑𝑂
+

𝑑IX

𝑑𝑂
+

𝑑X

𝑑𝑂
+

𝑑XI

𝑑𝑂

= ))(()(')()c +( m ORfORORp  + (𝑝 + mc ) ⋅ 𝑅 (𝑂) 1 − 𝐹 𝑅(𝑂) − (𝑝

+ mc )𝑅 (𝑂) ⋅ 𝑅(𝑂) ⋅ 𝑓 𝑅(𝑂) + 𝑔 + 𝑒 𝑅 (𝑂) 𝐹(𝑂) − 𝐹 𝑅(𝑂) − 𝑒 𝑂𝑓(𝑂)

+ 𝑒 𝑅(𝑂)𝑓(𝑂) + 0.8ℎ 𝑅 (𝑂)𝐹 0.8𝑅(𝑂) + 𝑠𝑅′(𝑂) 𝐹 𝑅(𝑂) − 1  

𝑑𝐸(cost)

𝑑𝑂
= 𝑅 (𝑂) 𝑝 + mc + 𝑒 𝐹(𝑂) − 𝑠 + 𝑅 (𝑂) ⋅ 𝐹 𝑅(𝑂) 𝑠 − 𝑝 − mc − 𝑒  

+𝑒 ⋅ 𝑓(𝑂)(𝑅(𝑂) − 𝑂) + 0.8 ⋅ ℎ ⋅ 𝑅 (𝑂) ⋅ 𝐹 0.8 ⋅ 𝑅(𝑂) + 0g  
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Set 
( )

 = 0, we have  

𝑅′(𝑂)(𝑝 + 𝑐 + 𝑒 𝐹(𝑂) − 𝑠) + 𝑅′(𝑂) ⋅ 𝐹(𝑅(𝑂)) ⋅ (𝑠 − 𝑝 − 𝑐 − 𝑒 )

+𝑒 ⋅ 𝑓(𝑂)(𝑅(𝑂) − 𝑂) + 0.8ℎ ⋅ 𝑅′(𝑂) ⋅ 𝐹(0.8𝑅(𝑂)) + 𝑔 = 0
   (4.6) 

Check if the second derivative of E(cost) is positive to ensure that the total expected cost 

is minimized at O*.  

It is too difficult to calculate 
( )

 in general form. We will discuss it in uniform 

distribution later.   

Case 2:  Q > O 

Since penalty = 0, we have ∫ 𝑒 (𝑥 − 𝑅(𝑂))𝑓(𝑥)𝑑𝑥
( )

=0.      

 Case 2a: when Q > 1.2O, add m(O, Q) and g(O, Q) 

𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

+ ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥 + ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

 (4.10) 

But add 2 new items:        ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

  and  ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥   

Substitute Q = R(O),  

𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥
( )

+ ∫ (𝑝 + 𝑐 )𝑅(𝑂)𝑓(𝑥)𝑑𝑥
( )

+ 𝑔(𝑂) + ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
( )

.

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑅(𝑂))𝑓(𝑥)𝑑𝑥
( )

+ ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥
( )

 (4.10’) 

Set 
( )

 = 0, we have  

                 
𝑑𝐸(cos𝑡)

𝑑𝑂
= (𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0.8ℎ 𝐹(0.8𝑂)

                  + 𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹(1.2𝑂)

                  + 𝑓(𝑅(𝑂)) ⋅ 𝑅′(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔 + 1.2𝑚 )]

 

 (4.11) 
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Next step is to check if the second derivative of E(cost) of Case 2a is positive to ensure that 

the total expected cost is minimized at O*. However, it is very difficult to calculate 

( )
 in general form. We will discuss it in uniform distribution later. 

 Case 2b: O < Q < 1.2O.  

m(O, Q) = 0.  

                 𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

                        + ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥

                + ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

 (4.14) 

To determine the value of O that minimizes the manufacturer’s expected profit E(cost), use 

( )
 = 0 

Case 2b can be considered as a special case of Case 2a, (4.14) can be solved by setting 

m(O, Q) = 0, Q ≠ R(O). R’(O) = 0 in (4.11) , we get:  

              
𝑑𝐸(cos𝑡)

𝑑𝑂
= 𝑔 + 0.8ℎ 𝐹(0.8𝑂) + 𝑔 𝐹(𝑂) − 𝑔 𝐹(𝑄)  (4.15) 

Set 
( )

 = 0 

                   𝑔 + 0.8ℎ 𝐹(0.8𝑂) + 𝑔 𝐹(𝑂) − 𝑔 𝐹(𝑄) = 0 

                  0.8ℎ 𝐹(0.8𝑂) + 𝑔 𝐹(𝑂) = −𝑔 (1 − 𝐹(𝑄))        (4.16) 

Analysis: 

Since F(Q) ≤ 1, the right side of the equation  (4.16) is ≤ 0, i.e., RS = −𝑔 (1 − 𝐹(𝑄))≤ 0. 

But the left side of the equation (4.16) is ≥ 0, i.e. LS = 0.8ℎ 𝐹(0.8𝑂) + 𝑔 𝐹(𝑂)≥ 0.  So 

there is no O solution to satisfy 
( )

 = 0 . Actually, 
( )

 > 0  in this case. 

Mathematically, since the first derivative is always > 0, and the target function is to 

minimize the cost, the optimal solution is at the smallest O, i.e, O = 0.  This is a constraint 

optimization problem, constraint Q=1.2O needs to be considered to solve the problem. 

Then the optimal O* > 1/1.2∙ Q*. 
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So the constraint solution 1 for Case 2b is:  

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 (4.13) 

                       O* = 1/1.2∙ Q*                                                                                     (4.17)                                                                           

For example, substituting the parameter values (c0 = 500, p = 9300, cs = 8000) to the 

formula (4.8) and (4.17), then F(Q*) = 1 - 500/(9300 – 8000) = 0.6154.  

 For normal distribution N(7500, 2166.672), Q* = 8136 from the inverse of F(Q*) = 

0.6154. So the optimal solution O* = 0.833Q* = 6780.  

 For uniform distribution U(1000, 14000), 𝐹(𝑄) = , then Q = F(Q) (b-a) + a. 

      Since Q* = 9000, the optimal solution O* = 1/1.2∙ Q* = 7500.  

  



87 
 

CHAPTER 5 

THE SOLUTION FOR THE UNIFORM DISTRIBUTION CASE AND  

NUMERICAL EXPERIMENT 

5.1 Introduction 

In Chapter 4, we developed a new product optimal contract model. It is assumed that the 

demand for new products is uncertain in the coming years, but the distribution can be 

estimated. The solution of the model is independent of the distribution functions. Based on 

the discussion of the optimal contract models and solutions in the last chapter, we will 

provide the solution with the uniform demand distribution and conduct some numerical 

experiments in this chapter. Uniform distribution is a simplest stochastic distribution with 

equal probability density function (pdf), and the closed form solution can be obtained in 

real-world application.  In the new product development cases, the demand distribution of 

new products is unknown. The pdf of new product demand can be assumed equally and 

uniformly distributed within a certain range. Other stochastic demand distribution, such as 

normal distribution, requires the historical data to calculate the variance about the mean.  

Based on a real automotive supply chain case, the numerical experiments are also 

conducted to study the behavior and performance of the proposed model under the uniform 

distribution in this chapter. Also, some parameter sensitivity analyses are performed in 

order to obtain the managerial insights into the contract model.  

The remainder of this chapter is organized as follows: in Section 5.2, the uniform 

distribution background is introduced; Section 5.3 provides the contract model solution for 

the uniform distribution; the constraint solution is discussed in Section 5.4; Section 5.5 

illustrates a numerical experiment to get the subgame perfect optimal solution. The 

sensitive analyses on varying several parameters are conducted in Section 5.6. Finally, the 

remarks including a summary of the main results and some future work direction are given 

in Section 5.7. Proofs of all propositions appear in Appendix 5.8. 

5.2 Uniform Distribution  

For uniform distribution, its probability density function (pdf) is:  

  𝑓(𝑥) =
0
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The cumulative distribution function (CDF) is: 

  𝑓(𝑥) =

0 𝑓𝑜𝑟 𝑥 < 0

𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

1 𝑓𝑜𝑟 𝑥 ≥ 𝑏

 

For uniform distribution of demand x, assume: 𝑎 ≤ 𝑥 ≤ 𝑏, its pdf is shown in the Figure 

5.1.  

 

Figure 5.1. Uniform distribution of the demand. (Source: [4]) 

5.3 Solution for Uniform Distribution 

As shown in Figure 5.2, there are two calculation methods to solve the contract model in 

uniform distribution. The method I applies Leibniz’s rule to supplier’s profit function E(𝝿). 

By setting the derivative 
( )

 = 0, the supplier’s optimal production capability Q* can 

be expressed as a function of the manufacturer’s order quantity O, i.e. Q* = R(O). For 

uniform distribution, assume Q* = R(O) = α + βO. Substituting Q* = α + βO to 

manufacturer’s cost function E(cost), and setting 
( )

 = 0, the manufacturer’s optimal 

order O* can be found, and Q* can be calculated. Substituting O* and Q* to the integrals 

of E(𝝿) and E(cost), E*(𝝿) and E*(cost) can be obtained by conducting an integral 

operation. 

In Method II, the first step is to take the integral operation for E(𝝿) and E(cost), and they 

can be expressed in algebra functions. The second step is to take the derivatives 
( )

 =

0 and 
( )

 = 0. Then Q* and O* are obtained. The optimal solutions Q* and O* can 
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be verified by checking the secondary derivatives if 
( )

 ≤ 0 and 
( )

≥ 0. Then 

E*(𝝿) and E*(cost) can be calculated form the algebra functions. 

Both methods have the same results. Note that Method II has the benefit to express 

objective function E(π) and E(cost) as an algebra function of the variables. Therefore they 

can be easily calculated and analyzed. Also it has the benefit to calculate the second order 

derivative to prove whether the objective function is a concave or convex function. (See 

Appendix A for details).  

Two methods can be summarized in the flowchart as shown in Figure 5.2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. The flow chart of two methods 

In the rest of this chapter, we will discuss the solutions of Case 1 and Case 2 in uniform 

distribution separately.  

 For Case 1: Q < O, 

Based on (4.2),  

𝐹(𝑄∗) =
𝑝 − 𝑐 − 𝑐 + 𝑒 𝐹(𝑂) + 0.8ℎ 𝐹(0.8𝑄∗)

𝑝 − 𝑐 + 𝑒
 

Supplier’s objective function E(π) 

Substitute Q*=R(O) to E(cost).  
Set 

( )
 = 0 to find O* 

Method I Method II 

Apply Leibniz’s rule to E(π).  
Set 

( )
 = 0 to find Q*=R(O)=α+βO  

Substitute O*, Q* to E(π), E(cost) 
integral 

Integral to E(π), E(cost) into algebra 
functions 

( )
 = 0 to find Q*, test 

( ) 
( )

 = 0 to find O*, test 
( ) 

Calculate algebra E(π), E(cost) 

Same results 
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From uniform distribution, for 𝑎 ≤ 𝑄 < 𝑏, 𝑎 ≤ 𝑂 < 𝑏,  

𝐹(𝑄∗) =
𝑄∗ − 𝑎

𝑏 − 𝑎
,         𝐹(0.8𝑄∗) =

0.8𝑄∗ − 𝑎

𝑏 − 𝑎
,        𝐹(𝑂) =

𝑂 − 𝑎

𝑏 − 𝑎
      

The solution of (4.2) is:  

𝑄∗ =
(𝑝 − 𝑐 − 𝑐 )𝑏 + (𝑐 − 0.8ℎ )𝑎 + 𝑒 𝑂

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
= 𝛼 + 𝛽𝑂

= 𝑅(𝑂) 

(5.1) 

Where  

𝛼 =
(𝑝 − 𝑐 − 𝑐 )𝑏 + (𝑐 − 0.8ℎ )𝑎

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 (5.2) 

    𝛽 =
𝑒

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 (5.3) 

Q* is the supplier’s optimal production capability.  

Based on (4.6), (consider manufacturer’s shortage cost) 

𝑅′(𝑂)(𝑝 + 𝑐 + 𝑒 𝐹(𝑂) − 𝑠) + 𝑅′(𝑂) ⋅ 𝐹(𝑅(𝑂)) ⋅ (𝑠 − 𝑝 − 𝑐 − 𝑒 )

+𝑒 ⋅ 𝑓(𝑂)(𝑅(𝑂) − 𝑂) + 0.8ℎ ⋅ 𝑅′(𝑂) ⋅ 𝐹(0.8𝑅(𝑂)) + 𝑔 = 0
   (4.6) 

For uniform distribution a ≤ x < b, from (5.1),  

𝑄∗ = 𝑅(𝑂) = α + β𝑂,  𝑅′(𝑂) = β,  

Also from a uniform distribution, 

𝑓(𝑂) =
1

𝑏 − 𝑎
,   𝐹(𝑂) =

𝑂 − 𝑎

𝑏 − 𝑎
,   𝐹 𝑅(𝑂) =

𝑅(𝑂) − 𝑎

𝑏 − 𝑎
,    

𝐹(0.8𝑅(𝑂)) =
0.8𝑅(𝑂) − 𝑎

𝑏 − 𝑎
        

Substituting them to (4.6), the solution O* is:  

𝑂∗ =
𝛼𝛽(𝑝 + 𝑐 + 𝑒 − 𝑠 − 0.64ℎ ) − 𝑒 𝛼 + (0.8ℎ 𝑎 + 𝑠𝑏 − 𝑝𝑏 − 𝑏𝑐 )𝛽 − 𝑔 (𝑏 − 𝑎)

(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ )𝛽 + 2𝑒 𝛽 − 𝑒
 

      (5.4) 
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Apply Method II in Figure 5.2, we can prove 
( )

 > 0 at O*, which means 

manufacturer’s expected cost is the minimum at O*. So O* is the manufacturer’s optimal 

order in Case 1. 

 For Case 2: Q > O, based on (4.8), 

𝐹(𝑄∗) = 1 −
1

𝑝 − 𝑐
[𝑐 − 𝑚 (𝑄∗ − 1.2𝑂) ⋅ 𝑓(𝑄∗)] 

From uniform distribution, substituting  𝐹(𝑄) =  and 𝑓(𝑄) =  to (4.8), the solution 

is 

𝑄∗ =
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝) + 1.2𝑚 𝑂

𝑐 − 𝑝 + 𝑚
= 𝜁 + 𝜂𝑂 = 𝑅(𝑂) (5.5) 

where   

𝜁 =
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

𝑐 − 𝑝 + 𝑚
 (5.6) 

𝜂 =
1.2𝑚

𝑐 − 𝑝 + 𝑚
 (5.7) 

Based on (4.11),  

                     

(𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0.8ℎ 𝐹(0.8𝑂)

+𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹(1.2𝑂)

+𝑓(𝑅(𝑂)) ⋅ 𝑅′(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔 + 1.2𝑚 )] = 0

                  

For uniform distribution a ≤ x < b, from (5-5), Q* can be found: 

𝑄∗ = 𝑅(𝑂) = ζ + η𝑂,     𝑅′(𝑂) = η,  

Also from a uniform distribution, we have:   

𝑓(𝑂) =
1

𝑏 − 𝑎
, 𝑓 𝑅(𝑂) =

1

𝑏 − 𝑎
, 𝐹(𝑂) =

𝑂 − 𝑎

𝑏 − 𝑎
, 𝐹(1.2𝑂) =

1.2𝑂 − 𝑎

𝑏 − 𝑎
, 

𝐹(0.8𝑂) =
0.8𝑂 − 𝑎

𝑏 − 𝑎
, 𝐹 𝑅(𝑂) =

𝑅(𝑂) − 𝑎

𝑏 − 𝑎
, 𝐹(0.8𝑅(𝑂)) =

0.8𝑅(𝑂) − 𝑎

𝑏 − 𝑎
 

Substituting them to (4.11), the optimal solution for O is: 
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𝑂∗ =
𝜁[𝜂(𝑝 + 𝑐 − 𝑠 − 𝑔 − 𝑚 ) + 𝑔 + 1.2𝑚 ] − (𝑝 + 𝑐 − 𝑠)𝜂𝑏 − 𝑔 (𝑏 − 𝑎) + 0.8ℎ 𝑎

𝜂 (𝑠 − 𝑝 − 𝑐 + 𝑔 + 𝑚 ) − 2𝜂(𝑔 + 1.2𝑚 ) + 𝑔 + 0.64ℎ + 1.44𝑚
 

(5.8) 

where O* is the manufacturer’s optimal order.  

Apply method II in Figure 5.2; we can prove that 
( )

 > 0, so E(cost) is convex 

function and has the minimum value at O* in Case 2 with a uniform distribution (See 

Appendix A).  

From the study above, we can see that in uniform demand distribution, the closed form 

solutions of optimal O*, Q*, E(𝝿) and E(cost) can be found. The summary of solutions for 

both Case 1 and Case 2 in uniform demand distribution is given in Tables 5.1.  

5.4 Constraint Solution in Uniform Distribution 

As we explained in Chapter 4, Case 1 is for Q ≤ O; and Case 2 is for Q > O, which consists 

of subgame Case 2a with Q > 1.2O, and Case 2b with O < Q ≤ 1.2O. The solutions of 

subgame need to be checked to see if they are within the constraints. If not, the solutions 

need to be adjusted. In order to find the constraint optimization solution, the formulas of 

uniform distribution is substituted into the equations in Table 4.2. The details are shown in 

Appendix B.  

Case 1, Case 2, their subcases, and the constraint solutions are summarized below.  

 Case 1 Q* ≤ O*,  

Q*, O* is calculated from formula (5.1) ~ (5.4).  

1) Case 1 constraint: If Q* > O*, let Q*= R(O) = O; which is defined as Case 1c.  

After getting the optimal solution O*, Q*, the supplier objective function E(π)(O, Q) can 

be  calculated by the formula (5.14), and the manufacturer objective function E(cost)(O, 

Q) can be calculated by the formula (5.12) for all Case 1.  

 Case 2 Q* > O* 

1) Case 2a: Q* > 1.2O, Q*, O* is calculated from formula (5.5) ~ (5.8).  

2) Case 2b: O < Q ≤ 1.2O 
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𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 (4.13) 

In a uniform distribution, (4.13) becomes 

𝑄∗ = (1 −
𝑐

𝑝 − 𝑐
)(𝑏 − 𝑎) + 𝑎 (5.11) 

𝑂∗ = 1/1.2 ⋅ 𝑄∗ (4.17) 

3) Case 2a constraint: If the result Q* < 1.2O, let Q* = 1.2O +1, which is defined as Case 

2c. 

After getting the optimal solution O*, Q*, formula (5.15) is used to calculate the supplier 

objective function E(π)(O, Q), and formula (5.13) is used to calculate manufacturer 

objective function E(cost)(O, Q) for all Case 2.  

Table 5.1 and Table 5.2 summarize the optimal solutions, constraint solutions, and 

objective functions for Case 1, subcase Case 1c, Case 2, subcase Case 2a, Case 2b, and 

Case 2c in uniform distribution respectively.  

TABLE 5.1 SUMMARY OF THE OPTIMAL SOLUTIONS AND CONSTRAINT SOLUTIONS, AND OBJECTIVE 

FUNCTIONS FOR CASE 1 AND THEIR SUBCASES IN A UNIFORM DISTRIBUTION.  

 Case 1: Assume Q ≤ O 

 Case 1：Assume Q < O 

 

Case 1 constraint: Case 1c  

If Q> O, let Q = O 

Uniform 

Distribution 

U(a, b) 

Optimal 

Solution 

𝑄∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂               (5.1)       𝑄∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂, e1 = 0 

𝛼 =
(𝑝 − 𝑐 − 𝑐 )𝑏 + (𝑐 − 0.8ℎ )𝑎

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 

                                                    (5.2) 

 

                              α = 1 

𝛽 =
𝑒

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 

                                                    (5.3) 

 

                         β = 0 

 

O* 

 

1 1 1 1 0
2

1 1 1 1

( 0.64 ) (0.8 ) ( )

( 0.64 ) 2
m m

m

p c e s h e ha sb pb bc g b a

s p c e h e e

  
 

          
     

        

(5.4) 

                                                  

 

                                                      (5.10) 
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        Q*       𝑄∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂 𝑄∗ = O∗ 

 

Supplier 

Objective 

Function  

E(π)(O,Q) 

                                                                       

  

                    

                                                  

 (5.14) 

 

 

 

 

                                                     (5.16)    

Or (5.14) when Q*= O*, e1 = 0 

 

Manufacturer 

Objective 

Function 

E(cost)(O,Q) 

 

 

                                                                                                                      

 

(5.12) 

 

 

 

                                              

                                                     (5.17) 

Or (5.12) when Q*= O*, e1 = 0 

 

TABLE 5.2  SUMMARY OF THE OPTIMAL SOLUTIONS AND CONSTRAINT SOLUTIONS, AND OBJECTIVE 

FUNCTIONS FOR CASE 2 AND THEIR SUBCASES IN A UNIFORM DISTRIBUTION.  

 Case 2: Assume Q > O 

 Case 2a: Q >1.2 O Case 2b: O < Q ≤ 1.2O, m1 = 0 

 

Uniform 

Distribution 

Optimal 

Solution 

          𝑄∗ = 𝑅(𝑂) = 𝜁 + 𝜂𝑂              (5.5) 

                                                            

Q*≠ R(O)                      

𝐹(𝑄∗) = 1 −                (4.13) 

𝜁 =
( ) ( )

                           (5.6)                    𝜁 = 0           

 

𝜂 =
.

                                    (5.7) 

 

                      𝜂 = 1.2 

O* 

 

                                                         (5.8) 

 

 

let     O*= 1/1.2∙ Q* 
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        Q*          𝑄∗ = 𝑅(𝑂) = 𝜁 + 𝜂𝑂               (5.5) 𝑄∗ = (1 − )(𝑏 − 𝑎) + 𝑎 = Q2b 

                                                   (5.11)                   

Supplier 

Objective 

Function  

E(π)(O, Q) 

                                              

 

   

 (5.15) 

 

 

 

(5.18) 

or (5.15) when m1 = 0 

Manufacturer 

Objective 

Function 

E(cost)(O,Q) 

 

 

 

 

  (5.13) 

 

 

 

 

                                                   (5.19) 

Or (5.13) when m1 = 0 

Case 2c 

Constrain 

Solution 

If Q*<1.2O, let Q*= 1.2O+1,  

O* is from (5.8), Q*= 1.2O+1, 

Calculate E(π)(O, Q) from (5.15),  

E(cost)(O, Q) from (5.13) 

Since the boundary constrains are always 

satisfied, no need to calculate boundary 

conditions 

We use the backward induction to determine the subgame perfect equilibria. For any given 

order quantity O, the first step is to decide the best action that the supplier will take.  

Rationally, the supplier will take the action that provides the maximum expected profit. 

The response functions of the supplier in different cases (actions) are given in the above 

table.  Because there are many parameters, it is difficult to compare the profit value without 

the given values of the parameters.  However, we can compare the values for the given 

parameters and determine the action of the supplier.   

5.5 Numerical Experiment   

In this section, the model and solutions are to be verified with numerical experiments. The 

hypothetical experiment data are given in Table 5.3. The data refer to an automotive 

OEM, which develops a new electric vehicle (EV), and a major component supplier, which 

  2
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2
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1
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1
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s sb

c p Q b p c c Q
b a b a
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develops, produces and supplies the EV battery. The market demand for the new EV is 

highly uncertain. The supplier needs to invest significantly on equipment or new 

production line. Therefore, the key issue is to decide the production capacity of new 

equipment or facility under the uncertain demand.   

Parameter csb is supplier’s fixed cost for equipment at the beginning. It can be defined as 

follows: assuming that the supplier’s initial investment is $5,000,000 and the program 

lifetime is five years. Therefore the annual depreciation is $1,000,000, which is defined as 

csb. gb is manufacturer’s fixed cost for equipment at the beginning. It is defined in the same 

way as csb.  

TABLE 5.3  NUMERICAL EXPERIMENT PARAMETER DATA SET 

cs c0 csb g0 gb cm 

$8,000 $500 $1,000,000 $500 $2,000,000 $465 

p h1 e1 S(=e1) m1(<p-cs)  

$9,300 $2,800 $15,000 $15,000 1290  

5.5.1 An Example of the Contract Model in Uniform Distribution U(1000, 

14000) 

In this section, an example of solving the optimal contract model and objective function in 

a uniform distribution U(1000, 14000) will be summarized in Table 5.4. Following the 

calculation steps in Table 5.1 and Table 5.2, substituting the parameters in Table 5.3 to the 

formulas for Case 1 and Case 2 and setting a = 1000, b = 14000, we get the optimal solution 

and constraint solution and their objective function in algebra format for Case 1 and Case 

2 as shown in Table 5.4.  

TABLE 5.4. A NUMERICAL EXAMPLE OF CALCULATION FOR CASE 1, CASE 2 OPTIMAL SOLUTION O*, Q* 

AND OBJECTIVE FUNCTIONS E(π)(O, Q), E(cost) WITH U(1000, 14000), PARAMETERS DATA IN TABLE 5.3 

 Case 1: Assume Q ≤ O 

 Case 1：Assume Q < O Case 1 constraint: Case 1c  

If Q> O, let Q = O 

           𝑄∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂                                            𝑄∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂 
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Uniform 

Distribution 

Optimal 

Solution 

𝛼 =
(𝑝 − 𝑐 − 𝑐 )𝑏 + (𝑐 − 0.8ℎ )𝑎

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 

= 652.05 

 

α = 0 

𝛽 =
𝑒

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 

= 1.034 

 

β = 1 

 

O* 

1 1 1 1 0
2

1 1 1 1

( 0.64 ) (0.8 ) ( )

( 0.64 ) 2
m m

m

p c e s h e ha sb pb bc g b a

s p c e h e e

  
 

          
     

O* = 8964  

 

 

O*=9823                                                       

        Q* 𝑄∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂    

 Q* =  9920                                                                    

Q* = O* 

 

Q* = 9823 

Supplier 

Objective 

Function  

E(π)(O, Q) 

 From (5.14)   

– 0.558·Q2+728·Q+1.1538462·O·Q 

– 0.576823O2–942307.692 

                                                     (5.20) 

 =7612107                          

From (5.14) 

–0.558·Q2+728·Q+1.1538462·O·Q 

– 0.576823O2–942307.692 

                                               (5.20) 

= 8032317 

Manufacturer 

Objective 

Function 

E(cost)(O, Q) 

From (5.12) 

–0.30665·Q2–5810·Q+1.1538462·O·Q– 

0.576823O2+500·O+114809038 

 (5.21) 

= 87724721                      

From (5.12) 

–0.30665·Q2–5810·Q+1.1538462·O·Q– 

0.576823O2+500·O+114809038                                                

(5.21) 

= 88727545 

 

 Case 2: Assume Q > O 

 Case 2a: Q >1.2 O Case 2b: O < Q ≤ 1.2O  

 

Uniform 

Distribution 

     

                                       

          

           Q*≠ R(O) 

 
                           ζ = 0 
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Optimal 

Solution 

 

= 1170000 

 

 

 

= – 154.8 

 

 

                          η = 1.2 

 

O* 

 

 

 

O* = 7476 

let     O*= 1/1.2∙ Q* 

O*= 7500 

 

        Q* 

                                     

Q* =12175                                  

                                                           

Q*= 9000 

Supplier 

Objective 

Function  

E(π)(O,Q) 

From (5.15) 

( )
(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ ) ∙ 𝑄 +

(𝑝𝑏 + 𝑐 𝑏 − 𝑐 𝑏 − 0.8𝑎ℎ − 𝑠𝑏) ⋅

𝑄 + 𝑂 ⋅ 𝑄 −
( )

𝑂 + 𝑔 ⋅ 𝑂 +

( )
[𝑎 (−𝑝 − 𝑐 + ℎ ) + 𝑠𝑏 ] + 𝑔   

=   5677020                             (5.22) 

From (5.18) 

 

 

 

 =   5692308                          (5.26) 

The result is the same as (5.22)  

Manufacturer 

Objective 

Function 

E(cost)(O,Q) 

From (5.13) 

 

 

 

 

=  83202890                             (5.23) 

From (5.19) 

 

 

 

 

=  86756731                        (5.27) 

Case 2c 

Constrain 

Solution 

If Q*<1.2O, let Q*= 1.2O+1,  

O* is from (5.8), Q*= 1.2O+1, 

Calculate E(π)(O,Q) from (5.15),  

E(cost)(O,Q) from (5.13) 
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Through the numerical calculation, we notice that Formula (5.14) (Case 1) and (5.16) (Case 

1c) have the same result E(π); Formula (5.12) (Case 1)  and (5.17) (Case 1c) have the same 

result E(cost) when Q = O. So (5.14) and (5.12) are appropriate for all subcases of Case 1. 

Also, it is shown that Case 2a formulas are appropriate for both Case 2b and Case 2c. The 

result of Formula (5.18) (Case 2b) is the same as Formula (5.22) (Case 2a) when Q = 1.2O.  

The numerical results for the above optimal solutions are summarized in Table 5.5. 

TABLE 5.5 COMPARISON OF CASE 1 AND CASE 2 SOLUTIONS AND THEIR  

CONSTRAINT SOLUTIONS WITH U(1000, 14000) AND PARAMETER DATA FROM TABLE 5.3 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 652.054 1.0339 8964 9920 7611281 87724789 1.11 Q>O, invalid 

Case 1c: Q = O* Q*=O 0 1 9823 9823 8031726 88727545 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q* >1.2O Q*=R(O)= ζ + ηO 1170000 -154.8 7476 12715 5677020 83202878 1.70 Q*>1.2O* 

Case 2b: O<Q≤ 1.2O O = 1/1.2 Q* 0 1.2 7500 9000 5692307 86756730 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7500 9001 5692307 86754775 1.20 Q*=1.2O*+1 

We need to examine the results in Table 5.5 if the solutions are within the constraints.  The 

optimal solution of Case 1 is Q*> O*, which is contradicted with Case 1 assumption Q < 

O. Therefore the optimal solution of Case 1, Q* = R(O) = α + βO, is invalid. The constraint 

solution of Case 1c, Q*= O*, needs to be considered. Considering Case 2a, Q* = ζ + ηO*, 

the optimal solution for Q*>1.2O* is satisfied with the assumptions of Case 2a. Comparing 

the optimal solutions of all subcases in Table 5.5, Case 2a has the minimum expected cost 

E(cost). So the manufacturer, as a leader, will choose Case 2a strategy.  In the next section, 

we will verify the solution of Case 2a (O*= 7476 and Q*=12,715) is the best response 

among the three possible options, which will maximize the supplier’s expected profit. 

5.5.2 Optimal Response Function E(π) 

Since the optimal solutions in Table 5.5 have the different values of variable O, it is difficult 

to compare the supplier’s response functions E(π) directly. In this section, we will verify 

the optimal response function with regard to manufacturer’s order quantity O as E(π)(O).  

In the example of uniform distribution U(1000, 14000) above, given an O, substitute Q = 

R(O) to the related response function E(π)(O, Q) for each subcase shown in Table5.4. 
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E(π)(O, Q) becomes E(π)(O), which is a single variable quadratic function. The following 

are response functions E(π)(O) in each subcase: 

 Case 1:  

      𝑄∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂    

       𝛼 =
(𝑝 − 𝑐 − 𝑐 )𝑏 + (𝑐 − 0.8ℎ )𝑎

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
=  652.05 

        𝛽 =
𝑒

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
=  1.034 

Then we have 𝑄 = 𝑅(𝑂) = 𝛼 + 𝛽𝑂= 652.05 + 1.034O. Because Case 1 is effective only     

when Q ≤ O. The case is invalid for this instance. Then we need to check Case 1c.    

 Case 1c: Q = O 

      α = 0,   β = 1, substitute Q = O to Formula (5.20) 

      E(π) = – 0.558∙O2 + 727.6923O + 1.15348462∙O2 – 0.5769231∙O2 – 942307.692 

                 =  0.0189231∙O2 + 727.6923∙O – 942308 

 Case 2a:  

𝑄∗ = 𝑅(𝑂) = 𝜁 + 𝜂𝑂 

𝜁 =
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

𝑐 − 𝑝 + 𝑚
,                    𝜂 =

1.2𝑚

𝑐 − 𝑝 + 𝑚
 

ζ = 1170000, η = –154.8 

Substitute Q* = 1170000 –154.8∙O to Formula (5.22) 

     𝐸(π)

=
1

2(𝑏 − 𝑎)
(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ ) ∙ 𝑄

+
1

𝑏 − 𝑎
(𝑝𝑏 + 𝑐 𝑏 − 𝑐 𝑏 − 0.8𝑎ℎ − 𝑠𝑏) ⋅ 𝑄 +

𝑒

𝑏 − 𝑎
𝑂 ⋅ 𝑄 −

𝑒

2(𝑏 − 𝑎)
𝑂

+ 𝑔 ⋅ 𝑂 +
1

2(𝑏 − 𝑎)
[𝑎 (−𝑝 − 𝑐 + ℎ ) + 𝑠𝑏 ] + 𝑔  

(5.22) 
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       E(𝜋) = – 0.000385∙ (1170000 –154.8∙O )2 + 900 ∙ (1170000 –154.8∙O)    

               – 0.119077∙O∙ (1170000 -154.8∙O) + 0.140369∙ O2 – 172.30769∙ O – 942307.69 

                =  9.34772∙O2 - 139353∙O + 525031192 

Note that, for Case 2a, Q* >1.2O needs to be satisfied. Thus, from  

Q* = 1170000 –154.8∙O >1.2O, we have O < 7500. 

 Case 2b:  Q is not related O. Q ≠ R(O) 

𝑄∗ = 1 −
𝑐

𝑝 − 𝑐
(𝑏 − 𝑎) + 𝑎 =  9000  

       For this case O < Q* ≤ 1.2O, we have 7500 ≤ O < 9000. 

Substituting Q* = 9000 to Formula (5.22), we get the following 

       E(π) =  0.068923077 ∙ O2 –172.30769 ∙ O +3107692.31 

 Case 2c: if Q ≤ 1.2O (for O ≥7500 for this instance) 

Let Q = 1.2O + 1, substitute Q = 1.2O + 1 to Formula (5.22), we have the following: 

       E(π) = – 0.000385 ∙ (1.2O + 1)2 + 900 ∙ (1.2O + 1) – 0.119077∙ O ∙ (1.2O + 1) + 

0.140369∙ O2  

       – 172.30769∙ O – 942307.69 

  = – 0.0030778 ∙ O2 + 907.572 ∙ O – 941408 

In summary, for the given parameters, we have the supplier actions, objective functions 

and valid ranges in Table 5.6. 

TABLE 5.6 COMPARISON OF SUPPLIER ACTIONS, OBJECTIVE FUNCTIONS AND  

VALID RANGES (BASE EXAMPLE) 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 652.05 + 1.034O Invalid Invalid 

1c Q = O O 0.0189231∙O2 + 727.6923∙O 

– 942308 

Any O 
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2a Q >1.2O 1170000 –154.8∙O 9.34772∙O2 – 139353∙O + 

525031192 

O < 7500 

2b O < Q ≤1.2O 9000  0.068923077∙O2 – 

172.30769∙O +3107692.31 

7500≤O<9000 

2c Q = 1.2O+1 1.2O + 1  – 0.0030778∙O2 + 

907.572∙O – 941408 

O ≥ 7500 

 

To compare the different actions, we use the graph to show the different objective functions 

and compare the objective functions directly. For uniform distribution U(1000, 14000), O 

𝛜 (1000, 14000), the response objective functions E(π)(O) for each subcase are shown in 

Figure 5.3. Since Case 1 result is not valid, it is not plotted.  

   

          a. O є (1000, 14000).                                         b. Zoomed-in graph 

Figure 5.3. E(π)(O) for Case 1c, Case 2a, Case2b, Case2c and their valid range (base) 

From Figure 5.3a, we can see the supplier’s response functions or actions E(π)(O) for the 

different subcases. The supplier’s best action in each range is different. The stars * in 

Figure 5.3 represent the optimal solution for each subcase shown in Table 5.5.   

Based on the comparison, we obtain the supplier’s best actions and effective ranges as 

shown in Table 5.7. 
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TABLE 5.7 THE SUPPLIER’S BEST ACTIONS AND EFFECTIVE RANGES (BASE EXAMPLE) 

Effective ranges for O [0, 7500] [7500,8994] [8995,  ) 

Best actions 2a 2b 1c 

 

Comparing Table 5.7 and 5.5, we find the optimal solutions in Table 5.5 for Cases 2a, 2b, 

and 1c are valid. Because Case 2a gives the minimum cost of the manufacturer, then the 

manufacturer would choose Case 2a. Thus, we conclude that the subgame perfect optimal 

solution is Case 2a in this situation, and the optimal solution is given in the following table. 

TABLE 5.8 THE FINAL OPTIMAL SOLUTION (BASE EXAMPLE) 

O* Q* The supplier’s profit The manufacturer’s cost 

7476 12725 5.68E+06 8.32E+07 

5.5.3 Subcase’s Effective Range 

From the example above, we can see that each subcase has its effective range. The further 

details are discussed below.  

 Case 1c, O 𝛜 (a, b).  

 Case 2a:   

𝑄∗ = 𝑅(𝑂) = 𝜁 + 𝜂𝑂 > 1.2O 

𝑂 <
𝜁

(1.2 − 𝜂)
 

(5.28) 

      where 

      𝜁 =
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

𝑐 − 𝑝 + 𝑚
 ,                        𝜂 =

1.2𝑚

𝑐 − 𝑝 + 𝑚
 

Substitute 𝜁, 𝜂 to (5.28), we have  

𝑂 <
𝜁

(1.2 − 𝜂)
=

𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)
𝑐 − 𝑝 + 𝑚

1.2 −
1.2𝑚

𝑐 − 𝑝 + 𝑚

=
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

1.2(𝑐 − 𝑝 + 𝑚 ) − 1.2𝑚
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𝑂 <
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

1.2(𝑐 − 𝑝)
 (5.29) 

      (5.28) and (5.29) represent the upper limit of O for Case 2a. 

Therefore in Case 2a, O 𝛜 (a, 
( ) ( )

. ( )
 ) 

Note that in Formula (5.29), there is no term m1, although 𝜁 and 𝜂 include m1. So 

changing m1 will not affect the upper limit of O for Case 2a.  

 Case 2b, O<Q ≤1.2O  

From (5.11) 

𝑄∗ = 1 −
𝑐

𝑝 − 𝑐
(𝑏 − 𝑎) + 𝑎 =

𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

(𝑐 − 𝑝)
 

Q*/1.2 ≤ O < Q* 

Case 2b’s upper limit of O is: Q* 

The lower limit of O 

is: 
𝑂 >

𝑄∗

1.2
=

𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

1.2(𝑐 − 𝑝)
 (5.30) 

So in Case 2b, O 𝛜(Q*/1.2, Q*), 

where 
𝑄∗ =

𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

(𝑐 − 𝑝)
 

From (5.29) and (5.30), we can see that the upper limit of O for Case 2a equals the 

lower limit of O for Case 2b.  

 Case 2c, if Q ≤ 1.2O,  

        𝑂 ≥
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

1.2(𝑐 − 𝑝)
 

Case 2c O 𝛜 
( ) ( )

. ( )
, 𝑏   

5.5.4 The Backward Induction Method Algorithm 

The backward induction method above can be summarized in Figure 5.4. It determines 

subgame perfect equilibria. 
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Figure 5.4. The backward induction method algorithm flow chart.  

In the next section, we will use this backward induction method algorithm flow to perform 

the sensitivity analysis.  

5.6 Sensitivity Analysis 

In this section, the parameter effects are studied, including the effects of different lower 

and upper limits (a, b) for uniform distribution, penalty cost e1 and shortage cost s1 effects, 

high production compensation m1, and low demand compensation h. The examples in the 

above sections with parameters in Table 5.3 will be used as a base model for comparison.  

Step 1. Apply the formulas in Table 5.1 and Table 5.2 

to find the optimal solution and constraint solution, 

objective function for Case 1, Case 2 and their 

subcases in uniform distribution. (e.g. Table 5.5) 

Step 2. Construct the supplier’s response function 

E(π)(O) for each subcase. Draw the graph for all 

subcase response function E(π)(O)  (e.g. Figure 5.3) 

Step 3. Find supplier’s best action E(π)(O) and 
effective ranges (e.g. Table 5.6) 

 

Step 4. Verify if the optimal solution from Step 1 

is within the valid range. Find manufacturer’s 

optimal solution O* and min E(cost). 

Step 5. Conclude the subgame perfect optimal 

solution: O*, Q*, E(π)(O*, Q*), E(cost)(O*, Q*). 

(e.g. Case 2a in this situation. Table 5.7) 
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5.6.1 Effect of Different (a, b) 

Table 5.5 shows all the solutions for Case 1, Case 2 and subcases with U(1000, 14000). In 

this section, we will test the different lower limits a and upper limits b, i.e., U(5000, 10000), 

U(3000, 12000) with the same mean, µ = 7500, of uniform distributions.  

 O ϵ U(5000, 10000) 

Table 5.9a shows the performance of Case 1, Case 2 and their subcases in U(5000, 10000). 

For a supplier to decide the response when (a, b) change, we can follow the backward 

induction method algorithm flow shown in Figure 5.4 to determine the subgame perfect 

equilibria. Table 5.9b summarizes the supplier actions, objective functions and valid ranges 

for the given parameters in U(5000,10000). 

TABLE 5.9a PERFORMANCE OF CASE 1, CASE 2  

AND SUBCASES FOR U(5000, 10000), µ =7500, b – a = 5000 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO -48.2492 1.0339 8477 8716 5181736 81343133 1.03 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 8687 8687 5246647 81547761 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 1050000 -154.8 6722 9434 4272549 79415148 1.40 Q*>1.2O* 

Case 2b: O<Q≤ 1.2O O = 1/1.2 Q* 0 1.2 6730 8076 4272056 80672253 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 6730 8077 4272189 80669053 1.20 Q*=1.2O*+1 

 

TABLE 5.9b COMPARISON OF THE SUPPLIER ACTIONS,  

OBJECTIVE FUNCTIONS AND VALID RANGES FOR U(5000, 10000) 

Case 
(action) 

Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O – 48.249 + 
1.034O 

Invalid Invalid 

1c Q = O O 0.0492∙O2 – 140∙O + 2750000 Any O 

2a Q >1.2O 1050000 –
154.8∙O 

24.328∙O2 –327320∙O + 1105250000 O < 6730 

2b O <Q ≤ 1.2O 8077  0.1792∙O2 –2240∙O + 11230769 6730≤ 
O<8077 

2c Q =1.2O+1 1.2O + 1 –0.008∙O2 + 279.688∙O +2752099.999 O ≥ 6730 
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Figure 5.5 graphically shows the results in Table 5.9a and 5.9b, or the performance of 

E(π)(O) for U(5000, 10000). Figure 5.5(b) is the zoomed-in picture of Figure 5.5(a) for a 

better view purpose. The stars represent the optimal solution O* and response E(π)(O*)  of 

each subcase. 

  

              a. O є (5000, 10000).                    b. Zoomed-in left figure.  

Figure 5.5. E(π)(O) for Case 1c, Case 2a, Case2b, Case2c and their valid range when U(5000, 10000). 

Based on the comparison, we obtain the supplier’s best actions and effective ranges as in 

Table 5.9c. 

TABLE 5.9c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES FOR U(5000, 10000) 

Effective range for O [0, 6730] [6730, 8077] [6730, 10000 ) 

Best action 2a 2b 1c 

 

Comparing Table 5.9c and 5.9c, we can find that the optimal solutions in Table 5.9a for 

Case 2a, 2b, and 1c are valid. Because Case 2a gives the minimum cost of the manufacturer, 

then the manufacturer would choose Case 2a. Thus, we conclude that the subgame perfect 

optimal solution is Case 2a in this scenario U(5000, 10000) and the optimal solution is 

given in the following table. 
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TABLE 5.9d THE FINAL OPTIMAL SOLUTION FOR THE INSTANCE U(5000, 10000) 

O Q The supplier’s profit The manufacturer’s profit 

6722 9434 4272549 79415148 

 

 O ϵ U(3000, 12000) 

TABLE 5.10a U(3000, 12000), µ =7500, b-a = 9000 PERFORMANCE OF CASE 1, CASE 2 AND SUBCASES 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 301.9024 1.0339 8720 9318 6359976 84477980 1.07 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 9255 9255 6595337 85073470 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 1110000 -154.8 7099 11074 4735581 81059799 1.56 Q*>1.2O* 

Case 2b: O<Q≤ 1.2O O = 1/1.2 Q* 0 1.2 7115 8538 4742676 83464304 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7115 8539 4742932 83461897 1.20 Q*=1.2O*+1 

 

TABLE 5.10b THE SUPPLIER ACTIONS, OBJECTIVE FUNCTIONS AND VALID RANGES FOR U(3000, 12000) 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 301.902+ 1.034O Invalid Invalid 

1c Q = O O 0.027333∙O2 + 486.666∙O –

250000 

Any O 

2a Q >1.2O 1110000 –  

154.8∙O 

13.515556∙O2 –191666.667∙O 

+ 684250000 

O < 7115 

2b O <Q ≤1.2O 8538 0.099556∙O2 –746.6667∙O + 

5015384 

7115≤O<8538 

2c Q =1.2O+1 1.2O + 1 –0.004444∙O2 + 733.16∙O –

248766.667 

O ≥ 7115 

 

Figure 5.6 illustrates the performance of E(π)(O) in Table 5.10a and 5.10b for U(3000, 

12000). Figure 5.6(b) is the zoomed-in graph of Figure 5.6(a) for the better view purpose. 

The stars represent the optimal solution O* and response E(π)( O*)  of each subcase.   



109 
 

  

a. O є (3000, 12000).                   b. Zoomed in the left figure.  

Figure 5.6. E(π)(O) for Case 1c, Case 2a, Case2b, Case2c and their valid range when U(3000, 12000) 

Based on the comparison, we obtain the supplier’s best actions and effective ranges as in 

the following table. 

TABLE 5.10c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES FOR U(3000, 12000) 

Effective range for O [0, 7115] [7115, 8538] [7115, 12000) 

Best action 2a 2b 1c 

Comparing Table 5.10c and 5.10a, we can find that the optimal solutions in Table 5.10a 

for Cases 2a, 2b, and 1c are valid. Because Case 2a gives the minimum cost of the 

manufacturer, then the manufacturer would choose Case 2a. Thus, we conclude that the 

subgame perfect optimal solution is Case 2a in this situation U(3000, 12000) and the 

optimal solution is given in the following table. 

TABLE 5.10d THE FINAL OPTIMAL SOLUTION FOR U(3000, 12000) 

O Q The supplier’s profit The manufacturer’s profit 

7099 11074 4735581 81059799 

 Summary of the performance for different (a, b) sets 

Comparing the performance of 3 different (b-a) uniform distribution: U(5000, 10000), 

U(3000, 12000), and U(1000, 14000), we see that three of E(π)(O) have similar 
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characteristics, such as, Case 1 is an invalid solution; Case 2a is the subgame perfect 

optimal solution for all 3  scenarios. We will only study the performance of Case 2a to 

analyze the effect of (b-a).  

TABLE 5.11 THE PERFORMANCE OF CASE 2a FOR DIFFERENT (a, b) SETS WITH THE SAME µ=7500 

a b b-a µ ζ η O* Q* E(π) E(cost) Q*/O* 2a range 

5000 10000 5000 7500 1050000 -154.8 6722 9434 4272549 79415148 1.40 O<6730 

3000 12000 9000 7500 1110000 -154.8 7099 11074 4735581 81059799 1.56 O<7115 

1000 14000 13000 7500 1170000 -154.8 7476 12715 5677020 83202878 1.70 O<7500 

 

    

Figure 5.7. The performance of Case 2a for different (a, b) sets with the same µ=7500 

Table 5.11 and Figure 5.7 summarize the performance, O*, Q*, E(π), and E(cost) of Case 

2a for the different (a, b) set with the same µ=7500 from the above experiments. From 

Table 5.11, we see that when (a, b) changes, the effective ranges of Case 2a change, which 

can be calculated from Formula (5.29). All the optimal solutions O* of Case 2a are valid 

since they are within the effective ranges. We also see that when (b-a) increases, ζ increases 

and η keeps the same; O* and Q* increase as well.  The ratio of Q*/O* becomes large. 

Both supplier’s profit and manufacturer’s E(cost) increase. It implies that in order to reduce 

the manufacturer’s cost, the supply chain should forecast the demand more accurately as 

(b-a) reduces.  
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5.6.2 Effects of High Production Compensation m1 

m1 is unit compensation of high volume production that the manufacturer pays to the 

supplier, when Q > O and Dt >1.2O. It is only included in Case 2a and Case 2c contract 

models. In Section 4.6 Appendix A, we derived that only if (m1 + cs – p) < 0,  or m1 < p – 

cs ,  E(𝝿) has the maximum value at Q*. Since Case 1c and Case 2b do not include m1, 

changing m1 will not affect the performance of them. The performances of Case 1c and 

Case 2b are the same as in Table 5.5. Changing m1 mainly affects Case 2a and 2c, which 

are the optimal solutions among other subcases in Table 5.5. Also from the discussion of 

Section 5.5.2, we conclude that changing m1 will not affect Case 2a’s upper limit of O, 

therefor, not affect the effective range of each subcase. Based on the backward induction 

method algorithm flow in Figure 5.4, we tested the performance of m1 = 800, and m1 = 

300, and compared them to the base model result of m1 = 1290 as shown in Table 5.5.  

 m1 = 800 

TABLE 5.12a THE SOLUTIONS OF CASE 1, CASE 2 AND SUBCASES FOR m1 = 800, U(1000, 14000) 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 652.0540 1.0339 8964 9920 7611281 87724789 1.11 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 9823 9823 8031726 88727545 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 23400 -1.92 5515 12811 4707640 81737158 2.32 Q*>1.2O* 

Case 2b: O<Q≤ 1.2O O = 1/1.2 Q* 0 1.2 7500 9000 5672307 86756730 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7500 9001 5672307 86754775 1.20 Q*=1.2O*+1 

Table 5.12c is the same as Table 5.7 where m1 = 1290. This verifies the conclusion from 

section 5.4.3, i.e. different m1 does not change the effective ranges of subcases.  Comparing 

Table 5.12c and 5.12a, we can find that the optimal solutions in Table 5.12a for Cases 2a, 

2b, and 1c are valid. Because Case 2a gives the minimum cost of the manufacturer, then 

the manufacturer would choose Case 2a. Thus, we conclude that the subgame perfect 

optimal solution is Case 2a when m1 = 800. The optimal solution is given in the following 

table. 
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TABLE 5.12b  THE SUPPLIER ACTIONS, OBJECTIVE FUNCTIONS AND VALID RANGES FOR m1 = 800 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 652.054 + 1.034O Invalid Invalid 

1c Q = O O 0.0189231∙O2 + 

727.6923∙O – 942308 

Any O 

2a Q >1.2O 23400 –1.92∙O 0.184123∙O2 –

1900.30769∙O + 

9587692.307 

O < 7500 

2b O < Q ≤1.2O 9000 0.068923∙O2 –172.30769∙O 

+3107692.31 

7500≤O<9000 

2c Q = 1.2O+1 1.2O + 1 –0.003077∙O2 + 907.572∙O 

– 941408 

O ≥ 7500 

 

  

              a. O є (1000, 14000)          b. Zoomed-in graph  

Figure 5.8. E(π)(O) for Case 1c, Case 2a, Case2b, Case2c when m1 = 800. 

Based on the comparison, we obtain the supplier’s best actions and effective ranges as the 

following table. 

TABLE 5.12c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES WHEN m1 = 800    

Effective range for O [0, 7500] [7500,8994] [8995, b) 

Best action 2a 2b 1c 
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TABLE 5.12d THE FINAL OPTIMAL SOLUTION WHEN m1 = 800 

O Q The supplier’s profit The manufacturer’s cost 

5515 12811 4707640 81737158 

 m1 = 300 

TABLE 5.13a THE SOLUTIONS OF CASE 1, CASE 2 AND SUBCASES FOR m1 = 300, U(1000, 14000) 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 652.0540 1.0339 8964 9920 7611281 87724789 1.11 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 9823 9823 8031726 88727545 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 1170000 -0.36 1172 11278 3865360 80404218 9.62 Q*>1.2O* 

Case 2b: O<Q≤ 1.2O O = 1/1.2 Q* 0 1.2 7500 9000 5692307 86756730 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7500 9001 5692307 86754775 1.20 Q*=1.2O*+1 

 

TABLE 5.13b  THE SUPPLIER ACTIONS, OBJECTIVE FUNCTIONS AND VALID RANGES FOR m1 = 300 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 652.054 + 1.034O Invalid Invalid 

1c Q = O O 0.0189231∙ O2 + 727.6923∙O 
– 942308 

Any O 

2a Q >1.2O 11700 – 0.360∙O 0.090523∙O2 –496.307692 ∙ 
O + 3865360.7424 

O < 7500 

2b O < Q 
≤1.2O 

9000 0.068923∙O2 – 

172.30769 ∙ O 

+3107692.31 

7500≤O<9000 

2c Q =1.2O+1 1.2O + 1 –0.003077∙O2 + 907.572∙O – 
941408 

O ≥7500 
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                          a. O є (1000, 14000)          b. Zoomed-in graph  

Figure 5.9. E(π)(O) for Case 1c, Case 2a, Case2b, and Case2c when m1 = 300 

Based on the comparison, we obtain the supplier’s best actions and effective ranges as in 

the following table. 

TABLE 5.13c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES WHEN m1 = 300 

Effective range for O [0, 7500] [7500,8994] [8995, ) 

Best action 2a 2b 1c 

 

Comparing Table 5.13a and 5.13c, we can find the optimal solutions in Table 5.13a for 

Cases 2a, 2b, and 1c are valid. Because Case 2a gives the minimum cost of the 

manufacturer, then the manufacturer would choose Case 2a. Thus, we conclude that the 

subgame perfect optimal solution is Case 2a in this scenario and the optimal solution is 

given in the following table. 

TABLE 5.13d THE FINAL OPTIMAL SOLUTION WHEN m1 = 300 

O Q The supplier’s profit The manufacturer’s cost 

1172 11278 3865360 80404218 

 

Comparing the performance graphs of E(π)(O) when m1 = 300 (Figure 5.9), m1 = 800 

(Figure 5.8), and m1 = 1290 (Figure 5.3), we find that when m1 decrease, E(π)(O) of Case 

2a becomes flatter, but is still better than that of other cases in its effective region (a, 7500). 
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Moreover, Case 2a optimal solution O* becomes smaller. Comparing the supplier actions, 

the objective functions E(π)(O) and valid ranges for three m1 values (Table 5.6 for m1 = 

1290, Table 5.12b for m1 = 800 and Table 5.13b for m1 = 300), we found that when m1 

changes, only E(π)(O) of Case 2a changes. Other objective functions of Case 1, 1c, 2b keep 

the same in 3 different m1 values since Case 1, 1c, and 2b do not include the m1 item. In 

the following discussion, we will only discuss Case 2a performance regarding m1 effect. 

The effect of different m1 values to Case 2a are summarized in Table 5.14 and displayed 

in Figure 9.  

TABLE 5.14 EFFECT OF m1 FOR CASE 2a 

Case 2a Solution m1 ζ η O* Q* E(π) E(cost) Q*/O* Q*/ µ O*/µ 

Case 2a: Q >1.2O 

Q*=R(O)= ζ + ηO 

300 11700 -0.36 1172 11278 3865360 80404218 9.62 1.50 0.16 

800 23400 -1.92 5515 12811 4707640 81737158 2.32 1.71 0.74 

1290 1170000 -154.8 7476 12715 5677020 83202878 1.70 1.70 1.00 

  

   

   a. m1 effect on Q*, O*   b. m1 effect on E(π) and E(cost) 

Figure 5.10. m1 effect for Case 2a performance 

From Table 5.14 and Figure 5.10, we can see that: 

a) In Case 2a, O* is less than the demand means µ, even when m1 = 1290, which is the 

upper limit of m1. When m1 decreases, O* will decrease very fast, while Q* decreases 

slower, and the ratio of Q*/ O* becomes larger. For example, when m1 = 300, Q* is almost 

10 times more than O*, which is an unreasonable solution. So m1 not only needs an upper 

limit m1 < p – cs, also needs a low limit in order to keep the ratio of Q*/ O* within a range.   



116 
 

b) The minimum Q* is 9000 in the parameter set when m1 = 0. It is the same result of Case 

2b, in which m1 = 0. Q has no relationship with O, or Q ≠ R(O).  

c) From Figure 5.8b, we can see that when m1 changes, E(π) and E(cost) do not change that 

much since Q* only changes little. From the above analysis, it can be concluded that the 

m1 effect to optimal capacity Q* is not significant. 

5.6.3 Effects of Penalty Cost e1 and Shortage Cost s1  

e1 is the unit penalty cost that supplier pays to the manufacturer, if Q < O and Dt > Q. And 

s1 is manufacturer’s unit shortage cost if Dt > Q. According to (Nahmias, S. 2012 pp 207), 

“The penalty cost, also known as the shortage cost or the stock-out cost, is the cost of not 

having sufficient stock on hand to satisfy a demand when it occurs.” In fact, they are the 

same cost.  

In this section, e1 and s1 effects will be tested in Case 1 and Case 2 based on the backward 

induction method algorithm flow in Figure 5.4.   

 e1 = s1 = 13500 

TABLE 5.15a RESULTS OF CASE 1, CASE 2 AND SUBCASE OPTIMAL SOLUTIONS WHEN e1 = s1 = 13500 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 727.24477 1.0378 7801 8823 6408866 86398546 1.13 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 8690 8690 6810335 87448118 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 1170000 -154.8 7479 12250 5678341 83061145 1.64 Q*>1.2O* 

Case 2b: O<Q≤1.2O O = 1/1.2 Q* 0 1.2 7500 9000 5692307 85314423 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7500 9001 5692307 85313044 1.20 Q*=1.2O*+1 

 

It is noticed that Table 5.15c is the same as Table 5.7 for the base example because there 

is no e1 or s1 item in Formula (5.29) and (5.30), which determine the effective range of 

Case 2a and Case 2b. So changing e1 or s1 does not change the effective range of E(π)(O). 

Comparing Table 5.15a and 5.15c, we can find the optimal solutions in Table 5.15a for 

Cases 2a, 2b, and 1c are valid. Case 2a gives the minimum cost for the manufacturer. So 

the manufacturer would choose Case 2a. Thus, we conclude that the subgame perfect 
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optimal solution is Case 2a in this scenario and the optimal solution is given in the 

following table. 

TABLE 5.15b THE SUPPLIER ACTIONS, OBJECTIVE FUNCTIONS AND VALID RANGES WHEN e1 = s1 = 13500 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 727.2447+ 1.034O Invalid Invalid 

1c Q = O O 0.0189231∙O2 + 
727.6923∙O – 942308 

Any O 

2a Q >1.2O 1170000 – 154.8∙O 9.356923∙O2 – 
139492.30769 ∙O + 
525557692.30769 

O < 7500 

2b O< Q ≤ 1.2O 9000  0.068923∙O2 – 
172.30769∙O +3107692.31 

7500≤O<9000 

2c Q = 1.2O+1 1.2O + 1 – 0.003077∙O2 + 907.572∙O 
– 941408 

O ≥7500 

 

  

                          a. O є (1000, 14000)          b. Zoomed-in graph  

Figure 5.11. E(π)(O) for Case 1c, Case 2a, Case2b, and Case2c with e1 = s1  = 13500 

Based on the comparison, we obtain the supplier’s best actions and effective ranges as in 

the following table.  

TABLE 5.15c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES WHEN e1 = s1 = 13500 

Effective range for O [0, 7500] [7500,8994] [8995,  ) 

Best action 2a 2b 1c 
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TABLE 5.15d THE FINAL OPTIMAL SOLUTION FOR THE INSTANCE WHEN e1 = s1 = 13500 

O Q The supplier’s profit The manufacturer’s cost 

7479 12250 5678341 83061145 

 

 e1 = s1 = 11000 

TABLE 5.16a RESULTS OF CASE 1, CASE 2 AND SUBCASE OPTIMAL SOLUTIONS WITH e1 = s1  = 11000 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 900.2665 1.04682 3509 4573 2302191 81495353 1.30 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 4304 4304 2540218 82497929 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 1170000 -154.8 7488 10857 5683316 82524737 1.45 Q*>1.2O* 

Case 2b: O<Q≤1.2O O = 1/1.2 Q* 0 1.2 7500 9000 5692307 82910576 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7500 9001 5692307 82910159 1.20 Q*=1.2O*+1 

TABLE 5.16b COMPARISONS OF THE SUPPLIER ACTIONS,  

OBJECTIVE FUNCTIONS AND VALID RANGES WITH e1 = s1 = 11000 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 900.2665+ 
1.04682 O 

Invalid Invalid 

1c Q = O O 0.0189231∙O2 + 
727.6923∙O – 942308 

Any O 

2a Q >1.2O 1170000 –  
154.8∙O 

9.356923∙O2 –
139492.30769∙O + 
525557692.30769 

O < 7500 

2b O< Q ≤ 1.2O 9000  0.068923∙O2 –
172.30769∙O +3107692.31 

7500≤O<9000 

2c Q = 1.2O+1 1.2O + 1 –0.003077∙O2 + 907.572∙O 
– 941408 

O ≥ 7500 
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                          a. O є (1000, 14000)          b. Zoomed-in graph  

Figure 5.12. E(π)(O) for Case 1c, Case 2a, Case2b, and Case2c with e1 = s1  = 11000 

Based on the comparison, we obtain the supplier’s best actions and effective ranges as in 

the following table. 

TABLE 5.16c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES WHEN e1 = s1  = 11000 

Effective range for 

O 

[0, 7500] [7500,8994] [8995,  b) 

Best action 2a 2b 1c 

 

Comparing Table 5.16a and 5.16c, we can find the optimal solutions in Table 5.16a for 

Cases 2a, 2b, and 1c are valid. Because Case 2a gives the minimum cost of the 

manufacturer, then the manufacturer would choose Case 2a. Thus, we conclude that the 

subgame perfect optimal solution is Case 2a in this scenario and the optimal solution is 

given in the following table. 

TABLE 5.16d THE FINAL OPTIMAL SOLUTION WHEN e1 = s1  = 11000 

O Q The supplier’s profit The manufacturer’s cost 

7488 10857 5683316 82524737 

 

From the performance of the tested sets, e1 = s1 = (11000, 13500, 15000), we can see the 

following facts: 



120 
 

(a) For all the tested e1 and s1, Case 1 results show the same pattern, Q* > O*, which is an 

invalid solution since it violates Case 1 assumption Q < O. The constraint solution Case 1c 

Q = O is considered as the optimal solution for Case 1 when e1 changes. Actually, when Q 

= O, penalty e1= 0. That means the supplier cannot choose Case 1 Q < O strategy.  

 (b) Comparing the solutions in Table 5.15a, Table 5.16a and Table 5.5 (base example), we 

can find that ζ and η in Case 2a and Case 2b solutions are the same for all the different e1 

or s1. Note that from Formula (5.6) and (5.7) for Case 2a (copied here),  

                                                           (5.6)                                 

 

                                                 (5.7) 

ζ and η do not include e1. So e1 changes do not affect ζ and η. This verifies our model 

assumption as of the penalty cost e(O, Q) = 0 in Case 2.  

For Case 2b, the solution for uniform distribution is: 

𝑄∗ = 1 −
𝑐

𝑝 − 𝑐
(𝑏 − 𝑎) + 𝑎 (5.11) 

                    O* = 1/1.2 ∙Q* 

There is no e1 or s1 item in Case 2b solution, so e1 changes do not affect the performance 

of Case 2b. In Case 2, only item s affects the calculation of O* as shown in Formula (5.8) 

below.            

𝑂∗ =
𝜁[𝜂(𝑝 + 𝑐 − 𝑠 − 𝑔 − 𝑚 ) + 𝑔 + 1.2𝑚 ] − (𝑝 + 𝑐 − 𝑠)𝜂𝑏 − 𝑔 (𝑏 − 𝑎) + 0.8ℎ 𝑎

𝜂 (𝑠 − 𝑝 − 𝑐 + 𝑔 + 𝑚 ) − 2𝜂(𝑔 + 1.2𝑚 ) + 𝑔 + 0.64ℎ + 1.44𝑚
 

(5.8) 

(c) From the backward induction algorithm above, we conclude that Case 2a is the subgame 

perfect optimal solution for 3 different e1 or s1 situations. Here we only analyze the effect 

of e1 or s1 to Case 2a. Following the backward induction method algorithm in Figure 5.4, 

we tested e1 or s1 with the different values from 10000 to 18000. Table 5.17 summarizes e1 

or s1 effects on Case 2a performance from the test.   

TABLE 5.17 SUMMARY OF VARIED e1 OR s1  EFFECT ON CASE 2a PERFORMANCE  

1

12.1

mpc

m

s 


1

0 )()(

mpc

pcbabc

s

s








121 
 

Case 2a Solution e1 or s1 ζ η O* Q* E(π) E(cost) Q*/O* 

Case 2a: Q>1.2O 

 

Q*=R(O)=ζ+ηO 

18000 1170000 -154.8 7473 13179 5675867 83362683 1.76 

17000 1170000 -154.8 7474 13024 5676233 83317790 1.74 

16000 1170000 -154.8 7475 12870 5676617 83266404 1.72 

15000 1170000 -154.8 7476 12715 567020 83202879 1.70 

13500 1170000 -154.8 7479 12250 5678342 83061146 1.64 

12500 1170000 -154.8 7481 11941 5679316 82918282 1.60 

11000 1170000 -154.8 7488 10857 5683317 82524738 1.45 

10000 1170000 -154.8 7498 9309 5690622 81943863 1.24 

 
Figure. 5.13 e1 or s1 effect on Case 2a performance 

Table 5.17 and Figure 5.13 illustrate the effects of e1 or s1 on Case 2a performance. We can 

see that the effects of e1 or s1 to O* and E(π) are small, but to Q* is large. When s1 increases, 

the optimal solution O* decreases slightly, but Q* increases a lot.  The ratio of Q*/O* 

becomes larger. At the same time, E(π) decreases, and E(cost) increases. So a large s1 is 

not desirable for both manufacturer and supplier in Case 2a when Q > O. 

Comparing the performance of Case 1 and Case 2 under different e1 and s1, some insights 

for managers to choose the optimal strategy can be provided. For example, the supplier 

should choose Case 2a strategy, i.e., Q > 1.2O, to avoid the penalty and get the optimal 
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profit E(π). Also, the study about e1 and s1 helps managers to decide the optimal value of 

e1 or s1 in the contract. e1 or s1 cannot be too small or too big. When e1 is between $12500 

and $15000, Q* and O* are more reasonable.  

5.6.4 Effects of Compensation h  

The low demand compensation h usually includes the supplier’s fixed cost and some 

handling cost. h1 is set to be $2800 per unit in the base experiment above. In this section, 

tests will be performed on the different compensation values (from $800 to $2800) to 

analyze the effects of h. 

 h = 1800 

TABLE 5.18a RESULTS OF CASE 1, CASE 2 AND SUBCASE OPTIMAL SOLUTIONS WITH h1 = 1800 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 677.3171 0.99023 10080 10659 6591505 86254102 1.06 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 10682 10682 6800272 86736873 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 1170000 -154.8 7476 12715 4722852 82248710 1.70 Q*>1.2O* 

Case 2b: O<Q≤1.2O O = 1/1.2 Q* 0 1.2 7500 9000 4730769 85795192 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7500 9001 4730769 85793236 1.20 Q*=1.2O*+1 

 

  

                          a. O є (1000, 14000).          b. Zoomed-in graph  

Figure 5.14. E(π)(O) for Case 1c, Case 2a, Case2b, Case2c with h1 = 1800 
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TABLE 5.18b COMPARISONS OF THE SUPPLIER ACTIONS,  

OBJECTIVE FUNCTIONS AND VALID RANGES WITH h1 = 1800 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 677.31713+ 

0.99023O 

Invalid Invalid 

1c Q = O O – 0.005692∙O2 + 

789.230769∙O – 980769 

Any O 

2a Q >1.2O 1170000 –  

154.8∙O 

9.332308∙O2 –  

139430.769231∙O + 

525519230.76923 

O < 7500 

2b O< Q ≤ 1.2O 9000  0.044308∙O2 –  

110.76923∙O + 

3069230.76923 

7500≤O<9000 

2c Q =1.2O+1 1.2O + 1 – 0.02769∙O2 + 

969.110769∙O – 

979869.23115 

O ≥ 7500 

 

Based on the comparison, we obtain the supplier’s best actions and effective ranges as in 

Table 5.18c below. 

TABLE 5.18c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES WITH h1 = 1800 

Effective range for O [0, 7500] [7500, 9000] [9000,  ) 

Best action 2a 2b 1c 

 

Comparing Table 5.18c and 5.18a, we can see that the optimal solutions in Table 5.18a for 

Cases 2a, 2b, and 1c are valid. Because Case 2a gives the minimum cost of the 

manufacturer, then the manufacturer would choose Case 2a. Thus, we conclude that the 

subgame perfect optimal solution is Case 2a in this situation, and the optimal solution is 

given in the following table. 

 



124 
 

 TABLE 5.18d THE FINAL OPTIMAL SOLUTION FOR THE INSTANCE WITH h1 = 1800 

O Q The supplier’s profit The manufacturer’s cost 

7476 12715 4722852 82248710 

 h = 800 

TABLE 5.19a RESULTS OF CASE 1, CASE 2 AND SUBCASE OPTIMAL SOLUTIONS WITH h1 = 800 

Case 1 

Q ≤ O 

 Solution α β O* Q* E(π) E(cost) Q*/O* Notes 

Case 1: Q < O Q*=R(O)= α + βO 700.5321 0.95009 11531 11656 4770647 84232627 1.01 Q>O, invalid 

Case 1c: Q* = O* Q*=O 0 1 11733 11733 4790588 84302828 1.00 Q*=O 

Case 2 

Q > O 

 Solution ζ η O* Q* E(π) E(cost) Q*/O*  

Case 2a: Q >1.2O Q*=R(O)= ζ + ηO 1170000 -154.8 7476 12715 3768684 81294542 1.7 Q*>1.2O* 

Case 2b: O<Q≤1.2O O = 1/1.2 Q* 0 1.2 7500 9000 3769230 84833653 1.20 Q*=1.2O* 

Case 2c: if Q< 1.2O Q*=1.2O + 1 1 1.2 7500 9001 3769230 84831698 1.20 Q*=1.2O*+1 

 

TABLE 5.19b COMPARISON OF THE SUPPLIER ACTIONS,  

OBJECTIVE FUNCTIONS AND VALID RANGES WITH h1 = 800 

Case (action) Relations Q* function (O) Objective function(O) Valid range 

1a Q ≤ O 700.53205+ 

0.950089 

Invalid Invalid 

1c Q = O O – 0.030308∙O2 + 850.769231∙O– 

1019230 

Any O 

2a Q >1.2O 1170000 – 

154.8∙O 

9.307692∙O2 –139369.2307 ∙O + 

525480769.23076 

O < 7500 

2b O< Q ≤ 

1.2O 

9000  0.019692 ∙O2 –   

49.230769 ∙O + 3030769.230769 

7500≤O<9000 

2c Q = 

1.2O+1 

1.2O + 1 – 0.052308∙O2 + 1030.649231∙O 

–  1018330.769615 

O ≥7500 
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                          a. O є (1000, 14000)          b. Zoomed-in graph  

Figure 5.15. E(π)(O) for Case 1c, Case 2a, Case2b, Case2c with h1 = 800 

TABLE 5.19c THE SUPPLIER’S BEST ACTION AND EFFECTIVE RANGES WITH h1 = 800 

Effective range for O [0, 7500] [7500, 9000] [9000,  b/1.2) 

Best action 2a 2b 1c 

 

Comparing Table 5.5 and 5.3, we can see that the optimal solutions in Table 5.3 for Cases 

2a, 2b, and 1c are valid. Because Case 2a gives the minimum cost of the manufacturer, 

then the manufacturer would choose Case 2a. Thus, we conclude that the subgame perfect 

optimal solution is Case 2a in this situation, and the optimal solution is given in the 

following table. 

TABLE 5.19d THE FINAL OPTIMAL SOLUTION FOR THE INSTANCE WITH h1 = 800 

O Q The supplier’s profit The manufacturer’s cost 

7476 12715 3768684 81294542 

 

From the performance of the tested sets of h1 = (2800, 1800, 800), we can see the following 

facts: 

(a) Case 1 results for all the tested h1 show the same pattern, i.e., Q* > O*. They are the 

invalid solutions since they violate Case 1 assumption Q < O.  
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(b) From the backward induction algorithm above, we conclude that Case 2a is the subgame 

perfect optimal solution for 3 different of h1 situations. Here we only analyzed the effects 

of h1 to Case 2a. Following the backward induction method algorithm in Figure 5.4, we 

tested different values of h1 from 800 to 3300. Table 5.20 summarizes h1 effects on Case 

2a performance from the test.   

 (3) Study the performance of Case 2a over varied h1. 

TABLE 5.20   COMPENSATION h1 EFFECT IN CASE 2a 

Case 2a Solution h1 ζ η O* Q* E(π) E(cost) 

Case 2a: Q>1.2O 

 

Q*=R(O)=ζ+ηO 

800 1170000 -154.8 7476 12715 3768684 81294543 

1300 1170000 -154.8 7476 12715 4245768 81771627 

1800 1170000 -154.8 7476 12715 4722852 82248711 

2300 1170000 -154.8 7476 12715 5199936 82725795 

2800 1170000 -154.8 7476 12715 5677020 83202879 

3300 1170000 -154.8 7476 12715 6154104 83679963 

 

  

Figure 5.11. Compensation h1 effect in case 2a 
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From Table 5.13 and Figure 5.11, we can see that when h1 changes, ζ and η stay the same, 

since Formula (5.6) and (5.7) do not include h1. It is interesting that when h1 varies, O* and 

Q* almost do not change due to the small effect of h1 as shown in Formula (5.8). It means 

that varying h1 almost has no effect on order O and capacity Q in the experiment. When h1 

increases, the supplier’s profit, and manufacturer’s cost increase. So increasing h1 is good 

for the supplier, but not good for the manufacturer. The manager should decide the 

appropriate h1 to balance the manufacturer’s total cost and supplier’s total profit.  

5.7 Remarks 

Based on the study for the model of an optimal contract for product development with risk 

consideration in Chapter 4, we conducted numerical experiments in uniform demand 

distribution. The hypothetical experiment data simulate an automotive OEM data when a 

new electric vehicle (EV) was developed, and also a major component supplier of 

producing and supplying the EV battery. The market demand for the new EV is highly 

uncertain. The Newsvendor model and Stackelberg game theory are applied to formulate 

the objective functions of the supplier’s profit and the manufacturer’s cost.  The models 

are based on a single supplier, single manufacturer, and a single period. Two cases are 

considered, Case 1 (Q ≤ O), which includes 2 subcases, Case 1 (Q < O) and Case 1 

constraint Case 1c (Q = O); and Case 2 (Q > O), which includes 3 subcases, Case 2a (Q > 

1.2O), Case 2b (O < Q ≤ 1.2O) and Case 2c (Q =1.2O +1). We applied the backward 

induction method to find Nash subgame perfect equilibrium solution.  The calculation 

procedures are: 1) calculate the optimal solutions O*, Q*, E(π), E(cost) of Case 1, Case 2 

and subcases using related formulas, which are derived from Leibniz rule; 2) construct 

supplier’s response function E(𝜋)(O) for each subcase; 3) find the supplier’s best action 

E(π)(O) and effective ranges; 4) verify if the optimal solution from Step 1 is within the 

valid range; 5) find the manufacturer’s optimal solution O* and objective function to 

conclude the subgame perfect optimal solution; 6) use the backward induction to determine 

subgame perfect equilibria: i.e. to decide the best supplier’s action for any given order 

quantity O.  Rationally, the supplier will take the action that provides the maximum 

expected profit. We use numerical examples to illustrate the solution approach and provide 

the optimal capacity solution. 



128 
 

Our numerical experiments show that: 

 Uniform distribution is appropriate for new product development case. With a uniform 

distribution, all models have the closed form optimal solutions.  

  In Case 1, the optimal solution conflicts with the assumption Q < O for the tested 

examples. So the constraint solution of Case 1c, Q*= O*, is used in Case 1. It means 

that the supplier’s planned capacity should be at least equal to the manufacturer’s 

planned order quantity. Supplier’s capacity strategy of being less than the 

manufacturer’s planned order quantity is not in the best interest of the supplier. This 

result provides the managerial or operational decision implication. To get the optimal 

results, the manager should choose the strategy Q* ≥ O* in any case.  

  There is an effective range for each subcase. For a given O, the supplier needs to 

compare the response actions to decide the best action that provides the maximum 

expected profit. In most of the tested examples, the response function E(π)(O) of 

subcase Case 2a Q > 1.2O is superior to that of all other subcases in the effective 

regions.   

 The parameter sensitivities were also studied through the numerical experiments. 

 Effects of uniform distribution lower limit a and upper limit b: we tested different 

sets of (a, b) with the same µ (7500). When (b-a) increases, O* and Q* increases 

too.  The ratio of Q*/O* becomes large. Both supplier’s profit and manufacturer’s 

E(cost) increase. It implies that in order to reduce the manufacturer’s cost, supply 

chain should forecast demand more accurately by reducing (b-a).  

 Effects of high production compensation m1: since Case 1 and Case 2b do not 

include item m1, only Case 2a, and Case 2c are affected by the m1 change. 

Comparing the response function E(π)(O) for all subcases, Case 2a is the optimal 

strategy when m1 varies. We also found that the effect of m1 on optimal capacity 

Q* is not significant.  

 Effects of the penalty cost e1 and shortage cost s1: these two costs are the same cost. 

When e1 or s1 increases, the optimal order O* will decrease slightly, capacity Q* 

will increase a lot, supplier’s profit will decrease, and manufacture cost will 
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increase. So large s1 is not good for both manufacturer and supplier. Comparing the 

performance of Case 1 and Case 2 under different e1 and s1 will provide the insights 

for managers to choose the optimal strategy. The supplier should choose Case 2a 

strategy Q > 1.2O to avoid penalty and get optimal profit E(π). Also, the study about 

e1 and s1 helps managers to decide the optimal value of e1 or s1 in the contract. e1 

or s1 cannot be too small or too big. When e1 is between $12500 and $15000, Q* 

and O* are more reasonable. Otherwise, the penalty has no meaningful effect on 

the supplier’s capacity decision.  

 Effect of low demand compensation h: when h decreases, Q* and O* increase, and 

supplier’s unit benefit and manufacturer’s cost increase too. The manager should 

decide appropriate h1 to balance O* and Q*, as well as manufacturer’s cost E(cost) 

and supplier’s profit E(π).  

The numerical experiments provide the interesting managerial insights on some critical 

parameters in the contract model.  Future work would include:  conducting more sensitivity 

analyses to parameters, such as supplier’s product price p, variable cost cs, and fixed cost 

c0; also conducting the multiple parameter covariance analyses under different subcases; 

changing the compensation with different level (20% in this research) for different 

industries; and treating some key parameters as variables to get optimal solutions. Also for 

the future work, more analyses can be done with the different stochastic demand 

distributions, such as Poisson distribution, exponential distribution or normal distribution. 

At the certain situation, such as normal distribution, it is hard to find a closed form solution. 

So comparing the two cases to find the implied insights is also important for applying this 

type of frameworks in practice.  

5.8 Appendix  

Appendix A: To prove E(cost) in uniform distribution is a convex function  

 Case 1: Q < O Manufacturer’s cost function:  

𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂) − ∫ 𝑒 (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

+ ∫ ℎ (0.8𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

 (4.4) 
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𝑑𝐸(cost)

𝑑𝑂
= 𝑅 (𝑂) 𝑝 + mc + 𝑒 𝐹(𝑂) − 𝑠 + 𝑅 (𝑂) ⋅ 𝐹 𝑅(𝑂) 𝑠 − 𝑝 − mc − 𝑒  

+𝑒 ⋅ 𝑓(𝑂)(𝑅(𝑂) − 𝑂) + 0.8 ⋅ ℎ ⋅ 𝑅 (𝑂) ⋅ 𝐹 0.8 ⋅ 𝑅(𝑂) + 𝑔  

We need to check if the second derivative of E(cost) of Case 2a is positive to ensure that 

the total expected cost is minimized at O* or to prove Case 2a E(cost) is a convex function.   

It is difficult to calculate 
( )

. We apply method II in Figure 5.2 to calculate it in a 

uniform distribution. The step is that first to do integral to E(cost), which becomes to an 

algebra function. Secondly, perform first order derivative to algebra function to find 

solution Q*. Thirdly perform second order derivative to algebra function to test 
( )

.  

Step 1. Substitute uniform distribution pdf 𝑓(𝑥) =    to manufacturer’s objective 

function (4.4) and do the integral calculation.  

𝐸(cos𝑡) =
( )

(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ ) ⋅ 𝑄

+ ((𝑝 + 𝑐 )𝑏 − 0.8𝑎ℎ − 𝑠𝑏) ⋅ 𝑄 + 𝑂 ⋅ 𝑄

−
( )

𝑂 + 𝑔 ⋅ 𝑂 +
( )

[𝑎 (−𝑝 − 𝑐 + ℎ ) + 𝑠𝑏 ] + 𝑔

  (5.12) 

Step 2. Do the derivative 
( )

, substitute 𝑄∗ = α + β𝑂, 
∗

=  β to Formula (5.12) 

𝑑𝐸(𝑐𝑜𝑠𝑡)

𝑑𝑂
=

1

(𝑏 − 𝑎)
(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ ) ⋅ 𝑄 ⋅

𝑑𝑄∗

𝑑𝑂
+

1

𝑏 − 𝑎
[(𝑝 + 𝑐 )𝑏 − 0.8𝑎ℎ − 𝑠𝑏] ⋅

𝑑𝑄∗

𝑑𝑂

=
1

(𝑏 − 𝑎)
[𝛽 (𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ ) + 2𝑒 𝛽 − 𝑒 ] ⋅ 𝑂

+
𝛽

𝑏 − 𝑎
((𝑝 + 𝑐 )𝑏 − 0.8𝑎ℎ − 𝑠𝑏)

𝛼𝛽

𝑏 − 𝑎
(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ ) +

𝛼𝑒

𝑏 − 𝑎
+ 𝑔  

Set 
( )

 = 0, we get the same solution as (5.4): 

𝑂∗ =
𝛼𝛽(𝑝 + 𝑐 + 𝑒 − 𝑠 − 0.64ℎ ) − 𝑒 𝛼 + (0.8ℎ 𝑎 + 𝑠𝑏 − 𝑝𝑏 − 𝑏𝑐 )𝛽 − 𝑔 (𝑏 − 𝑎)

(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ )𝛽 + 2𝑒 𝛽 − 𝑒
 (5.4) 

Step 3: Do the second derivative test for O*. Since e1 = s1 

𝑑𝐸 (cos𝑡)

𝑑𝑂
=

1

𝑏 − 𝑎
[𝛽 (𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ ) + 2𝑒 𝛽 − 𝑒 ]

=
1

𝑏 − 𝑎
[𝛽 (−𝑝 − 𝑐 + 0.64ℎ ) + 2𝑒 𝛽 − 𝑒 ] 

(5.7) 

Where  



131 
 

𝛽 =
𝑒

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 (5.3) 

Substitute numerical example to (5.3), and (5-7), we have  

( )
 > 0 so E(cost) is convex function and has the minimum value at O* in Case 1 with 

uniform distribution.  

Case 2:  Q > O 

Since penalty = 0, we have ∫ 𝑒 (𝑥 − 𝑅(𝑂))𝑓(𝑥)𝑑𝑥
( )

=0.      

o Case 2a: when Q > 1.2O, add m(O, Q) and g(O, Q) 

𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

+ ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥 + ∫ 𝑚 (𝑥 − 1.2𝑂)𝑓(𝑥)𝑑𝑥
.

+ ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

              (4.10) 

𝑑𝐸(cos𝑡)

𝑑𝑂
= (𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0.8ℎ 𝐹(0.8𝑂)

+𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹(1.2𝑂)

+𝑓(𝑅(𝑂)) ⋅ 𝑅′(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔 + 1.2𝑚 )]

 
                            

(4.11) 

We need to check if the second derivative of E(cost) of Case 2a is positive to ensure that 

the total expected cost is minimized at O*, or to prove Case 2a E(cost) is a convex function.  

It is difficult to prove 
( )

 > 0. We apply method II in Figure 5.2 to calculate it in 

uniform distribution. The proof procedure is the same as the one used in Case 1.  

Step 1. Substitute uniform distribution pdf 𝑓(𝑥) =    to manufacturer’s objective 

function (4.10) and do integral calculation first.  

𝐸(cost) =
(−𝑝 − 𝑐 + 𝑚 + 𝑠 + 𝑔 )

2(𝑏 − 𝑎)
⋅ 𝑄 +

1

𝑏 − 𝑎
(𝑝 + 𝑐 − 𝑠)𝑏 ⋅ 𝑄 −

1.2𝑚 + 𝑔

𝑏 − 𝑎
⋅ 𝑂 ⋅ 𝑄 +

(1.44𝑚 + 0.64ℎ + 𝑔 )

2(𝑏 − 𝑎)
⋅ 𝑂 + (𝑔 −

0.8𝑎ℎ

𝑏 − 𝑎
) ⋅ 𝑂 + 𝑔 +

1

2(𝑏 − 𝑎)
(𝑎 ℎ + 𝑏 𝑠 − (𝑝 + 𝑐 )𝑎 )

    (5.13) 

Step 2: Perform a derivative 
( )

, substitute 𝑄∗ = ζ + η𝑂,  
∗

  = η to (5.13) 
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𝑑𝐸(cost)

𝑑𝑂
=

1

(𝑏 − 𝑎)
(−𝑝 − 𝑐 + 𝑚 + 𝑠 + 𝑔 ) ⋅ 𝑄 ⋅ 𝜂 +

1

𝑏 − 𝑎
(𝑝 − 𝑠)𝑏 ⋅ 𝜂

−
1.2𝑚 + 𝑔

𝑏 − 𝑎
⋅ (𝑄 + 𝑂η) +

1

(𝑏 − 𝑎)
(1. 2 𝑚 + 0. 8 ℎ + 𝑔 ) ⋅ 𝑂 + 𝑔 −

0.8𝑎ℎ

𝑏 − 𝑎

 

Set 
( )

 = 0, we get the same solution as (5.8): 

𝑂∗ =
𝜁[𝜂(𝑝 + 𝑐 − 𝑠 − 𝑔 − 𝑚 ) + 𝑔 + 1.2𝑚 ] − (𝑝 + 𝑐 − 𝑠)𝜂𝑏 − 𝑔 (𝑏 − 𝑎) + 0.8ℎ 𝑎

𝜂 (𝑠 − 𝑝 − 𝑐 + 𝑔 + 𝑚 ) − 2𝜂(𝑔 + 1.2𝑚 ) + 𝑔 + 0.64ℎ + 1.44𝑚
 

 (5.8) 

Step 3: Do the second derivative test for O*, 

𝑑𝐸 (cos𝑡)

𝑑𝑂
=

1

𝑏 − 𝑎
[(−𝑝 − 𝑐 + 𝑚 + 𝑠 + 𝑔 ) ⋅ 𝜂 − 2(1.2𝑚 + 𝑔 )𝜂 + (1. 2 𝑚 + 0. 8 ℎ + 𝑔 )] 

where            

               𝜂 =
1.2𝑚

𝑐 − 𝑝 + 𝑚
 (5.7) 

Substitute numerical example to (5.3), and (5.7), we have (η < 0, s > p), 
( )

 > 0, so 

E(cost) is convex function and has the minimum value at O* in Case 2 with uniform 

distribution.  

o Case 2b: O < Q < 1.2O.  

       m(O, Q) = 0.  

     𝐸(cos𝑡) = ∫ (𝑝 + 𝑐 )𝑥𝑓(𝑥)𝑑𝑥 + ∫ (𝑝 + 𝑐 )𝑄𝑓(𝑥)𝑑𝑥 + 𝑔(𝑂)

   + ∫ 𝑔 (𝑥 − 𝑂)𝑓(𝑥)𝑑𝑥

       + ∫ ℎ (0.8𝑂 − 𝑥)𝑓(𝑥)𝑑𝑥
.

+ ∫ 𝑠(𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

    

 (4.14) 

𝑑𝐸(cos𝑡)

𝑑𝑂
= (𝑝 + 𝑐 − 𝑠)𝑅′(𝑂) 1 − 𝐹 𝑅(𝑂) + 𝑔 + 0.8ℎ 𝐹(0.8𝑂)

+ 𝑔 𝐹(𝑂) − 𝐹(𝑅(𝑂)(𝑔 + 1.2𝑚 ) + 1.2𝑚 𝐹(1.2𝑂)

+ 𝑓(𝑅(𝑂)) ⋅ 𝑅′(𝑂) ⋅ [𝑅(𝑂)(𝑔 + 𝑚 ) − 𝑂(𝑔 + 1.2𝑚 )]

                   (4.11) 

        
𝑑𝐸(cos𝑡)

𝑑𝑂
= 𝑔 + 0.8ℎ 𝐹(0.8𝑂) + 𝑔 𝐹(𝑂) − 𝑔 𝐹(𝑄) 
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As we discussed in Chapter 4, there is no solution to satisfy 
( )

 = 0.  

So the constraint solution for Case 2b is:  

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
  (4.13) 

O* = 1/1.2∙ Q*.         (4.17) 

For example, substituting the parameter values (c0 = 500, p = 9300, cs = 8000) to Formula 

(4.8) and (4.17), then F(Q*) = 1 - 500/(9300 – 8000) = 0.6154.  

 For normal distribution N(7500, 2166.672), Q* = 8136 from the inverse of F(Q*) = 

0.6154. So the optimal solution O* = 0.833Q* = 6780.  

 For uniform distribution U(1000, 14000), 𝐹(𝑄) =  
 
 , then Q = F(Q) (b-a) + a. 

Since Q* = 9000, so the optimal solution O* = 1/1.2∙ Q* = 7500.  

Appendix B: Constraint optimization solution in uniform distribution: 

Case 1 Q ≤ O 

1)  For Case 1  

𝑂∗ =
𝛼𝛽(𝑝 + 𝑐 + 𝑒 − 𝑠 − 0.64ℎ ) − 𝑒 𝛼 + (0.8ℎ 𝑎 + 𝑠𝑏 − 𝑝𝑏 − 𝑏𝑐 )𝛽 − 𝑔 (𝑏 − 𝑎)

(𝑠 − 𝑝 − 𝑐 − 𝑒 + 0.64ℎ )𝛽 + 2𝑒 𝛽 − 𝑒
 

(5.4) 

𝑂∗ = 𝑅(𝑂) = 𝛼 + 𝛽𝑂 (5.1) 

Where   

𝛼 =
(𝑝 − 𝑐 − 𝑐 )𝑏 + (𝑐 − 0.8ℎ )𝑎

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 

(5.2) 

 𝛽 =
𝑒

𝑝 − 𝑐 + 𝑒 − 0.64ℎ
 (5.3) 

2) For Case 1c constraint, if Q* > O, let Q*= R(O) = O, which means Q* = R(O) = O, 

R’(O) = 1, 

We have solution formula (5.9) for any type of distribution.  
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(𝑝 + 𝑐 − 𝑠) + 𝐹(𝑂) ⋅ (𝑠 − 𝑝 − 𝑐 ) + 0.8ℎ ⋅ 𝐹(0.8𝑂) + 𝑔 = 0    (5.9) 

For uniform distribution, we have:  

𝑂∗ =
𝑏(𝑝 + 𝑐 − 𝑠 + 𝑔 ) − 𝑎(𝑔 + 0.8ℎ )

𝑝 + 𝑐 − 𝑠 − 0.64ℎ
 

                           (5.10) 

O* from formula (5.10) and Q*= O is the constraint solution if Q* > O. Also if we substitute 

α = 0, β = 1 to (5.4), we can get the same result as (5.10). 

3)  For Case 2a Q > 1.2O,  

 If Q*>1.2O, this is the normal situation. 

𝑂∗ =
𝜁[𝜂(𝑝 + 𝑐 − 𝑠 − 𝑔 − 𝑚 ) + 𝑔 + 1.2𝑚 ] − (𝑝 + 𝑐 − 𝑠)𝜂𝑏 − 𝑔 (𝑏 − 𝑎) + 0.8ℎ 𝑎

𝜂 (𝑠 − 𝑝 − 𝑐 + 𝑔 + 𝑚 ) − 2𝜂(𝑔 + 1.2𝑚 ) + 𝑔 + 0.64ℎ + 1.44𝑚
 

(5.8) 

                              𝑄∗ = 𝑅(𝑂) = 𝜁 + 𝜂𝑂                                              (5.5) 

    𝜁 =
𝑐 (𝑏 − 𝑎) + 𝑏(𝑐 − 𝑝)

𝑐 − 𝑝 + 𝑚
 

(5.6) 

 

               𝜂 =
1.2𝑚

𝑐 − 𝑝 + 𝑚
 

(5.7) 

     Formula (5.5) ~ (5.8) is the solution when Q* >1.2O. 

4)  For Case 2b O < Q ≤ 1.2O,  

     We have constraint solution 1: (from Q* to O) 

𝐹(𝑄∗) = 1 −
𝑐

𝑝 − 𝑐
 (4.13) 

            O = 1/1.2∙ Q* 

For uniform distribution, we have 

 So Q* can be obtained by 

𝐹(𝑄∗) =
𝑄∗ − 𝑎

𝑏 − 𝑎
 

𝑄∗ = (1 −
𝑐

𝑝 − 𝑐
)(𝑏 − 𝑎) + 𝑎 (5.11) 
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Calculate the profit of supplier and the cost of manufacture for constraint solution 1 and 2, 

and compare the results then choose the solution.   
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CHAPTER 6 

CONCLUSION AND FUTURE RESEARCH 

6.1 Conclusion 

The automotive industry plays an important role in the global economy. The automotive 

supply chain is complex due to the large number of parts assembled into an automobile, 

the multiple layers of suppliers for those parts, and the coordination of the material, 

information, and finance flows across the supply chains. Many uncertainties and natural 

and man-made disasters have repeatedly stricken and disrupted automotive OEMs and their 

supply chains. The purpose of this research is (1) to find the underlying supply chain risk 

management problems in the automotive industry; (2) to develop the theoretical models to 

help the decision-making of supply chain managers in these uncertain scenarios.  

The major contributions of this study are:  

(1) Provided a literature review of the existing research work on the supply chain risk 

identification and management, considering (but not limited to) the characteristics of the 

automotive supply chain, since the literature focusing on automotive supply chain risk is 

limited. The review provides a summary and a classification for the underlying supply 

chain risk resources in the automotive industry; and an overview of the current research on 

automotive SCRM, with an emphasis on the quantitative methods and mathematical 

models, currently used. Through the literature review, it was found that auto organizations 

implementing supply chain risk management can gain many benefits, such as an improved 

focus on risk and more effective risk mitigation. Other benefits include the elimination of 

potential and unexpected costs, reduced disruption, and decreased recovery time.  

Therefore, there are improvements in the overall supply chain performance. It is important 

for auto organizations to understand the risk assessment and management along the supply 

chain and to develop more theoretical models and practical risk mitigation methods to 

guide the process in the future. 

(2) Two mathematical models are developed focusing on the supply chain risk management 

in the automotive industry. The first model is for optimizing manufacturer cooperation in 

supply chains.  Since the automotive supply chain is a multiple layer and complex network, 

the relationship between supply chain members is very important for risk management. 
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Supplier development is a long-term and resource-consuming business activity that 

requires commitment from both the manufacturer and the suppliers. OEMs often invest a 

large amount of money in supplier development to improve their suppliers’ capabilities 

and performance. How to allocate the investment optimally among multiple suppliers to 

minimize risk while maintaining an acceptable level of return becomes a critical issue faced 

by manufacturers or automotive OEMs. Talluri et al. (2010) applied Markowitz’s model to 

manufacturer cooperation in supplier development under risk. Talluri’s model assumes that 

the return of investment to the supplier is proportional to the investment.  Actually, in most 

situations the return is nonlinear. This research revised Talluri’s manufacturer cooperation 

model with the nonlinear return and intended to apply it to the auto industry.  

(3) The second one is a mathematical model for an optimal contract for product 

development with risk consideration (penalty and compensating) and demand uncertainty, 

especially for the automotive supply chain. As a common ex-ante strategy in risk 

management, the supply chain contracts play an important role for supply chain members, 

such as OEMs and suppliers, to coordinate and to share risks arising from various sources 

of uncertainty. The objective of this part of the research is to design a supply contract when 

developing a new product in order to reduce the risks and maximize profits under 

uncertainty demands. More specifically, we investigated how to decide the supplier’s 

capacity and the manufacturer’s order in the supply contract when the demand for the new 

product is highly uncertain. Based on the newsvendor model and Stackelberg game theory, 

we developed a single period supply chain model for a product development contract 

consisting of a supplier and a manufacturer with demand uncertainty. Two cases are 

considered, Case 1 Q ≤ O, and Case 2 Q > O, which included two subcases, Case 2a Q > 

1.2O and Case 2b O < Q ≤ 1.2O. The subgames are solved by Nash subgame perfect 

equilibrium.  

(4)  The optimal solutions of the models with consideration for demand uncertainty were 

discussed, and the numerical experiments, which simulate an automotive OEM data when 

a new electric vehicle (EV), is developed. The analytical solutions are studied for the 

situation where the demand follows a uniform distribution, and the computational tests are 

reported. With a uniform distribution, all models have closed form optimal solutions. Based 

on Nash subgame perfect equilibrium, comparing the performance in the subcases of Case 
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1 and Case 2, the optimal solution is chosen. The comparing criteria are based on the value 

of the manufacturer’s total cost E(cost), since the manufacturer is the leader in the 

Stackelberg game. The smaller the E(cost), the better the solution. The sensitivity analyses 

are  performed for different parameters under uniform distributions; for the single period 

decentralized case. The numerical experiment provides the interesting managerial insights 

on some critical parameters in the contract model. The proposed solution provides an 

effective tool for making the supplier-manufacturer contracts when the manufacturer faces 

highly uncertain demand.  

6.2 Future Research 

The optimal supply chain contract model developed in this research is for a single period. 

The future work can improve the model for two or more periods. In the single period 

contract scenario, the forecast accuracy is very critical. If the real demand is far less than 

expected demand, the supplier will be over-capacitated, and the manufacturer will be 

requested to pay the compensation to suppliers, which would be very costly. A good 

example is the plug-in electrical vehicle (EV). Many auto OEMs and EV start-ups forecast 

a market demand is booming for plug-in EVs in the last few years.  They made the 

production schedules and requested the supplier capacities based on their forecast.  

However, the actual market demand was far below that. It has posed detrimental risks to 

the OEMs and suppliers.  Some EV start-ups and battery suppliers, such as Fisker and A-

123, even went bankrupt. Some OEMs have to compensate the supplier’s cost up to 

multimillion dollars each year for unused supplier capacity. 

In the two period supply chain contract model, half of the full year order quantity is 

contracted in the first period, and hence the supplier will prepare its capacity accordingly. 

Based on Product Life Cycle as shown in Figure 6.1, in the introduction stage, the product 

sales is about 1/3 of the sales in the peak time. From the sales in the introduction stage or 

the first year, the manufacturer can understand the trend of product lifecycle more.  Then 

the manufacturer and the supplier can adjust the capacity through the second-period 

contract. If the sales trend is far less than the forecasted demand, the capacity does not need 

to be increased, so the second-period contract is not considered. Also, both the 

manufacturer and the supplier can reduce the cost. If the sales trend is equal or larger than 
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forecasted demand, the second-period contract can catch up the capacity gap. Since the 

development of the second-period capacity takes less time, the production quantity can 

meet the demand of growth period of product lifecycle in a fairly short time. The timeline 

for two – the period contract is illustrated as Figure. 6.2. 

 

    

Figure 6.1.  Product Life Cycle 

 

Figure 6.2. The Timeline of Two – Period Contract  

A two-period supply chain contract can reduce the risk of going over or under capacity. 

Based on this research, another possible future work is to apply non-linear return supplier 

development models to the automotive industry, such as more suppliers (30 ~ 100), or more 

investment amount. In addition, for a new product development contract model, the future 

work would include: conducting more parameter sensitivity analyses for different subcase 

response function E(𝜋)(O); changing the compensation for  different levels (20% in this 

research) and also for different industries; selecting and treating some key parameter as 

variables to get optimal solution; developing nonlinear pricing contract model; extending 

the contract model to a large and more complex risk game; investigating the performance 

of two game players in information asymmetry situations; extending risk sharing model to 

three players; studying the contract model in different stochastic demand distributions, 
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such as Poisson distribution, exponential distribution or normal distribution to gain the 

managerial insights.   

Also based on the literature review in ASCRM, the following research work could be done 

in the future:  

1. The study and development of systematic methods and systems to analyze ASCRM by 

integrating the different risk sources. Most research work in the automotive industry is 

based on specific points of views, i.e., the suppliers or the manufacturers. There is no 

systematic method of the system to analyze and integrate different ASCRM strategies, such 

as how to choose supply locations, transportation, to optimize the objectives for both the 

manufacturers and the suppliers as a system and to reduce geographic or political risks in 

the automotive supply chain in the global environment. The existing research on the impact 

on the automotive network resulting from supply chain risk has not been sufficient. This 

area requires more related research to be conducted in the future.  

2. The use of data- and big-data-based ASCRM: One of the major automotive supply chain 

risks is nontransparency resulting from the multiple layers in the supply chain. Typically, 

OEMs have substantial data about Tier-1 suppliers, but they lack data from Tier-2 to Tier-

N suppliers. Nontransparency makes it very difficult to monitor risks and issue warnings. 

Big-data analytics can provide a basis for transparency in automotive supply chains. With 

the help of real-time big data availability, OEMs and suppliers can improve their supply 

chain transparency, monitor the occurrence of risks, provide early warnings and responses, 

and enable managers to develop risk mitigation strategy to prevent the risks. Big-data-

based sense-and-respond systems for ASCRM are worth further research.  

3.  The study of the downstream risks to the automotive supply chain: There is not enough 

research on automotive-industry-specific models. The special aspect of the automotive 

supply chain is its complexity owing to the huge number of multitier suppliers and 

globalized network. Further study is required on downstream risks to the automotive supply 

chain besides demand uncertainty, such as call-back risk and how to build a resilient 

network. 

4.  The implementation of more quantitative models: Through a literature review, we found 

that the majority of research on automotive supply chain risk employs empirical 
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approaches. There is a real demand in the automotive industry to use quantitative models 

to evaluate supplier risks regarding different tiers and different type of suppliers. Some 

quantitative models just address simple two-layer supply chains owing to the lack of deep 

downstream suppliers’ information. Proposed future work includes quantitative model 

development for complex ASCRM and improvement of the mathematical models to cope 

with real-life situations. Traditional risk modeling, including the use of the utility function, 

variance, standard deviation, mean–variance, value at risk, and conditional value at risk, 

has rarely been applied to ASCRM. These modeling methods can be applied to ASCRM. 

5. Addressing advanced technology challenges: In recent decades, revolutions in 

information technology and telecommunications have brought about dramatic changes in 

our daily lives and the automotive industry as well. Automakers continuously offer new 

high-technology features in their products (e.g., GPS, telematics, various sensors, ADAS, 

and RFID.). These high-technology features present many technological challenges in the 

automotive supply chain. One of these challenges is the risk posed to vehicle design, 

production, quality, and after-sales services by the short product development cycle and 

the long useful life of vehicles. Automotive manufacturers must mitigate risk through their 

component suppliers. Future research needs to be done on car manufacturers' selection of 

proper suppliers and on improving coordination and cooperation among supply chain 

vendors. 

6. The research on autonomous cars and car-sharing services: In recent years, autonomous 

cars have emerged as the future of the automotive industry. Experts have predicted that 

fully autonomous cars will arrive at the market by 2025 to 2030 (Liuima, 2016). Car- 

sharing services using autonomous vehicles could be attractive for many private buyers as 

well. It is suggested that new-car sales in the US could be eroded by as much as 40%. Like 

any new product, autonomous cars will have demand uncertainty because of many 

obstacles, such as adoption rate, technological challenges, liability disputes, laws, and 

regulations. Demand uncertainty implies overcapacity risk or under capacity risk. Future 

work includes improving forecast accuracy to optimize contracts and production capacity 

and to reduce supply chain risk. 
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