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ABSTRACT

In this paper, we study inference problem about the drift parameter matrix

in multivariate generalized Ornstein-Uhlenbeck processes with an unknown change-

point. In particular, we study the case where the matrix parameter satisfies uncertain

restriction. Thus, we generalize some recent findings about univariate generalized

Ornstein-Uhlenbeck processes. First, we establish a weaker condition for the exis-

tence of the unrestricted estimator (UE) and we derive the unrestricted estimator

and the restricted estimator. Second, we establish the joint asymptotic normality of

the unrestricted estimator and the restricted estimator under the sequence of local

alternatives. Third, we construct a test for testing the uncertain restriction. The

proposed test is also useful for testing the absence of the change-point. Fourth, we

derive the asymptotic power of the proposed test and we prove that it is consistent.

Fifth, we propose the shrinkage estimators and we prove that shrinkage estimators

dominate the unrestricted estimator. Finally, in order to illustrate the performance

of the proposed methods in short and medium period of observations, we conduct a

simulation study which corroborate our theoretical findings.
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Nkurunziza. His encouragement, experience, advice, guide me through the hard time.

His rigorous and conscientious attitude, and enthusiasm for teaching always inspire

me deeply. All the things I learned from Dr. Sévérien Nkurunziza will not only benefit
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Chapter 1

Introduction

The Ornstein-Uhlenbeck process (O-U) has been applied to model different phenom-

ena in finance, physics, insurance among others. For instance, Vasicek (1977) applied

univariate Ornstein-Uhlenbeck process to explain the mean reversion feature of bond

yields, while Langetieg (1980) applied the multivariate Ornstein-Uhlenbeck process

to analyse correlated economic factors. To give more applications of the Ornstein-

Uhlenbeck (O-U) process, we also quote Erlwein et al. (2010) who used this process

to study the electricity market. The O-U has also been used to analyse the insurance

problems (see Liang et al., 2011), the shipping industry (see Benth et al., 2015) , and

the survival data (see Aalen and Gjessing, 2004). However, the classical O-U process

is suitable to model the dataset for which the mean reversion level does not depend

on time. Thus, Dehling et al. (2010) introduced a generalized O-U process for which

the mean reversion level is time-dependent. Further, Dehling et al. (2014) proposed

a model which can capture possible unconventional shocks as well as the seasonality

trend. For further details about the impact of change-point on statistical analysis, we

quote Lu and Lund (2007), Gombay (2010) and Robbins et al. (2011) among others.
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Just recently, Nkurunziza and Zhang (2018) studied inference problem in generalized

O-U with an unknown change-point when the drift parameter is suspected to sat-

isfy some restrictions. To give another recent reference about inference problem in

generalized O-U, we also quote Chen et al. (2017) and the references therein.

To the best of our knowledge, there is no study about inference problem in con-

text of multivariate periodic mean-reverting stochastic with a possible change-point.

Nevertheless, as discussed in Pigorsch and Stelzer (2009), it is important to capture

the individual dynamics of the model as well as the correlation structure and effects

across different financial assets in a financial market. In this thesis, we hope to fill

this gap by proposing inference methods about the drift parameter matrix in con-

text of multivariate generalized O-U with an unknown change-point. The proposed

model can capture the correlations between different factors, the seasonality trend

as well as the possible unconventional shocks. The proposed inference incorporates

also uncertain prior information about the drift parameter matrix. The uncertain

prior information is given in form of linear restriction binding the columns or the

rows of the drift parameter matrix. Such a restriction includes a special case of the

nonexistence of the change-point as well as the absence of the seasonality factor in

context of correlated stochastic processes.

1.1 Main contributions of the thesis

In this section, we highlight the important contributions of the thesis. As compared

to the findings in literature, we generalize in five ways the results in Dehling et

al. (2010, 2014), Nkurunziza and Zhang (2018) and Chen et al. (2017). First, we

consider inference problem in multi-dimensional context and we establish a more
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general result underlying the existence of the unrestricted estimator (UE) and the

restricted estimator (RE) of the drift parameter. We also derive the UE and the RE.

Second, we establish the joint asymptotic normality of the UE and the RE under the

sequence of local alternatives. Third, we construct a test for testing the uncertain

restriction. The proposed test is also useful for testing the absence of the change-point

as well as the nonexistence of the seasonality factor. Fourth, we derive the asymptotic

power of the proposed test and we prove that it is consistent. Fifth, inspired by the

work in James and Stein (1961), we develop some shrinkage estimators (SEs) and we

prove that SEs dominate the UE.

1.2 Organization of the thesis

This thesis contains seven chapters including the introdution and the conclusion. The

rest of this thesis is organized as follows: In Chapter 2, we introduce the statistical

model and regularity conditions. We also present in this chapter some preliminary re-

sults on the no change-point case. In Chapter 3, we derive the unrestricted maximum

likelihood estimator (UMLE) and restricted maximum likelihood estimator (RMLE)

in the case of one known change-point. We also derive in this chapter the joint asymp-

totic normality of the UMLE and the RMLE. In Chapter 4, we derive the UE and RE

in the case of one unknown change-point as well as their joint asymptotic normality.

We also construct in this chapter a test for testing the uncertain restriction, and we

introduce the SEs. In Chapter 5, we compute the asymptotic distributional risks

(ADR) for the UE, RE, and SEs, and then, we compare the relative performance

based on their ADRs. In Chapter 6, we carry out a simulation study. Chapter 7 is

the conclusion. The theoretical background is provided in the Appendix A, and some

3



proofs of the main results are provided in the Appendix B.
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Chapter 2

Preliminary results

In this chapter, we present the statistical model and some preliminary results. We also

present the main assumptions used to establish the proposed method. The chapter is

organized in three sections. In Section 2.1, we introduce the multivariate generalized

Ornstein-Uhlenbeck processes as well as some notations. In Section 2.2, we present

the case where no change-point is involved as our preliminary result, and in Section

2.3, we derive some asymptotic properties of this case.

2.1 Statistical model

In this section, we present the model of multivariate generalized Ornstein-Uhlenbeck

processes with a possible change-point, and then, we introduce some mathematical

notations. Let IA denote the indicator function of the event A. For γ = φT and

φ ∈ (0, 1), the statistical model of interest is

dXt =
[
(µ1ϕ(t)− A1Xt)I{t≤γ} + (µ2ϕ(t)− A2Xt)I{t>γ}

]
dt+ Σ1/2dWt, (2.1)

5



with 0 ≤ t ≤ T , and {Wt, t ≥ 0} is a standard d-dimensional Brownian motion, i.e.

Wt =

[
W1(t) W2(t) W3(t) ... Wd(t)

]′
,

{Xt, t ≥ 0} is the corresponding d-dimensional stochastic process, i.e.

Xt =

[
X1(t) X2(t) X3(t) ... Xd(t)

]′
,

ϕ(t) is Rp-valued function on [0, T ], i.e.

ϕ(t) =

[
ϕ1(t) ϕ2(t) ϕ3(t) ... ϕp(t)

]′
,

µ1 ∈ Rd×p, µ2 ∈ Rd×p, A1 ∈ Rd×d, A2 ∈ Rd×d are the parameters of interest, i.e.

µ1 =



µ
(1)
11 µ

(1)
12 µ

(1)
13 ... µ

(1)
1p

µ
(1)
21 µ

(1)
22 µ

(1)
23 ... µ

(1)
2p

µ
(1)
31 µ

(1)
32 µ

(1)
33 ... µ

(1)
3p

...
...

...
. . .

...

µ
(1)
d1 µ

(1)
d2 µ

(1)
d3 ... µ

(1)
dp


, µ2 =



µ
(2)
11 µ

(2)
12 µ

(2)
13 ... µ

(2)
1p

µ
(2)
21 µ

(2)
22 µ

(2)
23 ... µ

(2)
2p

µ
(2)
31 µ

(2)
32 µ

(2)
33 ... µ

(2)
3p

...
...

...
. . .

...

µ
(2)
d1 µ

(2)
d2 µ

(2)
d3 ... µ

(2)
dp


,

A1 =



a
(1)
11 a

(1)
12 a

(1)
13 ... a

(1)
1d

a
(1)
21 a

(1)
22 a

(1)
23 ... a

(1)
2d

a
(1)
31 a

(1)
32 a

(1)
33 ... a

(1)
3d

...
...

...
. . .

...

a
(1)
d1 a

(1)
d2 a

(1)
d3 ... a

(1)
dd


, A2 =



a
(2)
11 a

(2)
12 a

(2)
13 ... a

(2)
1d

a
(2)
21 a

(2)
22 a

(2)
23 ... a

(2)
2d

a
(2)
31 a

(2)
32 a

(2)
33 ... a

(2)
3d

...
...

...
. . .

...

a
(2)
d1 a

(2)
d2 a

(2)
d3 ... a

(2)
dd


,
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Σ = diag (σ2
1, σ

2
2, ..., σ

2
d) is the diffusion parameter matrix of the stochastic process,

which is assumed to be known, i.e.

Σ =



σ2
1 0 0 ... 0

0 σ2
2 0 ... 0

0 0 σ2
3 ... 0

...
...

...
. . .

...

0 0 0 ... σ2
d


.

Further, A1, A2, and Σ are assumed to be positive definite matrices in the mean-

reverting process. Let θ1 =

[
µ1 A1

]
and θ2 =

[
µ2 A2

]
. The parameter of

interest is a d× 2(p+ d)-matrix given by

θ =

[
θ1 θ2

]
. (2.2)

Further, let (µ1ϕ(t)− A1Xt)I{t≤γ} + (µ2ϕ(t)− A2Xt)I{t>γ} = S(θ, t,Xt). The SDE

in (2.1) can be rewritten as dXt = S(θ, t,Xt)dt + Σ1/2dWt, 0 ≤ t ≤ T. Let Ip be

a p-dimensional identity matrix. In some situations, there is a prior information

about the parameters, and hence the parameters might be estimated under certain

constraints. In particular, we consider the case where the parameters may satisfy the

restrictions: L1θ = d1 and θL2 = d2. This restriction motivates the testing problem

H0 : L1θ = d1, θL2 = d2 versus H1 : L1θ 6= d1, or θL2 6= d2, (2.3)

where L1 ∈ Rq×d, L2 ∈ R2(p+d)×n are known full-rank matrices with n < 2(p + d),

q ≤ d, and d1 ∈ Rq×2(p+d), d2 ∈ Rd×n are known matrices. Furthermore, it should

be noted that for a suitable choice of L1, L2, d1, d2, the testing problem can cover

many interseting special cases. For instance, by taking L2 =

[
I(p+d) −I(p+d)

]′
and

d2 = 0, one can test the nonexistence of the change-point with additional restrictions

7



on the parameters given as L1θ = d1. For instance, let L1 =

[
1 −1 0 ... 0

]
and

d1 = 01×(p+d) to reflect the highly positive correlation that is expected between X1(t)

and X2(t) while we are testing the existence of the change-point. As another example,

setting L2 =

 Ip 0 −2Ip 0

0 Id 0 −Id


′

and d2 = 0 gives a testing problem with µ2 =

2µ1 and A1 = A2 (i.e., coefficients of the base functions doubled after the change-

point while other components of θ remain the same) with additional restrictions on

the parameters given as L1θ = d1.

In order to derive the proposed method, we require the following conditions.

Assumption 1. The distributrion of the initial value, X0, of the SDE in (2.1) does

not depend on the drift parameter θ. Further, X0 is independent to {Wt : t ≥ 0} and

E(‖X0‖m2 ) <∞, for some m ≥ 2.

Assumption 2. For any T > 0, the base function {ϕi(t), i = 1, 2, ..., p} is Riemann-

integrable on [0,T] and possesses

(i) Periodicity: ϕi(t+ v) = ϕi(t), for all i =1,2,...,p, where v is the period.

(ii) Orthogonality in L2([0, v], 1
v
dλ):

∫ v

0

ϕ(t)ϕ′(t)dt = vIp.

Remark 1. Since the base function ϕ(t) is bounded on [0, T ] and v-periodic, this

implies that ϕ(t) is bounded on R+.

To introduce some notations, let (Ω,F,P) be a probability space where F is S-

field on the sample space Ω, and P is a probability measure. Further, let Lp denote

the space of measurable p-integrable functions, for some p ≥ 1. For mathematical

convenience, we suppose that F is complete. We also denote
d−−−→

T→∞
,

Lp−−−→
T→∞

,
P−−−→

T→∞
the

convergence in distribution, in Lp-space, and in probability, respectively, as T tends

to infinity. Also, let Op(a(T )) stand for a random quantity such that Op(a(T ))a−1(T )

8



is bounded in probability. Further, we say that a stochastic process {Yt, t ≥ 0} is

Lp-bounded if there exists K > 0 such that E(|Yt|p) < K, for all t ≥ 0, for some

p ≥ 1. We denote Tr(A) to stand for the trace function of a matrix A, and we denote

Vec(A) to stand for the vectorizing operator of a matrix A, i.e., Vec(A) is obtained

by stacking the columns of the matrix A on top of one another starting from the

leftmost column. We define ‖.‖2 and ‖.‖F to be the Euclidean norm and Frobenius

norm respectively. Next, we introduce the following two definitions.

Definition 1. The p× q random matrix X is said to follow a matrix-variate normal

distribution with the p × q mean matrix M and the pq × pq covariance matrix Σ if

Vec(X) ∼ Npq(Vec(M),Σ). We denote it as X ∼ Np×q(M,Σ).

Definition 2. The matrix W: p × p is said to be Wishart distributed if and only if

W = XX′, where X ∼ Np×n(µ, I ⊗ Σ),Σ ≥ 0. If µ = 0, we have a central Wishart

distribution which will be denoted by W ∼ Wn(p,Σ), and if µ 6= 0, we have a non-

central Wishart distribution which will be denoted as Wn(p,Σ,∆), where ∆ = µµ′.

2.2 Preliminary results: No change-point case

In this section, we study the case where there is no change-point. This case is studied

as a preliminary step in order to facilitate the understanding of the proposed method.

In no change-point case, the SDE in (2.1) can be written as

dXt = (µϕ(t)− AXt)dt+ Σ1/2dWt, (2.4)

with 0 ≤ t ≤ T , and µ ∈ Rd×p, A ∈ Rd×d. In case of the statistical model in (2.4),

the parameter of interest is θ =

[
µ A

]
∈ Rd×(p+d). Thus, the drift coefficient is

9



S(θ, t,Xt) = µϕ(t) − AXt. The following proposition shows that the SDE in (2.4)

admits a unique and strong solution which is L2-bounded on [0, T ].

Proposition 2.1. Suppose that Assumption 1-2 hold. Then, the SDE in (2.4) admits

a strong and unique solution that is L2-bounded on [0, T ], i.e. sup
0≤t≤T

E(‖Xt‖2
2) <∞.

The proof of this proposition is given in the Appendix B where a more general

case is considered. Further, below we prove that {Xt, t ≥ 0} is uniformly L2-bounded.

Remark 2. From Proposition 2.1, one concludes that

P

(∫ T

0

‖S(θ, t,Xt)‖2
2dt <∞

)
= 1,

for all 0 < T < ∞, for all θ ∈ Θ. This is a sufficient condition for the existence of

the Radon-Nikodym derivative of a stochastic process.

Proposition 2.2. The trajectory of the SDE in (2.4) is given by

Xt = e−AtX0 +e−At
∫ t

0

eAsµϕ(s)ds+e−At
∫ t

0

eAsΣ1/2dWs. Further, sup
t≥0

E(‖Xt‖2
2) <∞.

Proof. Let g(x, t) = eAtx, and apply Itô’s formula to g(x, t) with the process specified

in (2.4), we get

dg(Xt, t) = eAtdXt + eAtAXtdt = eAt(µϕ(t)dt+ Σ1/2dWt). (2.5)

Taking integral from 0 to t on both sides of (2.5), we get

eAtXt = X0 +

∫ t

0

eAsµϕ(s)ds+

∫ t

0

eAsΣ1/2dWs. (2.6)

Note that eAt is always invertible with (eAt)−1 = e−At, then mutiplying by e−At on

both sides of (2.6), we get

Xt = e−AtX0 + e−At
∫ t

0

eAsµϕ(s)ds+ e−At
∫ t

0

eAsΣ1/2dWs. (2.7)

10



Further, using (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, we get

E[‖Xt‖2
2] ≤ 3‖e−At‖2

FE(‖X0‖2
2) + 3E

(∥∥∥∥∫ t

0

e−A(t−s)µϕ(s)ds

∥∥∥∥2

2

)

+ 3E

(∥∥∥∥∫ t

0

e−A(t−s)Σ1/2dWs

∥∥∥∥2

2

)
.

Then, by Itô’s isometry, this gives

E

(∥∥∥∥∫ t

0

e−A(t−s)Σ1/2dWs

∥∥∥∥2

2

)
=

∫ t

0

‖e−A(t−s)Σ1/2‖2
Fds ≤ ‖Σ1/2‖2

F

∫ t

0

‖e−A(t−s)‖2
Fds.

Therefore, from Assumption 1, Proposition A.3, Remark 1, let ‖µϕ(s)‖2
2 ≤ Kµ,ϕ,

E(‖X0‖2
2) ≤ K0, and λ1 be the smallest eigenvalue of A′ + A, we get

E[‖Xt‖2
2] ≤ 3de−λ1tK0 + 3

(
Kµ,ϕ + ‖Σ1/2‖2

F

)(d− de−λ1t
λ1

)
,

which implies that sup
t≥0

E(‖Xt‖2
2) <∞, this completes the proof.

In the sequel, let

Xt = e−AtX0 + h(t) + Zt, 0 ≤ t ≤ T, (2.8)

where

h(t) = e−At
∫ t

0

eAsµϕ(s)ds, Zt = e−At
∫ t

0

eAsΣ1/2dWs. (2.9)

Notice that the process {Xt, t ≥ 0} is not stationary. Thus, to apply some limiting

theorem such as Birkhoff’s Ergodic Theorem, we introduce an auxiliary process

X̃t = h̃(t) + Z̃t, 0 ≤ t ≤ T, (2.10)

where

h̃(t) = e−At
∫ t

−∞
eAsµϕ(s)ds, Z̃t = e−At

∫ t

−∞
eAsΣ1/2dW̃s, (2.11)

11



where {W̃s, s ∈ R} denotes a d-dimensional bilateral Brownian motion, i.e.

W̃s = W (1)
s I{s∈R+} +W

(2)
−s I{s∈R−}, (2.12)

where {W (1)
s , s ≥ 0} and {W (2)

s , s ≥ 0} are two independent d-dimensional standard

Brownian motions. Below, we prove that, for each t ∈ [0, 1], {X̃k+t, k ∈ N0} is a

stationary and ergodic process. As an intermediate result, we establish the following

two propositions.

Proposition 2.3. Suppose that Assumptions 1-2 hold. Then, for t ∈ [0, 1], k ∈ N0,

E(Z̃tZ̃
′
t+k) does not depend on t.

Proposition 2.4. Suppose that Assumption 1-2 hold. Then, for t ∈ [0, 1], the process

{X̃k+t, k ∈ N0} is Gaussian.

The proofs of these two propositions are given in Appendix B. By using Propo-

sitions 2.3-2.4, we prove the following proposition which shows that the auxiliary

process {X̃k+t, k ∈ N0} is stationary and ergodic.

Proposition 2.5. Suppose that Assumptions 1-2 hold. Then for t ∈ [0, 1], the se-

quence of random vectors {X̃k+t}k∈N0 is stationary and ergodic.

The proof is given in the Appendix B.

2.3 Asymptotic properties

In this section, we provide some asymptotic properties of the process defined in (2.4).

Also, in the rest of the thesis, we assume without loss of generality that the period

v = 1 for the orthogonal set {ϕi(t), i = 1, 2, ..., p}.

12



Lemma 2.1. Suppose that Assumptions 1-2 hold, let φ0 ∈ [0, 1], then

1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt
P−−−→

T→∞
0.

Proof. It is sufficient to prove that

∥∥∥∥ 1
T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

L1

−−−→
T→∞

0.

Note that∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

=

∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)(X̃ ′t −X ′t)dt
∥∥∥∥
F

≤ 1

T

∫ φ0T

0

∥∥∥ϕ(t)(X̃ ′t −X ′t)
∥∥∥
F
dt ≤ 1

T

∫ φ0T

0

‖ϕ(t)‖2

∥∥∥X̃t −Xt

∥∥∥
2
dt.

According to the Remark 1, let ‖ϕ(t)‖2 ≤ Kϕ for all t, we have∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

≤ Kϕ

T

∫ φ0T

0

∥∥∥X̃t −Xt

∥∥∥
2
dt. (2.13)

Note that from (2.8)-(2.11), we have∥∥∥X̃t −Xt

∥∥∥
2

=
∥∥∥h̃(t) + Z̃t − e−AtX0 − h(t)− Zt

∥∥∥
2

=

∥∥∥∥e−At ∫ 0

−∞
eAsµϕ(s)ds+ e−At

∫ 0

−∞
eAsΣ1/2dW

(2)
−s − e−AtX0

∥∥∥∥
2

=

∥∥∥∥e−At ∫ 0

−∞
eAsµϕ(s)ds+ e−At

∫ ∞
0

e−AsΣ1/2dW (2)
s − e−AtX0

∥∥∥∥
2

≤
∥∥e−At∥∥

F

∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds+

∫ ∞
0

e−AsΣ1/2dW (2)
s −X0

∥∥∥∥
2

. (2.14)

Since A is positive definite, let λ1 be the smallest eigenvalue of A′ + A, then by

Proposition A.3, we have∫ φ0T

0

∥∥∥X̃t −Xt

∥∥∥
2
dt ≤

∫ φ0T

0

∥∥e−At∥∥
F

∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds+

∫ ∞
0

e−AsΣ1/2dW (2)
s −X0

∥∥∥∥
2

dt

≤
∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds+

∫ ∞
0

e−AsΣ1/2dW (2)
s −X0

∥∥∥∥
2

∫ φ0T

0

√
de−tλ1dt

=

∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds+

∫ ∞
0

e−AsΣ1/2dW (2)
s −X0

∥∥∥∥
2

2
√
d

λ1

(1− e−
λ1φ0

2
T )

≤
(∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds

∥∥∥∥
2

+ ‖X0‖2

)
2
√
d

λ1

(1− e−
λ1φ0

2
T )

+

∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥
2

2
√
d

λ1

(1− e−
λ1φ0

2
T ). (2.15)
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Now, by Remark 1 and Assumption 1, we can claim that ‖µϕ(t)‖2 ≤ Kµ,ϕ for all t

and E(‖X0‖2) ≤ K0 <∞. Therefore,

E

(∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

)
≤ Kϕ

T

(
E

(∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds

∥∥∥∥
2

)
+ E (‖X0‖2)

)
2
√
d

λ1

(1− e−
λ1φ0

2
T )

+
Kϕ

T
E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥
2

)
2
√
d

λ1

(1− e−
λ1φ0

2
T ).

Then,

E

(∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

)
≤ Kϕ

T

(
Kµ,ϕ

(∫ 0

−∞

∥∥eAs∥∥
F
ds

)
+K0

)
2
√
d

λ1

(1− e−
λ1φ0

2
T )

+
Kϕ

T
E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥
2

)
2
√
d

λ1

(1− e−
λ1φ0

2
T )

≤ Kϕ

T

(
Kµ,ϕ

2
√
d

λ1

+K0

)
2
√
d

λ1

(1− e−
λ1φ0

2
T )

+
Kϕ

T
E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥
2

)
2
√
d

λ1

(1− e−
λ1φ0

2
T ).

Further, let Kϕ

(
Kµ,ϕ

2
√
d

λ1
+K0

)
2
√
d

λ1
= K1, we have

E

(∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

)
≤ K1

T
(1− e−

λ1φ0
2

T ) +
Kϕ

T
E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥
2

)
2
√
d

λ1

(1− e−
λ1φ0

2
T ).

From the proof of Proposition 2.5, we know that

E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥2

2

)
≤
d
∥∥Σ1/2

∥∥2

F

λ1

. (2.16)

Therefore, by Cauchy Schwarz Inequality, we get

E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥
2

)
≤ E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥2

2

) 1
2

≤

(
d
∥∥Σ1/2

∥∥2

F

λ1

) 1
2

,
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also, let Kϕ

(
d‖Σ1/2‖2

F

λ1

) 1
2

2
√
d

λ1
= K2, we have

E

(∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

)
≤ K1 +K2

T
(1− e−

λ1φ0
2

T ).

Therefore

lim
T→∞

E

(∥∥∥∥ 1

T

∫ φ0T

0

ϕ(t)X̃ ′tdt−
1

T

∫ φ0T

0

ϕ(t)X ′tdt

∥∥∥∥
F

)
= 0,

which completes the proof.

Lemma 2.2. Suppose that the conditions for Lemma 2.1 hold, then

1

T

∫ φ0T

0

X̃tX̃
′
tdt−

1

T

∫ φ0T

0

XtX
′
tdt

P−−−→
T→∞

0.

Proof. It is sufficient to prove that

∥∥∥∥ 1
T

∫ φ0T

0

X̃tX̃
′
tdt−

1

T

∫ φ0T

0

XtX
′
tdt

∥∥∥∥
F

L1

−−−→
T→∞

0.

Note that

E

(∥∥∥∥ 1

T

∫ φ0T

0

X̃tX̃
′
tdt−

1

T

∫ φ0T

0

XtX
′
tdt

∥∥∥∥
F

)
= E

(∥∥∥∥ 1

T

∫ φ0T

0

(X̃tX̃
′
t −XtX

′
t)dt

∥∥∥∥
F

)
≤ 1

T

∫ φ0T

0

E
(∥∥∥X̃tX̃

′
t −XtX

′
t

∥∥∥
F

)
dt.

Notice that X̃tX̃
′
t − XtX

′
t = X̃t(X̃

′
t − X ′t) + (X̃t − Xt)X

′
t, and then, by Triangle

Inequality, we get

1

T

∫ φ0T

0

E
(∥∥∥X̃tX̃

′
t −XtX

′
t

∥∥∥
F

)
dt =

1

T

∫ φ0T

0

E
(∥∥∥X̃t(X̃

′
t −X ′t) + (X̃t −Xt)X

′
t

∥∥∥
F

)
dt

≤ 1

T

∫ φ0T

0

E
(∥∥∥X̃t(X̃

′
t −X ′t)

∥∥∥
F

+
∥∥∥(X̃t −Xt)X

′
t

∥∥∥
F

)
dt.

By Cauchy Schwarz Inequality, we have

E
(∥∥∥X̃t(X̃

′
t −X ′t)

∥∥∥
F

)
≤ E

(∥∥∥X̃t

∥∥∥2

2

)1/2

E

(∥∥∥X̃t −Xt

∥∥∥2

2

)1/2

,

E
(∥∥∥(X̃t −Xt)X

′
t

∥∥∥
F

)
≤ E

(∥∥∥X̃t −Xt

∥∥∥2

2

)1/2

E
(
‖Xt‖2

2

)1/2
.
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Since E (‖Xt‖2
2) <∞ as we showed in Proposition 2.2, let E(‖Xt‖)2

2 ≤ Kx <∞. Also

based on the proof of Proposition 2.5 (B.10)-(B.17), we have

E(‖X̃t‖2
2) ≤ 2

((
2Kµ,ϕd

λ1

)2

+
d2‖Σ1/2‖2

F

λ1

)
<∞.

Let sup
t≥0
{E(‖Xt‖2

2)
1
2 ,E(‖X̃t‖2

2)
1
2} ≤ K <∞, we get

1

T

∫ φ0T

0

E(‖X̃t(X̃
′
t −X ′t)‖F + ‖(X̃t −Xt)X

′
t‖F )dt ≤ 2K

T

∫ φ0T

0

E(‖(X̃t −Xt)‖2
2)1/2dt.

By using (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, we have E(‖(X̃t −Xt)‖2
2) is equal to

E(‖h̃(t) + Z̃t − e−AtX0 − h(t)− Zt‖2
2)

≤ ‖e−At‖2
FE

(∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds+

∫ ∞
0

e−AsΣ1/2dW (2)
s −X0

∥∥∥∥2

2

)

≤ 3‖e−At‖2
F

(∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds

∥∥∥∥2

2

+ E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥2

2

)
+ E(‖X0‖2

2)

)
.

Further, let ‖µϕ(t)‖2 ≤ Kµ,ϕ for all t. Also, by Assumption 1, there exists K0 > 0

such that E(‖X0‖2
2) ≤ K0 <∞. Then, by Proposition A.3 and (2.16), we have

3‖e−At‖2
F

(∥∥∥∥∫ 0

−∞
eAsµϕ(s)ds

∥∥∥∥2

2

+ E

(∥∥∥∥∫ ∞
0

e−AsΣ1/2dW (2)
s

∥∥∥∥2

2

)
+ E(‖X0‖2

2)

)

≤ 3de−λ1t

(Kµ,ϕ
2
√
d

λ1

)2

+K0 +
d‖Σ1/2‖2

F

λ1

 .

Then, set 3d

((
Kµ,ϕ

2
√
d

λ1

)2

+K0 +
d‖Σ1/2‖2F

λ1

)
= K1. We have

E(‖(X̃t −Xt)‖2
2) ≤ K1e

−λ1t.

Therefore

2K

T

∫ φ0T

0

E(‖(X̃t −Xt)‖2
2)1/2dt ≤ 2KK

1/2
1

T

∫ φ0T

0

e−
λ1
2
tdt ≤ 4KK

1/2
1

λ1T
(1− e−

λ1φ0
2

T ).
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Since E

(∥∥∥∥ 1
T

∫ φ0T

0

(X̃tX̃
′
t −XtX

′
t)dt

∥∥∥∥
F

)
≤ 2K

T

∫ φ0T

0

E(‖(X̃t −Xt)‖2
2)1/2dt, we get

lim
T→∞

E

(∥∥∥∥ 1

T

∫ φ0T

0

(X̃tX̃
′
t −XtX

′
t)dt

∥∥∥∥
F

)
= 0,

which completes the proof.

Lemma 2.3. Suppose that the conditions for Lemma 2.1 hold, then

1

T

∫ T

φ0T

ϕ(t)X̃ ′tdt−
1

T

∫ T

φ0T

ϕ(t)X ′tdt
P−−−→

T→∞
0,

1

T

∫ T

φ0T

X̃tX̃
′
tdt−

1

T

∫ T

φ0T

XtX
′
tdt

P−−−→
T→∞

0.

The proof of the first statement follows directly from Lemma 2.1. The proof of

the second statement follows directly from Lemma 2.2

Proposition 2.6. Suppose that the conditions for Lemma 2.1 hold, then

1

T

∫ φ0T

0

ϕ(t)X ′tdt
P−−−→

T→∞
φ0

∫ 1

0

ϕ(t)h̃′(t)dt.

The proof is provided in the Appendix B.

Now, let

V (k) = E(Z̃0Z̃
′
k). (2.17)

Proposition 2.7. Suppose that A is a positive definite matrix and Σ is a symmetric

and positive definite matrix. Then V (0) is a positive definite matrix.

The proof follows directly from algebraic computations.

Proposition 2.8. Suppose that the conditions for Proposition 2.6 hold, then

1

T

∫ φ0T

0

XtX
′
tdt

P−−−→
T→∞

φ0

{∫ 1

0

h̃(t)h̃′(t)dt+ V (0)

}
.
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The proof is provided in the Appendix B.

Proposition 2.9. Suppose that the conditions for Proposition 2.6 hold, then

1

T

∫ T

φ0T

ϕ(t)X ′tdt
P−−−→

T→∞
(1− φ0)

∫ 1

0

ϕ(t)h̃′(t)dt,

1

T

∫ T

φ0T

XtX
′
tdt

P−−−→
T→∞

(1− φ0)

{∫ 1

0

h̃(t)h̃′(t)dt+ V (0)

}
.

The proof of the first statement follows directly from Proposition 2.6 and the

proof of the second statement follows directly from Proposition 2.8. Based on the

Propositions 2.6-2.9, we have the following results, which are crucial in the rest of the

Thesis. For φ0 ∈ [0, 1] and γ = φ0T , let us define

Oγ =


∫ φ0T

0

ϕ(t)ϕ′(t)dt −
∫ φ0T

0

ϕ(t)X ′tdt

−
∫ φ0T

0

Xtϕ
′(t)dt

∫ φ0T

0

XtX
′
tdt

 , (2.18)

and let

Σa =

 Ip −
∫ 1

0

ϕ(t)h̃′(t)dt

−
∫ 1

0

h̃(t)ϕ′(t)dt

∫ 1

0

h̃(t)h̃′(t)dt+ V (0)

 . (2.19)

Proposition 2.10. Suppose that the conditions for Proposition 2.8 hold, then

1

T
Oγ

P−−−→
T→∞

φ0Σa.

Proof. From Proposition 2.6 and Proposition 2.8, it is sufficient to show that

lim
T→∞

1

T

∫ φ0T

0

ϕ(t)ϕ′(t)dt = φ0Ip.

Based on Assumption 2, we have

1

T

∫ φ0T

0

ϕ(t)ϕ′(t)dt =
1

T

∫ bφ0T c
0

ϕ(t)ϕ′(t)dt+
1

T

∫ φ0T

bφ0T c
ϕ(t)ϕ′(t)dt

=
1

T
bφ0T c Ip +

1

T

∫ φ0T

bφ0T c
ϕ(t)ϕ′(t)dt. (2.20)
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Moreover∥∥∥∥∫ φ0T

bφ0T c
ϕ(t)ϕ′(t)dt

∥∥∥∥
F

≤
∫ φ0T

bφ0T c
‖ϕ(t)ϕ′(t)‖Fdt ≤

∫ bφ0T c+1

bφ0T c
‖ϕ(t)ϕ′(t)‖Fdt

=

∫ 1

0

‖ϕ(t)ϕ′(t)‖Fdt = p.

Therefore

lim
T→∞

1

T

∫ φ0T

bφ0T c
ϕ(t)ϕ′(t)dt = 0. (2.21)

Also, we have 0 ≤ φ0T −bφ0T c ≤ bφ0T c+ 1−bφ0T c, then 0 ≤ 1
T

(φ0T −bφ0T c) ≤ 1
T

,

and then

lim
T→∞

bφ0T c
T

= φ0. (2.22)

Therefore, by (2.20), (2.21), and (2.22), we get

lim
T→∞

1

T

∫ φ0T

0

ϕ(t)ϕ′(t)dt = φ0Ip.

Combining Proposition 2.6 and Proposition 2.8, we complete the proof.

Now, let us define

Oγ,T = OT −Oγ =


∫ T

φ0T

ϕ(t)ϕ′(t)dt −
∫ T

φ0T

ϕ(t)X ′tdt

−
∫ T

φ0T

Xtϕ
′(t)dt

∫ T

φ0T

XtX
′
tdt

 . (2.23)

Proposition 2.11. Suppose that the conditions for Proposition 2.10 hold, then

1

T
Oγ,T

P−−−→
T→∞

(1− φ0)Σa.

From Proposition 2.9, the proof is similar to that of Proposition 2.10.

Remark 3. It is possible to derive stronger results than the ones given by Propositions

2.10 and 2.11. In particular, one can prove that 1
T
Oγ and 1

T
Oγ,T converge almost
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surely. For more details, we refer to Nkurunziza and Shen (2018). Nevertheless, the

results given by Propositions 2.10 and 2.11 are sufficient for deriving the main results

of this thesis.
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Chapter 3

Estimation method: the known

change-point case

In this chapter, we present an estimation method in the case of a possible change-

point. We assume that the change point γ = φT is known. The chapter is subdivided

into two sections. In Section 3.1, we derive the unrestricted maximum likelihood

estimator (UMLE) and the restricted maximum likelihood estimator (RMLE). In

Section 3.2, we derive the joint asymptotic normality of the UMLE and RMLE.

3.1 UMLE and RMLE

In this section, we derive the UMLE and the RMLE. In particular, the RMLE is

obtained by using the method of Lagrange multipliers. To introduce some notations,

let γ = φT with φ ∈ (0, 1). Further, define

Pγ =


∫ γ

0

ϕ(t)dX ′t

−
∫ γ

0

XtdX
′
t

 ∈ R(p+d)×d, Pγ,T =


∫ T

γ

ϕ(t)dX ′t

−
∫ T

γ

XtdX
′
t

 ∈ R(p+d)×d, (3.1)
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and

Qγ =


∫ γ

0

ϕ(t)ϕ′(t)dt −
∫ γ

0

ϕ(t)X ′tdt

−
∫ γ

0

Xtϕ
′(t)dt

∫ γ

0

XtX
′
tdt

 ∈ R(p+d)×(p+d), (3.2)

Qγ,T =


∫ T

γ

ϕ(t)ϕ′(t)dt −
∫ T

γ

ϕ(t)X ′tdt

−
∫ T

γ

Xtϕ
′(t)dt

∫ T

γ

XtX
′
tdt

 ∈ R(p+d)×(p+d). (3.3)

Now define

P (φ) =

[
P ′γ P ′γ,T

]
∈ Rd×2(p+d), (3.4)

and

Q(φ) =

 Qγ 0p+d

0p+d Qγ,T

 ∈ R2(p+d)×2(p+d). (3.5)

Proposition 3.1. Suppose that the Assumptions 1-2 hold, then the likelihood function

is given by L(θ;X[0,T ]) = exp
[
Tr(Σ−1θP ′(φ))− 1

2
Tr(Σ−1θQ(φ)θ′)

]
.

Proof. By the Proposition 2.1 and Remark 2, one can apply Theorem 7.7 in Liptser

and Shiryayev (2001). Thus, by this theorem, the Radon-Nikodym derivative of the

measure induced by the SDE in (2.1) exists. Let L(θ;X[0,T ]) be the likelihood function

induced by the probability measure of the SDE in (2.1). Then,

L(θ;X[0,T ]) = exp

{
Tr

[
Σ−1

∫ T

0

S(θ, t,Xt)dX
′
t

]
− 1

2
Tr

[
Σ−1

∫ T

0

S(θ, t,Xt)S
′(θ, t,Xt)dt

]}
.

Note that Qγ and Qγ,T are real symmetric matrices. Further, since θ =

[
θ1 θ2

]
with θ1 =

[
µ1 A1

]
and θ2 =

[
µ2 A2

]
, we have

∫ T

0

S(θ, t,Xt)dX
′
t =

∫ γ

0

(µ1ϕ(t)− A1Xt)dX
′
t +

∫ T

γ

(µ2ϕ(t)− A2Xt)dX
′
t

= θ1Pγ + θ2Pγ,T . (3.6)
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Note that I(t≤γ)I{t>γ} = 0 for all t, then we have∫ T

0

[(µ1ϕ(t)− A1Xt)I{t≤γ} + (µ2ϕ(t)− A2Xt)I{t>γ}]

× [(µ1ϕ(t)− A1Xt)I{t≤γ} + (µ2ϕ(t)− A2Xt)I{t>γ}]′dt

=

∫ γ

0

(µ1ϕ(t)− A1Xt)(µ1ϕ(t)− A1Xt)
′dt

+

∫ T

γ

(µ2ϕ(t)− A2Xt)(µ2ϕ(t)− A2Xt)
′dt.

This gives ∫ T

0

S(θ, t,Xt)S
′(θ, t,Xt)dt = θ1Qγθ

′
1 + θ2Qγ,T θ

′
2. (3.7)

Combining (3.6) and (3.7), the likelihood function can be rewritten as

L(θ;X[0,T ]) = exp

{
Tr
[
Σ−1(θ1Pγ + θ2Pγ,T )

]
− 1

2
Tr
[
Σ−1(θ1Qγθ

′
1 + θ2Qγ,T θ

′
2)
]}

.

Note that Q is a real symmetric matrix since Qγ and Qγ,T are real symmetric matrices.

Then, the likelihood function is

L(θ;X[0,T ]) = exp

[
Tr(Σ−1θP ′(φ))− 1

2
Tr(Σ−1θQ(φ)θ′)

]
, (3.8)

this completes the proof.

From Proposition 3.1, the log-likelihood function is

l(θ;X[0,T ]) = ln(L(θ;X[0,T ])) = Tr(Σ−1θP ′(φ))− 1

2
Tr(Σ−1θQ(φ)θ′). (3.9)

Next, we present the positive definiteness of Qγ and Qγ,T . As a result, this implies

that Q(φ) is also a positive definite matrix.

Proposition 3.2. Suppose that Assumptions 1-2 hold, and let Q(φ) be defined as in

(3.5). Then if T ≥ max( 1
φ
, 2

1−φ), Q(φ) is a positive definite matrix.
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The proof is given in the Appendix B. By Proposition 3.2, we have gave a sufficient

condition for the matrix Q(φ) to be a positive definite matrix. The research is ongoing

to derive a necessary and sufficient condition for Q(φ) to be a positive definite matrix

in case T is not large. In the sequel, to simplify the presentation of this thesis, we

suppose that the conditions are met for the matrix Q(φ) to be a positive definite

matrix. Note that this assumption does not affect the asymptotic optimality of the

proposed method. Indeed, if T is large, by the results in Dehling et al. (2010, 2014),

one can prove that Q(φ) is a positive definite matrix. Further, let

J1 = ΣL′1(L1ΣL′1)−1 and J2 = (L′2Q
−1(φ)L2)−1L′2Q

−1(φ), (3.10)

and let θ̃ be the RMLE. Proposition 3.2 is crucial in deriving the existence of the

UMLE and RMLE. Below, we present a result which gives the UMLE and RMLE.

Lemma 3.1. Suppose that Assumptions 1-2 hold. Then, the UMLE of the parameter

θ is θ̂ = P (φ)Q−1(φ). Further, if H0 in (2.3) holds, the RMLE is given by

θ̃ = θ̂ − J1(L1θ̂ − d1) + J1L1(θ̂L2 − d2)J2 − (θ̂L2 − d2)J2.

The proof is given in the Appendix B.

3.2 Asymptotic normality

In this section, we first derive the asymptotic normality of the UMLE, then, by the

relationship between UMLE and RMLE as stated in Lemma 3.1, we derive the joint

asymptotic normality of the UMLE and RMLE.
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3.2.1 Asymptotic normality of UMLE

In this subsection, we investigate the asymptotic normality of the UMLE given in

Lemma 3.1. First, we derive the following proposition which is used as an intermediate

result.

Proposition 3.3. Suppose that the Assumptions 1-2 hold, the SDE in (2.1) has the

solution: Xt = {e−A1tX0 + h1(t) + Z1(t)}I{0≤t≤γ} + {e−A2tX0 + h2(t) + Z2(t)}I{t≥γ},

where, for k = 1, 2,

hk(t) = e−Akt
∫ t

0

eAksµkϕ(s)ds, Zk(t) = e−Akt
∫ t

0

eAksΣ1/2dWs. (3.11)

Proof. Applying Ito’s formula with g(x, t) = eA1tx, 0 ≤ t ≤ γ and g(x, t) = eA2tx,

γ ≤ t ≤ T , and following the same procedure in (2.5)-(2.7), we get:

Xt = e−A1tX0 + h1(t) + Z1(t), (3.12)

0 ≤ t ≤ γ, and

Xt = e−A2tX0 + h2(t) + Z2(t), (3.13)

γ ≤ t ≤ T , this completes the proof.

Obviously, the process from SDE (2.1) is not stationary and ergodic. In order to

study the asymptotic behaviours of the θ̂, we define the following auxiliary processes.

Let

X̃1(t) = h̃1(t) + Z̃1(t), X̃2(t) = h̃2(t) + Z̃2(t), 0 ≤ t ≤ T, (3.14)

where, for k = 1, 2,

h̃k(t) = e−Akt
∫ t

−∞
eAksµkϕ(s)ds, Z̃k(t) = e−Akt

∫ t

−∞
eAksΣ1/2dW̃s, (3.15)
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where {W̃s, s ∈ R} denotes a d-dimensional bilateral Brownian motion as in (2.12).

Further, let X̃t = X̃1(t)I{t≤γ} + X̃2(t)I{t>γ}, 0 ≤ t ≤ T . From (2.17), we denote

V1(k) = E(Z̃1(0)Z̃ ′1(k)), V2(k) = E(Z̃2(0)Z̃ ′2(k)), and define

Σ0 =

 Ip −
∫ 1

0

ϕ(t)h̃′1(t)dt

−
∫ 1

0

h̃1(t)ϕ′(t)dt

∫ 1

0

h̃1(t)h̃′1(t)dt+ V1(0)

 , (3.16)

and

Σ1 =

 Ip −
∫ 1

0

ϕ(t)h̃′2(t)dt

−
∫ 1

0

h̃2(t)ϕ′(t)dt

∫ 1

0

h̃2(t)h̃′2(t)dt+ V2(0)

 . (3.17)

Proposition 3.4. Suppose that Assumpitions 1-2 hold, then for φ ∈ (0, 1)

1

T
Qγ

P−−−→
T→∞

φΣ0, and TQ−1
γ

P−−−→
T→∞

1

φ
Σ−1

0 .

The proof is provided in the Appendix B. Analogically, by Proposition 2.11, we

have the following result:

Proposition 3.5. Suppose that Assumpitions 1-2 hold, then for φ ∈ (0, 1)

1

T
Qγ,T

P−−−→
T→∞

(1− φ)Σ1, and TQ−1
γ,T

P−−−→
T→∞

1

1− φ
Σ−1

1 .

Proof. The proof of the first statement is similar to that given for Proposition 2.11.

The proof of the second statement follows from the same technique as used in proof

of Proposition 3.4

Now, denote

Σ2 =

φΣ0 0p+d

0p+d (1− φ)Σ1

 , (3.18)

where Σ0 and Σ1 are defined in (3.16) and (3.17) respectively, then we have
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Proposition 3.6. Suppose that Assumpitions 1-2 hold, then for φ ∈ (0, 1)

1

T
Q(φ)

P−−−→
T→∞

Σ2, and TQ−1(φ)
P−−−→

T→∞
Σ−1

2 . (3.19)

Proof. By Proposition 3.2, we have 1
T
Q is positive definite and thus it is invertible,

we have

(
1

T
Q(φ)

)−1

= TQ−1(φ) =

TQ−1
γ 0p+d

0p+d TQ−1
γ,T

 .
By Proposition 3.4 and Proposition 3.5, we complete the proof.

Proposition 3.7. The UMLE θ̂ can be rewritten as

θ̂ = θ + Σ1/2 1

T
RT (φ)(TQ−1(φ)), (3.20)

where

R′T (φ) =

∫ T

0

B′(t, φ)dW ′
t , (3.21)

and

B(t, φ) =

[
ϕ′(t)I{t≤γ} −X ′tI{t≤γ} ϕ′(t)I{t>γ} −X ′tI{t>γ}

]
∈ R1×2(p+d). (3.22)

The proof is provided in the Appendix B. By Proposition 3.7, we also have

√
T (θ̂ − θ)′ = (TQ−1(φ))

1√
T
R′T (φ)Σ1/2.

To study the asymptotic normality of θ̂, we need to first explore the convergence of

1√
T
R′T . In passing, by Cramer-Wold Theorem (Billingsley 1995), we have

Vec

(
1√
T
R′T (φ)

)
d−−−→

T→∞
M
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if and only if

a′Vec

(
1√
T
R′T (φ)

)
d−−−→

T→∞
a′M,

for all a =

[
a1 a2 ... a2d(p+d)

]′
∈ R2d(p+d). Therefore, we study the convergence of

a′Vec
(

1√
T
R′T (φ)

)
instead. Note that

a′Vec

(
1√
T
R′T (φ)

)
=

[
a(1) a(2) ... a(d)

] ∫ T

0

dWt ⊗ CT (t) =
d∑
i=1

∫ T

0

a(i)CT (t)dW
(i)
t ,

where a(i) is a 2(p+ d)-row vector given by

a(i) =

[
a(i−1)2(p+d)+1 a(i−1)2(p+d)+2 ... ai2(p+d)

]
, (3.23)

and

CT (t) =

[
1√
T
ϕ′(t)I{t≤γ} − 1√

T
X ′tI{t≤γ} 1√

T
ϕ′(t)I{t>γ} − 1√

T
X ′tI{t>γ}

]′
. (3.24)

Proposition 3.8. Suppose that Assumptions 1-2 hold. Then for T > 0, i = 1,2,...,d,

P

(∫ T

0

(a(i)CT (t))2dt <∞
)

= 1,

where CT (t) and a(i) are defined in (3.24) and (3.23).

Proof. By Cauchy-Schwarz inequality, we have

E

(∫ T

0

(a(i)CT (t))2dt

)
≤ ‖a(i)‖2

2E

(∫ T

0

‖CT (t)‖2
2dt

)
≤ ‖a(i)‖2

2E

[
1

T

(∫ T

0

‖ϕ(t)I{t≤γ}‖2
2dt+

∫ T

0

‖XtI{t≤γ}‖2
2dt

)]
+ ‖a(i)‖2

2E

[
1

T

(∫ T

0

‖ϕ(t)I{t>γ}‖2
2dt+

∫ T

0

‖XtI{t>γ}‖2
2dt

)]
.

Since ‖ϕ(t)‖2
2 and ‖Xt‖2

2 are non-negative, we have

‖ϕ(t)I{t≤γ}‖2
2 = ‖ϕ(t)‖2

2I{t≤γ} ≤ ‖ϕ(t)‖2
2,

‖XtI{t≤γ}‖2
2 = ‖Xt‖2

2I{t≤γ} ≤ ‖Xt‖2
2.
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Similarly, we have

‖ϕ(t)I{t>γ}‖2
2 = ‖ϕ(t)‖2

2I{t>γ} ≤ ‖ϕ(t)‖2
2,

‖XtI{t>γ}‖2
2 = ‖Xt‖2

2I{t>γ} ≤ ‖Xt‖2
2.

Therefore

E

(∫ T

0

(a(i)CT (t))2dt

)
≤ ‖a(i)‖2

2

[
2

T

(∫ T

0

E(‖ϕ(t)‖2
2)dt+

∫ T

0

E(‖Xt‖2
2)dt

)]
.

From Remark 1 and Proposition 2.1, we have the boundedness of ϕ(t) and Xt in L2.

Let E(‖ϕ(t)‖2
2) < Kϕ and E(‖Xt‖2

2) < Kx, we get

E

(∫ T

0

(a(i)CT (t))2dt

)
< 2‖a(i)‖2

2(Kϕ +Kx) <∞.

Then, we have

P

(∫ T

0

(a(i)CT (t)2dt <∞)

)
= 1,

for all i = 1, 2, ..., d, which completes the proof.

From Proposition 3.8, we establish below a proposition which gives the conver-

gence in distribution of 1√
T
R′T (φ). In short, we apply Proposition A.1 in the Appendix

A, which is a special case of the proposition 1.21 in Kutoyants (2004) with d1 = 1

and d2 = d.

Proposition 3.9. Suppose that the conditions for Proposition 3.6 hold. Then

1√
T
R′T (φ)

d−−−→
T→∞

R ∼ N2(p+d)×d(0, Id ⊗ Σ2), where Σ2 is defined in (3.18).

The proof is provided in Appendix B. From Proposition 3.9, we derive below the

asymptotic normality of the UMLE.
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Proposition 3.10. Suppose that the conditions for Proposition 3.6 hold. Then the

UMLE θ̂ is asymptotically normal. More precisely

ρT =
√
T (θ̂ − θ)′ d−−−→

T→∞
ρ ∼ N2(p+d)×d(0,Σ⊗ Σ−1

2 ).

The proof is provided in Appendix B.

3.2.2 Joint asymptotic normality of MLE and RMLE

In this subsection, we derive the joint asymptotic properties of the UMLE, RMLE and

some other estimators. To avoid asymptotic degeneracy, we consider the following

set of local alternatives:

KT : L1θ = d1 and θL2 = d2 +
r2√
T
, T > 0, (3.25)

where r2 ∈ Rd×n is a fixed matrix. Also, we assume that 0 < ‖r2‖ < ∞. Define

ζT =
√
T (θ̃ − θ)′, according to Lemma 3.1, we have

√
T (θ̃ − θ) =

√
T (θ̂ − θ)− J1L1

√
T (θ̂ − θ)

+ J1L1(
√
T (θ̂ − θ)L2 + r2)J2 − (

√
T (θ̂ − θ)L2 + r2)J2

=
√
T (θ̂ − θ)− J1L1

√
T (θ̂ − θ)− r2J2

+ J1L1

√
T (θ̂ − θ)L2J2 + J1L1r2J2 −

√
T (θ̂ − θ)L2J2.

Then

√
T (θ̃ − θ) = (Id − J1L1)

√
T (θ̂ − θ)(I2(p+d) − L2J2) + J1L1r2J2 − r2J2. (3.26)

Further, let f(X−1) = (L′2X
−1L2)−1L′2X

−1 for a positive definite matrix X. Then we

have

J2 = f(Q−1(φ)) = (L′2Q
−1(φ)L2)−1L′2Q

−1(φ) = [L′2(TQ−1(φ))L2]−1L′2(TQ−1(φ)).
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By Proposition 3.2, we have

TQ−1(φ)
P−−−→

T→∞
Σ−1

2 .

Therefore, by the continuous mapping theorem, we have

J2
P−−−→

T→∞
(L′2Σ−1

2 L2)−1L′2Σ−1
2 = J3. (3.27)

Similarly, we have

J4 = I2(p+d) − L2J2
P−−−→

T→∞
I2(p+d) − L2J3 = J5, (3.28)

J6 = J1L1r2J2 − r2J2
P−−−→

T→∞
J1L1r2J3 − r2J3 = J7. (3.29)

Further, to simplify some notations, denote J = Id − J1L1. Note that

JΣJ ′ = (Id − J1L1)Σ(Id − J1L1)′ = (Σ− J1L1Σ)(Id − J1L1)′

= Σ− ΣL′1J
′
1 − J1L1Σ + J1L1ΣL′1J

′
1.

Further, since Σ is symmetric, by (3.10), we have J1 = ΣL′1(L1ΣL′1)−1, therefore

ΣL′1J
′
1 = ΣL′1(L1ΣL′1)−1L1Σ = J1L1Σ, (3.30)

and J1L1ΣL′1J
′
1 = ΣL′1(L1ΣL′1)−1L1ΣL′1(L1ΣL′1)−1L1Σ. Then,

J1L1ΣL′1J
′
1 = ΣL′1(L1ΣL′1)−1L1Σ = J1L1Σ. (3.31)

Therefore, by (3.30) and (3.31), we get

JΣJ ′ = Σ− ΣL′1J
′
1 = Σ− J1L1Σ = JΣ. (3.32)

Further, we have

J ′5Σ−1
2 J5 = (I2(p+d) − J ′3L′2)Σ−1

2 (I2(p+d) − L2J3) = (Σ−1
2 − J ′3L′2Σ−1

2 )(I2(p+d) − L2J3).
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By (3.27), we have J3 = (L′2Σ−1
2 L2)−1L′2Σ−1

2 , and since Σ−1
2 is symmetric, we get

J ′3L
′
2Σ−1

2 = Σ−1
2 L2(L′2Σ−1

2 L2)−1L′2Σ−1
2 = Σ−1

2 L2J3, (3.33)

and J ′3L
′
2Σ−1

2 L2J3 = Σ−1
2 L2(L′2Σ−1

2 L2)−1L′2Σ−1
2 L2(L′2Σ−1

2 L2)−1L′2Σ−1
2 , and then

J ′3L
′
2Σ−1

2 L2J3 = Σ−1
2 L2(L′2Σ−1

2 L2)−1L′2Σ−1
2 = J ′3L

′
2Σ−1

2 . (3.34)

Then by (3.33) and (3.34), we get

J ′5Σ−1
2 J5 = Σ−1

2 − Σ−1
2 L2J3 − J ′3L′2Σ−1

2 + J ′3L
′
2Σ−1

2 L2J3 = Σ−1
2 − Σ−1

2 L2J3 = Σ−1
2 J5.

(3.35)

The asymptotic normality of RMLE follows from the following proposition which

gives the joint asymptotic distribution of

[
ρT ζT

]
.

Proposition 3.11. Suppose that the conditions of Propositions 3.6 hold along with

the set of local alternatives KT in (3.25), then

[
ρT ζT

]
d−−−→

T→∞

[
ρ ζ

]
∼ N2(p+d)×2d

[0 J ′7

]
,

 Ω22 Ω22 − Ω11

Ω22 − Ω11 Ω22 − Ω11


 ,

where Ω11 = Σ⊗ Σ−1
2 − (JΣ)⊗ (Σ−1

2 J5), Ω22 = Σ⊗ Σ−1
2 .

The proof is provided in the Appendix B.

Corollary 3.1. Suppose that the conditions of Propositions 3.6 hold along with the

set of local alternatives KT in (3.25). Then, ζT
d−−−→

T→∞
ζ ∼ N2(p+d)×d(J

′
7,Ω22 − Ω11).

The proof follows from Proposition 3.11. Define ξT =
√
T (θ̂ − θ̃)′. From Proposi-

tion 3.11, we derive the asymptotic distribution of

[
ρT ξT

]
.

Proposition 3.12. Suppose that the conditions of Propositions 3.11 hold, then

[
ρT ξT

]
d−−−→

T→∞

[
ρ ξ

]
∼ N2(p+d)×2d

[0 J ′7

]
,

Ω22 Ω11

Ω11 Ω11


 .
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Proof. Observe that

[
ρT ξT

]
=

[
ρT ζT

]Id Id

0 −Id

 .
Using vectorization, we get

Vec

[
ρT ξT

]
=


Id 0

Id −Id

⊗ I2(p+d)

Vec

[
ρT ζT

]
.

From Proposition 3.11, we have[
ρT ζT

]
d−−−→

T→∞

[
ρ ζ

]
,

where

[
ρ ζ

]
∼ N2(p+d)×2d

[0 J ′7

]
,

 Σ⊗ Σ−1
2 (JΣ)⊗ (Σ−1

2 J5)

(JΣ)⊗ (Σ−1
2 J5) (JΣ)⊗ (Σ−1

2 J5)


 .

Therefore, by Slutsky’s theorem, we have

Vec

[
ρT ξT

]
d−−−→

T→∞


Id 0

Id −Id

⊗ I2(p+d)

Vec

[
ρ ζ

]
. (3.36)

Note that
Id 0

Id −Id

⊗ I2(p+d)

Vec

([
0 J ′7

])
= Vec

[0 J ′7

]Id Id

0 −Id




= Vec

02(p+d)×d

−J ′7

 . (3.37)

Moreover, we haveId 0

Id −Id

⊗ I2(p+d) =

Id ⊗ I2(p+d) 0

Id ⊗ I2(p+d) −Id ⊗ I2(p+d)

 =

I2d(p+d) 0

I2d(p+d) −I2d(p+d)

 .
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Therefore, for the covariance term, we getI2d(p+d) 0

I2d(p+d) −I2d(p+d)


 Σ⊗ Σ−1

2 (JΣ)⊗ (Σ−1
2 J5)

(JΣ)⊗ (Σ−1
2 J5) (JΣ)⊗ (Σ−1

2 J5)


I2d(p+d) 0

I2d(p+d) −I2d(p+d)


′

=

 Σ⊗ Σ−1
2 Σ⊗ Σ−1

2 − (JΣ)⊗ (Σ−1
2 J5)

Σ⊗ Σ−1
2 − (JΣ)⊗ (Σ−1

2 J5) Σ⊗ Σ−1
2 − (JΣ)⊗ (Σ−1

2 J5)

 . (3.38)

By combining (3.36), (3.37), and (3.38), we complete the proof.

From Proposition 3.11, we also derive the asymptotic distribution of

[
ζT ξT

]
.

Proposition 3.13. Suppose that the conditions of Propositions 3.11 hold, then

[
ζT ξT

]
d−−−→

T→∞

[
ζ ξ

]
∼ N2(p+d)×2d

[J ′7 −J ′7] ,
Ω22 − Ω11 0

0 Ω11


 .

Proof. Observe that

[
ζT ξT

]
=

[
ρT ζT

] 0 Id

Id −Id

 .
Using vectorization

Vec

[
ζT ξT

]
=


 0 Id

Id −Id

⊗ I2(p+d)

Vec

[
ρT ζT

]
.

From Proposition 3.11, we have[
ρT ζT

]
d−−−→

T→∞

[
ρ ζ

]
,

where

[
ρ ζ

]
∼ N2(p+d)×2d

[0 J ′7

]
,

 Σ⊗ Σ−1
2 (JΣ)⊗ (Σ−1

2 J5)

(JΣ)⊗ (Σ−1
2 J5) (JΣ)⊗ (Σ−1

2 J5)


 .
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Therefore, by Slutsky’s theorem, we have

Vec

[
ζT ξT

]
d−−−→

T→∞


 0 Id

Id −Id

⊗ I2(p+d)

Vec

[
ρ ζ

]
. (3.39)

Note that
 0 Id

Id −Id

⊗ I2(p+d)

Vec(

[
0 J ′7

]
) = Vec

[
0 J ′7

]
 0 Id

Id −Id


 = Vec

[
J ′7 −J ′7

]
.

(3.40)

Moreover, we have 0 Id

Id −Id

⊗ I2(p+d) =

 0 Id ⊗ I2(p+d)

Id ⊗ I2(p+d) −Id ⊗ I2(p+d)

 =

 0 I2d(p+d)

I2d(p+d) −I2d(p+d)

 .
Therefore, for the covariance term, we get 0 I2d(p+d)

I2d(p+d) −I2d(p+d)


 Σ⊗ Σ−1

2 (JΣ)⊗ (Σ−1
2 J5)

(JΣ)⊗ (Σ−1
2 J5) (JΣ)⊗ (Σ−1

2 J5)


 0 I2d(p+d)

I2d(p+d) −I2d(p+d)


′

=

(JΣ)⊗ (Σ−1
2 J5) 0

0 Σ⊗ Σ−1
2 − (JΣ)⊗ (Σ−1

2 J5)

 . (3.41)

By combining (3.39), (3.40), and (3.41), we complete the proof.
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Chapter 4

Inference in case of unknown

change-point

In this chapter, we present the proposed inference method in the case of unknown

change-point. This chapter is subdivided into 4 sections. In Section 4.1, we derive

the unrestricted estimator (UE) and the restricted estimator (RE). Briefly, the UE

and the RE are obtained from the UMLE and RMLE along with plug-in method. In

Section 4.2, we establish the joint asymptotic normality of the UE and RE. Further, in

Section 4.3, we address the testing problem in (2.3), and in Section 4.4, we introduce

the shrinkage estimators.

4.1 The UE and the RE

In this section, we derive the UE and RE by using plug-in method. Let φ̂ be a

FT -measurable and a consistent estimator of the change-point. To introduce some
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notations, let Q(φ̂) =

Qφ̂T 0p+d

0p+d Qφ̂T,T

, where

Qφ̂T =


∫ φ̂T

0

ϕ(t)ϕ′(t)dt −
∫ φ̂T

0

ϕ(t)X ′tdt

−
∫ φ̂T

0

Xtϕ
′(t)dt

∫ φ̂T

0

XtX
′
tdt

 , (4.1)

Qφ̂T,T =


∫ T

φ̂T

ϕ(t)ϕ′(t)dt −
∫ T

φ̂T

ϕ(t)X ′tdt

−
∫ T

φ̂T

Xtϕ
′(t)dt

∫ T

φ̂T

XtX
′
tdt

 . (4.2)

According to Proposition 3.2, one can verify the positive definitness of 1
T
Qφ̂T , and

1
T
Qφ̂T,T . Let J2(φ̂) and P (φ̂) be as J2 and P (φ) by replacing φ by φ̂. Then, the

plug-in UMLE and plug-in RMLE are given by

θ̂(φ̂) = P (φ̂)Q−1(φ̂), (4.3)

θ̃(φ̂) = θ̂(φ̂)− J1(L1θ̂(φ̂)− d1) + J1(L1θ̂(φ̂)− d1)L2J2(φ̂)− (θ̂L2 − d2)J2(φ̂). (4.4)

Remark 4. A consistent estimator can be obtained using a method based on that

given in Chen and Nkurunziza (2015).

Assumption 3. The estimator φ̂ is FT -measurable, valued on [0,1]. Further, there

exists δ0 > 0 such that φ̂− φ = Op(T
−δ0).

Remark 5. This Assumption is similar to the Assumption 3 in Nkurunziza and

Zhang (2018). It is used to derive the asymptotic behaviours of θ̂(φ̂) and θ̃(φ̂).

Proposition 4.1. Suppose that the conditions for Proposition 3.6 hold as well as

Assumption 3, then

(i)
1

T

∫ φ̂T

0

ϕ(t)X ′tdt
P−−−→

T→∞
φ

∫ 1

0

ϕ(t)h̃′1(t)dt,

(ii)
1

T

∫ T

φ̂T

ϕ(t)X ′tdt
P−−−→

T→∞
(1− φ)

∫ 1

0

ϕ(t)h̃′2(t)dt.
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Proof. From Remark 1 and Proposition 2.2 we have the boundedness of ϕ(t) and Xt

in L2. Let ‖ϕ(t)‖2
2 ≤ Kϕ and E(‖Xt‖2

2) ≤ sup
t≥0

E(‖Xt‖2
2) ≤ Kx for all t, then we have

E(‖ϕ(t)X ′t‖2
F ) ≤ ‖ϕ(t)‖2

2E(‖Xt‖2
2) ≤ KϕKx <∞.

Therefore, by Lemma A.2 in the Appendix A, we have

1

T

∫ φ̂T

0

ϕ(t)X ′tdt−
1

T

∫ φT

0

ϕ(t)X ′tdt
L1

−−−→
T→∞

0, (4.5)

1

T

∫ T

φ̂T

ϕ(t)X ′tdt−
1

T

∫ T

φT

ϕ(t)X ′tdt
L1

−−−→
T→∞

0. (4.6)

From Proposition 3.6, we have

1

T

∫ φT

0

ϕ(t)X ′tdt
P−−−→

T→∞
φ

∫ 1

0

ϕ(t)h̃′1(t)dt, (4.7)

1

T

∫ T

φT

ϕ(t)X ′tdt
P−−−→

T→∞
(1− φ)

∫ 1

0

ϕ(t)h̃′2(t)dt, (4.8)

which completes the proof.

Proposition 4.2. Suppose that the conditions for Proposition 4.1 hold, then

(i)
1

T

∫ φ̂T

0

XtX
′
tdt

P−−−→
T→∞

φ

{∫ 1

0

h̃1(t)h̃′1(t)dt+ V1(0)

}
,

(ii)
1

T

∫ T

φ̂T

XtX
′
tdt

P−−−→
T→∞

(1− φ)

{∫ 1

0

h̃2(t)h̃′2(t)dt+ V2(0)

}
.

The proof is provided in the Appendix B. From Popositions 4.1-4.2, we derive the

following proposition which is useful in obtaining the joint asymptotic normality of

the UE and RE.

Proposition 4.3. Suppose that the conditions for Proposition 4.1 hold, then

1
T
Q(φ̂)

P−−−→
T→∞

Σ2, and TQ−1(φ̂)
P−−−→

T→∞
Σ−1

2 , with Σ2 defined in (3.18).
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Proof. From Popositions 4.1-4.2, we have 1
T
Q(φ̂)

P−−−→
T→∞

Σ2. Further, let g(X) = X−1

for a positive definite matrix X. By the continuous mapping theorem, we have from

the first statement

g

(
1

T
Qφ̂T

)
= TQ−1

φ̂T

P−−−→
T→∞

g(φΣ0) =
1

φ
Σ−1

0 ,

and

g

(
1

T
Qφ̂T ,T

)
= TQ−1

φ̂T ,T

P−−−→
T→∞

g(φΣ1) =
1

1− φ
Σ−1

1 ,

which completes the proof.

Now define

R′T (φ̂) =

∫ T

0

B′(φ̂, t)dW ′
t , (4.9)

where

B(φ̂, t) =

[
ϕ′(t)I{t≤φ̂T} −X ′tI{t≤φ̂T} ϕ′(t)I{t>φ̂T} −X ′tI{t>φ̂T}

]
. (4.10)

Proposition 4.4. Suppose that the conditions for Proposition 4.1 hold as well as

Assumption 3 with δ0 >
1
2
, then 1√

T
(R′T (φ̂)−R′T (φ))

P−−−→
T→∞

0, where R′T (φ) is defined

in (3.21).

Proof. From Remark 1 and Proposition 2.2, we have the boundedness of ϕ(t) and Xt

in L2, also. Let f(µ,A,Xt) = µϕ(t)− AXt, by the Triangle Inequality, we have

E(‖f(µ,A,Xt)‖2
2) = E(‖µϕ(t)− AXt‖2

2) ≤ E[(‖µϕ(t)‖2 − ‖AXt‖2)2]

≤ 2E(‖µϕ(t)‖2
2) + 2E(‖AXt‖2

2) ≤ 2‖µϕ(t)‖2
2 + 2‖A‖2

F (E‖Xt‖2
2) <∞,
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for µ = µ1, µ2, and A = A1, A2. Then, by Lemma 3.3 in Nkurunziza and Zhang (2018),

we get

1√
T

∫ φ̂T

0

XtdW
′
t −

1√
T

∫ φT

0

XtdW
′
t

P−−−→
T→∞

0,

1√
T

∫ T

φ̂T

XtdW
′
t −

1√
T

∫ T

φ̂T

XtdW
′
t

P−−−→
T→∞

0,

1√
T

∫ φ̂T

0

ϕ(t)dW ′
t −

1√
T

∫ φT

0

ϕ(t)dW ′
t

P−−−→
T→∞

0,

1√
T

∫ T

φ̂T

ϕ(t)dW ′
t −

1√
T

∫ T

φ̂T

ϕ(t)dW ′
t

P−−−→
T→∞

0,

which completes the proof.

Proposition 4.5. Suppose that the conditions for Proposition 4.4 hold, then

1√
T
R′T (φ̂)

d−−−→
T→∞

R ∼ N2(p+d)×d(0, Id ⊗ Σ2),

Corollary 4.1. Suppose that the conditions for Proposition 4.4 hold, then

ρT (φ̂) =
√
T (θ̂(φ̂)− θ)′ d−−−→

T→∞
ρ ∼ N2(p+d)×d(0,Σ⊗ Σ−1

2 ).

Proof. From Proposition 3.7, one can get

θ̂(φ̂) = θ + Σ1/2 1

T
RT (φ̂)(TQ−1(φ̂)),

where RT (φ̂) is defined in (4.9). Therefore

√
T (θ̂(φ̂)− θ) = Σ1/2 1√

T
RT (φ̂)(TQ−1(φ̂)).

By Propositions 4.3 and 4.5, along with Slutsky’s Theorem, we complete the proof.
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4.2 Joint asymptotic normality

In this section, we present the joint asymptotic normality of the UE and the RE:

θ̃(φ̂) and θ̂(φ̂). First of all , we study the asymptotic property of

[
ρT (φ̂) ζT (φ̂)

]
. To

introduce some notations, from (3.27), (3.28), (3.29) and by Proposition 4.3, we get

J2(φ̂) = [L′2(TQ−1(φ̂))L2]−1L′2(TQ−1(φ̂))
P−−−→

T→∞
(L′2Σ−1

2 L2)−1L′2Σ−1
2 = J3. (4.11)

Also

J4(φ̂) = I2(p+d) − L2J2(φ̂)
P−−−→

T→∞
I2(p+d) − L2J3 = J5, (4.12)

J6(φ̂) = J1L1r2J2(φ̂)− r2J2(φ̂)
P−−−→

T→∞
J1L1r2J3 − r2J3 = J7. (4.13)

From (3.26) and (4.4), one can verify that

√
T (θ̃(φ̂)− θ) = (Id − J1L1)ρ′T (φ̂)(I2(p+d) − L2J2(φ̂)) + J1L1r2J2(φ̂)− r2J2(φ̂).

(4.14)

Then √T (θ̂(φ̂)− θ)
√
T (θ̃(φ̂)− θ)

 =

 ρ′T (φ̂)

Jρ′T (φ̂)J4(φ̂) + J6(φ̂)


=

Id
0d

 ρ′T (φ̂) +

0d

J

 ρ′T (φ̂)J4(φ̂) +

0d×2(p+d)

J6(φ̂)

 , (4.15)

where J4(φ̂) and J6(φ̂) are defined in (4.12) and (4.13). Denote

I(3)(φ̂) =

0d×2(p+d)

J6(φ̂)

 ∈ R2d×2(p+d), (4.16)

we have[
ρT (φ̂) ζT (φ̂)

]
=

√T (θ̂(φ̂)− θ)
√
T (θ̃(φ̂)− θ)


′

= ρT (φ̂)I(1)′ + J ′4(φ̂)ρT (φ̂)I(2)′ + I(3)(φ̂)
′
,
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where I(1) and I(2) are defined in (B.36). Further, using vectorization, we get

Vec

[
ρT (φ̂) ζT (φ̂)

]
= (I(1) ⊗ I2(p+d) + I(2) ⊗ J ′4(φ̂))Vec(ρT (φ̂)) + Vec(I(3)(φ̂)′).

By (4.13), we have

I(3)(φ̂) =

0d×2(p+d)

J6(φ̂)

 P−−−→
T→∞

0d×2(p+d)

J7

 = I(4). (4.17)

Proposition 4.6. Suppose that the conditions for Proposition 4.4 along with the set

of local alternatives KT in (3.25). Then

[
ρT (φ̂) ζT (φ̂)

]
d−−−→

T→∞

[
ρ ζ

]
∼ N2(p+d)×2d

[0 J ′7

]
,

 Ω22 Ω22 − Ω11

Ω22 − Ω11 Ω22 − Ω11


 ,

where Ω11 = Σ⊗ Σ−1
2 − (JΣ)⊗ (Σ−1

2 J5), Ω22 = Σ⊗ Σ−1
2 .

Proof. The proof follows from Corollary 4.1, and using the same method as in the

proof of Proposition 3.11.

Corollary 4.1. Suppose that the conditions for Proposition 4.6 hold . Then, the RE

θ̃(φ̂) given in (4.4) is asymptotically normal. More precisely,

ζT (φ̂) =
√
T (θ̃(φ̂)− θ)′ d−−−→

T→∞
ζ ∼ N2(p+d)×d(J

′
7,Ω22 − Ω11).

The proof follows from the Proposition 4.6. From Proposition 4.6, we also derive

the asymptotic distribution of both

[
ρT (φ̂) ξT (φ̂)

]
,

[
ζT (φ̂) ξT (φ̂)

]
.

Proposition 4.7. Suppose that the conditions for Proposition 4.6 hold. Then

[
ρT (φ̂) ξT (φ̂)

]
d−−−→

T→∞

[
ρ ξ

]
∼ N2(p+d)×2d

[0 J ′7

]
,

Ω22 Ω11

Ω11 Ω11


 .
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Proof. Observe that

[
ρT (φ̂) ξT (φ̂)

]
=

[
ρT (φ̂) ζT (φ̂)

]Id Id

0 −Id

 .
By Proposition 4.6 and by using the same method as in Proposition 3.12, we complete

the proof.

Proposition 4.8. Suppose that the conditions for Proposition 4.6 hold. Then

[
ζT (φ̂) ξT (φ̂)

]
d−−−→

T→∞

[
ζ ξ

]
∼ N2(p+d)×2d

[J ′7 −J ′7] ,
Ω22 − Ω11 0

0 Ω11


 .

Proof. Observe that

[
ζT (φ̂) ξT (φ̂)

]
=

[
ρT (φ̂) ζT (φ̂)

] 0 Id

Id −Id

 .
The proof follows from Proposition 4.6 and by using the same method as in Proposi-

tion 3.13.

4.3 Testing the restriction

In this section, we give a test for the hypotheses in problem in (2.3) based on the

properties of the joint asymptotic normality of the estimators. By using Propositions

4.6-4.8, we establish below a corollary which can be used for testing the restriction

in (2.3), and for deriving the proposed shrinkage estimators. To introduce some

notations, let Wd(n,Σ) be a random matrix in Rn×n, whose distribution is Wishart

with parameter Σ and degrees of freedom d. Also, let Wd(n,Σ,Λ) be a random

matrix in Rn×n, whose distribution is Wishart with parameter Σ, with degrees of

freedom d and non-centrality parameter Λ, and let χ2
q(λ) be a chi-square random
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variable with q degrees of freedom, and non-centrality parameter λ. It should be

noted that in continuous times observation, the diffusion parameter Σ is assumed to

be known and equals to the quadratic variation. However, in realistic case, the data

are always collected in discrete times and therefore it needs to be estimated through

the discrete observations. Thus, let Σ̂ be a consistent estimator of Σ. Moreover, let

Ξ = L2(L′2Σ−1
2 L2)−1L′2 and ∆ = Tr(J7ΞJ ′7Σ−1), where J7 is defined in (3.29).

Corollary 4.1. Suppose that the conditions for Proposition 4.6 hold, then

ξ′T (φ̂)L2(L′2TQ
−1(φ̂, T )L2)−1L′2ξT (φ̂)

d−−−→
T→∞

Wn(d,Σ, J7ΞJ ′7), and

Tr(ξ′T (φ̂)L2(L′2TQ
−1(φ̂, T )L2)−1L′2ξT (φ̂)Σ̂−1)

d−−−→
T→∞

ψ ∼ χ2
nd(∆).

Proof. Note that from Propositions 4.3, 4.6 and 4.7 along with Slutsky’s Theorem,

we have

ξ′T (φ̂)L2(L′2TQ
−1(φ̂, T )L2)−1L′2ξT (φ̂)

d−−−→
T→∞

ξ′Ξξ,

where Ξ = L2(L′2Σ−1
2 L2)−1L′2 and

ξ ∼ N2(p+d)×d
(
−J ′7,Σ⊗ Σ−1

2 − (JΣ)⊗ (Σ−1
2 J5)

)
.

Further, notice that (L′2Σ−1
2 L2)−1 is positive definite since Σ−1

2 is positive definite and

L2 is a full rank matrix. Then, let P = (L′2Σ−1
2 L2)−1/2L′2. Obviously, ξ′P ′Pξ = ξ′Ξξ,

therefore, we study the distribution of Pξ. Taking vectorization, we have

Vec(Pξ) = (Id ⊗ P )Vec(ξ),

then

Vec(Pξ) ∼ (Id ⊗ P )N2d(p+d)

(
−Vec(J ′7),Σ⊗ Σ−1

2 − (JΣ)⊗ (Σ−1
2 J5)

)
.
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To simplify the covariance term, we have that the covariance is equal to

(Id ⊗ P )(Σ⊗ Σ−1
2 − (JΣ)⊗ (Σ−1

2 J5))(Id ⊗ P ′). (4.18)

We have

Σ⊗ (PΣ−1
2 P ′) = Σ⊗ ((L′2Σ−1

2 L2)−1/2L′2Σ−1
2 L2(L′2Σ−1

2 L2)−1/2).

Then

(Id ⊗ P )(Σ⊗ Σ−1
2 )(Id ⊗ P ′) = Σ⊗ In. (4.19)

Further,

(Id ⊗ P )[(JΣ)⊗ (Σ−1
2 J5)](Id ⊗ P ′) = (JΣ)⊗ P (Σ−1

2 J5)P ′.

Since J5 = I2(p+d) − L2J3, we have

P (Σ−1
2 J5)P ′ = P (Σ−1

2 (I2(p+d) − L2J3))P ′ = PΣ−1
2 P ′ − PΣ−1

2 L2J3P
′.

Notice that

PΣ−1
2 L2J3P

′ = (L′2Σ−1
2 L2)−1/2L′2Σ−1

2 L2(L′2Σ−1
2 L2)−1L′2Σ−1

2 L2(L′2Σ−1
2 L2)−1/2 = In,

combining with (4.19), we get

(Id ⊗ P )[(JΣ)⊗ (Σ−1
2 J5)](Id ⊗ P ′) = (JΣ)⊗ (PΣ−1

2 P ′ − PΣ−1
2 L2J3P

′) = 0. (4.20)

Therefore, from (4.18), (4.19)and (4.20), we have

(Id ⊗ P )(Σ⊗ Σ−1
2 − (JΣ)⊗ (Σ−1

2 J5))(Id ⊗ P ′) = Σ⊗ In.

Moreover, we have −(Id ⊗ P )Vec(J ′7) = −Vec(PJ ′7), therefore

Pξ ∼ Nn×d(−PJ ′7,Σ⊗ In).
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Hence, by the definition of Wishart distribution, we get

ξ′Ξξ = ξ′P ′Pξ ∼ Wn(d,Σ, J7P
′PJ ′7) = Wn(d,Σ, J7ΞJ ′7),

which completes the first statement of the proposition. Further, we have

Tr(Σ̂−1/2ξ′T (φ̂)L2(L′2TQ
−1(φ̂, T )L2)−1L′2ξT (φ̂)Σ̂−1/2)

d−−−→
T→∞

Tr(Σ−1/2ξ′ΞξΣ−1/2),

and, from previous result, we have

Σ−1/2ξ′ΞξΣ−1/2 ∼ Wn(d,Σ−1/2ΣΣ−1/2,Σ−1/2J7ΞJ ′7Σ−1/2) = Wn(d, Id,Σ
−1/2J7ΞJ ′7Σ−1/2).

Then, by Corollary 2.4.2.2. in Kollo and Rosen (2011), we have

Tr(Σ−1/2ξ′ΞξΣ−1/2) = Tr(ξ′ΞξΣ−1) ∼ χ2
nd(∆),

where ∆ = Tr(J7ΞJ ′7Σ−1), which completes the proof.

Note that if r2 is a zero-matrix, then J7 = J1L1r2J3 − r2J3 is also a zero-matrix

and ∆ = 0, we have ψ ∼ χ2
nd. From this corollary, one constructs a test for testing the

restriction in (2.3). Let χ2
α;nd denote the αth-quantile of a χ2

nd, for a given 0 < α ≤ 1.

For the testing problem in (2.3), we suggest to use the following test

κ(φ) = I{ψT>χ2
α;nd}, (4.21)

where ψT = Tr(ξ′T (φ̂)L2(L′2TQ
−1(φ̂, T )L2)−1L′2ξT (φ̂)Σ̂−1).

Corollary 4.2. Suppose that the conditions for Corollary 4.1 hold, then the asymp-

totic power function of the test in (4.21) is given by Π(∆) = P
(
χ2
nd(∆) ≥ χ2

α;nd

)
.

The proof follows from Corollary 4.1.
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4.4 The Shrinkage Estimators

In this section, we present the proposed shrinkage estimators (SEs). First, note

that, generally, the RE performs much better than the UE if the restriction holds,

and the RE performs much worse if the restriction is seriously violated. To address

this problem, we consider an intermediate case where the prior information is nearly

correct. The proposed method combines the sample information and the prior infor-

mation. Thus, the method is more flexible as it should preserve a good performance

in case the prior holds or in case the prior does not hold. Following Sen and Saleh

(1987), Nkurunziza (2012), Saleh (2006), Nkurunziza and Ahmed (2011) among oth-

ers, we consider two Stein-rule (or shrinkage) estimators of the matrix parameter.

The shrinkage estimator (SE) θ̂S is defined as

θ̂S = θ̃(φ̂) + [1− (nd− 2)ψ−1
T ](θ̂(φ̂)− θ̃(φ̂)), (4.22)

where we assume nd > 2, and ψT = Tr(ξ′T (φ̂)L2(L′2TQ
−1(φ̂, T )L2)−1L′2ξT (φ̂)Σ̂−1).

Following Nkurunziza (2012), the random quantity ψT captures the information from

the sample as well as the prior information. Further, by Nkurunziza and Ahmed

(2011) among others, the estimator θ̂S is not a convex combination of the UE and

RE since 1 − (nd − 2)ψ−1
T < 0 whenever ψT < (nd − 2). So it may change the sign

of UE θ̂(φ̂) and may cause an over-shrinking problem. To aviod the problem, let

a+ = max{0, a}. We consider the positive-part shrinkage estimator (PSE) which is

defined as

θ̂S+ = θ̃(φ̂) + [1− (nd− 2)ψ−1
T ]+(θ̂(φ̂)− θ̃(φ̂)). (4.23)
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Chapter 5

Relative efficiency of estimators

In this chapter, we first present the asymptotic distributional risk (ADR) of the

proposed estimators and we study the risk performance of these estimators. The

chapter is organized in two sections. Section 5.1 presents the ADR of the UE, RE,

and the ADR of SEs. In Section 5.2, we compare the relative performance among

these estimators via their ADRs.

5.1 Asymptotic distributional risk

In order to evaluate the performance of the proposed estimators, it is convenient

to compare their asymptotic distributional risks (ADR). For more details about the

ADR, we refer to Sen and Saleh (1987), Saleh (2006) among others. For an estimator

θ̂? of θ, we consider a quadratic loss function of the form

L(θ̂?, θ;W ) = Tr
[√

T (θ̂? − θ)W
√
T (θ̂? − θ)′

]
, (5.1)

where W is a 2(p+ d)× 2(p+ d) symmetric positive semi-definite weighting matrix,

and θ̂? refers to θ̂(φ̂), θ̃(φ̂), θ̂S, and θ̂S+. Further, let ε be the random matrix such
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that
√
T (θ̂? − θ)′ d−−−→

T→∞
ε. Following Nkurunziza and Ahmed (2011) and references

therein, the ADR is defined as

ADR(θ̂?, θ,W ) = E(Tr(ε′Wε)). (5.2)

The following theorem gives the ADR of the UE and RE.

Theorem 5.1. Suppose that the conditions for Proposition 4.6 hold. Then

ADR(θ̂(φ̂), θ,W ) = Tr(Σ) Tr(WΣ−1
2 ) and

ADR(θ̃(φ̂), θ,W ) = Tr(Σ) Tr(WΣ−1
2 )− Tr(Σ) Tr(WΣ−1

2 L2J3)− Tr(J1L1Σ) Tr(WΣ−1
2 )

+ Tr(J1L1Σ) Tr(WΣ−1
2 L2J3) + Tr(J7WJ ′7),

where J3, J7 are defined in (3.27) and (3.29) respectively.

The proof is provided in the Appendix B. We also derive the following theorem

which gives the ADR of SEs.

Theorem 5.2. Suppose that the conditions for Proposition 4.6 hold. Then

ADR(θ̂S, θ,W ) = ADR(θ̂(φ̂), θ,W )− Tr(J1L1Σ) Tr(W (Σ−1
2 − Σ−1

2 L2J3))

− (nd− 2)(2E[χ−2
nd+2(∆)]− (nd− 2)E[χ−4

nd+2(∆)]) Tr(WΣ−1
2 L2J3) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

+ ((nd)2 − 4)E[χ−4
nd+4(∆)] Tr(J7WJ ′7);

ADR(θ̂S+, θ,W ) = ADR(θ̂S, θ,W )

+ 2E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2}] Tr(J7WJ ′7)

− E[(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)<nd−2}] Tr(W (Σ−1
2 − Σ−1

2 L2J3)) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)<nd−2}] Tr(WΣ−1
2 L2J3) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)<nd−2}] Tr(J7WJ ′7).

The proof is provided in the Appendix B.
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5.2 Risk analysis

In the previous section, we have obtained the ADRs of the proposed estimators. In

this section, we compare the relative performance of these estimators via their ADRs.

5.2.1 Comparison between UE and RE

In this subsection, we derive a result which shows that near the null hypothesis, the

RE dominates the UE. The derived result also shows that the UE dominates the RE

as one moves away from the null hypothesis.

Proposition 5.1. Suppose that the conditions of Theorem 5.1 hold and let W =

L2CL
′
2 such that the matrix C is a n×n real positive semidefinite symmetric matrix,

then ADR(θ̃(φ̂), θ,W ) ≤ ADR(θ̂(φ̂), θ,W ) if ∆ ≤ Tr(Σ⊗(AC))
λmax(Σ⊗(AC))

, where A = L′2Σ−1
2 L2.

Proof. From Theorem 5.6, we have

ADR(θ̃(φ̂), θ,W )− ADR(θ̂(φ̂), θ,W ) =− Tr(Σ) Tr(WΣ−1
2 L2J3) + Tr(J7WJ ′7)

+ Tr(J1L1Σ) Tr(WΣ−1
2 (L2J3 − I)).

One can verify Tr(WΣ−1
2 (L2J3 − I)) = 0 and Tr(WΣ−1

2 L2J3) = Tr(CA). Thus,

ADR(θ̃(φ̂), θ,W ) ≤ ADR(θ̂(φ̂), θ,W ) whenever −Tr(Σ) Tr(CA) + Tr(J7WJ ′7) ≤ 0.

Further, note that Ξ = L2(L′2Σ−1
2 L2)−1L′2 and ∆ = Tr(J7ΞJ ′7Σ−1), we get

Tr(J7L2A
−1L′2J

′
7Σ−1) = Vec(L′2J

′
7)′(Id ⊗ A−1)(Σ−1 ⊗ In)Vec(L′2J

′
7).

Then, we have

∆ = Vec(L′2J
′
7)′(Σ−1 ⊗ A−1)Vec(L′2J

′
7). (5.3)
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Also, note that Tr(J7WJ ′7) = Tr(J7L2CL
′
2J
′
7). Similarly, we get

Tr(J7WJ ′7) = Vec(L′2J
′
7)′(Id ⊗ C)Vec(L′2J

′
7). (5.4)

Since (Σ−1 ⊗ A−1)−1(Id ⊗ C) = Σ ⊗ (AC), let λmax(M) and λmin(M) represent the

largest and smallest eigenvalues of a matrix M respectively. Then

λmin(Σ⊗ (AC)) ≤ Tr(J7WJ ′7)

∆
≤ λmax(Σ⊗ (AC)). (5.5)

Thus, we get −Tr(Σ) Tr(CA) + Tr(J7WJ ′7) ≤ 0 if ∆ ≤ Tr(Σ⊗(AC))
λmax(Σ⊗(AC))

, which completes

the proof.

5.2.2 Comparison between UE and SEs

In this subsection, we present a result which shows that θ̂S+ dominates θ̂S, and thus

also dominates the UE. Thus, the derived result also shows that as one moves far

away from the null hypothesis, the SEs dominate the RE.

Proposition 5.2. Suppose that the conditions of Theorem 5.1 hold and let W =

L2CL
′
2 such that the matrix C is a n× n positive semidefinite symmetric matrix that

satisfies λmax(Σ⊗(AC))
Tr(Σ⊗(AC))

≤ 2
nd+2

, where A = L′2Σ−1
2 L2. Then,

ADR(θ̂S+, θ,W ) ≤ ADR(θ̂S, θ,W ) ≤ ADR(θ̂(φ̂), θ,W ), for all ∆ ≥ 0.

Proof. From Theorem 5.2 and, we have

ADR(θ̂S, θ,W )−ADR(θ̂(φ̂), θ,W ) = −Tr(J1L1Σ) Tr(W (Σ−1
2 − Σ−1

2 L2J3))

− (nd− 2)(2E[χ−2
nd+2(∆)]− (nd− 2)E[χ−4

nd+2(∆)]) Tr(WΣ−1
2 L2J3) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

+ ((nd)2 − 4)E[χ−4
nd+4(∆)] Tr(J7WJ ′7),
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by the identity in Saleh (2006, p. 32), we have

E[χ−2
nd+2(∆)] = ∆E[χ−4

nd+4(∆)] + (nd− 2)E[χ−4
nd+2(∆)], we get

ADR(θ̂S, θ,W )−ADR(θ̂(φ̂), θ,W ) = −Tr(J1L1Σ) Tr(W (Σ−1
2 − Σ−1

2 L2J3))

− (nd− 2)(2∆E[χ−4
nd+4(∆)] + (nd− 2)E[χ−4

nd+2(∆)]) Tr(WΣ−1
2 L2J3) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

+ ((nd)2 − 4)E[χ−4
nd+4(∆)] Tr(J7WJ ′7). (5.6)

Notice that ∆ = Tr(J7ΞJ ′7Σ−1) = Tr(Σ−1/2J7ΞJ ′7Σ−1/2) ≥ 0 since (L′2Σ−1
2 L2)−1 is

a positive definite matrix, therefore Tr(Σ−1/2J7ΞJ ′7Σ−1/2) ≥ 0 with equality holding

if and only if Σ−1/2J7L2 = 0. Also, noting that Σ−1
2 L2J3 and W are symmetric

positive semidefinite matrices, we have Tr(WΣ−1
2 L2J3) = Tr(W 1/2Σ−1

2 L2J3W
1/2) ≥ 0.

Moreover, note that E[χ−4
nd+2(∆)] ≥ 0, E[χ−4

nd+4(∆)] ≥ 0 and nd > 2. Further, notice

that whenever the weighting matrix W = L2CL
′
2 with C an n × n real symmetric

matrix, then we get

W (Σ−1
2 − Σ−1

2 L2J3) = L2CL
′
2(Σ−1

2 − Σ−1
2 L2(L′2Σ−1

2 L2)−1L′2Σ−1
2 ) = 0. (5.7)

Therefore, for ∆ = 0, we have J7L2 = 0 since Σ is positive definite, thus,

Tr(J7WJ ′7) = Tr(J7L2CL
′
2J
′
7) = 0 and by combining (5.6) and (5.7), we get

ADR(θ̂S, θ,W )−ADR(θ̂(φ̂), θ,W ) =

− (nd− 2)2E[χ−4
nd+2(∆)] Tr(WΣ−1

2 L2J3) Tr(Σ) ≤ 0.
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For ∆ > 0, we have

ADR(θ̂S, θ,W )− ADR(θ̂(φ̂), θ,W ) = −Tr(J1L1Σ) Tr(W (Σ−1
2 − Σ−1

2 L2J3))

+ E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

−2(nd− 2)∆ Tr(WΣ−1
2 L2J3) Tr(Σ)E[χ−4

nd+4(∆)]

(
1− (nd+ 2) Tr(J7WJ ′7)

2∆ Tr(WΣ−1
2 L2J3) Tr(Σ)

)
− (nd− 2)2E[χ−4

nd+2(∆)] Tr(WΣ−1
2 L2J3) Tr(Σ). (5.8)

Note that

−2(nd− 2)∆ Tr(WΣ−1
2 L2J3) Tr(Σ)E[χ−4

nd+4(∆)]

(
1− (nd+ 2) Tr(J7WJ ′7)

2∆ Tr(WΣ−1
2 L2J3) Tr(Σ)

)
≤ 0,

whenever

1− (nd+ 2) Tr(J7WJ ′7)

2∆ Tr(WΣ−1
2 L2J3) Tr(Σ)

≥ 0. (5.9)

Therefore by combining (5.7), (5.8), and (5.9), we get

ADR(θ̂S, θ,W )− ADR(θ̂(φ̂), θ,W ) ≤ 0,

if

1− (nd+ 2) Tr(J7WJ ′7)

2∆ Tr(L2CL′2Σ−1
2 L2J3) Tr(Σ)

≥ 0. (5.10)

Let λmax(M) and λmin(M) represent the largest and smallest eigenvalues of a matrix

M respectively. Note that (Σ−1⊗A−1)−1(Id⊗C) = Σ⊗ (AC). From (5.3), (5.4) and

Theorem A.2 in the Appendix, we get

λmin(Σ⊗ (AC)) ≤ Tr(J7WJ ′7)

∆
≤ λmax(Σ⊗ (AC)).

Also, we have Tr(L2CL
′
2Σ−1

2 L2J3) = Tr(L2CL
′
2Σ−1

2 ) = Tr(AC). Then, we get

1− (nd+ 2) Tr(J7WJ ′7)

2∆ Tr(L2CL′2Σ−1
2 L2J3) Tr(Σ)

≥ 1− (nd+ 2)λmax(Σ⊗ (AC))

2 Tr(AC) Tr(Σ)
.
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Since Tr(AC) Tr(Σ) = Tr(Σ⊗ (AC)). By (5.10), we have

ADR(θ̂S, θ,W )− ADR(θ̂(φ̂), θ,W ) ≤ 0,

if

1− (nd+ 2)λmax(Σ⊗ (AC))

2 Tr(Σ⊗ (AC))
≥ 0⇔ λmax(Σ⊗ (AC))

Tr(Σ⊗ (AC))
≤ 2

nd+ 2
. (5.11)

Further, note that from Theorem 5.2, we have

ADR(θ̂S+, θ,W )−ADR(θ̂S, θ,W ) = 2E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2}] Tr(J7WJ ′7)

− E[(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)<nd−2}] Tr(W (Σ−1
2 − Σ−1

2 L2J3)) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)<nd−2}] Tr(WΣ−1
2 L2J3) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)<nd−2}] Tr(J7WJ ′7).

In order to study the risks of θ̂S and θ̂S+, we study the sign of each term in the equation

above. Note that W is symmetric and positive semidefinite, then it can be rewritten

as W = PP ′ for some P, and Σ−1
2 L2J3 is also symmetric and positive semidefinite,

therefore, Tr(WΣ−1
2 L2J3) = Tr(P ′Σ−1

2 L2J3P ) ≥ 0. Also, Tr(J7WJ ′7) ≥ 0 due to W

being symmetric and positive semidefinite, and Tr(Σ) > 0 since Σ is positive definite.

Moreover, since

(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)<nd−2} ≥ 0,

(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)<nd−2} ≥ 0,

(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)<nd−2} ≥ 0.

One can verify that

E[(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)<nd−2}] ≥ 0,

E[(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)<nd−2}] ≥ 0,

E[(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)<nd−2}] ≥ 0.
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For a given choice of the weighting matrix W , we have

− E[(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)<nd−2}] Tr(W (Σ−1
2 − Σ−1

2 L2J3)) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)<nd−2}] Tr(WΣ−1
2 L2J3) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)<nd−2}] Tr(J7WJ ′7) ≤ 0. (5.12)

For the sign of 2E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2}] Tr(J7WJ ′7), note that

(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2} ≤ 0,

then we have

E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2}] ≤ 0.

Therefore,

2E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2}] Tr(J7WJ ′7) ≤ 0. (5.13)

Combining (5.12) and (5.13), we have

ADR(θ̂S+, θ,W )− ADR(θ̂S, θ,W ) ≤ 0,

for all ∆ ≥ 0, which completes the proof.
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Chapter 6

Numerical study

In this chapter, we examine the performance of the estimators θ̂(φ̂), θ̃(φ̂), θ̂S, and θ̂S+

in case of a 4-dimensional stochastic process. Firstly, we use Euler-Maruyama dis-

cretization to generate the stochastic process in (2.1), then we calculate the weighted

squared error of each estimator based on different non-centrality parameter ∆ with

the weighting matrix W = L2(L′2Σ−1
2 L2)−1L′2. By 1000 replications, we compute the

ADR of each estimator as well as the empirical relative mean squared efficiencies

(RMSE), which is defined as

RMSE(θ̃?) = ADR(θ̂(φ̂), θ,W )/ADR(θ̃?, θ,W )

where θ̃? represents for different estimators. Thus, RMSE shows a degree of superi-

ority of the estimator over UE, a gold standard. In this simulation study, we define

the increment of time in the interval [0, T ] as v = 0.01, and T is choosen as T = 50

and T = 100 for two scenarios. Also, we choose a 2-dimensional periodic incomplete

orthogonal set of functions [1,
√

2 cos(πt
v

)], t ∈ [0, T ] as our base functions ϕ(t). The
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true parameter θ is set as:

θ =



4 1 6 4 3 1 12 2 6 4 3 1

9 2 4 5 4 1 27 4 4 5 4 1

6 3 3 3 4 2 18 6 3 3 4 2

︸︷︷︸
µ1

5 4 ︸ ︷︷ ︸
A1

5 2 2 3 ︸ ︷︷ ︸
µ2

15 8 ︸ ︷︷ ︸
A2

5 2 2 3


.

Thus, A1 = A2 are positive-definite matrices, we have the parameter µ which changes

after the change-point (i.e. the coefficient for the first element of the base functions

ϕ(t) tripled, and the coefficient for the second element of the base functions ϕ(t)

doubled) and the parameter A remains the same. For simplicity, we choose Σ = I4.

We also choose φ = 0.4. Let 0 < t0 < ... < tn = T be a partition on a given time period

[0, T ] with a constant increment τ = ti+1 − ti, then Σ̂ = diag(σ̂1
2, σ̂2

2, σ̂3
2, σ̂4

2) is a

strongly consistent estimator for Σ = diag(σ2
1, σ

2
2, σ

2
3, σ

2
4), where σ̂i

2 = 1
T

n∑
j=1

(Xi(jτ)−

Xi((j − 1)τ))2. For the change-point, we use the method similar to that given in

Chen and Nkurunziza (2015). Let Yi = Xti+1
−Xti and Zi = (1,

√
2 cos(πt

v
),−X ′ti)(τ).

The consistent estimator for the change-point φ is obtained by φ̂ = argmin
φ

SSE(φ),

where SSE(φ) =
∑

ti∈[0,T ]

(Yi − θ̂(φ)Zi)
′(Yi − θ̂(φ)Zi) and θ̂(φ) = I{ ti

T
≤φ}θ̂1 + I{ ti

T
>φ}θ̂2,

where

[
θ̂1 θ̂2

]
forms the MLE θ̂ with the change-point given by φ. We compute the

estimates of the rate of the change-point, and below, we present histograms in Figure

6.1-6.3 , which show that the method used locates very well the change-point. Indeed,

the histograms show that the pick of the estimates corresponds to the exact value

of φ = 0.4. The distribution of the obtained estimates are unimodal and symmetric

with respect to the exact value of φ = 0.4. For the linear restrictions, we choose

L1 = (1,−1, 0, 0) and d1 = L1θ, also we choose L2 =

[
2I6 −I6

]′
. Under the null
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hypothesis, d2 is calculated as θL2, i.e.,

d2 =



−4 0 6 4 3 1

−9 0 4 5 4 1

−6 0 3 3 4 2

−5 0 5 2 2 3


.

Under the alternative hypothesis defined in (3.25), let r2 = kd2, where k = 1, .., 6.

From previous sections, we know that non-centrality parameter ∆ = Tr(J7ΞJ ′7Σ−1)

depends on r2 since J7 = J1L1r2J3 − r2J3. Thus, different values of r2 corresponds

to different levels of ∆. For T = 50 and T = 100, we plot respectively the RMSEs of

the proposed estimators versus ∆ in the Figures 6.4 and 6.5.

Figure 6.1: Histogram of the estimates of φ for T=5
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Figure 6.2: Histogram of the estimates of φ for T=10

Figure 6.3: Histogram of the estimates of φ for T=20
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Figure 6.4: RMSE of RE, SE, PSE versus ∆ (T = 50)

Figure 6.5: RMSE of RE, SE, PSE versus ∆ (T = 100)

Further, by setting d2 = 0 and L2 =

[
I6 −I6

]′
, we simulate the case with

the absence of the change-point for T=20 and T=100. We plot the RMSEs in the
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following diagrams.

Figure 6.6: RMSEs versus ∆ (T = 20)

Figure 6.7: RMSEs versus ∆ (T = 100)

According to Figure 6.4 - 6.7, it is clear that the shrinkage estimators outperform
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over the UE. In addition, the positive shrinkage estimator dominates the shrinkage

estimator. These simulation results coincide with the theoretical results that are esta-

bilshed in this thesis. Also, around a neighbourhood of the hypothesized restriction,

the RE dominates any other estimators; however, it performs much worse as the hy-

pothesized constraint is severely violated. Further, for the test of (2.3), we simulate

the empirical power of the test versus ∆ and T , and the results are presented in the

Figures 6.8 - 6.10 .

Figure 6.8: Empirical power of the test α = 0.1
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Figure 6.9: Empirical power of the test α = 0.05

Figure 6.10: Empirical power of the test α = 0.025

Figures 6.8 - 6.10 confirm the established theoretical result given in Section 4.3.

In particular, Figures 6.8 - 6.10 show that the proposed test is consistent.
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Conclusion

This thesis generalizes in five ways some results in Dehling et al. (2010, 2014), Chen et

al. (2017) as well as that in Nkurunziza and Zhang (2018). First, we propose inference

methods in the context of multivariate generalized O-U processes. Thus, the target

parameter is a matrix. As a preliminary step, we present some results in the no

change-point case. Second, we extend the results to the case of a known change-

point. In particular, we prove the existence of the UMLE and RMLE, also, we present

the joint asymptotic normality of the UMLE and RMLE. Third, we present the UE,

RE, and SEs as well as their joint asymptotic normality in the case of the unknown

change-point. Forth, we propose a test for testing the hypothesized restriction. The

proposed test includes some special cases such as testing the absence of a change-point

and testing the nonexistence of the seasonality factor. Fifth, we derive the asymptotic

local power and prove that the proposed test is consistent. Sixth, we propose SEs

and we derive the ADRs of the UE, RE and SEs. We also compare the relative

efficiency of the proposed estimators via their ADRs. By theoretical approach and

by the simulation study, our findings show that for a suitable choice of the weighting

matrix W , the PSE dominates the SE, and SE dominates the UE. Also, the RE is

the best in the neighborhood of the null hypothesis, but it performs poorly as one

moves far away from the hypothesized restriction.
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APPENDICES

A Theoretical background

Theorem A.1. (Ω, A,P, τ) is ergodic if and only if for all A ,B ∈ A, the measure

preserving transformation τ is weakly-mixing.

The proof is referred to Klenke (2013, Theorem 20.23, p.450).

Theorem A.2. (Mathai and Provost, 1992, Theorem 2.4.7). Let B be any n × n

positive definite matrix and A be an n × n symmetric matrix. Let λ1 ≥ λ2 ≥ ... ≥

λn be the eigenvalues of B−1A with eigenvectors q1, q2, ..., qn respectively. Then,

sup
x

(
x′Ax

x′Bx

)
= λn, and inf

x

(
x′Ax

x′Bx

)
= λ1, where λ1 and λn are respectively the

largest and smallest eigenvalues of B−1A.

Proposition A.1 (Proposition 1.21 Kutoyants, 2004). Let every T > 0, θ ∈ Θ, and

i=1,...,d1, j=1,...,d2, define

IT (θ) =
(
I

(1)
T (θ), ..., I

(d1)
T (θ)

)′
, I

(i)
T (t, θ) =

d2∑
j=1

∫ T

0

h
(i,j)
T (θ, t, ω)dB

(j)
t ,

where P

(∫ T

0

(
h

(i,j)
T (θ, t, ω)

)2

dt <∞
)

= 1, for all i,j and

{B(1)
t , ...., B

(d2)
t , 0 ≤ t ≤ T} are d2 independent Wiener processes. Suppose that

there exists a (non-random) positive definite matrix Σ(θ) =
(
Σ(i,m)(θ)

)
d1×d2

such that
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d2∑
l=1

∫ T

0

h
(i,l)
T (θ, t, ω)h

(m,l)
T (θ, t, ω)dt

P−−−→
T→∞

Σ(i,m)(θ), uniformly with respect to θ ∈ Θ,

then

IT (θ)
D−−−→

T→∞
N
(
0,Σ(θ)

)
uniformly with respect to θ ∈ Θ too.

The proof is referred to Kutoyants (2004 Proposition 1.21, p.46).

Proposition A.2. Let A and B be constant matrices of proper sizes. Then

∂(AXB)

∂X
= B ⊗ A′,

∂(AY B)

∂X
=
∂Y

∂X
(B ⊗ A′).

The proof is referred to Kollo and Rosen (Proposition 1.4.4, p.129).

Proposition A.3. Let A be any positive definite matrix, and let λ1 and λd be the

smallest and largest eigenvalues of A′ + A respectively. Then
√
de−tλd ≤ ‖e−At‖F ≤

√
de−tλ1, for all t > 0, and

√
de−tλ1 ≤ ‖e−At‖F ≤

√
de−tλd, for all t < 0, and thus

lim
t→+∞

e−At = 0.

Proof. It is sufficient to prove that lim
t→∞
‖e−At‖F = 0, where ‖.‖F denotes Frobenius

norm, notice that

‖e−At‖F =
√

Tr(e−A′te−At) =
√

Tr(e−(A′+A)t) =

√√√√Tr

(
∞∑
k=0

1

k!
(−t)k(A′ + A)k

)
.

By sub-multipicative property of the Frobenius norm. i.e. ‖AB‖F ≤ ‖A‖F‖B‖F , we

have:

∞∑
k=0

1

k!
‖(−t)k(A′ + A)k‖F ≤

∞∑
k=0

1

k!
(t2)k‖(A′ + A)‖kF = et

2‖A′+A‖F <∞.
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Therefore

‖e−At‖F =

√√√√ ∞∑
k=0

1

k!
(−t)k Tr[(A′ + A)k].

Moreover, since A′ + A is real symmertic, it can be diagonalized as LΛL′, where

LL′ = I, and Λ is a diagonal matrix with diagonal entries equal to the eigenvalues of

A′ + A, we have

‖e−At‖F =

√√√√ ∞∑
k=0

1

k!
(−t)k Tr[(LΛL′)k] =

√√√√ ∞∑
k=0

1

k!
(−t)k Tr(LΛkL′)

=

√√√√ ∞∑
k=0

1

k!
(−t)k Tr(Λk) =

√√√√ ∞∑
k=0

1

k!
(−t)k

d∑
j=1

λkj .

Since A is a positive definite matrix, we have A′ + A is also a positive definite

matrix. Therefore, all the eigenvalues of A′ + A are strictly greater than 0, then∣∣∣∣∣
∞∑
k=0

1

k!
(−t)k

d∑
j=1

λkj

∣∣∣∣∣ ≤
∞∑
k=0

1

k!
|t|k

d∑
j=1

λkj =
d∑
j=1

(
∞∑
k=0

(|t|λj)k

k!

)
=

d∑
j=1

eλj |t| <∞, ∀t ∈ R.

This gives

‖e−At‖F =

√√√√ d∑
j=1

∞∑
k=0

1

k!
(−t)kλkj =

√√√√ d∑
j=1

e−tλj

Now, let λ1 be the smallest eigenvalue of A′ +A, and let λd be the largest eigenvalue

of A′ + A, we have e−λdt ≤ e−λjt ≤ e−λ1t, ∀t > 0. Then

√
de−λdt ≤ ‖e−At‖F ≤

√
de−tλ1 . (A.1)

Similarly, we have e−λ1t ≤ e−λjt ≤ e−λdt, ∀t < 0, this proves the inequalities stated.

Further, by taking limits both sides, we have lim
t→+∞

‖e−At‖F = 0, which completes the

proof.

Proposition A.4 (Nkurunziza, 2012). Suppose that the conditions of Corollary (4.1)
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hold and let W be nonnegative definite matrix. Then, for any real number c, we have

E{Tr[(1− cψ−1)2ξ′Wξ]} = E[(1− cχ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

+ E[(1− cχ−2
nd+2(∆))2] Tr(WΣ−1

2 L2J3) Tr(Σ)

+ E[(1− cχ−2
nd+4(∆))2] Tr(J7WJ ′7);

E[(1− cψ−1)ζ ′Wξ] = −E[(1− cχ−2
nd+2(∆))]J7WJ ′7.

For the proof, we refer to Theorem 2.3 in Nkurunziza (2012).

Lemma A.1. (Bessel’s Inequality). Let H be a Hilbert space. If {ϕi : i = 1, ..., p} is

a finite orthonormal set in H, then for any x ∈ H,
∑p

i=1 |〈x, ϕi〉|2 ≤ ‖x‖2.

Lemma A.2. Let {Yt, t ≥ 0} be a d-dimensional stochastic process, {Ft, t ≥ 0}

adapted and L2 bounded. Suppose that φ̂ is Ft-measurable, valued on [0,1] and a

consistent estimator for φ, then,

(i) 1
T

∫ φ̂T

0

Ytdt−
1

T

∫ φT

0

Ytdt
L1

−−−→
T→∞

0,

(ii) 1
T

∫ T

φ̂T

Ytdt−
1

T

∫
φT

T

Ytdt
L1

−−−→
T→∞

0.

The proof follows from the similar derivation as used in Lemma 3.1 of Nkurunziza

and Zhang (2018).

Lemma A.3. Let f(θ, x) be a Rd-valued function, and let {Yt, t ≥ 0} be a d-

dimensional stochastic process which is a solution of the SDE,

dYt = f(µ1, Yt)I{t≤γ}dt+ f(µ2, Yt)I{t>γ}dt+ σdWt, (A.2)

where f(θ, x) is such that the processes {Yt, t ≥ 0} and {f(θ, Yt), t ≥ 0} are L2bounded.

If Assumption 3 holds with δ0 >
1
2
, then,

(i) 1√
T

∫ φ̂T

0

YtdWt −
1√
T

∫ φT

0

YtdWt
P−−−→

T→∞
0,

(ii) 1√
T

∫
φ̂T

T

YtdWt −
1√
T

∫ T

φT

YtdWt
P−−−→

T→∞
0.
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The proof follows from the similar techniques as used in Lemma 3.3 of Nkurunziza

and Zhang (2018).

Corollary A.1. Let W ∼ Wn(p, kI,∆), then 1
k

Tr(W ) ∼ χ2
pn(Tr(∆)).

For the proof, we refer to Corollary 2.4.2.2. in Kollo and Rosen (2011, p.238).

B Proof of important results

Proof of Proposition 2.1. First, we verify space-variable lipshitz condition. By

Triangle Inequality, we get:

‖S(t, x)− S(t, y)‖2
2 + ‖Σ(t, x)1/2 − Σ(t, y)1/2‖2

F = ‖S(t, x)− S(t, y)‖2
2

= ‖(µ1ϕ(t)− A1x)I{t≤γ} + (µ2ϕ(t)− A2x)I{t>γ}−

[(µ1ϕ(t)− A1y)I{t≤γ} + (µ2ϕ(t)− A2y)I{t>γ}]‖2
2

= ‖(A1(y − x))I{t≤γ} + (A2(y − x))I{t>γ}‖2
2.

Note that I{t≤γ}I{t>γ} = 0 for all t. Also since ‖A1(y−x)‖2
2 ≥ 0 and ‖A2(y−x)‖2

2 ≥ 0,

we have

‖(A1(y − x))I{t≤γ} + (A2(y − x))I{t>γ}‖2
2 ≤ ‖(A1(y − x))I{t≤γ}‖2

2 + ‖(A2(y − x))I{t>γ}‖2
2

≤ ‖A1(y − x)‖2
2I{t≤γ} + ‖A2(y − x)‖2

2I{t>γ}

≤ ‖A1(y − x)‖2
2 + ‖A2(y − x)‖2

2

≤ ‖A1‖2
F‖y − x‖2

2 + ‖A2‖2
F‖y − x‖2

2.

Let ‖A1‖2
F + ‖A2‖2

F ≤ KA, we have

‖S(t, x)− S(t, y)‖2
2 + ‖Σ(t, x)1/2 − Σ(t, y)1/2‖2

F ≤ KA‖y − x‖2
2.
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Second, we verify spatial growth condition. Note that from Assumption 2, we have

the boundedness of ϕ(t). Therefore, by Triangle Inequality and (a+ b)2 ≤ 2a2 + 2b2,

we have

‖(µ1ϕ(t)− A1x)I{t≤γ} + (µ2ϕ(t)− A2x)I{t>γ}‖2
2 + ‖Σ1/2‖2

F

≤ ‖(µ1ϕ(t)− A1x)I{t≤γ}‖2
2 + ‖(µ2ϕ(t)− A2x)I{t>γ}‖2

2 + ‖Σ1/2‖2
F

≤ ‖µ1ϕ(t)− A1x‖2
2 + ‖µ2ϕ(t)− A2x‖2

2 + ‖Σ1/2‖2
F

≤ (‖µ1ϕ(t)‖2 + ‖A1x‖2)2 + (‖µ2ϕ(t)‖2 + ‖A2x‖2)2 + ‖Σ1/2‖2
F

≤ 2‖µ1ϕ(t)‖2
2 + 2‖A1x‖2

2 + 2‖µ2ϕ(t)‖2
2 + 2‖A2x‖2

2 + ‖Σ1/2‖2
F

≤ 2‖µ1ϕ(t)‖2
2 + 2‖A1‖2

F‖x‖2
2 + 2‖µ2ϕ(t)‖2

2 + 2‖A2‖2
F‖x‖2

2 + ‖Σ1/2‖2
F ,

then ‖S(t, x)‖2
2 + ‖Σ(t, x)1/2‖2

F ≤ G(1 + ‖x‖2
2) for some constant G. Further, let

G′ = max(G,KA), we have

‖S(t, x)− S(t, y)‖2
2 + ‖Σ(t, x)1/2 − Σ(t, y)1/2‖2

F ≤ G′‖y − x‖2
2

‖S(t, x)‖2
2 + ‖Σ(t, x)1/2‖2

F ≤ G′(1 + ‖x‖2
2),

which completes the proof.

Proof of Proposition 2.3. By the independence of W
(1)
s and W

(2)
−s , we get

Cov(Z̃t, Z̃k+t) = Cov

(
e−At

∫ t

0

eAsΣ1/2dW (1)
s , e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s

)
+ Cov

(
e−At

∫ 0

−∞
eAsΣ1/2dW

(2)
−s , e

−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

)
= Cov

(
e−At

∫ t

0

eAsΣ1/2dW (1)
s , e−A(k+t)

∫ t

0

eAsΣ1/2dW (1)
s

)
+ Cov

(
e−At

∫ t

0

eAsΣ1/2dW (1)
s , e−A(k+t)

∫ k+t

t

eAsΣ1/2dW (1)
s

)
+ Cov

(
e−At

∫ 0

−∞
eAsΣ1/2dW

(2)
−s , e

−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

)
.
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By the independence of increments of wiener process, we have

Cov

(
e−At

∫ t

0

eAsΣ1/2dW (1)
s , e−A(k+t)

∫ k+t

t

eAsΣ1/2dW (1)
s

)
= 0.

Then, we get

Cov(Z̃t, Z̃k+t) = Cov

(
e−At

∫ t

0

eAsΣ1/2dW (1)
s , e−A(k+t)

∫ t

0

eAsΣ1/2dW (1)
s

)
+ Cov

(
e−At

∫ 0

−∞
eAsΣ1/2dW

(2)
−s , e

−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

)
=

[
Var

(∫ t

0

e−A(t−s)Σ1/2dW (1)
s

)
+ Var

(∫ 0

−∞
e−A(t−s)Σ1/2dW

(2)
−s

)]
e−A

′k.

(B.1)

Since the Itô’s integral

∫ k+t

0

eAsΣ1/2dW (1)
s is a martingale, we get

Cov(Z̃t, Z̃k+t) = E(Z̃tZ̃
′
k+t). Also, using Itô’s isometry, we get

Var

(∫ t

0

e−A(t−s)Σ1/2dW (1)
s

)
=

∫ t

0

e−A(t−s)Σ1/2Σ1/2′e−A
′(t−s)ds

=

∫ t

0

e−A(t−s)Σe−A
′(t−s)ds. (B.2)

Furthermore, we have

Var

(∫ 0

−∞
e−A(t−s)Σ1/2dW

(2)
−s

)
= Var

(∫ ∞
0

e−A(t+s)Σ1/2dW (2)
s

)
.

Let IL =

∫ L

0

e−A(t+s)Σ1/2dW (2)
s . As verified later in (B.15), we have IL

L2

−−−→
L→∞

I∞,

which implies that lim
L→∞

Var(IL) = Var(I∞), therefore

Var

(∫ ∞
0

e−A(t+s)Σ1/2dW (2)
s

)
= lim

L→∞
Var(IL) = lim

L→∞
Var

(∫ L

0

e−A(t+s)Σ1/2dW (2)
s

)
.

(B.3)

Using Itô’s isometry, we get

Var

(∫ L

0

e−A(t+s)Σ1/2dW (2)
s

)
=

∫ L

0

e−A(t+s)Σe−A
′(t+s)ds. (B.4)
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Combining (B.3) and (B.4), we get

Var

(∫ ∞
0

e−A(t+s)Σ1/2dW (2)
s

)
=

∫ ∞
0

e−A(t+s)Σe−A
′(t+s)ds. (B.5)

Combining (B.1), (B.2), and (B.5), we have

Cov(Z̃t, Z̃k+t) =

(∫ t

0

e−A(t−s)Σe−A
′(t−s)ds+

∫ ∞
0

e−A(t+s)Σe−A
′(t+s)ds

)
e−A

′k.

In order to get the explicit form of Cov(Z̃t, Z̃k+t), let us consider the vectorization of

Cov(Z̃t, Z̃k+t). Using Vec(ABC) = (C ′⊗A)Vec(B) where ”⊗” denotes the Kronecker

product, we get

Vec(Cov(Z̃t, Z̃k+t)) = Vec

((∫ t

0

e−A(t−s)Σe−A
′(t−s)ds+

∫ ∞
0

e−A(t+s)Σe−A
′(t+s)ds

)
e−A

′k

)
= (e−Ak ⊗ Id)Vec

(∫ t

0

e−A(t−s)Σe−A
′(t−s)ds

)
+ (e−Ak ⊗ Id)Vec

(∫ ∞
0

e−A(t+s)Σe−A
′(t+s)ds

)
, (B.6)

where Id is a d-dimensional indentity matrix. Note that

Vec

(∫ t

0

e−A(t−s)Σe−A
′(t−s)ds

)
=

∫ t

0

Vec(e−A(t−s)Σe−A
′(t−s))ds

=

∫ t

0

(e−A(t−s) ⊗ e−A(t−s))Vec(Σ)ds.

Using eA⊗eB = eA⊕B (Horn and Johnson, 1994), where ”⊕” denotes Kronecker sum

(i.e. A⊕ B = A⊗ Im + In ⊗ B for A,B square matrices of order n,m respectively),

we get ∫ t

0

e−(A⊕A)(t−s)Vec(Σ)ds =
[
(A⊕ A)−1e−(A⊕A)(t−s)Vec(Σ)

]t
0
.

Then, we get

Vec

(∫ t

0

e−A(t−s)Σe−A
′(t−s)ds

)
= (A⊕ A)−1Vec(Σ)− (A⊕ A)−1e−(A⊕A)tVec(Σ).

(B.7)
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Similarly, we have

Vec

(∫ ∞
0

e−A(t+s)Σe−A
′(t+s)ds

)
=

∫ ∞
0

Vec(e−A(t+s)Σe−A
′(t+s))ds

=
[
−(A⊕ A)−1e−(A⊕A)(t+s)Vec(Σ)

]∞
0
.

Since A is positive definite, A⊕ A is also positive definite, then by Proposition A.1,

we get

Vec

(∫ ∞
0

e−A(t+s)Σe−A
′(t+s)ds

)
= (A⊕ A)−1e−(A⊕A)tVec(Σ). (B.8)

Combining (B.6), (B.7), and (B.8), we have

Vec(Cov(Z̃t, Z̃k+t)) = (e−Ak ⊗ Id)[(A⊕ A)−1Vec(Σ)− (A⊕ A)−1e−(A⊕A)tVec(Σ)

+ (A⊕ A)−1e−(A⊕A)tVec(Σ)],

then

Vec(Cov(Z̃t, Z̃k+t)) = (e−Ak ⊗ Id)(A⊕ A)−1Vec(Σ), (B.9)

this completes the proof.

Proof of Proposition 2.4. Note that for every t ∈ [0, 1] and k ∈ N0, we have

X̃k+t = h̃(t) + Z̃k+t. Thus, it suffices to prove that {Z̃k+t}k∈N0 is a Gaussian process.

Further, we have

Z̃k+t = e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s + e−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s .

let Zk+t = e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s , and Z̄k+t = e−A(k+t)

∫
−∞

0

eAsΣ1/2dW
(2)
−s .
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Taking any partition of k, i.e. k=1,2,...,n, we have

Z̃1+t

Z̃2+t − Z̃1+t

...

Z̃n+t − Z̃(n−1)+t


=



Z1+t

Z2+t − Z1+t

...

Zn+t − Z(n−1)+t


+



Z̄1+t

Z̄2+t − Z̄1+t

...

Z̄n+t − Z̄(n−1)+t


.

By the independence of increments of wiener process, we have[
Z ′1+t Z ′2+t − Z ′1+t ... Z ′n+t − Z ′(n−1)+t

]′
follows multivariate normal distribution. Further, we have

Z̄1+t

Z̄2+t − Z̄1+t

...

Z̄n+t − Z̄(n−1)+t


=



e−A(1+t)

e−A(2+t) − e−A(1+t)

...

e−A(n+t) − e−A(n−1+t)


∫ 0

−∞
eAsΣ1/2dW

(2)
−s ,

which also follows multivariate normal distribution.

By the independence of W
(1)
s and W

(2)
−s , we have[

Z̃ ′1+t Z̃ ′2+t − Z̃ ′1+t ... Z̃ ′n+t − Z̃ ′(n−1)+t

]′
follows multivariate normal distribution. Therefore,



Z̃1+t

Z̃2+t

...

Z̃n+t


=



Id 0 0 ... 0

Id Id 0 ... 0

Id Id Id ... 0

...
...

...
. . .

...

Id Id Id ... Id





Z̃1+t

Z̃2+t − Z̃1+t

...

Z̃n+t − Z̃(n−1)+t


follows multivariate Gaussian distribution and this proves that {X̃k+t}k∈N0 is a Gaus-

sian process.
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Proof of Proposition 2.5. First, let us prove that for all k ∈ N0 and t ∈ [0, 1],

E[‖X̃k+t‖2
2] <∞. By Triangle Inequality and the fact (a+ b)2 ≤ 2a2 + 2b2, we have

E[‖X̃k+t‖2
2] = E[‖h̃(k + t) + Z̃k+t‖2

2] ≤ E[(‖h̃(k + t)‖2 + ‖Z̃k+t‖2)2]

≤ 2E[‖h̃(k + t)‖2
2] + 2E[‖Z̃k+t‖2

2].

Let ‖µϕ(t)‖2 ≤ Kµ,ϕ for all t, we have

E

[∥∥∥h̃(k + t)
∥∥∥2

2

]
= E

[∥∥∥∥∫ k+t

−∞
e−A(k+t−s)µϕ(s)ds

∥∥∥∥2

2

]

≤ K2
µ,ϕ

∫ k+t

−∞
‖e−A(k+t−s)‖2

Fds.

From Proposition A.3, and let λ1 be the smallest eigenvalue of A′ + A, we get

E[‖h̃(k + t)‖2
2] ≤ K2

µ,ϕd

∫ k+t

−∞
e−λ1(k+t−s)ds ≤ K2

µ,ϕ

d

λ1

<∞. (B.10)

Further, by the independence of W
(1)
s and W

(2)
−s , we have

E[‖Z̃k+t‖2
2] = E

[∥∥∥∥e−A(k+t)

∫ k+t

−∞
eAsΣ1/2dW̃s

∥∥∥∥2

2

]

= E

[∥∥∥∥e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s + e−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

∥∥∥∥2

2

]

= E

[∥∥∥∥e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s

∥∥∥∥2

2

]
+ E

[∥∥∥∥e−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

∥∥∥∥2

2

]

+ 2E

(
e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s

)′
E

(
e−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

)
.

Since the Itô’s integral
∫ k+t

0
eAsΣ1/2dW

(1)
s is a martingale, therefore

E

(∫ k+t

0

eAsΣ1/2dW (1)
s

)
= 0. (B.11)

Then

E[‖Z̃k+t‖2
2] = E

[∥∥∥∥e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s

∥∥∥∥2

2

]
+ E

[∥∥∥∥e−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

∥∥∥∥2

2

]
.

(B.12)
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Moreover, let

e−A(k+t−s)Σ1/2 =



a11(s) a12(s) a13(s) ... a1d(s)

a21(s) a22(s) a23(s) ... a2d(s)

a31(s) a32(s) a33(s) ... a3d(s)

...
...

...
. . .

...

ad1(s) ad2(s) ad3(s) ... add(s)


,

and W
(1)
s =

[
W 1
s W 2

s W 3
s ... W d

s

]′
, we have

E

(∥∥∥∥∫ k+t

0

e−A(k+t−s)Σ1/2dW (1)
s

∥∥∥∥2

2

)
= E

(∥∥∥∥∫ k+t

0

e−A(k+t−s)Σ1/2dW (1)
s

∥∥∥∥2

2

)

= E

 d∑
i=1

(
d∑
j=1

∫ k+t

0

aij(s)dW
j
s

)2
 =

d∑
i=1

E

(
d∑
j=1

∫ k+t

0

aij(s)dW
j
s

)2

=
d∑
i=1

E

(
d∑
j=1

(∫ k+t

0

aij(s)dW
j
s

)2

+
∑
j 6=k

(∫ k+t

0

aij(s)dW
j
s

)(∫ k+t

0

aik(s)dW
k
s

))

=
d∑
i=1

E

(
d∑
j=1

(∫ k+t

0

aij(s)dW
j
s

)2
)

+ E

(∑
j 6=k

(∫ k+t

0

aij(s)dW
j
s

)(∫ k+t

0

aik(s)dW
k
s

))
.

By the independence of components of the standard Brownian motion, we have

E

(∥∥∥∥∫ k+t

0

e−A(k+t−s)Σ1/2dW (1)
s

∥∥∥∥2

2

)

=
d∑
i=1

E

(
d∑
j=1

(∫ k+t

0

aij(s)dW
j
s

)2
)

+
∑
j 6=k

E

(∫ k+t

0

aij(s)dW
j
s

)
E

(∫ k+t

0

aik(s)dW
k
s

)
.

Since E

(∫ k+t

0

aij(s)dW
j
s

)
= 0 for all i, j, we have

E

(∥∥∥∥∫ k+t

0

e−A(k+t−s)Σ1/2dW (1)
s

∥∥∥∥2

2

)
=

d∑
i=1

d∑
j=1

E

(∫ k+t

0

aij(s)dW
j
s

)2

.

By Itô’s isometry, this gives

E

(∫ k+t

0

aij(s)dW
j
s

)2

=

∫ k+t

0

a2
ij(s)ds.
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Therefore, we get

E

(∥∥∥∥∫ k+t

0

e−A(k+t−s)Σ1/2dW (1)
s

∥∥∥∥2

2

)
=

d∑
i=1

d∑
j=1

(∫ k+t

0

a2
ij(s)ds

)

=

∫ k+t

0

‖e−A(k+t−s)Σ1/2‖2
Fds ≤ ‖Σ1/2‖2

F

∫ k+t

0

‖e−A(k+t−s)‖2
Fds.

From Proposition A.3, and let λ1 be the smallest eigenvalue of A′ + A, we get

E

(∥∥∥∥∫ k+t

0

e−A(k+t−s)Σ1/2dW (1)
s

∥∥∥∥2

2

)
≤ d‖Σ1/2‖2

F

λ1

(
1− e−(k+t)λ1

)
. (B.13)

Meanwhile, let l = −s. This gives

E

(∥∥∥∥∫ 0

−∞
e−A(t+k−s)Σ1/2dW

(2)
−s

∥∥∥∥2

2

)
= E

(∥∥∥∥∫ ∞
0

e−A(t+k+l)Σ1/2dW
(2)
l

∥∥∥∥2

2

)
.

Also, one can verify that for all L1 ≥ 0, we have

E

(∥∥∥∥∫ L1

0

e−A(t+k+l)Σ1/2dW
(2)
l

∥∥∥∥2

2

)
≤ d‖Σ1/2‖2

F

∫ L1

0

e−(k+t+l)λ1dl

≤ e−A(t+k)λ1
d‖Σ1/2‖2

F

λ1

≤ d‖Σ1/2‖2
F

λ1

<∞. (B.14)

Now, by L2-Bounded Martingale Convergence Theorem, we have

IL1

L2

−−−−→
L1→∞

I∞ =

∫ ∞
0

e−A(t+k+l)Σ1/2dW
(2)
l . (B.15)

Therefore, we have

E

[∥∥∥∥e−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

∥∥∥∥2

2

]
≤ e−(k+t)λ1

d‖Σ1/2‖2
F

λ1

. (B.16)

Combining (B.12), (B.13), and (B.16), we have

E[‖Z̃k+t‖2
2] ≤ d‖Σ1/2‖2

F

λ1

(
1− e−(k+t)λ1

)
+ e−(k+t)λ1

d‖Σ1/2‖2
F

λ1

=
d‖Σ1/2‖2

F

λ1

<∞.

(B.17)

80



Combining (B.10) and (B.17), one concludes that E[‖X̃k+t‖2
2] < ∞. Second, let us

prove that E[X̃k+t] is a constant vector. We have

E[X̃k+t] = E[h̃(k + t)] + E[Z̃k+t]

= e−A(k+t)

∫ k+t

−∞
eAsµϕ(s)ds+ E

[
e−A(k+t)

∫ k+t

−∞
eAsΣ1/2dW̃s

]
. (B.18)

For k ∈ N0, let r = s−k ∈ (−∞, t), and by the periodicity of ϕ(t), i.e. ϕ(r+k) = ϕ(r),

we have

e−A(k+t)

∫ k+t

−∞
eAsµϕ(s)ds = e−At

∫ k+t

−∞
e−A(k−s)µϕ(s)ds

= e−At
∫ t

−∞
eArµϕ(r)dr = h̃(t), (B.19)

which does not depend on k and is a constant for every t ∈ [0, 1]. Furthermore, we

have

E

[
e−A(k+t)

∫ k+t

−∞
eAsΣ1/2dW̃s

]
= E

[
e−A(k+t)

∫ k+t

0

eAsΣ1/2dW (1)
s

]
+ E

[
e−A(k+t)

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

]
= e−A(k+t)

[
E

(∫ k+t

0

eAsΣ1/2dW (1)
s

)
+ E

(∫ 0

−∞
eAsΣ1/2dW

(2)
−s

)]
. (B.20)

From (B.15), we have Ik+t
L2

−−−→
k→∞

I∞ =

∫ ∞
0

e−AlΣ1/2dW
(2)
l . This implies that

E

[∫ 0

−∞
eAsΣ1/2dW

(2)
−s

]
= E

[∫ ∞
0

e−AsΣ1/2dW (2)
s

]
= lim

k→∞
E[Ik+t].

Since E[Ik+t] = 0 for all k + t ≥ 0, we have

E

[∫ 0

−∞
eAsΣ1/2dW

(2)
−s

]
= 0. (B.21)

Combining (B.11), (B.19), (B.20), and (B.21), one concludes that E[X̃k+t] = h̃(t) for

k ∈ N0, for all t ∈ [0, 1]. Further, since h̃(t) is non-random, we have

Cov(X̃t, X̃k+t) = Cov(h̃(t) + Z̃t, h̃(k + t) + Z̃k+t) = Cov(Z̃t, Z̃k+t).

81



Therefore, from Proposition 2.3, one concludes that Cov(X̃t, X̃k+t) is a function of k

only. Further, by Proposition 2.4, the stochastic process {X̃k+t}k∈N0 is also Gaussian.

Then, for any t ∈ [0, 1], {X̃k+t}k∈N0 is a weakly stationary process. This implies that

the process {X̃k+t}k∈N0 is also strictly stationary. Further, for t ∈ [0, 1] and k ∈ N0,

the correlation coefficient function is defined as:

Rk = Var(X̃t)
−1/2Cov(X̃t, X̃k+t)Var(X̃k+t)

−1/2.

Taking vectorization, we get

Vec(Rk) = [(Var(X̃k+t)
−1/2)′ ⊗ Var(X̃t)

−1/2]Vec(Cov(X̃t, X̃k+t)).

Note that Var(X̃k+t)
−1/2 is symmetric, and from (B.9), we have

(Var(X̃k+t)
−1/2)′ ⊗ Var(X̃t)

−1/2 = Var(X̃t)
−1/2 ⊗ Var(X̃t)

−1/2,

which does not depends on k. Also

Vec(Cov(X̃t, X̃k+t)) = (e−Ak ⊗ Id)(A⊕ A)−1Vec(Σ).

By A.1, we get lim
k→∞

Vec(Cov(X̃t, X̃k+t)) = 0. Therefore

lim
k→∞

Vec(Rk) = 0.

Hence, {X̃k+t}k∈N0 is ergodic for any t ∈ [0, 1], which completes the proof.

Proof of Proposition 2.6. By Lemma 2.1, it suffices to prove

1

T

∫ φT

0

ϕ(t)X̃ ′tdt
P−−−→

T→∞
φ

∫ 1

0

ϕ(t)h̃′(t)dt.

We have

1

T

∫ φT

0

ϕ(t)X̃ ′tdt = φ
1

φT

∫ φT

0

ϕ(t)X̃ ′tdt = φ
1

φT

bφT c∑
k=1

∫ k

k−1

ϕ(t)X̃ ′tdt+ φ
1

φT

∫ φT

bφT c
ϕ(t)X̃ ′tdt.
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Let Yk =
∫ k
k−1

ϕ(t)X̃ ′tdt, and r = t−k+ 1 ∈ [0, 1]. By the periodicity of ϕ(t), we have

Yk =

∫ 1

0

ϕ(r + k − 1)X̃ ′r+k−1dr =

∫ 1

0

ϕ(r)X̃ ′r+k−1dr.

According to Proposition 2.5, for r ∈ [0, 1], {X̃r+k−1}k∈N is a stationary and ergodic

process with r + k − 1 ∈ [0, φT ]. Thus, Yk is a measurable function of the stationary

and ergodic process {X̃r+k−1}k∈N . Thus, {Yk}k∈N is stationary and ergodic, and then

by Birkhoff Ergodic Theorem, we get

bφT c
φT

φ
1

bφT c

bφT c∑
k=1

Yk
a.s.−−−→
T→∞

φE

(∫ 1

0

ϕ(t)X̃ ′tdt

)
.

Moreover, ‖ϕ(t)‖2
2 ≤ Kϕ. Then, by Triangle Inequality, Jensen’s Inequality, and

Cauchy Schwarz Inequality, we have

E

(∥∥∥∥φ 1

φT

∫ φT

bφT c
ϕ(t)X̃ ′tdt

∥∥∥∥
F

)
≤ φ

1

φT

∫ φT

bφT c
E(‖ϕ(t)X̃ ′t‖F )dt ≤ φ

1

φT
Kϕ

∫ φT

bφT c
E(‖X̃t‖2

2)1/2dt.

From (B.10) and (B.17), we have X̃t is uniformly bounded in L2. Let

E(‖X̃t‖2
2) ≤ K ′ <∞, this implies

φ
1

φT

∫ φT

bφT c
ϕ(t)X̃ ′tdt

L1−−−→
T→∞

0.

Therefore, since E(X̃t) = h̃(t), from (B.18)-(B.21), we have E(ϕ(t)X̃ ′t) = ϕ(t)h̃′(t),

which completes the proof.

Proof of Proposition 2.8. By Lemma 2.2, it suffices to prove that

1

T

∫ φT

0

X̃tX̃
′
tdt

P−−−→
T→∞

φ

{∫ 1

0

h̃(t)h̃′(t)dt+ V (0)

}
.

We have

1

T

∫ φT

0

X̃tX̃
′
tdt = φ

1

φT

∫ φT

0

X̃tX̃
′
tdt

= φ
1

φT

bφT c∑
k=1

∫ k

k−1

X̃tX̃
′
tdt+ φ

1

φT

∫ φT

bφT c
X̃tX̃

′
tdt.
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Since {X̃t} is stationary and ergodic, we have {X̃tX̃
′
t} is also stationary and ergodic.

Let Yk =
∫ k
k−1

X̃tX̃
′
tdt, and r = t− k + 1 ∈ [0, 1], we have

Yk =

∫ 1

0

X̃r+k−1X̃
′
r+k−1dr.

According to Proposition 2.5, for r ∈ [0, 1], {X̃r+k−1X̃
′
r+k−1}k∈N is a stationary and

ergodic process with r + k − 1 ∈ [0, φT ]. Thus, Yk is a measurable function of the

stationary and ergodic process {X̃r+k−1X̃
′
r+k−1}k∈N . Then, {Yk}k∈N is stationary and

ergodic, and then, by Birkhoff Ergodic Theorem, we get

bφT c
φT

φ
1

bφT c

bφT c∑
k=1

∫ k

k−1

X̃tX̃
′
tdt

a.s.−−−→
T→∞

φE

(∫ 1

0

X̃tX̃
′
tdt

)
.

Further, by Jensen’s Inequality, we get

E

(∥∥∥∥φ 1

φT

∫ φT

bφT c
X̃tX̃

′
tdt

∥∥∥∥
F

)
≤ φ

1

φT

∫ φT

bφT c
E(‖X̃tX̃

′
t‖F )dt ≤ φ

1

φT

∫ φT

bφT c
E(‖X̃t‖2

2)dt.

From (B.10) and (B.17), we have X̃t is uniformly bounded in L2. Let

E(‖X̃t‖2
2) ≤ K ′ <∞, this implies

φ
1

φT

∫ φT

bφT c
X̃tX̃

′
tdt

L1−−−→
T→∞

0.

Further, we have

φE

(∫ 1

0

X̃tX̃
′
tdt

)
= φ

∫ 1

0

E(X̃tX̃
′
t)dt = φ

∫ 1

0

E[(h̃(t) + Z̃t)(h̃
′(t) + Z̃ ′t)]dt.

Note that for all t > 0, we have

E(Z̃t) = E

[
e−At

∫ t

−∞
eAsΣ1/2dW̃s

]
= E

[
e−At

∫ t

0

eAsΣ1/2dW (1)
s

]
+ E

[
e−At

∫ 0

−∞
eAsΣ1/2dW

(2)
−s

]
= e−A(t)

[
E

(∫ t

0

eAsΣ1/2dW (1)
s

)
+ E

(∫ 0

−∞
eAsΣ1/2dW

(2)
−s

)]
. (B.22)

84



Obviously, E

(∫ t

0

eAsΣ1/2dW (1)
s

)
= 0 as this is Itô’s integral which is a zero mean

martingale. Further, by (B.21), we get E(Z̃t) = 0. Therefore

φE

(∫ 1

0

X̃tX̃
′
tdt

)
= φ

∫ 1

0

[h̃(t)h̃′(t) + E(Z̃tZ̃
′
t)]dt.

From (B.9), E(Z̃tZ̃
′
t) does not depend on t. Thus, letting V (0) = E(Z̃tZ̃

′
t), we complete

the proof.

Proof of Proposition 3.2. For any T > 0

1

T
Qγ =

 1
T

∫ φT
0

ϕ(t)ϕ′(t)dt − 1
T

∫ φT
0

ϕ(t)X ′tdt

− 1
T

∫ φT
0

Xtϕ
′(t)dt 1

T

∫ φT
0

XtX
′
tdt

 .
Let a =

[
a′(1) a′(2)

]
with a(1) a p-column vector, and a(2) a d-column vector. Then

aQγa
′ =

∫ φT

0

∥∥∥∥[a′(1) a′(2)

] [
ϕ′(t) −X ′t

]′∥∥∥∥2

2

dt ≥ 0, and the equality hold if and only if∥∥∥∥[a′(1) a′(2)

] [
ϕ′(t) −X ′t

]′∥∥∥∥2

2

= 0 almost everywhere on [0, φT ], which is the same as[
a′(1) a′(2)

] [
ϕ′(t) −X ′t

]′
= 0 almost everywhere on [0, φT ]. Then, we have a′(1)ϕ(t)−

a′(2)E(Xt) = 0 and Var(a′(2)Xt) = 0 ∀t ∈ [0, φT ]. Since ∃t0 ∈ [0, φT ], such that

Var(Xt0) is a positive definite matrix, then a′(2) = 0. Then a′(1)ϕ(t) = 0 ∀t ∈ [0, φT ].

Since {ϕ1(t), ϕ2(t), ..., ϕp(t)} is linearly independent on [0, 1]. Suppose now that T ≥

1
φ
, we have [0, 1] ⊂ [0, φT ], then this implies a′(1) = 0. Thus, Qγ is a positive definite

matrix. Similarly, one can verify that if T ≥ 2
1−φ , then Qγ,T is a positive definite

matrix. Therefore, if T ≥ max( 1
φ
, 2

1−φ), we have Q(φ) is a positive definite matrix,

this completes the proof.

Proof of Lemma 3.1. Taking derivative of the log-likelihood function l(θ;X[0,T ])

in (3.9) with respect to θ, since Σ and Q(φ) are symmetric matrices, we have

∂l(θ;X[0,T ])

∂θ
= Σ−1P (φ)− Σ−1θQ(φ), (B.23)
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and setting this last term to be equal to 0, we get

θ̂ = P (φ)Q−1(φ). (B.24)

Now, taking the second derivative of the log-likelihood function l(θ;X[0,T ]) with re-

spect to θ′, we get

∂(Σ−1P (φ)− Σ−1θQ(φ))

∂θ′
= −∂(Σ−1θQ(φ))

∂θ′
= −(Q(φ)⊗ Σ−1).

From Proposition 3.2, we know that Q(φ) is a positive definite matrix, and since Σ is a

positive definite matrix, we have Σ−1 is also a positive definite matrix, hence Q(φ)⊗

Σ−1 is a positive definite matrix, which complete the proof of the first statement.

Moreover, from (3.9), we have

l(θ;X[0,T ]) = Tr(P (φ)θ′Σ−1)− 1

2
Tr(θ′Σ−1θQ(φ)),

applying Lagrangian method with λ1 ∈ R2(p+d)×q, λ2 ∈ Rn×d, let the lagrangian

lλ(θ, λ1, λ2;X[0,T ]) = l(θ;XT
t ) + Tr[λ1(L1θ − d1)] + Tr[λ2(θL2 − d2)].

Taking derivatives with respect to λ1 and λ2 and set to 0, we get

dlλ(θ, λ1, λ2;X[0,T ])

dλ1

= L1θ̃ − d1 = 0, (B.25)

dlλ(θ, λ1, λ2;X[0,T ])

dλ2

= θ̃L2 − d2 = 0, (B.26)

and taking derivative with respect to θ and set to 0, we get

dlnew(θ, λ1, λ2;X[0,T ])

dθ
= Σ−1P (φ)− Σ−1θ̃Q(φ) + L′1λ

′
1 + λ′2L

′
2 = 0d×2(p+d),

P (φ)Q−1(φ)− θ̃ + ΣL′1λ
′
1Q
−1(φ) + Σλ′2L

′
2Q
−1(φ) = 0d×2(p+d),
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since θ̂ = P (φ)Q−1(φ), we have

θ̂ − θ̃ + ΣL′1λ
′
1Q
−1(φ) + Σλ′2L

′
2Q
−1(φ) = 0d×2(p+d). (B.27)

Then, L1 times equation (B.27) from the left side gives

L1θ̂ − L1θ̃ + L1ΣL′1λ
′
1Q
−1(φ) + L1Σλ′2L

′
2Q
−1(φ) = 0q×2(p+d).

By (B.25), we get

L1θ̂ − d1 + L1ΣL′1λ
′
1Q
−1(φ) + L1Σλ′2L

′
2Q
−1(φ) = 0q×2(p+d). (B.28)

From equation (B.27), by multiplying each term by L2, we get

θ̂L2 − θ̃L2 + ΣL′1λ
′
1Q
−1(φ)L2 + Σλ′2L

′
2Q
−1(φ)L2 = 0d×n.

By (B.26), we get

θ̂L2 − d2 + ΣL′1λ
′
1Q
−1(φ)L2 + Σλ′2L

′
2Q
−1(φ)L2 = 0d×n. (B.29)

From equation (B.28) and (B.29), we notice that

(L1θ̂ − d1)L2 = L1(θ̂L2 − d2).

Further, we have L1ΣL′1 and L′2Q
−1(φ)L2 are positive definite matrices, and therefore,

the inverses exist. Moreover, (L1ΣL′1)−1 times equation (B.28) from left side and

equation (B.28) times Q(φ) from right side, we get

(L1ΣL′1)−1(L1θ̂ − d1)Q(φ) + λ′1 + (L1ΣL′1)−1(L1Σλ′2)L′2 = 0,

therefore

λ′1 = −(L1ΣL′1)−1(L1Σλ′2)L′2 − (L1ΣL′1)−1(L1θ̂ − d1)Q(φ). (B.30)
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Substituting (B.30) back into equation (B.27), we get

θ̂ − θ̃ + ΣL′1[−(L1ΣL′1)−1(L1Σλ′2)L′2

− (L1ΣL′1)−1(L1θ̂ − d1)Q(φ)]Q−1(φ) + Σλ′2L
′
2Q
−1(φ) = 0,

θ̂ − θ̃ − ΣL′1(L1ΣL′1)−1(L1Σλ′2)L′2Q
−1(φ)

− ΣL′1(L1ΣL′1)−1(L1θ̂ − d1) + Σλ′2L
′
2Q
−1(φ) = 0,

θ̂ − θ̃ − ΣL′1(L1ΣL′1)−1(L1θ̂ − d1)

+ [Σ− ΣL′1(L1ΣL′1)−1L1Σ]λ′2L
′
2Q
−1(φ) = 0. (B.31)

In order to find the expression for [Σ−ΣL′1(L1ΣL′1)−1L1Σ]λ′2, we subsititute equation

(B.30) back into equation (B.29), then

θ̂L2 − d2 + ΣL′1[−(L1ΣL′1)−1(L1Σλ′2)L′2 − (L1ΣL′1)−1(L1θ̂ − d1)Q(φ)]Q−1(φ)L2

+ Σλ′2L
′
2Q
−1(φ)L2 = 0.

Note that d1L2 = L1d1. This gives

[Σ− ΣL′1(L1ΣL′1)−1L1Σ]λ′2

= ΣL′1(L1ΣL′1)−1L1(θ̂L2 − d2)(L′2Q
−1(φ)L2)−1 − (θ̂L2 − d2)(L′2Q

−1(φ)L2)−1.

(B.32)

Let J1 = ΣL′1(L1ΣL′1)−1 ∈ Rd×q and J2 = (L′2Q
−1(φ)L2)−1L′2Q

−1(φ) ∈ Rn×2(p+d), and

we subsititute equation (B.32) back into equation (B.31), then

θ̂ − θ̃ − J1(L1θ̂ − d1) + J1L1(θ̂L2 − d2)J2 − (θ̂L2 − d2)J2 = 0,

θ̃ = θ̂ − J1(L1θ̂ − d1) + J1L1(θ̂L2 − d2)J2 − (θ̂L2 − d2)J2,

this completes the proof.
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Remark 6. L1ΣL′1 and L′2Q
−1(φ)L2 are positive definite matrices since L1 and L2

are full rank matrices and from Proposition 3.2, we know that Σ and Q(φ) are positive

definite matrices.

Proof of Proposition 3.4. Note that Xt = X1(t)I{t≤γ} + X2(t)I{t>γ}, 0 ≤ t ≤ T

where

X1(t) = h1(t) + Z1(t), X2(t) = h2(t) + Z2(t), 0 ≤ t ≤ T, (B.33)

with h1, h2, Z1, Z2 defined in (3.11). By Assumption 1, we have the distribution of X0

does not depend on θ =

[
θ1 θ2

]
. Since X1(t) = X1(t)I{t≤γ}+X1(t)I{t>γ}, we know

that the distribution of X1(0) is the same as the distribution of X0, which does not

depend on θ1. As a result, E(‖X1(0)‖m2 ) = E(‖X0‖m2 ) < ∞. Then the result follows

from the Proposition 2.10, which completes the proof. Moreover, from Proposition

3.2 and Proposition 3.4, it is sufficient to prove that Σ0 is a positive definite matrix.

First, by Schur Complement Theorem, we have Σ0 is positive definite if and only if∫ 1

0

h̃1(t)h̃′1(t)dt + V1(0) −
∫ 1

0

h̃1(t)ϕ′(t)dt

∫ 1

0

ϕ(t)h̃′1(t)dt is positive definite. Further,

let λ1 ≥ λ2 ≥ ... ≥ λd be the eigenvalues of∫ 1

0

h̃1(t)h̃′1(t)dt−
∫ 1

0

h̃1(t)ϕ′(t)dt

∫ 1

0

ϕ(t)h̃′1(t)dt.

By Theorem A.2 in Appendix A, we have

λd = min
y∈Rd:‖y‖2=1

y′
(∫ 1

0

h̃1(t)h̃′1(t)dt−
∫ 1

0

h̃1(t)ϕ′(t)dt

∫ 1

0

ϕ(t)h̃′1(t)dt

)
y

= min
y∈Rd:‖y‖2=1

(∫ 1

0

(y′h̃1(t))(h̃′1(t)y)dt−
∫ 1

0

(y′h̃1(t))ϕ′(t)dt

∫ 1

0

ϕ(t)(h̃′1(t)y)dt

)
= min

y∈Rd:‖y‖2=1

(∫ 1

0

(y′h̃1(t))(h̃′1(t)y)dt−
p∑
i=1

(∫ 1

0

(y′h̃1(t))ϕi(t)dt

)2
)

= min
y∈Rd:‖y‖2=1

(∫ 1

0

(y′h̃1(t))(h̃′1(t)y)dt−
p∑
i=1

(∫ 1

0

(y′h̃1(t))
ϕi(t)

‖ϕi(t)‖
‖ϕi(t)‖dt

)2
)
.
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Since ‖ϕi(t)‖2 =
∫ 1

0
(ϕi(t))

2dt = 1, by Bessel’s inequality, we get∫ 1

0

(y′h̃1(t))(h̃′1(t)y)dt−
p∑
i=1

(∫ 1

0

(y′h̃1(t))ϕi(t)dt

)2

≥ 0.

Thus, since the matrix is symmetric with all the eigenvalues are nonnegative, we

have

∫ 1

0

h̃1(t)h̃′1(t)dt −
∫ 1

0

h̃1(t)ϕ′(t)dt

∫ 1

0

ϕ(t)h̃′1(t)dt is a positive semi-definite ma-

trix. Moreover, by Proposition 2.7, V1(0) is a positive definite matrix. Therefore∫ 1

0

h̃1(t)h̃′1(t)dt + V1(0) −
∫ 1

0

h̃1(t)ϕ′(t)dt

∫ 1

0

ϕ(t)h̃′1(t)dt is positive definite, which

implies that Σ0 is a positive definite matrix. Further, let g(X) = X−1 for a positive

definite matrix X. Therefore, by the continuous mapping theorem, we have

g

(
1

T
Qγ

)
= TQ−1

γ
P−−−→

T→∞
g(φΣ0) =

1

φ
Σ−1

0 ,

which completes the proof.

Proof of Proposition 3.7. From the SDE in (2.1), we have∫ T

0

dXtB(t, φ) =

∫ T

0

[(µ1ϕ(t)− A1Xt)I{t≤γ} + (µ2ϕ(t)− A2Xt)I{t>γ}]B(t, φ)dt

+

∫ T

0

Σ1/2dWtB(t, φ).

Further, using the notations defined in (3.1) and (3.4), we have∫ T

0

dXt

[
ϕ′(t)I{t≤γ} −X ′tI{t≤γ} ϕ′(t)I{t>γ} −X ′tI{t>γ}

]
=

[∫ γ
0
dXtϕ

′(t) −
∫ γ

0
dXtX

′
t

∫ T
γ
dXtϕ

′(t) −
∫ T
γ
dXtX

′
t

]
.

Then ∫ T

0

dXtB(t, φ) =

[
P ′γ P ′γ,T

]
= P (φ). (B.34)

Note that I{t≤γ}I{t>γ} = 0 for all t, then∫ T

0

[(µ1ϕ(t)− A1Xt)I{t≤γ} + (µ2ϕ(t)− A2Xt)I{t>γ}]B(t, φ)dt
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can be expressed as

[
µ1 A1 µ2 A2

]


∫ γ

0

ϕ(t)ϕ′(t)dt −
∫ γ

0

ϕ(t)X ′tdt 0 0

−
∫ γ

0

Xtϕ
′(t)dt

∫ γ

0

XtX
′
tdt 0 0

0 0

∫ T

γ

ϕ(t)ϕ′(t)dt −
∫ T

γ

ϕ(t)X ′tdt

0 0 −
∫ T

γ

Xtϕ
′(t)dt

∫ T

γ

XtX
′
tdt


,

Then, by combining, (2.2), (3.5), and (B.34), we get

P (φ) = θQ(φ) +

∫ T

0

Σ1/2dWtB(t, φ),

P (φ)Q−1(φ) = θ +

∫ T

0

Σ1/2dWtB(t, φ)Q−1(φ).

Then, from (B.24), we get

θ̂ − θ = Σ1/2

∫ T

0

dWtB(t, φ)Q−1(φ).

Then, letting R′T (φ) =

∫ T

0

B′(t, φ)dW ′
t , we complete the proof.

Proof of Proposition 3.9. To prove this proposition, we directly apply Proposi-

tion 1.21 in Kutoyants (2004) with d1 = 1 and d2 = d. First, in Proposition 3.8, we

have verified the conditions to apply Proposition 1.21 in Kutoyants (2004), i.e. we

have P(
∫ T

0
(a(i)CT (t)2dt <∞) = 1. We have

d∑
i=1

∫ T

0

(a(i)CT (t))2dt =

∫ T

0

d∑
i=1

(a(i)CT (t))2dt.

Note that since a =

[
a(1) a(2) a(3) ... a(d)

]
, we have

d∑
i=1

(a(i)CT (t))2 = a′(Id ⊗ CT (t))(Id ⊗ C ′T (t))a.
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Therefore

d∑
i=1

∫ T

0

(a(i)CT (t))2dt =

∫ T

0

a′(Id ⊗ CT (t))(Id ⊗ C ′T (t))adt

=

∫ T

0

a′(Id ⊗ CT (t)C ′T (t))adt = a′
(
Id ⊗

∫ T

0

CT (t)C ′T (t)dt

)
a.

Since I{t≤γ}I{t>γ} = 0 for all t, we have∫ T

0

1√
T
XtI{t≤γ}

1√
T
X ′tI{t>γ}dt = 0,

∫ T

0

1√
T
ϕ(t)I{t≤γ}

1√
T
X ′tI{t>γ}dt = 0,∫ T

0

1√
T
XtI{t≤γ}

1√
T
ϕ′(t)I{t>γ}dt = 0,

∫ T

0

1√
T
ϕ(t)I{t≤γ}

1√
T
ϕ′(t)I{t>γ}dt = 0.

Also, one can easily verify that
∫ T

0
CT (t)C ′T (t)dt = 1

T
Q(φ), we get

a′
(
Id ⊗

∫ T

0

CT (t)C ′T (t)dt

)
a = a′

(
Id ⊗

1

T
Q(φ)

)
a

where Q(φ) is defined in (3.5). From Proposition 3.5, we have

1

T
Q(φ)

P−−−→
T→∞

Σ2.

Therefore,

d∑
i=1

∫ T

0

(a(i)CT (t))2dt
P−−−→

T→∞
a′(Id ⊗ Σ2)a.

By Proposition 1.21 in Kutoyants (2004), we have

a′Vec

(
1√
T
R′T (φ)

)
d−−−→

T→∞
a′N2(p+d)d(0, Id ⊗ Σ2).

By Cramer-Wold Theorem, we get

Vec

(
1√
T
R′T (φ)

)
d−−−→

T→∞
N2(p+d)d(0, Id ⊗ Σ2),

which completes the proof.
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Proof of Proposition 3.10. By combining Proposition 3.6, Proposition 3.9, Propo-

sition 3.7 and Slutsky’s theorem, we get

√
T (θ̂ − θ)′ = (TQ−1(φ))

1√
T
R′T (φ)Σ1/2 d−−−→

T→∞
Σ−1

2 RΣ1/2.

Note that Σ1/2 and Σ−1
2 are non-random and symmetric matrices, we get

Σ−1
2 RΣ1/2 ∼ N2(p+d)×d(0, (Σ

1/2IdΣ
1/2)⊗ (Σ−1

2 Σ2Σ−1
2 )) = N2(p+d)×d(0,Σ⊗ Σ−1

2 ),

which completes the proof.

Proof of Proposition 3.11

Proof. From (3.26), we have√T (θ̂ − θ)
√
T (θ̃ − θ)

 =

 √
T (θ̂ − θ)

J
√
T (θ̂ − θ)J4 + J6


=

Id
0d

√T (θ̂ − θ) +

0d

J

√T (θ̂ − θ)J4 +

0d×2(p+d)

J6

 , (B.35)

where J = Id − J1L1, J4 and J6 are defined in (3.28) and (3.29). Further, denote

I(1) =

Id
0d

 ∈ R2d×d, I(2) =

0d

J

 ∈ R2d×d, and I(3) =

0d×2(p+d)

J6

 ∈ R2d×2(p+d).

(B.36)

From (B.35) and (B.36), we get

[
ρT ζT

]
=

√T (θ̂ − θ)
√
T (θ̃ − θ)


′

= ρTI
(1)′ + J ′4ρTI

(2)′ + I(3)′. (B.37)

Using vectorization, we get

Vec

[
ρT ζT

]
= (I(1) ⊗ I2(p+d))Vec(ρT ) + (I(2) ⊗ J ′4)Vec(ρT ) + Vec(I(3))

= (I(1) ⊗ I2(p+d) + I(2) ⊗ J ′4)Vec(ρT ) + Vec(I(3)′).
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By (3.28) and (3.29), we have

J4 = I2(p+d) − L2J2
P−−−→

T→∞
I2(p+d) − L2J3 = J5,

J6 = J1L1r2J2 − r2J2
P−−−→

T→∞
J1L1r2J3 − r2J3 = J7.

Therefore

I(3) =

0d×2(p+d)

J6

 P−−−→
T→∞

0d×2(p+d)

J7

 = I(4). (B.38)

By (B.37), we know

[
ρT ζT

]
=

√T (θ̂ − θ)
√
T (θ̃ − θ)


′

= ρTI
(1)′ + J ′4ρTI

(2)′ + I(3)′.

Using vectorization, we get

Vec

[
ρT ζT

]
= (I(1) ⊗ I2(p+d))Vec(ρT ) + (I(2) ⊗ J ′4)Vec(ρT ) + Vec(I(3))

= (I(1) ⊗ I2(p+d) + I(2) ⊗ J ′4)Vec(ρT ) + Vec(I(3)′),

where J4 and J6 are defined in (3.28) and (3.29), I(1), I(2) and I(3) are defined in

(B.36). Also by Proposition 3.10, we have

Vec(ρT )
d−−−→

T→∞
N2d(p+d)(0,Σ⊗ Σ−1

2 ). (B.39)

Therefore, combining (3.28) and (B.38), by Slutsky’s Theorem, we have[
ρT ζT

]
d−−−→

T→∞

[
ρ ζ

]
, where

[
ρ ζ

]
∼ N2(p+d)×2d(I

(4)′, (I(1) ⊗ I2(p+d) + I(2) ⊗ J ′5)(Σ⊗ Σ−1
2 )(I(1) ⊗ I2(p+d) + I(2) ⊗ J ′5)′).

To simplify the covariance term, we have

I(1) ⊗ I2(p+d) + I(2) ⊗ J ′5 =

Id
0d

⊗ I2(p+d) +

Id
J

⊗ J ′5 =

Id ⊗ I2(p+d)

J ⊗ J ′5

 =

I2d(p+d)

J ⊗ J ′5

 .
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Therefore (I(1) ⊗ I2(p+d) + I(2) ⊗ J ′5)(Σ⊗ Σ−1
2 )(I(1) ⊗ I2(p+d) + I(2) ⊗ J ′5)′

=

I2d(p+d)

J ⊗ J ′5

 (Σ⊗ Σ−1
2 )

I2d(p+d)

J ⊗ J ′5


′

=

 Σ⊗ Σ−1
2

(J ⊗ J ′5)(Σ⊗ Σ−1
2 )


I2d(p+d)

J ⊗ J ′5


′

=

 Σ⊗ Σ−1
2 (Σ⊗ Σ−1

2 )(J ′ ⊗ J5)

(J ⊗ J ′5)(Σ⊗ Σ−1
2 ) (J ⊗ J ′5)(Σ⊗ Σ−1

2 )(J ′ ⊗ J5)


=

 Σ⊗ Σ−1
2 (ΣJ ′)⊗ (Σ−1

2 J5)

(JΣ)⊗ (J ′5Σ−1
2 ) (JΣJ ′)⊗ (J ′5Σ−1

2 J5)

 .
From (3.32), we know that JΣJ ′ = JΣ = ΣJ ′. Also, from (3.35), we know that

J ′5Σ−1
2 J5 = Σ−1

2 J5 = J ′5Σ−1
2 . Therefore, the covariance term is Σ⊗ Σ−1

2 (JΣ)⊗ (Σ−1
2 J5)

(JΣ)⊗ (Σ−1
2 J5) (JΣ)⊗ (Σ−1

2 J5)

 ,
which completes the proof.

Proof of Proposition 4.2. From Proposition 3.6 we have

1

T

∫ φT

0

XtX
′
tdt

P−−−→
T→∞

φ

{∫ 1

0

h̃1(t)h̃′1(t)dt+ V1(0)

}
.

Therefore, it sufficies to prove that

1

T

∫ φ̂T

0

XtX
′
tdt−

1

T

∫ φT

0

XtX
′
tdt

P−−−→
T→∞

0.

First, let 0 < δ < φ
2
. We have

lim
T→∞

P(|φ̂− φ| > δ) = 0. (B.40)
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Further, we have

P

(∥∥∥∥∥ 1

T

∫ φ̂T

0

XtX
′
tdt−

1

T

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε

)

= P

(
1

T

∥∥∥∥∥
∫ φ̂T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε, |φ̂− φ| > δ

)

+ P

(
1

T

∥∥∥∥∥
∫ φ̂T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)

≤ P(|φ̂− φ| > δ) + P

(
1

T

∥∥∥∥∥
∫ φ̂T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)
.

By (B.40), it is suffices to prove that

lim
T→∞

P

(
1

T

∥∥∥∥∥
∫ φ̂T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)
.

Note that {|φ̂− φ| ≤ δ} is the same as {(φ− δ) ≤ φ̂ ≤ (φ+ δ)}. We have

P

(
1

T

∥∥∥∥∥
∫ (φ−δ)T

0

XtX
′
tdt+

∫ φ̂T

(φ−δ)T
XtX

′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)

≤ P

(
1

T

∥∥∥∥∥
∫ φ̂T

(φ−δ)T
XtX

′
tdt

∥∥∥∥∥
F

>
ε

2
, |φ̂− φ| ≤ δ

)

+ P

(
1

T

∥∥∥∥∥
∫ (φ−δ)T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

>
ε

2
, |φ̂− φ| ≤ δ

)

≤ P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2
, |φ̂− φ| ≤ δ

)

+ P

(
1

T

∥∥∥∥∥
∫ (φ−δ)T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

>
ε

2
, |φ̂− φ| ≤ δ

)
,
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then

P

(
1

T

∥∥∥∥∥
∫ φ̂T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)

= P

(
1

T

∥∥∥∥∥
∫ (φ−δ)T

0

XtX
′
tdt+

∫ φ̂T

(φ−δ)T
XtX

′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)

≤ P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2

)

+ P

(
1

T

∥∥∥∥∥
∫ (φ−δ)T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

>
ε

2
, |φ̂− φ| ≤ δ

)
. (B.41)

Also, we have

P

(
1

T

∥∥∥∥∫ φT

0

XtX
′
tdt−

∫ φT

(φ−δ)T
XtX

′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥
F

>
ε

2
, |φ̂− φ| ≤ δ

)

= P

(
1

T

∥∥∥∥∫ φT

(φ−δ)T
XtX

′
tdt

∥∥∥∥
F

>
ε

2
, |φ̂− φ| ≤ δ

)

≤ P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2
, |φ̂− φ| ≤ δ

)
,

then

P

(
1

T

∥∥∥∥∥
∫ (φ−δ)T

0

XtX
′
tdt−

∫ φT

0

XtX
′
tdt

∥∥∥∥∥
F

>
ε

2
, |φ̂− φ| ≤ δ

)

≤ P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2

)
. (B.42)

Thus, from (B.41) and (B.42), it is suffices to prove that

lim
T→∞

P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2

)
= 0.

Now, by Markov Inequality, we have

P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2

)
≤

2E(
∫ (φ+δ)T

(φ−δ)T ‖XtX
′
t‖Fdt)

εT

=
2
∫ (φ+δ)T

(φ−δ)T E(‖Xt‖2
2)dt

εT
≤ 4KxδT

εT
=

4Kxδ

ε
.

(B.43)
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Note that Kx <∞ and we can choose δ arbitrarily small, which completes the proof

of part (i). For part (ii), using the same method as we did in Part (i), and note that

P

(
1

T

∥∥∥∥∫ T

φ̂T

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)
≤ P

(
1

T

∫ (φ+δ)T

φ̂T

‖XtX
′
t‖Fdt >

ε

2

)
+ P

(
1

T

∥∥∥∥∫ T

(φ+δ)T

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥
F

>
ε

2

)

≤ P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2

)
+ P

(
1

T

∥∥∥∥∫ T

(φ+δ)T

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥
F

>
ε

2

)
.

Also, we have

P

(
1

T

∥∥∥∥∫ T

(φ+δ)T

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥
F

>
ε

2

)

= P

(
1

T

∥∥∥∥∥
∫ T

φT

XtX
′
tdt−

∫ (φ+δ)T

φT

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥∥
F

>
ε

2

)

= P

(
1

T

∥∥∥∥∥
∫ (φ+δ)T

φT

XtX
′
tdt

∥∥∥∥∥
F

>
ε

2

)
≤ P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2

)
.

This implies the fact that

P

(
1

T

∥∥∥∥∫ T

φ̂T

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)
≤ 2P

(
1

T

∫ (φ+δ)T

(φ−δ)T
‖XtX

′
t‖Fdt >

ε

2

)
.

Note that

P

(
1

T

∥∥∥∥∫ T

φ̂T

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥
F

> ε

)
≤ P

(
1

T

∥∥∥∥∫ T

φ̂T

XtX
′
tdt−

∫ T

φT

XtX
′
tdt

∥∥∥∥
F

> ε, |φ̂− φ| ≤ δ

)
+ P

(
|φ̂− φ| > δ

)
.

By (B.40) and (B.43), we complete the proof.

Proof of Proposition 4.5. Since

1√
T
R′T (φ̂) =

1√
T

(R′T (φ̂)−R′T (φ)) +
1√
T
R′T (φ).
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From Proposition 3.9, Proposition 4.4, and Slutsky’s Theorem, we complete the proof.

Proof of Theorem 5.1. From (5.2), we have

ADR(θ̂(φ̂), θ,W ) = E(Tr(ρ′Wρ)).

From Corollary 4.1, we have

ρ ∼ N2(p+d)×d(0,Σ⊗ Σ−1
2 ),

then Vec(ρ) ∼ N2d(p+d)(0,Σ⊗ Σ−1
2 ), we get

E(Vec(ρ)Vec(ρ)′) = Σ⊗ Σ−1
2 ,

(Id ⊗W )E(Vec(ρ)Vec(ρ)′) = (Id ⊗W )(Σ⊗ Σ−1
2 ).

Since (Id ⊗W )Vec(ρ) = Vec(Wρ) and (Id ⊗W )(Σ⊗ Σ−1
2 ) = Σ⊗WΣ−1

2 , we have

E(Vec(Wρ)Vec(ρ)′) = Σ⊗WΣ−1
2 ,

E(Tr(Vec(ρ)′Vec(Wρ))) = Tr(Σ⊗WΣ−1
2 ).

Using Tr(AB) = (Vec(A′))′Vec(B), and Tr(A⊗B) = Tr(A) Tr(B), we get

E(Tr(Vec(ρ)′Vec(Wρ))) = E(Tr(ρ′Wρ)) and Tr(Σ⊗WΣ−1
2 ) = Tr(Σ)Tr(WΣ−1

2 ).

This gives the ADR of the UE. Further, from (5.2), we have

ADR(θ̃(φ̂), θ,W ) = E(Tr(ζ ′Wζ)).

From Corollary 4.1, we have Vec(ζ) ∼ N2d(p+d)(Vec(J ′7), (JΣ)⊗ (Σ−1
2 J5)). Then

E(Vec(ζ)Vec(ζ)′) = (JΣ)⊗ (Σ−1
2 J5) + Vec(J ′7)Vec(J ′7)′.
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Using Tr(AB) = (Vec(A′))′Vec(B), we have

Tr(ζ ′Wζ) = Vec(ζ)′Vec(Wζ) = Vec(ζ)′(Id ⊗W )Vec(ζ),

then

Vec(ζ)′(Id ⊗W )Vec(ζ) = Tr(Vec(ζ)′(Id ⊗W )Vec(ζ)) = Tr((Id ⊗W )Vec(ζ)Vec(ζ)′).

Therefore, we have

E(Tr(ζ ′Wζ)) = Tr[(Id ⊗W )E(Vec(ζ)Vec(ζ)′)]

= Tr[(Id ⊗W )((JΣ)⊗ (Σ−1
2 J5) + Vec(J ′7)Vec(J ′7)′)]

= Tr[(JΣ)⊗ (WΣ−1
2 J5)] + Tr[(Id ⊗W )Vec(J ′7)Vec(J ′7)′].

Note that Tr[(JΣ)⊗ (WΣ−1
2 J5)] = Tr(JΣ) Tr(WΣ−1

2 J5), and

Tr[(Id ⊗W )Vec(J ′7)Vec(J ′7)′] = Vec(J ′7)′(Id ⊗W )Vec(J ′7)

= Vec(J ′7)′Vec(WJ ′7) = Tr(J7WJ ′7),

Since J = Id − J1L1 and J5 = I2(p+d) − L2J3 with J3 defined in (4.11), we get

E(Tr(ζ ′Wζ)) = Tr(JΣ) Tr(WΣ−1
2 J5) + Tr(J7WJ ′7)

= Tr((Id − J1L1)Σ) Tr(WΣ−1
2 (I2(p+d) − L2J3)) + Tr(J7WJ ′7)

= Tr(Σ− J1L1Σ) Tr(WΣ−1
2 −WΣ−1

2 L2J3) + Tr(J7WJ ′7)

= Tr(Σ) Tr(WΣ−1
2 )− Tr(Σ) Tr(WΣ−1

2 L2J3)− Tr(J1L1Σ) Tr(WΣ−1
2 )

+ Tr(J1L1Σ) Tr(WΣ−1
2 L2J3) + Tr(J7WJ ′7),

which completes the proof.
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Proof of Theorem 5.2. Note that

ADR(θ̂S, θ,W ) = E[Tr((ζ + [1− (nd− 2)ψ−1]ξ)′W (ζ + [1− (nd− 2)ψ−1]ξ))]

= E[Tr(ζ ′Wζ)] + E[Tr(ζ ′W [1− (nd− 2)ψ−1]ξ)]

+ E[Tr([1− (nd− 2)ψ−1]ξ′Wζ)]

+ E[Tr([1− (nd− 2)ψ−1]2ξ′Wξ)],

then

ADR(θ̂S, θ,W ) = ADR(θ̃(φ̂), θ,W ) + 2E[Tr(ζ ′W [1− (nd− 2)ψ−1]ξ)]

+ E[Tr([1− (nd− 2)ψ−1]2ξ′Wξ)]

From Proposition 4.8 and Proposition A.4 in the Appendix A, we get

E[Tr([1− (nd− 2)ψ−1]2ξ′Wξ)]

= E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd+2(∆))2] Tr(WΣ−1

2 L2J3) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd+4(∆))2] Tr(J7WJ ′7), (B.44)

also, we have

E[ζ ′W [1− (nd− 2)ψ−1]ξ] = −E[(1− (nd− 2)χ−2
nd+2(∆))]J7WJ ′7, (B.45)

where ∆ = Tr(J7ΞJ ′7Σ−1). From (B.44) and (B.45), we get

ADR(θ̂S, θ,W ) = ADR(θ̃(φ̂), θ,W )− 2E[(1− (nd− 2)χ−2
nd+2(∆))] Tr(J7WJ ′7)

+ E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd+2(∆))2] Tr(WΣ−1

2 L2J3) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd+4(∆))2] Tr(J7WJ ′7).
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To further simplify the terms, note that

E[(1− (nd− 2)χ−2
nd+2(∆))2] Tr(WΣ−1

2 L2J3) Tr(Σ) = Tr(WΣ−1
2 L2J3) Tr(Σ)

− 2(nd− 2)E[χ−2
nd+2(∆)] Tr(WΣ−1

2 L2J3) Tr(Σ)

+ (nd− 2)2E[χ−4
nd+2(∆)] Tr(WΣ−1

2 L2J3) Tr(Σ),

also

E[(1− (nd− 2)χ−2
nd+4(∆))2] Tr(J7WJ ′7) = Tr(J7WJ ′7)

− 2(nd− 2)E[χ−2
nd+4(∆)] Tr(J7WJ ′7)

+ (nd− 2)2E[χ−4
nd+4(∆)] Tr(J7WJ ′7).

Note that from Theorem 5.1, we have

ADR(θ̃(φ̂), θ,W ) = Tr(Σ) Tr(WΣ−1
2 )− Tr(Σ) Tr(WΣ−1

2 L2J3)− Tr(J1L1Σ) Tr(WΣ−1
2 )

+ Tr(J1L1Σ) Tr(WΣ−1
2 L2J3) + Tr(J7WJ ′7),

also, note that ADR(θ̂(φ̂), θ,W ) = Tr(Σ) Tr(WΣ−1
2 ), we get

ADR(θ̃(φ̂), θ,W )− 2Tr(J7WJ ′7) + Tr(WΣ−1
2 L2J3) Tr(Σ) + Tr(J7WJ ′7)

= ADR(θ̃(φ̂), θ,W )− Tr(J7WJ ′7) + Tr(WΣ−1
2 L2J3) Tr(Σ)

= ADR(θ̂(φ̂), θ,W )− Tr(J1L1Σ) Tr(WΣ−1
2 ) + Tr(J1L1Σ) Tr(WΣ−1

2 L2J3).
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Then, using the identity E[χ−2
nd+4(∆)] = E[χ−2

nd+2(∆)]− 2E[χ−4
nd+4(∆)], we get

ADR(θ̂(φ̂), θ,W )− Tr(J1L1Σ) Tr(WΣ−1
2 ) + Tr(J1L1Σ) Tr(WΣ−1

2 L2J3)

+ 2(nd− 2)E[χ−2
nd+2(∆)] Tr(J7WJ ′7)− 2(nd− 2)E[χ−2

nd+2(∆)] Tr(WΣ−1
2 L2J3) Tr(Σ)

+ (nd− 2)2E[χ−4
nd+2(∆)] Tr(WΣ−1

2 L2J3) Tr(Σ)− 2(nd− 2)E[χ−2
nd+4(∆)] Tr(J7WJ ′7)

+ (nd− 2)2E[χ−4
nd+4(∆)] Tr(J7WJ ′7)

= ADR(θ̂(φ̂), θ,W )− Tr(J1L1Σ) Tr(WΣ−1
2 ) + Tr(J1L1Σ) Tr(WΣ−1

2 L2J3)

+ 2(nd− 2)E[χ−2
nd+4(∆)] Tr(J7WJ ′7) + 4(nd− 2)E[χ−4

nd+4(∆)] Tr(J7WJ ′7)

− 2(nd− 2)E[χ−2
nd+2(∆)] Tr(WΣ−1

2 L2J3) Tr(Σ)

+ (nd− 2)2E[χ−4
nd+2(∆)] Tr(WΣ−1

2 L2J3) Tr(Σ)− 2(nd− 2)E[χ−2
nd+4(∆)] Tr(J7WJ ′7)

+ (nd− 2)2E[χ−4
nd+4(∆)] Tr(J7WJ ′7),

then, we have ADR(θ̂S, θ,W ) is equal to

ADR(θ̂(φ̂), θ,W )− Tr(J1L1Σ) Tr(WΣ−1
2 ) + Tr(J1L1Σ) Tr(WΣ−1

2 L2J3)

+ 4(nd− 2)E[χ−4
nd+4(∆)] Tr(J7WJ ′7)− 2(nd− 2)E[χ−2

nd+2(∆)] Tr(WΣ−1
2 L2J3) Tr(Σ)

+ (nd− 2)2E[χ−4
nd+2(∆)] Tr(WΣ−1

2 L2J3) Tr(Σ) + (nd− 2)2E[χ−4
nd+4(∆)] Tr(J7WJ ′7)

+ E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

= ADR(θ̂(φ̂), θ,W )− Tr(J1L1Σ) Tr(WΣ−1
2 ) + Tr(J1L1Σ) Tr(WΣ−1

2 L2J3)

− (nd− 2)(2E[χ−2
nd+2(∆)]− (nd− 2)E[χ−4

nd+2(∆)]) Tr(WΣ−1
2 L2J3) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd (∆))2] Tr(W (Σ−1

2 − Σ−1
2 L2J3)) Tr(Σ)

+ ((nd)2 − 4)E[χ−4
nd+4(∆)] Tr(J7WJ ′7).

This gives the ADR of the SE. Further, note that ψ > 0 and nd − 2 > 0, then

1 − (nd − 2)ψ−1 ≥ 0 if and only if ψ ≥ nd− 2. Following the same steps above, we
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get

ADR(θ̂S+, θ,W ) = ADR(θ̃(φ̂), θ,W )

− 2E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)≥nd−2}] Tr(J7WJ ′7)

+ E[(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)≥nd−2}] Tr(W (Σ−1
2 − Σ−1

2 L2J3)) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)≥nd−2}] Tr(WΣ−1
2 L2J3) Tr(Σ)

+ E[(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)≥nd−2}] Tr(J7WJ ′7).

Also, note that

E[1− (nd− 2)χ−2
nd+2(∆)] = E[(1− (nd− 2)χ−2

nd+2(∆))I{χ2
nd+2(∆)≥nd−2}]

+ E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2}],

E[(1− (nd− 2)χ−2
nd (∆))2] = E[(1− (nd− 2)χ−2

nd (∆))2I{χ2
nd(∆)≥nd−2}]

+ E[(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)<nd−2}],

E[(1− (nd− 2)χ−2
nd+2(∆))2] = E[(1− (nd− 2)χ−2

nd+2(∆))2I{χ2
nd+2(∆)≥nd−2}]

+ E[(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)<nd−2}],

E[(1− (nd− 2)χ−2
nd+4(∆))2] = E[(1− (nd− 2)χ−2

nd+4(∆))2I{χ2
nd+4(∆)≥nd−2}]

+ E[(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)<nd−2}].

Therefore, we have ADR(θ̂S+, θ,W ) is equal to

ADR(θ̂S, θ,W ) + 2E[(1− (nd− 2)χ−2
nd+2(∆))I{χ2

nd+2(∆)<nd−2}] Tr(J7WJ ′7)

− E[(1− (nd− 2)χ−2
nd (∆))2I{χ2

nd(∆)<nd−2}] Tr(W (Σ−1
2 − Σ−1

2 L2J3)) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+2(∆))2I{χ2

nd+2(∆)<nd−2}] Tr(WΣ−1
2 L2J3) Tr(Σ)

− E[(1− (nd− 2)χ−2
nd+4(∆))2I{χ2

nd+4(∆)<nd−2}] Tr(J7WJ ′7),

which completes the proof.
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