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ABSTRACT

In this paper, we study inference problem about the drift parameter matrix
in multivariate generalized Ornstein-Uhlenbeck processes with an unknown change-
point. In particular, we study the case where the matrix parameter satisfies uncertain
restriction. Thus, we generalize some recent findings about univariate generalized
Ornstein-Uhlenbeck processes. First, we establish a weaker condition for the exis-
tence of the unrestricted estimator (UE) and we derive the unrestricted estimator
and the restricted estimator. Second, we establish the joint asymptotic normality of
the unrestricted estimator and the restricted estimator under the sequence of local
alternatives. Third, we construct a test for testing the uncertain restriction. The
proposed test is also useful for testing the absence of the change-point. Fourth, we
derive the asymptotic power of the proposed test and we prove that it is consistent.
Fifth, we propose the shrinkage estimators and we prove that shrinkage estimators
dominate the unrestricted estimator. Finally, in order to illustrate the performance
of the proposed methods in short and medium period of observations, we conduct a

simulation study which corroborate our theoretical findings.
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Chapter 1

Introduction

The Ornstein-Uhlenbeck process (O-U) has been applied to model different phenom-
ena in finance, physics, insurance among others. For instance, Vasicek (1977) applied
univariate Ornstein-Uhlenbeck process to explain the mean reversion feature of bond
yields, while Langetieg (1980) applied the multivariate Ornstein-Uhlenbeck process
to analyse correlated economic factors. To give more applications of the Ornstein-
Uhlenbeck (O-U) process, we also quote Erlwein et al. (2010) who used this process
to study the electricity market. The O-U has also been used to analyse the insurance
problems (see Liang et al., 2011), the shipping industry (see Benth et al., 2015) , and
the survival data (see Aalen and Gjessing, 2004). However, the classical O-U process
is suitable to model the dataset for which the mean reversion level does not depend
on time. Thus, Dehling et al. (2010) introduced a generalized O-U process for which
the mean reversion level is time-dependent. Further, Dehling et al. (2014) proposed
a model which can capture possible unconventional shocks as well as the seasonality
trend. For further details about the impact of change-point on statistical analysis, we

quote Lu and Lund (2007), Gombay (2010) and Robbins et al. (2011) among others.



Just recently, Nkurunziza and Zhang (2018) studied inference problem in generalized
O-U with an unknown change-point when the drift parameter is suspected to sat-
isfy some restrictions. To give another recent reference about inference problem in
generalized O-U, we also quote Chen et al. (2017) and the references therein.

To the best of our knowledge, there is no study about inference problem in con-
text of multivariate periodic mean-reverting stochastic with a possible change-point.
Nevertheless, as discussed in Pigorsch and Stelzer (2009), it is important to capture
the individual dynamics of the model as well as the correlation structure and effects
across different financial assets in a financial market. In this thesis, we hope to fill
this gap by proposing inference methods about the drift parameter matrix in con-
text of multivariate generalized O-U with an unknown change-point. The proposed
model can capture the correlations between different factors, the seasonality trend
as well as the possible unconventional shocks. The proposed inference incorporates
also uncertain prior information about the drift parameter matrix. The uncertain
prior information is given in form of linear restriction binding the columns or the
rows of the drift parameter matrix. Such a restriction includes a special case of the
nonexistence of the change-point as well as the absence of the seasonality factor in

context of correlated stochastic processes.

1.1 Main contributions of the thesis

In this section, we highlight the important contributions of the thesis. As compared
to the findings in literature, we generalize in five ways the results in Dehling et
al. (2010, 2014), Nkurunziza and Zhang (2018) and Chen et al. (2017). First, we

consider inference problem in multi-dimensional context and we establish a more



general result underlying the existence of the unrestricted estimator (UE) and the
restricted estimator (RE) of the drift parameter. We also derive the UE and the RE.
Second, we establish the joint asymptotic normality of the UE and the RE under the
sequence of local alternatives. Third, we construct a test for testing the uncertain
restriction. The proposed test is also useful for testing the absence of the change-point
as well as the nonexistence of the seasonality factor. Fourth, we derive the asymptotic
power of the proposed test and we prove that it is consistent. Fifth, inspired by the
work in James and Stein (1961), we develop some shrinkage estimators (SEs) and we

prove that SEs dominate the UE.

1.2 Organization of the thesis

This thesis contains seven chapters including the introdution and the conclusion. The
rest of this thesis is organized as follows: In Chapter 2, we introduce the statistical
model and regularity conditions. We also present in this chapter some preliminary re-
sults on the no change-point case. In Chapter 3, we derive the unrestricted maximum
likelihood estimator (UMLE) and restricted maximum likelihood estimator (RMLE)
in the case of one known change-point. We also derive in this chapter the joint asymp-
totic normality of the UMLE and the RMLE. In Chapter 4, we derive the UE and RE
in the case of one unknown change-point as well as their joint asymptotic normality.
We also construct in this chapter a test for testing the uncertain restriction, and we
introduce the SEs. In Chapter 5, we compute the asymptotic distributional risks
(ADR) for the UE, RE, and SEs, and then, we compare the relative performance
based on their ADRs. In Chapter 6, we carry out a simulation study. Chapter 7 is

the conclusion. The theoretical background is provided in the Appendix A, and some



proofs of the main results are provided in the Appendix B.



Chapter 2

Preliminary results

In this chapter, we present the statistical model and some preliminary results. We also
present the main assumptions used to establish the proposed method. The chapter is
organized in three sections. In Section 2.1, we introduce the multivariate generalized
Ornstein-Uhlenbeck processes as well as some notations. In Section 2.2, we present
the case where no change-point is involved as our preliminary result, and in Section

2.3, we derive some asymptotic properties of this case.

2.1 Statistical model

In this section, we present the model of multivariate generalized Ornstein-Uhlenbeck
processes with a possible change-point, and then, we introduce some mathematical
notations. Let I4 denote the indicator function of the event A. For v = ¢T and

¢ € (0,1), the statistical model of interest is

dX; = [(11p(t) — A1 X)Ly + (pop(t) — Ao Xy)[sny | dt + V24w, (2.1)



with 0 <t < T, and {W;,t > 0} is a standard d-dimensional Brownian motion, i.e.
/
W, = lWl (t) Wa(t) Ws(t) .. Wd(t)} ;
{X;,t > 0} is the corresponding d-dimensional stochastic process, i.e.

X = [Xl(t) Xo(t) Xs(t) ... Xd(t)},

©(t) is RP-valued function on [0, 77, i.e.

p(t) = {sol(t) ea(t) @3(t) ... “”p(t)l’

p1 € R>*P 1y € R*P A € R™*4 A, € R are the parameters of interest, i.e.

e 1 1 1] [ (2 2 2 2]

T I i) U T i G i

1 1 1 1 2 2 2 2

Mg1) Méz) Mgs) e Mép) Nél) Mg2) ,Ugs) e Mgp)

_ 1 1 1 1 _ 2 2 2 2
po= ) ouly ul ) e = ) ) W )|
1 1 1 1 2 2 2 2

_,Ufil) :U¢(12) /4(13) Mff )_ _/h(ﬂ) ,U((n) ,U((i:s) Nz(i )_

[ 1 1 1] [ (2 2 2 2) |

ag1) @52) agg) agd) a§1) agg) @53) agd)

1 1 1 1 2 2 2 2

agl) a§2) ag:s) P agd) aél) agQ) a§3) “e a;d)

_ 1 1 1 1 _ 2 2 2 2
A = aél) agm) agg) aéd) Ay = a:(ﬂ) a:(,ﬁ) aé?)) aéd) ;

1 1 1 1 2 2 2 2

al) ) al . d] o) o) ol . a)]




Y = diag (0,03, ...,02) is the diffusion parameter matrix of the stochastic process,

which is assumed to be known, i.e.

o2 0 0 0
0 o2 0 0
X=10 0 o2 0
0 0 0 o2

Further, A;, Ay, and X are assumed to be positive definite matrices in the mean-
reverting process. Let 0; = [ I A ]and 0y = [ Lo LAy } The parameter of

interest is a d x 2(p + d)-matrix given by

6:[9192]. (2.2)

Further, let (u10(t) — A1 Xo) <y + (p2p(t) — Ao Xy)lsyy = S(0,t, X;). The SDE
in (2.1) can be rewritten as dX; = S(0,t, X;)d; + XV2dW,, 0 <t < T. Let I, be
a p-dimensional identity matrix. In some situations, there is a prior information
about the parameters, and hence the parameters might be estimated under certain
constraints. In particular, we consider the case where the parameters may satisfy the

restrictions: 110 = d; and 6Ly = ds. This restriction motivates the testing problem
HO . L19 = dl, 9L2 = dQ versus H1 . L19 7é dl, or 9L2 7é dg, (23)

where L, € R4 L, € R2P+)*" are known full-rank matrices with n < 2(p + d),
g < d, and d; € R20+d) 4, € R>" are known matrices. Furthermore, it should

be noted that for a suitable choice of Ly, Lo, di, ds, the testing problem can cover

!/
many interseting special cases. For instance, by taking Ly = [ Iipta) L Lip+ay ] and

dy = 0, one can test the nonexistence of the change-point with additional restrictions

7



on the parameters given as L10 = d;. For instance, let L; = [1 -1 0 .. 0] and
di = O1x(p+a) to reflect the highly positive correlation that is expected between X, (1)

and X5 (t) while we are testing the existence of the change-point. As another example,
i 1 l /

setting Ly = |---1--+--------| and dy = 0 gives a testing problem with ps =

0.1y 0
2u1 and A; = A, ‘(i.e.‘, coefficients of the base functions doubled after the change-
point while other components of ¢ remain the same) with additional restrictions on

the parameters given as L0 = d;.

In order to derive the proposed method, we require the following conditions.

Assumption 1. The distributrion of the initial value, X, of the SDE in (2.1) does
not depend on the drift parameter 6. Further, X is independent to {W; : t > 0} and

E(|| Xo||5") < oo, for some m > 2.

Assumption 2. For any T > 0, the base function {p;(t),i = 1,2, ...,p} is Riemann-
integrable on [0,T] and possesses
(i) Periodicity: p;(t +v) = @;(t), for all i =1,2,...,p, where v is the period.

(it) Orthogonality in L*([0,v], 2d\): / o(t)'(t)dt = vI,.
0

Remark 1. Since the base function p(t) is bounded on [0,T] and v-periodic, this

implies that ¢(t) is bounded on R, .

To introduce some notations, let (£2,F,P) be a probability space where § is &-
field on the sample space €2, and P is a probability measure. Further, let LP denote

the space of measurable p-integrable functions, for some p > 1. For mathematical

. . d Lp P
convenience, we suppose that § is complete. We also denote >, > > the
T—00 T—o00 T—o00

convergence in distribution, in LP-space, and in probability, respectively, as T tends

to infinity. Also, let O,(a(T)) stand for a random quantity such that O,(a(T))a™*(T)

8



is bounded in probability. Further, we say that a stochastic process {Y;,t > 0} is
LP-bounded if there exists K > 0 such that E(|Y;|?) < K, for all ¢ > 0, for some
p > 1. We denote Tr(A) to stand for the trace function of a matrix A, and we denote
Vec(A) to stand for the vectorizing operator of a matrix A, i.e., Vec(A) is obtained
by stacking the columns of the matrix A on top of one another starting from the
leftmost column. We define ||.||2 and ||.||r to be the Euclidean norm and Frobenius

norm respectively. Next, we introduce the following two definitions.

Definition 1. The p x q random matriz X is said to follow a matriz-variate normal

distribution with the p X ¢ mean matrix M and the pq X pq covariance matrix X if

Vec(X) ~ Npy(Vec(M), X). We denote it as X ~ Nyyy(M,X).

Definition 2. The matriz W: p X p is said to be Wishart distributed if and only if
W = XX, where X ~ Npun(p, I ® 3),3 > 0. If u = 0, we have a central Wishart
distribution which will be denoted by W ~ W, (p,X), and if p # 0, we have a non-

central Wishart distribution which will be denoted as W, (p, X, A), where A = pp'.

2.2 Preliminary results: No change-point case

In this section, we study the case where there is no change-point. This case is studied
as a preliminary step in order to facilitate the understanding of the proposed method.

In no change-point case, the SDE in (2.1) can be written as
dX; = (pp(t) — AX,)dt + £V2dW;, (2.4)

with 0 <t < T, and u € R>?, A € R™4, In case of the statistical model in (2.4),

the parameter of interest is § = [ L A } € R¥>*(®+d) Thus, the drift coefficient is



S(0,t, X;) = pp(t) — AX;. The following proposition shows that the SDE in (2.4)

admits a unique and strong solution which is L2-bounded on [0, T7.

Proposition 2.1. Suppose that Assumption 1-2 hold. Then, the SDE in (2.4) admits

a strong and unique solution that is L*-bounded on [0,T], i.e. sup E(]|X||3) < oo.
0<t<T

The proof of this proposition is given in the Appendix B where a more general

case is considered. Further, below we prove that {X;, ¢ > 0} is uniformly L?*-bounded.

Remark 2. From Proposition 2.1, one concludes that

T
P ( [ isto. e xolgan < oo) =Y
0

for all 0 < T < oo, for all @ € ©. This is a sufficient condition for the existence of

the Radon-Nikodym derivative of a stochastic process.

Proposition 2.2. The trajectory of the SDE in (2.4) is given by

t t
X, = eAtX0+eAt/ eAsugp(s)ds—i—e_At/ e TV2q1,. Further, sup B(||X;]|2) < co.
0 0 £0

Proof. Let g(x,t) = e*x, and apply Ito’s formula to g(z,t) with the process specified

in (2.4), we get
dg(X,,t) = eMdX, + eMAX,dt = e (pp(t)dt + SV2dW). (2.5)

Taking integral from 0 to ¢ on both sides of (2.5), we get

t t
eMX, = X +/ eAsugp(s)ds—l—/ e n2qw;. (2.6)
0 0
Note that e! is always invertible with (e4*)~! = e=4!, then mutiplying by e=“! on
both sides of (2.6), we get
t t
X, =e X+ eAt/ eAS/up(s)ds + eAt/ A2 qw,. (2.7)
0 0

10



Further, using (a + b+ ¢)? < 3a® + 3b? + 3¢, we get

t
/ e A=) (s ds
0

)

B 2] < 3B (1 X0)2) + 38 (j

+3E<

Then, by Ito’s isometry, this gives

“

Therefore, from Assumption 1, Proposition A.3, Remark 1, let ||uo(s)||3

2
2)
t

/ e—A(t—s)El/2dWS
0

t
/ e—A(t—s)Zl/QdWS
0

E(||Xo||3) < Ko, and \; be the smallest eigenvalue of A’ + A, we get

2 W 22y (4~ de™™"
E[[| X:]13] < 3de ™ Ko + 3 (Ko + [I2V2)%) | —— )

At

which implies that s;gg E(||X;]|3) < oo, this completes the proof.
In the sequel, let
X,=eMXg+h(t)+ 2, 0<t<T,
where

t t
h(t) — e—At/ €AS/,LQD(S)dS, Zt _ e—At/ 6A521/2dWS.
0

0

2 t t
)z | e ommpds < g [ e
2 0 0

S)||2Fds.

< K

— 12302

(2.9)

Notice that the process {X;, ¢t > 0} is not stationary. Thus, to apply some limiting

theorem such as Birkhoff’s Ergodic Theorem, we introduce an auxiliary process

Xt:E(t)+Zt, OStST,
where
t

h(t) :e_At/ e up(s)ds, Z, :e_At/ e,

—0o0 —00

11

(2.10)

(2.11)



where {WS, s € R} denotes a d-dimensional bilateral Brownian motion, i.e.
W, = ng)H{SGR+} + WSZS)H{SGR_}, (2.12)

where {W{", s > 0} and {W{*, s > 0} are two independent d-dimensional standard
Brownian motions. Below, we prove that, for each ¢ € [0, 1], {)?kﬂ, k € No} is a
stationary and ergodic process. As an intermediate result, we establish the following

two propositions.

Proposition 2.3. Suppose that Assumptions 1-2 hold. Then, fort € [0,1], k € Ny,

E(ZZ{JF,C) does not depend on t.

Proposition 2.4. Suppose that Assumption 1-2 hold. Then, fort € [0, 1], the process

{Xire, k€ No} is Gaussian.

The proofs of these two propositions are given in Appendix B. By using Propo-
sitions 2.3-2.4, we prove the following proposition which shows that the auxiliary

process {)~(k+t, k € Ny} is stationary and ergodic.

Proposition 2.5. Suppose that Assumptions 1-2 hold. Then for t € [0,1], the se-

quence of random vectors { X1t tren, 5 stationary and ergodic.

The proof is given in the Appendix B.

2.3 Asymptotic properties

In this section, we provide some asymptotic properties of the process defined in (2.4).
Also, in the rest of the thesis, we assume without loss of generality that the period

v =1 for the orthogonal set {¢;(t),i =1,2,...,p}.

12



Lemma 2.1. Suppose that Assumptions 1-2 hold, let ¢y € [0, 1], then

ool ooT
—/ th——/ th—>0

T—o0
¢oT - 1 [%oT o
Proof. Tt is sufficient to prove that %/ o(t) X, dt — —/ e(t) X dt|| —— 0.
0 T 0 F T—o0

Note that

1 doT 1 ¢oT
H—/ OXﬁ——/ o(t) X dt
T 0

F:H%A”ZﬁN@—MMt

F
0T X 1 [T ~
<7 [ Jeo&-xo a<g [T nen [T
According to the Remark 1, let ||¢()|ls < K., for all t, we have
1 ¢oT =, 1 ¢oT ) K@ ool |\, _
— BXjdt — = DXl <22 [ K- x| a2
17 [ ez [ eoxa] <3 [T x-x],e e
Note that from (2.8)-(2.11), we have
H)?t x| =|[re) 2 — et xy — hit) - 2
2 2
0 0
= eAt/ e p(s)ds + eAt/ e 2qw ) — oAt
—00 —0o0 2
0 )
= eAt/ e up(s)ds + eAt/ e*AszlﬂdWS@) — e X,
e 0 2
0 oo
< He‘AtHF / e up(s)ds +/ e~ R2qw® — X, (2.14)
oo 0 2

Since A is positive definite, let \; be the smallest eigenvalue of A’ + A, then by

Proposition A.3, we have

¢oT ¢oT 0 00
/ |% - x dt</ e, / eAsugp(s)ds+/ AN 2qW®) — X, dt
—00 0 2
¢oT
g”/ aﬂw@msﬁ/ e~ Anl2q ) Vde=tdt
—00 2J0
0 o0
= H/ e p(s)ds —i—/ e Anl2aw® — X, 2)\\/8(1 — e’h%T)
2 1

2\/_ _Mé
pis| + 1ol ) B - e )

WA _ -y

(H/ e pup(s)ds

/ _A821/2dW8
0

+ ‘ (2.15)

2 1
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Now, by Remark 1 and Assumption 1, we can claim that ||up(t)|s < K, for all ¢

and E(|| Xol|2) < Ky < co. Therefore,

1 doT . 1 doT
B (H— o) X1t — ~ / (1) X1t >
F

M pp(s FE(Xol)) 2 - )
<7 (B(]| [ eruen]) + marvatn)

A
+ £E (‘ / _A821/2dWS(2 > 2\/3 . 6—%T).
T 0 2

(1

1

Then,

¢oT 0T
E(H / th——/ ) X, dt >
0 F

K 2Vd ST
g?“’( < S||Fds>+Ko> (1—e e
K

1
) v) _A821/2dW(2)
(T

N

hS

(1

" )t
2

1

K 2\/_ 2\/8 A1¢0

<2I|K l—e 2 7

ST ( P )\ + 0) N ( € )

+ &E (‘ /00 e~ Au2q ) —2\/3(1 — e_@T).
T 0 2 1

Further, let ch (KMW%E + K()) 2vd _ K1, we have
1

(|5 [ etrsiae— 1 [* etox
D) —/ gotht——/ gthdt)
TO t TO t F

/00 67A521/2dW5(2)
0

(1-

At

From the proof of Proposition 2.5, we know that
oo 2 1/2]|2

E ( / e—Aszl/QdWS(Q) ) < d HE / HF
0

A1
Therefore, by Cauchy Schwarz Inequality, we get

E( /oo e_Aszl/QdWS(Z) ) < E (
0 2

2

/OO e—Aszl/QdWS(Z)
0

14

N _ (=l
2 B A1

| !
2

(2.16)

1
) 2
)



1
also, let K, <M> : %‘2 = K5, we have
E (H% /O%Tgo(t)fth - %/O%Tgo(t)xgdt F) < %(1 - e—%T).
Therefore
Lot o 1 (o7
jlgloloE <H?/O o(t) X[dt — ?/0 () X, dt F) =0,
which completes the proof. O]

Lemma 2.2. Suppose that the conditions for Lemma 2.1 hold, then

¢oT ¢oT

1
— X, X!dt — — XXﬁ——m
T Jo K T Jo ¢

. ¢oT ¢oT
/ /
T XtXtdt — ? XtXtdt
0 0

Ll
— 0.
T—o0

)
F)dt

Notice that X, X, — X, X! = X,(X! — X!) + (X, — X)X/, and then, by Triangle

Proof. 1t is sufficient to prove that

Note that

1 ¢oT 1 ¢oT
E (HT X X[dt — T X, X/ dt
0

0

¢oT
F T 0

1 doT o
g—/ Ew&m—xx
T Jo

Inequality, we get

1 ¢oT o
T/ Ew&m—&m
0

F)dt
F) dt.

= /OME ([| %= 30+ (%, - X0,

doT S
/ B (||%(X - x)
0

By Cauchy Schwarz Inequality, we have
o\ 1/2 B o 1/2
) ()
2 2

J=e(|%
SRICIRRS

B (%= xxd

<

Nl— S

<l

B (||% (X - x)

) <e (i -x

15



Since E (|| X;]|3) < oo as we showed in Proposition 2.2, let E(||X;||)3 < K, < co. Also

based on the proof of Proposition 2.5 (B.10)-(B.17), we have
- 2K, ,d\* a5V
B <2 (PReed)y TR oo
A A

Let sup{E(|X[15) %, B(| Xl } < K < oo, we get
t2

% l 2K Pt v 2\1/2
|+ 1(Xe = Xo) Xillp)dt < — E([[(X, = Xy)[l3)"dt.
0

1 poT v v/ /
7| RIS - x)

By using (a + b+ ¢)2 < 3a® + 3b% + 3¢2, we have B(||(X, — X,)||2) is equal to

2

0 2)
0 2 2

< 3l (H [ eugtos +E(‘ >+E<||Xoué>>.
—0o0 2 2

Further, let ||up(t)||s < K, for all t. Also, by Assumption 1, there exists Ky > 0

E([h(t) + Z: — e X — h(t) — Zi|3)

0 oo
< e E (H [ gt [ - x,

/OO 67A321/2dW8(2)
0

such that E(||Xo||3) < Ky < co. Then, by Proposition A.3 and (2.16), we have

3)le 42 <H/ e up(s)ds|| +E < ) + E(HX()H%))
—00 2 2

2
2vd d||zt/?)|2
S 3d€—)\1t K,u(p \/_ +KO+ || ”F
T A A1

/OO e—AsEI/QdWS(Q)

0

2 1/2)2
K 2\/E> +K0+ %) = Kl' We haVe

B g

Then, set 3d ((

E(|(X; = X)3) < Kie ™",

Therefore

T/ B(I(Xe = XolI3)"2dt < = g < TNl (1 - 50T,
0

0
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¢oT doT -
Since E < %/ (X X — X, X])dt > < %/ E(||(X, — X,)||2)"/2dt, we get
0 0

)=
F

which completes the proof. O

F

1 0T _
0

T—oo

Lemma 2.3. Suppose that the conditions for Lemma 2.1 hold, then

1/t ~ 1/t P
—/‘¢®ﬁﬁ—? e(t) X, dt — 0,
¢

T oT boT T—00

[ S 1 [F ) P

— | XXt -~ | X, Xdt ——0.
0T T Jgor T—00

The proof of the first statement follows directly from Lemma 2.1. The proof of

the second statement follows directly from Lemma 2.2

Proposition 2.6. Suppose that the conditions for Lemma 2.1 hold, then

1 ¢oT P 1 .
! / o)Xt~ g / ()T (1)t
T 0 T—o00 0

The proof is provided in the Appendix B.

Now, let
V(k) = E(ZoZ}). (2.17)

Proposition 2.7. Suppose that A is a positive definite matriz and > is a symmetric

and positive definite matriz. Then V(0) is a positive definite matriz.
The proof follows directly from algebraic computations.

Proposition 2.8. Suppose that the conditions for Proposition 2.6 hold, then

1 doT

/ P T~ T
7/ thtdtm%{ /0 Rt (t)dt+V(0)}.

17



The proof is provided in the Appendix B.

Proposition 2.9. Suppose that the conditions for Proposition 2.6 hold, then

7 e0Xi T =) [

1 ng / P T T
5;%;a&ﬁ;;:u—¢@{éhmh@ﬁ+vmﬁ.

The proof of the first statement follows directly from Proposition 2.6 and the
proof of the second statement follows directly from Proposition 2.8. Based on the
Propositions 2.6-2.9, we have the following results, which are crucial in the rest of the

Thesis. For ¢g € [0,1] and v = ¢oT, let us define

éoT éoT
/0 p(t)¢'(t)dt —/0 o(t)Xdt

OW = éoT boT , (2.18)
0 0
and let
1 o~
I —/@@H@ﬁ
Y= 1 1 70 (2.19)
—/h@d@ﬁ /h@ﬁ@ﬁ+v@
0 0
Proposition 2.10. Suppose that the conditions for Proposition 2.8 hold, then
Lo, 2 oy
T 75w P05
Proof. From Proposition 2.6 and Proposition 2.8, it is sufficient to show that
. 1 ¢oT ,
A ) p(t)¢' (t)dt = goly.
Based on Assumption 2, we have
1 [¢T ) 1 [l#oT] /( ) ¢oT ( ) /( )
1 ¢@¢@ﬁ:—/ <NWtﬁ+—/ o) (t)dt
T /0 T Jo T Jypor)
1 I ,
—ploT) L [ el (220)
T T J\or)

18



Moreover

1

¢oT ) [poT]+1 ,
< /L ()’ ()| pdt < / le(t)e' ()| rdt
F

[#0 TJ 0T [¢oT|

Therefore
1t ,
Yll—rfolof ) e(t)¢'(t)dt = 0. (2.21)
Also, we have 0 < ¢oT — [¢oT'] < [¢oT] +1—[¢oT'], then 0 < Z(¢oT — [$0T]) < 7,
and then
lim [T _ do. (2.22)

Therefore, by (2.20), (2.21), and (2.22), we get

0T
g e ol
Combining Proposition 2.6 and Proposition 2.8, we complete the proof. O
Now, let us define
T T
| etoewar - [ oxi
O,7=07—0,=|7%L, oo . (2.23)
¢DT ¢0T

Proposition 2.11. Suppose that the conditions for Proposition 2.10 hold, then

1
10,0 2 0 .

From Proposition 2.9, the proof is similar to that of Proposition 2.10.

Remark 3. It is possible to derive stronger results than the ones given by Propositions

2.10 and 2.11. In particular, one can prove that %Ov and %O%T converge almost

19



surely. For more details, we refer to Nkurunziza and Shen (2018). Nevertheless, the
results given by Propositions 2.10 and 2.11 are sufficient for deriving the main results

of this thesis.
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Chapter 3

Estimation method: the known

change-point case

In this chapter, we present an estimation method in the case of a possible change-
point. We assume that the change point v = ¢7" is known. The chapter is subdivided
into two sections. In Section 3.1, we derive the unrestricted maximum likelihood
estimator (UMLE) and the restricted maximum likelihood estimator (RMLE). In

Section 3.2, we derive the joint asymptotic normality of the UMLE and RMLE.

3.1 UMLE and RMLE

In this section, we derive the UMLE and the RMLE. In particular, the RMLE is
obtained by using the method of Lagrange multipliers. To introduce some notations,

let v = ¢T with ¢ € (0,1). Further, define

/7 t)dX] /T (t)dX;

€ Rerdxd p . € RPHd)xd (3.1)

/ X,dx! / X,dX!

21



and

¥ ¥
JRECECL / 1) Xt
0 y e R(erd)X(erd)’ (3‘2)
0
/ ol —/ 1) X/t
g c Rp+d)x(p+d) (3.3)
¥
Now define
P(¢) = { P | Py } e RI20+d) (3.4)
and
@y Opta
Qo) = 7 Pt € R2p+d)x2(p+d) (3.5)
Op+d Q'y,T

Proposition 3.1. Suppose that the Assumptions 1-2 hold, then the likelihood function

is given by L(0; X{o.1]) = exp [Tr(E‘lﬁP’(gb)) — %Tr(E‘leQ(gb)Q’)] )

Proof. By the Proposition 2.1 and Remark 2, one can apply Theorem 7.7 in Liptser
and Shiryayev (2001). Thus, by this theorem, the Radon-Nikodym derivative of the
measure induced by the SDE in (2.1) exists. Let L(0; X[o77) be the likelihood function

induced by the probability measure of the SDE in (2.1). Then,
T 1 T
L(0; Xj0,1) = exp {Tr {Z_l/ S(Q,t,Xt)dX;} - éTr {Z_l/ S(0,t, Xt)S'(Q,t,Xt)dt] } .
0 0

Note that @, and Q. are real symmetric matrices. Further, since § = | ¢, | 0, }
with 0, = { 11 Ay }and 0y = lm LA, }, we have
T v T
| 80,6500 = [ Gup®) - 40X+ [ (el - AsXiX;
0 0 ¥
=01P, + 0P, 1. (3.6)
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Note that I;<y) I~ = 0 for all t, then we have

/0 [(ap(t) — A Xi)liany + (p2p(t) — A Xi) iy

X [(p(t) = A X)) reny + (2(t) — Ao Xy)enpy]'dt

k
_ / (rplt) — AL X)) Gup(t) — A X, dt
0
T
4 / (130(t) — A X2) (iap(t) — A X,V
Y
This gives
T
/ 5(9, t, Xt)S'(Q, t, Xt)dt = 01Q76"1 + QQQ%TQQ. (3.7)
0

Combining (3.6) and (3.7), the likelihood function can be rewritten as
1
[1(97 X[O,T}) = eXp {Tr [E_l(elpfy -+ QQP%T)} — 5 Tr [2_1(916279’1 + 92@777‘9,2)] } .

Note that Q is a real symmetric matrix since (), and @), r are real symmetric matrices.

Then, the likelihood function is

1
L(0: Xio) = exp [TH(E0P(0)) — 3 THE 00100 33)
this completes the proof. O

From Proposition 3.1, the log-likelihood function is
1
1(6; Xio17) = (L(O; Xio)) = TH(S70P'(8)) — 5 THET0Q).  (39)

Next, we present the positive definiteness of (), and @), r. As a result, this implies

that Q(¢) is also a positive definite matrix.

Proposition 3.2. Suppose that Assumptions 1-2 hold, and let Q(¢) be defined as in

(3.5). Then if T > max(%, 1%(]5), Q(¢) is a positive definite matriz.
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The proof is given in the Appendix B. By Proposition 3.2, we have gave a sufficient
condition for the matrix QQ(¢) to be a positive definite matrix. The research is ongoing
to derive a necessary and sufficient condition for Q(¢) to be a positive definite matrix
in case T is not large. In the sequel, to simplify the presentation of this thesis, we
suppose that the conditions are met for the matrix Q(¢) to be a positive definite
matrix. Note that this assumption does not affect the asymptotic optimality of the
proposed method. Indeed, if T is large, by the results in Dehling et al. (2010, 2014),

one can prove that Q(¢) is a positive definite matrix. Further, let
J1 = SLH(L3L0Y) ! and Jy = (LYQ 1 (¢) L) ' LYQ ™ (), (3.10)

and let 6 be the RMLE. Proposition 3.2 is crucial in deriving the existence of the

UMLE and RMLE. Below, we present a result which gives the UMLE and RMLE.

Lemma 3.1. Suppose that Assumptions 1-2 hold. Then, the UMLE of the parameter

0 is 0 = P(¢)Q " (¢). Further, if Hy in (2.3) holds, the RMLE is given by

0:

D>

— J{(L10 — dy) + JyLy(0Ly — dy)Jy — (0L — d) Js.

The proof is given in the Appendix B.

3.2 Asymptotic normality

In this section, we first derive the asymptotic normality of the UMLE, then, by the
relationship between UMLE and RMLE as stated in Lemma 3.1, we derive the joint

asymptotic normality of the UMLE and RMLE.
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3.2.1 Asymptotic normality of UMLE

In this subsection, we investigate the asymptotic normality of the UMLE given in
Lemma 3.1. First, we derive the following proposition which is used as an intermediate

result.

Proposition 3.3. Suppose that the Assumptions 1-2 hold, the SDE in (2.1) has the
solution: X; = {e ™" X + hq(t) + Z1(t) Ho<i<yy + {e742' X0 + ha(t) + Zo(t) Mgy,

where, fork =1,2,
t t
hi(t) = eA’“t/ e o(s)ds, Zp(t) = eA’“t/ eV 24Ny, (3.11)
0 0

Proof. Applying Ito’s formula with g(z,t) = ez, 0 < t < 7y and g(z,t) = ef2n,

v <t < T, and following the same procedure in (2.5)-(2.7), we get:

Xy = e MXo+ hi(t) + Z,(1), (3.12)
0<t<~, and

X, = e 21Xy + ho(t) + Zo(2), (3.13)
~v <t < T, this completes the proof. [

Obviously, the process from SDE (2.1) is not stationary and ergodic. In order to
study the asymptotic behaviours of the 6, we define the following auxiliary processes.

Let
X1(t) = () + Z1(t), Xo(t) = ho(t) + Zo(t), 0<t<T, (3.14)
where, for k =1, 2,

hi(t) :e_A’“t/ e po(s)ds,  Zi(t) :e_A’“t/ eSS 2 g1y, (3.15)

—00 —00
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where {WS, s € R} denotes a d-dimensional bilateral Brownian motion as in (2.12).
Further, let X, = )?1(75)]1{,59} + )zz(t)l[{bv}, 0 <t <T. From (2.17), we denote

Vi(k) = E(Z1(0)Z}(k)), Va(k) = E(Z5(0)Z(k)), and define

I, — [ ()R, (t)dt _
Yo = . 1~/0i0<) g , (3.16)
_ / T (1) ()t / h (O (£)dt + V2 (0)
and
I, — [ (bR, (t)dt _
| | /OsO() (t -
— / ha(t)' (t)dt / ()R, (2)dt + Va(0)

Proposition 3.4. Suppose that Assumpitions 1-2 hold, then for ¢ € (0,1)

1 P 4 P 1oy
?Q7m¢20, and 1“'62,7 —>_EO .

T—o0

The proof is provided in the Appendix B. Analogically, by Proposition 2.11, we

have the following result:

Proposition 3.5. Suppose that Assumpitions 1-2 hold, then for ¢ € (0,1)

1 » o1
?Q’y,T m (1 — ¢)21, and TQ%T m} ﬂzl .

Proof. The proof of the first statement is similar to that given for Proposition 2.11.
The proof of the second statement follows from the same technique as used in proof

of Proposition 3.4 O

Now, denote

2y Opta
A e (3.18)
Opa (1= @)E1
where ¥ and ¥; are defined in (3.16) and (3.17) respectively, then we have
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Proposition 3.6. Suppose that Assumpitions 1-2 hold, then for ¢ € (0,1)

2Q(0) = %, and T (9) T 5y (3.19)

Proof. By Proposition 3.2, we have %Q is positive definite and thus it is invertible,

we have
1 ! _ TR Opid
(709) =@ @ =]
Op+d TQ;E“
By Proposition 3.4 and Proposition 3.5, we complete the proof. O

Proposition 3.7. The UMLE 6 can be rewritten as

- 1

0 =0+ 325 Re(0)(TQ7'(9)), (3.20)
where

Ri(6) = / B(t,6)dW!, (3.21)

and

B(t,¢) = gOl(t)]I{tSW} _Xé]l{tgw} gol(t)]l{bv} _Xz{]l{t>7} € RIx2ptd), (3.22)

The proof is provided in the Appendix B. By Proposition 3.7, we also have

VT(0 - 0y = <TQ1<¢>>%R'T<¢>2W.

To study the asymptotic normality of é, we need to first explore the convergence of

\/LTR’T. In passing, by Cramer-Wold Theorem (Billingsley 1995), we have

. y
Vec (ﬁRT(qb)) m M
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if and only if

1 d
/ / i
a Vec (_\/TRT<¢)) m a ]\47

/
for all a = [Ch as ... agd(p+d)] € R?P+d)  Therefore, we study the convergence of

a'Vec (%R/T(qﬁ)) instead. Note that

1 T d T )
a'Vec (—R'T(gb)) = [au) a® a(d)] / dW, ® Cr(t) = / aDCp(t)dw,?,
VT 0 = Jo
where a® is a 2(p + d)-row vector given by
a = |4 4 , (3.23)
A(—1)2(p+d)+1  AG—1)2(p+d)+2 -+ Qi2(p+d) |

and

!/
Cr(t) = L%so’(t)ﬂ{tgw} — =Xy 2 (O —%TXQI{M}} - (324)
Proposition 3.8. Suppose that Assumptions 1-2 hold. Then forT > 0,1 = 1,2,...,d,
T .
p (/ (aDCp(t))2dt < oo) =1,
0
where Cp(t) and a® are defined in (3.24) and (3.23).

Proof. By Cauchy-Schwarz inequality, we have

T T
B ([ @Ocroyr) < 1z ([ 1eno k)
0 0
@2 | L g 2 g 2
< 108 | ([ letoecnlBar+ [ 1Ty lia
@iz | L g 2 g 2
108 |2 ([ heonae + [ 1X80on )]

Since ||¢(t)]|3 and || X¢||? are non-negative, we have

le(®) e 1z = lle(®)3Lp<y < lle(@)]12,

IXeLeeoy 15 = 11Xl 3Ty < (X015

28



Similarly, we have

le ()L llz = o 120y < @)z,

||XtH{t>'y}H§ = HXtHg]I{DW} < ”XltHg

Therefore

B ([ @crorar) < 1o [2 ([ st [ soxip)]

From Remark 1 and Proposition 2.1, we have the boundedness of ¢(t) and X; in L%

Let E(e(t)[[3) < K, and E([|X3) < Ko, we get
T . .
E (/ (a(’)C’T(t))th) < 2[|aV|3(K, + K,) < co.
0

Then, we have

P (/OT(a“)CT(t)th < oo)) =1,

for all © = 1, 2, ..., d, which completes the proof. O

From Proposition 3.8, we establish below a proposition which gives the conver-
gence in distribution of \%R}(gb) In short, we apply Proposition A.1 in the Appendix
A, which is a special case of the proposition 1.21 in Kutoyants (2004) with d; = 1

and dy = d.

Proposition 3.9. Suppose that the conditions for Proposition 3.6 hold. Then

\/%TR’T((;S) 2 R~ Noptayxa(0, Ig @ o), where Xy is defined in (3.18).

T—o0

The proof is provided in Appendix B. From Proposition 3.9, we derive below the

asymptotic normality of the UMLE.
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Proposition 3.10. Suppose that the conditions for Proposition 3.6 hold. Then the

UMLE 0 is asymptotically normal. More precisely

pPr = ﬁ(é — 9)/ L p ~ NQ(p—f—d)xd(O;E & 251)

T—o0

The proof is provided in Appendix B.

3.2.2 Joint asymptotic normality of MLE and RMLE

In this subsection, we derive the joint asymptotic properties of the UMLE, RMLE and
some other estimators. To avoid asymptotic degeneracy, we consider the following

set, of local alternatives:

T
Kr:L10=d; and 0Ly =dy+ —, T >0, 3.25
T 1 1 2 2 \/T ( )

where 7, € R¥" is a fixed matrix. Also, we assume that 0 < ||73]] < co. Define

Cr = VT (6 — ), according to Lemma 3.1, we have

VT (0 —60) = VT(0 —6) — J.LVT(6 — )
+ J1L1<\/T(é — Q)Lg + TQ)JQ — (\/T(é — Q)Lg + TQ)JQ
= VT (0 —60) — WL NT(0 — 0) — 1205

+ JlLl\/T(é — 9)[/2:,72 + JlLlT'QJQ - \/T(é — 6)L2J2
Then
ﬁ(g— 9) = ([d — J1L1>\/T(é — 9)([2(p+d) — LQJQ) + J1L17’2J2 — 7"2J2. (326)

Further, let f(X ') = (L4X ' Ly) 'L, X for a positive definite matrix X. Then we

have

T2 = f(Q71(9)) = (LyQ7(9) L2) ' LyQ ™' (¢) = [Ly(TQ ™' () La] ' Ly(T Q™ ().
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By Proposition 3.2, we have

TQ™Y(¢) —— 5.

T—o00

Therefore, by the continuous mapping theorem, we have

J ﬁ (LYS5 L) LSyt = s, (3.27)
Similarly, we have
Ji= Iypea) = Los —— Dgra) — LaJs = J5, (3.28)
JG = J1L17’2J2 — TQJQ TL> J1L1T2J3 — T’QJg = J7. (329)
—00

Further, to simplify some notations, denote J = I; — J;L,. Note that

JSS = (La = WL)S(Ta = W) = (£ = WLy S)(Ia = S L)

=Y —XLiJ — WX+ WL XL .
Further, since ¥ is symmetric, by (3.10), we have J; = XL} (L3 L})~!, therefore
SV =S (L) T LY = J Ly Y, (3.30)
and J,L,SLL T, = L (LiSL) " LS LY (LS L)) L, 3. Then,
LWL SL) T, = SLY(LSL) LY = S LS. (3.31)
Therefore, by (3.30) and (3.31), we get
JSJ =S - SLLJ =% — LS = J¥. (3.32)
Further, we have
J5¥5 s = (Taray — J3Lo) S5 (Tagpray — Lads) = (857 — J3L535 1) (Iagpya) — LaJs).
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By (3.27), we have Js = (45 Ly) "1 LLY5 T and since 5! is symmetric, we get
Ji LNy = S0 Ly (LSS5 Lo) LA, = S5 Ly T, (3.33)
and J5L4Y5 Lo Js = S5 Lo (Ly Y5  Lo) " LAY 5 Lo (L4 Y5 P Ly) P LY5 ! and then
JELES 5 Lo Js = S5 Ly (D45 Ly LSS = TR0 (3.34)
Then by (3.33) and (3.34), we get

S s =35 = S5 Lo ds — JELASS T + T3S, Lo dy = S5t — B Lo Jy = X5 s
(3.35)
The asymptotic normality of RMLE follows from the following proposition which

gives the joint asymptotic distribution of [pT (T} .

Proposition 3.11. Suppose that the conditions of Propositions 3.6 hold along with

the set of local alternatives Kr in (3.25), then

d Qa2 Qo2 — Oy
pr G| oo P ¢ Nograyxaa | |0 T2 ;
Qoz — 1 Qoo — Oy

where O =X @Y, — (JX) @ (871 5), Qop =X @351
The proof is provided in the Appendix B.

Corollary 3.1. Suppose that the conditions of Propositions 3.6 hold along with the

set of local alternatives Kr in (3.25). Then, (; TL> ¢ ~ Nogprayxa( T, Qa2 — a1).
—00

The proof follows from Proposition 3.11. Define & = /T (é — 5)’ . From Proposi-

tion 3.11, we derive the asymptotic distribution of [pT &)

Proposition 3.12. Suppose that the conditions of Propositions 3.11 hold, then
Qo Oy

|ipT €T:| ﬁ {p f} NN?(P+d)><2d {O Jé} ’
Qll Qll
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Proof. Observe that
I, 1
|:pT 5T:| = |:pT CT:|
0 -1

Using vectorization, we get

I; O

Vec [PT gT} = ® Iypyay | Vec [pT gT] )

Iy —1Iq

From Proposition 3.11, we have

|:pT CT:| ﬁ |:/) C} )
where

DD (JY) @ (251 J5)

[P C} ~ Naprd)x2a [O Jé} , U9 ® (5 (J5) @ (S50)

Therefore, by Slutsky’s theorem, we have

I; O

T—o0

Vec [/)T £T] SELIN ® Iy(pta) | Vec [p C} : (3.36)

Iy —1,

Note that

I; 0 Iy Iy
® Io(pta) Vec([() J§]> = Vec [0 (]4

1, —1; 0 —1I,
O2(p+d)xd
— Vec | EHOxA (3.37)
Moreover, we have
I, O I;® Ig(p+d) 0 Igd(p+d) 0
® Iapray = =
Iy —1I4 1o ® Iypray —1a @ Iypra) Dapyay —l2dpra)
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Therefore, for the covariance term, we get

!/

Lragp+a) 0 e %! (J2) @ (53" T5) | | Laagp+ay 0

Daprdy —lapray | | (JE) @ (83'5) (JE) @ (831 5) | | Loagray —L2a(ra)

=PI S5 - (JE)® (331
) ; S-S e ()| .
YR - (JY)® (27N TNt - (IY)® (251 s)
By combining (3.36), (3.37), and (3.38), we complete the proof. O

From Proposition 3.11, we also derive the asymptotic distribution of [CT &} .

Proposition 3.13. Suppose that the conditions of Propositions 3.11 hold, then

d Qo — 01 0
G &| 7o |C & ~ MNewrayoa | |2 =2
0 Qu
Proof. Observe that
0 I
|:<T 5T:| = [PT CT:|
Iy —1I
Using vectorization
0 I
Vec |:<T 5T:| - ® Iypay | Vec |:pT CT:|
Ig —1I4

From Proposition 3.11, we have

|:pT <T:| ﬁ |:/) C} )
where

Sevt (I @ (35s)

{p g]NNQWW [O 4’ (J2) ® (551 05) (J) @ (55" ;)
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Therefore, by Slutsky’s theorem, we have

0 I
Vec [CT gT} LN ® Iypya) | Vec [p g} : (3.39)
T—00
Lo —1I4
Note that
0 Id 0 [d
® Lypay | Vec( {0 Jé}) = Vec {O Jé] = Vec [Jé _(]4 :
Iy —14 1, —1;
(3.40)
Moreover, we have
0 Iy 0 Iq ® Irpta) 0 Dapta)
® Iap+a) = =
Lo —14 La® Ity —1a ® Iapra) Dapra)  —l2d(p+a)
Therefore, for the covariance term, we get
/
0 Lra(p+ay eyt (J¥) ® (35" J5) 0 Dap+a)

Lapray —loapray | |(JE) @ (B3 5) (J2) @ (35'J5) | | Lapray  —T2apra)

JY) @ (851 0
et | -
0 YR - (JY)® (X1 s)
By combining (3.39), (3.40), and (3.41), we complete the proof. O
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Chapter 4

Inference in case of unknown

change-point

In this chapter, we present the proposed inference method in the case of unknown
change-point. This chapter is subdivided into 4 sections. In Section 4.1, we derive
the unrestricted estimator (UE) and the restricted estimator (RE). Briefly, the UE
and the RE are obtained from the UMLE and RMLE along with plug-in method. In
Section 4.2, we establish the joint asymptotic normality of the UE and RE. Further, in
Section 4.3, we address the testing problem in (2.3), and in Section 4.4, we introduce

the shrinkage estimators.

4.1 The UE and the RE

In this section, we derive the UE and RE by using plug-in method. Let gg be a

Sr-measurable and a consistent estimator of the change-point. To introduce some
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~ Q¢T Op—l—d

notations, let Q(¢) = , where

Op+d QQBT;F

éT T
/0 () ()t — / (1) Xdt

QqST = T oT ) (4'1)
— X' (t)dt X X/ dt
0 0
T T
| et - [ owxi
Q(ZST,T = ¢TT ¢T . (42)
éT éT

According to Proposition 3.2, one can verify the positive definitness of %Q g7+ and
%QQET,T- Let Jo(¢) and P(¢) be as Jo and P(¢) by replacing ¢ by ¢. Then, the

plug-in UMLE and plug-in RMLE are given by

0(6) = P()Q7" (), (4.3)

0(¢) = 0(¢) — Ji(L:10(¢) — dv) + Ji(L10(¢) — di) LaJa(§) — (OLy — do) Jo(d). (4.4)

Remark 4. A consistent estimator can be obtained using a method based on that

giwen in Chen and Nkurunziza (2015).

Assumption 3. The estimatorgzg is §r-measurable, valued on [0,1]. Further, there

exists 6 > 0 such that ¢ — ¢ = O,(T~%).

Remark 5. This Assumption is similar to the Assumption 3 in Nkurunziza and

~ A

Zhang (2018). It is used to derive the asymptotic behaviours of é((ﬁ) and 0(¢).

Proposition 4.1. Suppose that the conditions for Proposition 3.6 hold as well as

Assumption 3, then
1T , P ! =
07 [ X oo [ emi
1 /7 » 1 _
i) 3 [ Xt 2 (1 0) [ ot
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Proof. From Remark 1 and Proposition 2.2 we have the boundedness of ¢(t) and X;

in L2 Let ||p(t)||2 < K, and E(||X¢]|3) < sup E(||X¢]|3) < K, for all ¢, then we have
>0

E(le®XiE) < le@IEIX) < KK, < oo

Therefore, by Lemma A.2 in the Appendix A, we have

L nxtde— 2 [0 oxtar s o 45
7| eoxia =4 [ eoxa oo (4.5)
L (1) Xdt — ' (HXldt 20 (4.6)
From Proposition 3.6, we have
1 [or P L
= | eO)Xidt —— ¢ | p(t)hy(t)dL, (4.7)
T 0 T—o00 0
1 [T » 1 _
= [ eO)Xidt —— (1—=9¢) [ @(t)hy(t)dt, (4.8)
T oT T—o00 0
which completes the proof. ]

Proposition 4.2. Suppose that the conditions for Proposition 4.1 hold, then

3 [ e o] [Taemoa o),
17 / P e
i) 3 [ XXt 2 (1) { /0 hg(t)hz(t)dt+‘/'2(0)}.

The proof is provided in the Appendix B. From Popositions 4.1-4.2, we derive the
following proposition which is useful in obtaining the joint asymptotic normality of

the UE and RE.

Proposition 4.3. Suppose that the conditions for Proposition 4.1 hold, then

]l

Q(@) TL> Yy, and TQ‘I(@ TL> Y51, with ¥y defined in (3.18).
—00 —00
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Proof. From Popositions 4.1-4.2, we have %Q(q@) TL> Y. Further, let g(X) = X!
— 00
for a positive definite matrix X. By the continuous mapping theorem, we have from

the first statement

g <%Q¢;T> =TQ;; —— 9(¢%,) = %201,

and
Q) =TQL T g(ony) = ——x;
g quST,T = quT,ng(ﬁé 1)—1T¢ 15
which completes the proof. O
Now define
A T A
Ry(6) = [ Bonaw, (4.9
0
where
B(&,1) = &' Wyeiry —XiTpeiry ¢ Olissry X | - (4.10)

Proposition 4.4. Suppose that the conditions for Proposition 4.1 hold as well as
Assumption 3 with 6 > L, then \/LT(R’T(QB) — R(9)) ﬁ 0, where Rp(¢) is defined

in (3.21).

Proof. From Remark 1 and Proposition 2.2, we have the boundedness of ¢(¢) and X;

in L?, also. Let f(u, A, X;) = pp(t) — AXy, by the Triangle Inequality, we have

B(If (1, A, X)[12) = E([lue(t) — AXe]13) < El(lne®)]l2 — |AXe]|2)*]

< 2E([lup(®)]13) + 2E(IAX.[[) < 2l|up(t)]]3 + 2 AlIF(E[X.[]2) < oo,
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for i = p1, po, and A = Ay, Ay. Then, by Lemma 3.3 in Nkurunziza and Zhang (2018),

we get
1T S b
ﬁ ; Xtth — ﬁ ; XthVt E} 0,
1 T T
\/_ o X, dW] — ﬁ . X dW/ ﬁ 0,
éT / T , P
JAWy = —= [ p(t)dW; —— 0,
\/_/ ¢ \/_ T—o00
T
t)dW; — t)dw] —— 0,
\/— d)T ( ) \/— d)T ( ) t T—oo
which completes the proof. O]

Proposition 4.5. Suppose that the conditions for Proposition 4.4 hold, then

1
ﬁRT((b) m R~ Nagrayxa(0, 1o @ X)),

Corollary 4.1. Suppose that the conditions for Proposition 4.4 hold, then

pr(@) = VT(0(9) — ) == p ~ Nogpraa(0, S @ T3,

T—oo

Proof. From Proposition 3.7, one can get

~

0(¢) =0 +21/2—R (N(TQ(4)),

where Rp(¢) is defined in (4.9). Therefore

n
VT

By Propositions 4.3 and 4.5, along with Slutsky’s Theorem, we complete the proof.

VT(0(9) - 0) = "2 —=Rr(8)(TQ™'(9)).

]
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4.2 Joint asymptotic normality

In this section, we present the joint asymptotic normality of the UE and the RE:
5((/5) and 0(¢). First of all , we study the asymptotic property of [pT(@ <T(¢f)] . To

introduce some notations, from (3.27), (3.28), (3.29) and by Proposition 4.3, we get

Ja(6) = [Ly(TQ () La] ' LH(TQ (D)) == (L4E5 Lo) 1LpS5t = Jy. (4.11)

T—o00
Also
Ji($) = Lypray — LaJo(9) ﬁ Lypray — LaJs = Js, (4.12)
Jﬁ(qg) = J1L1T2J2((Zg> — T’QJQ((ZS) ﬁ J1L1T2J3 — T2J3 = J7. (413)

From (3.26) and (4.4), one can verify that
VT(0(6) = 0) = (Ia — 1 L) (&) (Iapray — LaJo(0)) + J1LiraJa(9) — r2.J2().
(4.14)
Then

VT (0(9) - 0) ) Ja(o )

VTG -0 | 4@
T @) 110) + (&)

~

Jo()

where Jy(¢) and Jg(¢) are defined in (4.12) and (4.13). Denote

I - 0 A Oax2(p+d
- ] p;<¢>+{d] pr<¢>J4<¢>+[ ( )], (4.15)

~

() = Ovpra € R2:2p+d) (4.16)
Jo(0)

we have
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where (V) and I are defined in (B.36). Further, using vectorization, we get

~

Ve ps(6) ()] = (1) Fagr + 1% © TG Voclps(8) + Veel I3,

By (4.13), we have

[(3)(¢2) _ Od><2(p+d) P Od><2(p+d) _ [(4) (417)
~ T—o0
Jo () Jr

Proposition 4.6. Suppose that the conditions for Proposition 4.4 along with the set

of local alternatives Kr in (3.25). Then

QQ2 Q22 - Q11

{PT(@E) CT(QE)} ﬁ {P C] ~ Napia)xaa {O Jé}’ ’
Qog — Q1 Qoo — Oy

where Q1 =X @5, — (JX) @ (851 5), Qe =X @550

Proof. The proof follows from Corollary 4.1, and using the same method as in the

proof of Proposition 3.11. O

Corollary 4.1. Suppose that the conditions for Proposition 4.6 hold . Then, the RE

~ A

0(¢) given in (4.4) is asymptotically normal. More precisely,

~

(r(6) = VT(0(9) = ) —= ¢ ~ Napiapal 5, Qa2 — na).

The proof follows from the Proposition 4.6. From Proposition 4.6, we also derive
the asymptotic distribution of both [PT(@ gT(qS)] : {CT(QB) &(QZB)}

Proposition 4.7. Suppose that the conditions for Proposition 4.6 hold. Then

Q9y O
|:pT(¢E) &(é)} L) |:p §‘| NNQ(p+d)><2d {O J§‘| R * H

T—o00

Qll Qll
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Proof. Observe that

@) 60 = | 6] ; —II

By Proposition 4.6 and by using the same method as in Proposition 3.12, we complete

the proof. O

Proposition 4.8. Suppose that the conditions for Proposition 4.6 hold. Then

. . d Qop — 1 0
{CT(@ fT(@} o [C 4 ~ Nop+ayxad {Jé —Jé] 7
0 O
Proof. Observe that
. . . . 0 Iy
{CT(QS) fT(¢>:| - |:PT(¢) CT(¢):|
1y —1y

The proof follows from Proposition 4.6 and by using the same method as in Proposi-

tion 3.13. OJ

4.3 Testing the restriction

In this section, we give a test for the hypotheses in problem in (2.3) based on the
properties of the joint asymptotic normality of the estimators. By using Propositions
4.6-4.8, we establish below a corollary which can be used for testing the restriction
in (2.3), and for deriving the proposed shrinkage estimators. To introduce some
notations, let Wy(n,¥) be a random matrix in R™*", whose distribution is Wishart
with parameter ¥ and degrees of freedom d. Also, let Wy(n,3,A) be a random
matrix in R"*", whose distribution is Wishart with parameter X, with degrees of

freedom d and non-centrality parameter A, and let Xg()\) be a chi-square random
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variable with ¢ degrees of freedom, and non-centrality parameter A. It should be
noted that in continuous times observation, the diffusion parameter X is assumed to
be known and equals to the quadratic variation. However, in realistic case, the data
are always collected in discrete times and therefore it needs to be estimated through
the discrete observations. Thus, let 3 be a consistent estimator of 3. Moreover, let

= = Ly(L4X5 Ly) Ly and A = Tr(J;Z2JX71), where J; is defined in (3.29).
Corollary 4.1. Suppose that the conditions for Proposition 4.6 hold, then

&) La(LYTQ ™ (6, T)Ly) " Li&r(9) ﬁ W,(d, %, J-2J%), and

A A

Tr(& () La(LyTQ (9, T) Lo) ' LoEr(9)271) — 00 ~ Xl D),

Proof. Note that from Propositions 4.3, 4.6 and 4.7 along with Slutsky’s Theorem,

we have

Er(D) La(I5TQ (0. T) L) ™ Lo (9) " €',
where = = Ly(L,Y5 " Ly) " LY and

&~ Nopraya (I, 2@ 851 = (JD) @ (551 J5)) -

Further, notice that (L,Y5'Ly) ™! is positive definite since X5 * is positive definite and
Ly is a full rank matrix. Then, let P = (L,%5"Ly) /2 L}. Obviously, &' P'P¢ = ¢'Z€,

therefore, we study the distribution of P¢. Taking vectorization, we have
Vec(P¢) = (I; ® P)Vec(§),
then
Vec(P€) ~ (I3 ® P)Nagra) (—Vec(J7), T @ 51 — (JE) ® (5 J5)) -
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To simplify the covariance term, we have that the covariance is equal to
(Ii@P) R — (JX) @ (S5 ) (1; @ P). (4.18)
We have
Y@ (PY'P) =Y @ (L4385  Lo) ALY N5 Lo (1655  Ly) /).
Then
(LRP)ERLNI;®P)=X®I,. (4.19)
Further,
(I ® P)[(JZ) ® (35 J5)|(1a © P') = (JX) @ P(55"J5) P'.
Since J5 = Iypya) — LoJ3, we have
P(3;'J5) P = P(35" (Inpra) — Lo J3)) P = PSP — PYy ' Ly Js P
Notice that
PYy Loy Js P = (LhYg Lo) AL Ly (L Yy L) T LS5 Lo (LS5 Ly) ™ = 1,
combining with (4.19), we get
(I;® P)[(JY) @ (33" 5)]|(Ia @ P') = (JX) @ (PSP — Py ' Ly JsP') = 0. (4.20)
Therefore, from (4.18), (4.19)and (4.20), we have
(LLeP) (@3 —(JD)@ (21 ):) ([ @ P =X ® 1,
Moreover, we have —(I; ® P)Vec(J,) = —Vec(PJ;), therefore
P& ~ Nysa(—P I, 2@ 1,).
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Hence, by the definition of Wishart distribution, we get
=8 =¢PPE~W,(d, 2, J;P'PT;) =W,(d, %, J;2J5),
which completes the first statement of the proposition. Further, we have
Te(27260(0) La(L5TQ (9, T) La) ' Ly (9)51%) = Tr(Z712¢'2¢m172),
and, from previous result, we have
STVREES T~ W (d, SRR STV R LRSS ) = W (d, 1y, ST 2SS,
Then, by Corollary 2.4.2.2. in Kollo and Rosen (2011), we have
Tr(STPEEENTY) = Te(§2657) ~ x7a(A),
where A = Tr(J;ZJ;% 1), which completes the proof. O

Note that if 9 is a zero-matrix, then J; = JyLiryJ3 — r9J3 is also a zero-matrix
and A = 0, we have ¢ ~ x2,. From this corollary, one constructs a test for testing the
restriction in (2.3). Let x2.,, denote the ath-quantile of a x2,, for a given 0 < o < 1.

For the testing problem in (2.3), we suggest to use the following test
H(gb) = H{wT>szd}7 (421)

where ¢ = Tr(&(0) La( L TQ™($, T) La) ' Lhr($)X71).

Corollary 4.2. Suppose that the conditions for Corollary 4.1 hold, then the asymp-

totic power function of the test in (4.21) is given by II(A) =P (x2,(A) > qu;nd) .

The proof follows from Corollary 4.1.
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4.4 The Shrinkage Estimators

In this section, we present the proposed shrinkage estimators (SEs). First, note
that, generally, the RE performs much better than the UE if the restriction holds,
and the RE performs much worse if the restriction is seriously violated. To address
this problem, we consider an intermediate case where the prior information is nearly
correct. The proposed method combines the sample information and the prior infor-
mation. Thus, the method is more flexible as it should preserve a good performance
in case the prior holds or in case the prior does not hold. Following Sen and Saleh
(1987), Nkurunziza (2012), Saleh (2006), Nkurunziza and Ahmed (2011) among oth-
ers, we consider two Stein-rule (or shrinkage) estimators of the matrix parameter.

~

The shrinkage estimator (SE) 6° is defined as

-~ ~ ~ A

6% = 0(0) + [1 — (nd = 2)u7'1(6(9) — 8(9)), (4.22)

where we assume nd > 2, and ¢ = Tr(€(¢) Lo(LyTQ (b, T)Ly) ' Lhér(¢)171).
Following Nkurunziza (2012), the random quantity 11 captures the information from
the sample as well as the prior information. Further, by Nkurunziza and Ahmed
(2011) among others, the estimator 65 is not a convex combination of the UE and
RE since 1 — (nd — 2)¢;' < 0 whenever ¢y < (nd — 2). So it may change the sign
of UE é(é) and may cause an over-shrinking problem. To aviod the problem, let

a® = max{0,a}. We consider the positive-part shrinkage estimator (PSE) which is

defined as

~ A

05t = 0(9) + 1 — (nd — 2)v' 17 (0(d) — 0(0)). (4.23)
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Chapter 5

Relative efficiency of estimators

In this chapter, we first present the asymptotic distributional risk (ADR) of the
proposed estimators and we study the risk performance of these estimators. The
chapter is organized in two sections. Section 5.1 presents the ADR of the UE, RE,
and the ADR of SEs. In Section 5.2, we compare the relative performance among

these estimators via their ADRs.

5.1 Asymptotic distributional risk

In order to evaluate the performance of the proposed estimators, it is convenient
to compare their asymptotic distributional risks (ADR). For more details about the
ADR, we refer to Sen and Saleh (1987), Saleh (2006) among others. For an estimator

~

0* of 0, we consider a quadratic loss function of the form
L(0%,0; W) = Tr |[VT(0* — O)WVT(6* —0)'| (5.1)

where W is a 2(p + d) x 2(p + d) symmetric positive semi-definite weighting matrix,

and 6* refers to 6(3), 6(¢), 65, and 65+, Further, let € be the random matrix such
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that /T (é* —0) ﬁ e. Following Nkurunziza and Ahmed (2011) and references
therein, the ADR is defined as

ADR(6*,0,W) = E(Tr(¢We)). (5.2)
The following theorem gives the ADR of the UE and RE.

Theorem 5.1. Suppose that the conditions for Proposition 4.6 hold. Then

ADR(0(¢),0, W) = Tr(X) Tr (W5 ') and

ADR(0($), 0, W) = Tr(S) Te(WE5) — Te(S) Te(WE5 ' Ly Js) — Tr(J,LiS) Tr(WE5 )
+ Tr(J1 LX) Te(W S5t Lo Js) + Te(J;W.JL),

where J3, Jr are defined in (3.27) and (3.29) respectively.

The proof is provided in the Appendix B. We also derive the following theorem

which gives the ADR of SEs.
Theorem 5.2. Suppose that the conditions for Proposition 4.6 hold. Then
ADR(6%,0, W) = ADR(0(), 0, W) — Tr(J, LX) Tr(W (25! — 25 Ly J3))
— (nd = 2)(2E[x;4,2(A)] — (nd = 2)E[x54,5(A)]) Te(WE3 ' Ly J;) Tr(S)
+E[(1 = (nd — 2)x;4 (8)) Te(W (53" — 35" Lo Js)) Te(2)

+((nd)? = B[4 (D) T (S W J7);

ADR(6%,0,W) = ADR(6°,6, W)
F2E[(1— (nd — 23,2, o(A) e, a)enaozy] e )
~BI(1L— (nd — 228 T, oy ena-) THOV (S5 — T Lo ) Te(5)
— B[(1 = (nd — 2)X:3,2(8) L, ayena2y] Tr WS LoJs) Ta(S)
— E[(1 — (nd = 2)xpd4a(A) L2, (a)<na—2y] TE(J7W J7).
The proof is provided in the Appendix B.
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5.2 Risk analysis

In the previous section, we have obtained the ADRs of the proposed estimators. In

this section, we compare the relative performance of these estimators via their ADRs.

5.2.1 Comparison between UE and RE

In this subsection, we derive a result which shows that near the null hypothesis, the
RE dominates the UE. The derived result also shows that the UE dominates the RE

as one moves away from the null hypothesis.

Proposition 5.1. Suppose that the conditions of Theorem 5.1 hold and let W =
LoC LY such that the matriz C' is a n X n real positive semidefinite symmetric matriz,

then ADR(6(¢),0, W) < ADR(0(¢),0, W) if A < —Afaiz(gé@?g)c)))f where A = LyY5 " Ly.

Proof. From Theorem 5.6, we have

ADR(0($),0, W) — ADR(0(), 0, W) = — Tr(2) Te(W S5 ' Ly Js) + Tr(J: W JL)

+ TI'(JlLlE) TI'(WZ2_1<L2J3 - I))

One can verify Tr(WX5 (LyJs — I)) = 0 and Tr(WX;'LyJs) = Tr(CA). Thus,
ADR(6(¢),6, W) < ADR(A(¢),8, W) whenever — Tr(X) Tr(CA) 4 Tr(J;W.J) < 0.

Further, note that = = Ly(L,Y5 " Ly) 'L, and A = Tr(J;ZJ5571), we get
Tr(Js Loy AT LY TS = Vee(Ly J3) (I @ A1) (571 @ 1) Vee(Ly Jh).
Then, we have

A = Vec(LyJL) (271 @ A7) Vece(Ly J3). (5.3)
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Also, note that Tr(J;WJ;) = Tr(J;L.C Ly J7). Similarly, we get
Tr(J;W J;) = Vec(LyJ3) (Ig @ C)Vec(LyJ7). (5.4)

Since (X' @ A Y NI ® C) =X ® (AC), let Apar(M) and A, (M) represent the

largest and smallest eigenvalues of a matrix M respectively. Then

Te(JW ) _

Anin(58 (AC)) < =) <0 (8 @ (AC)). (5.5)

Thus, we get — Tr(X) Tr(CA) + Tr(J;WJ;) <0if A < %, which completes

the proof. O

5.2.2 Comparison between UE and SEs

In this subsection, we present a result which shows that 65+ dominates 65 , and thus
also dominates the UE. Thus, the derived result also shows that as one moves far

away from the null hypothesis, the SEs dominate the RE.

Proposition 5.2. Suppose that the conditions of Theorem 5.1 hold and let W =

LyC' LY such that the matriz C' is a n X n positive semidefinite symmetric matrix that

satisfies A’;jéé%’é)c))) < nd2+2, where A = LyY5 " Ly. Then,

ADR(05%,0, W) < ADR(A5,0, W) < ADR(6(¢),0, W), for all A > 0.

Proof. From Theorem 5.2 and, we have

ADR(0°,0, W)—ADR(0(),0, W) = — Te(J; LX) Te(W (55" — B35 Ly Js))

— (nd = 2)(2E[x;,4,5(A)] — (nd = 2)E[x;3,5(A)]) Te(WE; ' Ly Js) Tr(S)

+E[(1 = (nd — 2)x,4 (8))") Te(W (53" — 33" Lo J3)) Te(X)

+((nd)? = )E[X g4 (D) Tr(J;W J7),
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by the identity in Saleh (2006, p. 32), we have

ElXudi2(A)] = AE[X4,4(A)] + (nd — 2)E[x;4,2(A)], we get

ADR(0°,0, W)—ADR(0(),0, W) = — Te(J; LX) Te(W (25" — B35 Ly Js))
— (nd = 2)(2AE[x;1,4(A)] + (nd = 2)E[x;1,5(A)]) Te(WE5 Lo J3) Tr(3)
+E[(1 = (nd = 2)x,4 (A)?] Te(W(23" = 55" Lo J3)) Te(2)

+((nd)* = )E[X g4 (D) Tr(J:W J7). (5.6)

Notice that A = Tr(J;ZJ57Y) = Tr(X~Y2L,EJ057Y2) > 0 since (L4X; Ly) 7! s
a positive definite matrix, therefore Tr(X~Y/2J;ZJ:%71/2) > 0 with equality holding
if and only if ¥"%/2J;L, = 0. Also, noting that ¥;'LyJ3 and W are symmetric
positive semidefinite matrices, we have Tr(W X5 LoJ3) = Tr(WY/255 Ly JsWH2) > 0.
Moreover, note that E[x.7.,(A)] > 0, E[x,7,4(A)] > 0 and nd > 2. Further, notice
that whenever the weighting matrix W = L,C'L}, with C' an n x n real symmetric

matrix, then we get
W (St — 55 Lo Js) = LoCLYy(N5 — S5 Lo (L4S5 Ly) P LAY ) = 0. (5.7)

Therefore, for A = 0, we have J;Ls = 0 since X is positive definite, thus,

Te(J;WJL) = Tr(J; LyC L, J%) = 0 and by combining (5.6) and (5.7), we get

ADR(6S,0,W)—ADR(0(¢),0, W) =

— (nd = 2)°E[x;,5(A)] Tr(WE5 ! Ly Js) Tr(X) < 0.
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For A > 0, we have

ADR(#%,6, W) — ADR(8(¢),0, W) = — Tr(J, LX) Te(W (25" — 55 Lo J3))

+E[(1 — (nd — 2)x,4(A)’] Te(W (35" — 351 Lo J3)) Tr (D)
(nd + 2) Tr(J;W JL)
C2ATH (WY LaJs) Tr(E))

—2(nd — 2)A Te(WE3 ' Lo Js) Tr(2)E[x, 7,4 (A)] (1
— (nd = 2Bty o (A)] Te(WS5 ! Lo Jy) Te(). (5.8)

Note that

2 (nd — DA TH (WS Ly J5) Te(S) Bl (A)] (1 nd +2) Tl W Ji) ) <0,

A TY(WS, Ly Js) Tr(S)
whenever

_ (nd+2)Tx(SW ) >0 (5.9)
OATH(WE, LyJy) Te(X) — '

Therefore by combining (5.7), (5.8), and (5.9), we get
ADR(0°,6, W) — ADR(0(¢),0, W) < 0,

if

A T(EWR) (5.10)
2ATr(LoC LY, Lo J3) Tr(S) = ‘

Let Az (M) and Ay, (M) represent the largest and smallest eigenvalues of a matrix
M respectively. Note that (51 ® A™)"(I[;® C) = L ® (AC). From (5.3), (5.4) and
Theorem A.2 in the Appendix, we get

Te(JIWJp) _

Amin (X @ (AC)) < A < Amae (X @ (AC)).

Also, we have Tr(LyC LYY LyJs) = Tr(LyC LYY, ") = Tr(AC). Then, we get

(nd + 2) Te(J,W J3) -1 (nd 4+ 2) M (X ® (AC))

 2ATr(LyCLLY; Ly Js) Tr(S) — 2Tr(AC) Tr(%)
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Since Tr(AC) Tr(X) = Tr(X¥ ® (AC)). By (5.10), we have
ADR(0°,6, W) — ADR(0(¢),0, W) < 0,
if

(nd + Dhao(E @ (AC) _ | Anae(E® (AC) _ 2

b 2Tr(X ® (AC)) = Tr (X ® (AC)) ~— nd+2

(5.11)
Further, note that from Theorem 5.2, we have
ADR(0%*,0, W)~ ADR(3®, 0, W) = 2E[(L — (nd — 2)x,3,o(A)) T, a)<nazy] THCEW )
—E[(1 — (nd = 2)x,4(A))’ Lz a)<na—zy] Te(W (S5 = 251 Lo J3)) Te(3)
= B[(1 = (nd = 2)x0415(8))" L2, (8)<nd-2y] TH(WE3 ' Lo J3) Tr(X)
— E[(1 = (nd = 2)x,:4(A)) Lz, (a)<na—2) TE(JTW T7).
In order to study the risks of 65 and 6° *, we study the sign of each term in the equation
above. Note that W is symmetric and positive semidefinite, then it can be rewritten
as W = PP’ for some P, and ¥;'Ly.J3 is also symmetric and positive semidefinite,
therefore, Tr(WX, Ly J3) = Tr(P'S5 Ly JsP) > 0. Also, Tr(J;WJ,) > 0 due to W
being symmetric and positive semidefinite, and Tr(3) > 0 since X is positive definite.

Moreover, since

(1= (nd = 2)x,4(A) T2 (a)<nd—23 = 0,
(1= (nd— 2)X;3+2(A))Q]I{xﬁdH(Aknd—z} >0,
(1= (nd = 2)Xpd 4 (D) T2, (a)<na—2} = 0-
One can verify that
E[(1 = (nd = 2)x,7(A) T2 (A)<nd-23] = 0,
E[(1 — (nd = 2)x,412(A) Lz, (a)<na—23] =0,

E[(1 — (nd = 2)Xpz14 (D) Iz, (a)<na-2)) = 0-

o4



For a given choice of the weighting matrix W, we have

— E[(1 = (nd — 2)x,4 (2)) Iz a)<na—oy] THW (55" = 357 Lo J3)) Te(3)
— E[(1 = (nd = 2)x,442(8)) Lz, (a)<na-2] Tr(WEy " Lo J3) Tr(X)

— E[(1 — (nd — 2)x,,4,4(A))°T (A)<nd—23] Tr(J:WJ7) < 0. (5.12)

hasa
For the sign of 2E[(1 — (nd — 2)X;§+2(A))]I{Xidwm)@d,g}] Tr(J;W J3), note that
(1 —(nd - 2)X;d2+2(A))H{ngw(mmda} <0,
then we have
E[(1 — (nd = 2)Xpz 12 (D)2, (a)<na—23] < 0.

Therefore,

2B[(1 — (nd = D3, (A, ayend o)) TR 0. (5.13)
Combining (5.12) and (5.13), we have

ADR(A%F,0, W) — ADR(6°,6, W) <0,

for all A > 0, which completes the proof. n
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Chapter 6

Numerical study

In this chapter, we examine the performance of the estimators é(gﬁ), g(gzg), 65, and 65+
in case of a 4-dimensional stochastic process. Firstly, we use Euler-Maruyama dis-
cretization to generate the stochastic process in (2.1), then we calculate the weighted
squared error of each estimator based on different non-centrality parameter A with
the weighting matrix W = Ly(L,Y5 " Ly) "' L. By 1000 replications, we compute the
ADR of each estimator as well as the empirical relative mean squared efficiencies

(RMSE), which is defined as
RMSE(6*) = ADR(6(¢), 8, W)/ADR(6*,0, W)

where 6* represents for different estimators. Thus, RMSE shows a degree of superi-
ority of the estimator over UE, a gold standard. In this simulation study, we define
the increment of time in the interval [0,7] as v = 0.01, and 7T is choosen as T = 50
and T = 100 for two scenarios. Also, we choose a 2-dimensional periodic incomplete

orthogonal set of functions [1,v/2cos(Z)], ¢ € [0,7] as our base functions ¢(t). The
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true parameter 6 is set as:

416 43 1|12 2 6 4 3 1
9 2 4 5 4 127 4 4 5 41
6 3 3 3 4 2|18 6 3 3 4 2
545 2 2 31585 2 2 3

~ ——— ) S—,—
5 Ay 12 Az

Thus, A; = Ay are positive-definite matrices, we have the parameter p which changes
after the change-point (i.e. the coefficient for the first element of the base functions
©(t) tripled, and the coefficient for the second element of the base functions p(t)
doubled) and the parameter A remains the same. For simplicity, we choose 3 = .
We also choose ¢ = 0.4. Let 0 < ty < ... < t,, = T be a partition on a given time period
[0, 7] with a constant increment 7 = t;,1 — t;, then = diag(a27@27@27@2) is a
n
strongly consistent estimator for ¥ = diag(o?, 02, 02, 03), where ;> = %Z(Xi(jT) —
j=1

X;((j — 1)7))% For the change-point, we use the method similar to that given in

Chen and Nkurunziza (2015). Let Y; = X,

1+1

— Xy, and Z; = (1,v2cos(Z), — X[ )(7).

The consistent estimator for the change-point ¢ is obtained by ngS = argmdin SSE(¢),

where SSE(¢) = D (Y = 0(9)Z,) (Vi — 0(9)Z:) and 0(¢) = Lty )01 + L1y, 00,

t;€[0,7T

where { 0, : 0, } forms the MLE 6 with the change-point given by ¢. We compute the
estimates 01‘C the rate of the change-point, and below, we present histograms in Figure
6.1-6.3 , which show that the method used locates very well the change-point. Indeed,
the histograms show that the pick of the estimates corresponds to the exact value
of » = 0.4. The distribution of the obtained estimates are unimodal and symmetric

with respect to the exact value of @ = 0.4. For the linear restrictions, we choose

‘ ’
Ly = (1,-1,0,0) and d; = L6, also we choose Ly = [ 2s | —I } . Under the null
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hypothesis, dj is calculated as 0L, i.e.,

da

Under the alternative hypothesis defined in (3.25), let ro = kdy, where k = 1,..,6.
From previous sections, we know that non-centrality parameter A = Tr(J;2J,X71)
depends on ry since J; = JiLiroJs — r9J3. Thus, different values of ro corresponds
to different levels of A. For T'= 50 and T" = 100, we plot respectively the RMSEs of

the proposed estimators versus A in the Figures 6.4 and 6.5.

Histogram of the estimates of ¢ (T=5)

=
[=e]
= _|
a—, [{s]
=
£
g S-
[
o=
o
o —
| | | | |
0.2 04 0.6 0.8 1.0
A
b

Figure 6.1: Histogram of the estimates of ¢ for T=5
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Histogram of the estimates of ¢ (T=10)
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Figure 6.2: Histogram of the estimates of ¢ for T=10

Histogram of the estimates of ¢ (T=20)
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Figure 6.3: Histogram of the estimates of ¢ for T=20
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Figure 6.4: RMSE of RE, SE, PSE versus A (T = 50)
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Figure 6.5: RMSE of RE, SE, PSE versus A (T = 100)

) /
Further, by setting do = 0 and Ly = [ I L I } , we simulate the case with

the absence of the change-point for T=20 and T=100. We plot the RMSEs in the

60



following diagrams.

== RMSERE
=h= RMSESE
==« RMSEPSE
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4] . .
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== RMSERE
=d= RMSESE
==« RMSEPSE
=+ RMSEMLE

Figure 6.7: RMSEs versus A (T = 100)

According to Figure 6.4 - 6.7, it is clear that the shrinkage estimators outperform
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over the UE. In addition, the positive shrinkage estimator dominates the shrinkage
estimator. These simulation results coincide with the theoretical results that are esta-
bilshed in this thesis. Also, around a neighbourhood of the hypothesized restriction,
the RE dominates any other estimators; however, it performs much worse as the hy-
pothesized constraint is severely violated. Further, for the test of (2.3), we simulate

the empirical power of the test versus A and 7', and the results are presented in the

Figures 6.8 - 6.10 .

1.00=

0.75-

Power (a=0.1)

0.25-

Figure 6.8: Empirical power of the test a« = 0.1
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Figure 6.9: Empirical power of the test a = 0.05
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Figure 6.10: Empirical power of the test a = 0.025

Figures 6.8 - 6.10 confirm the established theoretical result given in Section 4.3.

In particular, Figures 6.8 - 6.10 show that the proposed test is consistent.
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Conclusion

This thesis generalizes in five ways some results in Dehling et al. (2010, 2014), Chen et
al. (2017) as well as that in Nkurunziza and Zhang (2018). First, we propose inference
methods in the context of multivariate generalized O-U processes. Thus, the target
parameter is a matrix. As a preliminary step, we present some results in the no
change-point case. Second, we extend the results to the case of a known change-
point. In particular, we prove the existence of the UMLE and RMLE, also, we present
the joint asymptotic normality of the UMLE and RMLE. Third, we present the UE,
RE, and SEs as well as their joint asymptotic normality in the case of the unknown
change-point. Forth, we propose a test for testing the hypothesized restriction. The
proposed test includes some special cases such as testing the absence of a change-point
and testing the nonexistence of the seasonality factor. Fifth, we derive the asymptotic
local power and prove that the proposed test is consistent. Sixth, we propose SEs
and we derive the ADRs of the UE, RE and SEs. We also compare the relative
efficiency of the proposed estimators via their ADRs. By theoretical approach and
by the simulation study, our findings show that for a suitable choice of the weighting
matrix W, the PSE dominates the SE, and SE dominates the UE. Also, the RE is
the best in the neighborhood of the null hypothesis, but it performs poorly as one

moves far away from the hypothesized restriction.
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APPENDICES

A Theoretical background

Theorem A.1l. (Q, A4, P, 1) is ergodic if and only if for all A ;B € A, the measure

preserving transformation Tis weakly-mizing.
The proof is referred to Klenke (2013, Theorem 20.23, p.450).

Theorem A.2. (Mathai and Provost, 1992, Theorem 2.4.7). Let B be any n X n
positive definite matriz and A be an n X n symmetric matriz. Let \y > Xy > ... >

An be the eigenvalues of B~ A with eigenvectors qi, qa, ..., qn respectively. Then,

A "A
sup (x x) — A and inf (wa> = A1, where \y and )\, are respectively the

+ \2'Bz z \2'Bx

largest and smallest eigenvalues of B~ A.

Proposition A.1 (Proposition 1.21 Kutoyants, 2004). Let every T' > 0, 6 € ©, and

1=1,...,d1, j=1,...,do, define
da

/ . T .. .
10) = (1060), .. 2 0)) . 1.0 =" / 1D (9, ¢, w)dBY,

j=1"0

T . 2
where P (/ (h?”(@,t,w)) dt < oo) =1, for all i,j and
0
{Bt(l),....,Bt(dQ),O < t < T} are dy independent Wiener processes. Suppose that

there exists a (non-random) positive definite matriz ¥.(0) = (Z](””)(G))dlxd2 such that
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do T ) '
Z/ hgf’l)(ﬁ,t,w)h(Tm’l)(H,t,w)dt TL> M) (9), uniformly with respect to § € ©,
— Jo —00
then
17(6) m/\/’(o %(0))
uniformly with respect to 6 € © too.

The proof is referred to Kutoyants (2004 Proposition 1.21, p.46).

Proposition A.2. Let A and B be constant matrices of proper sizes. Then

O(AXB) ,

—ox _Bed

O(AYB) Y ,
X —ax\Bed)

The proof is referred to Kollo and Rosen (Proposition 1.4.4, p.129).

Proposition A.3. Let A be any positive definite matriz, and let \y and \;g be the
smallest and largest eigenvalues of A’ + A respectively. Then Vde ™ < |le=t|p <

w/de*t)\lf for all t > 07 and deft/\l S He_At”F S V de*t)‘d, fOT’ all t < O, and thus

lim e = 0.
t——+oo

Proof. 1t is sufficient to prove that tlim ez = 0, where |.]| denotes Frobenius
—00

norm, notice that

=1
e M| p = /Tr(e~Ate—At) Tr(e—(A+A)¢) = | Tr ( E(—t)’f(A’ + A)’“)
=0

k
By sub-multipicative property of the Frobenius norm. i.e. ||AB||r < ||Allr||B| F, we

have:

=1 =1 21 A7
Zk— FA + A)F Z;? EF||(A" + A)||F = 1A+l < o0,
k=0 k=0
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Therefore

o0

1
le= |l p = (=t T[4+ A,
k=0

Moreover, since A" + A is real symmertic, it can be diagonalized as LAL’, where
LL' =1, and A is a diagonal matrix with diagonal entries equal to the eigenvalues of

A"+ A, we have

||€_At||F = Z%(—t)k Tr[(LAL)] = k,l —0)F Tr(LARL)
\ k=0 k=0
SN )L TEIEHICEND DETENT 3
= \ o T = k_ -
k=0 =0 J=1

Since A is a positive definite matrix, we have A’ + A is also a positive definite

matrix. Therefore all the eigenvalues of A’ + A are strictly greater than 0, then

> waz i Zxc Z(Z(’t',j)) thl<ooweR.
Tkhlos gives A
d oo 1 d
He—AtHF _ ZZ_' _ k;/\k: Ze—mj
j=1 k=0 k! j=1

Now, let A\; be the smallest eigenvalue of A’ 4+ A, and let \; be the largest eigenvalue

of A’ + A, we have et < eNt < =Mt ¢ > (0. Then
Vdeat < |le™||p < Vide—th. (A1)

Similarly, we have e~ < e=%t < e~! Wt < 0, this proves the inequalities stated.
Further, by taking limits both sides, we have tli+m e 7 = 0, which completes the
—+00

proof. O

Proposition A.4 (Nkurunziza, 2012). Suppose that the conditions of Corollary (4.1)
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hold and let W be nonnegative definite matriz. Then, for any real number c, we have

E{Te[(1 — et )¢ W]} = E[(1 - ex,f (A)°] Te(W (83" = £ Lo Jy)) Tr(E)
+ E[(1 = X0 (A))) Te(WS5 ' Ly Js) Te(E)
+E[(1 = expdia (A))*] Te(JW J2);

E[(1 — et )('WE] = —E[(1 = exiea Q)] W T

For the proof, we refer to Theorem 2.3 in Nkurunziza (2012).

Lemma A.1. (Bessel’s Inequality). Let H be a Hilbert space. If {p; :i=1,...,p} is

I

a finite orthonormal set in H, then for any x € H, > 5, [{x, ¢:i)|* < ||lz|*.

Lemma A.2. Let {Y;,t > 0} be a d-dimensional stochastic process, {F,t > 0}
adapted and L* bounded. Suppose that é is Fy-measurable, valued on [0,1] and a

consistent estimator for ¢, then,

T T
(i) / Eﬁ——/ Yidt 2 0,

T—o00

(1) /Ytdt—— Ytdt—>0

&T T—o0
The proof follows from the similar derivation as used in Lemma 3.1 of Nkurunziza

and Zhang (2018).

Lemma A.3. Let f(0,z) be a Ri-valued function, and let {Y;,t > 0} be a d-

dimensional stochastic process which is a solution of the SDE,
dY, = f(/Ll, Y;)H{tgy}dt + f(,UQ, Y;)H{tyy}dt + O'th, (AQ)

where f(0,x) is such that the processes {Y;, t > 0} and {f(0,Y;),t > 0} are L?bounded.

If Assumption 3 holds with 69 > %, then,
éT
mwj‘wm fjimmfba

1 p
X Y, dW, YdW — 0.
( ) f/ t t ﬁ o7 t t Too
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The proof follows from the similar techniques as used in Lemma 3.3 of Nkurunziza

and Zhang (2018).
Corollary A.1. Let W ~ W, (p, kI, A), then 1 Tr(W) ~ x2,(Tr(A)).

For the proof, we refer to Corollary 2.4.2.2. in Kollo and Rosen (2011, p.238).

B Proof of important results

Proof of Proposition 2.1. First, we verify space-variable lipshitz condition. By

Triangle Inequality, we get:

1S(t, 2) = St )5 + (2t ) = B, ) 2|7 = 1S, 2) = S(ty)ll3
= [[(p(t) — A1x)Licqy + (pap(t) — Aox)Lipsqy —

(1o (t) — Ary)Lie<ay + (260 (t) — Aoy) s ll2

= (Ai(y = 2)) Ly + (A2(y — 2))Lpspy 13-

Note that It;<,3Is,y = 0 for all t. Also since [|4;(y—x)||3 > 0 and ||A2(y —2)||3 > 0,

we have

1(Ax(y — 2))Lie<ay + (A2(y — 2) sy l3 < I1(As(y — 2)) Lol + 1(A2(y — 2)) sy ll2
< A1y = 2)[2Le<yy + [ A2(y — 2) 1201y
< Ay = 2)[Iz + | A2(y — )13

< Ay = 2l3 + Al Flly — =[f3.
Let [[Ai||% + [[A2]|% < Ka, we have

1S(t.2) = St )5 + 15t 2) ' = (¢, 9) 2|7 < Kally — =3
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Second, we verify spatial growth condition. Note that from Assumption 2, we have
the boundedness of ¢(t). Therefore, by Triangle Inequality and (a + b)? < 2a® + 202,

we have

[(1o(t) — Ara) ey + (H2(t) — Ao) sy |l + 1=V (13

< [(p(t) — Ar) e I3 + 1 (p2p(t) — As) sy |13 + 15213
= {t<~}1l2 M2 2T ) lt>~1 |2 F
< |lpip(t) — Aiz|3 + luop(t) — Asz|ls + |25

= (| 2 1Z||2 Hap 2 2|2 F
< (lmae®)ll2 + 1 Arzll2)® + (lpap(®)ll2 + | Aszll2)® + 12727
< 2||e())13 + 2/ Azl + 2| 2o ()13 + 20| Az || + 1=V 13

< 2@l + 2l Al F 25 + 2llnap @3 + 20| A2l F I3 + =217,
then ||S(t,2)]|3 + |2, 2)?|2 < G(1 + ||z]|?) for some constant G. Further, let
G’ = max(G, K4), we have

1S(t.2) = St Y15 + 15t 2)* = (t, ) 2|7 < Glly - =3

ISt @)l + 12t )27 < G'(1+ ||z])3),
which completes the proof. O

Proof of Proposition 2.3. By the independence of W and W

—8

we get

o k+t
Cov(Zy, Ziyt) = Cov (e—At / eAT12q )| e AR+ / eASZWdWS(l))
0 0
+ Cov )

—At / €A821/2dW(2) A(k+t) / €A521/2dW£2s)
/ eAszl/de(l) A(k+t) / €A821/2dws(1))
0 0
k+t
—At / A521/2dW —A(k+t / ASEI/2CZWS(1)>
0
0 0

At/ 6A821/2dW£25),6_A(k+t) eASEI/QdW(QS)>.

—00 — 00
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By the independence of increments of wiener process, we have

t ket
Cov (e‘At/ 6A821/2dWS(1),€_A(k+t)/ eASZUZdWS(l)) =0.

0 t

Then, we get

t t
Cov(Zy, Zyyt) = Cov (eAt / A2 ) e A+ / eASEWdWS(U)
0 0

0 0
+ Cov <e At/ A 2qy 3| o= Alkt) eAsEl/deg))

—00 —0o0

t 0
= {Var ( / e—A@—S)zl/?de”) + Var ( / e—A@—s)zl/?dWS?ﬂ e Ak,
0 —00

(B.1)

k-t
Since the Ito’s integral / eAsEl/QdWs(l) is a martingale, we get
0

Cov(Zy, Zyrs) = E(ZZ’CH). Also, using Itd’s isometry, we get
t t !/ /
Var (/ e—A(t—s)El/Zdel)) _ / e—A(t—s)El/Qzl/Q G_A (t—s)ds
0 0

t
:/ e Al e A t=s) g, (B.2)
0
Furthermore, we have

0 0
Var ( / eA“S)zl/?dWE?) = Var < / eA<t+S>21/2dW§2>) .
oo 0

L 2
Let I}, = / e AFIN2qw (2 As verified later in (B.15), we have I, LL—> I,
0 — 00

which implies that Llim Var(I;) = Var(I), therefore
—00

0o L
Var ( / e‘A(”S)Zl/QdWS(Q)) = lim Var(/;) = lim Var ( / e-A<t+8>21/2dW§2>).
0 0

L—o0 L—oo

Using Ito’s isometry, we get

L L
Var (/ e_A(tJFS)El/QdWS(Q)) = / e~ Al P Ats) g (B.4)
0 0
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Combining (B.3) and (B.4), we get
Var ( / h e—A<t+8>21/2dW§2>> — / T A A 9) g (B.5)
0 0
Combining (B.1), (B.2), and (B.5), we have
Cov(Zy, Zpys) = (/t e A=) = A (t=s) gg 4 /00 e_A(HS)Ze_A/(HS)dS) e Ak,
0 0

In order to get the explicit form of COV(Z, §k+t), let us consider the vectorization of
Cov(Zy, Zysy). Using Vec(ABC) = (C'® A)Vec(B) where ” ®” denotes the Kronecker

product, we get
t 00

Vec(Cov(Zy, Zi1t)) = Vec ((/ o~ Alt=s)y1,=A'(t=5) g ¢ +/ e—A(t+s)Ee—A’(t+8)d8) e—A’k)
0 0

t
= (e ® I )Vec (/ e_A(t_S)Ee_A/(t_S)ds)
0

+ (e @ I) Vec (/ e‘A(HS)Ze_A'(HS)ds) , (B.6)
0

where I; is a d-dimensional indentity matrix. Note that
t I t !
Vec (/ e A=)y A (ts)ds> / Vec(e A=) 5o A =9)) s
0 0
t
:/ (74079 @ e~ Al=9) Ve (X)ds.
0

Using e ® e? = 498 (Horn and Johnson, 1994), where ” &7 denotes Kronecker sum
(ie. A B=A® I, +1,® B for A, B square matrices of order n, m respectively),

we get
t
/ e~ O o (8)ds = [(A @ A) e~ AN Vee(x)]! |
0
Then, we get

t
Vec < / eA(tS)EeA/(ts)ds> = (A® A) WVee(X) — (A@ A)~te A8V ee(R).
0

(B.7)
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Similarly, we have

Vec (/OO e_A(tJrS)Ee_A/(HS)ds) = /OO Vec(e™ Altts) e~ A,(Hs))d
0 0
[—(A® A) e~ Ao+ Vec ()] ©

0 -

Since A is positive definite, A @ A is also positive definite, then by Proposition A.1,

we get
Vec (/ e_A(HS)Ee_AI(HS)ds) (A® A) e UV Vec(). (B.8)
0
Combining (B.6), (B.7), and (B.8), we have

Vec(Cov(Zy, Zi)) = (e @ I)[(A @ A)"'Vee(X) — (A ® A) e~ (A8 ec (D)

+ (A@ A)~ e~ AN (D),
then
Vec(Cov(Zy, Zit)) = (e @ I) (A ® A)~Vec(D), (B.9)

this completes the proof. n

Proof of Proposition 2.4. Note that for every ¢ € [0,1] and k£ € Ny, we have
)N(k+t = %(t) + ZkH. Thus, it suffices to prove that {Zkth}keNO is a Gaussian process.

Further, we have

k+t 0
th _ e—A(k—H)/ eAszl/des(l) +6—A(kz+t)/ 6A521/2dw(2s).
0

—00

ket 0
let Zypy; = e‘A(k”)/ eAu2aw ™ and Zy, = e‘A(k”)/ eASEl/Qde).
0

—00
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Taking any partition of k, i.e. k=1,2,....n, we have

Zl—‘rt Zl+t Zl—l—t
ZQ-Ft - Z:H—t - Z2+t - Z1+t 4 Z2+t - Zl+t
Zn—l—t - Z(n—l)-‘y—t Zn+t - Z(n—1)+t Zn+t - Z(n—l)—i—t

By the independence of increments of wiener process, we have

/!
! / / / /
Z1+t Zz+t - Z1+t ntt Z(n1)+t:|

follows multivariate normal distribution. Further, we have

Zit o= A(+t)

—A(2+t) _ —A(1+t)

Lot — L1t e e

Zn+t - Z(n—1)+t e_A(”‘H) _ e—A(n—1+t)

which also follows multivariate normal distribution.

By the independence of Y and WEQS), we have

~/ ~

L Loy — iy Dt — Zén—l)—&-t
follows multivariate normal distribution. Therefore,
-] I, 0 0 .. O|r _ .
Z1ye AR
_ Iy I, 0 ... 0 B _
Zg+t ZQ—l-t - Zl+t
=1y I; I .. O

Znth Zn+t - Z(n—l)-}-t
- - I, I 1; ... Iz - -

follows multivariate Gaussian distribution and this proves that {)~( k-t Tken, 1S & Gaus-

sian process. O

7



Proof of Proposition 2.5. First, let us prove that for all £ € Ny and ¢ € [0, 1],

E[|| X)4:]|2] < co. By Triangle Inequality and the fact (a + b)2 < 2a2 + 2b%, we have

E[|| Xe4:l13] = E[R(k +1) + Zerell3] < ELAK + )|z + 1 Z5r]12)?]

< 2E[|[A(k + )[15] + 2E[|| Zeel13]

From Proposition A.3, and let \; be the smallest eigenvalue of A"+ A, we get

Let ||up(t)]l2 < K, for all ¢, we have

2 k+t
;| —F H/ efA(qutfs)Mgp(S)dS

k+t Alh
2 — — 2
< K2, / e A+ 2 g,

[e.e]

E [H%(mt)

_ ket
B[k + )2 < ngwd/ =g < g2 Lo mag)

oo
e A1

Further, by the independence of W and Wg), we have
_ . )

fett
E[| Zks:l3) = E e_A(’”t)/ A2 T

oo 2
k+t 0
—E e—A(k—f—t eASEI/QdWS(I) + e—A(k—i-t) / GASEI/ZdWEi)

2
—o0 9

0
e—A(k—i—t) / 6A821/2dW£23)

2
+E

2

| ]

k+t

i
0
k+t
—E 6—A(k+t)/ eAsEI/QdWS(I)
0
! 0
+2E <6_A(k+t)/ eASEI/ZdWS(1)> E <€_A(k+t)/ €A821/2dW£25)> :
0 —00

Since the Ito’s integral f0k+t eAsx1/2qwY is a martingale, therefore

|

k+t
E (/ eASEWdWs(l)) = 0. (B.11)
0
Then
_ fett 2 0
B[ Zise|2] = E eA(kth)/ eAszl/QdWS(U +E eA(kth)/ €A821/2dW£25)
0 2 —00
(B.12)
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Moreover, let

aji(s) aa(s) aiz(s) ... awa(s)
CL21<S) a22(8) Cng(S) CLQd(S)
e~ A=) N1/2 - az1(s) asa(s) ass(s) ... asza(s)]|>
_adl(s) age(s) ags(s) .. add(s)_
!
and Wi = {Wsl w2 w3 .. d} we have
k+t k+t 2
E (‘ / —A(k+t—s El/QdW 1) ) < —A(k-i—t—s)zl/?dWS(l) >
0 2

/0 " a(s) dWﬂ)) zd:E Z / " a(s) dW7>
d (/0 ai;(s dWJ) +;</0 alj(s)dwg> (/0 aik(s)de)>
> ( ([ ot >dW)>+E<§(/ asan?) (| az-k<s>dwf)).

By the independence of components of the standard Brownian motion, we have

) :
{ )
-yon (i ( /0 (s dwa) ) Y E ( / o aij<s>dwg> D ( /0 o aik<s>dwf) |

= J#k

(3

=1 J

e

=1

=

o o
||M& ||M&
— —

k4t
/ e_A(k+t_s)Zl/2dWL§(1)
0

k+t
Since E (/ az-j(s)de) = 0 for all 7, j, we have
0

E< :) :iiE(/@kH%(s)deY.

k4t
/ efA(kthfs)El/QdWs(l)
0 i=1 j=1
By Ito’s isometry, this gives

2

ket A ket
E (/0 aij(s)dWSJ) :/0 a?j(s)ds.
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Therefore, we get

b ( ) _ ZZ ([ )

k+t k+t
=L W*WH@W%%SMW%A e AG+=9) 2. qs,

k+t
/ e—A(k+t—s)El/2dWS(1)
0

From Proposition A.3, and let A; be the smallest eigenvalue of A" + A, we get

2 1/2)|2
E( >§ﬂmwu

2 A1 (
Meanwhile, let [ = —s. This gives

2
(H/ A(t+k— S)El/QdW ) ) :E<
2

Also, one can verify that for all L; > 0, we have

“

1 — e kDA (B.13)

)

k4t
/ 67A(k+t78)21/2dws(1)
0

/OO e—A(t+k+l)El/2dVVl(2)
0

2

L
) < d”21/2”2F/ le—(k+t+l)/\1dl
2 0

wAIZ2NE I

L
/ ' e—A(t—i—k—l—l)El/QdVVl(?)
0

< e AR B.14
<e e < A2 (B.14)

Now, by L?*-Bounded Martingale Convergence Theorem, we have
I, —> I / e A2 (), (B.15)

1~>OO 0
Therefore, we have
0 2 d||21/2H2

E | ||e—A%+D) / eAsy1/2 7 2) < e~k 2= IR (B.16)

_ - - A

00 2

Combining (B.12), (B.13), and (B.16), we have

d|| =217

WIS _ A
A

(kA —(k+t)A
(1 e 1)+ N N

E[[| Zesell3] <

(B.17)
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Combining (B.10) and (B.17), one concludes that E[[| Xs4||2] < oo. Second, let us

prove that E[X;,] is a constant vector. We have
E[Xiti] = E[h(k + )] + E[Zy1/]

k-t ket —~
= e—A(’““)/ e pp(s)ds + E [e‘A("“”)/ eAle/ZdWs] - (B1y)

For k € Ny, let r = s—k € (—o0,t), and by the periodicity of ¢(t), i.e. p(r+k) = p(r),

we have

k+t k+t
efA(k+t) / GAS,U,(,O(S)dS — oAt / eiA(kis),uQO(S)dS

[e.9] o0

= A /_t A o (r)dr = h(t), (B.19)

which does not depend on & and is a constant for every ¢ € [0,1]. Furthermore, we

have

k+t .
E |:6—A(k+t)/ eAsEl/QdWS:|

[e.e]

k+t 0
— E |:€—A(k+t) / BASZI/QdW(l):| + E |:6—A(k:+t)/
0

—0o0

k+t 0
— o~ Alk+D) [E </ eAszl/des(l)) +E (/ 6A521/2dwf25)>} i (B.20)
0 —0o0

From (B.15), we have I, kL—2> I, = / e_AlZl/ZdVVl(Z). This implies that
—00 0

6A821/2dW(23)}

0 oo
E |:/ €A521/2dW(28):| —F |:/ e—AsEI/QdWS(Q)] = khm E[]k:-i-t]
0 —00

—0o0

Since E[l44] = 0 for all k +¢ > 0, we have

0
E [/ eAszl/QdWE?} — 0. (B.21)

—0o0

Combining (B.11), (B.19), (B.20), and (B.21), one concludes that E[X, ] = h(t) for

k € Ny, for all ¢ € [0,1]. Further, since A(t) is non-random, we have

Cov(Xy, Xpst) = Cov(h(t) + Zy, h(k + ) + Zyss) = Cov(Zy, Ziss).
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Therefore, from Proposition 2.3, one concludes that Cov()?t, )N(k+t) is a function of k
only. Further, by Proposition 2.4, the stochastic process {)Af K+t Tken, 1S also Gaussian.
Then, for any ¢ € [0, 1], {jszrt}kENo is a weakly stationary process. This implies that
the process { Xyt bren, iS also strictly stationary. Further, for ¢ € [0,1] and k € Ny,

the correlation coefficient function is defined as:
Ry, = Var(X;)2Cov(X;, Xpye) Var(Xpe) /2.
Taking vectorization, we get
Vec(Ry,) = [(Var(Xey) ™2 @ Var(X,) /2] Vec(Cov(Xy, Xpt)).
Note that Var(X,.)~'/2 is symmetric, and from (B.9), we have
(Var(Xy40) ™) @ Var(X,) ™2 = Var(X;) ™% @ Var(X,)™V/2,
which does not depends on k. Also
Vec(Cov(Xy, Xiie)) = (e @ 1) (A @& A)~'Vec(T).
By A.1, we get ’}LrgoVec(Cov()zt, Xpst)) = 0. Therefore
l}LIEOVeC(Rk) = 0.
Hence, {)?k+t}keN0 is ergodic for any t € [0, 1], which completes the proof. O]

Proof of Proposition 2.6. By Lemma 2.1, it suffices to prove
1 oT _ P 1
— ()X, dt —— ¢ [ p(t)h'(t)dt

éT éT [¢T ] 1 ¢T ~
— 'dt / 'dt / th—l—c;ﬁ—/ o(t) X, dt.
P e 7L T Jr, 7O

82

We have



Let Y = fk Lot X dt,and r =t —k+1 € [0,1]. By the periodicity of ¢(t), we have

1 1
Y, = / otk — D)X ydr = / P(r) XLy dr
0 0

According to Proposition 2.5, for r € [0, 1], {)?Hk,l}keN is a stationary and ergodic
process with r + k — 1 € [0, ¢T]. Thus, Y} is a measurable function of the stationary
and ergodic process {)?Hk_l}keN. Thus, {Y} }ren is stationary and ergodic, and then

by Birkhoff Ergodic Theorem, we get
LoT]

T 1 ! ~
W J 077 2 Z A —> D (/ (t)X;dt) .
Moreover, ||¢(t)|3 < K,. Then, by Triangle Inequality, Jensen’s Inequality, and

Cauchy Schwarz Inequality, we have

O— X.d gb— . © X d gb—K X 124
1) X dt < ! t < 124y,
(H 7] ( ) t ) T /¢>TJ (H ( ) ” ) / | || )

From (B.10) and (B.17), we have X, is uniformly bounded in L2. Let

E(||X,|2) < K’ < oo, this implies
I
6o /w @(t)X{dt —“ 0.
Therefore, since E(X,) = h(t), from (B.18)-(B.21), we have E(p(t)X]) = @(t)h/ (1),

which completes the proof. O]

Proof of Proposition 2.8. By Lemma 2.2, it suffices to prove that

oT

% Xtht—m{/ol B (¢ )dt+V(O)}.

0

We have
17, I PSS
— X Xdt = p— X X,dt
TS %T .
[¢T) _ 1 oT
XX’dt — X, X/dt.
Z t<2 ¢ +¢¢)T L¢TJ t<2¢
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Since {X,} is stationary and ergodic, we have {X, X/} is also stationary and ergodic.

Let Y, = f:_l )?t)zgdt, and r=t—k+1¢€[0,1], we have

1
Yk:/ Xr+k,1X;+k71dT'.
0

According to Proposition 2.5, for r € [0, 1], {Xr+k—1)?£+k71}kEN is a stationary and
ergodic process with r + k — 1 € [0,¢T]. Thus, Y} is a measurable function of the
stationary and ergodic process {)Zr+k_1)~(;+k_1}k€]v. Then, {Y} }ren is stationary and

ergodic, and then, by Birkhoff Ergodic Theorem, we get

[#T] 1
Tl 1 o o
M S § XtX’dt e eB (| X X'dt) .
t T—o0 0 t

Further, by Jensen’s Inequality, we get

- ¢T _ 1 ¢T _
H¢> " x| ) <ok | B Eede <o [ BRI
6T F T Jyor) T J\ o1

From (B.10) and (B.17), we have X, is uniformly bounded in L2. Let

E(||X,|2) < K’ < co, this implies

oT

— X X dt —215 0.

Further, we have

oE (/ X, X] dt) ¢/ (X, X!)dt = ¢/ )+ Z)(I(t) + Z)))dt.

Note that for all £ > 0, we have

t —
E(Z)=E [e‘At / eASEWdWS]

— 00

t 0
=E [e‘At/ eASEI/QdWS(l)} +E {6_At/ eASEldeg)}
0 —00

t 0
= ¢4 {E ( / eAszl/QdWs(”) +E ( / et/ 2dW(?>} - (B22)
0 — 00
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t
Obviously, E (/ eASEl/QdWS(l)) = 0 as this is Ito’s integral which is a zero mean
0

martingale. Further, by (B.21), we get E(Z) = 0. Therefore
1 1
oE (/ XtXédt> = q§/ [h(t)R' (t) + E(Z,Z))]d¢.
0 0
From (B.9), E(Z,Z!) does not depend on ¢. Thus, letting V(0) = E(Z,Z!), we complete
the proof. O
Proof of Proposition 3.2. For any T' > 0
T T
L, I e (e =% T o) Xidt
—Q, =
g —L [T X dt A 0T X Xt

Let a = [a/n a/@)] with a(;) a p-column vector, and a2y a d-column vector. Then

(
oT '
aQwa/_/O |:a,(1) a/(2)} {Sﬂl(t) —X{}

2

o o) [0 1|

!/

2

dt > 0, and the equality hold if and only if
2

= 0 almost everywhere on [0, ¢T'], which is the same as
2

{a/u) a/(Q)] {90/ (t) —X{} = 0 almost everywhere on [0, ¢T"]. Then, we have a’(l)gp(t)—
a’(Q)E(Xt) = 0 and Var(a’(Q)Xt) = 0Vt € [0,¢T]. Since Tty € [0,¢T], such that
Var(Xy,) is a positive definite matrix, then a, = 0. Then ajy,p(t) = 0Vt € [0, ¢T].
Since {p1(t), p2(t), ..., ¢p(t)} is linearly independent on [0, 1]. Suppose now that 1" >
é, we have [0, 1] C [0, ¢T7], then this implies a’(l) = 0. Thus, @, is a positive definite

2

matrix. Similarly, one can verify that if 7" > yurd

then @, is a positive definite
matrix. Therefore, if T > max(é, ﬁ), we have Q(¢) is a positive definite matrix,

this completes the proof. O]

Proof of Lemma 3.1. Taking derivative of the log-likelihood function 1(6; X9 17)

in (3.9) with respect to 6, since ¥ and Q)(¢) are symmetric matrices, we have

81(8, X[(),T])

S —x71P(g) - £700(6), (B.23)
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and setting this last term to be equal to 0, we get

0 =P($)Q ' (9). (B.24)

Now, taking the second derivative of the log-likelihood function I(6; Xjo 7)) with re-

spect to €', we get

OE"P(¢) —E716Q(9)) _ I(ET'0Q(4))

00’ 0o’

=—(Q(p)®x7).

From Proposition 3.2, we know that Q(¢) is a positive definite matrix, and since 3 is a
positive definite matrix, we have X! is also a positive definite matrix, hence Q(¢) ®
Y71 is a positive definite matrix, which complete the proof of the first statement.

Moreover, from (3.9), we have
16; Xiom) = TH(P(6)0'S ™) — 3 Tr(O'S0Q(6)),
applying Lagrangian method with A\, € R2PT9xa ), ¢ R"*? Jet the lagrangian
N0, A1, Aa; Xjorp) = 1(0; X)) + Tr[Ay(L16 — dy)] + Tr[Ao(6Ls — da)].

Taking derivatives with respect to Ay and Ay and set to 0, we get

dl,\(Q, A1; Ag; X[O,T])
d\y

dl(6, M1, A2; Xjory)
Ao

= 0Ly —dy =0, (B.26)

and taking derivative with respect to 6 and set to 0, we get

dlnew(ea A1, Ag; X[O,T})
do

= SUP(6) — 57Q(6) + 4N, + ML = Dasagpea,

P(¢)Q7H(¢) — 0+ SLINQ™H(®) + ENLHQ™H(B) = Oaseatpray,
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since § = P(¢)Q~1(¢), we have
0 — 0+ SLN,Q 7Y (B) + ZALLQ (D) = Ouxagpia)-
Then, L; times equation (B.27) from the left side gives
L0 — L0+ LIELXQ () + LiZNLHQ ™ (9) = Oguapia)-
By (B.25), we get
L16 —dy + LS LN, Q7YH (@) + LiZ Ny LhQ 7Y (6) = Ogagpra)-
From equation (B.27), by multiplying each term by Lo, we get
0Ly — 0Ly + SN Q@) Ly + SN, LEQ () Lo = Oy
By (B.26), we get
0Ly — dy + LN QN (@) Lo + SN LHQ™ () Lo = Ogsen-
From equation (B.28) and (B.29), we notice that

A~

(L0 — dy) Ly = Ly(0Ly — ds).

(B.27)

(B.28)

(B.29)

Further, we have L1 XL} and LLQ ™1 (¢) Ly are positive definite matrices, and therefore,

the inverses exist. Moreover, (L;XL})~! times equation (B.28) from left side and

equation (B.28) times Q(¢) from right side, we get
(LiSLY) " (La0 — d)Q(e) + Xy + (L XLy) ™ (LaEAg) Ly = 0,

therefore

~

N = —(LyXLY) (L BNy Ly — (LyXLy) ™ (La0 — di)Q().
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Substituting (B.30) back into equation (B.27), we get

0 — 0+ SL)[—(LSL)) (LX) L

— (LiZLy) T (Lif = d)Q(9)]Q () + TN LQ () = 0,
6 — 6 — SLULSLY) (LS QT (9)

= LIS L) T L0 = di) + DX LHQ 7 () = 0,

0 —0—SL(LSL)) (L6 — dy)

+ [Z = SL (L SL) T LN LLQ 7 (¢) = 0. (B.31)

In order to find the expression for [ — XL} (L3 L}) " LiX]\,, we subsititute equation

(B.30) back into equation (B.29), then

0Ly — do + S L[~ (L SLY) ™ (L EN) Ly — (LSLY) ™ (L — d)Q()Q(9) L

+ YN LLQ (@) Ly = 0.
Note that d1L2 = lel- This gives

¥ — XL (LSL) " LixN,
= SLULSLL) T Li(0Ls = da) (L5Q T (9) La) ™ = (0Ls — do)(LHQ ™ (9)La) ™
(B.32)
Let J; = SL (L, SL) " € R and Jy = (LLQ ' (¢)La) ' LLQ ) (¢) € R™¥2¥+d) and
we subsititute equation (B.32) back into equation (B.31), then

é - 9 - Jl(Llé - dl) + JlLl(éLg - d2)J2 - (éLQ - dg)Jg - O,

9 - é - Jl(Llé - dl) —|— JlLl(éLz - dz)JQ - (éLQ - dQ)JQ,

this completes the proof. n
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Remark 6. L\XL, and LyQ ' (¢)Ly are positive definite matrices since Ly and Lo
are full rank matrices and from Proposition 3.2, we know that ¥ and Q(¢) are positive

definite matrices.

Proof of Proposition 3.4. Note that X; = X;(t)I<y + Xo(t) sy, 0 <t < T

where
Xi(t) = hy(t) + Z1(t), Xo(t) = ho(t) + Za(t), 0<t<T, (B.33)

with hy, hy, Z1, Z5 defined in (3.11). By Assumption 1, we have the distribution of X
does not depend on 6 = { 0, : 0, } . Since X1 (t) = X1 () Igi<yy + X1 (t) L5y, we know
that the distribution of XI(OS is the same as the distribution of X, which does not
depend on ;. As a result, E(||X1(0)]|5") = E(||Xo||5*) < co. Then the result follows
from the Proposition 2.10, which completes the proof. Moreover, from Proposition
3.2 and Proposition 3.4, it is sufficient to prove that ¥, is a positive definite matrix.
First, by Schur Complement Theorem, we have ¥y is positive definite if and only if
(fﬁ@ﬁ@ﬁ+%@—/%ﬁpﬁ%/k@ﬁ@ﬁmmﬁmw&MeEmmn
0 0 0

let Ay > Ay > ... > \j be the eigenvalues of

/ oy (1) 70, (8t — / (1) (1)t / (O, (t)dt.

0 0

By Theorem A.2 in Appendix A, we have

A¢= min y(fa@awﬁ—/?ﬁwwﬁlﬁwmwﬁy

yERL:||y[l2=1 0 0

E— ( / W)t~ / (W ()¢ (1) / o), <t>y>dt)

yeR%|ly|2=1
= ettt ( / (' ha (£)) (ha (D))t — Z ( / (' <t>>¢i<t>dt) )
= min i ' _ - L ei(t) . i
T R la=1 (/0 (y'ha (1)) (R (t)y)dt 2(/0 (v hl(t))”(pi@)H||<,02(t)||dt) )
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Since ||@;(t)]]* = fo ©;i(t))?dt = 1, by Bessel’s inequality, we get

2

/ R F e — 3 (/ 1<y%<t>m<t>dt) >0

i=1

Thus, since the matrix is symmetric with all the eigenvalues are nonnegative, we

1 1 1
have / hy(t)R(t)dt — / hl(t)gpl(t)dt/ o(t)h(t)dt is a positive semi-definite ma-
0 0 0

trix. Moreover, by Proposition 2.7, V1(0) is a positive definite matrix. Therefore

1~ . 1~ 1 .
/ P (O, (£)dt + Vi (0) — / P () (£)dt / ST, (H)dt is positive definite, which
0 0

0
implies that ¥ is a positive definite matrix. Further, let g(X) = X! for a positive

definite matrix X. Therefore, by the continuous mapping theorem, we have
Lo ) = 1o L g(em) = L
g va =TQ; mg(cﬁ 0)—5 0>
which completes the proof. O]
Proof of Proposition 3.7. From the SDE in (2.1), we have
T T
/ dX:B(t,¢) = / [(1p(t) — Ar X)Ly + (p2p(t) — Ao X)Ly | B(E, ¢)dt
0 0
T
+ / SV2dW,B(t, ¢).
0
Further, using the notations defined in (3.1) and (3.4), we have
T
/0 Xy {w’(t)ﬂ{m} —Xilp<yy @' (Olusy —Xt'ﬂ{m}]
|:f0 dXtQD fO dXtX/ f dXtQO f dXtX/:|
Then
T
[ axso=|p p,|=ro) (B.34)
0 b

Note that I< sy =0 for all ¢, then
T
/ [(11p(t) = At X)Ly + (p29p(t) — A2 Xy) Ty B(E, ¢)dt
0
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can be expressed as

B Yy Y
/ o) (Dt — / (1) Xldt 0
0 0
Y Y
— | Xu'(t)dt X X, dt 0
0 0
o Ar o A} T
{1 LR 0 0 / ()¢ ()dt
v T
0 0 — | Xy (t)dt

L v

Then, by combining, (2.2), (3.5), and (B.34), we get

P(6) = 0Q(6) + / SV2dWLB(1, ).

0

P(O)Q(6) = 0+ / SV2dW,B(t,6)Q " (9).

0

Then, from (B.24), we get
R T
b =52 / AW, Bt 6)Q(6).
0

T
Then, letting R (¢) = / B'(t, ¢)dW/, we complete the proof.
0

/T () X!dt
/Xtht |

]

Proof of Proposition 3.9. To prove this proposition, we directly apply Proposi-

tion 1.21 in Kutoyants (2004) with d; = 1 and dy = d. First, in Proposition 3.8, we

have verified the conditions to apply Proposition 1.21 in Kutoyants (2004), i.e. we

have P(f (aWCOp(t)2dt < o0) = 1. We have
Z / £)2dt = / S @O ()t

Note that since a = {a(l) a® 4B a(d)l, we have
d

N (@OCH())? = d'(1® Cr(t)) 1y ® Cp(t))a.

i=1
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Therefore

> /T(a(i)CT(t)fdt - /OT a'(la® Cr(t))(1y @ Cp(t))adt

=1

_ /0 L (I ® Co(O)Cr())adt = o (Id ® /0 ' CT(t)C’T(t)dt) a

Since I;<yI~,) = 0 for all ¢, we have
1

\/— H{t<7}\/— / \/— ]I{t<7}\/—
T 1

T
1
T Xellfe<n) —= \/— ¢ ()Lt = 0, /O ﬁSO(t)H{tgv}ﬁsd(t)ﬂ{»w}dt= 0.

Also, one can easily verify that fo Cr(t)Ch(t)dt = 7Q(¢), we get

a <Id ® /OT CT(t)C’T(t)dt) a=d (Id ® %Q(d))) a

where QQ(¢) is defined in (3.5). From Proposition 3.5, we have

X liisyydt = X, lisyydt =0,

2Q(0) L5,

Therefore,

Z/ dt—>a([d®22)

By Proposition 1.21 in Kutoyants (2004), we have

1
a'Vec (ﬁR/T(¢)) ﬁ a'Nopraya(0, Is ® X).

By Cramer-Wold Theorem, we get

1 d
Vec (ﬁRT((b)) o Nogpraya(0, Iy ® ¥2),

which completes the proof.
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Proof of Proposition 3.10. By combining Proposition 3.6, Proposition 3.9, Propo-

sition 3.7 and Slutsky’s theorem, we get
1
VT

Note that £!/2 and 3, ! are non-random and symmetric matrices, we get

VI(0 - 0) = (TQ71(¢)) = Rr(9)="/* = £, 'REV.

25 REY? & Nogprap<a(0, (B2 1E?) @ (55155 7)) = Nagpraya(0, 2 @ X3,
which completes the proof. O
Proof of Proposition 3.11

Proof. From (3.26), we have

VT(0 —0) VT (0 —0)
VT(6 —6) VT —0)J,+ Jg

Odx2(p+d)

VT (0 —0)J, + . (B.35)
04 J Js

where J = I, — J1 Ly, Jy and Jg are defined in (3.28) and (3.29). Further, denote

7 — Iq € R2dxd_ [(2) _ Oa € R2%d and 1) — Odxa(p+d) € R24x2(p+d)
O J Js
(B.36)
From (B.35) and (B.36), we get
!/
VT (0 —0)
L)T CJ - = peI W + Jip, I+ 1O (B.37)

VT (0 - 0)

Using vectorization, we get
Vec {pT CT] = (I ® Iygpra) Vec(pr) + (I @ Jj)Vec(pr) + Vec(I?)

= (I @ Iypya) + 1P ® J;)Vec(pr) + Vee(I).
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By (3.28) and (3.29), we have
Jy = Iypra) — LaJa ﬁ Iypra) — LaJ3 = Js,

J@' = J1L17‘2J2 — TQJQ TL> J1L1T2J3 — T’QJg = J7.
—00

Therefore
@) Odx2(p+d) I Odx2(p+d) @
1® = — =™, (B.38)
Jo e ya

By (B.37), we know

e

Using vectorization, we get

~

b —0)
= pr IV 4 Jip I 4 1O

33

09

vee [pT cT] (ID ® Iypeay)Vee(pr) + (I @ J;)Vee(pr) + Vee(I®)
/

= (I ® Igpra) + 1® @ Jj)Vec(py) + Vee(I?),

where J; and J are defined in (3.28) and (3.29), IV, I® and I® are defined in

(B.36). Also by Proposition 3.10, we have
Vec(pr) ﬁ Noapia) (0,2 © 51, (B.39)

Therefore, combining (3.28) and (B.38), by Slutsky’s Theorem, we have

|:pT CT:| T—so0 {p C} ’ where

!/
[p C] ~ Nz(p+d)><2d(](4) ) (]( ) ® Iypta) + 1® J5)(E ® Xy )(I(l) ® Iypa) + g Jé)l)‘
To simplify the covariance term, we have

Iy Iy 14 ® Iy(p+a Lra(p+ay
IV @ Lpyay + 1P @ J, = ® Iopra) + ® Jy = T = '

04 J J® J. J @ J.
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Therefore (I & Lypia) + 1P @ J)(E @ ;) IV @ Lypra) + 1P @ L)

- /

]2d d IQd d
_ (p+d) (2® 22_1) (p+d)
J®J. J®J,
— /
Te ¥ Da(p+ay

JeJHEesh)| | Je g

DI DI (@ I;H(J @ Js)

JJHEesl) (JoJ)(ZeS)(J @ Js)

Y3yt (BJ) @ (5" J5)

(JY) @ (XY (JET) @ (JLX51Js)

From (3.32), we know that JXJ' = JX = XJ'. Also, from (3.35), we know that

JIY s = X515 = Ji2, . Therefore, the covariance term is
5242 2 5242

Texl (JE)e(33s)

(JE) @ (53'5) (JE) @ (85 J5)

which completes the proof. O

Proof of Proposition 4.2. From Proposition 3.6 we have

1 [oT

1~ ~
7/ XtXt’dtﬁgb{/o hl(t)h’l(t)dtJer(O)}.

Therefore, it sufficies to prove that

1 QETX Xldt — ¢TX X'dt -2 0
T 0 t t N T 0 t ¢ T—00 ’

First, let 0 < 6 < % We have

lim P(jp — ¢| > 6) = 0. (B.40)
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Further, we have

1 ¢T 1 [T
0 0 »
1| e or .
= T XtXtdt — XtXtdt > €, |¢ - ¢| > (S
0 0
F
1 por ¢T .
+P T X Xidt — Xy X[dt|| >elp—¢| <6
0 0
F
: L per or A
<P(lp—9¢|>0)+P| = X X dt — Xy X[dt|| >elp—o| <.
T Jo 0 .
By (B.40), it is suffices to prove that
1|l pér ¢T .
lim P | — X X[ dt — Xy X(dt|| >elp—¢| <.
T—o0 T 0 0 »

Note that {|¢ — ¢| < 8} is the same as {(¢ —6) < ¢ < (¢ +8)}. We have
1
p (T
1
T
1
T
1 [le+td)T €
<P(g [ XXt > 5060l <8
(¢

5T
1
Pl =
+ (T

(¢—6)T ¢T oT
/ X, Xdt + / XXl — [ x.xlat
0 (6—0T 0

>67|Q§_¢|§6>

F

X X, dt

T oT
X X, dt — X X, dt
0

<P
+P

or .

/ >§J¢—M§5>
(¢76)T F

/(¢—5)

>§7|§£_¢|§5)

F

(¢p—0)T oT
/ X, Xidt — [ X, Xdt
0 0

>§Jé—d§6),

F
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then
1 T &T

P|= X X, dt — X X, dt
T 0

> €, ’(5 - ¢| S 5)
F
T &T
X X, dt + / X X, dt — X X dt
(¢—0)T 0

¢ §T

>€7’95_¢|§5>

F
¢+6

| /\

| X X || pdt > 2)
¢> 6)T
oT
thg dt— | X, Xldt
0

P

+

€ A
f >§J¢—d£6). (B.41)
F
e hav

Also, w

oT ¢T
&ﬂﬁ—/ X Xldt— [ XXt
(¢—0)T 0

( H XX
F

1 [T € -
P —/ IXX!lwdt > €, 16— 0] <6 ),
T Jip-syr 2

1
Pl=
(7
F

1 (p+6)T / e
<P ?/( | X X || pdt > 3 (B.42)

¢—8)T

N[ =

F

>§4$—mg5>

>§J$—w§5>

IA

then

(¢—0)T ¢T
/ X X, dt — X X, dt
0 0

>§7|Q§_¢‘§6>

Thus, from (B.41) and (B.42), it is suffices to prove that
' 1 [(o+9)
%ﬁf(féw)“&me>§>:Q
Now, by Markov Inequality, we have

(p+0)T /
| oo XX )
(L[ x> §) <« 22Uemor 1
T (p—8)T 2 eT

)T
_ 2 BUXIDd _ arST _ K5
€T e e

(B.43)
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Note that K, < oo and we can choose ¢ arbitrarily small, which completes the proof

of part (7). For part (i7), using the same method as we did in Part (7), and note that
1
(7
T F
1 (p+0)T € 1 T T p
<P —/ | X X, pdt > = | +P —H/ X, Xidt — | X, X/dt| > =
TJs 2 T\l ooy oT p 2
>€>
» 2

1 (¢4+90)T € 1 T T
<P —/ X X{||lpdt > - | +P | = H/ X, Xldt — [ X, X/dt
T Jip-s)r 2 T Jproyr 4T

Also, we have
1 T T €
P| = H/ X, X, dt — X X dt| > =
Tl ror oT o2

1 T (¢p+0)T T

!/ / /

=P = X, X/dt — / X, Xdt — | X, X]dt
¢T T T

1 (¢+6)T
T
T

This implies the fact that
1

P(=

(7

1 (¢p+0)T €
<2pP —/ X, X! | pdt > < ).
T Jg-oyr 2

> o)
F

>e,|&—¢|36)+P(|¢3—¢|>5).

T T
X X, dt — X, X, dt
oT T

>e,|<z3—¢|sa)

. )
2
F
1 [@+o)T
> %) <P (f/ | X X[ pdt > g :

T T
Xthdt — Xthdt
oT oT

>e,|<£—¢|s5)
F

Note that

1 T T
P<fH CXXdt— [ X X(dt
T

o7
1

<P|=

<r(; )

T T
By (B.40) and (B.43), we complete the proof. O

XtXt’dt — XtXédt
oT ¢T

Proof of Proposition 4.5. Since

1

~ 1
—=Ri(0) = -

ﬁR'T(cb)-

(R(9) — Ryp(9)) +

3
5~
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From Proposition 3.9, Proposition 4.4, and Slutsky’s Theorem, we complete the proof.

O

Proof of Theorem 5.1. From (5.2), we have
ADR(0(¢), 0, W) = E(Tr(p'Wp)).
From Corollary 4.1, we have
p~ Nograxa(0, 2 ®@ 551,
then Vec(p) ~ Nogpra) (0,5 @ E51), we get

E(Vec(p)Vec(p)') = £ @ 3,7,

(I3 @ W)E(Vec(p)Vec(p)) = (I; @ W)(Z @ 25 1).
Since (I; ® W)Vec(p) = Vec(Wp) and (I; @ W)(E @ £;1) = L@ WX, ', we have

E(Vec(Wp)Vec(p)') = X @ W,
E(Tr(Vec(p) Vec(Wp))) = Tr(L @ W5 1),
Using Tr(AB) = (Vec(A4"))'Vec(B), and Tr(A ® B) = Tr(A) Tr(B), we get
E(Tr(Vec(p) Vec(Wp))) = E(Tr(p'Wp)) and Tr(L @ WE,1) = Tr(S)Tr(W;H).
This gives the ADR of the UE. Further, from (5.2), we have
ADR(0(6),0,W) = E(Tr(¢'W()).
From Corollary 4.1, we have Vec(¢) ~ Nagp+ay(Vec(J2), (JE) ® (35" J5)). Then

E(Vec(¢)Vec(¢)) = (J) ® (5" J5) + Vec(J5)Vee( 7).
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Using Tr(AB) = (Vec(A'))'Vec(B), we have
Te(('W¢) = Vee(() Vee(WV¢) = Vee(¢)'(1s ® W)Vec((),
then
Vee(Q)' (I ® W) Vee(¢) = Tr(Vee()' (I W) Vee(()) = Tr((s © W) Vee(¢)Vee(C)).
Therefore, we have

E(Tr(¢'W()) = Tr[(Ia @ W)E(Vec(() Vec(C)')]
= Tr[(I; @ W)((JX) @ (X5 5) + Vec(J]) Vec(Jo)')]

= Tr[(JX) @ (WX5'J5)] + Tr[(I; @ W) Vec(Jh) Vec( 1))
Note that Tr[(JX) @ (W51 J5)] = Tr(JX) Tr(WE;51Js), and

Tr[(Ig @ W)Vec(J;)Vece(J3)] = Vec(J7) (Iy @ W)Vec(J5)

= Vec(J5)' Vec(W J3) = T (J,W J7),
Since J = I — J1Ly and J5 = Iyp1q) — LoJ3 with J3 defined in (4.11), we get

E(Tr(('W()) = Te(JE) Te(WE3 ' J5) + Tr(J;WJ)
= Tr((Ia — 1 L)) Te(WEy (Tapray — L2Js)) + Te(JrWJ7)
=Tr(X - LX) Tr(WEyt — W5t Ly Js) + Tr(J, W J2)
= Tr(X) Te(WE5) — Tr(2) Te(WE5 ' Lo Js) — Tr(J1 LX) Tr(WE5H)

+ TI'(JlLlE) TI'(WE;lLQJ:g) —+ TI'(J7WJ§),

which completes the proof. O
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Proof of Theorem 5.2. Note that

ADR(0%,6, W) = E[Tr((¢ + [1 = (nd — 2)¢~ ") W(¢ + [1 — (nd — 2)¢71]€))]
= E[Tr(('WO)] + E[Te(CWL — (nd — 2)p]¢)]
+E[Tr([1 - (nd — 2)y~ "¢ WC)]
+E[Tr([1 - (nd — 20~ PEWE)],

then

ADR(6%,0,W) = ADR(0(), 0, W) + 2BE[Tr(¢C'W[1 — (nd — 2)¢~1]¢)]
+E[Tr([1 — (nd — 2)y~ ' PEWE)]
From Proposition 4.8 and Proposition A.4 in the Appendix A, we get
E[Tr([L - (nd — 2)y~']*¢'W¢)]
— EB[(1 — (nd — 2GHA) T (W (S5 — S5 Lok)) Te(E)
+E[(1 — (nd — 2)X,,7,2(A))*] Tr(WE; ' Lo Js) Tr(X)

+E[(1 — (nd — 2)x,7,4(A))?] Tr (W J7), (B.44)
also, we have
E[CWL = (nd — 2)y7'1¢] = =E[(1 = (nd — 2)x;7,5(A))] W Jz, (B.45)
where A = Tr(J;EJ;%1). From (B.44) and (B.45), we get

ADR(6°,6,W) = ADR(8(9),8, W) — 2E[(1 — (nd — 2)x;z,o(A))] Te(J; W J2)
+E[(1 = (nd — 2)x,7 ()] Te(W (5" = 53" Lo J5)) Tr ()
+E[(1 = (nd — 2)x7,2(A))°] Te(WE3 " Ly J3) Tr(3)

+E[(1 = (nd — 2)x,,4,4(A)?] Te(JW 7).
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To further simplify the terms, note that

E[(1 = (nd — 2)x,7,5(A)*] Te(WE5 " Ly J3) Tr(X) = Tr(WE5 " Lo Js) Tr(X)
— 2(nd — 2)E[x,7,5(A)] Tr(W35 " LyJy) Tr (%)

T (nd = 2Bl o (D) Te(WS5" L Jy) Tr(S),
also

E[(1 — (nd = 2)X,,7,4(A))*] Te(J; W J7) = Te(J7 W J7)
— 2(nd — 2)E[x,,4,4(8)] Tr(;W J)

+ (nd — 2)?B[X;4.4(A)] Tr(J W Jj).

Note that from Theorem 5.1, we have

~ A

ADR(0(¢),0, W) = Tr(X) Te(WE51) — Te(S) Te(WS5 Lo Js) — Tr(J1 Ly S) Tr(WE; 1)

+ TI'(Jlle) TI'(WE;ILQJ;g) + TI'(J7WJ§),

also, note that ADR(6(¢),0, W) = Tr(2) Tr(WE; 1), we get

~ A

ADR(0(),0, W) — 2Tr(J;W J5) + Tr(W S5 Lo J3) Te(X) + Tr(J; W Jb)

= ADR(0(¢), 0, W) — Tr(J:W L) + Te (W5 Ly Js) Te(3)

— ADR(0(), 0, W) — Tr(J, Ly 2) Te(WE51) + Tr(J, LX) Te(WE5 ' Ly Js).
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Then, using the identity E[x;, 7 4(A)] = E[X;75(A)] — 2E[x;7.4(A)], we get

ADR(0(¢),0, W) — Tr(Jy L1 2) Te(WE5 1) 4+ Tr(J1 LX) Tr(WE5 ! Ly Js)

+2(nd — 2)E[X g5 (D) Te(J W J7) = 2(nd — 2)E[x,, 7, 5(A)] Tr(WE; ' Lo Js) Tr(X)
+ (nd = 2)°E[X41(A)] Te(WE5 Ly J3) Te(8) = 2(nd — 2)E[x4,4(A)] Tr(J W J7)
+ (nd = 2)°E[x 044 (A)] Tr(JWJ7)

= ADR(6(9),0, W) — Te(J, LX) Te(WE5Y) + Tr(Jy LX) Te(WE5 Ly Js)

+2(nd — 2)E[X;, 7,4 (8)] Te(JWJ7) + 4(nd — 2)E[x,,4.4(A)] Te(J:W Jy)

— 2(nd — 2)E[X, 715 (A)] Tr(WE; ' Ly J3) Tr(X)

+ (nd = 2)°E[X1(A)] Te(WE5 Ly J3) Te(8) = 2(nd — 2)E[x;4,4(A)] Tr(J W J7)

+ (nd = 2)°E[x, ()] Te(J;W ),
then, we have ADR(@S, 0, W) is equal to

ADR(0(¢),0, W) — Tr(Jy L) Te(WE5Y) 4+ Tr(J1 LX) Te(WE5 ! Ly Js)

+4(nd = 2)E[X,4 (D)) Te(HWT7) = 2(nd — 2)E[x,,d,5(A)] Te(Wy ' Lo J3) Ti()
+ (nd = 2)?E[X,, 1o (8)] Te(WE5 ' Ly J3) Tr(S) + (nd — 2)E[x, 4,4 ()] Tr(J1 W J7)
+E[(1 = (nd — 2)x;,4 (A))*] Te(W (55" = 55" Lo J3)) Ti(X)

= ADR(0(),0, W) — Tr(J, LiZ) Te(WS5 ) + Tr(J, LX) Te(WS5 ' Ly Js)

= (nd = 2)(2E[X,42(A)] = (nd = 2)E[x,,,5(A)]) Te(WE5 ' Lo J3) Ti(X)

+E[(1 = (nd — 2)x,4 (8))*] Te(W (53" — 55" Lo J3)) Ti ()

+((nd)? = )E[X g4 ()] Tr(J;W J7).

This gives the ADR of the SE. Further, note that ¢» > 0 and nd — 2 > 0, then

1 — (nd —2)y~! > 0 if and only if ¢ > nd — 2. Following the same steps above, we
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get

ADR(6°F,6, W) = ADR(0(¢), 0, W)
— 2E[(1 = (nd - 2)X;3+2(A))H{xidﬂ(A)zndfz}] Tr(J;W J7)
+E[(1 = (nd = 2)x,4(A) T2 a)znd-—2y] To(W (25" = 55 Lo J3)) Tr (%)
+E[(1 — (nd = 2)x5742(A) T2, (a)2na-2y] THW S Lo Jy) Tr(E)

+E[(1 — (nd — 2)X;j+4(A))Q]I{X%d+4w2nd_2}] Tr(J,WJL).
Also, note that

B[l — (nd = 2)X412(A)] = E[(1 = (nd — 2)x7.4,5 (D)2, (a)2na-2)]
SB[ - (nd - 22 oA, ayeonsy)
E[(1 — (nd = 2)x;,4 (A))%] = E[(1 = (nd — 2)x7, (A))*Iy2 (a)2na-2)]
+E[(1 — (nd = 2)x,7 (D) Iz, (a)<nd-2):
E[(1 — (nd = 2)x5112(A))%] = E[(1 = (nd — 2)X7445 (D) T2, (a)2na—2)]
FE((1 - (1 — 22 2(A) Tz, arenaa)
E[(1 — (nd — 2)x5414(A))%] = E[(1 — (nd = 2)x7,4.4(2)Ipz, (a)>na-2)]
+E[(1 — (nd = 2)x;7,4(A)) L2, (a)<na—2]-

Therefore, we have ADR(éS+, 0,W) is equal to

ADR(6%,6, W) + 2E[(1 — (nd — 2) X2 (A2, (a)<na—2y] Te(J7W )
— E[(1 — (nd = 2)x,,4(A)* L2 a)<nd—2y] Te(W (251 = 25" Lo J3)) Te(%)
— E[(1 — (nd — 2)X;§+2(A))Q]I{Xid+2(A)<nd—2}] Tr(Wy ' LyJs) Tr(X)

— E[(1 — (nd = 2)x,4,4(8) Lz, (a)<na—2) Te(JTW T7),

which completes the proof. O
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