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Abstract

Measurements of the production of atomic and molecular metastable states are performed

using a novel frozen solid layer detector. This includes examination of solid CO2 and

N2O layers in metastable detection, measurements of N(2P) production from dissociation

of N2, investigations into the suitability of solid neon layers for detection of S(1D) based

on electron-impact dissociation studies of OCS and production of O(1S) and CO(a3Π) in

electron-impact dissociation of methanol.

Novel solid layers for detection of metastable states were examined to determine which

products they were sensitive to. First, CO2 layers were deposited and were found to be

sensitive to both O(1S) and N2(a1Πg) metastable states. The relative efficiency of these

layers as a function of temperature and lifetime of the state formed from the impinging

O(1S) atoms are reported. Mechanisms which may be responsible for the radiation through

formation of CO3 or its ion are also suggested. The detection of metastable N2(a1Πg) states

from solid N2O layers is also reported.

A study of N(2P) production after electron-impact dissociation of N2 was also per-

formed. It was determined that two excitation channels contribute to production of this

state. Time-of-flight and fragment kinetic energy spectra are presented for 100 eV impact

energy. Excitation function data is also provided over the 0 eV to 200 eV range for one of

these channels. Dissociation processes are proposed for both production channels which ap-

pear to be due to both a direct dissociation and pre-dissociation mechanism. Intermediary

states are proposed for both channels.

Investigations into the suitability of solid neon layers for the detection of S(1D) are

performed through studies of electron-impact dissociation of OCS. It was found that while

production of S(1D) is likely occurring, interactions with solid neon layers do not result

in emission within the optical spectral range of our photo-multiplier tube. However, an

ultraviolet emission from these layers was detected in these experiments. While the nature of

this feature was not definitively identified, some possible processes which may be responsible

are discussed. Future investigations to determine the source of the emission are proposed.

In addition, likely production channels of S(1D) are suggested.

Electron-impact dissociation of methanol was also performed. It was observed that

both CO(a3Π) and O(1S) metastable states are produced and detected with solid xenon

layers. While production of CO(a3Π) has been reported previously, this appears to be the

v
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first observation of O(1S) production from electron-impact of methanol. Time-of-flight and

released kinetic energy spectra are presented for both features at 100 eV impact energy.

Excitation functions are also presented for 10 eV to 90 eV impact energy for both states.

The production of CO(a3Π) coincides with the observations of previous studies and the

measurement of the excitation cross section is extended from an energy of 21 eV to 90 eV.

No new dissociation channels for this state were found. Meanwhile, production of O(1S)

appears to occur through a direct dissociation mechanism causing breakage of the CO bond

and formation of OH(B2Σ−) which subsequently dissociates into O(1S) and H(2S).
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Chapter 1

Introduction

Metastable atoms, those which decay through magnetic dipole and electric quadrupole

rather than electric dipole radiation, play an important role in numerous electron scattering

phenomena. While they are critical in understanding our planet’s atmospheric chemistry[1–

3] and various terrestrial[4, 5] and extra-terrestrial[6–8] phenomena, they also appear in

such diverse fields as plasma processing[9] and biological systems[10, 11]. Due to the varied

and ever increasing number of ways they appear, it is important to continue to improve our

understanding of the processes causing metastable production and to increase our knowledge

of the number of places in which they appear.

Metastable atomic oxygen is one of the most widely studied metastable species. They

play an important role in Earth’s atmosphere where they can be seen in the Aurora Borealis

as green O(1S→1D) and red O(1D→3P) features, are involved in the chemistry of the ozone

layer[4, 5], and are an important part of other atmospheric processes[2, 3]. These two

emission lines can also be seen in airglows occurring in extra-terrestrial atmospheres such

as Venus and Mars[6, 8], and have also been found[7] to play an important part in our

understanding of cometary systems.

Metastable oxygen also has an important role in a variety of biological systems. It

has been shown[10] to modulate biochemical processes and may accelerate nerve tissue

regeneration. Studies have also found[12–14] it could be of interest in developing plasma

based medical treatment and has also been shown to have applications to the treatment of

organic wastes[15].

Other metastable species are also important to our understanding of chemical and bi-

ological processes. For example the production CO(a3Π) has been shown to occur during

electron collisions with prototypical biomolecules[11] and radiation from the Cameron bands

(a3Π→ X1Σ+) has been observed[16, 17] in the airglow of the Martian atmosphere.

The laboratory detection of metastable states is a rather difficult problem given their

extremely long lifetimes. For example, the lifetime of O(1S) is approximately 0.8 s[18]. In

a standard photon detection experiment, atoms in these metastable states would need to

travel hundreds of meters before decaying and are therefore almost impossible to reliably

1
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detect in standard collision chambers before the atoms are quenched by collisional losses

with background gases or the walls of the chamber. As such, special techniques are required

for in depth investigations of metastable state production.

1.1 Detection of Metastable States

Several methods for single particle detection of metastable states have been investigated for

O(1S). For example, Auger emission from low work function surfaces[19–21] or gas phase

chemi-ionization surfaces[22] have been employed to directly observe these states. Indirect

studies have also been performed using electron energy-loss spectroscopy (EELS)[11]. How-

ever, these methods were unable to clearly separate signals from O(1S) and other metastable

species such as O(5S) or suffered from poor signal-to-noise ratios.

Optical techniques have also been implemented to measure photoemission of these

species following quenching of the metastable state. One of the earliest studies of this

type was by McLennan and Shrum[23], who used a helium buffer gas to prevent collisional

losses to the walls of their discharge tube. Other spectroscopic methods included the for-

mation of kryton and xenon excimers, excited bound molecules with dissociative ground

states, in high pressure chambers to induce collisional quenching of O(1S)[24–29]. The issue

with such methods is that information is lost regarding the cross sections for formation or

their released kinetic energy imparted during dissociation from their parent molecules. As

such, their utility is limited to observing the existence of these metastable states.

A viable route to a more informative detection method came with the advent of Matrix

Isolation Spectroscopy. While now commonly used as a method to study free radicals and

other unstable or transient chemical species[30], the origins of this technique actually begin

with observations of O(1S) oxygen. In 1948, Veygard and Kvifte[31] made the realization

that green emissions from layers of solid molecular nitrogen/argon mixtures were due to

the presence of a small oxygen impurity which was radiating at the O(1S→1D) transition

wavelength. Similar radiation lines were later observed by Schoen and Broida[32] in exper-

iments freezing rare gas-oxygen mixtures on a surface at 4 K and then bombarding them

with 5 keV electrons. These early developments led to several other groups investigating this

transition in solid rare gases theoretically[33] and experimentally using either electronic[34,

35] or photonic[36–44] excitation mechanisms.

The lifetime of O(1S) after forming a rare gas excimer has also been measured directly.

Goodman et al.[36] were able to determine the lifetime of XeO(21Σ+) embedded in argon

and neon matrices held at 22 K to be 114 ns. When compared to the free O(1S) state lifetime

of approximately 0.8 s, this corresponds to a change of almost seven orders of magnitude.

Lifetimes of other rare gas O(1S) excimers have also been measured[45] to be 0.2 µs for

NeO∗, 4.2 µs for KrO∗ and 23.4 µs for ArO∗.

Kiefl et al.[46] were the first to build on these studies to develop a single particle detection



CHAPTER 1. INTRODUCTION 3

system for selective measurement of O(1S) using the radiation from an XeO∗ excimer. First

producing O(1S) from dissociation of O2 in a crossed-beam study using a pulsed electron

source, they were able to resolve the metastable atoms in their dissociated beam using a

time-of-flight method. Their detector was a solid xenon layer condensed on a surface at

70 K. While they reported extinction ratios of O(1S) by various gases, they did not obtain

direct excitation cross sections in their investigations.

Another issue with this study was that the photon detection system was optimized for

measurements of radiation in the green region between 500 and 600 nm. As will be explained

shortly, this is not the ideal spectral range in which to measure the radiation from XeO∗

and so their system suffered from less than ideal signal to noise ratios. However, their

kinetic energy data for O(1S) dissociated from O2 was able to be verified by LeClair and

McConkey[47] in later experiments.

All of these developments led to the construction of the detection system used in this

work. An initial prototype was constructed by Corr and outlined in his thesis[48] which

used a layer of xenon frozen on a cold-finger held near 74 K in order to try to detect

O(1S) through an excimer formation process. However, this apparatus suffered from two

experimental deficiencies which prevented their objective from being achieved. First, a

tungsten cathode was used in the electron gun which only lasted a few hours when exposed

to the O2 target beam. Additionally, the photo-multiplier tubes and filters used to detect

the radiating excimers formed on the surface were again optimized to observe green light.

However, these experiments were able to effectively detect metastable O+(2D, 2P) following

dissociative ionization of O2[49], demonstrating that the overall method could be modified

for the measurement of O(1S).

While the studies of Kiefl et al. and Corr et al. measured excimer emissions in the

green, the dominant XeO∗ excimer emission is actually in the near infrared. This was first

noticed by Lawrence and Apkarian[44] in their experiments with UV photolysis of Xe:N2O

mixtures. When observing the spectrum of XeO∗ emissions, they were able to observe two

main features at 375 nm and 725 nm, with the dominant emission being in the near infrared.

Their explanation for these spectral features is based on consideration of the XeO sys-

tem’s potential energy diagram, shown in Figure 1.1. It was suggested that in their experi-

ment, the O(1S) dissociating from N2O would embed itself at interstitial sites of octahedral

symmetry within the xenon matrix. Once embedded, the atoms were excited to the ionic

Xe−O+(31Σ+) state about 5 eV above the Xe + O(3P) ground state. Once the state re-

laxed to the potential minimum around 4 eV, it would then radiate. As this ionic state

lies below the potential energy curve of the covalent XeO(21Σ+) state, an avoided crossing

occurs which permits a bound state in the solid phase[44] which would otherwise be disso-

ciative in the gas phase. If a transition occurred to the inner repulsive wall of the XeO(1Π)

curve, the observed infrared emission would occur while a transition to the minimum of the

XeO(11Σ+) state resulted in the ultraviolet emission at 375 nm. An analagous situation
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Figure 1.1: Molecular potential curves for the XeO system. The dashed lines represent
curves taken from Dunning and Hey[50] and Simmons et al.[29] while the solid lines are from
Lawrence and Apkarian[44]. The diagram is reproduced from McConkey and Kedzierski[51].

likely occurred in the experiments of Kiefl et al. and Corr et al. when free O(1S) atoms

impinged on the solid xenon surface, suggesting that the greater signal strengths would

have been observed if they had looked in the infrared rather than the green.

Based on the findings of Lawrence and Apkarian and some of the lessons learned in the

early experiments by Corr et al., the system was redesigned into the form used by LeClair

et al.[47] and in the present work. First, the tungsten cathode was replaced with thoriated

iridium, which greatly extended the life of the electron gun. Second, photon detection was

optimized for the infrared rather than the green. LeClair et al.[47, 52] were then able to

use this improved detection system to measure the excitation cross section for O(1S) from

N2O and O2, paving the way for a series of experiments measuring O(1S) production.

During these initial experiments, LeClair et al. confirmed the presence of the ultravi-

olet and infrared features from the xenon layer. A small green feature was also observed,

coinciding with the observations of Kiefl et al. and Corr et al.. The feature was reported

to be weaker than the infrared emission by about a factor of twenty and was attributed to

gas phase collisional quenching of O(1S) by xenon near their detector surface. This explains

the difficulties encountered in previous experiments.

Since then, the system has been used to perform measurements of O(1S) production in

O2[47], N2O[47, 53], H2O and D2O[54, 55], CO2[56], CO[57], NO[58] and SO2[59]. Solid

xenon layers have also been shown to be sensitive to other metastable atoms such as S(1S),
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measuring its production in OCS[60]. Metastable molecular states have also been studied

with measurements of CO(a3Π) production from CO2[56] and CO[57] also being reported.

Investigations into the suitability of other solid rare gas layers have also been per-

formed[45] showing that solid neon, argon, and krypton are also sensitive to O(1S) and

presumably S(1S), which is isoelectronic with O(1S), as well. Furthermore, it was dis-

covered that Neon layers also form excimer states with O(1D) which radiate in the red,

permitting measurements of its production from N2O[61] and CO2[61, 62]. Solid N2 layers

have also been shown[63, 64] to be sensitive to metastable singlet gerade states of N2 as

well.

1.2 Present Work

The present work continues this campaign of determining methods of detecting metastables

and reporting their excitation cross sections from different targets. This is extended on

multiple fronts. First, investigating the suitability of various solid layers for the detection

of metastable atoms and molecules. Second, measuring O(1S) production in new systems

where cross section data may be lacking. Finally, investigating the possibility of measuring

new metastable species using the available techniques in order to extend the method to new

targets. The scientific motivations for these various studies are outlined in detail at the

beginning of each chapter.

The opening part of this dissertation lays the ground work for the experimental studies

reported in the later chapters. Chapters 2 through 4 describe the theoretical basis for these

studies. This includes atomic structure and spectra in Chapter 2. As metastable atoms

radiate through magnetic dipole and electric quadrupole radiation, a description of both

electric dipole radiation and its associated selection rules as well as that of these higher order

terms is given. Chapter 3 covers molecular structure and outlines some of the classification

conventions which are important for assigning molecular term symbols. This is important for

understanding the molecular states involved in dissociative collisions. In addition, selection

rules are present for electric dipole, magnetic dipole, and electric quadrupole transitions;

the latter two being important when considering metastable molecular states. In Chapter

4, as electron-impact collisions are the main focus of this work, electron-atom and electron-

molecule scattering is considered first with a discussion of the various types of electron

scattering phenomenon and then an outline of the Bethe-Born theory for fast electron

collisions, describing the functional forms for different kinds of inelastic scattering.

A description of the experimental apparatus is given in Chapter 5. This includes all

of the experimental equipment used for both the production and detection of metastable

species. In addition, this chapter describes the detector’s operation in more detail and

explains the excimer formation process which is the basis for the present method of observing

metastable species.
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An investigation into novel detection layers is undertaken in Chapter 6 in order to

attempt to broaden the method for use with new metastable species. Results from new solid

layers, in particular CO2 and N2O, are presented, which have been found to be sensitive to

several metastable species. The chapter closes with a summary of all of the work undertaken

with various solid layers so far, indicating which layers are of practical use in detecting

specific metastable species and providing references to the relevant literature.

The detection of new metastable species is reported in Chapters 7 and 8. Measurements

of N(2P) production from N2 is discussed in Chapter 7 where a solid xenon layer was

used to detect the N(2P) state for the first time using a single particle detection system.

Investigations into the possibility of observing S(1D) from OCS using frozen Neon layers

are also reported in Chapter 8.

Studies of metastable production in electron-impact dissociation of methanol are then

reported in Chapter 9. Here, O(1S) and CO(a3Π) production were both observed in this

molecule using solid xenon surfaces. Cross sectional data and possible excitation routes are

presented.



Chapter 2

Atomic Structure

Atomic structure is determined by the configuration and motion of electrons about a nu-

cleus. The quantized energy levels within the atom, found from this structure, dictate the

allowed channels for absorption and emission of electromagnetic radiation. The spherical

symmetry of the atomic nucleus’ Coulomb potential implies that this structure can be de-

termined by independently examining the radial positions and angular momentum of the

individual electrons to develop a cohesive calculation of the overall atomic structure. These

calculations can then be used to determine the optical absorption and emission character-

istics of individual atomic systems. This information can then be used to determine the

spectroscopic properties of atomic systems which is of critical utility in this work.

States of an N electron atom are found[65] by solving the time-independent Schrödinger

equation

H |ψ〉 = E |ψ〉 (2.1)

which determines the energy E of the state subject to[66] the atomic Hamiltonian

H = −
N∑
i=1

~2

2me
∇2
i −

N∑
i=1

Ze2

|ri|
+

N∑
i=1

N∑
j>i

e2

|rj − ri|
(2.2)

in terms of the radial positions ri and rj of the electrons and the nuclear charge Z. This

Hamiltonian includes three terms relating to the kinetic energy, nuclear Coulomb field and

electron-electron interactions. More accurate structure calculations can be conducted[66],

if necessary, by including additional effects such as spin-orbit interactions or other finer

structural considerations.

While the total wave function is the relevant descriptive object for determining atomic

structure, it is typically built from wave functions for each of the individual electrons or-

biting the nucleus, forming the total wave function as a product of these individual terms.

One could naively attempt to form the total state as a product of N single electron wave

functions; however, the fact that electrons are Fermions introduces an additional constraint,

namely the probability density of the total wave function Ψ which is given by the quan-

7
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tity |〈Ψ|Ψ〉|2 must be invariant under permutation symmetry to satisfy the Pauli exclusion

principle[65]. In other words, it must be invariant under the exchange of positions of any

two electrons. To form such a fully anti-symmetric wave function, one must form the total

wave function from the Slater determinant [66] of the N individual electronic functions

Ψ(r1, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) ψ1(r3) . . .

ψ2(r1) ψ2(r2) ψ2(r3) . . .

ψ3(r1) ψ3(r2) ψ3(r3) . . .

· · ·
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
(2.3)

To determine the single electron wave functions, one typically considers the problem in

spherical symmetry with separable wave functions of the form

ψi(r) =
1

r
Pni`i(r)Y

mi
`i

(θ, φ) · σmsi
(sz) (2.4)

which account for the radial, Pn`(r), angular, Y m
` (θ, φ) and spin, σ(sz), components of the

wave function.

While the angular component can easily be solved analytically (Section 2.1), solving

the radial component of the wave function Pn`(r) for multi-electron atoms usually involves

computational methods. Procedures such as the Hartree-Fock method[66] are typically used

to determine self-consistent fields which account for the many-body interactions which are

present in these N electron systems. While interesting in their own right, this work does

not calculate any wave functions, but relies of the numerous calculations which are available

for the atoms in molecules of interest. As such, the topic of determining the radial wave

functions will not be discussed further as it is beyond the scope of this work.

2.1 Angular Momentum

In addition to the radial motion, atomic angular momentum is also quantized. There are

multiple sources for this including the orbital angular momentum of the electrons moving

about the nucleus, the intrinsic electron spin, and nuclear spin. Together, these will couple

to form an overall angular momentum which must be considered when examining atomic

structure. Understanding the properties of angular momentum and the ways in which the

various sources can couple is important when classifying the various atomic states which

can appear in experimental work.

Measurements of the individual components of the angular momentum do not com-

mute[65]. If one considers some arbitrary angular momentum J, one will determine states

which are simultaneous eigenvalues of the observables J2 and a single momentum com-

ponent, often Jz by convention. These states |J,m〉 take on values J = 0, 1, 2, . . . and
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m = −J,−J + 1, . . . , J − 1, J with eigenvalues

J2 |J,m〉 = ~2J(J + 1) |J,m〉 (2.5)

Jz |J,m〉 = ~m |J,m〉 (2.6)

In the case of orbital angular momentum, denoted L, the operators[66] have the form

L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(2.7)

Lz = −i~ ∂

∂φ
(2.8)

The wave functions which are simultaneous eigenfunctions of these two operators are the

well known[65–67] spherical harmonics

Y m
`i (θi, φi) = (−1)(m+|m|)/2

[
(2`+ 1)(`− |m|)!

4π(`+ |m|)!

]1/2

P
|m|
` (cos θi)e

imφi (2.9)

which are in terms of the associated Legendre polynomials P
|m|
` (cos θi). In the case of multi-

electron atoms, the angular momenta of the individual electrons is often denoted `i for the

ith electron. The second relevant source of momentum is the intrinsic spin of the electrons

for which S = 1/2 and m = −1/2, 1/2. By a similar convention, for multi-electron atoms

the individual spins can be denoted si.

While the nuclear spin is also a source of angular momentum in atomic systems, this

does not usually contribute to the gross structure of an atom due to the extremely low

energy scale of these interactions. As the energy resolution of this work in insufficient to

distinguish these hyperfine features, we will restrict the discussion to the aforementioned

sources of angular momentum.

2.2 Angular Momentum Coupling

Coupling between the different angular momenta will also introduce additional terms to

the atomic Hamiltonian, shifting the energy levels of the system. One example that can be

significant is the spin-orbit interaction

HSO =
N∑
i=1

ζ(ri)(`i · si) (2.10)

where ζ(ri) is a function which depends on the electron’s radial position. Typically, the

spin-orbit coupling is modelled[66] by the equation

ζ(r) =
α2

2

1

r

dV

dr
(2.11)
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in terms of the electron’s potential energy V (r) but other forms of the coupling are possible

in some atomic systems. Other angular momentum coupling terms may also add higher

order corrections[67] to the Hamiltonian, but typically spin-orbit coupling is the dominant

term.

The strength of the spin-orbit coupling can determine the ordering of atomic states

and their classification schemes. Typically, in the lighter nuclei[66], the mutual repulsion

between the electrons originating from the term

Hrep =

N∑
i=1

N∑
j>i

2e2

|rj − ri|
(2.12)

are stronger than the spin-orbit coupling energy. For these atoms, the interactions between

the orbital angular momenta of the different electrons dominates the spin-orbit term. When

this is true, one can consider the coupling of the individual orbital and spin angular momenta

using the vectors

L =
N∑
i=1

`i S =
N∑
i=1

si (2.13)

and then form the total angular momentum vector as

J = L + S (2.14)

This coupling scheme is known as LS-coupling or Russell-Saunders coupling. In this regime,

atomic states are denoted using Russell-Saunders notation where the term symbols have

the form
2S+1LJ (2.15)

This is the main coupling scheme considered in this work. While other schemes such as

JJ-coupling are possible[66], these are not important for this work and will not be discussed

further.

2.3 Radiative Transitions

In this section, we discuss the types of optical transitions which may occur within an

atom. Often, one limits the discussion of radiative transitions to optical dipole radiation,

which is the predominant source of photonic transitions within atomic systems. However,

when discussing metastable states, where the electric dipole transition moments are zero,

there becomes a need to discuss higher order terms such as magnetic dipole and electric

quadrupole radiation. All three types of emission are outlined below.

The radiative transition rate between two arbitrary states can be found from Fermi’s
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golden rule[65, 68] which, using first order perturbation theory, is found from the expression

wi→f =
2π

~
|〈f |V |i〉|2 (2.16)

and is dependent on the form of the transition elements 〈f |V |i〉 for the atomic potential in

question. The most general form for an optical transition from an initial state |i〉 to a final

state |f〉 is proportional[65, 66] to the matrix elements of the EM-field operator

〈f |ei(ω/c)(n̂·x)ε̂ · p|i〉 (2.17)

The momentum operator term can be shown[65] to be equal to

〈f |ε̂ · p|i〉 = imω ε̂ · 〈f |x|i〉 (2.18)

Thus, for spontaneous emission, the transition rate can be found[68] to be

w =
4

3

e2ν4

c3
| 〈f |ei(ω/c)(n̂·x)ε̂ · x|i〉 |2 (2.19)

While this expression in theory describes radiative transitions completely, in practice, the

EM-field operator’s matrix elements are calculated by taking the Taylor series of the radi-

ation field operator

ei(ω/c)(n̂·x) = 1 + i
ω

c
n̂ · x + . . . (2.20)

The leading, zeroth-order term accounts for the electric dipole contribution to the radiation.

While it is the dominant source of radiative decay, there are certain situations for which

the dipole matrix elements are zero, termed “forbidden transitions”, where higher order

terms must be also be included. For such situations, it is usually sufficient to include the

first-order term, which accounts for magnetic dipole and electric quadrupole radiation. The

line strengths for all these types of radiative decay are discussed below.

2.3.1 Electric Dipole Transitions

The electric dipole transition strength can be found from the zeroth-order term of the Taylor

expansion. This yields[66] a decay rate

wE1 =
4e2ω4

3c3hν
|〈f |r|i〉|2 (2.21)

If the the ith position vector is written in units of Bohr radii, it can be expressed as the

rank one tensor

|ri|2 = a2
o

∑
q

|r(1)
q (i)|2 (2.22)
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M ′

M = M ′ − 1 M = M ′ M = M ′ + 1

q = −1
q = 0

q = +1

Figure 2.1: Mapping of electric dipole tensor components to the polarization of the absorbed
photon. q = ±1 correspond to circularly polarized σ± changing the angular momentum M
sub-level by a single quantum. q = 0 corresponds to linearly polarized π photons which
keep the sub-level quantum number constant.

and in terms of the classical dipole strength

P (1)
q =

N∑
i=1

r(1)
q (i) =

N∑
i=1

riC
(1)
q (i) (2.23)

making use of the normalized spherical harmonic basis

C(k)
q =

√
4π

2k + 1
Y k
q (θ, φ) (2.24)

One can apply the Wigner-Eckart theorem (Equation C.1) to states with angular mo-

mentum J denoted |γJM〉 to determine the transition strengths in terms[66] of 3j-symbols

and reduced matrix elements.

〈γJM |P (1)
q |γ′J ′M ′〉 = (−1)J−M

(
J 1 J ′

−M q M ′

)
〈γJ‖P (1)‖γ′J〉 (2.25)

The dipole line strength can then be written in terms of the reduced matrix elements as

wE1 =
4ω3

3~c3

∣∣∣〈γJ‖P (1)‖γ′J〉
∣∣∣2∑

q

(
J 1 J ′

−M q M ′

)2

(2.26)

In the spherical tensor basis there exists a correspondence between the polarization of the

radiation and the tensor index q. Circularly polarized light is observed for the q = ±1

transitions while linearly polarized light is emitted for q = 0. This polarization mapping is

summarized in Figure 2.1.

The 3j-symbols are non-zero only when certain conditions are satisfied, and therefore,

optical transitions between given initial and final states may only occur when these criteria

are fulfilled. As such, they furnish a set of selection rules on optical transitions. Specifically,



CHAPTER 2. ATOMIC STRUCTURE 13

the total angular momentum may not change by more than a single quantum

∆J = J − J ′ = 0,±1 (2.27)

which is further restricted by the condition

J = J ′ = 0 is forbidden (2.28)

Further selection rules are imposed in the LS-coupling regime. As the electric dipole

operator is independent of spin co-ordinates in this regime, the matrix elements have the

form

〈γJLS‖P(1)‖γJ ′L′S′〉 = δSS′(−1)L+S+J ′+1[J, J ′]1/2
{
L S J

J ′ 1 L′

}
〈γLS‖P(1)‖γ′L′S′〉

(2.29)

which is in terms of a Wigner 6j-symbol (Equation C.5). The properties of this symbol

lead to the following constraints. First, the initial spin must be preserved so that

∆S = S − S′ = 0 (2.30)

Second, the angular momenta may only change by a single quantum

∆L = L− L′ = 0,±1 (2.31)

except that

L = L′ = 0 is forbidden (2.32)

2.3.2 Higher Order Transitions and Metastable States

It is also possible for atoms to absorb or radiate photons through higher order processes

such as electric quadrupole or magnetic dipole transitions. However, their considerably

lower strengths imply that states that decay through these channels have much longer

lifetimes. Another notable difference between these types of transitions and electric dipole

radiation is that the former preserve parity of the initial state.

Magnetic dipole transitions have the same form as those for electric dipole radiation[66]

given in Equation 2.26, except that the electric dipole operator is replaced with the magnetic

dipole moment

µ(1) = −µo
[
J(1) + (gs − 1)S(1)

]
(2.33)

in terms of the Bohr magneton

µo =
e~

2mc
=
eaoα

2
(2.34)

and the anomalous gyromagnetic ratio for the electron gs ≈ 2.0023192.
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If the gyromagnetic ratio is approximated to gs ≈ 2 and neglecting relativistic effects,

the transition rate is given by

wM1 =
4ω3e2a2

o(α/2)2

3~c3

∣∣∣〈γJ‖J(1) + S(1)‖γ′J〉
∣∣∣2∑

q

(
J 1 J ′

−M q M ′

)2

(2.35)

which differs from Equation 2.26 by a factor of (α/2)2. It can be noted that magnetic dipole

radiation follows the same selection rules as electric dipole transitions (Equations 2.27 and

2.28) due to the presence of identical Wigner 3j-symbols. Thus, when viewed from the ẑ

axis, only circularly polarized light is observed, as ∆M = 0 transitions are still forbidden.

The difference between electric and magnetic dipole radiation instead occurs when

viewed in a direction perpendicular to the ẑ axis. As the magnetic field vector takes the

place of the electric field vector, the alignment of the field is perpendicular to the electric

dipole case. Therefore, the polarizations are opposite and so when viewed from this di-

rection ∆M = ±1 transitions are now forbidden and only linearly polarized light will be

observed.

One can also consider the selection rules imposed by LS-coupling. In this decoupled

basis, the elements have the form

〈αLSJ‖J(1) + S(1)‖α′L′S′J ′〉 = δbb′
√
J(J + 1)(2J + 1)

+ δαLS,α′L′S′(−1)L+S+J+1[J, J ′]1/2
{
L S J

1 J ′ S

}
[S(S + 1)(2S + 1)]1/2 (2.36)

Here, α represents all quantum numbers aside from LSJ and b = αLSJ (ie., all quantum

numbers). From the form of the matrix element, it can be seen that magnetic dipole

transitions only occur between states with the same LS term which only differ by their J

quantum number. The lack of radial dependence in this expression is the reason this type

of radiation lacks a change of parity. In practice, transitions between ∆J = 0 states may

still occur. As real atoms depart from pure LS-coupling to some extent, all that is required

is that the states contain some amount of a common basis state.

Electric quadrupole transitions can also be considered. The electric quadrupole operator

is given by the rank two tensor

P (2)
q =

∑
i

r2
iC

(2)
q (i) (2.37)

and the transition rate is of the same form as that for the dipole case (Equation 2.26) being

wE2 =
e2a2

oω
5

15π2~c5

∣∣∣〈γJ‖P (2)‖γ′J〉
∣∣∣2∑

q

(
J 2 J ′

−M q M ′

)2

(2.38)



CHAPTER 2. ATOMIC STRUCTURE 15

Table 2.1: Selection rules and polarization for electric quadrupole radiation. Polarizations
are given for observation along the ẑ axis (θ = 0◦), perpendicular to this axis (θ = 90◦) and
for observation at other angles (0◦ < θ < 90◦).

Polarization

∆M θ = 0◦ 0◦ < θ < 90◦ θ = 90◦

0 zero intensity parallel to ẑ zero intensity
1 circular elliptical parallel to ẑ
2 zero intensity elliptical perpendicular to ẑ

but differing in the leading coefficient and a slight modification to the Wigner 3j-symbol.

The fact that this operator is even implies that the initial state’s parity is preserved.

The selection rules for electric quadrupole transitions can be determined by considering

the Wigner 3j-symbol of Equation 2.38. From this, there are selection rules imposed on the

J quantum number of

∆J = 0,±1,±2 J + J ′ ≥ 2 (2.39)

Selection rules are also imposed on ∆M which also determine the polarization of light

observed along various directions. The selection rules and transition polarizations are sum-

marized in Table 2.1.

In the LS-coupling regime, additional selection rules are further imposed. The first

governs the orbital angular momentum with

∆L = 0,±1,±2 (2.40)

while spin must be conserved so that

∆S = 0 (2.41)

2.4 Conclusion

In this chapter, various elements of atomic structure have been discussed. It has been shown

that the various sources of angular momenta such as orbital and spin vectors can couple

together forming richer structure. The angular momentum properties of atomic states are

also important when determining the types of optical transitions which may occur. While

electric dipole radiation is often the dominant source of absorption and decay, higher order

terms such as magnetic dipole and electric quadrupole radiation may also be important.

When dealing with atomic collisions, particularly with light atoms, a firm understanding

of Russell-Saunders notation and angular momentum are important. As this work focuses

on metastable atomic states which are optically forbidden, high order radiation terms are

another important aspect to consider. For example, O(1S) is a metastable state of oxygen
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which will be widely studied but is optically forbidden and cannot decay through electric

dipole radiation. Instead, it decays to the O(1D) state through electric quadrupole radiation

or to the ground O(3P) state through either a magnetic dipole or an electric quadrupole

transition.



Chapter 3

Molecular Structure

The structure of molecules can be determined much in the same way as atoms, by solving

the Schrödinger equation for the nuclear and electronic constituents. There is however,

additional complexity due to the fact that there are now multiple nuclei, breaking the

spherical symmetry of the Coulomb field that occurs in atoms. In addition, there can

now be movement of the nuclei about the centre of mass, producing rotational excitations.

Oscillatory motion can also occur between different nuclei, inducing vibrational excitations.

Electronic structure also becomes very complicated in comparison to atomic systems due

the multiple charge centres and increased degrees of freedom. These factors combine to

create a richer structure than what is present in atoms and is the focus of this chapter.

The chapter begins by describing the Born-Oppenheimer approximation, in which molec-

ular structure is determined without considering nuclear motion, greatly simplifying calcu-

lations. This is followed by description of the angular momentum and symmetry properties

of molecules. In later sections, rovibronic and electronic excitations are described in de-

tail, which provides the mathematical language necessary to describe optical excitations of

molecules and their associated selection rules. The chapter ends with a brief description of

the Franck-Condon principle, which governs the branching ratios of electronic excitations

in the rovibronic manifold of a given electronic state.

As molecular structure is a rich field, only a brief description of the results relevant

to this work is provided. Both diatomic and polyatomic molecular systems are discussed

with relevant differences being covered. As diatomic molecules possess certain symmetries

and properties that can sometimes allow for more detailed structural descriptions than for

polyatomic molecules, the diatomic case will be treated separately or in more detail where

relevant.

3.1 The Born-Oppenheimer Approximation

Determining the exact solutions of the Schrödinger equation for many molecules is impos-

sible[69, 70] to perform directly. Typically, one instead makes a series of approximations,

17
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which allow the variables of interest to be separated in such a manner that the Schrödinger

equation can then be solved independently for the individual parts. To achieve higher ac-

curacy, one can then apply corrections for these approximations using[70] perturbative or

variational methods.

The first, and most significant approximation which can be made is the Born-Oppenheimer

approximation, operating under the assumption[71] that electronic transitions occur on

much faster time scales than the motion of nuclei. Thus, one can treat the nuclei as being

essentially static for determination of the electronic wave functions and these two sets of

motion can be considered independent and separable.

In the case of diatomic molecules[69], the Hamiltonian under this approximation is

H = TN (R, θ, φ) + Te(r) + V (r,R) (3.1)

This expression considers the motion of the nuclei to be a two-body problem and expresses

the energies as functions of the centre of mass position (R, θ, φ) and the relative distances

of the electrons r from this centre. The Hamiltonian is expressed in terms of the kinetic

energies of the nucleus TN and electrons Te and the electrostatic potential energy V . The

nuclear kinetic energy term is referenced to the center of mass of the molecule with

TN (R, θ, φ) = − ~2

2µ
∇2 (3.2)

where the nuclear reduced mass is

µ =
MAMB

MA +MB
(3.3)

as a function of MA and MBs, the masses of atoms A and B. The electronic kinetic energy

meanwhile is

Te(r) = − ~2

2me

 n∑
i=1

∇2
i +

me

MA +MB

n∑
i=1,j>i

∇i∇j

 (3.4)

which is summed over all n electrons.

For polyatomic molecules, an equations that is analogous to the diatomic case is given

by Bunker and Jensen[70]

H = − ~2

2M

∇2
CM +

N∑
r=2

M

mr
∇2
r +

N∑
r,s=2

M∇r · ∇s

 (3.5)

which is summed over all N electrons and nuclei, and is in terms of their total mass M and

each particle’s individual mass mr. Equation 3.5, like Equation (3.1), is separated into the

kinetic energy of the centre of mass and that of the constituents about this point. However,

the polyatomic case cannot make use of the two body reduced mass technique used in the
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diatomic case. Instead, a set of 3N − 3 co-ordinates are derived which separate the motion

of the centre of mass from the particles about it. There are multiple methods for achieving

this transformation[70] but their implementation is a discussion which is beyond the scope

of this research and will not be expounded upon here.

It is useful to express the energy levels of the approximate Hamiltonians (3.1) and (3.5)

as a sum of separate quantities

E = Eel +G(ν) + F (J) (3.6)

which gives the electronic Eel, vibrational G(ν) and rotational F (J) energies as separate

terms. It should be noted that these terms are also ordered in terms their total energy

contribution to the system, with the electronic component being the biggest contributor.

In the Born-Oppenheimer approximation, one can write the total molecular state as a direct

product

|ψBO〉 = |ψel〉 ⊗ |χν,J〉 (3.7)

of the electronic |ψel〉 and roto-vibrational |χν,J〉 states, known[69] as a Born-Oppenheimer

product state. These states can be solved for independently and their solutions will be

presented in the following sections.

3.2 Angular Momentum

Just as in atomic systems, the total angular momentum has contributions from the nuclear

and electron spins as well as the orbital angular momenta of the electrons. For molecules

however, there is also an additional momentum from the rotation of the molecular frame.

One can form the total electronic orbital angular momentum and spins as in multi-electron

atoms, adding the individual electrons’ momenta vectorally with

L =
∑
i

li S =
∑
i

si (3.8)

Another useful vector is the rovibronic angular momentum

N = L + R (3.9)

which includes the orbital angular momentum and that generated by rotation of the molecule

R and a total momentum vector including electronic spin with

J = L + S + R (3.10)

The angular momenta operators in molecules are evaluated in the same manner as in atoms

using Equations 2.5 and 2.6. The eigenstates of J can also be decoupled[70] into rovibronic
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and spin contributions using Wigner 3j-symbols (Appendix C) as

|J,mJ〉 =
∑

mN ,mS

(−1)N−S+mJ
√

2J + 1

(
N S J

mN mS −mJ

)
|N,mN 〉 |S,mS〉 (3.11)

The total angular momentum, including the nuclear spin, is

F = J + I = N + S +
∑
i

Ii (3.12)

which sums over the spin of all nuclei in addition to the electronic spin and rovibronic terms.

This can be written in a de-coupled basis as

|I, J, F,mF 〉 =
∑
T

(−1)I+S+N+F
√

(2T + 1)(2J + 1)

{
I S T

N F J

}
|T,N, F,mF 〉 (3.13)

where T = S + I is the total spin vector.

3.2.1 Diatomic Molecules

In atomic systems, the spherically symmetric Coulomb field implies that L is a constant

of motion[65, 71]. For diatomic[69, 71] and linear polyatomic molecules[70] however, the

axial symmetry of the system permits a more detailed description of the angular momentum

properties than non-linear systems. The component of the angular momentum projected

along this axis Lz is a well defined constant of motion, taking on quantized values while

L precesses about the internuclear axis. This is analagous to the Stark effect in atomic

systems[65] where an external electric field breaks the spherical symmetry of the atomic

Coulomb field. One difference in diatomic molecules, however, is that the nuclear centres

are both positively charges and so precession occurs in the same direction[71] when moving

either way along the axis. This implies that the orbital angular momentum is doubly

degenerate. For diatomic molecules, the orbital angular momentum is denoted by the symbol

Λ which takes on values

Λ = |Lz| (3.14)

which can be denoted with the quantum number

Λ = 0, 1, 2, . . . (Σ,Π,∆, . . .) (3.15)

with Greek letters denoting the value in the same way that the angular momentum quantum

number is denoted by the Latin letters S, P, D,. . . for atoms.

Diatomic molecules also introduce unique considerations for the electron spin. As in

atoms, the orbital motion of the electrons for Λ 6= 0 induces a magnetic field which in-

teracts with the electron spin. This results in a precession of the spin vector S about
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Symbol Description

Cn one n-fold rotation axis
Cnv one n-fold rotation axis and n reflection planes containing the axis
Cs mirror plane symmetry
Dn one n-fold rotation axis and n twofold rotation axes perpendicular to n
Dnh belong to Dn with a reflection plane perpendicular to the n-fold rotation axis

Table 3.1: Some of the symmetry point groups relevant to this research. A more compre-
hensive list can be found in Bunker and Jensen[70].

the internuclear axis while the component Sz projected along the same axis remains con-

stant[71]. This component Σ is described by the quantum number Σ and can take on values

S, S − 1, . . . ,−S + 1,−S. It should be noted that the degeneracy in Λ does not apply for

the electron spin and Σ can take on positive and negative values.

The total electronic angular momentum is also well defined along a specific internuclear

axis as both Ω and Σ point along this axis. The two vectors can be added algebraically

and we can assign a total angular momentum quantum number

Ω = |Λ + Σ| (3.16)

which (for Λ 6= 0) takes on 2S+1 possible values. In the case Λ = 0, degeneracy between the

spin states still remains and Ω is a singlet state for a non-rotating molecule[71]. Regardless

of the value of Λ, the multiplicity of the state is still denoted by 2S + 1.

3.3 Symmetries

The geometric structure of molecules have rotational and reflection symmetries in much

the same way as macroscopic bodies. This symmetry is often specified using point groups

which contain a definite set of rotations and reflections and is described using the language

of group theory. The point group symmetries of molecules is a very broad topic[70] and an

in depth discussion is beyond the scope of this work. However, a few results will be briefly

discussed here.

The point group to which a molecule belongs is determined by the number of planes

through which a molecule may be reflected, the angles by which it may be rotated that

produce an identical configuration, and whether an inversion centre exists. Some of the

point groups which are relevant to this work are provided in Table 3.1 and examples of

molecules which are classified by these groups are given in Table 3.2.

In the case of diatomics, a term symbol may be assigned which classified the symmetries

and angular momentum properties of the molecule (Section 3.3.1). However, for larger

molecules the state cannot be as well specified and instead the states are typically denoted

by it’s multiplicity (2S + 1) and a character from its point group.
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Symbol Examples

Cn CH2O
C2v H2O, D2O
C∞v HCN, OCS
Cs CH3OH
D∞h CO2, N2

Table 3.2: Examples of molecules which are classified by the given molecular point groups.

3.3.1 Diatomic Molecules

In diatomic molecules, the unique description of a doubly degenerate orbital angular mo-

mentum furnishes a symmetry in the wave function due to the inability of these momentum

states to uniquely describe the energy levels with wave functions which are properly sym-

metrized. A further symmetry is defined for linear molecules where the Coulomb field is

such that the Coulomb field possesses a reflection symmetry about a certain point.

In these molecules, the double degeneracy of Λ for non-rotating systems implies that the

wave functions are not properly symmetrized for the total Hamiltonian of the system[69].

It is necessary to use linear combinations of the two degenerate states to achieve the proper

symmetry which is known as the parity of the system. This can be either positive or

negative, depending on the linear combination, leading to even or odd parity states which

are denoted by the symbols + and − respectively.

A second type of symmetry, known as inversion symmetry, applies to diatomic molecules

where the nuclei have equal charge and some linear polyatomic molecules[70] where the

nuclei are symmetric about some point on the internuclear axis. In these cases, there exists

a center of symmetry in the molecule and the Coulomb field remains unaltered by reflection

of the nuclei about this point. This implies that the wave function remains unchanged or

differs by a sign upon reflection. That is, under the transformation

(xi, yi, zi)→ (−xi,−yi,−zi) (3.17)

states which remain unchanged under this reflection are termed “gerade” while those which

change sign are called “ungerade” and are given the symbols g and u respectively.

3.4 Rovibrational States

Molecules contain multiple nuclei that may change position relative to the molecular centre

of mass. Adding energy to the molecule may induce rotation about some axis or the nuclei

may exhibit oscillatory motions. Like other properties, these excitations are quantized into

discrete states.

For diatomic molecules, rotations and vibrations occur about the centre of mass along
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the internuclear axis[71] and the roto-vibrational energy can be determined by considering

the kinetic energy of the centre of mass in Equation 3.1 where[69] the term

TN (R, θ, φ) = TN (R) + Hrot(R, θ, φ) (3.18)

can be separated into a vibrational and rotational component. The term responsible for

vibrations can be approximated as a simple harmonic oscillator (Section 3.4.2) and the

rotational part has the form

Hrot =
1

2µR2
R2 (3.19)

For polyatomic nuclei, a more complex treatment is needed to develop a set of co-

ordinates which describe the positions of all nuclei during rotation and vibration. While

covering these transforms in detail is beyond the scope of this work, a full treatment of

the method can be found in Bunker and Jensen[70]. In brief, one can represent the effects

of rotation and vibration on the N nuclear co-ordinates in an irreducible and clearer way

by separating the motion into translational, rotational and vibrational components. For

general polyatomics, this representation consists of 3 translational, 3 rotational and 3N − 6

vibrational components. In the case of linear molecules, the representation consists of 3

translational, 2 rotational and 3N − 5 vibrational components. In this basis, one can find a

molecule fixed axis with which to reference vibrations and apply rotation operators to this

co-ordinate system to describe rotational motion of the molecule. In this fixed frame, one

can use this set of normal co-ordinates Qr and the corresponding conjugate momenta P̂r,

splitting vibrations into 3N−6 or 3N−5 modes which can be modelled as simple harmonic

oscillators.

With these normal co-ordinates, one can describe the roto-vibrational structure using

the Hamiltonian

T̂N =
1

2

∑
α,β

µαβ(Ĵα − ρ̂α − L̂α)(Ĵβ − ρ̂β − L̂β) +
1

2

∑
r

P̂ 2
r −

~2

8

∑
α

µαα (3.20)

which accounts for rotational and vibrational motion along each co-ordinate. Assuming

rotation occurs along the z axis is the fixed frame, this equation is summed over the co-

ordinate indices α, β = x, y and z, r = 1, 2, . . . , 3N−6. Here, Ĵαβ are the rovibronic angular

momentum components along the molecule fixed axis, ρ̂αβ are proportional to the angular

momenta of vibration[70] and µαβ are tensor components related to the molecule’s moment

of inertia. The first term accounts for the angular momentum of the molecular constituents

about the centre of mass while the second is due to the contributions from vibration along

the oscillating modes of the molecule. The final term

U = −~2

8

∑
α

µαα (3.21)
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can be considered as a mass dependent contribution to the molecular potential energy which

is related[72] to the molecule’s moment of inertia in its equilibrium configuration.

Rather than fully solve the roto-vibrational term in Equation (3.20), one can approx-

imate the energy of this system by considering it to be a rigid rotor. This is valid in

the Born-Oppenheimer approximation, neglecting the electronic angular momentum L̂α,β

along with the vibrational angular momenta components ρ̂α,β. Under these conditions, the

roto-vibrational motion is determined by the approximate Hamiltonian

Ĥrv =
1

2

∑
α

µeααĴ
2
α +

1

2

∑
r

(P̂ 2
r + λrQ

2
r) (3.22)

which separates the energy into a rigid-rotor term to account for rotation and a vibrational

term which separates the energy into a sum over the 3N − 6 normal harmonic oscillator

modes. With this separation of terms, one can then express the total wave function as a

product of rotational and vibrational components with

Φrv = Φrot(θ, φ, χ) Φvib(Q1, Q2, . . .) (3.23)

which will be solved separately in the following subsections.

3.4.1 Rotations

In Equation 3.22, one approximates the rotational motion of the system to be that of a

rigid rotor

Hrot =
1

2

∑
α

µeααĴ
2
α (3.24)

This can be rewritten in terms of the principle axes of the system as

Hrot = ~−2
(
AeĴ

2
a +BeĴ

2
b + CeĴ

2
c

)
(3.25)

with rotational constants of the form

Ae =
~2µeaa
hc

(3.26)

where Be and Ce are in terms of µebb and µecc respectively and with the constants ordered as

Ae ≥ Be ≥ Ce.
The eigenvalues and corresponding wave functions of the rigid rotor will vary depending

on the values of these rotational constants and fall into three cases:

1. The symmetric top for two equal constants

2. The spherical top for all constants equal

3. The asymmetric top where all constants are unequal
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The most relevant case to this work is that of the symmetric top which is discussed below.

However, all three systems have well known solutions[70].

The symmetric top may either be prolate or oblate, depending on if the leading or

trailing rotational constants are equal. In the prolate case[70] where Ae > Be = Ce, the

energy eigenvalues are

Erot = BeJ(J + 1) + (Ae −Be)k2 (3.27)

where the quantum numbers can take values J = 0, 1, 2, . . . and k = 0,±1, . . . ,±J . Since

the rotation has symmetry about the axis of the top, the entire system has 2J + 1 fold

degeneracy[73] over each eigenvalue and the rotational states can be designated by

|Φrot〉 = |J, k,m〉 (3.28)

which have[70] the associated wave functions

Φrot(θ, φ, χ) =
1√
2π
Y J
m(θ, φ)eikχ (3.29)

On the other hand, the oblate case has Ae = Be > Ce with rotational energies

Erot = BeJ(J + 1)− (Be − Ce)k2 (3.30)

and states also given by Equations 3.28 and 3.29.

3.4.2 Vibrations

The second term of Equation 3.22 represents vibrations of the molecule with

Ĥvib =
1

2

∑
r

(P̂ 2
r + λrO

2
r) (3.31)

in terms of the normal co-ordinates of the molecule Qr, the conjugate momenta P̂r and λr

which is proportional to the mode’s vibrational frequency. The solution to the Schrödinger

equation for this system is well known[65], having energy eigenvalues of the form

E(ν) = ~λ1/2

(
ν +

1

2

)
(3.32)

which is in terms of the oscillation frequency ν and its related constants

λ1/2 = ω = ~γ = 2πν (3.33)
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The wavefunction solutions are in terms of the Hermite polynomials

Φν(Qr) = NνHν(γ1/2Qr) exp

[
−γQ

2
r

2

]
(3.34)

and normalized by the constant

Nν =

√
γ1/2

π1/22νν!
(3.35)

When considering the vibrational energy of a molecule, which is approximated as a series

of oscillators along each molecule bond, one can determine the total vibrational energy by

summing over all modes with

Evib =
∑
r

~ωr
(

1

2
+ νr

)
(3.36)

where νr = 0, 1, . . .. The corresponding vibrational wavefunctions are simply the products

of those for the individual harmonic oscillators over each mode of vibration with

Φvib = exp

[
−1

2

∑
r

γrQ
2
r

]∏
r

NνrHνr (
√
γrQr) (3.37)

3.5 Electronic States

To determine the electronic wave functions, one must solve the Schrödinger equation for

the Hamiltonian

Helec = − ~2

2me

n∑
i

∇2
i +

n∑
i<j

e2

4πεoRij
−

N∑
α

n∑
i

Zαe
2

4πεoRiα
(3.38)

summed over all n electrons and N nuclei, depending on the inter-particle distances Rij .

This Hamiltonian can be approximated by neglecting the electronic interactions of the

second term in which reduces the expression to a series of n one-electron Hamiltonians

H0
elec =

n∑
i

{
− ~2

2me
∇2
i −

N∑
α

Zαe
2

4πεoRiα

}
(3.39)

Formally[70], the electron wave function is given as a product of the one-electron wave

functions

Φelec = φa(r1)φb(r2) . . . φλ(rn) (3.40)

In principle, one now has the electronic wave functions which, combined with the roto-

vibrational wave functions, provides the necessary components to determine the structure of

the molecule within the Born-Oppenheimer approximation as per Equation 3.7. In practice,

however, the calculation of these electronic functions is quite difficult[66, 70] and there are
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many methods and approximations which may be employed, depending on the use case at

hand. These techniques are beyond the scope of this work and will not be discussed further.

3.6 Molecular State Designation

In atomic systems, one can fully describe all excited states in terms of their radial and

angular momentum quantum numbers resulting in well specified state designations. For

molecules, the situation is more complex and can even become ambiguous for larger systems.

For diatomic molecules, where the orbital and spin angular momenta are well specified, it

is possible to give a detailed description of the angular momentum and symmetry properties

of a molecule using molecular term symbols. These symbols are very similar to the Russell-

Saunders notation used to specify atomic states, written as

2S+1Ω±g,u (3.41)

specifying the multiplicity of the state 2S + 1, the total electron angular momentum Ω and

the parity of the state ±. Furthermore, for homonuclear systems, the type of reflection

about the centre of symmetry g or u is also given (Section 3.3.1). To differentiate the

multiple electronic excited states with the same term symbols, it is necessary to introduce

another designation. Starting from the ground state, one can order exciting states ascending

in energy. Using the letter X to designate the ground state, one can proceed alphabetically

for excited states using the letters A,B,C, etc. This leads to states such as X1Π− or B3∆+
g .

In the case of polyatomic molecules, descriptions of excited states are further compli-

cated. The inability to specify molecular term symbols in the same manner as diatomic

systems, with the exception of some linear molecules, prevents an exact description of the

angular momentum of the system in any given excited state. Furthermore, the possible

symmetries present in these molecules imply that multiple excited states exhibit the same

spectra. As such, the language of group theory are used to specify excited states of these

molecules. The descriptions of the excited states are dependent on the point group symme-

try to which the molecule belongs[70] giving different specification for the various groups.

3.7 Electric Dipole Transitions

In molecules, just as in atoms, there are various selection rules which determine the allowed

optical transitions based on considerations of angular momentum and symmetry. Molecules

however, impose further restrictions on transition probabilities due to the added compli-

cation that transitions can also occur between roto-vibrational levels. In this section, the

various optical transition rules are outlined and the Franck-Condon principle is described

with its applications to absorption and emission spectra.
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3.7.1 General Selection Rules

Molecular systems have selection rules that determine the allowed electric dipole transitions.

The additional symmetries and classifications of molecular states also mean that these rules

are different from the atomic case but both sets have similarities as well. For molecules,

there are rigorous selection rules governing the allowable parities and change in angular

momenta between the initial and final states. Other rules can be seen to apply for transitions

between differing roto-vibrational states in addition to absorption and emission which result

in electronic transitions within the molecule.

The first rigorous rule dictates[71] the parities of initial and final electronic states. All

optical transitions must occur between differing parities and are forbidden for like parities.

That is

+↔ − + = + −= − (3.42)

implying that transitions such as 21Σ+ → 11Σ− are permitted but 21Σ+ → 11Σ+ are

not. A second rule is that the total angular momentum of the final state cannot change by

more than one quanta so that

∆F = 0,±1 (for F ′, F ′′ ≥ 1) (3.43)

which is required to conserve the total spin of the photon and molecule.

Further selection rules are imposed under the Born-Oppenheimer approximation (Sec-

tion 3.1) where the transition line strength is found from[70] the matrix elements of the

dipole operator

S(f ← i) =
∑

Φ′
int,Φ

′′
int

1∑
σ=−1

∣∣∣〈Φ′int|µ(1,σ)
s |Φ′′int〉

∣∣∣2 (3.44)

summed over the three radiation polarizations σ = 0,±1 and the set of internal degrees of

freedom of the initial and final states Φ′int and Φ′′int respectively. Assuming that the wave-

functions are separable into nuclear, spin, rotational, vibrational and electronic components

as

|Φ′int〉 = |Φ′nspin〉 |Φ′rot〉 |Φ′vibΦ
(e′,S′,m′

S)

elec 〉 (3.45)

the matrix elements over each of these components can then be evaluated separately, taking

the product can then be used to find the total line strength.

One can consider the rotational factor by first expressing[70] the rotational state as a

linear combinations of symmetric top states (Equation 3.28) with

|Φrot〉 =
N∑

k=−N
c

(N)
k |N, k,m〉 (3.46)

The rotational component is then evaluated by considering the matrix elements of a rotation
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about an arbitrary fixed axis

〈Φ′rot|U (1,σ)
s |Φ′′rot〉 =

N ′∑
k′=−N ′

N ′′∑
k′′=−N ′′

c
(N ′)
k′ c

(N ′′)
k′′ 〈N ′, k′,m′|U (1,σ)

s |N ′′, k′′,m′′〉 (3.47)

This equation can be further simplified through the use of Wigner 3-j symbols as

〈N ′, k′,m′|U (1,σ)
s |N ′′, k′′,m′′〉

= (−1)k
′+m′√

(2N ′′ + 1)(2N ′ + 1)

(
N ′′ 1 N ′

k′′ σ′ −k′

)(
N ′′ 1 N ′

m′′ σ′ −m′

)
(3.48)

One can also consider the electro-vibrational component of the line strength as

〈Φ′vibΦ
(e′,S′,m′

S)

elec |µ(1,σ′)
m |Φ′′vibΦ

(e′′,S′′,m′′
S)

elec 〉 = 〈Φ′vib|µm(e′, e′′)|Φ′′vib〉 (3.49)

where the electronic integrals have been written in terms of the electronic transition moment

function

µm(e′, e′′) = 〈Φ(e′,S′,m′
S)

elec |µ(1,σ′)
m |Φ(e′′,S′′,m′′

S)

elec 〉 (3.50)

Collecting all of these results, one obtains a general expression for the line strength

〈Φ′int|µ(1,σ)
S |Φ′′int〉 = 〈Φ′nspin|Φ′′nspin〉 (−1)m

′√
(2N ′′ + 1)(2N ′ + 1)

×
(
N ′′ 1 N ′

m′′ σ −m′

)
N ′∑

k′=−N ′

N ′′∑
k′′=−N ′′

(−1)k
′
c

(N ′)∗
k′ c

(N ′′)∗
k′′

×
1∑

σ′=−1

〈Φ′vib|µ(1,σ′)
m (e′, e′′)|Φ′′vib〉

(
N ′′ 1 N ′

k′′ σ′ k′

)
(3.51)

Equation 3.51 can be reduced to a much simpler expression by considering the de-

generacies which are typically present in a molecular system. In the Born-Oppenheimer

approximation, one neglects the effects of nuclear transitions on the final line strength so

that Φ′nspin = Φ′′nspin, introducing a gns-fold degeneracy to account for the number of pos-

sible nuclear spin states. A second degeneracy exists as optical dipole transitions preserve

the electron spin and so m′S = m′′S , meaning that there will be (2S + 1) spin states in

each dipole transition element. Finally, there is an additional m-degeneracy as the total

momentum sublevel remains unchanged with m′ = m′′ and summation over the 3j-symbols

of Equation (3.51), which depend on m′ and m′′, are related[73] by

ω∑
σ=−ω

N ′′∑
m′′=−N ′′

N ′∑
m′=−N ′

(
N ′′ 1 N ′

m′′ σ −m′

)
= 1 (3.52)

Summing over all of the degeneracies, one can obtain a final expression for the line
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strength

S(f ← i) = gns(2S + 1)(2N ′′ + 1)(2N ′ + 1)

×
∣∣∣∣∣

N ′∑
k′=−N ′

N ′′∑
k′′=−N ′′

c
(N ′)
k′ c

(N ′′)
k′′

× (−1)k
′

1∑
σ′=−1

〈Φ′vib|µ(1,σ′)
m |Φ′′vib〉

(
N ′′ 1 N ′

k′′ σ′ −k′

)∣∣∣∣∣
2

(3.53)

The Wigner 3-j symbol present in this expression then imposes a further selection rule

∆N = 0,±1 (N ′ = 0 = N ′′ = 0) (3.54)

3.7.2 Electronic Transitions

For transitions between electronic states in a molecular system, the vibrational and elec-

tronic components of the transition strength can be considered separately. Taking the

Taylor expansion of the transition moment

µα(e′, e′′) = µ(0)
α (e′, e′′) +

∑
r

µ(r)
α (e′, e′′)Qr +

1

2

∑
r,s

µ(r,s)
α QrQs + . . . (3.55)

One can approximate the transition strength in terms of the zeroth order term of the

moment[70] yielding

| 〈Φ′vib|µα(e′, e′′)|Φ′′vib〉 |2 u
∣∣∣µ(0)
α (e′, e′′)

∣∣∣2 ∣∣〈Φ′vib|Φ′′vib〉∣∣2 (3.56)

From this expression, one sees that the line strength depends on the dipole moment between

the two electronic states and a separate term which considers the overlap of the vibrational

levels. While these levels within a single electronic state are orthogonal, this is not always

the case between those in different electronic levels, and so one can calculate a non-zero

overlap integral.

The zeroth order electronic integral µ
(0)
α (e′, e′′) follows the same angular momentum

selection rules applying to atomic systems (Section 2.3.1) and the matrix element can be

determined in a similar manner as atoms. The key difference here is that the transitions

obey the Franck-Condon principle which is encoded in the second term |〈Φ′vib|Φ′′vib〉|
2, known

as the Franck-Condon factor.

Classically, the Franck-Condon principle[74] is based on the idea that electronic tran-

sitions occur on much shorter time scales[75] than the nuclear motion of vibration and

rotation. The time scale then implies that the kinetic energy of the electron should be the

same immediately before and after an electronic transition. As the electrons tend to spend

the majority of their time at the outer edges of the potential well during vibration, the ma-
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jority of transitions can be expected to occur at these classical turning points rather than

in the middle of the well. This implies that transitions should mostly occur between vibra-

tional levels whose potential energy curves have inner or outer edges which align, allowing

one to predict the relative strength of transitions within a vibrational band.

The Franck-Condon principle is illustrated in Figure 3.1. Here the molecular poten-

tial curves for the ground and a single electronic excited state, E0 and E1 respectively,

are shown along with the wave functions for their associated vibrational bands. Consider

absorption from the ground state E0(ν ′′ = 0). As there is significant overlap between this

wave function and that of the E1(ν ′ = 2) excite state, the strength of this transition should

be much higher than that of the neighbouring vibrational levels where the Franck-Condon

factor | 〈Ψ′vib|Ψ′′vib〉 |2 is lower. Similarly, decay along the E1(ν ′ = 0) → E0(ν ′′ = 2) transi-

tion should be stronger than into other vibrational states due to the larger overlap of the

wavefunctions.

3.8 Magnetic Dipole and Electric Quadrupole Transitions

Higher order transitions can also occur in molecular systems. If excited states are un-

connected to the ground state by electric dipole transitions, this can lead to metastable

molecular states in analogy to their atomic counterparts (Section 2.3.2). The transition

amplitudes for magnetic dipole and electric quadrupole transitions are[70] about 10−5 and

10−8 times those of electric dipole transitions, respectively. Here, the transition amplitudes

and selection rules for magnetic dipole and electric quadrupole transitions for molecular

states are described as well as their selection rules which determine the molecular states

that will be metastable. Below, we outline the results of Bunker and Jensen[70] for these

transitions.

Magnetic dipole line strengths are determined by the transition amplitude 〈Φ′int|dA|Φ′′int〉
in terms of the magnetic dipole moment dA where A represents the space fixed magnetic

dipole components. The line strengths have the same form as those of electric dipole

transitions but differ by an extra factor of c2 and the replacement of the electric dipole

operator µA with dA. However, the line strength cannot be calculated within the Born-

Oppenheimer approximation as they are dependent on both the electronic and nuclear

spins. However, some selection rules for these transitions can be presented. First, parity

must be preserved in the transition so that the initial and final states must follow

+↔ + − ↔ − + = − (3.57)

An additional selection rule is placed on the angular momentum as

∆F = 0,±1 (F ′ = 0 = F ′′ = 0) (3.58)
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Figure 3.1: Illustration of the Franck-Condon principle used with permission from So-
moza[76]. Absorption of photons along the E0(ν ′′ = 0) → E1(ν ′ = 2) transition is prefer-
ential due to the significant overlap of the vibrational wavefunctions for these two states.
Decay along the E1(ν ′ = 0) → E0(ν ′′ = 2) transition is likewise more probable as these
states also exhibit a strong overlap.
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In the case of electric quadrupole transitions, the line strength is calculated in much the

same manner as electric dipole transitions (Equation 3.44) but in terms of the components

of the electric quadrupole momentum

P (f ← i) =
∑

Φ′
int,Φ

′′
int

2∑
σ=−2

‖ 〈Φ′int|Q(2,σ)
s |Φ′′int〉 ‖2 (3.59)

The matrix elements can be derived using the same method as for electric dipole transitions

leading to the expression

P (f ← i) = gns(2S + 1)(2N ′′ + 1)(2N ′ + 1)

×
∣∣∣∣∣

N ′∑
k′=−N ′

N ′′∑
k′′=−N ′′

c
(N ′)∗
k′ c

(N ′′)
k′′

× (−1)k
′

2∑
σ′=−2

〈Φ′vib|µ(2,σ′)
m |Φ′′vib〉

(
N ′′ 2 N ′

k′′ σ′ −k′

)∣∣∣∣∣
2

(3.60)

The differences between Equations (3.53) and (3.60) can be seen in the indices of the

summation, the use of the electric quadrupole rather than the dipole operator and a change

from a 1 to a 2 in the Wigner 3j-symbol. Based on the properties of the latter symbol, the

only permitted transitions are those for which

∆N = 0,±1,±2 (3.61)

3.9 Conclusion

In this chapter, an outline of molecular structure is presented. Both rovibrational and

electronic transitions have been described as well as the types of radiative absorptions and

decays which are possible in molecular systems. In this work, an understanding of excited

state designations for both diatomic and polyatomic systems are important as collision

experiments are performed with a range of systems including simpler molecules like N2 and

larger targets like methanol. While studies of diatomic and linear molecules often employ

molecular term symbols, large polyatomic molecules are described in terms of group theory

and so an understanding of both are important. Finally, as metastable molecular states

are discussed in the experimental work, and understanding of molecular radiation beyond

electric dipole transitions is necessary and so it is important to also understand magnetic

dipole and electric quadrupole transitions in molecules.



Chapter 4

Electron-Impact Collisions

In this chapter, a brief overview of the theory of electron-impact collisions is presented,

focusing on the areas which are most relevant to the experimental studies discussed later

in this work. The chapter begins with a basic description of some results from fundamental

scattering theory, presenting elements of both the classical and quantum pictures which are

relevant to the topic of electron scattering. Later in the chapter, phenomenological and

theoretical descriptions of some electron scattering processes are presented, with a focus on

inelastic collisions. This includes discussion of both electron-impact excitation to bound

states of atoms and molecules and dissociative excitation in molecular systems.

4.1 Scattering Theory

Pure scattering theory is a wide ranging subject. In this section, both classical and quan-

tum mechanical scattering theory are discussed focusing on the elements relevant to electron

collisions. First, concepts of classical scattering which make appearances throughout the re-

mainder of the chapter are presented. This is followed by a quantum mechanical description

of scattering, providing an exact equation for describing the interaction of the initial and

final states with the system’s potential. The first Born approximation is then described,

which is useful in making the exact solution of the scattering problem more tractable in

terms of a perturbation theory. Finally, various relevant cross sections for inelastic electron

scattering processes are defined which provide for experimentally achievable measures of

scattering.

4.1.1 Classical Scattering

While classical scattering is not directly applicable to electron-scattering, as the latter is a

quantum mechanical problem, there is still utility in considering a semi-classical description

of electron impact. Here, we consider some of the elements of scattering in the context of

classical mechanics which are quite relevant to the present work.

34
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Figure 4.1: Diagram of the two-body classical scattering problem in the centre-of-mass
frame. Seen is the centre of mass µ approaching the scattering centre with incoming sep-
aration given by the impact parameter b. The separation distance r is indicated in the
diagram as well as the scattering angle Θ.

Typically, one considers the scattering process to be a two-body phenomenon. Obvi-

ously, this picture is invalid for dissociative collisions where the target fragments; however,

it is generally valid for other types of inelastic scattering. Rather than working in the lab

frame where the projectile and target with masses mp and mt have positions rp and rt,

one can work in the center of mass frame which greatly simplifies the mathematics of the

problem[77].

In order to move to this frame, one can introduce the center-of-mass co-ordinates. The

first quantity is its position

R =
mprp +mtrt
mp +mt

(4.1)

and the second, the reduced mass

µ =
mpmt

mp +mt
(4.2)

A third co-ordinate describes the separation of the two bodies

r = rp − rt (4.3)

An example of a classical scattering problem can be seen in Figure 4.1 within the center-

of-mass frame. Rather than considering the approach of the projectile particle to within

the potential of the target, the motion of the center-of-mass is considered. The important

parameters to consider in this situation are the center of mass mc, the impact parameter

b and the scattering angle Θ. The impact parameter defines the perpendicular distance

of between µ and the scattering centre during the collision while Θ is a measure of the

deflection during scattering.
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4.1.2 Quantum Treatment of Scattering

The quantum scattering problem considers[65] the evolution of both the projectile and

target as a single system. In the non-relativistic limit, this evolution occurs according to

the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 (4.4)

where the Hamiltonian consists of three components

H = T +Ho + V (4.5)

including the kinetic energy of the projectile T , the target’s Hamiltonian Ho, and the

potential energy generated by the interaction between the target and projectile V .

We can consider the system to initially be in some product state

|i〉 = |k〉 |ni〉 (4.6)

which describes the incoming projectile as a plane wave state with wave vector k and the

target to be in some initial state ni being defined by all pertinent quantum numbers. We

can assume that there exists some basis in which the initial state is described as

|i〉 =
∑
j

|j〉 aji |j〉 ≡ |kj〉 |nj〉 (4.7)

so that the total energy of the states |i〉 are then eigenstates of the operator T + Ho with

energies

Ei =
~2k2

2µ
+ εi (4.8)

where εi is the internal energy of the target and k is the projectile’s initial wave number.

If the initial state is also an eigenvalue of the full Hamiltonian (4.5) then it is also true

that

H
∑
j

|j〉 aji =
∑
j

(Ej + V ) |j〉 aji =
∑
j

|j〉 ajiEi (4.9)

So that if we project this onto the final state of the system |f〉 then

〈f |H|i〉 = Efafi +
∑
j

〈f |V |j〉 aji = afiEi (4.10)

where the term 〈f |V |j〉 is the transition amplitude and the projection coefficients are defined

by

aji = 〈j|i〉 afi = 〈f |i〉 (4.11)
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Equation 4.10 encapsulates the interaction between the projectile and target. Solving the

scattering problem is then equivalent to determining this interaction term. To find this

amplitude, one integrates this kernel[78] over the space of particle positions and internal

degrees of freedom of the target through the equation

〈f |V |i〉 =

∫
dr

∫
dτ e−ik

′·rψ∗f (τ)V (r, τ)ψi(τ)eik·r (4.12)

At this point, the scattering solution is exact involving no approximations.

4.1.3 The Born Approximation

In many cases, exact methods of solution to the scattering amplitude (4.12) are intractable.

A useful simplification in situations where scattering of the incoming wave is weak is the

Born approximation. This is essentially the assumption that the scattered wave can be

treated as a perturbation of the incoming wave[77, 78] so that the projectile remains an

external entity from the target’s constituents and as such, one only needs to consider an

interaction potential between the two bodies rather than some intermediary complex. As

such, we can represent the state of the system using a set of stationary states[78] that

describe the projectile as a free particle and the target as an independent entity subject to

its own Hamiltonian Ho.

In the Born approximation, we consider the wave function of the final state to be an

asymptotic solution which is a superposition of a plane wave of the same form as the

incoming wave and a weakly scattered wave. That is, the final wave has the form[77] for

r � 1 of

ψf = ψinc + ψscatt ≈ eikz +
eikr

r
f(Θ) (4.13)

where we assume a spherical symmetry where the z-axis is aligned along the projectiles

incoming direction and ψinc is normalized to unity for convenience. Under this assumption,

the transition amplitude can be approximated[78] as

afi = δfi + a
(1)
fi + . . . (4.14)

neglecting higher order terms. This reduces (4.9) to

(Ei − Ef )a
(1)
fi = 〈f |V |i〉 (4.15)

Note that the left hand side may vanish in the elastic case where Ei = Ef and so dividing

both sides by the energy difference may introduce a singularity. As such, determining the

scattering coefficient a
(1)
fi requires the use of complex contour integration[65].

Substituting the asymptotic wave function (4.13), it is possible to solve for the scattering

coefficient a
(1)
fi . A full mathematical treatment of this procedure can be found in Fano and
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Rau[78]. The end result is that the solution for the scattered wave in the Born approximation

can be expressed in the form

ψscatt = −
√

2πµ2

~
∑
nf

〈f̄ |V |i〉ψf
eik̄

′r

r
+O

(
~
k̄′r

)2

(4.16)

where the final state |f̄〉 is defined by

|f̄〉 = |k̄′f r̂, nf 〉 k̄′ ≡
√

2µEfp (4.17)

in terms of the reduced mass µ, the final projectile energy Efp, the final state of the target

|nf 〉, and the scattered projectile’s momentum state |k̄′f 〉.

4.1.4 Cross Sections

The probability for a particle collision process to occur is quantified[79] through its corre-

sponding scattering cross section value. This is the quantity typically measured in collision

experiments where scattered particles are usually the object being counted. Since setups can

vary in their ability to differentiate between types of scattered particles or to resolve their

distributions as functions of angle or other parameters, it is often necessary to work with

different cross sectional measures depending on the experiment at hand. In this section,

various cross sectional values and their interpretations are described.

The term cross section is originally derived from classical scattering[77] of objects such

as hard spheres where it defined the area which a target presented to a projectile and within

which, a scattering event may occur. Of course, this picture breaks down when describing

scattering between quantum mechanical objects where a wave function description is nec-

essary. While the name persists for historical reasons, the quantity now can be understood

in its more modern sense as a measure of the probability that a scattering event may occur.

A differential cross section quantifies the scattering probability as a function of the angle

that the outgoing particle makes with the incoming trajectory. The number of particles Ni

scattered into a solid angle element dΩ making an angle (θ, φ) with the incident momentum

vector ki is given by

Ni =
dσi(E0, Ei, θ, φ)

dΩ
NeNt (4.18)

in terms of the number of incident and target particles Ne and Nt and the differential cross

section dσ/dΩ. One can also arrive at the doubly differential cross section[79] if one also

considers the distribution of final energies, so that the number of scattered particles with

energies between Ei and Ei + dEi is d3σ/dEidΩ.

If one integrates the differential cross section over all angles, one arrives at the integral

cross section

σi(E0) =

∫
dΩ

dσi(E0,Ω)

dΩ
(4.19)
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Another associated quantity that may be of utility is the momentum transfer cross sec-

tion, which quantifies the average momentum imparted by the incoming projectile when

scattering off the target and is given by

σMT
i (E0) =

∫
dΩ

[
1− ki

k0
cos θ

]
dσi(E0,Ω)

dΩ
(4.20)

and is quantified in terms of the fractional loss of directed momentum [1− (ki/ko) cos θ] of

the projectile during collision.

Scattering can also be quantified by the total scattering cross section that quantifies all

possible scattering events. That is, the cross section summed over all possible scattering

channels, angles and energies

σT (E0) =
∑
i

∫ ∫
dΩ dEi

d3σi(E0, Ei,Ω)

dEidΩ
(4.21)

4.2 Electron Scattering

Electron-impact collisions are mainly concerned with the scattering of an electron projectile

off an atomic or molecular target. The fact that both the projectile and the constituents of

the target are charged particles implies that a Coulomb interaction occurs between them.

The long range nature of the 1/r dependent Coulomb potential implies that interaction

between the scattering potential and the projectile occur well into the asymptotic limit,

and so typically, electron-impact is considered within the context of the Coulomb scattering

problem[65, 77]. Its formulation is itself is deserving of a fairly long description but will not

be discussed here. Instead, the reader is encouraged to consult one of the many texts on

the subject including Sakurai[65] and McDaniel[77].

In this section, we first describe phenomenologically some types of scattering processes

which may be observed. This broad overview is then followed by more in depth discussions of

some of the types of scattering which are encountered in this work. A physical understanding

of the types of inelastic scattering leading to bound state excitation in the target is given

as well as an explanation for their strengths at various energies. This is followed by a

mathematical description of the energy dependence of the cross section values for inelastic

scattering, with a focus on the high energy range. Finally, we end with a description of the

mechanisms behind different types of dissociative excitation in molecular systems.

4.2.1 Scattering Phenomena

There are several types of processes which may occur during an electron collision event which

are either elastic, resulting in a transfer of momentum to the target, or inelastic in which

energy is also transferred to the target and causes a change in it’s internal configuration.

In this section, various classes of scattering phenomenon are described which are relevant
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to this research.

One type of scattering which can occur is an elastic collision, where only momentum is

transferred to the target through the reaction

X + e→ X + e (4.22)

and the projectile leaves with its initial energy.

It is also possible for inelastic scattering to occur with excitation to a bound state,

sometimes called electron-impact excitation, which can be described by the general equation

X + e→ X∗ + e′ (4.23)

where the target is left in some excited state X∗. The state to which the target is excited

will be dependent on the amount of energy transferred from the projectile and the internal

structure of the target.

In cases where that the energy transfer is sufficiently high, it may be possible for one

or more of the electrons which are bound to the target to be excited above their binding

energy and ejected. This results in ionization of the target through the reaction

X + e→ X+ + 2e (4.24)

Multiple ionization is also possible, provided that sufficient energy is imparted by the in-

coming electron.

In the case of molecules, it is also possible that the collision may result in dissociation.

In this case, the molecule breaks up into one or more fragments through a process such as

AB + e→ A+B + e′ (4.25)

Both neutral and ionized fragments can be produced. The mechanisms of dissociation are

discussed in detail in Section 4.2.4. Dissociative electron attachment is also possible. In

this situation, the projectile becomes bound to the system and forms a negative ion upon

dissociation through

AB + e→ A− +B (4.26)

4.2.2 Electron-Impact Excitation

When inelastic scattering results in excitation of the target, the routes of atomic and molec-

ular excitation that are possible are heavily dependent on the impact energy[77, 80]. At

high (hundreds of eV) and low (< 50 eV) energies, the dominant excitations are optically

allowed, electric dipole transitions. When considering intermediate energies of 20 eV to

100 eV, however, there can be a considerable number of optically forbidden excitations that



CHAPTER 4. ELECTRON-IMPACT COLLISIONS 41

may also be permitted along with electric dipole processes. Exchange (or “spin-flip”) col-

lisions, where the projectile and a valence electron change places, may also occur at some

energies, causing spin forbidden singlet-triplet mixing. In this section, we give a qualitative

description of these excitation processes. The mathematical forms of their associated cross

sections are given in Section 4.2.3. For a more in depth discussion of the topics covered

in this section, the reader is encouraged to read the excellent review article by Hall and

Read[80].

The source of the different regimes of electron-impact excitation is the degree to which

the incoming electron perturbs the electric field of the target, quantified through the impact

parameter (Section 4.1.1). The resulting time-dependent electric field can be considered[80]

to be comprised of harmonic components across some spectral range. When considered

from this perspective, the passing electron has the same effect as a time-dependent photon

field comprised of photons spanning the same spectral range; hence, the electron can be

considered to create a spectrum of virtual photons. Therefore, the types of interactions

can be considered through this virtual photon spectrum via the multipole moments of the

electromagnetic field created by the projectile/target system.

The effect of the impact parameter becomes evident when examining the multipole

expansion[81] of the Coulomb potential between the electron and target

V (r) =
1

4πεo

[
1

r

∫
dτ ′ρ(r′) +

1

r2

∫
dτ ′ r′P1(cos θ′)ρ(r′)

+
1

r3

∫
dτ ′ (r′)2P2(cos θ′)ρ(r′) + . . .

]
(4.27)

where Pn(x) are the associated Legendre polynomials. The dominant excitations in a given

energy regime can be understood by examining the most significant term in this series for

a given separation between target and projectile.

When the impact parameter is large, the electron remains a large distance away from the

target as it passes by. Therefore, the electric field remains relatively constant throughout

the collision process, and as a result, the series in Equation 4.27 is dominated by the

dipole term. This means optical dipole transitions become the most significant excitation

mechanism for large impact parameters. Electric dipole transitions are also highly peaked

in the forward direction[77], as for θ = 0 the dipole term is also dominant.

At smaller impact parameters, but still at an approach distance which is on the same

order as the size of the target, the incoming electron distorts the electric field to a much

greater degree. At this point, other terms in the multipole begin to dominate and electric

quadrupole transitions become more important so that at this range, optically forbidden

transitions are much more likely to occur. These excitations are also enhanced[77] relative

to electric dipole transitions at larger scattering angles.

When the electron approaches at very close distances it is possible for exchange collisions
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to occur. In this type of collision, the projectile changes places with a valence electron in

the target resulting in a change in the multiplicity of the target. This type of collision

is predicated on the speed of the projectile being similar to that of the orbiting valence

electrons and so is most likely to occur only over a very short energy range. However, it is

also the only source of singlet-triplet mixing in electron collisions, as direct excitations such

as magnetic excitation of spins are much weaker than the exchange process.

4.2.3 Inelastic Cross Sections for Fast Electrons

It was shown in Section 4.2.2 that there are several types of excitations which can occur

during inelastic scattering of electrons. Optically allowed transitions, where states are

connected by an electric dipole transition, are the most readily excited. Other types of

inelastic scattering include exchange processes and spin-allowed but optically forbidden

transitions. The cross sections from some of these processes can be described by Bethe-

Born theory at high impact energies[82, 83]. When the cross section is plotted as a function

of impact energy, in a so called “excitation function”, each type of collision can be seen

to have a different functional form in the energy dependence, which allows them to be

readily differentiated. Below, expressions for the integral cross section for each of the

aforementioned types of collisions are presented. These expressions apply to both atomic

and molecular targets. For a more in depth discussion of the Bethe-Born theory applied to

fast electron scattering, the reader is encouraged to read the review article by Inokuti[82].

One can arrive at the differential cross section for each type of inelastic scattering from

the first Born approximation (Section 4.1.3) via the expression

dσn
dΩ

=
µ2c

4π2~4

k′

k

∣∣∣∣∫ dK

∫
dr

∫
dr1dr2 . . . drZ ei(K·r) 〈ψn(rj)|V |ψ0(rj)〉

∣∣∣∣2 (4.28)

which is integrated over the angular frequencies of the momentum transfer K, the pro-

jectile’s position r and the positions of the target’s internal electrons r1, r2, . . . , rZ . The

interaction potential V is given by the Coulomb potential

V = −
Z∑
i=1

ze2

|r− ri|
+
zZe2

r
(4.29)

in terms of the nuclear charge number Z and the projectile charge number z. The factor

z ensures that the expression is valid for electrons and positrons. By first integrating over

the projectile co-ordinate, one can write this expression in a greatly reduced form as

dσn
dΩ

= 4z2

(
µe2

~2

)2
k′

k

|εn(K)|2
K4

(4.30)

putting the cross section in terms of the momentum transfer K = k − k′ and the term
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εn(K), which can be interpreted as the inelastic scattering form factor. This factor can be

found using the expression

εn(K) =

∫
dr1dr2 . . . drZ

〈
ψn(rj)

∣∣∣∣∣
Z∑

m=1

ei(K·rm)

∣∣∣∣∣ψ0(rj)

〉
(4.31)

Rather than being dependent on the momentum transfer vector, this expression can be

further reduced to a scalar equation under the assumption that the initial state |ψ0〉 is

either spherically symmetric or that the starting orientations of the target ensemble are

randomly distributed. This is valid in most situations. As θ is related to the momentum

transfer direction[82] and φ on the anisotropy of the target distribution, the conversion to

a scalar equation eliminates all angular dependence from the scattering cross section. One

can then write the scattering cross section in the form

dσ

d(lnQ)
=
πz2e4

Eo

|εn(K)|2
Q

(4.32)

in terms of the impact energy Eo, the projectile’s charge z, and the quantity

Q =
~2K2

2me
(4.33)

which has units of energy and is related to the magnitude of the momentum transfer K and

the mass of the electron me.

Typically in atomic physics, one prefers to use the generalized oscillator strength rather

than the inelastic scattering form factor. These two are related by the expression

fn(K) =
En
Q
|εn(K)|2 =

En
R∞K2a2

o

|εn(K)|2 (4.34)

in terms of the change in momentumK, the transition energy En, the Rydberg constant R∞,

and the Bohr radius ao. This expression is just the generalization of the optical oscillator

strength

fn =
En
R∞

M2
n (4.35)

which is dependent on the square of the dipole matrix element

M2
n =

1

a2
o

∣∣∣∣∣∣
∫ Z∑

j=1

〈ψn|xj |ψo〉 dr1 . . . drZ

∣∣∣∣∣∣
2

(4.36)

where xj is a component of rj . The generalized oscillator strength can be shown to be equal

to the optical expression in the limit

lim
K→0

fn(K) = fn (4.37)



CHAPTER 4. ELECTRON-IMPACT COLLISIONS 44

Using this more convenient notation,the differential cross section can be written in the

form
dσ

d [ln(Kao)2]
=

4πa2
oz

2

Eo/R∞

fn(K)

En/R∞
(4.38)

From this expression for the differential cross section, one can find the integrated cross

section for a given transition by applying the formula

σn =
4πa2

oz
2

Eo/R∞

∫ (Kao)2min

(Kao)2min

fn(K)

En/R

d(Kao)
2

(Kao)2
(4.39)

integrated over all possible momentum transfer values. This general expression can be

specialized for different classes of excitations and then expanded in an asymptotic series.

The remainder of this section is dedicated to these series solutions.

For optically allowed transitions, we arrive at a solution of the form

σn =
4πa2

oz
2

Eo/R∞

[
fn

En/R∞
ln

(
4cnEo
R

)
+O

(
En
Eo

)]
(4.40)

which is dependent on the square of the dipole matrix element (4.36) or alternatively, the

oscillator strength. The parameter cn is an experimentally derived constant. One can find

this constant[83] by making a plot of σnEo against lnEo, known as a Fano plot[82]. The

slope of the line will be proportional to the oscillator strength foptn while the constant cn

can be determined from the intercept of the line.

There are two important conclusions to draw from this expression. First, is that the

energy dependence of optically allowed collision channels have a (lnEo)/Eo dependence

at high energies. Second, the electron impact cross section is related to the optical os-

cillator strength. Thus, if photon collision data is available for some optical channel, the

corresponding electronic cross section can be determined from the Fano plot.

One can also derive an expression for optically forbidden but spin-allowed transitions.

The asymptotic expansion has a similar form as that for optically allowed transitions and

is given by the expression

σn =
4πa2

oz
2

Eo/R∞

[
bn +

γn
Eo/R∞

+O
(
E2
n

E2
o

)]
(4.41)

in terms of the parameters

bn =

∫ ∞
−∞

d
[
ln (Kao)

2
] fn(K)

En/R∞
(4.42)

γn = −m
2µ
fn −

En
4R∞

dfn(K)

d(Kao)2

∣∣∣∣
K=0

(4.43)

However, since for optically forbidden transitions the asymptotic limit is fn = 0, the cross
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section reduces to approximately

σn =
4πa2

oz
2

Eo/R∞
bn (4.44)

which has an impact energy dependence of E−1
o . From the functional form, one can see

that the Fano plot of an optically forbidden transition should yield a flat line.

We can also consider exchange collisions. While this type of excitation is not explained

by the Bethe-Born theory, the form of their cross sections is still well known[83]. Exchange

interactions are sharply peaked at an energy where the impact velocity of the projectile is

on the same order[77, 80] as that of the valence electrons of the target. At higher energies

beyond this maximum, the cross section rapidly falls off as E−3
o .

In conclusion, this section demonstrates that inelastic scattering cross sections have

forms which demonstrate similar behaviour amongst collision processes that share a common

underlying characteristic. As such, we can use the form of an observed relative cross section

at higher energies to determine the class of collision process which may be occurring in a

given experiment. Optically allowed channels take on a (lnE)/E dependence while those

which are spin forbidden but optically allowed demonstrate a simple 1/E dependence at high

energy. Those which are both optically and spin forbidden, where the projectile electron

is exchanged in the collision, are sharply peaked at some lower energy and then fall off as

1/E3 at higher energies. As such, we can say quite a bit about the type of collisions which

may be occurring a given experiment simply by studying their energy dependencies.

4.2.4 Dissociative Collisions

During electron scattering from molecules, the projectile may ionize the target by trans-

ferring sufficient energy for a single electron to be excited beyond its binding energy. It

may also excite atomic constituents beyond their binding energies, resulting in dissociation

of the molecule. Two common methods of dissociation can occur in electron collisions,

depending on the final state to which the target is excited, namely: direct dissociation and

pre-dissociation mechanisms.

In direct dissociation, the collision results in an excitation where one or more atoms

are transferred to energy levels that lie beyond the dissociation limit, allowing it/them to

escape the molecular potential. The channels by which dissociation occur are predominantly

governed by the Franck-Condon principle (Section 3.7.2), with excitation occurring to areas

of the molecular potential curve which overlap with the Franck-Condon region. If this

region contains the inner repulsive part of the curve and lies above the dissociation limit,

then breakup can occur.

A good illustration of the Franck-Condon principle applied to molecular dissociation

can be found in Borst and Zipf’s analysis[84] of the electron impact dissociation of O2

and the production of O(5P). Figure 4.2 shows the potential energy curves of O2 for the

ground X3Σ−g state and two excited state curves. Upon excitation to the upper curve, the
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Figure 4.2: Molecular potential curves for O2 for the ground and select excited states taken
from Borst and Zipf[84]. Dissociation can occur from the upper states in the overlapping
region above the dissociation limit. In the case of the repulsive state, the entire region results
in dissociation. For the attractive potential, part of the region lies below the dissociation
limit and if excitation occurs to this part of the curve, the molecule will remain bound
rather than dissociate and will instead radiatively decay.

transition will occur to this repulsive state in the region shown which is within the Franck-

Condon region of the ground state. The height above the dissociation limit will determine

the released kinetic energy of the fragments.

In the second dissociation channel, the molecular potential of the state converging to

the O(3P) + O(5S) limit is attractive in nature, permitting a bound state. One will notice

that now, the Frack-Condon region extends both above and below the dissociation limit.

If the excitation occurs to the inner wall above 14 eV, dissociation can occur as the atom

has energy in excess of the binding potential. However if on the other hand the excitation

occurs to the part of the potential curve below 14 eV, the molecule remains bound and will

radiatively decay to the ground state at a later time.

In the case of pre-dissociation, the molecule is initially excited to a bound state where

the potential curve is attractive. If this state overlaps with a second repulsive curve, then it

may be possible for the molecule to transfer to this second state on time scales faster than
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Figure 4.3: Molecular potential curves for N2 taken from Walter et al.[86]. The arrows
indicate pre-dissociation processes where there is overlap between the initial attractive state
and the final repulsive state. The molecule will undergo a radiationless transition and
dissociate.

those of radiative decay processes. The molecule will then pre-dissociate rather than emit a

photon. Thus, pre-dissociation is different from the direct mechanism in that the excitation

is first to a bound state rather than to a configuration lying above some dissociation limit.

One can understand the pre-dissociation process by considering electron impact of molec-

ular N2 where pre-dissociation plays a significant role in the dissociation dynamics[85, 86].

Molecular potential curves for the excited state of this system are shown in Figure 4.3, taken

from the work of Walter et al.[86]. It can be seen that there is a region of overlap between

the b1Πu and c′3Πu states. If the molecule transitions from the former deeply bound state

to the latter, as shown by the arrow in Figure 4.3, its energy will be sufficiently high above

the 2D + 4S dissociation limit that a pre-dissociation process can occur. The same can be

said of the b′1Σ+
u state’s transition to the 33Πu state, also marked by an arrow.

4.2.5 Conclusion

In this chapter, electron scattering is presented both in a phenomenological and theoret-

ical manner. The quantum treatment of scattering has been described by moving from

the classical picture to the time-dependent Schrödinger equation and the various types of

cross-section values which can be reported for scattering experiments are described. Elec-

tron impact phenomena are outlined and detailed theoretical forms are given for inelastic
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scattering cross-sections. It was shown that the latter can be classified as optically allowed,

spin-allowed but optically-forbidden, and spin-forbidden exchange collisions. Each class of

scattering’s cross-section has its own distinct mathematical form as a function of energy.

Finally, dissociative collision are described phenomenologically with a special focus on direct

and pre-dissociation mechanisms.

This work deals with various electron scattering experiments, with a focus on dissociative

production of metastable species from molecular targets. As such, understanding how

various dissociation processes occur and can be quantified is important. As the examination

of the cross-section as a function of energy in these experiments is an integral component

of the analysis, being able to classify the collision channel through the function form of this

cross-section is an integral part of this work.



Chapter 5

Metastable Detector Setup

In this chapter, a description is given of the apparatus used in the subsequent experiments

to detect metastable products of electron impact collisions. The entire setup is sealed in a

vacuum chamber consisting of three stages. The first houses the electron collision chamber,

containing the electron and target beams and associated monitoring hardware. This is

connected to the detection chamber containing the gas matrix detector by a drift tube which

is employed to differentiate the product by velocity, allowing for time-of-flight spectroscopy

of the collision products. Additional counting hardware permits an alternative method

for acquisition of photon counts as a function of energy to produce excitation functions,

permitting a more in-depth analysis of the reaction.

Each of the following sections provide a detailed description a different portion of the

system, including the vacuum chamber, the electron gun and associated hardware, the gas

matrix detector, and the data acquisition hardware. In the final section, an overview of the

different types of analysis methods used in this work are described as well as some of the

mathematical details necessary to apply them to the data.

5.1 Vacuum Chamber

A schematic overview of experimental apparatus is shown in Figure 5.1. In the first cham-

ber, electron impact of a target beam generates the metastable products. These then travel

down a drift tube to another chamber containing the gas-matrix detection layer. When

metastables impinge on this surface, they undergo some process (typically excimer forma-

tion) which results in de-excitation and the emission of a photon. This photon is then

measured by a photo-multiplier tube (PMT), allowing detection of the metastable species.

The main collision chamber contains all of the equipment necessary to generate the

metastable products through electron impact. This includes the electron gun assembly,

Faraday cup detector, gas injector and vacuum pumps. The electron gun and Faraday

cup assembly are described in detail in Section 5.2. The target gas was injected using a

demagnetized stainless steel hypodermic needle 2.3 cm in length with an internal diameter

49
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Figure 5.1: Diagram of the experimental apparatus. Shown are the amplifier, A; discrim-
inator D; pulser, P; filter, F; turbopumps TP; electron gun, EG; microwave cavity, MC;
Pirani gauge, BG; rare gas supply, RG; deflector plates, De; feed gas, FG; multichannel
scaler, MCS; needle valve, NV; photomultiplier tube, PMT. Reproduced from Kedzierski et
al.[45].

of 0.66 mm. The pressure upstream of the needle was monitored using a MKS Baratron

gauge and regulated by a needle value.

Electron impact was typically performed in a crossed beam geometry with the target and

electron beams aligned perpendicularly and mutually orthogonally to the drift tube. For

dissociation experiments, this is the ideal configuration to allow fragments to travel towards

the detector while minimizing collisional losses from the target beam. Alternatively, the

injection nozzle could be rotated so that the target beam was injected collinear to the drift

tube, allowing for the detection of metastable molecules. Rotation was necessary, as without

collinear injection, the initial momentum of the target beam would prevent non-dissociated

molecules from reaching the detector.

Differential pumping of the main chamber was also critical to achieving a functioning

system. As the target gas was constantly injected into the chamber, the electron cathode

was continually exposed to relatively high levels of potentially damaging gases. In initial

experiments by Corr[48], the cathode was directly exposed to the O2 target beam and lasted

only about 8 h, motivating the current design where the electron gun housing and drift tube

are separately pumped from the main chamber. The introduction of differential pumping

prolonged the lifetime of the cathode to months rather than hours and reduced the possi-

bility of in-flight collisional loses of metastables in the drift tube. Pumping was performed

with two Varian TV 701 turbo-molecular pumps with pumping speeds of 690 L/s. The use

of turbo pumps also created an oil free environment, preventing additional contaminants
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from accruing on the electron gun or detector surfaces. Before gas injection, these pumps

were capable of maintaining a background pressure of 2× 10−7 torr, which then rose to

around 10−4 torr to 10−5 torr after gas injection.

After metastables were generated in the main chamber, they would then travel down a

26 cm drift tube towards the detector. Quench plates within this area could be activated to

generate an electric field capable of quenching Rydbergs, which was useful for checking that

such particles were not present in the detected signal. A plexiglass shutter not shown in

Figure 5.1 within the drift tube could also be closed, preventing metastables from reaching

the detector but still permitting the detection of optical excitations generated in the initial

electron pulse. This was useful in separating the prompt and metastable signals in the

case of overlap. Once metastables passed through the drift tube, they would arrive at the

detector surface. The details of the construction and operation of the detection region are

fully described in Section 5.3.

5.2 Electron Gun

The electron gun system consists of the electron gun assembly and a Faraday cup for

current monitoring. A schematic of the electron gun assembly can be seen in Figure 5.2. A

Thoriated Iridium cathode was used rather than a conventional Tungsten one. The reason

for this is that the former is far more resistant to the harsh environment used in these

experiments, including constant exposure to relatively high levels of atmospheric gases and

higher chamber pressures that what are optimal for Tungsten cathodes. The choice of

cathode combined with differential pumping of the electron gun housing (Section 5.1) were

both critical in prolonging the life of the cathode.

Before entering the collision region, the electron beam was shaped by a series of lensing

electrodes which allowed for collimation and focusing of the output. The emission current

profile as a function of extraction voltage is shown in Figure 5.3 and can be seen to be

relatively constant over much of the energy range of the gun. A final gating electrode

permitted the electron beam to be pulsed by selectively applying a negative voltage, acting

as a grid to prevent the flow of electrons into the collision region.

Magnetic focusing after the final electrode was employed to ensure the beam had a con-

stant cross-sectional area and emission current[51] across a wide energy range. The field

was generated by four 1.5 cm diameter, 15 cm long Alnico-V magnetic rods arranged in a

quadrupole configuration as shown in the inset of Figure 5.2. The rods were oriented with

like poles at the same end. The design also provided another advantage - the open area

around the emission aperture permitted free passage of neutral fragments toward the de-

tection chamber while the magnetic field exerted a force on any charged particles created in

the collision region, deflecting them from the detector and providing discrimination against

ions in the final signal.
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Figure 5.2: Schematic of the electron gun assembly. Shown are the support rods, SR;
filament holder, FH; extraction electrode, EE; collimation electrode, CE; gas inlet capillary
tube, CT; inner Faraday cup, IC; outer Faraday cup, OC; magnetic rods, MR. In the left
schematic the magnetic rods are denoted with a dashed line, showing their orientation with
respect to the electrodes and the slit to the gas inlet. A heavy dashed line at the top of
the diagram shows the magnitude of the magnetic field, according to the scale on the right.
Reproduced from LeClair et al.[52].

During the electron beam pulse, a continuous stream of optical excitations were gen-

erated in the collision region. This flux of photons would partially reflect off the detector

face and arrive as a prompt pulse (see Figure 5.5) which served as an excellent marker of

the start of the TOF spectrum. However, the constant glow of the hot cathode was also a

source of background radiation throughout the spectrum but could be removed through a

constant subtraction in post-processing.

To measure the emission current, the electron beam was collected by a double Faraday

cup placed 7.3 cm away from the electron gun filament. The majority of the current (>99%)

entered the inner cup (11 mm long and 9.4 mm diameter) which was held at a +20 V bias

relative to ground. The beam was collimated by a 7.6 mm aperture before entering the cup,

which was maintained at ground.

5.3 Gas-Matrix Detector

The heart of the apparatus is the gas matrix which induces the de-excitation of the metasta-

bles, permitting their detection upon radiation of a photon. This layer is formed by deposit-

ing a gas, typically a noble one, onto the surface of a cold finger. Usually, the de-excitation

mechanism relies on the formation of an excimer on the layer surface. This is the case for rare

gas matrices[51] and other solid layers when reacting with metastable atoms but it is also

possible for molecular de-excitation to occur through other energy transfer mechanisms[63].
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Figure 5.3: Integrated electron current measured by the inner Faraday cup as a function of
extraction voltage. Electron pulses were 27 µs long with a repetition rate of 1 kHz.

Solid rare gas layers have been demonstrated to be effective[51] in detecting emission from

metastables originating from atoms with a np4 ground state configuration such as O(1S),

O(1D) and S(1S) as well as other atomic and molecular states such as CO(a3Π). Other

gases such as N2 have also been shown[63] to be effective in detecting some of these states

as well.

An illustrative example of the excimer formation process is the case of O(1S) reacting

with a solid Xe layer to produce XeO. The potential energy curves for this system are shown

in Figure 5.4. As the O(1S) atom approaches the surface, it binds with Xe in the 21Σ+

state. It can then transition to either the inner repulsive wall of the 1Π state, or into the

bound 11Σ+ state which radiate in the near IR or ultraviolet respectively. The lifetime of

the excimer is around 20 ns[51] while the lifetime of the bare O(1S) atom in the gas phase is

around 0.8 s[18]. A similar process has been observed to occur in other solid layers including

other rare gases[51], and N2[63].

The solid gas layer was formed on a solid copper cold finger (2.5 mm diameter) typically

cooled to 18 K to 25 K and this temperature was maintained by a Advanced Research

Systems ARS-4HW helium cryostat regulated by a Lakehead 331 Temperature Controller.

The cold finger was mirror polished and nickel plated before installation. In order to deflect

photons towards the PMT, the face of the cold finger was cut at a 45◦ angle relative to

both the drift tube and the line of sight of the PMT which themselves are perpendicular

to each other (see Figure 5.1). While vacuum in the collision chamber and drift tube were

maintained by turbo-pumps, additional pumping of the detection chamber was not needed

as the cold finger acted as an effective cryopump for maintaining vacuum in this region.

In order to form the layer, gas was flowed over the face of the cold finger, freezing on the

surface. Gas injection was controlled by a needle valve upstream of the nozzle and monitored
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Figure 5.4: Molecular potential curves for the XeO system. The dashed lines represent
curves taken from Dunning and Hey[50] and Simmons et al.[29] while the solid lines are from
Lawrence and Apkarian[44]. The diagram is reproduced from McConkey and Kedzierski[51].

by a Pirani gauge. Injection was performed throughout an experimental run in order to

continuously refresh the frozen layer. This was necessary as interactions between the surface

and residual target and background gases around the layer would degrade the surface over

time. After prolonged data acquisition, thickening of the frozen layer would cause a drop

in sensitivity as the surface temperature would increase with increasing distance from the

cold finger surface. To mitigate this effect, the layer was boiled off from time to time and

re-deposited in order to maintain a working sensitivity.

Detection of the photons emitted from the surface was performed with a Hamamatsu

R649 photo-multiplier tube (PMT) with a borosilicate glass window capable of detecting

photons in the 300 nm to 850 nm range. The unit was cooled to reduce thermal electrons

from the photocathode and PMT using a C10372 thermoelectric cooler. A plexiglass light

pipe was placed between the cold finger and PMT in order to increase the solid angle of

detection and boost signal levels. Bandpass filters could also be inserted between the light

pipe and the PMT to isolate a particular spectral region of interest in any given experiment.

5.4 DAQ System

All time sequenced elements of the system such as the pulsed electron beam and data

acquisition (DAQ) modules were controlled by a master oscillator operating typically at
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frequencies of about 1 kHz. Control pulses delayed from this master trigger would then

activate each individual element. In all experiments, data was acquired by measuring pulses

from the PMT corresponding to photons generated at the detector surface. These were first

processed by shaping and discrimination electronics before being registered. Two different

methods of acquisition were employed either using a multi-channel scaler (MCS) or dual-

gated photon counter which could be used for two separate types of photon counting studies.

The signal conditioning chain can be seen in Figure 5.1. Pulses from the PMT were

first amplified by an Ortec 474 Timing Filter Amplifier. An Ortec 584 Constant-Fraction

Discriminator then discriminated the pulses against noise, generating a fast TTL pulse which

was then registered with the counting hardware. Acquisition was performed with either

a SR430 multi-channel analyzer or SR400 dual gated photon counter, both by Stanford

Research Systems.

5.5 Analysis Methods

When examining metastable collision data there are generally two methods which provide

the most relevant information for examining the scattering process. One could measure

the time-of-flight spectrum for the arrival of metastables at the detector surface for a fixed

impact energy or examine the signal appearing in a given time window while varying the

energy to produce an excitation function. Both of these methods were used extensively and

are discussed in detail below.

5.5.1 Time-of-Flight Spectroscopy

One method of analysing the metastable products of a collision experiment is through time-

of-flight (TOF) spectroscopy. As these are massive particles, there is a measurable time

delay (usually tens or hundreds of microseconds) between their excitation by the electron

beam and their arrival and subsequent de-excitation at the detector surface. This time

delay allowed for a clear separation from the prompt photons produced by electric dipole

excitations and metastable particles of differing energies.

To acquire a TOF spectrum, one could use the MCS to count the photons referenced

from the start of the scan based on a pulse from the master oscillator. An example of this

type of spectrum is shown in Figure 5.5. There are a few features in this scan to be noted.

First is the “prompt photon” signal which corresponds to optical excitations in the collision

region and are produced throughout the duration of the electron pulse. This prompt feature

also acted as a marker for the beginning of the scan during analysis and could also be used

in some situations as an internal calibration to normalize between different data sets. A

peak or series of peaks (“metastable feature(s)”) in later time bins would also be observed

corresponding to the metastables reaching the detector and radiating with arrival times

based on their energies.
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Figure 5.5: Diagram of a typical time-of-flight (TOF) spectrum. Some time after the initial
burst of prompt photons excited by the electron gun, metastable products impinge on the
detector surface radiating photons.

As the drift tube is of fixed length, the time taken to travel the drift region is directly re-

lated to the metastable particle’s velocity v or equivalently its kinetic energy E = (1/2)mv2.

Thus, it is possible to also form an energy spectrum of the arriving metastables from the

TOF distribution. A simple transform exists relating the TOF distribution F (t) and energy

distribution F (E) given by

F (E) =
t3

mD2
F (t) (5.1)

in terms of the drift tube length D and the mass of the particle m. The derivation of

this transform is outlined in Appendix B.2 and further details can be found in Smyth et

al.[87]. The time and energy distributions can be useful in emphasizing different parts of

the metastable spectrum. An example of the markedly different behaviours in the time and

energy domain of a spectrum can be seen in Figure 5.6.

As the electron pulse has a finite width, excitations are produced throughout the pulse

length. This can cause a “smearing” of the TOF distribution, broadening the metastable

features. For a pulse of width ∆t, the energy spectrum has a corresponding broadening of

∆E

E
=

2∆t

t
(5.2)

A derivation of this relationship is given in Appendix B.2. Ideally, one would like to work

with the shortest electron pulse possible to resolve all of the metastable features in a given
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(a) TOF Spectrum (b) Energy Spectrum

Figure 5.6: Demonstration of the time to energy spectrum transform applied to a mock
TOF distribution. On the left is the spectrum in the time domain while the plot on the
right shows the same distribution transformed into the energy domain. The spectra are
markedly different in shape and as such can each be used to emphasize different parts of
the distribution.

spectrum but this comes at the cost of reduced signal. As such, there is often a trade-off

between the best resolution and high signal-to-noise ratios.

5.5.2 Excitation Functions

One can also examine the cross-section for various metastable products as a function of en-

ergy in an excitation function. This type of analysis is particularly useful for determining the

onset of an excitation channel and identifying the class of excitation through examination

of its behaviour over the energy range (Section 4.2.3).

To acquire an excitation function, one can employ a dual-gated photon counter. Two

time windows can be established relative to the start of the electron pulse which count

the total number of photons arriving within a given time window. It is then possible to

simultaneously measure the photons arriving during the prompt photon peak and those in

a time window corresponding to one or more metastable features. One can then acquire

relative cross sections for the prompt and metastable features while varying the electron

impact energy, producing excitation functions for both features. To aid in the automation

of this type of acquisition, this work used a program developed by Jeff Hein to automatically

configure the photon counter to set up these windows, acquire the photon counts across a

desired energy range, and save the individual spectra to disk for further analysis.

Acquiring both the prompt photon and metastable excitation functions simultaneously

is often useful for forming an internal energy calibration. As the optical excitation channels

in a given collision process are usually well studied in comparison to metastable production,

one can look to previous studies to determine energy onsets of these electric dipole channels

to fix the impact energy and account for any shifts to the electron energy within the system.

In some serendipitous situations, one may also be able to determine the absolute cross
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section for an optically allowed metastable production channel if there is a single or vastly

dominant optical excitation in the prompt photon window. If data on the oscillator strength

of the metastable feature is available from photodissociation data, one can apply the Born-

Bethe theory (Section 4.2.3) to derive the absolute cross-section value.

5.5.3 Data Smoothing

Due to the low signal-to-noise ratios inherent in studies of low probability collision events,

combined with the constant background from the hot cathode, there tends to be a great

deal of channel-to-channel noise in both the TOF spectra and excitation functions. In order

to have a better understanding of the underlying structure of the data, it is often useful

to applying smoothing. While adjacent averaging can be employed, more sophisticated

methods can also be used to remove noise while distorting the signal tendency as little as

possible. One such method is Savitzky-Golay filtering[88].

In this method, successive subsets of adjacent data points are fit with an N -degree

polynomial, typically a second or third order one, using least-squares fitting. One can use

this method if the data consists of n evenly spaced points (xi, yi) for i = 1, . . . , n, where xi

and yi are the independent and dependent variables respectively. At each point, a change

of variable is made

z =
x− x̄
∆x

(5.3)

where x̄ is the central point of the window. The N -degree polynomial is then fit

Y =
N∑
k=0

aiz
k (5.4)

and the smoothed value at the point xi corresponds to the value of this function at z = 0

(ie., a0).



Chapter 6

Metastable Detection with

Alternative Solid Layers

When using solid layers as a detection medium for metastables, one often works with the

rare gases xenon and neon, which have different advantages. Xenon has been shown to have

a high sensitivity[45] to metastables and higher freezing point relative to other rare gases

but often has large red shifts of the excimer radiation relative to the natural wavelengths of

the gas phase transitions. This can be problematic in some scenarios as this can shift the

radiation out of the visible spectrum and far into the infrared, preventing standard PMTs

from detecting the photons. Neon can be used[51] in situations where lower lying states are

being examined as less red shifting tends to occur and photon wavelengths are often much

closer to those of the natural transitions. States such as O(1D) are then visible to standard

photomultiplier tubes when forming NeO∗ excimers. However, high purity samples of these

gases are costly and so there is a financial motivation to find less expensive alternatives if

possible. This is further compounded by the costs and equipment associated with cooling

rare gas layers. While xenon can be frozen[89] at 161 K using liquid nitrogen, neon freezes

out at 24 K and requires the use of specialized helium compressors to operate. As such,

finding gases which freeze at higher temperatures can bring in added cost savings and widen

the applicability of the technology.

Studies by Schoen and Broida[32] and then later by Kedzierski and McConkey[63] have

demonstrated that solid N2 layers are also sensitive to O(1S) and metastable N2 states.

This suggests that other frozen layers may also be sensitive to certain metastable species

and could be used as alternatives to rare gas layers. The lower costs typically associated

with atmospheric and easily produced gases further motivates these studies. The use of

such layers could also open up possibilities for this technology to be applied directly in the

upper atmosphere and beyond as removing the need for deep cooling makes the detection

of metastables much easier when such a device is placed on a satellite.

There are also a number of astrophysical motivations for studies of metastable inter-

59
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actions with these frozen layers. It is well known[7, 90–92] that metastable atomic and

molecular states can play important roles in the interactions with a variety of ices formed

from atmospheric gases. As such, understanding the physical and chemical interactions is

of considerable interest.

In this chapter, the use of solid CO2 and N2O layers for detection of metastable species

are examined and characterized. A summary of other relevant investigations is also provided

to put this work into context of previous studies. In the closing section, a review of all solid

layers which are known to be sensitive to various metastable species is presented to act

as a guide for future experiments where a specific metastable species of interest is being

examined.

6.1 N2 Layers

Some of the earliest studies of the interactions between metastable states and frozen gas

layers began with studies of solid N2. As a great deal of work has already been performed

on these layers, here, only a summary is provided for completeness. Beginning in the mid

1950s, Broida and Pellam[93] observed phosphorescence after electron bombardment of solid

nitrogen layers frozen at 4.2 K, attributing the signal to atomic nitrogen embedded in the

surface. Further studies by Broida’s group revealed that these layers were also sensitive

to metastable NO and O(1S) produced in electron dissociation of N2O[94] and O2[95].

Measurements of the O(1S) excimer[63] have determined the emission wavelength to be in

the green near 560 nm with a radiative lifetime of approximately 14± 2 µs.

Solid nitrogen layers have also been found to be sensitive to metastable N2 molecules.

Kedzierski and McConkey[63, 64] were able to observe fluorescence from both the a1Πg and
1Γ+

g states after electron-impact excitation. For these molecules, it has been proposed that a

different de-excitation mechanism is responsible for the decay of these metastable states[63].

Rather than forming an excimer which radiatively decays, as occurs with metastable atomic

fragments, it has been proposed that an energy transfer process occurs at the surface which

converts these metastables into an intermediate state that has an optically allowed decay

channel.

6.2 CO2 Layers

There are a number of appealing features in using CO2 as a detection layer, including its

cost effectiveness, high freezing point, and its prevalence in Earth’s atmosphere and extra-

terrestrial environments. Compared to rare gases, it comprises a very large percentage of

our atmosphere and is a common product of combustion, making it easier to obtain at

economical prices. It also freezes[89] at a much higher temperature of 216 K, making pro-

duction of a solid layer much easier than for any of the rare gases. This opens the possibility
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that metastable detection could be performed at temperatures above those obtainable with

liquid He or N2.

Carbon dioxide is also prevalent in astrophysical environments such as comets and in-

terstellar media. For example, interactions between O(1D) and CO2 have been found to

play an important role in the Martian atmosphere[90–92] and in comet systems[7].

In this section, measurements of both metastable atomic oxygen and molecular nitrogen

are described. The solid layer is also characterized to determine the excimer’s radiative

lifetime, the reaction mechanism occurring at the surface, and its temperature dependent

sensitivity.

6.2.1 Detection of Metastable Oxygen

In order to determine the suitability of solid CO2 to detect metastable atomic oxygen,

measurements of electron-impact dissociation of CO2 at 65 eV were performed - a process

known[51, 56] to be a strong source of both O(1S) and O(1D). Emission from the surface

was found to occur in both the green near 550 nm and in the red. Both TOF spectra are

shown in Figure 6.1, and comparisons are made to those measured for O(1S) using a Xe

layer[56] and O(1D) with Ne[62]. The shapes and arrival times of the metastable fragments

are consistent with those previously observed, suggesting that the present green emission

corresponds to O(1S) while that in the red corresponds to O(1D).

The CO2 layer was seen to have a delayed emission relative to solid Xe. One can model

this by convolving the response of the xenon layer and an exponential decay term to account

for the differences in lifetimes. The XeO∗ excimer is known to have a lifetime[51] of 20 ns,

which can be considered to be negligible on the time scale of the spectra in Figure 6.1. If

one wishes to relate the time evolution of the response of the CO2 layer, fCO2(t), to that

of xenon, fXe(t), where the two layers have a difference in lifetimes, τ , this corresponds to

the equation

fCO2(t) =

∫ τ

0
dt′ fXe(t′)e−(t−t′)/τ (6.1)

The data was fit using the non-linear curve fitting algorithm provided in the SciPy

Python package. Using the Xe reference data shown in Figure 6.1a, this model accurately

fits the O(1S) spectrum if a lifetime of 7± 5 µs is assumed (see Figure 6.2). It was not

possible to determine the lifetime of the corresponding O(1D) state as there was no available

TOF spectrum for this state on a rare gas matrix using the same electron pulse width.

One can also speculate as to the chemistry occurring at the detector surface which

gives rise to the observed emissions. One possibility is that atomic oxygen is reacting with

the CO2 ice to form CO3 which then subsequently radiates. The formation of CO3 from

a O(1D)+CO2 reaction is well known[96–102]. Theoretical studies by Mebel et al.[101]

provide a possible reaction pathway which would explain the red photon emission observed

from O(1D) in the present experiment.
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(a) O(1S) with green filter applied for CO2

(b) O(1D) with red filter applied for CO2

Figure 6.1: Emission spectra acquired for both O(1S) and O(1D) from electron-impact of
CO2 at 65 eV using a 27 µs wide electron pulse are shown in 6.1a and 6.1b respectively. The
spectra acquired from CO2 are shown in solid black with constant background subtraction
and Savitzky-Golay filtering[88] applied to both. In each figure, a reference scan taken using
a solid rare gas layer is also shown. In 6.1a, a TOF spectrum with xenon at 100 eV and a
27 µs pulse width is shown. For 6.1b, a spectrum obtained using neon is shown. The data
was taken from Kedzierski and McConkey[62] and acquired at 100 eV impact energy and
a 20 µs pulse width. While the impact energy differs between the scans, the spectra are
sufficiently comparable to allow for differentiation of the fragment species.
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Figure 6.2: TOF spectrum of O(1S) on a CO2 layer. The fitted line shows the response of
the detector assuming a 7± 5 µs lifetime for the excimer on the detector surface based on
the xenon data in Figure 6.1a.

The process is outlined in Figure 6.3. First, the approaching O(1D) reacts with the CO2

present on the surface, forming a weakly bound CO3 complex. This subsequently isomerizes

to a transition state at a slightly higher energy which radiatively decays at 697 nm to form

a C2v-symmetric three-member cyclic structure. This reaction pathway is possible due to

the incoming kinetic energy of the O(1D) atom[101]. Thus, the process follows the reaction

pathway

CO2 + O(1D)→ CO3(C2ν ,
1A1)→ CO3(Cs,

1A′)→ CO3(C2ν ,
1A1) + hν (697 nm) (6.2)

A secondary process may also occur[100] which causes the final state of Equation 6.2 to

dissociate to O(3P) + CO2 through a phonon interaction with the surrounding CO2 ice

involving singlet-triplet mixing with other intermediary CO3 states. However, the present

apparatus has no method of detecting this dissociation process.

To the author’s knowledge, there are no comparable studies for the O(1S) + CO2 reac-

tion. This is likely due to the fact that much of the experimental work was performed by

producing O(1D) through photolysis[96, 97], in which case generating O(1S) is not energet-

ically feasible with the Mercury flash lamps used in these studies. While other studies[100]

generated CO3 via electron impact excitation of oxygen where O(1S) could be created, these

studies examined only the vibrational excitations of CO3 states near the O(3P) + CO2 dis-
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Figure 6.3: Diagram of the CO3 isomerization process occurring at the detector surface
adapted from Mebel et al.[101], including their calculated bond lengths and angles. The
O(1D) + CO2 reaction forms a weakly bound CO3 complex that then isomerizes through an
intermediary state to a three-member cyclic structure, radiating at 697 nm in the process.
The molecular diagrams for each stage indicate the bond lengths in Angstroms and the
angles between the constituent atoms. The energy of each state relative to the O(1D) +
CO2 dissociation limit is shown.
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sociation limit using infrared spectroscopy. Without measurements of photons in the visible

spectrum, it would be unlikely that these groups could isolate a signal generated by O(1S).

Based on the measurements of the lifetime of the state at the detector surface, the time

for the system to bind to form CO3 and then radiatively decay is 7± 5 µs. This reaction

could follow a similar process to Equation (6.2) where some complex is formed which either

isomerizes through a process such as

CO2 + O(1S)→ CO∗3 → CO′∗3 + hν (green) (6.3)

where the green photon emission occurs through some intermediary CO3 complex or by

some excimer formation process such as

CO2 + O(1S)→ CO∗3 → O(3P) + CO2 + hν (green) (6.4)

Quantum chemistry calculations would be necessary in order to determine any possible

channels through which this reaction could occur.

Unfortunately, such computations are non-trivial. The corresponding O(1D) + CO2 cal-

culations were performed[101] using the multireference complete active space self-consistent

field (CASSCF) method which involves extremely large basis sets and heavy computational

resources. Calculations of the O(1S) + CO2 reaction would need to be carried out at the

same level of accuracy in order to determine the appropriate transition states between the

initial and final products.

There are also arguments against this reaction pathways. In the case of O(1D) + CO2,

the radiative CO3(Cs,
1A′) → CO3(C2ν ,

1A1) transition involves a change of symmetry.

This implies that any radiative transition would be rather weak. The TOF spectra of

Figure 6.1 are both relative measurements which make comparing the actual strength of the

emission from the CO2 surface difficult. To make such a calibration would require accurate

measurements of the electron and target beam densities. The wavelength of emission would

also need to be accurately determined in order to account for the quantum efficiency of the

PMT at this wavelength for such a calculation. As such, quantifying the absolute conversion

efficiency of the detection layer is non-trivial.

Another possibility is that the reaction at the surface involves the formation of carbonate

ions (CO2−
3 ). Production of this ion is known[103] to occur between CO2 and O. However,

to the author’s knowledge, information regarding its formation from the 1D or 1S states is

unavailable. If the transition states of this ion preserve symmetry, then any optical decays

to the ground state would certainly dominate the weaker radiation from the neutral process

described above. However, additional theoretical or experimental investigation of the ion

formation from metastable oxygen would be required to assess the viability of this reaction

further.
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Figure 6.4: Observed TOF signal originating from N2(a1Πg) impacting on a solid CO2 layer
with constant background subtraction applied. The solid line indicates the fitted decaying
Maxwell-Boltzmann distribution assuming a temperature of 292 K and lifetime of 80 µs.
The lifetime of the state is consistent with that of N2(a1Πg)[64, 104].

6.2.2 Detection of Metastable N2

Solid CO2 was also found to be sensitive to metastable states of N2. Electron-impact of N2

was performed at 100 eV using a 27 µs electron pulse width. The TOF spectrum measured

with no filter applied to the PMT is shown in Figure 6.4. As the signal was only observed

for gas injection parallel to the the drift tube, it can be concluded that the signal originates

from metastable molecular rather than dissociated atomic states.

The detected molecules likely belong to the set of states measured with solid N2 layers

by Kedzierksi and McConkey[63, 64]. As the a1Πg and 1Γ+
g states have drastically different

lifetimes, one can use fitting techniques to determine which states the present CO2 layer is

sensitive to based on in-flight decay rates.

As the surface is detecting metastable molecular rather than atomic states, one can

assume that the particles are travelling with a Maxwell-Boltzmann distribution of speeds.

Momentum transfer from the electron beam can be assumed to have a negligible effect on

the molecules due to the electron and target beam configuration. If in flight radiative decay

is occurring, one can model the measured signal distribution as a Maxwell-Boltzmannn

time-of-flight distribution (Appendix B.3) with a decay parameter corresponding to the

expression

F (t) = fMB(t) e−t/τ (6.5)

This model was fit to the spectrum of Figure 6.4 assuming that the signal originated from
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a sum of distributions with the form of Equation 6.5 assuming the particles were N2 (28 u)

and a gas temperature of 292 K. As can be seen from the fit in Figure 6.4 that the data

is well fit with a single distribution and a lifetime of 80 µs. This is consistent with the

reported[63, 104, 105] lifetime of 80+40
−20µs for the a1Πg state, suggesting that the surface is

sensitive to this state but not to 1Γ+
g . If the latter state was indeed being detected, this

would greatly skew the distribution to longer flight times[63].

As no filtering has been applied to the PMT, one cannot comment on the wavelength

of the photons being emitted from the frozen layer. Without such information, it would be

difficult to determine the exact de-excitation mechanism involved at the surface. It is likely

that an energy transfer process is occurring which converts N2(a1Πg) to an intermediary

state that then emits a photon through an electric dipole transition in a similar manner to

the process observed in N2 layers[63, 64]. Further work would be necessary to determine

the wavelength range of the emitted photons in order to ascribe the specific intermediary

state being formed.

6.2.3 Temperature Dependence of Layer Sensitivity

Just as with rare gas layers[45, 51], the sensitivity of solid CO2 as a detector was found to

be heavily dependent on the temperature of the cold finger. A study of the sensitivity was

performed using electron impact of a gas CO2 target which produces a significant number

of O(1S) through several channels[56].

Using a 27 µs wide electron pulse with 100 eV impact energy, collisions were performed

while varying the temperature of the cold finger between 17.8 K and 48 K. All obtained

TOF spectra were normalized by scaling the height of the prompt photon peak to be equal

across all spectra after removing any constant background signal. Representative spectra

acquired across the temperature range can be seen in Figure 6.5. Photon fluxes arriving

40 µs to 150 µs after the initial prompt peak were then integrated in each scan to act as a

proxy for the relative sensitivity of the layer.

The results of the sensitivity study are shown in Figure 6.6. Excimer emission was seen

to stop at around 48 K. A nearly linear dependence can be seen as temperatures lower that

begins to level off around 25 K. Measurements below 17.8 K could not be performed as

this was the lower cooling limit attainable with the cold finger. Drawing from tendencies

observed in other solid matrices[45, 64], it is very likely that the relative conversion efficiency

plateaus at some temperature.

While CO2 remains frozen up to 216 K, the likely explanation for the loss of signal above

48 K is increased vapour pressure at the surface of the detector. With this increase comes

additional collisional losses which will quench the metastable species before they reach

the detector surface. This phenomenon is commonly observed in frozen gas layer detec-

tors[51, 63]. Unfortunately, this also means that CO2 is not suitable as a high temperature

metastable detection layer.
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(a) 17.8 K (b) 25 K

(c) 37 K (d) 48 K

Figure 6.5: TOF spectra of O(1S) from electron-impact of CO2 measured with a solid CO2

layer at various temperatures. All spectra have been normalized to match the heights of
the prompt photon peaks for comparison. Savitzky-Golay filtering[88] was then applied to
each spectrum. The O(1S) signal can be seen to be maximal at 17.8 K where the detection
efficiency was the highest. Sensitiviy can be seen to drop with increasing temperature until
the metastable can no longer be observed at 48 K.
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Figure 6.6: Temperature dependent efficiency curve for formation of excimers with a CO2

layer. Results were obtained by varying the temperature of the cold finger and measuring
photon counts after electron impact of CO2.

6.3 N2O

The use of solid N2O was also investigated for its potential in detecting metastable states.

These layers were not found to be sensitive to O(1S) or O(1D) in these experiments. As

Sulphur is isoelectronic with oxygen, it is reasonable to assume that N2O is also insensitive to

the S(1S) state which is observable with other solid layers which are sensitive to metastable

oxygen.

Interestingly, frozen N2O was still found to be sensitive to N2(a1Πg). Shown in Figure

6.7 is the TOF spectrum acquired from electron impact of N2 at 100 eV with the target

beam injected parallel to the drift region.

As with solid CO2 layers (Section 6.2.2), it was assumed that the source of metastables

was singlet states of N2. The model of Equation 6.5 was again fit to the data of Figure 6.7

using a least squares fitting procedure. Assuming a particle mass of 28 u and a temperature

of 292 K, the distribution would correspond to a signal particle species with a lifetime

of approximately 90 µs, indicating that the signal again originated from the a1Πg state.

Differences in the lifetime measured for N2O and CO2 are still within error for the reported

lifetime of this state[63, 104, 105].
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Figure 6.7: TOF spectrum for electron-impact of N2(a1Πg) on a N2O layer at 100 eV.
The fitted curve corresponds to a Maxwell-Boltzmann distributed sample of N2 at 292 K
assuming in-flight decay with a lifetime of 90 µs.

6.4 Future Work

While a preliminary study of CO2 and N2O surfaces as potential metastable state detec-

tors was conducted in this work, there remains several tests which could be performed in

order to better understand the chemistry occurring at these surfaces and their detection

characteristics.

It would be of considerable interest to determine the conversion efficiency of these sur-

faces relative to the rare gases. Experiments involving measurement of metastable states

generally take a significant amount of time due to the relatively low excitation cross-sections

in comparison to optically allowed channels. As such, any improvement in the efficiency of

the detector is greatly desired in order to reduce the acquisition time as much as possible

and reduce costs associated with materials.

However, measuring the conversion efficiency is non-trivial. Typically, one normalizes

the signal according to the prompt photon peak and then compares the integrated area of

the metastable TOF distribution, assuming that the reflectivity of the surfaces are approxi-

mately equal. In the ideal case, this measurement needs to be done using the same spectral

range in order to ensure that the spectral content of the prompt photon signal is the same,

capturing the same optical excitation channels. As the de-excitation process in the various

layers differ in their emission wavelengths, this would require the use of different filters to

capture the same metastable fragment impacting the spectral content of the prompt signal.

In some cases, one can compare the spectra using no filter which guarantees that the spectral
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content of the prompt feature is identical but if multiple metastable features are present,

one cannot compare the conversion efficiency for a specific state. For example, measuring

the signal from CO2 with no filter would sum signals from both O(1S) and O(1D) while in

xenon, only the O(1S) signal would be present, preventing an accurate measurement of the

conversion efficiency.

Additional TOF spectra for both O(1S) and O(1D) using solid CO2 would also be

desirable in order to achieve a better measurement of the lifetime of the intermediate states

formed on the detector surface. The present estimate of the lifetime of the state formed

from O(1S) was hampered by a low signal to noise ratio and so errors are on the order of

70%. Larger acquisition times would lead to a greatly improved statistics, reducing the size

of the error bars. Determining the lifetime of O(1D) would require a comparable reference

spectrum from neon employing the same electron pulse width.

Quantum chemistry calculations or additional experiments are also to further clarify the

reaction occurring at the CO2 surface. Without further information, it is not possible to

ascertain the exact method by which de-excitation occurs in this system. Such calculations

are non-trivial however, as they need to be taken to a very high accuracy, such as the

CASSCF level, in order to determine the excited state energy levels. However, considering

that the O(1S) process in particular has not been studied in detail, combined with the

application of this process to interstellar ices, there does exist some motivation for such a

calculation to be carried out.

6.5 Summary

In this chapter, several frozen layers were examined for their use in the detection of metastable

species and compared to previous results for solid rare gases. Studies of CO2 layers demon-

strated they are capable of detecting both O(1S) and O(1D), emitting green and red light

respectively when impinging on the surface. It was suggested that this process may occur

through the production of either neutral CO3 or its negative ion. The relative conversion

efficiency as a function of temperature was also measured.

The suitability of various layers at detecting metastable N2 was also examined. Both

CO2 and N2O demonstrated the ability to detect the a1Πg state but were unable to observe

the 1Γ+
g state which has previously been resolved with solid N2.

A brief summary of the results found in this chapter as well as previous investigations

on the use of different layers for detecting metastables, including the rare gases, is provided

in Table 6.1. Here, layers which have been found to be sensitive to various metastables is

provided while indicating exactly which species they are sensitive to along with references

to the relevant literature. This allows one to select the appropriate layer for the metastable

in question for future experiments.
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Table 6.1: Summary table of observed metastable signals in the optical wavelength range
by various solid layers. Detection is based on a surface temperature of 18 K. An x indicates
that no measurable signal could be found in the measurements taken within the visible
spectrum while ?? indicates that the measurement has not been performed.

Target
O S N N2 CO

Detector Observed Metastables References

Ne 1S, 1D 1S x x ?? [51], This Work
Ar 1S ?? x x ?? [51]
Kr 1S ?? x x ?? [51]
Xe 1S 1S 2P x a3Π [51, 106]

CO2
1S, 1D ?? x a1Πg ?? This Work

N2
1S ?? x a1Πg,

1Γ+
g ?? [63, 93]

N2O x x x a1Πg ?? This Work
H2O x x x x x This Work



Chapter 7

Metastable N(2P) Production in

Electron Impact of N2

Metastable states of atomic nitrogen have been found to play an important role in a variety

of fields including active nitrogen flowing afterglows[107], the aurora[108], combustion[109],

and discharge chemistry and plasma processing[9]. These energetic states are very reactive

and play a considerable role in the atmospheric chemistry of Earth’s upper atmosphere[110]

and the atmospheres of other planets and moons in our solar system[111, 112].

In this chapter, electron-impact excitations of the 2P1/2,3/2 states are examined. If the

system is not quenched, these metastable states decay to the ground state via an electric

quadrupole transition at 1040 nm or a magnetic dipole transition at 346.6 nm as shown in

Figure 7.1. These states have traditionally been extremely difficult to measure as their

reported[113] lifetime is 12 s, providing a strong motivation for the present work.

The 2P state has been investigated by a number of authors. Some of the earliest studies

date back almost a century to 1924 where Vegard[115] as well as McLennan and Shrum[116]

bombarded frozen N2 layers with electrons and “canal rays”, examining the resulting lu-
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Figure 7.1: Energy level diagram indicating the relevant states in atomic N along with the
associated transitions to the ground state. A more detailed level structure can be found in
Chamberlain[114], Appendix VI.
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minescence. In 1956 Herzfeld and Broida[117], when condensing an N2 flowing discharge

at 4.2 K, also noticed a long lived signal radiating around 523 nm corresponding to the

N(2D→4S) transition (Figure 7.1). A second, weaker peak was also noted at 347 nm which

they attributed to the N(2P→4S) transition. Thus, one would expect to observe fluorescence

from the rare gas matrix at wavelengths close to those shown in the energy level diagram.

7.1 Experimental Setup

The apparatus is described in detail in Chapter 5. Electron-impact of N2 was carried

out in a crossed-beam mode with fragments being detected orthogonal to the target and

projectile beams. In this configuration, one expects to see dissociated atomic N rather

than N2 molecules along the detection axis. The electron beam was pulsed (27 µs width)

with fragments drifting to the solid Xe layer which was maintained at 18 K. The impinging

metastables formed excimer states which radiated and the resultant photons were detected

by the photomultiplier tube.

First, TOF spectra were acquired with a 340 nm filter with a 85 nm FWHM which

corresponded to the spectral region where the metastable feature was observed. Acquisition

of this spectrum took approximately two weeks. An excitation function was then obtained

over the 0 eV to 180 eV range. Taking this data took approximately two months.

7.2 Results and Discussion

The observed TOF spectrum at 100 eV impact energy can be seen in Figure 7.2. In addition

to the prompt photons, two peaks can be observed indicating the presence of metastable

fragments produced by two separate dissociation channels. The prompt photon signal cor-

responds to emission from the (0,0) C3Πu → B3Πg Second Positive band of N2 which

radiates at 337.1 nm[105]. As the filter was centred at 340 nm, the two metastable signals

can be associated with the 2P→4S transition. No signal could be observed in the region

of 520 nm and corresponding to the 2D→4S transition, possibly due to the extremely long

(200 s) lifetime of the N(2D) state (Figure 7.1).

The two metastable peaks can be separated by fitting separate Gaussian curves to

TOF spectrum after the prompt photon peak as seen in Figure 7.2. The two peak centres

correspond to released kinetic energies of 2.7 eV and 0.56 eV for the “fast” and “slow” peaks

respectively. Overlap of the two peaks can be seen for arrival times of 25 µs to 100 µs. This

makes separation of the faster peak difficult due to the significant contribution of the slower

peak and the prompt photon pulse in this region and so the major focus of the investigation

was on the slower peak. The faster metastables are commented on later in the chapter.

For the slower peak, fragments can be observed to arrive for times up to approximately

300 µs after the prompt photons and are well separated from the faster signal in the 100 µs
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Figure 7.2: Photon TOF spectrum for e-N collisions at 100 eV impact energy.

to 300 µs range. This tail corresponds to total released kinetic energies of approximately

0.1 eV, assuming equal energy sharing between the two fragments upon dissociation of the

parent N2 molecule. This implies that the parent molecule has a threshold energy very

close to the dissociation limit for production of N(2P), which is confirmed in the proceeding

analysis.

In addition to the TOF spectrum, one can also consider the excitation probability of

the slower peak as a function of energy. In order to eliminate any contribution from the

faster metastable group, photon counting was gated to measure signals arriving 100 µs to

200 µs after the prompt photons. Both the prompt and metastable signals for the 5 eV

to 30 eV range can be seen in Figure 7.3. A constant background subtraction has been

applied to eliminate any photons coming from the cathode which arrive throughout the

counting windows. The prompt photons are the result of emission by excitation of the (0,0)

C3Πu → B3Πg Second Positive band which radiates at 337.1 nm. Excitation of this state

has been shown[118, 119] to be strongly peaked around 14 eV, which allows the impact

energy scale to be fixed without the introduction of additional calibration targets.

Examination of the excitation function over the 0 eV to 180 eV range, as seen in Fig-

ure 7.4, provides additional information regarding possible excitation mechanisms for the

production of N(2P) metastables. While there is considerable noise due to low statistics,

one can still observe a rapid onset from threshold to a shoulder region near 25 eV to 30 eV

before the signal reaches a maximum and then a gradual fall off at higher energies. One may

also be tempted to interpret further structure in the high energy tail above 75 eV; however
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Figure 7.3: Excitation functions for the C3Πu → B3Πg (0,0) Second Positive band (solid
curve) and metastable signal (dots) arriving 100 µs to 200 µs of the prompt photon signal.
Constant background subtraction has been applied to the metastable signal. The vertical
line at 13.33 eV is shown corresponding to the theoretical value for dissociation into N(2P )
+ N(4S).

these variations are likely due to statistical noise. Including the constant background from

the cathode, the
√
n uncertainty in the signal is approximately 9 units which more than

accounts for the fluctuations in the tail. The shoulder in Figure 7.4 however, suggests a two

channel excitation process. The rapid onset from threshold is typical (Section 4.2.3) of a

spin flip process while the broad, slowly decreasing tail at high energies is indicative of an

optical dipole or at least spin-allowed transition.

It is observed in Figure 7.3 that the threshold for metastable production is very close

to the theoretically determined dissociation limit for N(2P) + N(4S) of 13.33 eV. This,

combined with the kinetic energy distribution of Figure 7.7, would suggest that a direct

dissociation process

e+ N2(X1Σ+
g , ν = 0)→ e′ + N∗2 → N(2P) + N(4S) (7.1)

is a significant contributor to the observed metastable signal. This is further evidenced by

the molecular potential curves shown in Figure 7.5, adapted from the work of Hochlaf[120].

Excitation from the ground state corresponds to the shaded Franck-Condon region. It can

be seen that below 15 eV, the only state which crosses this region is the B′3Σ−u state making

it a likely candidate for the intermediate N∗2 state in Equation (7.1). The other states in

Figure 7.5 can be ruled out as they would correspond to a higher threshold energy. In
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Figure 7.4: Excitation function for the observed metastable signal for the 0 eV to 180 eV
energy range. Counts correspond to metastables arriving 100 µs to 200 µs after the prompt
photons. A constant background subtraction has been applied followed by adjacent average
smoothing. Including this background, the statistical uncertainty in the points is about 9
units.
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Figure 7.5: Molecular potentials for the N2 system including the B’3Σ−u state converging to
the N(2P) + N(4S) dissociation limit. The figures is adapted from the work of Hochlaf[120].
The Franck-Condon region is shaded for excitation from the ground state corresponding[121]
to internuclear separations of 1.06 Å to 1.16 Å[105].

contrast, the B′3Σ−u potential overlaps the Franck-Condon region along the inner repulsive

portion of the curve and so excitation into this state could be occurring up to and even

beyond the dissociation limit, producing N(2P) fragments with very little kinetic energy.

This would correspond to a threshold close to 13.33 eV. Additional evidence can also be

seen in the 0 eV to 20 eV behaviour of the excitation function (Figure 7.4) where the onset

is characterized by a rapid increase from the threshold. This is indicative of a spin flip

process[82] like the singlet-triplet transition which has been proposed.

The second excitation channel is likely a pre-dissociation process. In electron impact

studies of neutral N2, Cosby[85] found evidence of pre-dissociation into mostly N(2D) +

N(4S), but also weakly into N(2P) + N(4S). Ajello et al [122], in their cross section measure-

ments of electron impact of N2 into the c′4
1Σ+

u and b′1Σ+
u states, also found that the latter

state is 84% pre-dissociated with a yield that increases with vibrational quantum number.

Figure 7.6, adapted from Little and Tennyson[123], shows the potential curves for these two

states. It can be seen that higher vibrational levels of the b′1Σ+
u state certainly lie close to

the N(2P) + N(4S) dissociation limit. Such an excitation from the ground state would also

be dipole allowed suggesting that the pre-dissociation mechanism follows the reaction

e+ N2(X1Σ+
g , ν = 0)→ e′ + N2(b′1Σ+

u )→ N∗2(pre-diss.)→ N(2P) + N(4S) (7.2)
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Figure 7.6: Molecular potentials for the N2 system including the c4’1Σ+
u state adapted from

Little and Tennnyson[123]. The N(2P0) + N(4S0) dissociation limit at 13.3 eV is indicated
by the solid line on the right. The Franck-Condon region is shaded for internuclear spacings
of 1.06 Å to 1.16 Å[105]. The black curves represent the calculations of Little and Tennyson
compared to the previous work of Spelsberg and Meyer[124] which is in red.

An optical dipole process is also supported by the higher energy region of Figure 7.4, with a

broad maximum and gradual decline which is the behaviour predicted by Bethe-Born theory

for optically allowed transitions[82]. This reaction would also imply the existence of singlet-

triplet mixing, as the singular multiplicities of the final dissociated state is inconsistent with

a pure dipole transition process.

While significant overlap of the slow and fast peaks in the 25 µs to 100 µs range prevented

acquisition of an excitation function for the fast peak, one can still make some comments on

possible excitation routes for this signal. To glean more information, one can transform the

TOF spectrum of Figure 7.2 into the energy domain as in Figure 7.7 by applying Equation

(5.1) under the assumption of equal energy sharing between the dissociated fragments. One

sees that the slower peak corresponds to products with kinetic energies mostly below 2 eV

while the faster one is produced by fragments over a much broader energy range of about

1 eV to 7 eV while peaking near 3 eV.

The energy range of the faster N(2P) fragments would imply that the inner repulsive

part of the excited state potential curves crosses the Franck-Condon region around 14 eV to

20 eV in order for there to be sufficient energy for excitation of the N(2P) and the kinetic

energy of the released fragment, assuming dissociation into the N(2P) + N(4S) final state.

Considering the numerous theoretical calculations[105, 120, 123–128] of high lying ex-

cited N2 states, possible states which could account for the fast peak can be seen in Figure

7.5 can be identified. The inner repulsive curves of the C ′3Πu and 13Σg states can be seen to
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Figure 7.7: Observed spectrum of the released kinetic energy for N(2P) fragments from
dissociation of N2 at 100 eV impact energy based on the data of Figure 7.2. The solid lines
correspond to the Gaussian peaks plotted in Figure 7.2. The high energy curve has been
multiplied by a factor of 3 for clarity.

cross the Franck-Condon region above 15 eV and could be possible candidates. Excitation

into these states at this energy would result in a released kinetic energy of roughly 1.7 eV

which would be in agreement with the observed signal of Figure 7.7. Any states contribut-

ing to this signal would also require mixture with a singlet state for appreciable excitation

at higher energies as observed in Figure 7.2.

While production of N(2P ) is possible by higher energy dissociation states with partner

fragments other than N(4S), this remains unlikely. Higher energy excitations would produce

steeper inner repulsive curves[71], resulting in higher appearance thresholds and increased

kinetic energy upon release than those observed in the TOF spectrum.

7.3 Conclusion

In this chapter, the production of N(2P) was selectively observed from dissociative excitation

of N2 using a novel rare gas matrix detector. Measurement using TOF methods revealed

two separate excitation channels, or groups of channels which lead to a final N(2P) frag-

ment upon dissociation. Using the released kinetic energy, we were able to suggest parent

molecular states according to their alignment with the Franck-Condon region of the ground

state and recent theoretical calculations. It was found that both direct and pre-dissociation

mechanisms are most likely involved.



Chapter 8

Observation of Electron Impact

Dissociation of OCS Using a Cold

Neon Matrix

Carbonyl sulphide (OCS) is a linear triatomic molecule that is of interest in several fields.

It is believed to play a role in the chemistry of the sulphur cycle[1] in Earth’s atmosphere

and is present in astrophysical phenomena such as diffuse and interstellar dark clouds[129].

It also appears as a pollutant in various low-temperature plasmas[130] and possesses a

strong permanent electric dipole moment[131] making it a standard reference for dipole

measurements.

One of the earliest studies of metastable states formed by electron-impact dissociation

of OCS was by van Brunt and Mumma[132] who found that the process resulted in a variety

of metastable fragments including CO(a3Π), S(5S), and O(5S) in addition to a number of

high lying Rydberg states. However, they were unable to isolate these various fragments

or their associated collision channels with their apparatus. Further work was performed

by Barnett et al.[133] who were able to further resolve these dissociation fragments and

determined their kinetic energy distributions through the combination of channeltron and

tantalum Auger detectors. Kedzierski et al.[60] have also studied the production of S(1S)

using a solid xenon detector. They observed that this particular state was only produced

through a single dipole-allowed channel

OCS + e→ CO(X, ν) + S(1S) + e′ (8.1)

where the CO fragment is excited with a few quanta of vibrational energy. However, to the

author’s knowledge no studies of the S(1D) state are present in the literature.

The present work re-examines dissociation of this molecule using a solid neon detector

with the motivation of trying to observe the production of S(1D) from electron impact.

It has previously been shown[45] with O(1S) and O(1D) that the use of different rare

81
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gases, such as neon and xenon, can result in significant changes to the spectral emission of

excimers formed by these metastable states. In the case of O(1D), moving from xenon to

neon shifted the emission from the infra-red to the visible range permitting study of this

state using traditional PMT detectors. As sulphur is isoelectronic with oxygen, it is hoped

that a similar effect will enable the detection of S(1D) using a solid neon layer.

The production of S(1D) through photodissociation has been studied extensively[134–

141], revealing several optical channels. Dissociation via the first absorption band in the

192 nm to 248 nm region has been shown[139] to produce S(1D) and S(3P) with a branching

ratio of 95:5. Production is dominated by two dissociation channels throughout most of the

band[137]. Recently Bai et al.[141] have also shown that a third, spin forbidden channel

opens up at ∼ 210 nm.

A representation of the potential energy surface along the OC-S bond is shown in Figure

8.1. It can be seen that there are three molecular states, 11Σ+, 11Π, and 11∆ which con-

verge to the S(1D) limit. In the linear geometry, transitions into these states are optically

forbidden but upon bending the 11Σ+ maps onto the 11A′′ state while 11Π, and 11∆ split

into A′ and A′′ Renner-Teller pairs[137], which are then accessible through vibronic cou-

pling. As electron collisions relax optical selection rules governing photodissociation, these

transitions could occur even in the purely linear configuration and so it may be possible to

observe S(1D) from dissociation of these states in the present study.

In regards to the detection of metastable sulphur by rare gas matrices, much of the

previous experimental and theoretical work has been performed with xenon and Argon.

To the author’s knowledge, there is very little theoretical information on the molecular

structure of neon sulphide (NeS). Klos et al.[143] have calculated potential curves for the
3Π and 3Σ− states converging to the S(3P) dissociation limit for several sulphur-rare gas

dimers, including neon, with accompanying experimental data. Aquilanti et al.[144] have

provided similar data for NeS subject to a magnetic field where the Zeeman interactions

separate the hyperfine levels. However, there appears to be no calculations for potential

curves beyond the ground state manifold.

Yamanishi et al.[145] have determined the potential curves for excited states of XeS

which may serve as a guide for the possible behaviour of the NeS. They show a series of

repulsive curves converging to the Xe + S(3P) ground state while states converging to the

S(1S) and S(1D) limits are attractive. Lara et al.[146], also found similar trends in the

potential curves for states converging to the S(3P) and S(1D) limits in ArS. The nature

of these curves is similar to those observed in XeO[51] and NeO[45], which suggests that

similar trends may exist in NeS.

The lack of data regarding the production of S(1D) through electron impact provides

the primary motivation for the present work. A secondary objective is to glean information

regarding the suitability of neon as a detector for observing S(1D) or S(1S) states.
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Figure 8.1: Potential energy curves for the OC-S bond assuming the C-O bond is at its
equilibrium length of 1.13 Å. Singlet and triplet states are denoted with a dashed line or a
solid line respectively. Figure is adapted from Brouard et al.[142].
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8.1 Setup

Electron impact studies were conducted using the apparatus described in Chapter 5. The

electron and OCS molecular beams were arranged in a crossed geometry, mutually orthog-

onal to the line of sight of the detector. This ensured that only dissociated fragments arrive

at the detection surface as opposed to metastable OCS states. During gas injection, the

chamber was maintained at 10−5 torr.

A 27 µs electron beam pulse with energy of 100 eV was introduced, dissociating the OCS

target. Collision fragments would then travel down the drift tube toward the detection layer

maintained at 21 K, forming an excimer state and subsequently radiating. The resulting

photons were then detected by the PMT and registered by the MCS to produce a time-

of-flight spectrum. Emission from both neon and xenon layers were examined in order to

allow for comparison with the previous results of Kedzierski et al.[60].

A series of passband filters were places in front of the PMT to selectively measure

different parts of the optical wavelength region in order to isolate the metastable feature.

These filters were characterized by an 85 nm FWHM and a 80% transmittance at the centre

of the band.

8.2 Results

The observed TOF spectra, without any bandpass filtering applied, can be seen in Figure

8.2 for both neon and xenon layers. In both cases, a single dominant metastable feature

is observed that peaks around 125 µs. The TOF peak seen in the xenon spectrum was

attributed to S(1S) by Kedzierski et al.[60] produced through the dissociation channel de-

scribed in Equation (8.1). As the peak in the neon spectrum has the same shape and arrival

time, this would suggest that the feature also originates from the same metastable species,

namely S(1S). As no additional metastable features were observed, it is very likely that no

S(1D) signal was measured.

Passband filters centred at 400, 450, 500, 550, and 600 nm as well as a red filter were

all unable to detect emission. A clear metastable signal was only visible when applying a

340 nm filter, shown in Figure 8.3, a wavelength significantly smaller than that of the gas

phase S(1D-3P) transition at 458 nm (Figure 8.4). When comparing the integrated counts

between the filtered and unfiltered curves of Figure 8.3 arriving in the 70 µs to 210 µs region,

it was found that about 17% of the signal is transmitted. After consulting the manufacturer

supplied transmittance curve for the filter, it was found that such a transmission ratio is

characteristic of light of approximately 270 nm or 380 nm. As the former is well beyond the

frequency cut-off of the PMT, the latter is likely close to the wavelength of the observed

radiation.

Radiation at such a short wavelength presents a number of possibilities. It could be the

case that it is indeed caused by a S(1S) excimer whose emission wavelength is significantly
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Figure 8.2: Observed TOF spectrum from electron impact of OCS at 100 eV using both
xenon and neon matrices, shown with thin and thick lines, respectively. A constant back-
ground has been removed from both spectra before scaling to match the prompt photon
peak in both measurements which allows for comparison of the relative strength of the
metastable features. It can be seen that a significantly larger S(1S) signal is observed when
using the Xe matrix in comparison to the Ne matrix.
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Figure 8.3: Comparison of the TOF spectra of electron impact of OCS using a neon matrix
without a PMT filter and applying a 340 nm UV bandpass filter. The UV signal has been
scaled by a factor 5 for clarity. Both signals have similar TOF distributions.

blue-shifted from the natural transition wavelength. Another possibility is that the radiation

originates from an excimer formed by another metastable state such as CO(a3Π) or S(5S).

Finally, a different excitation mechanism may be occurring during the interaction with

S(1S) at the detector surface that does not correspond to an excimer process. All of these

possibilities will be discussed in detail in Section 8.3.

The released kinetic energy of the fragments were also plotted in Figure 8.5 based on

Gaussian curve fitting of the TOF peaks of Figure 8.2. The neon data was fit by first

assuming that the fragments were atomic sulphur and then again assuming they were CO

fragments. Both distributions are shown in Figure 8.5. It can be seen that the distribution
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Figure 8.4: Energy level diagram for atomic sulphur with transitions within the ground
configuration. Spectroscopic data has been taken from the NIST spectral database[147].
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Figure 8.5: Released kinetic energy distribution from neon at 100 eV impact energy. The
solid curve is fit assuming the incident particle is atomic sulphur while the dashed line
assumed the particle is CO. For comparison the dotted line shows the released kinetic
energy distribution of S(1S) from Xeon and the dots indicated the distribution of CO(a3Π)
reported by Barnett et al.[133]. Comparing the shapes of these curves, it is very likely that
the signal observed with solid neon originates from atomic sulphur.



CHAPTER 8. ELECTRON IMPACT OF OCS 88

in which the signal was assumed to be S(1S) has a similar shape and arrival time as that

observed using a solid xenon layer, suggesting that the distributions correspond to the same

metastable species. On the other hand, when comparing the distribution assuming CO to

the released kinetic energy spectrum reported by Barnett et al.[133], they can be seen to be

very dissimilar, suggesting that the observed emission is not due to detection of CO(a3Π).

In their analysis of S(1S) production, Kedzierski et al.[60] set the threshold for the

dissociation channel of Equation 8.1 at 8.1 eV. Assuming this to be correct, the total

energy transfer to the S atom is approximately 8.4 eV to 10.1 eV. Considering the potential

energy surface of Figure 8.1, such energies suggest that dissociation producing S(1S) occurs

after excitation to the inner wall of the 21Σ+ curve.

Excitation functions were not obtained in this study. During the course of this work,

the rotary vane pump backing the vacuum system failed due to degradation of the seals on

the roughing pump. This was likely due to damage from the injected OCS. As such, the

experiment was stopped before further data could be taken.

8.3 Discussion

While no signals from S(1D) were observed, this is likely due to the fact that the PMT was

blind to the radiant photons rather than from a lack of production. Considering the gas

wavelength of the S(1D→3P) transition of 1082 nm, the Xe + S(1D) excimer radiation is

likely beyond the 850 nm cutoff of the PMT detector and much farther into the infrared.

In future experiments, detection of such infrared photons would be possible with the use of

single-photon avalanche photodiodes which are sensitive[148] in this spectral range.

It is possible however, to make some comments on the the dissociation channels that

produce S(1D) based on the results obtained for S(1S) and from previous photodissociation

studies. As the inner walls of the 21Σ+ and 11Π states are quite close, the Franck-Condon

factor for excitation into the latter state should be quite high. Such a channel is also optically

allowed and so one would expect the majority of S(1D) production to occur through the

process

OCS + e→ OCS(11Π) + e′ → CO + S(1D) + e′ (8.2)

Production of S(1D) may also occur from the 11∆ state. As previously noted, this state

is optically forbidden in the linear geometry but excitation would still be possible during

electron-impact which can break optical dipole selection rules. Neglecting any vibronic

coupling, this transition is spin-allowed but optically forbidden and so one would expect

the electron-impact cross section to have a mostly E−1 dependence at higher impact energies

(Section 4.2.3).

The question remains as to the source of the ultraviolet emission observed in this ex-

periment. As previously mentioned, there appear to be three probable explanations. If the

signal does indeed originate from S(1S), then the radiation at near 340 nm is significantly
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blue shifted from the gas phase S(1S-3P) transition at 458 nm (see Figure 8.4). It may also

be possible that the signal is due to radiation from another metastable species observed in

dissociation of OCS such as CO(a3Π) or S(5S). Finally, another reaction may be occurring

between the detector and S(1S).

Such a significant blue-shift to the excimer radiation is highly unlikely. It would re-

quire that the Ne + S(1S) excimer forms a repulsive potential curve and then radiates to

the ground state well above the dissociation limit. Since molecular vibrations occur on

timescales orders of magnitude less than optical transitions, one would expect that such a

formation would quickly dissociate rather than optically decay.

Barnett et al.[133] had previously reported detection of the CO(a3Π) state in electron-

impact dissociation of OCS. While the emission wavelength from a neon surface for this

metastable excimer is unknown, previous work in xenon[47] found radiation to occur at

320 nm and it is reasonable to assume that the emission is occurring near this wavelength

and so would be weakly transmitted by the 340 nm filter. However, when comparing the

released kinetic energy distributions of Barnett et al. to the present data in Figure 8.5, the

two are very dissimilar which appears to rule this possibility out.

While S(5S) may be the source of the observed signal in Figure 8.2, there are several

arguments why it is an unlikely candidate. First, Delalic et al.[149] have determined the

lifetime of S(5S) to be 9.2 µs. Such a short lifetime would imply that the state should decay

before reaching the detector surface unless the released kinetic energy was significantly

higher than those seen in Figure 8.5 if the signal is atomic sulphur. As such, the number of

particles reaching the detector surface would be marginal and therefore unlikely to provide a

sufficient signal to be detected. Second, comparing the flight times measured by Barnett et

al.[133] for S(5S) fragments and accounting for differences in the flight tube lengths between

their apparatus and the one used in these experiments, the observed TOFs do not align

with their measurements of S(5S). While the fact that their data was taken at 30 eV impact

energy while the present spectrum was obtained at 100 eV, permitting the opening of new

dissociation channels, the above evidence provides a strong basis that the signal does not

originate from S(5S).

It may also be possible that the signal can be attributed to O(1S). Previous studies

by LeClair et al.[57] have shown that a secondary excimer emission from O(1S) in xenon,

corresponding to the O(1S-3P) transition is visible with a 340 nm filter. The corresponding

decay process in neon has not been reported but would still be red-shifted from the gas

phase wavelength at 297 nm[147] and may possibly be detectable with the applied filter.

While the production of O(1S) from dissociation of OCS is quite low[60], there may have

been sufficient production in this experiment for a metastable feature to be visible in the

TOF spectrum of Figure 8.2.

Detection of O(5S) is another possibility. In their studies of metastable production in

OCS, van Brunt and Mumma[132] noted that one of their observed features may have been
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attributable to O(5S) production through either of the following processes

OCS + e→ O(5S) + C(3P) + S(1D) + e′ (8.3)

→ O(5S) + C(1D) + S(3P) + e′ (8.4)

Their kinetic energy distribution would also be consistent with that of Figure 8.5 if the

observed particle was assumed to be oxygen instead of sulphur. Observation of O(5S) with

solid neon layers has never been reported and so it is unknown if the layer would even be

sensitive to this state.

A final possibility is that the radiation is due to a different process occurring at the

surface other than excimer formation. A direct conversion process may be occurring to an

excited level in neon which then subsequently radiates. There is a large number of spectral

lines corresponding to the 2p54p−2p53s manifold transitions near 370 nm. These lines would

certainly be detectable with the ultraviolet filter in place and would be seen to occur when

the S(1S) atoms reach the detector. However, these excited states all lie over 20 eV above

the ground state. Therefore, S(1S) atoms reaching the detector with the kinetic energy

distribution of Figure 8.5 would not be able to transfer sufficient energy to excite atoms

within the solid neon layer from the ground state. This makes such a conversion process

energetically infeasible.

8.4 Future Work

There are a number of hypotheses which have been presented in this chapter to explain the

observed data. However, further experiments are required in order to determine definitively

the reaction mechanism which is producing the observed ultraviolet emission. Below, several

possible extensions of this investigation are discussed which would further elucidate the

situation.

In principle, one could examine the excitation function for the observed metastable

feature to determine its appearance energy. This was not possible using the present setup

due to low signal strengths and the detrimental effect of OCS on the vacuum equipment

with prolonged use. Pumps which are more suited to working with corrosive gases would be

ideal for this situation and would permit the acquisition of the data needed to produce an

excitation function. The measured onset energy could be compared with those previously

obtained[60] for S(1S) from xenon and if they are found to differ, would indicate that the

source of the emission was a different metastable species.

Quantum chemistry calculations of the excited states of Ne + S(1S) and excimers formed

from other relevant metastable species such as O(1S) would also shed light on the situa-

tion. Calculations of the emission wavelengths from these species could be compared with

those measured in this experiment to determine if there is any correspondence. As in the

calculations of low lying states of XeS[145] and ArS[146], these would need to be conducted
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at the CASSCF level, which involves significant computational resources and a rigorous

theoretical treatments. However, these would also aid future research with solid neon layers

by providing a guide for which excimers can be observed within a given spectral range.

8.5 Conclusion

Electron-impact dissociation of OCS was examined using a solid neon detector. Production

of S(1D) was not observed, likely because the excimer emissions were beyond the wavelength

range of the PMT detector. However, a metastable feature was observed in the ultravio-

let near 340 nm. While the species which was detected could not be identified TOF and

kinetic energy spectra for this feature are presented but excitation functions could not be

obtained. Possible explanations for this ultraviolet feature are suggested along with further

experiments which would aid in determining its origin.



Chapter 9

Production of O(1S) and CO(a3Π)

in Electron Impact on Methanol

Electron alcohol collisions play an important role in a wide variety of settings including

astrophysics and radiation biology. Methanol in particular has been observed to play an

important role in a variety of astrophysical environments. Spectral lines from methanol

have been shown to appear in cold dark clouds[150], the warm gas regions around newborn

stars[151], in galactic cores[152] and plays a role in cometary processes[153].

An understanding of electron interactions with methanol also has important biological

considerations. Nearly two decades ago, Boudaiffa et al.[154] showed that dissociative elec-

tron attachment (DEA) could result in single and double strand breaking of DNA molecules

and has stimulated renewed interest in electron collisions with biomolecules. As methanol

is the simplest organic molecule containing both a hydroxyl and methyl group, it serves as a

prototypical biomolecule[155] and can bridge the gap between the study of small and large

molecular collisions. Furthermore, methanol can serve as an analogue to water[156] with

one of the hydrogen atoms replaced with a methyl group which allows for a comparison to

other measurements in water, a much simpler and widely studied molecule. As such, studies

of methanol are important to our understanding of electron interactions with biomolecules.

Much of the work regarding electron-impact dissociation of methanol has been concerned

with dissociative ionization collisions. Numerous measurements of the partial ionization

cross sections have been reported[157–160] after dissociation of the monocation CH3OH+

through mass spectroscopy techniques. However, measurements of the neutral electron-

impact dissociation process appear to be much more limited. One of the few available

studies is by Donohue et al.[161] who considered the optical emission from neutral and

ionized excited state fragments.

The production of metastable CO(a3Π) in electron impact of methanol has also been

reported by Lepage et al.[11]. Using high resolution electron energy-loss spectroscopy

(HREELS), they identified several ionization and DEA channels involved in production

92
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of this state. They were also able to measure the total cross-section for production of this

state over the energy range of 6 eV to 21 eV. However, to the author’s knowledge there does

not appear to be studies of other metastable dissociative fragments such as O(1S).

A great deal of information can also be gained from consideration of the numerous

photodissociation studies in the field. Several photoionization experiments[162–165] have

reported relative cross sections for a number of ion fragments through various mass spec-

trometry techniques. These studies include the seminal work of Burton et al.[163], who

report absolute cross-sections for photoabsorption and photoionization processes resulting

in CH3OH+ in addition to branching ratios for a wide range of fragments in the 6 eV to

360 eV range.

The neutral photodissociation process has also been studied extensively[166–174]. Stud-

ies at 193 nm[167, 168] have shown that the majority of dissociation pathway at this energy

is due the rupture of the OH bond and CO bond stretching while about 14% of the yield

could be due to cleavage of the CO bond. Investigations at 157 nm[170, 172, 173] have re-

vealed a much more complex set of dissociation channels at this higher energy. For instance

Harich et al.[170] found production of both atomic and molecular Hydrogen to occur.

In this chapter, electron-impact collisions are studied using a solid Xenon detector in or-

der to understand the role metastable O(1S) and CO(a3Π) play in the dissociation processes.

The production of O(1S) has not been previously investigated and the selective nature of

the detector used in this work makes it an ideal apparatus for such studies. Furthermore,

it is hoped to extend the energy range over which production of CO(a3Π) production is

considered.

9.1 Experimental Setup

The experimental apparatus is described in Chapter 5. A crossed electron-molecular beam

setup was used to produce collision fragments. High-pressure liquid chromatography (HPLC)

grade methanol from OmniSolv with a stated purity of ≥ 99.9% was used as the target.

To produce the target beam, the methanol was first loaded into a steel bottle placed under

vacuum. A gaseous beam of methanol was then generated through vapour pressure. The

injection pressure was maintained at less that 10.5 mtorr throughout the study to prevent

loss of metastables through collisional quenching in the interaction region.

The metastable collision fragments were detected using a Xenon layer deposited on the

cold finger. After forming an excimer upon impact, the fragments would decay and emit a

photon which was detected by the photomultiplier tube. Filters were placed between the

light pipe and the PMT in order to selectively observe radiation from a single excimer.

The two observable features occurred within the range of the 340 nm bandpass filter (85 nm

FWHM) and within the red. Acquisition of the TOF spectra took approximately two weeks

each while the excitation functions took between one and two months each.
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During acquisition of TOF spectra, electron emission currents were maintained around

4 µA. However, this was lowered to less than 1.5 µA while measuring the excitation function

in order to minimize any energy shifting effects which may occur in the interaction region

due to space-charge effects. In both cases, emission currents are well within the linear

regime where secondary electron scattering effects can be assumed to be negligible.

In order to calibrate the energy scale of the excitation functions, an external reference

gas was used. In the ultraviolet, N2 was injected and the (0, 0) C3Πu → B3Πg transition of

the Second Positive band[105] was used, which radiates at 337.1 nm and whose cross-section

for this feature is strongly peaked[118, 119] at 14 eV. Calibration in the red was performed

with H2 using the onset for production of the Balmer-α line at 656.3 nm as the excitation

threshold of 16.6 eV is well studied[175].

9.2 Results

Distinct metastable features were observed when measuring TOF spectra using red and

340 nm ultraviolet filters, shown in Figures 9.1 and 9.2 respectively. Constant background

subtraction and Savitzky-Golay smoothing[88] have been applied to both spectra. Previ-

Figure 9.1: TOF spectrum of O(1S) from electron impact of methanol at 100 eV. Savitzky-
Golay smoothing has been applied to the data. Also shown with a dashed line is the fitted
model of Equation 9.1 as well as the fitted Gaussian peak associated with the metastable
O(1S) signal which is shown below the curve with the solid line.
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Figure 9.2: Observed TOF spectrum at 100 eV impact energy in the ultraviolet range with
a 340 nm filter applied. This corresponds to signals from CO(a3Π).

ously radiation in the red from Xenon solid layers has been shown[51] and so the feature in

Figure 9.1 can be concluded to correspond with radiation from O(1S). On the other hand,

ultraviolet light from Xenon excimers have previously been shown[56] to originate from both

the O(1S-3P) transition and from metastable CO(a3Π). However, considering the markedly

different shapes of the spectra in Figures 9.1 and 9.2, the ultraviolet emission in Figure 9.2

can be readily argued to originate from CO(a3Π) rather than a secondary O(1S) emission.

As the O(1S) signal in Figure 9.1 is heavily overlapped with the prompt photon peak,

curve fitting was applied to separate out the metastable feature. The data were fitted

assuming a Gaussian peak overlapped with an exponential decay corresponding to the

function

f(t) = Ae−t/τ +Be−(t−to)2/w + C (9.1)

Fitting was performed using SciPy’s least-squares curve fitting function. The model is

shown in Figure 9.1 using the dashed line while the Gaussian peak representing the O(1S)

metastable feature is also shown. The model appears to fit the data fairly well overall.

It may be observed that the Gaussian peak has not fully decayed at 0 µs and appears to

extend to negative time values. First, it should be noted that the actual spectrum data have

been shifted so that the zero index corresponds to the middle of the prompt photon peak.

As such, it may be possible that some very high energy metastables are being generated
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within the prompt photon peak. It is also likely that the position of the Gaussian is an

indication that a more complicated model could be more accurate in fitting this spectrum.

That being said, the fitted peak present in Figure 9.1 should be sufficiently representative

for determining the approximate position of the majority of the O(1S) metastables and for

considering their energy distribution.

The CO(a3Π) spectrum in Figure 9.2 can also be considered. The feature is very broad,

occupying a range of approximately 100 µs to 500 µs. The overall shape of the spectrum

suggests that it is comprised of more than one feature which are overlapping and poorly

resolved, partly due to low signal rates. While it may be possible to resolve these individual

contributions using a smaller electron pulse width, this would also result in even lower

production rates which would severely lower the signal-to-noise ratio. This ratio was already

hampered by the fact that the plexiglass light pipe heavily attenuates[176] at 320 nm and

the low quantum efficiency of the PMT at this wavelength [177].

In addition to the TOF distributions, one can also consider the released kinetic energy of

the metastable fragments as shown in Figure 9.3. The TOF spectra were converted into the

energy domain using the transform described in Appendix B.2. As the non-linear transfor-

mation tends to become obscured at lower energies due to the contribution of background

counts at large time values, pretreatment of the data was necessary before applying the

transform. In the case of the O(1S) spectrum of Figure 9.1, both the fitted Gaussian peak

and the full TOF spectrum were fit. As no fitting was applied to the CO(a3Π) data in

the time domain, only points between 100 µs to 500 µs which correspond to the time region

occupied by the observed feature were used to form the energy spectrum in Figure 9.3b.

When examining the kinetic energy distribution of the O(1S) feature in Figure 9.3a,

one can see that the distribution peaks at approximately 0.4 eV and spans from 0.1 eV and

beyond 2 eV. Meanwhile, the CO(a3Π) kinetic energy distribution in Figure 9.3b can be

seen to peak at much lower energies. A peak can be seen around 75 meV and the distribution

extends up to about 0.4 eV. The high number of counts at extremely low energies is more

likely an artefact of the non-linear transformation rather than an indication of structure.

Excitation functions were also acquired for both O(1S) and CO(a3Π) shown in Figure

9.4. Low photon count rates and poor signal-to-noise ratios prevented high quality data

from being obtained in both cases, likely due to very low metastable production rates in

comparison to the background photon flux from the hot cathode. In the case of O(1S),

added difficulty was encountered by the heavy overlap of the prompt photon peak with the

metastable feature. In order to prevent contamination, photon counts for the metastable

feature could only be acquired in the 100 µs to 250 µs range. Due to these difficulties, the

threshold region in particular is highly obscured in each scan. In order to aid in examination

of the excitation functions, Savtizky-Golay smoothing[88] was applied to both figures.

The O(1S) cross-section in Figure 9.4a appears to rise somewhere in the 11 eV to 15 eV

range while reaching a maximum at around 40 eV and then slowly tapering off at higher
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(a) O(1S)

(b) CO(a3Π)

Figure 9.3: Kinetic energy spectra for O(1S) and CO(a3Π) fragments from methanol at
100 eV impact energy. Savitzky-Golay smoothing[88] has been applied to both spectra after
transformation into the energy domain.
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(a) O(1S)

(b) CO(a3Π)

Figure 9.4: Excitation functions for O(1S) and CO(a3Π) for 10 eV to 90 eV impact energy.
The measured points are shown with dots while the solid line shows the excitation function
after Savitzky-Golay smoothing[88] has been applied. Vertical lines denoted the suggested
threshold for production of each metastable species.
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energies. Meanwhile, the CO(a3Π) cross-section in Figure 9.4b appears to have an onset

somewhere below 23 eV and then reaches a very broad maximum around 30 eV before very

slowly tapering off. While it is certainly possible that additional structure is contained

within these excitation functions, improved statistics are needed to determine it with any

certainty.

9.3 Discussion

Overall, the statistical quality of the excitation functions is poorer than what is desirable.

However, this is due to a very low signal-to-noise ratio rather than an insufficient data

acquisition time. As such, one can conclude that the cross sections for production of both

O(1S) and CO(a3Π) are extremely low. This truly does speak to the power of the present

technique that it can actually measurably detect such low probability events in any real

capacity. At the same time, such low signal-to-noise ratios make definite determination of

the thresholds for production of both species difficult. However, with the present excitation

data and with aid of the kinetic energy data, it is possible to make some comments on what

excitation mechanisms may or may not be occurring for each species.

As methanol is a very complex molecule, there is a very wide array of dissociation path-

ways which can occur. Burton et al.[163] have calculated the thermodynamic dissociation

limits for zero kinetic energy fragments from a wide array of pathways in their comprehen-

sive photo-dissociation studies of methanol. Their work can serve as an excellent guide for

determining which pathways are energetically allowed. They also experimentally measured

the appearance potentials for a number of these pathways through ion mass-spectroscopy.

However, it should also be noted that other pathways which they did not observe have also

been reported in the literature and so their observations are by no means a definitive list.

9.3.1 Production of O(1S)

First, the total released kinetic energy upon dissociation can be considered. One can assume

that the O(1S) atom is travelling directly toward the detector and that the remaining

fragments, some arrangement of a Carbon and three or four Hydrogen atoms, have an

equal translational momentum away from the detector. As such, the released kinetic energy

release of these remaining fragments is either approximately

E2 ≈
mO+HE1

mC+3H
≈ 1.1E1 (9.2)

in the case of the Hydroxyl fragments travelling towards the detector or

E2 ≈
mOE1

mC+4H
≈ E1 (9.3)
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if only the oxygen atoms travels in this direction. However, in both cases approximating

the total translational energy to be roughly equal to twice that of the O(1S) atom is well

within the accuracy achievable with the present data. From the distribution of Figure 9.3a,

is most probably 0.8 eV and is at a minimum approximately 0.2 eV.

The observed production threshold of O(1S) at approximately 13 eV does place some con-

straints on possible excitation pathways. Dissociative ionization by first forming CH3OH+

is only possible[163] above 18.15 eV which rules out any of these channels. Considering the

threshold observed in Figure 9.4a, the process responsible for production of O(1S) must

therefore be a neutral dissociation channel.

At these energies, one possible channel exists that produces the final state

CH3OH + e→ CH3 + O(1S) + H + e′ (9.4)

Assuming zero kinetic energy of the dissociated fragments, this process has a minimum

threshold of 12.5 eV. Including the total kinetic energy of the fragments, this implies a

minimum threshold of 12.7 eV and the most probably energy being 13.3 eV which would

correspond to the observed threshold. A second, process would also be energetically allowed

above 12.2 eV corresponding to

CH3OH + e→ CH2 + H2 + O(1S) + e′ (9.5)

which including the total released kinetic energy, would lead to a threshold of 12.4 eV.

There is certainly a great deal of evidence that dissociation through one of these channels

is occurring. In the photodissociation measurements of Sato et al.[165] at 24.3 eV, they were

able to observe production of O+. Based on the thermodynamic dissociation limits[163], the

only two fragmentation pathways which are energetically possible at their energy are those

described in Equations 9.4 and 9.5. As other dissociative ionization studies were unable to

individually resolve CH+
4 and O+, the latter ions would not have been reported even if they

were indeed detecting these fragments.

Breaking of the CO bond by photodissociation has been observed in methanol above

6.4 eV into ground state neutral fragments by Satyapal et al.[167]. While the production of

O(1S) in the present work implies that a higher lying excited state has been accessed, these

studies certainly suggest that breakage of the CO bond is possible. Theoretical studies by

Kayanuma et al.[178] considering the CO bond have shown that there exist several repulsive

excited state curves, and while it is not possible to identify which may correspond to that

observed in this work, their data does suggest that such a fragmentation mechanism is

possible. The only excited state[179, 180] of OH which converges to the O(1S) + H(2S)

limit is the repulsive B2Σ− state. Thus, this is very likely the intermediary state to which

the OH fragment is excited to during the collision event.

Based on the above arguments, the most likely dissociative pathway resulting in the
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final products of Equation 9.4 is through the process

CH3OH + e→ CH3 + OH(B2Σ−) + e′ → CH3 + O(1S) + H(2S) (9.6)

Considering the low resolution of the threshold in Figure 9.4a, it may be the case that the

Methyl fragment leaves with a few quanta of vibrational energy but further investigation

would be required to say anything about this product of the reaction.

The reaction of Equation 9.5 cannot be ruled out but arguments can be made that it

is much less probable than the process proposed in Equation 9.6. The production of H2

has been studied by Harich et al.[170] who noted that production can occur through both

3-center elimination from the Methyl group and 4-center elimination of Hydrogen from

both C and O sites. However, they also determined the relative branching ratio of atomic

versus molecular Hydrogen elimination channels to be 1:0.21. Considering the already low

excitation probability of this process, it is likely that the dominant dissociation channel is

the one described in Equation 9.4a.

9.3.2 Production of CO(a3Π)

First, one can consider the implications of the kinetic energy spectrum of Figure 9.3b. For

the CO fragments to travel directly towards to detector, the Hydrogen atoms originally

bound to the Methyl group should travel in the opposite direction. If the Hydroxyl dissoci-

ation occurs towards the detector, then the kinetic energy of the remaining three Hydrogen

should be

EK ≈
mCO+HECO

m3H
≈ 9.6ECO (9.7)

Assuming only 75 meV for ECO, this is only about 0.7 eV. If instead the kinetics are such

that all four Hydrogen move away from the detector then this ratio is lowered to

EK ≈
mCOECO
m4H

≈ 7ECO (9.8)

which would correspond to only 0.6 eV. This is only approximate as this neglects the motion

of the Hydrogen in the plane perpendicular to the detector axis but demonstrates that the

dissociation threshold should be near the thermodynamic limit. Furthermore, the deviation

from this limit is on the order of the energy resolution of the excitation function and so

resolving the difference in this work is not practical.

The 8 eV to 21 eV impact energy region has been extensively studied by Lepage et al.[11].

They noted several dissociation channels which were likely taking place especially at lower

energies where DEA resonances were likely occurring. At above 25 eV, they noted that the
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direct dissociative ionization channels

CH3OH + e→ CH3OH+ + 2e→ H+ + CO(a3Π) + H2 + H + 2e (24.87 eV) (9.9)

→ H+
2 + CO(a3Π) + H2 + 2e (22.22 eV) (9.10)

were dominant. The thermodynamically determined dissociation limits are listed next to

each channel. This was supported by an observed[163] rise in H+ and H+
2 production above

21 eV in the photodissociation data, corresponding to dissociation into ground state CO.

Based on the rise in the excitation function around 23 eV in Figure 9.4b, these processes

are likely responsible for the metastable signal observed in the present data.

9.4 Future Work

While a preliminary study of the production of O(1S) and CO(a3Π) production was per-

formed, there is a need for data of a higher statistical quality in order to better understand

the underlying excitation channels. Without accurate threshold data, an in depth study

of these processes cannot be performed. These studies can be conducted with the present

setup but would require significantly longer acquisition times to improve the statistics. An-

other alternative would be to increase the signal-to-noise ratios through modifications to

the present experimental setup.

One of the issues which prevented increased count rates specifically in acquisition of

the CO(a3Π) data was that the photon detection was not optimized for the ultraviolet

photons emitted from the XeCO∗ excimer. In previous experiments[56], a quartz lens was

placed between the cold finger and the PMT rather than a plexi-glass light pipe. While

the latter increases the solid angle of detection, quartz has a better transmission efficiency

for ultraviolet light[51] and installing such a lens would likely increase the photon count

rates. This could be considered as a means of reducing acquisition time and improving the

signal-to-noise ratio.

Improved statistics for the CO(a3Π) excitation function would be desirable. In their

EELS study, Lepage et al [11] measured the absolute total cross-section for production of

CO in the 8 eV to 21 eV and so it might be possible to normalize to their data, extending

the measurement of the absolute cross-section up to around 100 eV.

On the other hand, the best way to improve the quality of data for the O(1S) excitation

function is with longer acquisition times. The photon detection setup is optimized for

studies of Xe + O(1S) excimer and so there is not much on the equipment side which

can be adjusted. Increased count rates can be achieved by increasing either the electron

current or the density of the target beam. However, at some point increasing either can

cause additional experimental difficulties. At higher electron currents, energy shifts can be

induced in the interaction region due to space charge effects which are not trivially accounted

for. On the other hand, increasing the target beam density can result in collisional quenching



CHAPTER 9. METASTABLE PRODUCTION IN METHANOL 103

of the metastables before they reach the rare gas surface which prevents their detection. As

such, great care must be taken to ensure these effects are not occurring if these parameters

were further adjusted with the present setup.

Additional data on the production of O(1S) is even more important than for CO(a3Π)

as the present work appears to be the first measurement of this state from methanol. As the

threshold is still very uncertain, it would be of considerable interest to be able to identify the

excitation channels which produce this species. While some routes of production have been

suggested, accurate threshold data is required to be able to definitively assign excitation

channels.

9.5 Conclusion

The production of CO(a3Π) and O(1S) in electron-impact dissociation of methanol was

examined using a solid Xenon detector. A direct dissociation mechanism has been proposed

for the production of O(1S) while previous studies of CO(a3Π) have been extended to

90 eV. Observation of these results goes to highlight the utility of solid rare gas layers

in the detection of low probability metastable state excitation processes. Even with such

small cross sections for production, the use of solid layers as a detector allows for very

selective isolation of these particular metastable species while essentially filtering out all of

the other possible excitation channels. Experiments like this demonstrate the true power

of the technique to be sensitive to processes which would otherwise be extremely difficult

to measure through more traditional methods.



Chapter 10

Conclusion

In this work, the detection of metastable atoms has been extended on three major fronts.

First, the range of solid surfaces which are sensitive to O(1S) and other metastable species

has been expanded. Second, the detection of a new metastable species, namely N(2P),

has been performed with solid xenon layers. Finally, measurements of O(1S) production in

methanol have been presented for the first time. This work at the same time also raises

some questions of scientific interest which, while not fully answered, are interesting avenues

to explore in future scientific research.

The results of Chapter 6 demonstrate that CO2 is also a suitable surface for the detection

of O(1S) and O(1D) in the optical range. It has been demonstrated that excimer formation

occurs on these solid surfaces likely through a O + CO2 reaction to form a CO3 excimer.

The O(1D) excimer has been studied in the literature and provides a likely explanation for

the observed emissions. This work demonstrates that a similar reaction with O(1S) may also

occur. While no studies of the latter are available, the experiments presented here provide

an approximate emission wavelength and radiative lifetime for this state, which would be

of interest in future studies of this system. Furthermore, measurements of the sensitivity

of solid CO2 layers have been obtained over a temperature range of 17.8 K to 45 K. This

work demonstrates that solid CO2 can be used as an alternative layer for the detection of

metastable oxygen which may be more cost effective than traditional rare gas layers.

Solid CO2 and N2O have also been found to be sensitive to metastable N2(a1Πg) which

react with this species through an energy transfer mechanism. These results are summarized

along with all available work on detection of metastables with frozen gas layers to provide

an easy reference for future research to determine a suitable layer for the detection of a

particular metastable species for future experiments.

In Chapter 7 studies of N(2P) production from N2 are presented. While this metastable

state has been observed in solid nitrogen in previous studies, this is the first reported

detection of metastable atomic nitrogen using solid xenon surfaces. In this study, two

groups of metastable atoms were detected with two distinct kinetic energies upon release.

While the faster group could not be studied due to its proximity to the prompt photon
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peak, excitation studies were performed of the slower group. Two dissociation mechanisms

were found to be responsible for formation of these metastables which correspond to a

direct and a pre-dissociation process. Intermediary products for both reaction channels

have been proposed and discussed. Possible parent states have also been proposed which

led to formation of the faster metastable atoms.

Investigations into electron-impact dissociation of OCS are reported in Chapter 8. While

the goal of observing S(1D) production could not be achieved as the emission was outside

of the spectral range of the PMT, some interesting results were obtained, which certainly

could warrant further study. It was determined that the excimer formed from S(1S) in solid

neon likely radiates at a much shorter wavelength than the gas phase transition. This is

quite atypical of radiation from solid rare gas layers which have been observed to red shift

the radiation of metastable species when forming a bound state on the surface. As such,

understanding the results would require further study on one or more fronts which will be

outlined in Section 10.1.

Production of metastable O(1S) and CO(a3Π) in dissociative electron collisions with

methanol are examined in Chapter 9. This work reports what appear to be the first obser-

vations of O(1S) from this molecule and extends a previous study of production of CO(a3Π).

TOF and released kinetic energy spectra are reported for each species in addition to cross

section measurements in the 10 eV to 90 eV range. Low signal-to-noise ratios prevented

high detail studies but it was revealed that O(1S) is likely produced through a single direct

dissociation channel after breakage of the CO bond.

Throughout these experiments, it has been demonstrated that this method is an ex-

tremely powerful tool for measuring metastable production in electron-impact collisions.

While excitation of these states occurs with very low probability in comparison to other

optically allowed excitation and dissociation channels, the solid layer detectors used in this

work are able to measure these very specific excitation pathways while being insensitive to

the multitude of other excited states that are also being produced. As such, it has a wide

application to the study of species which would otherwise be extremely difficult to isolate

and study through more traditional optical or electron energy loss methods.

10.1 Future Work

There is a great deal of future work which can be done to extend the results and con-

clusions obtained in the present studies. While each of the experiments has contributed

to our understanding of these poorly understood metastable production channels, there is

certainly much more that can be done in each area of study to further our knowledge and

understanding of these phenomena.

Studies of what solid layers are sensitive to particular metastable species are by no means

comprehensive. While this and previous studies have done a great deal of work determining
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the sensitivity of solid rare gas and atmospheric gas layers to metastable species, there

remains some gaps in the understanding of the chemistry occurring at these surfaces. In

particular, studies of the O(1S) + CO2 reaction would be of particular use. While a reaction

pathway for the reaction of O(1D) + CO2 exists in the literature, there appear to be no

studies associated with the O(1S) reactant. As such, quantum chemistry calculations would

be of particular use in determining the route taken to form CO3 on the surface in this

experiment. The emission wavelengths and excimer lifetime estimates which have been

provided in this work would be of utility in verifying these theoretical models and improving

our understanding of the CO3 system.

In addition to understanding the reaction, there remains work to be done in characteriz-

ing this surface. It would be of interest to determine the conversion efficiency of CO2 when

forming excimers with metastable oxygen. Studies of O(1D) have been known[51] to take

considerable acquisition time due to the lowered efficiency of solid rare-gas layers relative to

O(1S) and any opportunity for improvement would certainly be welcome in future studies

of this metastable state.

As the primary goal of observing S(1D) production using solid neon layers was not

accomplished, it may be desirable to examine production of this metastable species using a

modified experimental apparatus. Given that O(1D) has been observed using solid rare gas

layers and that S(1D) is isoelectronic with the former state, it is likely that the radiation was

simply at a longer wavelength that our present PMT is blind to. Replacement of the PMT

with another detector such as an avalanche photodiode that is sensitive to the IR would be

a possible candidate. Using such a detector, observation of this state would be likely and

measurements of S(1D) production could then be performed. This would also bring about

added difficulties however as APDs typically have very small surface areas in comparison to

PMTs resulting in a significantly reduced solid angle of detection which would drastically

reduce count rates. Any studies involving OCS would also require the use of an improved

vacuum system which is better suited to corrosive gases.

Given that the source of the ultraviolet emission observed from dissociation of OCS

using solid neon was not definitively identified, it would also be of interest to conduct further

study to determine the radiation source. Several possible explanations have been provided

in Chapter 8 such as emission from a different metastable species. Metastable oxygen states

such as O(5S) could be detected from electron-impact dissociation of less corrosive gases

such as CO2 or O2 and so these could be candidate gases to study for production of this

state. Excitation functions could also be obtained to determine the production threshold

which would provide a better understanding of the radiation source.

Finally, additional measurements of electron-impact dissociation of methanol are needed

to fully understand the reactions which have been observed to occur. As poor signal to noise

ratios prevented higher count rates in the reported cross section measurements, there reaches

a point of diminishing returns from additional acquisition using the present apparatus. As
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such, more detailed study of methanol may not be desirable. Study of other alcohols such

as ethanol may be of interest however. It is very likely that the production of both O(1S)

and CO(a3Π) is present in these larger molecules. An understanding of the similarities

and differences between the alcohols would at the very least provide additional data for

the biological interests that electron collisions with these organic molecules is based upon,

furthering our understanding of the role this type of scattering plays in larger biomolecules.

Furthermore, it may provide insight into the kinetics of the fragmentation process that leads

to production of these metastable states in the alcohols.
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Appendix A

Scientific Constants and Data

Table A.1: Table of relevant scientific constants. Data taken from CODATA recommended
values[181].

Quantity Symbol Value Units

Speed of light in a vacuum c 299 792 458 m/s

Electron volt eV (1.602 176 565± 0.000 000 035)× 10−28 J

Planck’s constant h (6.626 069 57± 0.000 000 29)× 10−34 J s
(4.135 667 516± 0.000 000 091)× 10−15 eV s

Reduced Planck’s constant (h/2π) ~ (1.054 571 726± 0.000 000 047)× 10−34 J s
(6.582 119 28± 0.000 000 15)× 10−16 eV s

Boltzmann’s constant kB (1.380 648 8± 0.000 001 3)× 10−23 J/K
(8.617 332 4± 0.000 007 8)× 10−5 eV/K

Elementary charge e (1.602 176 565± 0.000 000 035)× 10−19 C

Angstrom Å 1× 10−10 m

Mass of the electron me (9.109 382 91± 0.000 000 40)× 10−31 kg

Atomic mass constant ( 1
12m(12C)) mu (1.660 538 921± 0.000 000 073)× 10−27 kg

Torrent torr 101 325/760 Pa
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Table A.2: Table of relevant atomic scale units and constants. Numerical values taken from
CODATA recommended values[181].

Quantity Symbol Definition Value

Bohr Radius ao
~2

mee2
0.529 18× 10−8/cm

Bohr Magneton µB
e~

2me
9.274 009× 10−24 J/T

Rydberg Energy R
mee

4

2~2
13.606 eV

Fine-structure Constant α
1

4πεo

e2

~c
0.007 297 352

Table A.3: Table of ionization energies of relevant atoms and molecules. Data taken from
the CRC Handbook[89].

Element Ionization Energy (eV)

H 13.598443
C 11.26030
O 13.61805

CH 10.64
CH2 10.396
CH3 9.843

CH3OH 10.846



Appendix B

Relevant Transforms

B.1 Energy Unit Conversions

In this work, several units of energy are used which are more representative of the scales

used in this work and provide added convenience. Specifically, it is of great utility to express

many quantities relevant to atomic collisions in units of electron volts rather than joules.

In addition, when working with optical processes it is convenient to talk in term’s of the

photon wavelength rather than providing a direct energy value. In this section, we outline

how to convert between joules and electron volts or photon wavelengths.

The electron volt (eV) is defined as the amount of energy gained by a single electron

travelling across a potential difference of one volt. One can compute the energy in joules

by considering that a 1 V field can equivalently be written as 1 J/C and the energy of an

electron passing through this potential can be found by multiplying by the fundamental

charge 1.602× 10−19 C. Therefore, an electron volt is related to a joule by

1 eV = 1.602× 10−19 J (B.1)

A more accurate value for the fundamental charge e is provided in Appendix A.1.

When dealing with photons, one can also represent its’ energy in several units which are

convenient in a variety of contexts. However, the majority make use of the Planck relation

E = hν = ~ω (B.2)

Therefore, one can readily express a photon’s energy in terms of its frequency or wavelength.

In this work, we make extensive use of the latter relationship. Given that a photon, which

travels at the speed of light c has a frequency/wavelength relationship determined by

c = λν (B.3)
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Therefore, one can determine the photon energy from the wavelength using the formula

E =
hc

λ
(B.4)

B.2 Time-of-Flight to Energy Distribution

When one has a time-of-flight spectrum in collision experiments, it is in some cases useful

to examine the energy distribution of the collision products. As the time and energy do-

main have a non-linear dependence, the transformation between the two has the effect of

emphasizing different parts of the spectrum which may be useful in analysis. The method

for conducting such a transformation has previously been outlined by Smyth et al.[87] and

an overview of the procedure is given below.

If one has a time domain distribution f(t) and wishes to determine the corresponding

function over the energy F (E) one can start by considering the spectral density in the

equivalent intervals of the time and energy domain

F (t) dt = F (E) dE (B.5)

Time and energy are related by the equation

E =
m

2

D2

t2
(B.6)

One can then take the derivative of this relation

dE

dt
= −mD

2

2

(
−2t−3

)
= −mD

2

t3
(B.7)

Equation B.5 can then be rearranged in terms of this derivative

F (E) = f(t)

∣∣∣∣ dtdE
∣∣∣∣ (B.8)

Which determine the final transform from time to the energy domain

F (E) =
t3

mD2
f(t) (B.9)

One can also consider the effect of uncertainty in the time position has on the energy. If

one has a time uncertainty ∆t, then one can determine the corresponding energy uncertainty

from

(∆E)2 =

(
∂E

∂t

)2

(∆t)2 (B.10)

assuming that all other factors are known with certainty. Then, applying the derivative of
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(B.7) one has

(∆E)2 =

(
mD2

t3

)2

(∆t)2 =

(
2E

t

)2

(∆t)2 (B.11)

Assuming that these are all positive definite quantities, one can then relate the relative

errors in the time and energy domain by the equation

∆E

E
=

2∆t

t
(B.12)

B.3 Maxwell-Boltzmann Time-of-Flight Distribution

In the section, we derive the time-of-flight distribution for a gas possessing a Maxwell-

Boltzmann distribution of speeds travelling a fixed distance. In this work, gas samples

move from the collision region to the detector through a fixed distance. Knowing the length

of the drift tube, the particle mass and the sample temperature, one can relate the flight

times to the Maxwell-Boltzmann distribution of speeds through a simple relationship.

The Maxwell-Boltzmann distribution of speeds is given by

f(v) =

(
m

2πkBT

)3/2

4πv2 exp

(
− mv2

2kBT

)
(B.13)

We wish to determine the TOF distribution for particles travelling a fixed distance D.

The TOF and velocity distributions occupy equal differential elements

F (t)dt = f(v)dv = f(v)

∣∣∣∣dvdt
∣∣∣∣ dt (B.14)

which are related by the derivative

dv

dt
=

d

dt

(
D

t

)
= −D

t2
(B.15)

Therefore the TOF distribution for a sample of particles of mass m and temperature T is

determined by

F (t) =

(
m

2πkBT

)3/2 4πD3

t4
exp

( −mD2

2kBTt2

)
(B.16)
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Wigner-Eckart Theorem

The Wigner-Eckart is a powerful tool for determining the effect of vector operators on angu-

lar momentum eigenstates. For a rank k tensor T
(k)
q operator acting on angular momentum

states |α; j,m〉, the matrix elements of the tensor operator are given by

〈α′; j′,m′|T (k)
q |α; j,m〉 = 〈jk; mq|jk; j′m′〉〈α

′; j′‖T (k)‖α; j〉√
2j + 1

(C.1)

There are two very important implications of this results. First, the matrix elements can

be written in terms of a reduced matrix element 〈α′; j′‖T (k)‖α; j〉 which is independent

of m and m′. Second, the dependence on m is completely described by the associated

Clebsh-Gordan coefficient

Cjmkqj′m′ = 〈jk; mq|jk; j′m′〉 (C.2)

for adding momentum j and k to get j′.

Often when working with angular momentum states, it is useful to use the Wigner j

symbols. The Wigner 3 − j symbol can be connected to the Clebsch-Gordan coefficients

through the relationship(
j1 j2 j3

m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

Cj1,m1
j2,m2,j3,m3

(C.3)

The Wigner 3− j symbols obey a set of selection rules. The symbol will be zero unless

m1 +m2 +m3 = 0 (C.4a)

j1 + j2 + j3 = n (C.4b)

|mi| ≤ ji (C.4c)

|j1 − j2| ≤ j3 ≤ j1 + j2 (C.4d)

where n is an integer. Furthermore, if m1 = m2 = m3 = 0, n must be an even integer.

The Wigner 6−j symbol can also be used when working with multiple momentum basis.
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The symbols is defined as a summation over the 3j-symbols{
j1 j2 j3

j4 j5 j6

}
=
∑
mi

(−1)S

(
j1 j2 j3

m1 m2 −m3

)(
j1 j5 j6

−m1 m5 m6

)

×
(
j4 j5 j3

m4 −m5 m3

)(
j4 j2 j6

−m4 −m2 −m6

)
(C.5)

where the phase factor is summed over the 6 m values

S =
6∑

k=1

(jk −mk) (C.6)

The value of the 6− jsymbol is zero unless |j2 − j3| ≤ j1 ≤ j2 + j3.
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