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Abstract 
The work described herein demonstrates the utility of solid-state nuclear magnetic 

resonance (SSNMR) spectroscopy for the characterization of molecular-level structure 

and dynamics in porous materials, including the determination of the reaction pathways 

involved in the formation of porous solids made via solid-state synthetic techniques, a 

study of the motion of dynamic components of metal-organic frameworks (MOFs) that 

are prototypes for future molecular machines, and the structural characterization of a 

surface-supported catalyst. 

In Chapters 2 and 3, accelerated aging and mechanochemical reactions are used to 

synthesize cadmium-containing zeolitic imidazolate frameworks (ZIFs). These 

techniques provide a means for clean and efficient syntheses of these materials; however, 

little is known about the reaction kinetics and mechanisms underlying their production. 

First, the structure of a new cadmium-imidazolate framework (CdIF) is determined using 

a combination of powder X-ray diffraction (PXRD) and SSNMR, a methodology known 

as NMR-assisted crystallography. SSNMR experiments are also used to monitor the 

formation of ZIFs made using mechanochemical synthesis, providing information on the 

intermediates and products of the reactions. It is revealed that the initial 

mechanochemical ball milling provides the activation energy for the formation of ZIFs, 

but aging reactions within the milling jars drive the reaction to completion. As 

demonstrated here, milling times as short as five seconds provide enough energy for the 

initiation of the reactions, allowing for extremely low-energy synthesis of these materials. 

In Chapter 4, series of metal-organic frameworks (MOFs) with dynamic, 

interlocked crown ether rings are investigated to determine the factors that influence the 
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motion of the rings. It is demonstrated that the size of the rings and the framework 

structure affect the motion. 13C variable temperature SSNMR is used to confirm the 

shuttling motion of rings between recognition sites on an axle that is incorporated into a 

MOF. Next, a study on a series of simple inorganic molecular rotors is described. It is 

shown that some of these compounds act as rotors with very low energy barriers that 

exhibit random rotational dynamics at temperatures below 75 K, while other structurally 

similar compounds do not display any motions over a wide range of temperatures. It is 

posited that steric and electronic effects from the coordinating ligands are responsible for 

the observed dynamics. 2H SSNMR is shown to be essential for classifying and 

understanding the dynamics of these low-energy molecular rotors 

Finally, 35Cl SSNMR is used to elucidate the structure of a transition-metal 

compound bound to the surface of a porous silica material. It is demonstrated that ultra-

wideline (UW) 35Cl SSNMR spectra for transition-metal complexes can be rapidly 

acquired using a combination of high magnetic fields and specialized pulse sequences. 

These spectra allow for the differentiation of different Cl bonding environments (i.e., 

bridging, terminal axial, and terminal equatorial). Density functional theory (DFT) 

calculations and an accompany molecular-orbital analysis allow for an understanding of 

the origin of the observed 35Cl electric field gradient (EFG) parameters, which influence 

the 35Cl quadrupolar interactions. The structure of a surface-supported complex is then 

proposed, demonstrating the applicability of these techniques to the study of very dilute 

catalytic species. 
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1 Chapter 1: Introduction to NMR and Context of Research 

1.1 Nuclear Magnetic Resonance Spectroscopy 

 Since its discovery independently by the groups Purcell and Bloch in 1946,1,2 

nuclear magnetic resonance (NMR) spectroscopy has been an active area of research, and 

with advances in magnet technology, hardware, and pulse sequence design, has become 

one of the most powerful and widely-used analytical techniques across numerous 

scientific disciplines. NMR is routinely used by synthetic chemists to identify products 

and elucidate reaction mechanisms in solution, by biochemists to determine the structure 

and function of proteins and membranes, and by materials scientists to probe the surfaces 

of materials and to gain information on disordered systems. NMR spectra are sensitive to 

subtle differences and changes in both molecular-level structure and chemical 

environment, and since nearly every element on the periodic table has an NMR-active 

isotope, it provides a wealth of information on a variety of systems, which is often not 

available from other techniques. In addition, NMR spectra are influenced by motion and 

chemical exchange, and therefore, NMR is the only technique capable of studying 

motions with correlations times ranging from picoseconds to days.3–5  

 Most early applications of NMR spectroscopy focused on the study of systems in 

the solution state, due to the observation of fine structure arising from chemical shifts and 

J-couplings, which is of great diagnostic value for interpreting the structures of molecules 

in solution. Solid-state NMR was slower to develop, due to the relatively broad spectra 

(arising from orientation-dependent or anisotropic interactions, vide infra). Numerous 

technological advances6 (e.g., magic-angle spinning probes and linear high-power 
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amplifiers, vide infra) and the development of sophisticated pulse sequences have 

allowed for the development of solid-state NMR (SSNMR) and its application to various 

areas of chemistry, biochemistry, and physics.7–9 This is particularly important since the 

majority of substances of interest encountered in the laboratory (and in day-to-day life) 

exist as solid forms. SSNMR provides a viable means for characterizing these materials 

and allows for the determination of the relationship between structure, dynamics, and 

chemical and physical properties, ultimately leading to the rational design of molecules 

and materials with finely-tuned properties and applications.  

Despite the utility of NMR, the acquisition of spectra is often challenging. NMR 

is an inherently low-energy spectroscopy, which can lead to weak signals compared to 

those obtained from other forms of spectroscopy (e.g., electronic, electron paramagnetic 

resonance, and IR spectroscopies). Many nuclides are also unreceptive to the NMR 

experiment as they have either (i) low gyromagnetic ratios, (ii) low natural abundances, 

(iii) unfavourable relaxation characteristics, or (iv) a combination of all of these factors. 

These issues are further exacerbated by dilution of the nucleus of interest. Further, 

SSNMR patterns are often very broad, due to anisotropic NMR interactions (vide infra), 

which further compromises the possibility of obtaining spectra with a high signal-to-

noise ratio (S/N); therefore, the acquisition of SSNMR spectra often requires the use of 

specialized techniques and pulse sequences that have been carefully calibrated. 

In the sections that follow, a brief discussion of the NMR interactions is 

presented, with a focus on those pertinent to this dissertation. Then, the use of NMR to 

study dynamics and chemical exchange is discussed. Finally, a brief overview and 

description of the acquisition techniques and pulse sequences used in all of the projects 
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described herein is presented. For a more comprehensive and detailed treatment of the 

NMR interactions, the reader is referred to a number of excellent texts on this    

subject.10–13 

1.2 NMR Interactions 

The NMR phenomenon, in both solution and the solid-state, is a result of the 

interaction of nuclear spins with an external applied magnetic field (B0). Most nuclei 

possess spin angular momentum, an intrinsic property that is denoted by the spin 

quantum number, I. Therefore, NMR-active nuclei have non-zero spins, which may be 

either half-integer (I = 1/2, 3/2, 5/2, etc.) or integer (I = 1, 2, 3, etc.), whereas NMR-

inactive nuclei have no intrinsic spin (I = 0). The numerous spin interactions are divided 

into two categories: external and internal. External interactions are a result of the 

interaction of the nuclear spins with the applied static magnetic and oscillating radio-

frequency fields, whereas internal interactions are defined as those between a nuclear 

spin and the magnetic and electric fields generated by other nuclei and electrons within 

the system. The general Hamiltonian describing these interactions is as follows:  

	 ℋNMR = ℋZ +ℋrf +ℋQ +ℋMS +ℋDD +ℋJ	 (1.1)	

where ℋZ and ℋrf represent the external Zeeman and radio-frequency interactions, 

respectively. The internal interactions are denoted by ℋQ, ℋMS, ℋDD, and ℋJ which 

represent the Hamiltonians for the quadrupolar, magnetic shielding, direct-dipolar 

coupling, and indirect spin-spin coupling interactions, respectively. 

1.2.1 The Zeeman Interaction 

 The high-field approximation is often used when discussing the various NMR 

interactions. Under this approximation, the Zeeman interaction is the dominant NMR 
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interaction, with all others being treated as perturbations. It is the result of the interaction 

of nuclear spins with an externally applied magnetic field (B0) and is expressed by the 

following Hamiltonian:14 

	 ℋZ=	γℏB0Iz	 (1.2)	

where γ is the gyromagnetic ratio (in units of rad T–1 s–1), which is a distinct property of 

each nuclide, ħ is the reduced Planck’s constant, and Iz is the z-component of the nuclear 

spin angular momentum (the z direction is chosen such that it is parallel to B0). 

Nuclei which have intrinsic spin angular momentum (I) also have a magnetic 

dipole moment (µ); these two quantities are related by: 

	 μ	=	γℏI	 (1.3)	

When a nuclear spin is placed in an external magnetic field, it can only adopt certain 

orientations; therefore, spin angular momentum is said to be space quantized such that: 

	 IZ	=	mIℏ	 (1.4)	

where the magnetic quantum number can have values of mI = I, I −1, … , −I + 1, −I. Each 

value of mI corresponds to a distinct spin state, thus, a nucleus with spin I will have 2I + 1 

spin states, which are degenerate in the absence of an external magnetic field. The 

presence of the external magnetic field, B0, breaks the degeneracy of the spin states. 

(Figure 1.1). The nuclear spin precesses about an axis which is parallel to the external 

magnetic field. The rate of precession of the nucleus about this axis is given by the 

Larmor frequency: 

	 ω0	=	–γB0	 (1.5)	

The Larmor frequency, ω0 is given in units of rad s–1 and follows a conical path about the 

axis of precession (the direction of B0). 
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Figure 1.1: The effect of the Zeeman interaction on the energy levels for a spin-1/2 
nucleus. The originally degenerate energy levels are split into two equally spaced energy 
levels when placed in an external magnetic field. 

 If considering only the Zeeman interaction, all spin states are evenly spaced and 

the energy difference between two spin states is given by: 

	 ΔE	=	γℏB0	 (1.6)	

The discussion thus far has only taken into consideration the case of a single spin; 

however, an NMR experiment is performed on a sample that is best considered as an 

ensemble of spins. This enables the use of Boltzmann distributions to describe population 

differences between energy levels associated with different spin states. Since the energy 

difference between two states is dependent on the strength of the external field, 

increasing the magnetic field strength increases the energy difference and thus, the 

population difference between two energy states. The Boltzmann distribution describing 

this population difference for an ensemble of spin-1/2 nuclei with γ > 0 is  

	 Nβ
Nα
	=	e

–ΔE
kT 	 (1.7)	

where Nβ and Nα are the populations of the higher and lower energy states, respectively, k 

is the Boltzmann constant, and T is the temperature of the sample measured in K. From 
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this equation, it is clear that decreasing the temperature also results in a larger population 

difference. The population differences between such nuclear spin states are significantly 

smaller than those in almost every other form of spectroscopy.  

 At thermal equilibrium, the lower energy level has a higher number of nuclear 

spins than the higher level. The positive population difference produces a bulk 

magnetization, denoted by the vector M, which is orientated parallel to the external 

magnetic field B0. It can be shown that the magnitude of the bulk magnetization vector, 

M0, can be defined as 

	
M0	=	

Nγ2ℏ2B0
4kT ;	

(1.7)	

hence, the magnitude of M0 increases linearly with B0, as the square of γ, and inversely 

proportional to temperature. Since M is rotated into the transverse (xy) plane for detection 

(vide infra), this implies that the signal intensity is dependent upon the population 

difference and magnitude of the bulk magnetization vector; however, since the energy 

difference between these states is so small, the population differences and bulk 

magnetization are also small – this means that NMR is a very insensitive technique in 

terms of signal. This can be remedied, in part, by the use of large samples sizes, isotopic 

enrichment, higher magnet fields, lower temperatures, and/or a variety of single- and 

double-resonance pulse sequences, all designed to optimize and maximize the 

magnetization detected by the NMR coil. 

1.2.2 The Radiofrequency Interaction 

 In an NMR experiment, the sample is placed into a solenoid or Helmholtz coil, 

which is attached to the NMR probe that is placed within a strong external magnetic field, 

B0. An alternating current is passed through the coil, oscillating at a frequency known as 
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the transmitter frequency (ωrf). The transmitter frequency is usually set to be equal to or 

near the nuclear Larmor frequency, ω0. This oscillating current generates an oscillating 

magnetic field, B1, within the coil that is normally directed perpendicular to B0. In order 

to understand the effect of B1 on the bulk magnetization, it is helpful to utilize the 

classical vector model (Figure 1.2). Consider a reference frame rotating about the 

direction of B0 at the transmitter frequency, ωrf, with transverse orthogonal axes labeled xʹ 

and yʹ; this is the so-called rotating frame. If ωrf is set at the Larmor frequency, ω0, then 

the precessing spins that give rise to the bulk magnetization, M, appear to be stationary in 

the rotating frame, meaning that the effective magnitude of B0 is zero, and that B1 is the 

only stationary, external magnetic field in the rotating frame. For the purposes of this 

discussion, B1 is directed along the xʹ axis of the rotating frame. As a result, the stationary 

spins, and therefore M, precess about B1, at a nutation frequency, ω1, which is defined as 

	 ω1	=	γB1	 (1.8)	

If the pulse is applied for a finite amount of time, τp, M is said to “tip” away from B0 by 

an angle θp,  

	 θp	=	τpγB1	=	ω1τp	 (1.9)	

where B1 is the magnitude of B1.  

 At the termination of the pulse, there is no longer a stationary B1 field in the 

rotating frame, and the individual spins return to precessing about B0 at their respective 

Larmor frequencies. This precession of M in the xy plane induces alternating current 

(AC) in the coil; the voltage of this signal is passed through an analog-to-digital converter 

(ADC) and stored as a time domain signal known as the free induction decay (FID). The 

precession of M about B0 does not continue indefinitely; rather, the bulk magnetization 



8 
 

undergoes two relaxation processes that simultaneously return the system to thermal 

equilibrium (longitudinal or T1 relaxation) and dephase the coherent magnetization in the 

xy plane (transverse or T2 magnetization). The value of the T1 time constant plays a role 

in determining the waiting period before the experiment can be repeated, known as the 

recycle delay. (To ensure complete relaxation back to thermal equilibrium, the recycle 

delay must be set equal to 5T1).  

 

Figure 1.2: Vector representation of the effect of a radiofrequency pulse on the bulk 
magnetization. The coordinate system is a rotating reference frame that rotates about the 
direction of the external magnetic field at the transmitter frequency, ωrf. A rf pulse is 
applied along the x′-axis for a duration that tips the angle along the –y'-axis. After the 
pulse is turned off, the magnetization begins to precess about the z-axis 

If the bulk magnetization along B0 at thermal equilibrium arises from a positive 

population difference between the lower and upper states, then the populations of the two 

states are said to be equal or saturated when M is located in the xy-plane. It is also 

possible to orient M antiparallel to B0, which corresponds to a reversal of the populations 

at thermal equilibrium; this condition known as inversion. Pulses that create the 

saturation and inversion conditions are associated with θp = 90° and 180°, and are known 

as π/2 and π pulses, respectively (Figure 1.3). 
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Figure 1.3: Schematic representation of the populations of spins at equilibrium (A). The 
application of π/2 and π pulses create the conditions of (B) saturation and (C) inversion, 
respectively. 

1.2.3 The Magnetic Shielding/Chemical Shift Interaction 

 The magnetic shielding (MS) interaction is frequently exploited by chemists for 

the differentiation of chemically and magnetically distinct environments within a 

molecule or unit cell of a crystal. The MS interaction arises from the external magnetic 

field, which induces the circulation of electrons in molecular orbitals. Electron circulation 

can occur within occupied molecular orbitals or as a mixing of occupied and virtual 

molecular orbitals; these are known as the diamagnetic and paramagnetic contributions to 

magnetic shielding, as originally described by Norman Ramsey.15–19 The circulation of 

charged electrons produces small local magnetic fields (Bloc) at the nuclear origins, which 

can be aligned either parallel or anti-parallel to B0, resulting in a net deshielding or 

shielding of the nucleus, respectively. The primary source of deshielding arises from the 

paramagnetic shielding contribution. The deshielding and shielding increase and decrease 

the local fields, causing positive or negative frequency shifts for each magnetically 

distinct nucleus, respectively, according to 
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	 ω0	=	–γ(B0	–	Bloc)	 (1.10)	

The Hamiltonian for the MS interaction can be written as: 

	 ℋCS	=	γℏIZσB0	 (1.11)	

where 𝝈 is a second-rank, antisymmetric tensor describing the MS interaction. The MS 

tensor is defined by a 3×3 matrix: 

	
σ	=	

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

	
(1.12)	

The MS tensor is asymmetric (i.e., sij ≠ sji), but can be rewritten as a sum of symmetric 

and antisymmetric tensors with three and six independent elements, respectively; only the 

symmetric portion of the tensor makes contributions to frequency shifts in the NMR 

spectrum.20 The symmetric tensor can be expressed in its own principal axis system 

(PAS) by diagonalization: 

	
σPAS	=	

σ11 0 0
0 σ22 0
0 0 σ33

	
(1.13)	

where the three orthogonal principal components are ordered σ11 ≤ σ22 ≤ σ33 (i.e., σ11 and 

σ33 are the least and most shielded components, respectively). The orientation of the MS 

interaction with respect to the molecular frame is pictured in Figure 1.4(A). For any 

given molecular orientation, and hence, orientation of the MS tensor with respect to B0, 

the magnitude of the MS interaction can be calculated as: 

	 ℋCS θ,φ 	=	γB0(σ11sin2θcos2φ	+	σ22sin2θsin2φ	+	σ22cos2θ)Iz	 (1.14)	

where q and j are the tip and azimuthal polar angles, respectively, which describe the 

relative orientations of B0 and the CS tensor (Figure 1.4(B)). 
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Figure 1.4: (A) Schematic representation of the MS tensor in its principal axis system 
(PAS) using an ellipsoid as a visual aid. The magnitudes of the components are σ11 ≤ σ22 
≤ σ33. (B) Angles θ and φ describe the relative orientations of B0 and the MS tensor in its 
PAS. 

MS values are reported in units of ppm with respect to a bare nucleus, which is 

said to have a chemical shielding of 0 ppm. The bare nucleus is not an appropriate 

experimental NMR standard; hence, values of chemical shifts (CS) are reported with 

respect to reference compounds. The conversion between MS and CS is as follows: 

	 δ	=	
σref	–	σsample
1	–	σref

	≈	σref	–	σsample	 (1.15)	

Similarly, the CS is also represented as a second-rank tensor with components such that 

d11 ≥ d22 ≥ d33 (δ11 and δ33 correspond to the directions of least and most shielding). Aside 

from these three principal components, there is not a single, standard convention for 

describing the CS tensor.21 Herein, the Herzfeld-Berger convention is utilized.22 The 

isotropic chemical shift is given by, 

	 δiso	=	
δ11	+	δ22	+	δ33

3 	 (1.16)	

the span (W) is a measure of the magnitude of the chemical shift anisotropy (CSA), and 

determines the breadth of a powder pattern 
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	 Ω	=	(δ11	–	δ33)	 (1.17)	

and the skew (k) is a measure of the axial symmetry of the CS tensor 

	 κ	=	
3(δ22	–	δiso)

Ω 	 (1.18)	

taking on values such that −1 ≤ κ ≤ +1, with the two outer limits representing cases of 

axial symmetry.  

 In solution, random, rapid molecular tumbling (with a correlation time, τc, of ca. 

10−12 s) averages the anisotropic portion of the CS tensor to zero, such that only the 

isotropic chemical shift is observed. Conversely, in a microcrystalline solid, every 

molecular orientation gives rise to a unique CS tensor orientation with respect to B0, and 

therefore a distinct frequency shift (Eq. 1.14), resulting in a broad powder pattern said to 

be influenced by CSA. The centre of gravity of the powder pattern is located at a 

frequency corresponding to diso, and the values of W and k influence the breadth and 

shape of the pattern, respectively (Figure 1.5). 

 

Figure 1.5: Simulated CSA powder patterns showing the effects of the (A) span (Ω) and 
(B) skew (κ) on the appearance of the spectra 
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Figure 1.6: Schematic representation of the distribution of nuclear charge in a (A) spin-
1/2 (Q = 0, spherical), (B) quadrupolar (Q > 0, prolate), and (C) quadrupolar (Q < 0, 
oblate) nuclides. 

1.2.4 The Quadrupolar Interaction 

 The quadrupolar interaction is only observed for quadrupolar nuclides (i.e., those 

with I > ½). Quadrupolar nuclides have spherically asymmetric nuclear charge 

distributions, as opposed to spin-½ nuclides, whose charge distributions can be visualized 

as spherical (Figure 1.6). The asymmetric distribution of charge is described by a scalar 

quantity known as the nuclear quadrupole moment (Q),23 measured in units of fm2, and is 

an intrinsic property of the nucleus (the nuclear electric quadrupolar moment is often 

expressed as eQ). The value of Q can be either negative or positive, corresponding to 

charge distributions of spherical oblate or spherical prolate symmetries, respectively. The 

nuclear quadrupolar moment interacts with the electric field gradients (EFGs) at the 

nucleus; non-zero EFGs result from a non-spherical distribution of ground state 

electronic charge and nuclear charges about the nucleus; this is known as the quadrupolar 

interaction,24 which is described by23,25,26 
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	 ℋQ=
eQ

2I(2I	–	1) I∙V∙I	
(1.19)	

where I is the spin angular momentum operator, eQ is the nuclear electric quadrupole 

moment, and 𝐕 is the second-rank, symmetric 3×3 EFG tensor: 

	
V	=	

Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

	
(1.20)	

This tensor can be diagonalized to yield the EFG tensor in its own PAS 

	
VPAS	=	

V11 0 0
0 V22 0
0 0 V33

	
(1.21)	

The principal components of the EFG tensor are defined such that |V11| ≤ |V22| ≤ |V33|. 

Unlike the CS tensor, the EFG tensor is traceless (i.e., V11 + V22 + V33 = 0), and there is 

no analog for the quadrupolar interaction to the isotropic chemical shift. Therefore, the 

EFG tensor can be described by only two parameters. 

 

Figure 1.7: The relationship between the absolute magnitudes of CQ and the spherical 
symmetry of the EFG tensor with its origin at the nucleus for a series of sodium oxides, 
as described by Koller et al. As the degree of spherical symmetry increases, the 
magnitude of CQ decreases. Adapted from ref. 28. 
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 The first of the parameters describes magnitude of the quadrupolar interaction and 

is called the nuclear quadrupolar coupling constant, CQ, which is typically reported in 

units of kHz or MHz: 

	 	CQ=
eQV33
h

	 (1.22)	

The absolute magnitude of CQ is related to the spherical symmetry of the ground-state 

electronic density around the nucleus.27 An excellent demonstration of the simple 

relationship between the magnitude of CQ and common structural motifs was 

demonstrated by Koller et al.28 in the study of sodium oxides using 23Na SSNMR (Figure 

1.7). If the quadrupolar nucleus is located at the centre of certain polyhedral 

arrangements of atoms (i.e., the Platonic solids: cube, tetrahedron, octahedron, etc.), the 

EFG at the nuclear origin vanishes and CQ = 0. Any deviation from spherical symmetry is 

reflected in an increase in the magnitude of CQ. It is noted that CQ can be positive or 

negative, depending on the relative signs of Q and V33; sign differences cannot be 

determined from NMR spectra of quadrupolar nuclides, but are readily available from 

first principles calculations. The relationships between structure and CQ is particularly 

important in the 35Cl SSNMR studies described in Chapter 6. Briefly, for an isolated Cl– 

anion with a perfectly spherical distribution of charge, the value of CQ is 0; however, if 

the spherical symmetry of this charge distribution is perturbed by hydrogen bonds (e.g., 

in HCl salts),29–31 covalent bonding to a metal (i.e., transition-metal chlorides),32–35 or 

covalent bonds with carbon (e.g., C–Cl bonds in organic compounds),36 the values of CQ 

increase (Figure 1.8). 
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Figure 1.8: Relationships between the Cl bonding environment and typical magnitudes of 
CQ(35Cl). 

 The second parameter, referred to as the asymmetry parameter, ηQ, is a measure 

of the axial symmetry of the EFG tensor. This parameter is dimensionless and ranges 

from 0 to 1: 

	 ηQ	=	
V11	–	V22
V33

	 (1.23)	

The case of ηQ = 0 (V11 = V22) denotes perfect axial symmetry of the EFG tensor and a 

cylindrically symmetric ground-state electron distribution around the nucleus. For ηQ = 

1.0, the magnitude of V11 = 0, and V22 = –V33. 

 Under the high-field approximation, the quadrupolar interaction Hamiltonian is 

treated as a perturbation on the Hamiltonian. Eq. 1.19 is often expressed as  

	 ℋQ = ℋQ
[1] +ℋQ

[2]	 (1.24)	
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where ℋQ
[1] and ℋQ

[2]	are known and the first- and second-order quadrupolar 

Hamiltonians, respectively (full expressions for these Hamiltonians are found 

elsewhere).14,37,38 These Hamiltonians have different effects on the spin states of a 

quadrupolar nucleus. For a spin-3/2 nuclide, there are 2I + 1 = 4 spin states and three 

possible transitions: the central transition (CT, mI = +1/2 ⟷ mI = −1/2) and the satellite 

transitions (ST, mI = +3/2 ⟷ mI = +1/2 and mI = −1/2 ⟷ mI = −3/2). While the first-

order quadrupolar interaction (FOQI) perturbs all of the energy levels, it changes the mI = 

+1/2 and mI = −1/2 states by equal amounts, and therefore, the energy spacing for the CT 

is unaffected. However, the STs are affected; due to the orientation dependence of FOQI, 

powder patterns arising from STs are much broader than those associated with the CT (in 

many cases, they are broadened to such a degree that they are undetectable by 

conventional SSNMR experiments). The second-order quadrupolar interaction (SOQI), 

perturbs the energy levels such that the energy spacings of the CT and ST are influenced, 

albeit to a much smaller degree than the FOQI (Figure 1.9(A)). The orientation 

dependence of the SOQI is much more complex than that of the FOQI;16 hence, CT 

patterns that are dominated by contributions from the SOQI are not as broad as the ST 

patterns, but have unusual shapes; they are colloquially described as second-order 

quadrupolar patterns. Fortunately, it is relatively facile to simulate these powder 

patterns, which enables the determination of CQ and ηQ, (Figure 1.10), as well as δiso, 

which is located near the centre of gravity of the patterns. When the broadening arising 

from the SOQI and CSA are comparable, it is possible to observe the simultaneous 

effects of these interactions in CT patterns. The simulation of such patterns is more 

complicated, because of their dependence on two sets of distinct tensor parameters, as 
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well as the relative orientation of these tensors, which are described by the Euler angles 

α, β, and γ.39 Interestingly, the breadth of the CT patterns is often found to scale 

proportionally with the magnitude of B0 and inversely proportional to the magnitude of 

CQ (depending on the values of the Euler angles); hence, simulations are aided by 

acquisition of these patterns at two different magnetic fields (or in some cases, by 

acquiring spectra for two different isotopes, when possible). 

 

Figure 1.9: Perturbation of the Zeeman energy levels by the first- and second-order 
quadrupolar interactions for a (A) spin-3/2 nuclide (e.g., 35Cl) and (B) spin-1 nuclide 
(e.g., 2H). The first-order quadrupolar interaction (FOQI) does not influence the central 
transition (CT, shown in red) but influences the satellite transitions (ST) to a great extent 
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Figure 1.10: Simulated central-transition second-order quadrupolar spectra for a spin-3/2 
nucleus with (A) ηQ = 0 and values of CQ ranging from 15 to 35 MHz and (B) CQ = 25 
MHz and ηQ values ranging from 0.2 to 1.0. 

For a spin-1 nucleus (e.g., 2H, 14N), there are only STs (mI = +1 ⟷ mI = 0 and mI 

= 0 ⟷ mI = –1) (Figure 1.9(B)).40 The powder patterns result from the two overlapping 

STs and are broad and mirror symmetric about the isotropic chemical shift, and are 

primarily influenced by the FOQI (i.e., the effects of the SOQI are negligible). These 

patterns, known as Pake doublets,41 have three distinct sets of features: horns, shoulders 

and feet, separated by frequencies Dn11, Dn22, and Dn33, respectively (Figure 1.11). In 

cases where the broadening effects of the FOQI and CSA are similar, these patterns can 
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lose their mirror symmetries (see Chapter 2 for examples in 2H SSNMR spectra of 

platinum-deuteride compounds acquired at 4.75 and 9.4 T).  

 

Figure 1.11: Appearance of a powder pattern in the spectrum of a spin-1 nuclide; such 
patterns are referred to as Pake doublets. Also shown are the frequency separations of the 
“horn”, “shoulder”, and “foot” discontinuities. 

1.2.5 Direct Dipolar Coupling 

 The dipolar interaction arises from the mutual, through-space interaction of the 

magnetic dipole moments of two (or more) spins. The dipolar interaction between two 

spins I and S can be described by the dipolar Hamiltonian,  

	 ℋ6	=	I∙D∙S	 (1.25)	

where the dipolar interaction tensor is given by  

	
D	=	hRDD	=	

(𝑟8	–	3x2)/𝑟8 –3xy/𝑟8 –3xz/𝑟8

–3xy/𝑟8 (1	–	3y2)/𝑟8 –3yz/𝑟8

–3xy/𝑟8 –3yz/𝑟8 (1	–	3z2)/𝑟8
	

(1.26)	

This tensor is traceless (i.e., no isotropic dipolar shift) and axially symmetric. The dipolar 

Hamiltonian can be expanded into the more familiar form 
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	 ℋDD=	RDD I∙S	–	
3(I∙r)(S∙r)

r2
	 (1.27)	

where r is the internuclear vector between spins I and S, and r is the internuclear distance. 

The magnitude of the dipolar interaction is determined by the dipolar coupling constant: 

	 RDD	=	
μ0
4π

γIγSℏ
r3

	 (1.28)	

 In solution, rapid molecular tumbling averages the dipolar interaction (since D is 

traceless) and no secular effects (i.e., frequency shifts) are manifested in the NMR 

spectra. However, the dipolar interaction has non-secular effects, and normally provides 

the dominant mechanism for nuclear relaxation in solution. In the solid state, the dipolar 

interaction is a significant source of broadening in SSNMR spectra. Fortunately, with the 

use of magic-angle spinning (MAS, vide infra) and decoupling pulse sequences, the 

effects of the dipolar interaction can be completely or partially averaged, depending upon 

its magnitude. Furthermore, the dipolar interaction is exploited in many SSNMR 

experiments for providing signal enhancements (e.g., cross polarization, vide infra) or 

obtaining structural information through 1D experiments for measurements of 

internuclear distances42 or 2D correlation experiments.43,44 

1.2.6 Indirect spin-spin Coupling (J-coupling) 

 The indirect spin-spin coupling, or J-coupling, is a two-spin interaction resulting 

from the coupling of nuclear magnetic moments which is mediated by the electrons in 

chemical bonds. After the chemical shift, it is the most important interaction in most 

solution NMR experiments, since it provides information on bonding and connectivity. 

The Hamiltonian describing the J-coupling interaction between spins I and S is: 

	 ℋJ	=	I∙J∙S	 (1.29)	
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Where J is a second-rank, non-traceless, antisymmetric tensor that describes the 

orientation dependence of the J-coupling interaction. The magnitude of the J-coupling 

interaction is expressed as the J-coupling constant, JIS, which is equal to the average of 

the components of J. 

 In solution, molecular tumbling averages the J-coupling to an isotropic value. For 

most nuclear pairs, the magnitude of the J-coupling is much smaller than that of the other 

interactions (i.e., JIS is usually on the order of a fraction of a Hz to several hundred Hz, 

though there are certain one-bond J-couplings involving heavy nuclides like 195Pt or 

199Hg that have magnitudes of several thousand Hz).45 In SSNMR spectra, the effects of 

J-coupling are more challenging to observe, due to broader line widths and powder 

patterns arising from larger anisotropic chemical shift and quadrupolar interactions, as 

well as phenomena such as magnetic susceptibility broadening. In cases where MAS 

experiments (vide infra) can yield sharp peak widths with breadths at half height less than 

the J-coupling (i.e., Dn1/2 < JIS), the effects of J-coupling are manifested in the spectrum 

of nucleus I as a splitting of the signal into 2nS + 1 peaks, where n is the number of 

magnetically equivalent coupled nuclei with spin S. 

 

1.3 Effects of Dynamics on SSNMR spectra 

 NMR spectra are extremely sensitive to a variety of molecular motions over a 

wide range of temperatures, and as such, reversible processes, which are described by 

dynamic equilibria, are readily detected. For example, SSNMR has been used to monitor 

the reorientation of chemical moieties,46–48 diffusion of ions through porous media,49,50 

and rotational and translational motions of simple molecular machines.51,52 N.B. This is 
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by no means a comprehensive list of dynamical systems studied with SSNMR, and there 

are several excellent resources that discuss these systems and many others in much great 

detail.4,10,37,53,54 

 The range of rates of motion that can be detected in NMR is dependent on the 

system (i.e., structure, symmetry, and allowable motions or chemical exchange 

mechanisms), differences in frequency shifts (Δν, in cases where sharp peaks can be 

resolved, which correspond to magnetically distinct sites undergoing chemical exchange), 

and/or frequency distributions in anisotropic powder patterns (ΔΩ, arising from NMR 

interaction tensors that vary in orientation due to molecular motions or exchange). Three 

motional regimes are defined: (i) the slow-motion limit (SML), where motions are 

occurring at rates that are too slow to be manifested as changes in the NMR spectra (i.e., 

νex ≤ Δν or ΔΩ, , where νex is the rate of exchange between chemical sites, Δν and ΔΩ are 

as defined above, (ii) the intermediate motion regime (IMR), where νex ≈ Δν or ΔΩ .(N.B. 

Motions with rates in the IMR result in NMR spectra that change drastically with 

temperature, and the simulation of these spectra yields detailed information on the rates 

and types of motion), and (iii) the fast-motion limit (FML), νex ≥ Δν or ΔΩ, . where 

spectra can be simulated by consideration of motionally averaged or effective values of 

isotropic chemical shifts, J-couplings, or in the case of anisotropic NMR interactions, 

tensor components (N.B., for most systems, once the FML limit is reached at higher 

temperatures, spectral appearance does not change – until the sample melts, decomposes, 

or undergoes a phase transition). 

 Very often, simulation of NMR spectra is required in order to extract dynamic 

information on the modes and rates of motion. Considering the simple case of exchange 
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between two chemical sites (A and B) with distinct isotropic shifts (νA and νB, in Hz), the 

motion of transverse magnetization for A, M+
A is given by the Bloch equations: 

	 dM+
A

dt
	=	iνAM+

A	–	
M+
A

T2A
	

(1.30)	

 

where 1/𝑇8= is the natural line width (in Hz). An equivalent expression can be written for 

the transverse magnetization of site B. The effects of chemical exchange are taken into 

account with the following modifications to Eq. 30: 

	 dM+
A

dt
	=	iνAM+

A	–	
M+
A

T2A
	–	kABM+

A	+	kBAM+
B	

𝑑𝑀@
A

𝑑𝑡 = 𝑖𝜈A𝑀@
A −

𝑀@
A

𝑇8A
− 𝑘AG𝑀@

A + 𝑘GA𝑀@
G	

	

(1.31)	

where kAB and kBA are the rates of the motions that exchange site A with B and site B 

with A, respectively. It is more convenient to express the rate equations in matrix 

notation: 

	 dM+

dt
	=	A∙M+	

(1.32)	

where A is a square matrix whose diagonal components contain the transition 

frequencies, linewidths, and exchanges rates and the off-diagonal components give the 

rates of exchange between connected sites 

 

	

A	=	
iνA	–	

1
T2A
	–	kAB kBA

kAB iνB	–	
1
T2B
	–	kBA

	

	

(1.33)	
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and M+ is a column vector 

	
M+	=	

M+
A

M+
B 	

(1.34)	

 

The solution to Eq. 1.32 has the general form: 

	 M+	=	eAt	∙	M+(0)	 (1.35)	

where M+(0) is the initial magnetization, which is proportional to populations of sites A 

and B (pA and pB, respectively).  

 The effects of exchange on M+, and hence, on the appearance of the NMR 

spectrum, can be computed by determining an analytical expression for the spectrum (i.e., 

an equation that describes the real absorption spectrum); however, solutions of such 

equations are both difficult and cumbersome in all but the simplest cases. The more 

common method is to generate a time-domain signal (i.e., FID) using numerical 

calculations. 

 The general expression for the FID involving exchange between N sites with 

different populations is equal to the sum of the time evolutions of transverse 

magnetization of the individual sites j 

	 G t 	=	 Mj t 	=	1	∙	e iω	+	π t	∙	W
j

	 (1.36)	

where 1 is a unit row vector, W = (W1, ..., WN) is a column vector containing the a priori 

populations of the sites, and ω and π are square matrices containing the 

frequency/linewidth and exchange information, respectively.10 The FID is generated 

through diagonalization of the non-Hermitian (iω	+	π) matrix, which can be easily 

accomplished using simple diagonalization routines to give: 



26 
 

	 G t 	=	1	∙	SeλtS–1	∙	W	 (1.37)	

where S is the diagonalization matrix. 

Eq. 1.37 is applicable for the cases where the exchange occurs between sites 

which each have single transition frequencies (i.e., chemical shifts) and can therefore be 

applied to study exchange processes in solution where the sites have distinct isotropic 

chemical shifts and changes in the exchange rate are usually caused by experimentally 

varying the temperature. When the exchange occurs with rates in the SML for a two-site 

systems with distinct shifts νA and νB, the spectrum has two peaks at νA and νB with 

widths proportional to (1/T2) + k. Motions with rates in the IMR cause the peaks to merge 

together until they coalesce at a point defined by 

	
τABC 	=	

2
π (νA	–	νB)	

(1.38)	

Finally, in the FML, a single peak is observed at an average frequency (pAνA + pBνB). 

 In the solid state, the NMR interactions are anisotropic; therefore, each exchange 

site has a distribution of frequencies arising from all of the orientations of the interaction 

tensor with respect to B0. The frequency of a given crystallite is dependent on the polar 

angles θ and ϕ which describe the orientation of the interaction tensor with respect to B0 

(the special case of MAS is neglected here for simplicity); therefore, to obtain FID for a 

powdered sample, Eq.1.34 must be averaged over all values of θ and ϕ and weighted by 

sin θ. Powder averaging is not discussed herein and the reader is referred to an excellent 

tutorial article by Edén for more information.55 

 In Chapters 4 and 5 of this dissertation, SSNMR is used extensively for probing 

the dynamics of a variety of systems. In particular, 2H SSNMR is valuable for dynamical 

studies, as the small quadrupole moment (Q = 0.286 fm2) results in relatively narrow 
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patterns (140 kHz ≤ CQ ≤ 200 kHz for most compounds) which are easily acquired. The 

2H SSNMR spectra are sensitive to motions in the range from ca. 103 to 106 Hz, 

corresponding to motions that can be easily observed and analyzed in 2H SSNMR spectra 

acquired with standard equipment in most laboratories. 

 Simulations of 2H powder patterns are conducted by considering rotations of the 

EFG tensor (𝑉) through various geometries, which correspond to different magnetically 

distinct sites undergoing dynamical motions (i.e., either chemical exchange or some other 

rotational, translation or torsional motions). The contribution to the spectral frequency 

from the FOQI for a crystallite in a given orientation is given by: 

	 ωQ θ,	ϕ 	=	
eQ

4I(2I	–	1)ℏb0,PASVPASb0,PAS	
(1.39)	

where b0,PAS is a unit vector in the PAS of the EFG tensor that points in the direction of 

B0: 

	 b0,PAS	=	 sinθcosϕ,	sinθsinϕ,	cosθ 	 (1.40)	

A molecular reorientation described by a rotation through a set of Euler angles (α, β, γ) 

gives rise to an EFG tensor in a new orientation relative to the original PAS: 

	 VPAS
new	=	R(α,	β,	γ)VPASR–1(α,	β,	γ)	 (1.41)	

where R(α, β, γ) is the rotation matrix. This new EFG orientation gives rise to a distinct 

spectral frequency that is calculated using Eq. 1.36. The PAS is relative to the molecular 

frame; therefore, chemical exchange results in a reorientation of the PAS. It is often more 

convenient to express EFG tensors for all of the exchanging sites relative to a frame in 

the crystallite that remains fixed during the exchange process, that is: 

	 Vi,CFF	=	R–1(αi,	βi,	γi)Vi,PASR(αi,	βi,	γi)	 (1.42)	
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where the R(αi, βi, γi) describes the rotation of the EFG PAS for site i into the crystallite-

fixed frame (VCFF). Similarly, the spectral contribution from the QI for each site is given 

by: 

	 ωQ θ,	ϕ =
eQ

4I(2I	–	1)ℏb0,CFFVi,CFFb0,CFF	
(1.43)	

where b0,CFF is given by an equivalent expression to that in Eq. 1.30, but with θ and ϕ 

now describing the orientation of B0 in the CFF. 

 For molecular reorientations described by a rotation about an axis, it is easiest to 

define the z-axis of the CFF such that it coincides with the rotation axis. This procedure is 

illustrated in Figure 1.12(A) for the simple case of a CD3 group rotation. The EFG tensor 

in its PAS for a single deuteron is rotated into the three possible rotational sites (a, b, and 

c) in the CFF. The z-axis of the CFF is defined such that it is coincident with the C3 

rotation axis of the methyl group. Rotation about the C3 axis causes the deuterons to 

exchange positions at a rate νex; simulated spectra for this mode of motion are shown in 

Figure 1.12(B). 

 

1.4 Acquisition Techniques 

 In this section, a brief overview is given of the acquisition techniques and pulse 

sequences used in the projects described in this dissertation. Further modifications to and 

details regarding these methodologies are introduced on an ad hoc basis in Chapters 2 

through 6. 
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Figure 1.12: (A) A depiction of the rotation of a 2H EFG tensor in its principal axis 
system (PAS) into the three sites of a CD3 group in the crystallite-fixed frame (CFF). The 
z-axis of the CFF is coincident with the C3 rotation axis of the CD3 group. (B) Simulated 
2H SSNMR spectra for the three-fold rotation of the CD3 groups with different exchange 
rates (νex). 

1.4.1 Magic-Angle Spinning (MAS) 

 Magic-angle spinning (MAS) is possibly the most widely used technique for the 

acquisition of SSNMR spectra. The purpose of MAS is to acquire high-resolution NMR 

spectra analogous to those obtained for solution-state samples.56,57 To first order, all 

NMR interactions have an orientation dependence which has a (3cos2q – 1) term, where q 

is the angle between the largest component of the interaction tensor and the external 

magnetic field, B0. In solution, rapid molecular tumbling reorients the interaction tensors 
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(on the order of 1012 times per second) such that all of the possible values of q are 

sampled. This serves to average the anisotropic interactions to either zero (i.e., the 

quadrupolar and dipolar interactions) or to their isotropic values (i.e., the chemical shift 

and J-coupling interactions). Conversely, rapid isotropic reorientation does not occur for 

molecules in the solid state and every orientation of the tensor with respect to B0 gives 

rise to a distinct frequency, resulting in broad patterns with the signal intensity spread 

over a large frequency range. 

 Spinning the sample about an axis oriented at the magic angle with respect to B0 

results in the orientation of the interaction tensor varying in time and the average 

orientation is given as: 

	 3cos2θ	–	1 	=	
1
2 3cos2θR	–	1 3cos2β	–	1 	 (1.44)	

where qR is the experimentally controlled angle between the sample rotation axis and B0 

and b is the angle between the largest principal component of the interaction tensor and 

B0 (Figure 1.13). If qR is adjusted such that it is equal to the magic angle (θR = 54.74º), 

the factor 3cos2qR – 1 = 0, thereby averaging the expectation value for ⟨3cos2θ – 1⟩ to 0, 

and resulting in an averaging of the terms responsible for the first-order anisotropic 

broadening of the SSNMR spectra. The first-order interactions can be completely 

averaged (i.e., resulting in a single sharp peak) provided that the spinning frequency is 

sufficiently greater than the anisotropic frequency distribution of the SSNMR powder 

pattern.  

 During an MAS experiment, the magnetization is refocused at the end of a rotor 

period, resulting in the collection of a series of rotational echoes in the time domain 

signal. Fourier transformation of the FID gives rise to a series of spinning sidebands in 
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the frequency domain which are separated from the isotropic chemical shift at intervals 

equal to the spinning frequency. The signal intensity is concentrated into the spinning 

sidebands, resulting in an increase in signal-to-noise (S/N) in comparison to a spectrum 

acquired with no sample rotation. The number and intensities of the spinning sidebands 

are dependent on the magnitudes and orientation dependence of the anisotropic NMR 

interactions. 

 

Figure 1.13: Schematic representation of the orientation of an NMR rotor with respect to 
the external magnetic field (B0). θR is the experimentally adjusted angle between the rotor 
axis and B0, which is most commonly set to the magic angle (54.74°). The ellipsoid 
represents an interaction tensor whose largest component is oriented at angles β with 
resepct to the rotor axis and θ with respect to B0. 

 For quadrupolar nuclei, MAS can average the first-order interactions that 

influence the ST powder patterns, but only partially averages anisotropic contributions to 

the CT powder pattern, due the distinct orientation dependence of the SOQI.58–60 As a 

result, most half-integer quadrupolar nuclides have SSNMR spectra displaying distinct 

second-order MAS CT patterns. For spectra with one or two patterns arising from 
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magnetically distinct sites, it is facile to simulate these patterns and extract the values of 

CQ, ηQ, and δiso. In cases where there are numerous overlapping patterns, such 

simulations can be challenging. Fortunately, there is a class of techniques that have been 

developed based on the 2D multiple-quantum MAS (MQMAS) method developed by 

Frydman and co-workers that enables separation of these patterns based upon their 

isotropic chemical shifts.61–64 MQMAS methods can be applied to a handful of notable 

half-integer quadrupoles, including 27Al, 17O, 11B, and 23Na, but cannot be applied in 

circumstances where CT patterns are so broad that MAS cannot effectively separate the 

broad spinning sidebands from the central isotropic CT pattern.65 In such instances, ultra-

wideline (UW) NMR techniques must be applied for spectral acquisition under static 

conditions (cf. Chapter 6),38,66 and several options are available for deconvolution of 

static patterns using relaxation-assisted spectroscopy (RAS) methods.67,68 A full 

discussion of MAS of quadrupoles, MQMAS pulse sequences, and RAS methods is 

beyond the scope of this work; the reader is referred to the references above for further 

information.  

1.4.2 Cross-Polarization (CP) 

 Another commonly-employed acquisition technique in SSNMR is cross 

polarization (CP) which enhances the S/N of SSNMR spectra of unreceptive nuclei.69–72 

The signal enhancement in a CP experiment is a result of the transfer of spin polarization 

from abundant, high g nuclei (e.g., 1H) to those that are dilute and/or have lower values of 

g (e.g., 13C, 111Cd). The maximum theoretical signal enhancement is determined by the 

ratio of the gyromagnetic ratios γI/γS, where I and S denote the abundant and dilute spins, 

respectively. The CP experiment is dependent on the T1 relaxation times of I which are 
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often short, therefore affording a reduction in experimental time. This is especially useful 

in the study of heavy spin-1/2 nuclei (e.g., 111Cd, cf. Chapters 2 and 3) which can have 

extremely large T1 time constants, thereby necessitating prohibitively long experimental 

times using direct polarization (DP) experiments. The transfer of polarization occurs only 

for S spins that are spatially proximate and dipolar coupled to I spins, and is made 

possible by satisfying the Hartman-Hahn matching condition: 

	 ω1I	=	ω1S	 (1.45)	

	 γIB1I	=	γSB1S	 (1.46)	

The CP pulse sequence is shown in Figure 1.14(A). The sequence begins with the 

application of a 90° pulse on the I channel to create transverse magnetization. 

Simultaneous spin-locking pulses are then applied on both the I and S channels, with 

powers chosen such that Eq. 1.46 is satisfied. The duration of the spin-locking pulses is 

known as the contact time, during which S spin polarization builds up in the direction of 

the spin-locking pulse. At the end of the spin locking pulses, decoupling is applied on the 

I channel and signal is detected on the S channel.  

 CP can be combined with MAS (CP/MAS) to give high-resolution and high S/N 

spectra. It was demonstrated by Stejskal and Schaefer that the dipolar coupling is not 

averaged under MAS, but rather, is time dependent73. The Hartmann-Hahn condition is 

modified to 

ω1I	–	ω1S	=	±nωrot		 (1.45)	

which is the so-called sideband match condition. 
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Figure 1.14: Diagrams depicting the (A) cross-polarization (CP), (B) quadrupolar echo 
(QE), and (C) Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences. 

1.4.3 Quadrupolar Echo 

 The acquisition of SSNMR spectra is often not possible using conventional 

Bloch-decay experiments (i.e., 90° – τD – acquire). Efficient nuclear relaxation, especially 

for quadrupolar nuclei, causes rapid decay of the spin magnetization, and therefore the 

signal, during the dead time (τD, i.e., the delay to allow for dissipation of the pulse in the 

coil), resulting in severely distorted spectra or absence of signal altogether. The 

quadrupolar echo (QE, also known as the solid echo) pulse sequence (Figure 

1.14(B))74,75 is often applied to avoid the spectral distortions resulting from traditional 

NMR experiments. In this sequence, a 90° pulse is applied to generate transverse 

magnetization. After the pulse, the spins evolve under the QI for a time period τ1, leading 

to a dephasing of the magnetization. A second 90° pulse is applied, and after a time τ2, 
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the magnetization refocuses, resulting in the formation of an echo in the FID. The use of 

the QE sequence allows for the acquisition of undistorted powder patterns and significant 

enhancements in S/N compared to a Bloch decay experiment. The QE sequence is 

routinely used to study dynamics, especially in 2H SSNMR.40 Dynamic processes which 

occur with rates in the IMR result in powder patterns that depend on the choice to τ1. 

Simulated powder patterns with different values of τ1 can be used to extract additional 

information on the dynamic processes. 

1.4.4 Carr-Purcell Meiboom-Gill (CPMG) Pulse Sequence 

 The Carr-Purcell Meiboom-Gill (QCPMG) (Figure 1.14(C)) was originally 

designed for the purpose of measuring T2 relaxation times. 76,77 The experiment operates 

on the same principles as a Hahn-echo sequence (90° – τD – 180º – acquire),78 except that 

a series of π pulses follow the original Hahn-echo block, and serve to refocus the 

magnetization. CPMG sequences have also been used to enhance S/N in 

inhomogeneously broadened patterns of spin-1/279 and quadrupolar nuclides,80 by 

acquiring multiple FIDs as permitted by the T2 or effective T2 (T2
eff) relaxation times. 

These are generally much larger than the T2*, which is instrument dependent in the case 

of solution NMR or related to the inhomogeneous broadening in the case of SSNMR. 

 Signal is acquired in between each pair of refocusing pulses; therefore, multiple 

echoes are acquired in a single scan, thereby increasing the S/N in comparison to a 

standard Hahn-echo experiment. The echo train of the FID can be Fourier transformed to 

produce a series of spikelets whose manifold is representative of the lineshape of a classic 

powder pattern. The spikelet spacing (in Hz) is inversely proportional to the distance 

between echoes and the signal is localized under the spikelets, thus increasing S/N.81,80 
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FIDs containing trains of spin echoes can also be processed by shifting and co-adding the 

echoes, followed by subsequent FT, which yields a pattern free of spikelets and with 

resolution dependent upon the experimental dwell time; this is known as echo co-

addition.82 

 

Figure 1.15 : The (A) amplitude and (B) phase profiles of the WURST pulse. 

1.4.5 Wideband Uniform-Rate Smooth-Truncation (WURST)-CPMG 

It is difficult to produce high-power rectangular pulses capable of achieving 

excitation bandwidths in excess of 250 kHz. In addition, the use of multiple high-power 

pulses in a CPMG-style acquisition, or long pulses in a CP experiment, can result in 

significant stress on the NMR probe. Bhattacharya and Frydman proposed using 

wideband uniform-rate smooth truncation WURST pulses,83 which were originally 

developed by Kupče and Freeman, for the excitation of CT SSNMR powder patterns of 
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half-integer quadrupolar nuclides.84 These pulses employ a quadratic phase modulation 

and gradually rounded amplitude profiles (Figure 1.15), and much lower rf fiends than 

rectangular pulses. O’Dell et al. utilized WURST pulses in the context of a CPMG-style 

acquisition (WURST-CPMG).85–87 This pulse sequence utilizes two identical WURST 

pulses, the first for broadband excitation and the subsequent pulses for broadband 

refocusing of magnetization. The use of the pulse sequence results in broad excitation 

bandwidths and substantial increases in S/N, and this technique is now routinely used for 

the acquisition of UWNMR spectra, since WURST pulses excite large bandwidths while 

using relatively low rf fields. 

 The number of echoes that can be acquired in a CPMG-style acquisition is 

dependent on the T2. It was demonstrated that the use of high-power decoupling greatly 

increases the number of echoes that can be acquired, and therefore, the S/N of the 

resulting spectrum. The systems studies in Chapter 6 do not have protons, and therefore, 

there is no source of efficient relaxation, resulting in the acquisition of numerous echoes. 

For example, using the WURST-CPMG pulse sequence, it was possible to acquire a high 

S/N 35Cl SSNMR spectrum with a breadth of ~650 kHz in just 32 s (vide infra).  

1.4.6 Frequency-Stepped Acquisition 

 Despite the broadband excitation afforded by the use of WURST pulses, it is not 

possible to uniformly excite the entire breadth of ultra-wideline (UW) SSNMR patterns 

(cf. Chapter 6), and therefore, specialized techniques are required in order to acquire the 

powder patterns in their entirety. A method to overcome this challenge is to acquire a 

series of sub-spectra at evenly spaced transmitter frequencies followed by Fourier 

transformation and co-addition of the sub-spectra.88–90 This method (known as the 
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variable offset cumulative spectrum, VOCS technique) allows for the acquisition of sub-

spectra in large frequency increments and affords an increase in S/N (Figure 1.16). 

 

Figure 1.16: The acquisition of a 35Cl SSNMR spectrum using the variable offset 
cumulative spectra (VOCS) technique. WURST-CPMG spectra were acquired with 100 
kHz increments of the transmitter frequency. 

 

1.5 Density Function Theory Calculations 

 The assignment of NMR powder patterns to individual chemical environments in 

a molecule or material can often be challenging, especially in the case of multiple 

overlapping patterns. Additionally, knowledge of the orientation of the NMR interaction 

tensors with respect to the crystallite or molecular frames is essential in studies of 

molecular-level motions or chemical exchange, since the appropriate Euler angles (α, β, 

γ) are required to properly describe motional models. Often, tensor orientations can be 

inferred from the symmetry of the molecule; however, their exact determination is only 

possible through single-crystal NMR experiments. The use of quantum chemical 
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calculations allows for the predictions of NMR tensors (i.e., their orientations and 

magnitudes), thus facilitating the assignment of NMR spectra and the establishment of 

motional models. 

 In this dissertation, density functional theory (DFT) calculations are performed 

using two software packages: Amsterdam Density Function (ADF)91 and CASTEP.92–94 

In Chapter 5, calculations using ADF are performed on isolated molecules to predict the 

tensor orientations and assist in the determination of motional models. CASTEP 

calculations exploit the symmetry and periodicity of the extended solid system and are 

used in Chapter 6 to aid in the assignment of 35Cl SSNMR spectra. A full description of 

DFT in the context of molecular orbital (MO) theory and plane-wave orbitals is beyond 

the scope of this thesis; the reader is referred to a series of landmark papers and 

reviews.95–102 

 

1.6 Context of Research 

 The NMR interactions discussed above are very sensitive to the chemical 

environments of the different nuclides, and as such, provide detailed structural 

information that cannot be obtained from any other spectroscopic method. Dynamical 

processes also influence the appearance of SSNMR spectra, and therefore, SSNMR is an 

ideal technique to study motions over a wide range of rates. The work in this dissertation 

makes use of SSNMR to provide information on the structure and formation of porous 

materials, to determine the motions occurring in simple molecular machines, and to 

provide a preliminary glimpse of the use of UWNMR to probe molecules on the surfaces 

of porous materials. 
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1.6.1 Into the Void(s) 

The synthesis, development, and application of porous materials represents a 

burgeoning area in the fields of chemistry and materials science. A porous material is a 

three-dimensional solid consisting of a framework “skeleton” and large pores with well-

defined volumes and surface areas. The high degree of functionalization, modularity, and 

selectivity of porous materials has allowed chemists to synthesize materials with finely-

tuned pore sizes, geometries, and chemistries. This intimate control of the pore 

architecture has led to many potential applications for porous materials.103 Perhaps the 

most widely exploited application is for molecular sieving104 – the pores of the 

framework can allow for the separation of a mixture of molecules based on their size and 

chemistries (this has been especially useful for the drying of solvents and petroleum 

extracts). With increasing global concern about climate change and related environment 

hazards, porous materials are being designed for the purpose of gas absorption and 

storage.105 Systems have been devised that can selectively contain carbon dioxide, 

showing promise for carbon sequestration from the atmosphere.106 Furthermore, porous 

materials have shown potential for hydrogen fuel cells, as they may provide a safe, 

reliable means to store and transport large amounts of pressurized hydrogen gas. Another 

application of porous materials is in the field of catalysis107 – the pores can provide a 

confined space, which can facilitate a reaction, and/or metals or functional groups on the 

framework structure can serve as catalytic active sites.  

Metal-organic frameworks108 (MOFs) are composed of metal or metal-cluster 

nodes that are joined together by organic ligands. There exist a wide variety of organic 

ligands, which are capable of coordinating several different metals, leading to an endless 
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cornucopia of possible MOF structures. Zeolitic Imidazolate Frameworks109 (ZIFs) are a 

subclass of MOFs that use divalent metal nodes (e.g., Zn2+, Cd2+, Co2+) and imidazole 

(Im) derivatives as the organic linkers; the Im-M-Im bond angle is analogous to the Si-O-

Si bond angles found in zeolites, and therefore, these two classes have systems with very 

similar topologies. 

Despite the great interest in MOFs and ZIFs, little research has been done into the 

development of new synthetic methodologies for their preparation. ZIFs are traditionally 

made using solvothermal synthetic techniques; however, these techniques are not 

desirable, as they use large amounts of solvent, require high energy inputs, and often 

involve toxic starting materials. The commercialization and anticipated increase in the 

industrial applications of MOFs and ZIFs necessitate the development of greener, more 

cost-effective synthetic techniques.110 In addition, the development of new synthetic 

strategies should present the opportunity to generate new solid phases not accessible by 

traditional synthetic techniques, and an understanding of the mechanisms of the 

formation of MOFs will lead to the rational design of frameworks with specific 

topologies and functions. 

SSNMR has been extensively applied to the study of MOFs and ZIFs.111,112 As the 

organic linkers used in the synthesis of MOFs and ZIFs have many commonly-

investigated NMR-active nuclides (e.g., 1H, 13C, 15N), SSNMR has been used to probe 

their framework structures and provide information on connectivities and bond 

lengths.113–120 Characterization of the metal ions in secondary building units (SBUs) via 

SSNMR is more challenging, as the metals often have NMR-active nuclides that are 

classified as unreceptive (i.e., low natural abundance, low gyromagnetic ratio, large 
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quadrupole moments, or a combinations of these factors), and therefore, only a few such 

studies exist in the literature.121–125 Perhaps the most ubiquitous use of SSNMR is to 

observe the dynamics of guest molecules within the pores of the host frameworks.126–133 

The most promising applications of MOFs and ZIFs are for gas storage and separation; 

therefore, an intimate understanding of the locations, dynamics, and adsorption strengths 

of gas molecules within their pores is crucial for the design of materials with finely tuned 

properties for these specific applications. SSNMR is one of the only methods available 

for probing the rates and modes of motion of guest molecules; in particular, the wide 

range of motional rates that can be accessed surpass every other analytical technique. 

Despite the utility of SSNMR for the investigation of MOFs and ZIFs, there are only a 

few reports of the application of NMR-assisted crystallography for their structural 

elucidation.134,135 

In Chapters 2 and 3, two solid-state synthetic approaches, accelerated aging and 

mechanochemical synthesis, are used synthesize ZIFs. In Chapter 2, the structure of a 

new Cd imidazolate framework (CdIF) is determined using NMR-assisted 

crystallography. In Chapter 3, the formation of CdIF is monitored using a combination 

of SSNMR and PXRD. The detailed, molecular-level structural information afforded by 

the SSNMR experiments allows for the identification of intermediates and a reaction 

pathway is proposed. In Chapter 6, 35Cl SSNMR is used to determine the structure of a 

transition-metal catalyst that is grafted onto a porous support material. 

1.6.2  “There’s plenty of room at the bottom” 

 In his seminal lecture delivered in 1959, Richard Feynman laid the foundation for 

the development of nanotechnology. One of the key principles he outlined was that of 
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molecular machines – tiny devices capable of performing work at the atomic level. In 

2016 (nearly 60 years later), the Nobel Prize in Chemistry was awarded to J.P. Sauvage, 

J.F. Stoddard, and B.L. Feringa for the design and synthesis of molecular machines (i.e., 

molecular switches and motors).136–139 Molecular machines have been shown to undergo 

a variety of different motions in solution;140 however, it can be envisioned that these 

devices could undergo spatially coherent motion if they were incorporated into solid-state 

materials. An intimate understanding of the dynamics exhibited by such devices is 

essential for the design of materials with finely-tuned motions and applications. As 

discussed above, SSNMR spectra are sensitive to a variety of different motions over a 

wide dynamical range, and as such, it is the premier technique for studying dynamics in 

the solid state. The simulation of SSNMR spectra acquired at different temperatures 

allows for the development of models that describe the dynamics of the rotators and the 

determination of the rates of their motions. 

 In Chapter 4, 2H SSNMR is used to investigate the rotational dynamics of crown 

ether molecules that have been incorporated into the framework structures of MOFs. The 

factors that affect the dynamics of these simple molecular machines are investigated. In 

Chapter 5, the dynamics of inorganic molecular rotors are determined using SSNMR. 

These studies demonstrate that SSNMR, and in particular 2H SSNMR, is an ideal 

technique for providing detailed information on dynamics and an intermediate 

understanding of the factors that govern motion at the molecular level. 
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2  Chapter 2: NMR-Assisted Powder X-Ray Diffraction for 

the Structural Characterization of a Zeolitic Imidazolate 

Framework Synthesized via Accelerated Aging Reactions 

2.1 Overview 

A new Cd-containing zeolitic imidazolate framework (1) was synthesized using 

accelerated aging reactions. Powder X-ray diffraction (PXRD) analysis of the products of 

the aging reaction show reflections corresponding to 1, as well as characteristic 

reflections of the cadmium oxide (CdO) starting materials. By varying relative amounts 

of the CdO and 2-methylimidazole (HMeIm) starting materials, it was determined that 

the Cd:MeIm ratio in 1 is 1:3 as opposed to the typical 1:2 ratio expected for a ZIF. 

Multinuclear solid-state NMR (SSNMR) experiments were conducted on 1 to determine 

the nature of the Cd coordination environments, which in turn aids with the refinement of 

the molecular-level structure from the available PXRD data. 111Cd SSNMR spectra of 1 

reveal that the Cd atoms in four-coordinate environments and multinuclear SSNMR (i.e., 

1H, 13C, 14N,) experiments demonstrate that there is unbound HMeIm in this system. 

Refinement of the structure using this data determined that 1 is an open framework with a 

distorted diamondoid topology and unbound HMeIm within the pores of the framework. 

 

2.2 Introduction 

 The design and synthesis of metal-organic frameworks (MOFs) represents an area 

of intense research within the field of materials chemistry.1–3 The large void spaces 

present in these materials has led to their potential applications for gas storage and 
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separation,4,5 catalysis,6,7 and molecular sensing.8,9 Furthermore, the wide array of 

available ligands and secondary building units (SBUs, e.g., metal nodes, paddlewheels, 

and clusters)10 allows for the synthesis of materials with varying topologies and finely 

tuned chemical and physical properties. 

 Zeolitic imidazolate frameworks (ZIFs) are a subclass of MOFs composed of 

divalent metal centres (M2+, e.g., Zn2+, Co2+, Cd2+, etc.) that are connected together by 

imidazolate-derivative ligands (RIm–).11,12 They are termed “zeolitic” because the M2+–

RIm––M2+ bond angles are similar to the Si–O–Si bond angles found in zeolites, resulting 

in ZIFs having a high degree of topological diversity comparable to that of zeolites. ZIFs 

have attracted a lot of interest due to their high thermal and chemical stabilities, and have 

found uses for gas separation13 and molecular sieving.14 While Zn2+
 is the most 

ubiquitous metal node employed in the synthesis of ZIFs, Cd-containing ZIFs (so-called 

CdIFs) have also been reported in literature.15,16 The longer Cd2+–N bond lengths can 

yield materials with larger void spaces, thereby allowing for the synthesis of frameworks 

with topologies not possible for analogous Zn2+-containing systems. 

 Despite the great interest in MOFs and ZIFs, little research has been done into the 

development of new synthetic methodologies for their preparation. ZIFs are traditionally 

made using solvothermal synthetic techniques; however, these techniques are not 

desirable, as they use large amounts of solvent, require high energy inputs, and often 

involve toxic starting materials. The commercialization and anticipated increase in the 

industrial applications of MOFs and ZIFs necessitate the development of greener, more 

cost-effective synthetic techniques.17 In addition, the development of new synthetic 

strategies should present the opportunity to generate new solid phases not accessible by 
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traditional synthetic techniques, and an understanding of the mechanisms of the 

formation of MOFs will lead to the rational design of frameworks with specific 

topologies and functions. 

 Accelerated aging reactions 18–20 are newly-introduced solid-state synthetic 

techniques that imitate the spontaneous formation of minerals in nature.21,22 These 

reactions use no solvent, low energy inputs, and non-toxic starting materials; furthermore, 

they can afford quantitative yields, making them ideal alternatives to the traditional 

solvothermal synthesis of ZIFs. The general synthetic procedure for the formation of 

ZIFs using accelerated aging reactions is as follows: (i) a homogeneous reaction mixture 

of the solid starting materials (i.e., a metal-oxide and the imidazole-based linker) is made, 

(ii) the mixture is placed inside a humidity chamber, and (iii) the aging reaction occurs at 

slightly elevated temperatures (e.g., 45 °C), running to completion over the course of 2 to 

7 days. To date, accelerated aging reactions have been used to synthesize a number of 

commercially relevant MOFs (e.g., ZIF-8, ZIF-67, HKUST-1, and UiO-66/UiO-66-NH2) 

from a variety of metal-oxide starting materials (e.g., ZnO, CdO, CuO, and ZrO, 

respectively).23,24  

 Accelerated aging reactions yield products as microcrystalline powders, 

precluding their characterization by single-crystal X-ray diffraction. Powder X-ray 

diffraction (PXRD) can be utilized to provide information on the completion of the 

reaction (i.e., by observing the disappearance of signals from the starting materials, and 

even identifying impurity phases in some cases), and can also be used to identify and 

track the formation of a product, provided that its structure is known a priori. However, 

for the formation of new phases, the refinement of their structures from PXRD patterns is 
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challenging and often requires the use of complementary analytical techniques. The 

formation of amorphous or disordered phases further exacerbates this problem, as PXRD 

is of little utility for their characterization. 

 Solid-state NMR (SSNMR) is a powerful characterization technique, providing 

molecular-level information on structure and dynamics. It is also well-suited to the study 

of disordered and amorphous materials,25–27 since it does not depend on long-range order. 

For crystalline samples, NMR-assisted crystallography combines the short-range, local 

structural information provided by SSNMR with the details on long-range order afforded 

by PXRD to elucidate the structures of materials.28–32 In particular, the use of 

multinuclear SSNMR provides a high degree of specificity regarding the numbers and 

types of chemical environments, and can therefore greatly assist in the refinement of 

structures from PXRD data. 

 SSNMR has been extensively applied to the study of MOFs and ZIFs.33,34 As the 

organic linkers used in the synthesis of MOFs and ZIFs have many commonly-

investigated NMR-active nuclides (e.g., 1H, 13C, 15N), SSNMR has been used to probe 

their framework structures and provide information on connectivities and bond lengths.35–

42 Characterization of the metal ions in SBUs via SSNMR is more challenging as they 

often contain elements with NMR-active nuclides that are classified as unreceptive (i.e., 

low natural abundance, low gyromagnetic ratio, large quadrupole moments, or a 

combinations of these factors) and therefore, only a few such studies exist in the 

literature.43–47 Perhaps the most ubiquitous use of SSNMR is to observe the dynamics of 

guest molecules within the pores of the host frameworks.48–55 The most promising 

applications of MOFs and ZIFs are for gas storage and separation; therefore, an intimate 
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understanding of the locations, dynamics, and adsorption strengths of gas molecules 

within their pores is crucial for the design of materials with finely tuned properties for 

these specific applications. SSNMR is one of the only methods available for probing the 

rates and modes of motion of guest molecules; in particular, the wide range of motional 

rates that can be accessed surpass every other analytical technique. Despite the utility of 

SSNMR for the investigation of MOFs and ZIFs, there are only a few reports of the 

application of NMR-assisted crystallography for their structural elucidation.29,56 

 In this chapter, data obtained from a combination of PXRD and multinuclear 

SSNMR experiments are used to describe the formation of ZIFs produced using 

accelerated aging reactions. In addition, the final structure of a new CdIF (1) was 

determined by NMR-assisted crystallography, as follows: First, PXRD data was used to 

verify the formation of a new phase (1) and indicate that the Cd:HMeIm ratio in this CdIF 

is 1:3. Next, a series of materials with known structures were characterized using 111Cd 

SSNMR, in order to make correlations between the Cd chemical shift (CS) tensor 

parameters and the Cd coordination environments (four- and six-coordinate Cd sites). 

111Cd SSNMR experiments were conducted on the 1 to determine the Cd coordination 

environment, as informed by the Cd CS tensor data from known compounds. Then, a 

series of multinuclear (1H, 13C, and 14N) SSNMR experiments were utilized to gain 

information on the numbers and types of distinct chemical environments in the CdIF 

framework and species in the pores. Finally, all of this information was used to aid in the 

refinement of the structure from PXRD data and to propose a structure for 1. 
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2.3 Experimental Details 

2.3.1 Reagents 

 Cadmium oxide (CdO), 2-methylimidazole (HMeIm), and ammonium nitrate 

(NH4NO3) were purchased from Sigma Aldrich and used without further purification. 

2.3.2 Accelerated Aging Reactions 

 The reactants were dry-milled (i.e., without the use of solvent) using a Retsch 

MM400 ball mill to produce a homogeneous mixture. The reagents were placed in 10 mL 

stainless steel milling jars with two 7 mm stainless steel ball-bearings and milled at a 

frequency of 30 Hz for five minutes. The homogeneous reagent mixtures were then 

placed in a beaker and put inside an acrylic hydration chamber with water. The hydration 

chamber was placed inside an incubation oven set to 45 °C.  

 Fractions of the aging reactions were taken at different times for analysis. 

Samples were finely ground and packed into 0.5 mm capillaries for PXRD analysis. 

2.3.3 Powder X-ray Diffraction 

PXRD patterns were collected using either a Bruker D2 Phaser benchtop 

diffractometer or a Bruker D8 Discovery diffractometer. Both diffractometers are 

equipped with Cu-Kα (λ = 1.54056 Å) sources operating at a power setting of 30 kV and 

10 mA (D2 Phaser) or 40 kV and 40 mA (D8 Discovery). Powder patterns were collected 

in the range of 2q = 4º to 40º. Analyses of PXRD patterns were done using DASH 3.3.6 

and CrystalDiffract 6.7.1 software packages. 

2.3.4  Solid-State NMR 

All SSNMR experiments were conducted on a Varian Infinity Plus console with 

an Oxford 9.4 T (n0(1H) = 400 MHz, n0(111Cd) = 84.86 MHz, n0(13C) = 100.58 MHz, 
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n0(14N) = 28.91 MHz) wide-bore magnet. Samples were finely ground with a mortar and 

pestle and packed into either 4 mm outer diameter (o.d.) zirconia rotors (1H, 13C, 111Cd 

MAS NMR experiments) or 5 mm o.d. glass tubes (14N static NMR experiments). 

2.3.4.1 1H MAS NMR 

Experiments were conducted on a Chemagnetics 4 mm HX MAS probe. A Bloch 

decay pulse sequence with calibrated p/2 pulse widths of 3.56 µs (ν1 = 70 kHz) was used 

for all experiments, which were conducted under MAS (nrot = 16 kHz). 4 K of points 

were collected with a dwell time of 6.67 µs (spectral width of 150 kHz). The recycle 

delays were calibrated for each sample to maximize S/N and are shown in Table A1. 

Peaks were referenced to TMS using adamantane as a secondary reference (diso = 1.87 

ppm). 

2.3.4.2 1H-13C CP/MAS NMR 

13C SSNMR experiments were conducted on the same spectrometer and probe 

using the variable-amplitude cross polarization (VACP) pulse sequence under MAS 

conditions57 (nrot = 10 kHz). Optimized contact times and recycle delays are shown in 

Table A2. The p/2(1H) pulse width was 7.4 µs. The spin locking powers were 34 kHz for 

1H and 24 kHz for 13C. TPPM 1H decoupling was used, with ν2 = 46 kHz. 8 K of points 

were collected with a dwell time of 16.67 µs (spectral width of 60 kHz). Peaks were 

referenced to TMS using adamantane as a secondary reference (diso = 38.57 ppm). 

2.3.5 1H-111Cd CP/MAS and CP static NMR 

111Cd SSNMR experiments were conducted using the variable-amplitude cross 

polarization (VACP) pulse sequence under both MAS (nrot = 5 kHz) and static conditions. 
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Optimized contact times and recycle delays are shown in Table A3. The p/2(1H) pulse 

width was 3.5 µs. The spinning locking powers were 52 kHz for 1H and 42 kHz for 111Cd.  

TPPM 1H decoupling was used, with ν2 = 58 kHz. 2 K of points were collected with a 

dwell time of 20 µs (spectral width of 50 kHz). Peaks were referenced to Cd[ClO4]2 • 

6H2O using Cd[NO3]2 • 4H2O as a secondary reference (diso = –100 ppm). 

While 113Cd (n.a. = 12.22%, g = –9.487 MHz/T) is usually preferred over 111Cd 

(NA = 12.80 %, g = –9.069 MHz/T) for NMR experiments, 113Cd spectra acquired at 9.4 

T are subject to interfering, semi-coherent signals from local FM radio stations. For this 

reason, 111Cd was chosen as the target nuclide, without incurring any significant losses in 

signal-to-noise. 

2.3.6 1H-14N BRAIN-CP/WURST-CPMG 

14N SSNMR experiments were conducted using the Broadband Adiabatic 

INversion Cross Polarization pulse sequence coupled with a WURST-CPMG echo train 

(BRAIN-CP/WURST-CPMG).58–61 A 4.9 µs (51 kHz) p/2 excitation pulse was used on 

the 1H channel and 45 kHz of spin-locking power was applied on both channels for the 

optimized contact time. The WURST spin-locking pulse was swept over 1000 kHz on the 

14N channel. The CPMG refocusing portion of the sequence used 50 µs WURST-80 

pulses, with ν1 = 28 kHz and 1000 kHz sweep ranges. The spectral width was 2000 kHz 

(0.5 µs dwell time). The acquisition period of a single echo was 100 points (50 µs).	

 Since the excitation bandwidths associated with the WURST pulses are 

insufficient to excite the entire breadth of the 14N powder patterns, the full 14N spectra 

were acquired using the frequency-stepped or variable-offset cumulative spectrum 

(VOCS) technique,62–64 where a series of subspectra were acquired with transmitter steps 
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of 100 kHz over the low frequency half of the Pake-like doublet. The subspectra were 

processed by co-addition of the echoes in the FID into a single echo, application of 20 

kHz of Gaussian broadening, Fourier transformation, and subsequent magnitude 

calculation. The subspectra were then co-added and mirrored about the 14N Larmor 

frequency to give the total spectrum.59,65–67 

2.3.7 Structure Refinement 

 The PXRD pattern of 1 was indexed and the unit cell parameters were determined 

using the McMaille software package.68 The initial structure solution was performed 

using DASH69 and refined using EXPGUI/GSAS.70,71 

 

2.4 Results and Discussion 

2.4.1 Synthesis and Powder X-ray Diffraction 

 The reaction of solid cadmium oxide (CdO) and 2-methylimidazole (HMeIm) is 

the main accelerated aging reaction investigated herein, subject to a series of disparate 

reaction conditions, including different ratios of CdO:HMeIm and treatment with 

catalytic protic salts.  

 The first accelerated aging reaction that was investigated featured a 1:2 

CdO:HMeIm ratio.  The materials were added to a milling jar and milled for five minutes 

without any solvent (i.e., dry-milling). The PXRD pattern of the resulting mixture shows 

reflections for only CdO and HMeIm (Figure A1 in Appendix A), indicating that no 

reaction occurred during dry-milling and that a homogenous mixture of the reagents was 

obtained. The mixture was then placed in a chamber and exposed to 100% relative 

humidity at a temperature of 45 °C. The PXRD pattern (Figure 2.1(A)) of the mixture 
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after twelve days in the aging chamber shows reflections from an unknown crystalline 

phase (1), as well as characteristic reflections of CdO, indicating the incomplete 

conversion of CdO into 1. It is noted that there are no reflections observed corresponding 

to unreacted HMeIm. 

 

Figure 2.1: Experimental PXRD patterns for (A) 1:2 reaction aged for 12 days, (B) 1:2 
reaction with NH4NO3 aged for 7 days, (C) 1:6 reaction with NH4NO3 aged for 6 days, 
(D) 1:6 reaction with NH4NO3 aged for 6 days, and (E) CdO. 
 
 The aging reaction was repeated with the addition of a catalytic amount of a protic 

salt to attempt to obtain complete conversion of the 1:2 mixture into 1. 4 mol% (with 

respect to CdO) of ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4), or 

caffeinium bisulfate ((HCaf)HSO4) was added and the resulting mixtures were dry-milled 

for five minutes and then aged (Scheme 2.1). The PXRD pattern for the products of the 

reaction treated with NH4NO3 and subjected to seven days of aging (Figure 2.1(B)) 

shows reflections from 1 and residual CdO, indicating an incomplete reaction.  However, 
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the reactions using either (NH4)2SO4 or (HCaf)HSO4 yielded 1, followed by the 

formation of a ZIF with a yqt1 topology and known structure (2, yqt1-Cd(MeIm)2). 

PXRD analysis of these reactions shows complete conversion to 2 after seven days of 

aging (Figure A2).

 

Scheme 2.1: Proposed reaction pathways for the accelerated aging reactions of CdO and 
HMeIm with different protic salts. For the reaction with NH4NO3, 1:2, 1:3, and 1:6 
Cd:HMeIm ratios were used. 
 
 The observation of reflections from CdO in the product mixture of the reaction 

conducted with NH4NO3 suggests that the ratio of Cd:MeIm in 1 is different than the 

expected 1:2 ratio. The reaction was repeated with a 1:6 Cd:HMeIm ratio to ensure the 

complete conversion of CdO into 1 by providing a large excess of HMeIm. The mixture 

was aged for six days, and the products were washed with methanol to remove any 

unreacted HMeIm. The powder diffraction pattern of the products showed no reflections 

from residual CdO (Figure 2.1(C)), indicating the complete conversion into 1. A similar 

result was obtained using a 1:3 reaction (Figure 2.1(D)), indicating that the Cd:HMeIm 

ratio in 1 is 1:3. 
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 In order to explain the 1:3 Cd:HMeIm ratio of 1, two structural models were 

proposed: (i) 1 consists of a framework of four-coordinate tetrahedral Cd atoms 

connected by MeIm– ligands with the excess HMeIm in the pores of the framework, or 

(ii) the Cd atoms are coordinated to both MeIm– and HMeIm ligands, leading to a 

framework with five- and/or six-coordinate Cd centres.  

2.4.2 Solid-State NMR Studies 

To determine which of the proposed structural models is correct, multinuclear 

SSNMR experiments (i.e., 111Cd, 13C, 1H, and 14N) were conducted to aid in the 

refinement of the structure from the PXRD patterns collected for this sample.    

 Cd chemical shifts are known to be very sensitive to the Cd coordination number 

and the nature of the coordinating ligands.72,73 Only a few Cd NMR studies of systems 

analogous to those discussed herein have been reported in the literature. Baxter et al. 

characterized the Cd-analogue of ZIF-8 (CdIF-1) using 113Cd SSNMR.74 The Cd atoms in 

CdIF-1 are coordinated by four MeIm ligands and the value of the Cd isotropic chemical 

shift, δiso(113Cd), was reported as 408.3 ppm. Mennitt et al. investigated two compounds 

with octahedral Cd environments, [Cd(HIm6)][NO3]2 and [Cd(Him)6][OH][NO3] • 4H2O, 

reporting δiso(113Cd) of 238 and 272 ppm, respectively.75 In order to obtain correlations 

between the Cd coordination environments and their chemical shifts, more data is needed 

on four- and six-coordinate Cd environments with nitrogen-donor ligands. Hence, we 

conducted 111Cd NMR experiments on the imidazolate frameworks dia-Cd(Im)2 (2, 

CCDC code BAYQAU)16 and yqt1-Cd(MeIm)2 (3, CCDC code GUPBOJ),16 which have 

four-coordinate Cd(II) sites, and the complex carbonate [Cd(HIm)6]2+[CO3]2- × 3H2O (4, 

CCDC code IMCDCP01),76 which has a six-coordinate Cd(II) site. Depictions of the 
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coordination environments of the Cd atoms (derived from the crystal structures) of 

compounds 2-4 are shown in Figures A3-A5, respectively. 1H MAS and 1H-13C CP/MAS 

NMR spectra of these compounds are shown in Figures A6 and A7, respectively. 

 1H-111Cd cross-polarization (CP) experiments were conducted under both magic-

angle spinning (MAS) and static (i.e., no sample rotation) conditions. The MAS 

experiments allow for the accurate determination of (δiso(111Cd)), which can be correlated 

to the type of Cd coordination environment. Since the Cd chemical shift anisotropies 

(CSAs) are relatively small, they are challenging to accurately measure from most of the 

MAS NMR spectra. Hence, static 1H-111Cd CP experiments were conducted, which yield 

spectra that provide the chemical shift (CS) tensor parameters (Table 2.1), providing 

further information on the geometries and symmetries of the Cd environments. 

The 111Cd NMR spectra of 2 are shown in Figure 2.2(A). The MAS spectrum 

reveals a δiso(111Cd) = 436(1) ppm and a clearly resolved nonet coupling pattern 

corresponding to indirect spin-spin coupling of 111Cd to four 14N (I = 1) nuclei, with 

1J(111Cd, 14N) = 140(5) Hz.  This δiso(111Cd) is consistent with that reported by Baxter et 

al.,74 as well as those in reports by Ellis et al. of Cd CS tensors of four-coordinate Cd 

centres with different geometries and mixed ligand types (Figure A8). The coordination 

environment of the Cd atom in 2 is significantly distorted from perfect tetrahedral 

symmetry (Tables A5 and A6), and this is manifested in the relatively large span (Ω = 

225 ppm), which can be measured from both the MAS and static 111Cd spectra. 
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Table 2.1: Experimentally measured cadmium chemical shift tensor parameters.  

Compound δiso (ppm)a Ω (ppm)b κ c 

1 441(1) 40(3) 0.0(2) 

2 436(2) 225(5) –0.19(2) 

3 437(1) 85(5) –0.68(2) 

417(3) 280(5) –0.51(2) 

437(1) 200(5) –0.40(2) 

4 251(2) 42(2) 0.55(2) 

The principal components of the chemical shift tensor are defined as δ11 ≥ δ22 ≥ δ33. 
 a Isotropic shift: δiso = (δ11 + δ22 + δ33)/3; b Span: Ω = δ11 – δ33; c Skew: κ = 3(δ22 – δiso)/Ω. 
While the MAS spectra are useful for determining the values of diso(111Cd), the full sets of 
tensor parameters are determined from the static spectra. Experimental uncertainties in 
the last digit(s) for each parameter are indicated in parentheses and were estimated using 
bidirectional variation of the parameters in the simulation software. 

 

 The MAS spectrum of 3 (Figure 2.2(B)) appears to exhibit two patterns arising 

from magnetically distinct 111Cd nuclei, with δiso(111Cd) of 437 and 417 ppm; again, both 

shifts are consistent with four-coordinate Cd environments with nitrogen-donor ligands. 

The peak at 437 ppm has a resolved nonet pattern (1J(111Cd, 14N) = 125(5) Hz), and is 

much more intense than the peak at 417 ppm, which does not have any resolvable fine 

structure (though it is clearly broadened in a similar manner to the former peak).  

Interestingly, the static spectrum of 3 reveals three overlapping patterns arising from 

magnetically distinct Cd sites. Two of the sites have virtually identical values of 

δiso(111Cd) = 437 ppm, but disparate CS tensor parameters; this almost certainly accounts 

for the broadening and increased intensity of the peak at 437 ppm in the MAS spectra, as 

noted above, and represents a rare case where distinct patterns are more easily resolved in 

static SSNMR patterns. 
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Figure 2.2: Experimental 1H-111Cd CP NMR spectra acquired under MAS (blue traces) 
and static (black traces) conditions, with accompanying simulations of the static spectra 
(red traces) for (A) dia-Cd[Im]2 (2), (B) yqt1-Cd[MeIm]2 (3), and (C) 
[Cd(HIm)6]2+[CO3]2–

 • 3H2O (4). 
 
 The crystal structure of 3 has two crystallographically distinct Cd environments, 

with one of these having a positionally disordered MeIm ligand (Cd1). The positionally 

disordered Cd environment has a very distorted tetrahedral geometry; hence, the two 
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patterns with large spans (i.e., Ω = 200 and 280 ppm) correspond to the Cd sites with the 

two possible orientations of the MeIm ligand. At this time, we are not able make 

assignments of the individual CS tensor parameter sets to different orientations of the 

MeIm ligand, even with the aid of ab initio DFT computations.  Finally, the pattern with 

the smaller span value (Ω = 85 ppm) corresponds to the Cd site with a less distorted 

tetrahedral coordination environment, and no positionally disordered ligands. 

 The 111Cd MAS spectrum of 4 (Figure 2.2(C)) has a single peak with δiso(111Cd) = 

251 ppm, consistent with a Cd environment in an octahedral coordination environment 

with nitrogen donor ligands.77–84 The span is relatively small with respect to those for the 

four-coordinate Cd sites above, indicating a near-octahedral symmetry. It is noted that the 

expected coupling pattern (thirteen peaks from coupling to six 14N nuclei) is not observed 

in the spectrum of this compound. This lack of resolution could arise from a distribution 

of 1J(14N, 111Cd) coupling constants and/or efficient transverse relaxation of 111Cd caused 

by scalar relaxation of the second kind.  

 With the information above, and Cd chemical shift data from the literature, it is 

now possible to identify which of the structural models is more plausible. The 111Cd MAS 

NMR spectrum of 1 (Figure 2.3(A)) reveals a single peak with δiso(111Cd) = 441 ppm, 

consistent with a crystallographically unique Cd species in a four-coordinate 

environment. There is no evidence for six-coordinate Cd species; therefore, model (ii) 

can be rejected, and consideration of model (i) can be pursued. In addition, the MAS 

spectrum has a relatively broad peak (significantly broader than those of the previously 

discussed four-coordinate Cd compounds) with no resolved J-couplings, indicating that 

there may be some disorder in this system (this is further substantiated by the 111Cd static 
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CP spectrum (Figure 2.3(B) and accompanying simulation, Figure 2.3(C), which do not 

show any clearly defined discontinuities). The disorder may be caused by the HMeIm 

guest molecules within the pores of the framework that assume random orientations at 

room temperature. Hence, further multinuclear SSNMR experiments were conducted to 

confirm the presence of HMeIm in the pores and to comment on the degree of ordering of 

these molecules. 

 

Figure 2.3: Experimental 1H-111Cd CP NMR spectra under (A) MAS (νrot = 5 kHz) and 
(B) static conditions for compound 1, with an accompanying simulation of the static 
spectrum in (C). 
  

The 1H-13C CP/MAS spectra of bulk HMeIm (green trace) and compound 1 (blue 

trace) are shown in Figure 2.4(A). The spectrum of the bulk form has four peaks, 

corresponding to the four distinct carbon environments in HMeIm. The spectrum of 1 has 

many peaks matching those in the spectrum of bulk HMeIm, suggesting that there is 

unbound HMeIm in 1 (the remaining peaks arise from carbon atoms of the MeIm ligands 

in the framework). In addition, the 1H MAS NMR spectrum of 1 (Figure 2.4(B)) has a 

peak at ca. 13.3 ppm, corresponding to a proton bound to a nitrogen atom in the HMeIm 
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ring – this signal is observed only if there is unbound HMeIm in 1, since all of the 

nitrogen atoms in the framework are coordinated to Cd2+ ions.  

 

Figure 2.4: (A) 1H-13C CP MAS spectra of bulk HMeIm (green trace) and 1 (blue trace), 
(B) 1H MAS spectrum of 1 and (C) 1H-14N BRAIN-CP/WURST-CPMG spectra of 
HMeIm (green trace) and 1 (blue trace). 
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Figure 2.5:Depictions (adapted from the predicted crystal structure of 1) of (A) the 
coordination environment about the Cd atoms, and (B) a supercell showing the pores 
containing the HMeIm molecules (hydrogen atoms have been omitted for clarity). 

 

The 1H-14N static CP NMR spectra for bulk HMeIm (green) and compound 1 

(blue) are shown in Figure 2.4(C). Due to the enormous breadth of the 14N patterns (ca. 

4.5 MH), it is necessary to use the broadband adiabatic inversion CP (BRAIN-CP) for 

polarization transfer,58,59 and the wideband uniform-rate smooth-truncation-CPMG 

(WURST-CPMG) pulse sequence for broadband excitation and refocusing.60,61,85 The 

spectrum of the bulk HMeIm has two overlapping Pake-like doublet patterns 

corresponding to the two distinct nitrogen environments (Figure A9). The narrower 

pattern (CQ = 1.95(5) MHz, ηQ = 0.44(2)) is assigned to N1 (i.e., the nitrogen with the 
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attached hydrogen atom) and the broader pattern (CQ = 3.13(5), ηQ = 0.21(2)) is assigned 

to N3. The spectrum of 1 has several broad features resulting from multiple overlapping 

Pake doublet patterns. Some of the features (i.e., horns, shoulders and feet) in the 

spectrum of 1 occur at the same frequency as those in the spectrum of bulk HMeIm, 

supporting the hypothesis that there is unbound HMeIm present in 1. Furthermore, the 

discontinuities in the spectrum of 1 are not as well defined as those in the spectrum of 

bulk HMeIm, suggesting that the guest HMeIm molecules are disordered in the former. 

Finally, there are discontinuities in the 14N spectrum of 1 that do not match those in the 

spectrum of HMeIm; these are assigned to nitrogen atoms of MeIm ligands in the 

framework of 1. 

2.4.3 Structural Refinement 

The structural information obtained via SSNMR spectroscopy enabled the choice 

of a suitable model for structural characterization of 1 from PXRD data. Indexing of the 

PXRD pattern of 1 using McMaille68 was only successful when allowing for the presence 

of impurity peaks and revealed an orthorhombic unit cell with parameters a = 

10.102455(5) Å, b = 16.7887(11) Å and c = 9.54324(47) Å. Intensity statistics and cell 

volume considerations suggested Ima2 as the most likely space group. Structure solution 

by DASH69 produced a model with symmetry-imposed disorder of an imidazole ligand 

and an unusually short coordinative bond (1.96 Å). Consequently, structure determination 

was repeated using space group Pna21, which is the maximal subgroup of Ima2 that 

allows the ligands to reside in general positions. The resulting fit was slightly better with 

this space group and the model explained a minor peak (13.7°) that would be considered 

an impurity with the Ima2 model. Even though the lower-symmetry model appears more 
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likely, it is important to note that some degree of disorder in the orientation of the 

coordinated imidazole rings cannot be excluded. The resolution of our PXRD data is not 

sufficient to resolve disorder. This caveat also applies to the voids present in the structure, 

which may contain disordered solvent molecules. The crystal structure, after successful 

refinement using EXPGUI/GSAS,70,71 revealed a distorted dia-topology Cd(MeIm)2 

network. The cavities of the framework are populated by HMeIm molecules that are 

arranged into one-dimensional channels through short N⋯N contacts of 2.67 Å, indicative 

of NH⋯N hydrogen bonding (Figure 2.5). 

2.5 Conclusions 

We have demonstrated the synthesis of a new zeolitic imidazolate framework with 

a diamondoid topology from the accelerated aging reaction of cadmium oxide and 2-

methylimidazole with catalytic amounts of NH4NO3; the synthesis of this material was 

not possible using traditional solvothermal techniques. The Cd:HMeIm ratio in this 

material was determined to be 1:3 and a combination of SSNMR and PXRD were used to 

refine and elucidate its structure. 1H-111Cd CP SSNMR spectra of a series of Cd-

containing compounds with known structures were acquired in order to obtain 

correlations between the 111Cd CS tensor parameters and the types and geometries of the 

Cd coordination environments. The 111Cd spectrum of the diamondoid framework 

suggests that the coordination environment about the Cd atoms is tetrahedral and 

multinuclear SSNMR experiments revealed that there is excess HMeIm in the pores of 

the framework that is likely disordered at room temperature. The information obtained 

from the multinuclear SSNMR experiments was used in the aid of the refinement of the 

structure from PXRD data. It was found that 1 consists of a distorted dia-Cd[MeIm]2 
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framework with one-dimensional channels that are populated by HMeIm molecules. 

Accelerated aging reactions provide an efficient, low-energy means for producing MOFs 

and ZIFs. The application of NMR crystallography for the structural elucidation of 

intermediates and products will allow for an understanding of the reaction pathways and 

mechanisms of accelerated aging reactions and aid in their rational design and 

optimization.  
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3 Chapter 3: Monitoring the Formation of Cadmium-

Containing Zeolitic Imidazolate Frameworks using a 

Combination of Powder X-ray Diffraction and 

Multinuclear Solid-State NMR 
 

3.1  Overview 

 Chemical syntheses that adhere to the tenets of green chemistry (i.e., reduce the 

amount of solvent, achieve higher yields, and require less energy input) are much sought 

after. Mechanochemistry is an attractive alternative to traditional solvothermal synthetic 

procedures, as it uses little solvent, affords quantitative yields, and has greatly reduced 

reaction times. Herein, we demonstrate the synthesis of cadmium-containing zeolitic 

imidazolate frameworks (ZIFs) from cadmium oxide and 2-methylimdazole using a 

combination of mechanochemical synthesis and accelerated aging reactions. 1H-111Cd 

CP/MAS NMR and PXRD are used in tandem to monitor the reactions and identify the 

products. The 111Cd NMR spectra show the presence of an intermediate (iCdM) that is 

converted into a framework of diamondoid topology, dia-Cd[MeIm]2 • HMeIm (dCdM); 

this transformation is observed in situ during the course of the NMR experiment. To the 

best of our knowledge, this represents the first in situ observation of the formation of a 

ZIF from mechanochemical reactions using SSNMR. PXRD reveals that the intermediate 

corresponds to CdIF-1 with solvent and/or HMeIm molecules within the pores of the 

framework that cause slight distortions in the Cd coordination environments. 

Solvothermal syntheses demonstrate that CdIF-1 is converted to dCdM in the presence of 

excess HMeIm, thereby confirming its identity as the intermediate observed in the NMR 
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experiments. PXRD also shows that ball milling provides the activation energy to initiate 

the reactions, but that it is an aging process that drives the formation of ZIFs. It is 

demonstrated that CdIF formation is achieved with milling times as short as five seconds, 

followed by aging at room temperature, suggesting the potential for synthetic procedures 

that require very low energy inputs.  A reaction pathway is proposed for the 

mechanochemical synthesis based on the results of the NMR and PXRD experiments. 

NMR experiments provide detailed information about the Cd coordination environments 

and distortions caused by the inclusion of guest molecules, whereas PXRD is useful for 

phase identification. This study demonstrates the great potential for the use of NMR and 

PXRD methods in concert for the characterization of structures and the elucidation of 

reaction pathways for a plethora or MOFs and ZIFs produced via solid-state syntheses. 

With the use of these two techniques in tandem, it is possible to probe reaction pathways 

for the mechanochemical synthesis of MOFs and ZIFs. 

 

3.2 Introduction 

 Increasing global concern regarding climate change and environmental pollution 

has led to the development of the field of green chemistry,1 which seeks to reduce the 

negative environmental impact associated with chemical reactions and syntheses, 

especially those that are conducted on an industrial scale. The Twelve Principles of Green 

Chemistry, proposed by Anastas and Warner in 1998,2 provide a framework in which 

chemical syntheses can be designed such that the undesired effects of conventional 

syntheses can be mitigated. Generally, chemical processes should be designed so as to 

limit the amount of waste produced, maximize the atom economy of reagents, reduce the 
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amount of solvent, use less toxic starting materials, and afford high yields with minimal 

energy input.3–5 Traditional solvothermal syntheses (i.e., heating reagents that are 

dissolved in large amounts of solvent) clearly do not adhere to the Twelve Principles of 

Green Chemistry; therefore, the development of new synthetic methodologies is of 

paramount importance, and represents an enormous area of active research.  

 Mechanochemistry6,7 is an ancient synthetic technique8 that has experienced a 

renaissance in recent years.9 Mechanochemistry uses mechanical forces (e.g., grinding, 

shearing, and stretching) to provide the activation energy to initiate and propagate 

chemical transformations.10 Modern mechanochemical syntheses often make use of a ball 

mill, a device which rapidly agitates reaction vessels containing the reagents and ball 

bearings, in order to produce the required mechanical forces. These synthetic procedures 

adhere to the principles of green chemistry, as they use little or no solvent, and make use 

of less toxic and readily-available starting materials that are usually considered inert 

under normal solvothermal synthetic conditions (e.g., metal oxides). Furthermore, these 

reactions can afford quantitative yields in reduced experimental times (often on the order 

of minutes or hours), greatly reducing energy expenditure. There are several proposed 

general models for the reaction mechanisms that occur during mechanochemical 

syntheses, including the hot spot theory11,12 and the magma-plasma model;12 it is unlikely 

that there is one model that applies to all mechanochemical reactions, since these would 

be highly dependent upon the exact reaction type, reaction conditions, starting materials, 

and catalytic agents. 

 Mechanochemistry has found use in numerous industrial applications due to 

heightened interest in green chemistry. As such, there is an increasing amount of research 
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focused on the design of new, more efficient mechanochemical syntheses; however, there 

has only been limited research directed at understanding the mechanisms underlying 

these processes (vide infra). Extensive research is underway to develop new 

methodologies and access synthetic pathways that are not accessible via solvothermal 

procedures. To this end, mechanochemistry has been used to synthesize metal alloys13,14 

and oxides,15,16 organic cocrystals,17–20 and pharmaceuticals,21–25 as well as in the 

formation of C–C and C–X bonds to facilitate organic transformations.26–30 

 Mechanochemistry has also been used to synthesize metal-organic frameworks 

(MOFs),7,31,32 a class of materials that have garnered much attention for their potential 

applications for gas storage, separation,33–37 catalysis,38,39 and molecular sensing.40,41 

Mechanochemical synthesis provides a greener, more efficient route for the production of 

MOFs, often affording quantitative yields in a fraction of the time required for traditional 

solvothermal techniques (i.e., minutes or hours compared to days or weeks). Furthermore, 

it has been demonstrated that the addition of a small amount of solvent (< 1 mL), as in 

liquid assisted grinding (LAG), or using a catalytic amount of ionic salt in addition to this 

solvent (i.e., ion- and liquid-assisted grinding, ILAG) can greatly increase the rate of 

formation of MOFs and allow for a tuneable selection of the chemistries and topologies 

of the resulting products.42–44 

 It is suspected that many mechanochemical reactions have pathways and 

mechanisms that greatly differ from those of their solvothermal analogues, due to the 

distinct reaction conditions in each case; therefore, it is crucial to monitor 

mechanochemical reactions in order to gain insight into these pathways and mechanisms. 

The premier technique for monitoring mechanochemical reactions is powder X-ray 
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diffraction (PXRD), which can easily identify the solid phases of reactants, intermediates, 

products, and by-products, provided their structures are known a priori (if they are not 

known, searches of crystallographic databases and/or Rietveld refinements are possible). 

However, PXRD has limited application for the identification of solid phases that are in 

low concentrations or amorphous in nature.  Since the products of mechanochemical 

syntheses are generally nano- or microcrystalline powders, the characterization of 

unknown phases using single-crystal X-ray diffraction is not usually possible. In situ 

PXRD investigations have been used to observe the formation of different phases,45–47 

and it was determined that these reactions proceed in stages that yield products with 

increasing density and thermodynamic stability.48  

 Solid-state NMR (SSNMR) is an ideal technique for characterizing MOFs, 

providing detailed, molecular-level information on structure and dynamics.49–54 Despite 

the wealth of information offered by SSNMR, reports on its application for monitoring 

the mechanochemical synthesis of MOFs have focused mainly on the identification of 

products, and not on probing the underlying reaction pathways and mechanisms. Belcher 

et al. used 13C SSNMR to confirm the formation of coordination polymers using 

mechanochemical ligand exchange reactions,55 and Katsenis et al. used SSNMR and 

PXRD to prove that an amorphous phase of a zeolitic imidazolate framework (ZIF) was 

able to form during a mechanochemical synthesis.46 Friščić et al. used a combination of 

15N and 23Na SSNMR to verify the inclusion of salt ions into the pores of frameworks 

made using ILAG reactions and suggested that the salts may act as templating agents that 

direct the topologies of the MOF products.56 To date, SSNMR has not been used to 

monitor the mechanochemical formation of MOFs. In addition, there have been no 
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reports of the characterization of the metal centres in mechanochemically-synthesized 

MOFs with SSNMR, however; there are reports of the characterization of the metal 

centres in MOFs made from solvothermal techniques.49,57–60 This is surprising, given that 

such studies have the potential to yield detailed information on metal coordination 

environments and the inclusion of guest molecules into the frameworks, as well as 

providing better routes to structural refinements and predictions for unknown products. 

 In this study, we use a combination of PXRD and 1H-111Cd cross-

polarization/magic-angle spinning (CP/MAS) SSNMR to monitor the mechanochemical 

synthesis of a cadmium-containing zeolitic imidazolate frameworks (i.e, CdIF-1, dCdM, 

yCdM, and aCdM, see Table 3.1 for sample descriptions) made from cadmium oxide 

(CdO) and 2-methylimidazole (HMeIm), under ILAG conditions using a catalytic amount 

of ammonium nitrate (NH4NO3) salt and methanol (MeOH) solvent. PXRD is used to 

identify bulk phases and products, and to track the depletion of the reagents. 1H-111Cd 

CP/MAS provides a direct probe of the Cd coordination environments in both crystalline 

and amorphous phases. In addition, the 1H-111Cd CP/MAS NMR spectra are not obscured 

by signals from the starting materials (in contrast to what is commonly observed in 

PXRD patterns), since 111Cd NMR signals resulting from CP can only arise from Cd-

containing species having a spatially proximate source of protons. The use of these two 

techniques in tandem allows for the elucidation of a reaction pathway for CdIF formation.  

The results of these experiments suggest that aging reactions occur within the milling jars 

and NMR rotors, leading to framework formation. Milling times as short as five seconds 

provide sufficient energy to initiate the chemical transformations, and subsequent aging 

of the mixtures results in quantitative yields of the framework materials. The 
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characterizations of structures and reaction pathways herein demonstrate that the 

combination of milling and aging offers the possibility of truly low-energy syntheses that 

are in accordance with the Twelve Principles of Green Chemistry. 

Table 3.1: Sample names and descriptions. 
Sample name Description 

iCdM Intermediate formed in the mechanochemical reactions. The Cd atoms 
are in a tetrahedral coordination environment with MeIm– ligands 

dCdM dia-Cd[MeIm]2 • HMeIm 
yCdM yqt1-Cd[MeIm]2 
aCdM amorphous Cd[MeIm]2 framework 
CdIF-1 sod-Cd[MeIm]2 

CdIF-1dried CdIF-1 that has been dried under vacuum to remove guest molecules 
from the pores of the framework 

CdIF-1HMeIm CdIF-1dried that has been soaked in a saturated solution of HMeIm 
 

3.3 Experimental Details 

3.3.1 Starting Materials 

Cadmium oxide (CdO) was purchased from Strem Chemicals. 2-methylimidazole 

(HMeIm), unlabeled ammonium nitrate (NH4NO3), and 15N-labeled ammonium nitrate 

(15NH4
15NO3) were purchased from Millipore Sigma. All starting materials were used 

without further purification. 

 

3.3.2 Mechanochemical Synthesis 

All reactions were carried out using a Retsch MM400 ball mill at a milling 

frequency of 30 Hz. The total mass of starting materials for each reaction (excluding that 

of the methanol solvent and the 4 mol% NH4NO3) was set at 200 mg. The materials were 

placed in a 10 mL stainless steel milling jar with two 7 mm stainless steel ball-bearings.  

Cryomilling reactions were performed by placing the materials in the milling jar, and 

then submersing the jar in liquid N2 for five to ten minutes. To limit the effects of 
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frictional heating, cryomilling reactions were only performed for a maximum of two 

minutes; if longer milling times were required, the milling was stopped and the jar was 

resubmersed into liquid N2. 

 

3.3.3 Synthesis of aCdM 

 A sample of yCdM was prepared by milling CdO and HMeIm in a 1:2 ratio with 

4 mol% NH4NO3 and 100 µL MeOH for 30 mins. The sample was then washed with 

MeOH to remove any unreacted HMeIm and dried under vacuum overnight. Following 

the procedure of Baxter et al.,61 the dried sample was milled for three hours to form the 

amorphous framework, aCdM. The formation of aCdM was confirmed by PXRD and 

111Cd CP/MAS NMR. 

 

3.3.4 Synthesis of CdIF-1 

 CdIF-1 was synthesized using the modified procedure of Tian et al.,62 as 

proposed by Baxter et al.61 A mixture of 0.267 g (1 mmol) of cadmium acetate dihydrate 

and 0.410 g (5 mmol) of HMeIm was dissolved in 15 mL 1-butanol and placed in a 

Teflon-lined autoclave. The mixture was allowed to react at 140 °C for 48 hours, 

followed by cooling to room temperature. The product was collected by vacuum filtration 

and washed three times with 10 mL of EtOH. CdIF-1dried was made by heating CdIF-1 

in a vacuum oven for five hours at 200 °C. CdIF-1dried was stirred in a saturated 

methanol solution of HMeIm for three days to yield CdIF-1HMeIm. 
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3.3.5 SSNMR Experiments 

All SSNMR experiments were conducted on a Bruker Avance III HD console 

with an Oxford 9.4 T (n0(1H) = 400 MHz, n0(111Cd) = 84.86 MHz, n0(15N) = 40.5 MHz) 

wide-bore magnet. Samples were finely ground with a mortar and pestle and tightly 

packed into 4 mm outer diameter (o.d.) zirconia rotors. The TopSpin 3.5pl6 software 

package was utilized to control all experiments and spectra were simulated using the 

Solid Lineshape Analysis (SOLA) module. 

 

3.3.6 1H-111Cd CP/MAS NMR 

111Cd SSNMR experiments were conducted using a Chemagnetics 4 mm HX 

MAS probe. Spectra were acquired using the variable-amplitude cross polarization 

(VACP) experiment under MAS conditions (nrot = 5 kHz, unless otherwise noted).63 

Optimized contact times and recycle delays are shown in Appendix B, Table B1. The 

p/2(1H) excitation pulse width was 2.5 µs. The spin locking powers were 50 kHz for 1H 

and 40 kHz for 111Cd.  TPPM 1H decoupling was used, with ν2 = 100 kHz. 2 K of points 

were collected with a dwell time of 20 µs (spectral width of 50 kHz). Peaks were 

referenced to Cd[ClO4]2 • 6H2O using Cd[NO3]2 • 4H2O as a secondary reference (diso = 

–100 ppm).  

While 113Cd (NA = 12.22%, g = –9.487 MHz/T) is usually preferred over 111Cd 

(NA = 12.80 %, g = –9.069 MHz/T) for NMR experiments, 113Cd NMR spectra acquired 

at 9.4 T are subject to interfering, semi-coherent signals from local FM radio stations. For 

this reason, 111Cd was chosen as the target nuclide, without incurring any significant 

losses in signal-to-noise. 
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3.3.7  15N MAS SSNMR 

 15N SSNMR experiments were conducted using a Chemagnetics 4 mm HXY T3-

style MAS probe. A MAS spinning rate of nrot = 5 kHz was used in all experiments. 

Spectra were acquired using a Bloch decay pulse sequence with an optimized 90° pulse 

length of 5.25 µs and recycle delays of 300 s for 15NH4
15NO4 and 120 s for 130m. Signal 

averaging was completed using 8 and 456 transients for 15NH4
15NO3 and 130m, 

respectively. Chemical shifts were referenced to the NO3
– of NH4NO3 peak at –4.0 ppm, 

relative to CH3NO2 at 0.0 ppm. 

 

3.3.8  Powder X-ray Diffraction (PXRD) 

 PXRD experiments were conducted using a Bruker Discover D8 diffractometer 

equipped with a Cu-Ka source operating at 40 kV and 40 mA. A Bruker AXS HI-STAR 

area detector was used and patterns were collected using General Area Detector 

Diffraction System (GADDS) software with the detector positioned at 2q = 18° and 48°. 

Powder patterns were processed and simulated using Dash 3.3.6 and CrystalDiffract 6.7.1 

software packages. Crystal structures and lattice planes were visualized using 

CrystalMaker 10.0.8. 

 

3.3.9  Void volume calculations 

 The void volume and percentage of volume of the unit cell were calculated using 

Mercury 3.9. Calculations determine the volume accessible by solvent molecules using a 

1.2 Å probe (i.e., the volume of spaces that are occupied by a fictitious molecule with a 

1.2 Å radius). Where applicable, atoms comprising guest molecules (i.e., water or 
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HMeIm) were removed from the pores prior to the calculations. Calculations were 

completed on the following crystal structures found in the Cambridge Structural Database 

(CSD): sod-Zn[MeIm]2 (CSD code: OFERUN03),64 kat-Zn[MeIm]2 (OFERUN08),46 dia-

Zn[MeIm]2 (OFERUN01),65 sod-Cd[MeIm]2 (CdIF-1, GUPBUP),62 dia-Cd[MeIm]2 • 

HMeIm (dCdM, as determined in Chapter 2), yqt1-Cd[MeIm]2 (yCdM, GUPBOJ).62 

 

3.4  Results and discussion 

3.4.1  General overview of syntheses 

The mechanochemical syntheses discussed herein involve the formation of 

cadmium-imidazolate frameworks (CdIFs) under different reaction conditions (Table 

3.2). 1-3 involve the ILAG synthesis of CdIFs from cadmium oxide (CdO) and 2-

methylimidazole (HMeIm) with 4 mol% (with respect to CdO) of ammonium nitrate 

(NH4NO3) and methanol as a solvent (Scheme 3.1). In 4, an amorphous framework 

(aCdM) is reacted with one equivalent of HMeIm. The use of CdO (as opposed to ZnO) 

in CdIF synthesis has a twofold purpose: (i) the longer Cd–N bonds may allow for the 

formation of frameworks with topologies not found in analogous Zn-containing ZIFs,62 

and (ii) the 111Cd nuclide is a far more receptive NMR nuclide than 67Zn, and is therefore 

a much better spectroscopic tag for monitoring the mechanochemical formation of ZIFs.  

 

Table 3.2: Summary of the reagents and conditions used in the mechanochemical 
syntheses. 

Reaction Summary 
1 CdO + 2 eq. HMeIm + 4mol% NH4NO3 + 100 µL MeOH, room temperature 
2 CdO + 2 eq. HMeIm + 4mol% NH4NO3 + 50 µL MeOH, room temperature 
3 CdO + 2 eq. HMeIm + 4mol% NH4NO3 + 100 µL MeOH, cryomilling 
4 aCdM + 1 eq. HMeIm 
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Scheme 3.1: General synthetic procedure for the mechanochemical formation of ZIFs 
using cadmium oxide (CdO) and 2-methylimidazole (HMeIm) with the addition of a 
catalytic amount of ammonium nitrate (NH4NO3) and a small amount of methanol 
(MeOH) solvent. 
 

1H-111Cd CP/MAS NMR experiments were used to monitor the mechanochemical 

reactions in order to identify the intermediates and final products. Reagents were added to 

the milling jars, the mixture was milled for a set amount of time, and the sample was 

subsequently packed into an NMR rotor. For 1 and 2, multiple NMR spectra were 

acquired of a reaction mixture corresponding to a unique milling time and a fresh set of 

reagents. For 3 and 4, multiple NMR spectra were acquired for a single reaction mixture 

corresponding to a unique milling time, but over a longer time period in order to monitor 

the chemical transformations that occurs as a result of aging within the NMR rotor. The 

1H-111Cd CP/MAS spectra have signals arising only from intermediates or products of the 

reactions that contain Cd and a spatially proximate source of protons as a CP source (i.e., 

there are no signals from CdO, which has no protons, nor from HMeIm, which contains 

no Cd). This is in contrast to PXRD patterns, where the signals from reactants, 

intermediates and/or products may be observed (vide infra). 
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3.4.2  Reaction Set 1 (CdO + 2 eq. HMeIm, 4 mol% NH4NO3, 100 µL MeOH, room 

temperature). 

The first reaction set (1) used two equivalents of HMeIm for every one equivalent 

of Cd, reflecting the typical 1:2 Cd:MeIm ratio found in ZIFs. The reactions were 

conducted at room temperature and utilized the addition of MeOH and NH4NO3 (see 

Experimental Section for details). The product(s) associated with each reaction is(are) 

denoted by the reaction time (i.e., the duration for which the reaction was milled prior to 

NMR experiments) as a subscript on the reaction number: e.g., 1, run for 25 minutes, is 

denoted as 125m; if run for 15 seconds, it is denoted as 115s. 

 

Figure 3.1. 1H-111Cd CP/MAS NMR spectra (νrot = 5 kHz) of the products of 1 (CdO + 2 
eq. HMeIm + 4 mol% NH4NO3 + 100 µL MeOH) milled for different time periods. 
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The spectrum acquired for 15s (Figure 3.1) shows two peaks, a sharp, intense 

peak with isotropic chemical shift (diso(111Cd)) of 466 ppm, and a broader, lower intensity 

peak at diso(111Cd) = 434 ppm (Table 3.3). The isotropic shift of the peak at 466 ppm is 

consistent with a cadmium in a four-coordinate environment with four nitrogen-donor 

ligands. The absence of spinning sidebands indicates a small chemical shift (CS) 

anisotropy, indicating an environment with a high degree of tetrahedral symmetry (i.e., 

the Cd–N bond lengths and N–Cd–N angles are all very similar). The signal with 

diso(111Cd) = 434 ppm is very similar to that of the dia-Cd[MeIm]2 • HMeIm (dCdM) 

framework (cf. Chapter 2). This CdIF has a 1:3 Cd:MeIm ratio as a result of unbound 

HMeIm molecules acting as framework guests. The isotropic shift is again indicative of a 

Cd atom in a four-coordinate environment with N-donor ligands. The broad peak width 

(Dn1/2 = 1330 Hz) indicates a distribution of chemical shifts and J-coupling constants 

owing to a degree of disorder in this system, possibly due to the random orientation of the 

HMeIm molecules within the pores of the framework at room temperature. It is noted that 

there are slight differences in the values of diso(111Cd) and Dn1/2 reported for dCdM in the 

mechanochemical reactions described in this chapter and those obtained for the pure 

compound made through accelerated aging reactions (cf. Chapter 2), likely owing to 

slight differences in bond lengths and presence of guest molecules within the pores (vide 

infra). 
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Table 3.3: Experimentally measured 111Cd isotropic shifts, line widths, and J-coupling 
constants. 

Compound Site diso(111Cd)a (ppm) Dn1/2 (Hz)b 1J(111Cd,14N) 
(Hz) 

Intermediate 1 466(1) 485(20) – 
dCdMc 1 434(2) 1400(100) – 
yCdMc 1 437(2) 850(100) – 

2 417(1) 1000(100) – 
3 437(2) 850(100) – 

aCdM  1 433(3) 3800(400) – 
CdIF-1 1 475.0(2) 160(10) 140(5) 

CdIF-1dried 1 473.0(1) 75(5) 145(5) 
CdIF-1HMeIm 1 440(2) 1200(100) – 

a Isotropic shift: diso = (d11 + d22 + d33)/3. b Full peak width as measured at half the peak 
intensity. The experimental uncertainties in the last digit(s) are indicated in parenthesis. c 
Values obtained from reaction 1 (there are slight differences from the values obtained for 
the pure compounds synthesized using accelerated aging reactions described in Chapter 
2, see text for details). 
 

The 111Cd NMR spectrum of 115s has the same two peaks as that of 15s, but the 

intensity of the peak corresponding to dCdM has increased, while that of the peak at 

diso(111Cd) = 466 ppm appears unchanged. The spectrum of 130s has only the signal with 

diso(111Cd) = 466 ppm and no evidence of signal from dCdM. This suggests that the 

species with diso(111Cd) = 466 ppm is possibly an intermediate (hereafter referred to 

iCdM) in the formation of dCdM. 

The inconsistencies in the peak intensities of iCdM and dCdM in the early stages 

of 1 may be explained by three possible scenarios: (i) At the termination of the milling 

reaction, the sample must be transferred from the milling jar, packed into a rotor, and 

then placed in the NMR spectrometer. Variations in the timing of this procedure may 

result in the reaction being at different stages upon the start of the NMR experiment. (ii) 

The formation of iCdM and dCdM may be in competition after short milling times. (iii) 

There may be inconsistencies in the sample preparation; however, since great care was 
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taken in the preparation of all samples (i.e., accurate measuring of all reagents and careful 

sample packing), we can eliminate this as a factor. 

The spectrum of 12.5m shows the presence of dCdM as well as the onset of the 

formation of yCdM. The yqt1-framework gives rise to considerably broader patterns with 

larger spans (80 ≤ W ≤ 280 ppm) and δiso(111Cd) = 417 and 437 ppm, indicating that the 

four-coordinate Cd atoms are in distorted tetrahedral environments. Longer milling times 

result in the complete conversion of dCdM into yCdM, as indicated by the spectrum of 

125min that reveals signals arising only from yCdM. 

iCdM (with diso(111Cd) = 466 pm) is clearly a reactive species whose formation is 

occurring alongside of that of the more thermodynamically stable framework structures. 

The isotropic shift and cadmium CS tensor parameters of the iCdM do not match those 

reported for any known Cd-containing ZIF structure. The isolation and characterization 

of this intermediate is necessary for gaining mechanistic insight into the 

mechanochemical formation of the Cd-containing ZIFs (vide infra). 

The solvent in a liquid-assisted grinding (LAG) reaction is known to accelerate 

the reaction compared to dry grinding, and the choice of solvent can also influence the 

topologies of the products. In an attempt to slow down the mechanochemical reaction and 

isolate iCdM, different amounts of MeOH solvent were used, and the reaction mixtures 

were milled for five minutes before acquiring 111Cd SSNMR spectra (Figure 3.2). The 

spectra of the reactions with 25 µL and 50 µL of MeOH (Figures 3.2(A) and 2(B), 

respectively) show signals only from dCdM, whereas signals indicating the formation of 

yCdM are observed in the spectrum of the reaction using 100 µL of MeOH. This 
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indicates that a decrease in the amount of solvent results in a decrease in the rate of the 

reaction. 

 

Figure 3.2: 1H-111Cd CP/MAS NMR spectra (νrot = 5 kHz) for the products of the 
mechanochemical reaction between CdO, 2 eq. HMeIm, and 4 mol% NH4NO3 using (A) 
25 µL, (B) 50 µL, and (C) 100 µL of MeOH solvent. The reactions were milled for five 
minutes. 

 

3.4.3  Reaction Set 2 (CdO + 2 eq. HMeIm, 4 mol% NH4NO3, 50 µL MeOH, room 

temperature) 

 Reaction set 2 was conducted in a similar manner to 1, except with less MeOH 

(50 mL instead of 100 µL), in order to slow down the reaction rate and allow for the 

possible isolation of signals arising from iCdM in the final products. The spectrum of 

215s shows signals from both iCdM and dCdM (Figure 3.3), and those of 230s and 245s 

again suggest that either the reactions are at different stages at the commencement of the 

NMR experiment or the formations of the iCdM and dCdM are in competition (vide 
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supra). The spectrum of 21m indicates the presence of dCdM, with no trace of the iCdM 

(in contrast to what is observed for 11m). Increasing the milling time results in the 

disappearance of the signal from iCdM and the formation of dCdM (Figure 3.3). Signals 

arising from yCdM are not observed until after ten minutes of milling (again in contrast 

to 1 where signal of yCdM is observed in the spectrum of 12.5m). 

 It is evident that the smaller amount of solvent results in a slower rate of 

formation of ZIFs in mechanochemical syntheses; however, for shorter milling times, 

there are inconsistencies in the intensities of the peaks corresponding iCdM and dCdM. 

The observation of the iCdM at shorter milling times suggests that this species is 

transient and that its isolation and identification may be difficult, unless the reaction rate 

can be further decreased. 

 

Figure 3.3: 1H-111Cd CP/MAS NMR spectra (νrot = 5 kHz) of the products of 2 (CdO + 2 
eq. HMeIm + 4 mol% NH4NO3 + 50 µL MeOH) milled for different time periods. 
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3.4.4  Reaction 3 (CdO + 2 eq. HMeIm, 4 mol% NH4NO3, 100 µL MeOH, 

cryomilling) 

 A cryomilling reaction (3) was attempted to further slow down the reaction and 

isolate the intermediate. 3 used the same amounts of reagents as 1, but was conducted at 

77 K instead of room temperature. The reagents were placed in the milling jar, which was 

then submersed in liquid nitrogen for approximately five to ten minutes, and 

subsequently milled for five minutes. The products were collected and a 1H-111Cd 

CP/MAS spectrum was acquired. It was observed that the relative intensities of the peaks 

corresponding to iCdM and dCdM changed over the course of the NMR experiment. 

First, signals corresponding to both iCdM and dCdM are present in the spectrum (Figure 

B1(A)), and at a later time, only signals from dCdM are observed (Figure B1(B)).  

3 was repeated and 111Cd NMR spectra were acquired over a longer period of time 

in order to monitor the products of the reaction in situ. 111Cd NMR spectra were acquired 

at the time intervals shown in Figure 3.4. The time interval is indicated by the superscript 

on the reaction number, e.g., 364s denotes a spectrum for the products of 3 that was 

acquired for 64 s and 3128s was acquired for an additional 64 s (the spectra are non-

cumulative).  

The spectrum of 364s has signals corresponding to both iCdM and dCdM. As time 

progresses, the signal corresponding to iCdM decreases in intensity and that of dCdM 

increases. The spectrum of 31024s shows only traces of the iCdM, and this signal is 

completely absent in the spectrum of 32048s. To eliminate the possibility that the 

conversion of iCdM into dCdM is caused by the frictional forces and heating induced by 

the MAS experiments, Reaction 3 was repeated and the 1H-111Cd CP experiment was 
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conducted under static (i.e., stationary sample) conditions (Figure B2). The same 

phenomenon was observed: at the start of the experiment, signal is only observed for 

iCdM and signal for dCdM appears in spectra acquired after 512 seconds and longer. 

 

 

Figure 3.4: 1H-111Cd CP/MAS NMR (νrot = 5 kHz) spectra for the products of 3 (CdO + 2 
eq. HMeIm + 4 mol% NH4NO3 + 100 µL MeOH, 77 K). The spectra were acquired at 
different time intervals, as noted by the superscript on the reaction number (the spectra 
are non-cumulative). 

 
 There are several conclusions that can be made from the results of 3. First, the 

NMR data suggest that iCdM is a reactive species that is being converted into dCdM. 

Second, chemical transformations continue to occur after the milling has ceased. This 

suggests that the milling provides the energy to initiate the reaction, but sustained milling 

is not required for the reaction to proceed (vide infra). Lastly, the NMR spectra of the 

products of the cryomilling reactions clearly indicate that the iCdM is transformed into 

dCdM and that no competition between their formations exists. 
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3.4.5  PXRD Analysis of Reaction Set 1 

 1 was repeated and samples were analyzed with PXRD to determine if iCdM is a 

crystalline material and whether its PXRD pattern can be resolved from those of the 

starting materials and other products, thereby aiding in its identification (Figure 3.5(A)). 

 The PXRD patterns acquired for 1 show peaks at 2q = 33 and 38°, which match 

those in the pattern of CdO (Figure 3.5(B)), indicating that there is unreacted CdO in 

these samples. The intensities of the peaks of CdO decrease with increasing milling time, 

confirming that CdO is being consumed as the reaction mixture is milled for longer 

times. There are additional peaks in the patterns of 1 that do not correspond to either 

dCdM (Figure 3.5(E)) or yCdM (Figure 3.5(F)) (i.e., the products of 1 as determined by 

111Cd NMR). These peaks are present in all of the patterns of Reaction 1; however, they 

decrease in intensity as the reaction progresses. It is interesting to note that in all of the 

patterns of 1, there is no evidence of the presence of dCdM or yCdM, which is in 

contrast to what is observed in the 111Cd NMR experiments. 

 The discrepancies between the results of the PXRD and NMR experiments (i.e., 

the difference in the products and the completeness of the reactions) indicate that there is 

a fundamental difference between the samples. Despite the milling experiments being 

conducted under the same conditions (i.e., amounts of reagents, temperature, and milling 

frequency), the manner in which the samples are prepared and for PXRD and NMR 

experiments differed. For PXRD, the products were loosely packed into glass capillaries 

that were left open to the atmosphere. Conversely, for the NMR experiments, the 

products were tightly packed into zirconia rotors that were then sealed with Teflon plugs. 

In addition, PXRD experiments were completed in thirty minutes whereas NMR spectra 
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for 1 were acquired in ninety minutes. It is possible that the different sample conditions 

and longer experimental times cause chemical processes to occur in the NMR rotors that 

do not take place in the PXRD capillaries (vide infra). 

 

Figure 3.5: (A) Experimental PXRD patterns for the products of 1 milled for different 
time periods. Simulated PXRD patterns for (B) CdO, (C) HMeIm, (D) CdIF-1, (E) 
dCdM, and (F) yCdM. 

 

 The cryomilling experiments (cf. section 3.4.3) indicate that chemical 

transformations occur during the course of the NMR experiments (i.e., iCdM is 

transformed into dCdM), whereas similar transformations are not observed in the PXRD 
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experiments. It is proposed that the ball milling provides the activation energy for CdIF 

formation to occur and that the NMR rotors act as miniature aging chambers that promote 

the chemical reactions. The tightly packed samples and sealed rotors do not allow for the 

facile evaporation of the MeOH solvent, in contrast to the loosely packed samples in the 

open capillaries. 

 To confirm the hypothesis that CdIF formation occurs after milling as a result of 

aging, the reaction to produce 125m was repeated, but the mixture was subsequently left in 

the milling jar for one hour (sample 125m-a1h) after the milling had stopped. The PXRD 

pattern for 125m-a1h (Figure 3.6(A)) is drastically different than that of 125m (Figure 

3.6(B)). The reflections corresponding to CdO and the intermediate phase have 

disappeared, and only reflections that match the pattern for yCdM (Figure 3.6(E)) are 

present. It is also noted that the PXRD pattern for a reaction milled for 85 minutes 

(Figure B3) is almost identical to that obtained for 125m-a1h (i.e., the total amount of time 

that the reagents spent in the jar was the same, but the milling times were different). This 

effect was further demonstrated by repeating Reaction 1 with a milling time of five 

seconds and allowing the products to sit in the milling jar for one day (15s-a1d). The 

powder pattern for of 15s-a1d (Figure 3.6(D)) does not show any reflections 

corresponding to CdO, indicating that it is being consumed during the aging process. 

Furthermore, the pattern is similar to that simulated for yCdM, suggesting that the 

reaction has gone to completion during aging. It is noted that there appears to be a broad, 

underlying feature in the PXRD patterns of 15s and 15s-a1d, possibly due to an amorphous 

phase (vide infra). These results clearly demonstrate that while milling provides the 

activation energy required to initiate the formation of CdIFs, the reaction proceeds 
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without milling and is likely driven by residual solvent that has not evaporated in the 

NMR rotors. 

 

Figure 3.6: Experimental PXRD patterns for (A) 125m, (B) 125m-a1h, (C) 15s, (D) 15s-a1d. 
(E) Simulated PXRD pattern for yCdM. 

 

3.4.6  Reaction 4 (amorphous framework + HMeIm + 4 mol% NH4NO3 + 100 µL 

MeOH) 

 The formation of ZIFs during mechanochemical synthesis and aging reactions is 

thought to proceed in a step-wise fashion, with structures of increased density and higher 

thermodynamic stability forming later during these processes. For example, the 

analogous mechanochemical reaction using ZnO as the starting material (Scheme 3.2(A)) 

yields first a ZIF with a sodalite topology (sod-Zn[MeIm]2, ZIF-8), followed by an 

amorphous phase (a-Zn[MeIm]2), then kat-Zn[MeIm]2, and finally, dia-Zn[MeIm]2.46  
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It is possible that an amorphous phase is being formed in the mechanochemical 

reaction with CdO, and upon further milling and aging, it is converted into a framework 

structure. Following the procedure of Baxter et al. for the amorphization of CdIF-1,61 an 

amorphous framework (aCdM) was synthesized. First, yCdM was synthesized through a 

mechanochemical reaction, washed with MeOH to remove any unreacted HMeIm, dried 

under vacuum, then milled for three hours to generate aCdM. The PXRD pattern for final 

product (Figure B4) shows very broad, low-intensity signals, similar to those observed 

by Baxter et al.,61 confirming the formation of an amorphous phase. 

 The 111Cd spectra of yCdM and aCdM are shown in Figures 3.7(A) and (B), 

respectively. The spectrum of aCdM has a single broad peak centered at diso(111Cd) = 433 

ppm, with a breadth Dn1/2 = 3800 Hz. When accounting for a difference in chemical shift 

referencing (vide infra), the isotropic shift is very similar to those observed by Baxter et 

al. This peak is consistent with a four-coordinate Cd environment, and its broad width 

indicates that there is a distribution of chemical shifts, likely resulting from a distribution 

of coordination environments with different bond lengths and angles (as is typical for the 

NMR spectra of many amorphous solids). The peak breadth is larger than those of any 

other species reported herein, and is similar to that in the 113Cd NMR spectrum of the 

amorphous framework reported by Baxter et al. The signal from the amorphous 

framework does not correspond to that of the intermediate (both in terms of breadth and 

isotropic shift), precluding the description of the intermediate as an amorphous phase. 
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Figure 3.7: 1H-111Cd CP/MAS NMR spectra of (A) yCdM obtained from 
mechanochemical synthesis and (B) the aCdM obtained by milling a dried sample of 
yCdM for three hours. 

 

 4 was conducted to determine if aCdM is a reactive species (i.e., whether it can 

be transformed into other framework structures), analogous to what was observed in the 

reaction with ZnO (vide supra). The amorphous framework was combined with one 

equivalent of HMeIm, 100 µL of MeOH, and 4 mol% NH4NO3, and the mixture was 

milled for five minutes and subsequently packed in an NMR rotor. 111Cd NMR spectra 

were again acquired at different times to monitor reactivity (Figure 3.8) (N.B., the 

naming convention is analogous to that described above for 3). The spectrum of 41000s 

shows the presence of the iCdM, dCdM, and underlying, low-intensity signals from the 

amorphous phase. As the NMR experiment proceeds, the signals of iCdM and the 
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amorphous phase decrease in intensity while that of dCdM increases. The spectrum of 

45000s indicates that dCdM is the predominant species.  

 

Figure 3.8: 1H-111Cd CP/MAS NMR spectra (νrot = 5 kHz) for 4 (aCdM + HMeIm + 4 
mol% NH4NO3 + 100 µL MeOH) acquired at different time intervals (the spectra are 
non-cumulative). 
 

While there is no evidence for the formation of an amorphous phase in the 111Cd 

NMR spectra of products from 1-3, the PXRD patterns for 15s and 15s-a1d (Figures 3.6(C) 

and (D)) show a broad underlying feature that could be due to the presence of an 

amorphous species. As the amorphous phase can react to produce framework structures, 

it cannot be ruled out as an intermediate in the mechanochemical formation of ZIFs; it is 

possible that the amorphous phase is short-lived and therefore, is not observed in either 

the 111Cd spectra or the PXRD experiments. 
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3.4.7  CdIF-1 

The iCdM species observed in the 111Cd NMR spectra of products of 1-4 likely 

corresponds to the unknown phase identified in the PXRD experiments. A search of the 

Cambridge Structural Database (CSD) for cadmium-containing zeolitic imidazolate 

frameworks reveals that these signals correspond to CdIF-1 (Figure 3.5(D)), which was 

originally reported by Tian et al.62 CdIF-1 is a porous framework with a sodalite 

topology and Cd atoms in tetrahedral coordination environments. Baxter et al. reported 

the 113Cd spectrum of a sample of CdIF-1 with a value of diso(113Cd) = 408 ppm.61 The 

isotropic shift of iCdM reported in the current work (diso(111Cd) = 466 ppm) does not 

match this value (N.B., values of diso(113Cd) and diso(111Cd) in ppm are identical, provided 

that the same chemical shift reference is used). 

A sample of CdIF-1 was prepared using the modified synthesis of Tian et al.,62 as 

proposed by Baxter et al.61 The identity of the sample was confirmed by PXRD (Figure 

B5). The 111Cd spectrum of this CdIF-1 sample (Figure 3.9(A)) has a single peak, 

corresponding to a single Cd environment (consistent with the crystal structure). The 

value of diso(111Cd) = 475 ppm is congruent with the tetrahedral coordination of Cd atoms 

by MeIm– ligands. There is a relatively-well resolved nonet pattern arising from coupling 

to the four 14N nuclei of the HMeIm ligands (1J(111Cd, 14N) = 140 Hz). The absence of 

spinning sidebands (i.e., very small CSA) reflects the near-perfect tetrahedral symmetry 

of the Cd coordination environment. The value of the isotropic shift reported herein is not 

the same as that reported by Baxter et al.; however, this is likely due to a difference in 

chemical shift referencing. Both studies reported the use of the same chemical shift scale 

with the primary reference, a 1 M aqueous solution of Cd(ClO4)2, set to 0 ppm, but differ 
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in the use of a secondary reference. Baxter et al. used a 4.5 M aqueous solution of 

Cd(NO3)2 • 4H2O (diso(113Cd) = –49.41 ppm) whereas solid Cd(NO3)2 • 4H2O (diso(111Cd) 

= –100 ppm) was used herein.  We believe that the latter is more reliable as a secondary 

chemical shift standard, since it is not subject to changes in concentration resulting from 

evaporation.  

 

Figure 3.9: 1H-111Cd CP/MAS NMR spectra (νrot = 5 kHz) for (A) CdIF-1as, (B) 
CdIF-1dried, and (C) CdIF-1HMeIm. 

 

CdIF-1 was then dried under vacuum to remove any residual solvent molecules 

that may be trapped within the pores of the framework. The 111Cd spectrum of the dried 

sample (CdIF-1dried, Figure 3.9(B)) has a single peak with diso(111Cd) = 473 ppm and no 
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CSA. The nonet coupling pattern (1J(111Cd,14N) = 145 Hz) is better resolved than that of 

CdIF-1, indicating that the presence of guest molecules within the pores of the 

framework can influence the linewidth of the resulting 111Cd NMR spectra (vide infra). 

The signals observed for CdIF-1 and CdIF-1dried are the most similar to that 

reported for the intermediate in terms of both the observed isotropic shift and apparent 

absence of CSA. The differences in the 111Cd NMR spectra for these two compounds 

demonstrates that guest molecules in the pores of the framework can cause a change in 

the value of diso(111Cd) and increased in the peak widths. It is therefore possible that the 

intermediate is CdIF-1 with an excess of imidazole molecules acting as framework 

guests. CdIF-1dried was stirred in a saturated methanolic solution of HMeIm to promote 

the inclusion of HMeIm molecules into the pores. The resulting sample (CdIF-1HMeIM) 

was filtered and then analyzed by PXRD and 111Cd NMR. Both 111Cd NMR (Figure 

3.9(C)) and PXRD (Figure B6) indicate that the inclusion of HMeIm molecules into the 

pores of the framework of CdIF-1 induces its transformation into dCdM. 

3.4.8  Identity of iCdM 

 Based on the above data, we propose that iCdM, observed in the 111Cd NMR 

spectra of Reactions 1-4, is CdIF-1 with solvent and/or HMeIm molecules within the 

pores of the framework. The inclusion of guest molecules likely causes slight distortions 

of the Cd coordination environments, such that they are not perfectly tetrahedral. To 

summarize, this assignment is based on:  

(i) The isotropic shift of iCdM (diso(111Cd) = 466 ppm) is very close to those 

observed for CdIF-1 (diso(111Cd) = 475 ppm) and CdIF-1dried (diso(111Cd) = 473 ppm). 

Previous 111Cd NMR studies of ZIFs (cf. Chapter 2) revealed that the cadmium CS tensor 
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is very sensitive to differences in the coordination environment of the Cd atoms. The 

isotropic shift of iCdM is between that of CdIF-1dried (pores are empty) and dCdM (each 

pore contains a HMeIm molecule). Therefore, the distinct chemical shift of iCdM is 

likely caused by the inclusion of disordered guest molecules (either MeOH solvent, H2O 

product of the reaction, or unreacted HMeIm) within the pores of the framework, which 

cause slight differences in the Cd coordination environments. 

(ii) The disorder of the Cd coordination environments is evidenced by the 

increased peak widths in the 111Cd NMR spectrum of iCdM as compared to those of the 

more crystalline CdIF-1 samples (Figure B7). The widths of the peaks (as measured 

from the centerband of the nonet coupling pattern) for CdIF-1dried and CdIF-1 are Dn1/2 = 

75 and 160 Hz, respectively; therefore, inclusion of solvent molecules within the pores of 

the framework causes and increase in the width of the peaks in the 111Cd spectra. The 

peak width for iCdM (Dn1/2 = 485 Hz) indicates a significant degree of disorder (i.e., a 

distribution of both chemical shifts and 1J(111Cd,14N) J-couplings) due to the presence of 

guest molecules, which cause slight structural variations for each Cd environment. 

(iii) The disorder of the Cd coordination environments is also confirmed by 

PXRD. The 002 lattice plane of the crystal structure of CdIF-1 (Figure 3.10(A)) contains 

only cadmium atoms; therefore, the reflections in the PXRD patterns corresponding to 

this lattice plane should be broadened if the Cd positions are disordered. The peak width 

of the 002 reflection for CdIF-1dried (Figure 3.10(B)) is D(2q) = 0.4° whereas that for 15s 

is D(2q) = 0.55°. The peak widths of the reflection corresponding to the 011 plane, which 

does not contain any Cd atoms, are also compared (Figure 3.10(C)), and found to be the 

same (D(2q) = 0.4°), indicating that the disorder is likely localized to the Cd atoms. It is 
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noted that while the 004 lattice planes also contain Cd atoms, the intensities of the 004 

reflections are too low for reasonable estimations of the peak widths to be made. 

(iv) Soaking Cd-IFdried in a saturated solution of HMeIm causes its 

transformation into dCdM. This demonstrates that the pores of CdIF-1 are large enough, 

and the framework flexible enough, to accommodate HMeIm molecules.  

(v) The 111Cd NMR spectra show the in situ conversion of iCdM into dCdM 

upon aging in the NMR rotor (cf. Figure 3.4). This suggests that CdIF-1 is formed first 

in the mechanochemical reactions, and upon aging, unreacted HMeIm enters the pores of 

the framework. 

3.4.9  Reaction pathways 

 It is important to comment on the reaction pathway for the mechanochemical 

formation of CdIFs determined herein, and compare it to the analogous reaction for 

forming ZIFs from ZnO. We propose the following mechanism for the mechanochemical 

formation of ZIFs using CdO and HMeIm (Scheme 3.2(B)): (i) ball milling provides the 

activation energy to initiate the reactions and results in the formation of CdIF-1 (and 

possibly an amorphous phase). The large void volume of CdIF-1 allows for the 

incorporation of solvent molecules and/or unreacted HMeIm into the pores of the 

framework. (ii) The inclusion of HMeIm molecules into the pores induces the 

transformation of CdIF-1 into dCdM during the aging process. (iii) Upon further aging, 

dCdM is transformed into yCdM. 
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Figure 3.10: (A) Unit cell of CdIF-1 with the 002 lattice planes shown in red. 
Expansions of the PXRD patterns showing (B) the 002 reflection and (C) 011 reflection 
for CdIF-1dried (black trace) and 15s (red trace). 
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Scheme 3.2: Mechanochemical reaction pathways for (A) ZnO + HMeIm forming (i) 
sod-Zn[MeIm]2 (ZIF-8), (ii) kat-Zn[MeIm]2, and (iii) dia-Zn[MeIm]2. (B) CdO + HMeIm 
forming (i) sod-Cd[MeIm]2, (ii) dia-Cd[MeIm]2 • HMeIm, and (iii) yqt1-Cd[MeIm]2. 
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The mechanochemical reaction of ZnO and HMeIm with an acetic acid solution 

as the solvent was previously monitored using in situ PXRD.46 The reflections 

corresponding to HMeIm disappeared rapidly and those of ZnO disappeared much more 

slowly. The first product yielded by this reaction was sod-Zn[MeIm]2 (also known as 

ZIF-8), a porous ZIF with a sodalite topology (Scheme 3.2(A)). Upon further milling, 

reflections from sod-Zn[MeIm]2 disappeared and only those corresponding to ZnO were 

observed. The authors attributed this to the formation of an amorphous phase which is not 

visible in their PXRD patterns. Subsequent milling causes the disappearance of the 

reflections from ZnO and yields kat-Zn[MeIm]2 (katsenite topology). Finally, the non-

porous dia-Zn[MeIm]2 framework is produced. It is noted that while the reaction 

conditions were different than those used herein (i.e., acetic acid solution and no addition 

of salt), analogous reactions with ZnO, HMeIM, NH4NO3, and several different solvents 

yield only sod-Zn[MeIm]2 as the final product. 

 The reaction with ZnO was determined to follow Ostwald’s Rule of Stages, which 

states that in general, for a crystallization process, the least stable polymorph is formed 

first, followed by subsequent irreversible transformations to polymorphs of increasing 

thermodynamic stability.66–68 In relation to MOFs and ZIFs, Ostwald’s rule implies that 

the formation of products will proceed through a series of phases which are increasingly 

stable and dense (i.e., the void volumes decrease as the reaction progresses). The void 

volumes (as determined from Mercury calculations) and the values of DHtrans (i.e., the 

enthalpic contributions for the transition of reactions to ZIFs arising from supramolecular 

interactions and pore formation) for the Zn[MeIm]2 species were determined by 

Akimbekov et al., 48 and are listed in Table B2. As the mechanochemical reaction 
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proceeds, the density of the products increases (i.e., the void volume decreases) and the 

values of DHtrans decrease, reflecting the formation of more stable phases. 

 The reaction studied herein has several similarities to that of ZnO and HMeIm. 

First, PXRD of Reaction 1 reveals that the reflections corresponding to HMeIm 

disappear at a much faster rate than those of CdO, indicating that the former is consumed 

more readily. Second, the calculated void volumes of the CdIFs that are being formed 

decrease as the reaction proceeds (Table B2), suggesting that Ostwald’s Rule of Stages 

applies to this synthesis. While a determination of the values of DHtrans is beyond the 

scope of the current work, it is hypothesized that they will follow the same trend as those 

observed for the reaction with ZnO. Lastly, PXRD analysis of reactions at shorter milling 

times show broad, low intensity features that could be attributed to the formation of an 

amorphous phase. There is no evidence of an amorphous phase in the 111Cd NMR spectra 

acquired for the products of 1 and 2 with short milling times, nor in the spectra acquired 

for 3, indicating that the formation of an amorphous phase may precede that of CdIF-1. 

 The main difference between the two reactions lies in the nature of the products 

that are formed. Both synthesis yield isostructural frameworks with sodalite topologies as 

the first product. The void volume of CdIF-1 is much larger than that of sod-Zn[MeIm]2, 

likely due to the longer Cd–N bond lengths, thereby allowing for the inclusion of HMeIm 

molecules and subsequent transformation of CdIF-1 into dCdM. The longer Cd–N bond 

lengths also allow for the formation of frameworks with topologies different than those of 

Zn ZIFs. The reactions progress in a similar fashion (i.e., in stages of decreasing void 

volume) despite the different reaction conditions (i.e., the use of a catalytic salt and 

different solvents). Lastly, it appears that ball milling provides the activation energy to 
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initiate the solid-state reaction, but aging drives the reaction towards its ultimate 

completion. This is demonstrated by the fact that chemical transformations occur when 

the product mixtures are either left in the milling jars or tightly packed into NMR rotors. 

At this time, it is not certain whether similar aging transformations occur in the reaction 

using ZnO. 

3.4.10  Role of the salt 

 Lastly, the role of the NH4NO3 salt is discussed. The salt is believed to act as a 

catalyst and accelerate the formation of ZIFs in mechanochemical syntheses. The 

catalytic effect of the salt was demonstrated using 111Cd NMR to monitor two separate 

reactions (Figure 3.11). The 111Cd NMR spectrum of a 1:2 CdO:HMeIm reaction with 

100 mL of MeOH and no NH4NO3 that was milled for five minutes (Figure 3.11(A)) 

shows only a weak signal from dCdM. In contrast, the spectrum acquired for 15m (Figure 

3.11(B)) has much more intense signals and clearly shows the formation of yCdM. 

 

Figure 3.11: 1H-111Cd CP/MAS NMR spectra (νrot = 5 kHz) of the products 1 conducted 
with (A) no salt, and (B) the addition of 4 mol% of NH4NO3. 
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 It has been demonstrated previously that the addition of a salt can guide the 

formation of products in mechanochemical reactions (i.e., different salts can change the 

reaction pathways and produce different products). This suggests that components of the 

salt are included within the framework and can act as templating agents, though the 

mechanism of this templating effect is currently not understood.56 To verify the inclusion 

of salt into the framework, 15N direct polarization (DP) MAS NMR experiments were 

conducted on a sample of 130m using doubly-labelled 15NH4
15NO3 (Figure 3.12). The 15N 

NMR spectrum of pure 15NH4
15NO3 has two peaks at diso(15N) = –4 and –357 ppm, 

corresponding to the NO3
– and NH4

+ ions, respectively (N.B. these shifts are with respect 

to neat CH3NO2 at 0.0 ppm). The 15N NMR spectrum of 130m has a single peak at –4 

ppm, corresponding to NO3
– ions; there is no evidence of signal arising from NH4

+ ions 

(it is noted that the poor S/N in this spectrum is largely due to the low weight percentage 

of salt used in the reactions). The peak width in the spectrum of 130m is considerably 

broader than that of 15NH4
15NO3, indicating that there might be a distribution of NO3

– 

ions within the pores of the framework. N.B. The distinct smell of NH3(g) was detected 

upon opening the milling jars for all reactions, suggesting that there is proton transferred 

from the NH4
+ ions to another species resulting in the evolution of NH3(g); however, 

further studies are needed to identify the mechanism of this proton transfer. 
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Figure 3.12: 15N DP MAS NMR spectra of (A) 15NH4 15NO3 and (B) 130m. 
 

3.5 Conclusions 

 In this study, we have demonstrated that CdIFs can be easily made from readily 

available starting materials using mechanochemical synthesis and aging, offering an 

efficient, low energy alternative to traditional solvothermal synthetic methodologies. 

111Cd NMR experiments identify the presence of iCdM and show its conversion into 

dCdM. PXRD analysis is used to identify the intermediate (CdIF-1) and confirm that 

aging effects are likely driving the chemical transformations observed in the NMR 

experiments. NMR and PXRD investigations also verify the presence of guest molecules 

within the pores of the frameworks, which cause slight distortions of the Cd coordination 

environments. It is proposed that the reaction proceeds through the following pathway: (i) 

ball milling provides the activation energy to initiate the reactions and results in the 
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formation of CdIF-1 (and possibly an amorphous phase). The large void volume of 

CdIF-1 allows for the incorporation of solvent molecules and/or unreacted HMeIm into 

the pores of the framework. (ii) The inclusion of HMeIm molecules into the pores 

induces the transformation of CdIF-1 into dCdM during the aging process. (iii) Upon 

further aging, dCdM is transformed into yCdM. It is suggested that the chemical 

transformations follow Ostwald’s Rule of Stages (i.e., frameworks of increasing density 

and stability are being formed). Finally, the NH4NO3 salt was demonstrated to have a 

catalytic effect on the reactions and 15N DP MAS NMR suggests the inclusion of NO3
– 

ions into the framework. The use of NMR and PXRD in tandem will be useful for the 

continued study of the syntheses of MOFs, ZIFs, and other porous materials, via both 

mechanochemical synthesis and aging reactions, and provide detailed information on 

reaction pathways and mechanisms. 

  



123 
 

3.6 References 

(1)  Cernansky, R. Nature 2015, 519, 379–380. 

(2)  Anastas, P. T.; Werner, J. C. Green Chemistry: Theory and Practice; Oxford 

University Press: New York, 1998. 

(3)  Poliakoff, M.; Licence, P. Nature 2007, 450, 810–812. 

(4)  Clark, J. H. Green Chem. 1999, 1, 1–8. 

(5)  Sanderson, K. Nature 2011, 469, 18–20. 

(6)  James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, 

F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, 

A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. 

Rev. 2012, 41 (1), 413–447. 

(7)  Friščić, T. Chem. Soc. Rev. 2012, 41 (9), 3493. 

(8)  Takacs, L. 2000, No. January, 12–13. 

(9)  Takacs, L. Chem. Soc. Rev. 2013, 42 (18), 7649. 

(10)  Kaupp, G. CrystEngComm 2003, 5 (23), 117. 

(11)  Fox, P. G. J. Mater. Sci. 1975, 10 (2), 340–360. 

(12)  Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering; Springer-

Verlag: Berlin Heidelberg, 2008. 

(13)  Arceo, L. D. B.; Cruz-Rivera, J. J.; Cabanas-Moreno, J. G.; Tsuchiya, K.; 

Umemoto, M.; Calderson, H. Mater. Sci. Forum 2000, 343–346, 641–646. 

(14)  Karolus, M.; Jartych, E.; Oleszak, D. Acta Phys. Pol., A. 2002, 102, 253–258. 

(15)  Fuentes, A. F.; Takacs, L. J. Mater. Sci. 2013, 48 (2), 598–611. 

(16)  Šepelák, V.; Düvel, A.; Wilkening, M.; Becker, K.-D.; Heitjans, P. Chem. Soc. 



124 
 

Rev. 2013, 42 (18), 7507. 

(17)  Bučar, D.-K.; Filip, S.; Arhangelskis, M.; Lloyd, G. O.; Jones, W. CrystEngComm 

2013, 15 (32), 6289. 

(18)  Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. CrystEngComm 2009, 11 (3), 

418–426. 

(19)  Braga, D.; Maini, L.; Grepioni, F. Chem. Soc. Rev. 2013, 42 (18), 7638. 

(20)  Friščić, T.; Jones, W. CrystEngComm 2009, 9, 1621–1637. 

(21)  Descamps, M.; Willart, J. F. Adv. Drug Deliv. Rev. 2016, 100, 51–66. 

(22)  Colombo, I.; Grassi, G.; Grassi, M. J. Pharm. Sci. 2009, 98, 3961–3986. 

(23)  André, V.; Hardeman, A.; Halasz, I.; Stein, R. S.; Jackson, G. J.; Reid, D. G.; 

Duer, M. J.; Curfs, C.; Duarte, M. T.; Friščić, T. Angew. Chemie - Int. Ed. 2011, 

50 (34), 7858–7861. 

(24)  Chow, E. H. H.; Strobridge, F. C.; Friscić, T. Chem. Commun. (Camb). 2010, 46, 

6368–6370. 

(25)  Friščić, T.; Halasz, I.; Strobridge, F. C.; Dinnebier, R. E.; Stein, R. S.; Fábián, L.; 

Curfs, C. CrystEngComm 2011, 13 (9), 3125. 

(26)  Rodríguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Adv. Synth. Catal. 2007, 

349 (14–15), 2213–2233. 

(27)  Bruckmann, A.; Krebs, A.; Bolm, C. Green Chem. 2008, 10 (11), 1131. 

(28)  Kaupp, G. Top. Curr. Chem. 2005, 254, 95. 

(29)  Kaupp, G. CrystEngComm 2009, 11 (3), 388–403. 

(30)  Stolle, A.; Szuppa, T.; Leonhardt, S. E. S.; Ondruschka, B. Chem. Soc. Rev. 2011, 

40 (5), 2317. 



125 
 

(31)  Friščić, T.; Halasz, I.; Štrukil, V.; Eckert-Maksić, M.; Dinnebier, R. E. Croat. 

Chem. Acta 2012, 85 (3), 367–378. 

(32)  Užarević, K.; Wang, T. C.; Moon, S.-Y.; Fidelli, A. M.; Hupp, J. T.; Farha, O. K.; 

Friščić, T. Chem. Commun. 2016, 52 (10), 2133–2136. 

(33)  Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science (80-. ). 2013, 

341 (6149), 1230444–1230444. 

(34)  Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Almeida Paz, F. A. Chem. Soc. Rev. 

2015, 44 (19), 6774–6803. 

(35)  Zhou, H.-C. “Joe”; Kitagawa, S. Chem. Soc. Rev. 2014, 43 (16), 5415–5418. 

(36)  Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38 (5), 1477. 

(37)  Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Balbuena, P. 

B.; Zhou, H. C. Coord. Chem. Rev. 2011, 255 (15–16), 1791–1823. 

(38)  Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38 (5), 1248. 

(39)  Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 

43 (16), 6011–6061. 

(40)  Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43 (8), 1115–1124. 

(41)  Hu, Z.; Deibert, B. J.; Li, J. Chem. Soc. Rev. 2014, 43 (16), 5815–5840. 

(42)  Wang, P.; Li, G.; Chen, Y.; Chen, S.; James, S. L.; Yuan, W. CrystEngComm 

2012, 14 (6), 1994. 

(43)  Yuan, W.; Friščič, T.; Apperley, D.; James, S. L. Angew. Chemie - Int. Ed. 2010, 

49 (23), 3916–3919. 

(44)  Beldon, P. J.; Fábián, L.; Stein, R. S.; Thirumurugan, A.; Cheetham, A. K.; Friščić, 

T. Angew. Chemie - Int. Ed. 2010, 49 (50), 9640–9643. 



126 
 

(45)  Friščić, T.; Halasz, I.; Beldon, P. J.; Belenguer, A. M.; Adams, F.; Kimber, S. A. 

J.; Honkimäki, V.; Dinnebier, R. E. Nat. Chem. 2012, 5 (1), 66–73. 

(46)  Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; 

Pham, M.-H.; Do, T.-O.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, O.; Dinnebier, 

R. E.; Halasz, I.; Friščić, T. Nat. Commun. 2015, 6, 6662. 

(47)  Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. 

K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. 

L.; Halasz, I.; Friščić, T. J. Am. Chem. Soc. 2016, 138 (9), 2929–2932. 

(48)  Akimbekov, Z.; Katsenis, A. D.; Nagabhushana, G. P.; Ayoub, G.; Arhangelskis, 

M.; Morris, A. J.; Friščić, T.; Navrotsky, A. J. Am. Chem. Soc. 2017, 139 (23), 

7952–7957. 

(49)  Sutrisno, A.; Terskikh, V. V.; Shi, Q.; Song, Z.; Dong, J.; Ding, S. Y.; Wang, W.; 

Provost, B. R.; Daff, T. D.; Woo, T. K.; Huang, Y. Chem. - A Eur. J. 2012, 18 

(39), 12251–12259. 

(50)  Sutrisno, A.; Huang, Y. Solid State Nucl. Magn. Reson. 2013, 49–50, 1–11. 

(51)  He, P.; Lucier, B. E. G.; Terskikh, V. V.; Shi, Q.; Dong, J.; Chu, Y.; Zheng, A.; 

Sutrisno, A.; Huang, Y. J. Phys. Chem. C 2014, 118 (41), 23728–23744. 

(52)  Hoffmann, H. C.; Debowski, M.; Müller, P.; Paasch, S.; Senkovska, I.; Kaskel, S.; 

Brunner, E. Materials (Basel). 2012, 5 (12), 2537–2572. 

(53)  Lucier, B. E. G.; Chan, H.; Zhang, Y.; Huang, Y. Eur. J. Inorg. Chem. 2016, 2016 

(13–14), 2017–2024. 

(54)  Wang, W.; Waang, W. D.; Lucier, B. E. G.; Terskikh, V. V.; Huang, Y. J. Phys. 

Chem. Lett. 2014, 5 (19), 3360–3365. 



127 
 

(55)  Belcher, W. J.; Longstaff, C. A.; Neckenig, M. R.; Steed, J. W. 2002, 2 (13), 

1602–1603. 

(56)  Friščić, T.; Reid, D. G.; Halasz, I.; Stein, R. S.; Dinnebier, R. E.; Duer, M. J. 

Angew. Chemie - Int. Ed. 2010, 49 (4), 712–715. 

(57)  Volkringer, C.; Loiseau, T.; Férey, G.; Morais, C. M.; Taulelle, F.; Montouillout, 

V.; Massiot, D. Microporous Mesoporous Mater. 2007, 105 (1–2), 111–117. 

(58)  Mowat, J. P. S.; Miller, S. R.; Slawin, A. M. Z.; Seymour, V. R.; Ashbrook, S. E.; 

Wright, P. A. Microporous Mesoporous Mater. 2011, 142 (1), 322–333. 

(59)  Jiang, Y.; Huang, J.; Marx, S.; Kleist, W.; Hunger, M.; Baiker, A. J. Phys. Chem. 

Lett. 2010, 1 (19), 2886–2890. 

(60)  He, P.; Lucier, B. E. G.; Terskikh, V. V.; Shi, Q.; Dong, J.; Chu, Y.; Zheng, A.; 

Sutrisno, A.; Huang, Y. J. Phys. Chem. C 2014, 118 (41), 23728–23744. 

(61)  Baxter, E. F.; Bennett, T. D.; Cairns, A. B.; Brownbill, N. J.; Goodwin, A. L.; 

Keen, D. A.; Chater, P. A.; Blanc, F.; Cheetham, A. K. Dalt. Trans. 2016, 45, 

4258–4268. 

(62)  Tian, Y.-Q.; Yao, S.-Y.; Gu, D.; Cui, K.-H.; Guo, D.-W.; Zhang, G.; Chen, Z.-X.; 

Zhao, D.-Y. Chem. - A Eur. J. 2010, 16 (4), 1137–1141. 

(63)  Peersen, O. B.; Wu, X. L.; Kustanovich, I.; Smith, S. O. Journal of Magnetic 

Resonance, Series A. 1993, pp 334–339. 

(64)  Fairen-Jimenez, D.; Moggach, S. A.; Wharmby, M. T.; Wright, P. A.; Parsons, S.; 

Düren, T. J. Am. Chem. Soc. 2011, 133 (23), 8900–8902. 

(65)  Shi, Q.; Chen, Z.; Song, Z.; Li, J.; Dong, J. Angew. Chemie - Int. Ed. 2011, 50 (3), 

672–675. 



128 
 

(66)  Ostwald, W. Zeitschrift für Phys. Chemie 1897, 22 (1), 289–330. 

(67)  Nývlt, J. Cryst. Res. Technol. 1995, 30 (4), 443–449. 

(68)  Burley, J. C.; Duer, M. J.; Stein, R. S.; Vrcelj, R. M. Eur. J. Pharm. Sci. 2007, 31 

(5), 271–276. 

 

  



129 
 

4 Chapter 4: Observing Dynamics in Metal-organic 

Frameworks with Mechanically Interlocked Components 

using Solid-state NMR Spectroscopy 

4.1 Overview 

 The design and synthesis of molecular machines represents an intensely 

researched area in chemistry. Mechanically-interlocked molecules (MIMs) are 

components of molecular machines that have been shown to exhibit motion in solution, 

however this motion is random and hard to control. The inclusion of MIMs into metal-

organic frameworks (MOFs) offers the possibility for the creation of controlled, coherent 

motion at the molecular level in the solid state. Solid-state NMR (SSNMR) spectroscopy 

is an ideal technique for studying dynamics in a wide array of solid materials, providing 

information on the modes and rates of motion. Herein, the dynamics of crown ether (CE) 

molecules which are incorporated into a series of MOFs are studied using SSNMR, and 

the factors that affect the motions of the CE rings are determined. First, the dynamics of 

the 24-crown-6 rings in UWDM-1 (University of Windsor Dynamic Material) are 

reviewed as they provide a framework in which to discuss the motion of the CEs in the 

MOFs that follow. The rings undergo three distinct types of motion: (i) a two-site jump, 

(ii) partial rotation, and (iii) full rotation. The effects on the rotational motion of CE rings 

of different sizes and structures in the UWDM-1 series (University of Windsor Dynamic 

Materials) of MOFs were then studied using variable-temperature (VT) 2H SSNMR; it 

was found that increasingly hindered ring motion occurs for CEs of smaller sizes or with 

increased steric interactions due to bulkier substituents. This is followed by studies of 

UWDM-2 and UWDM-3, which reveal that interpenetration of MOF structures leads to 
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unfavourable interactions of the rings with the framework structure, thereby reducing the 

rates of their motion or inducing large amplitude motions of the rings. Analysis of the 

UWDM-porphyrin (UWDM-P) MOF series reveals that desolvation of the MOFs induces 

slight structural changes, which greatly impact the motion of the CE rings. Finally, 13C 

SSNMR is used to verify the shuttling motion of the CE rings within UWDM-4, the first 

time that such motion has been observed in the solid state. A detailed understanding of 

the factors that affect dynamics is crucial for the design for materials with finely tuned 

properties. 

4.2 Introduction 

The 2016 Nobel Prize in Chemistry was awarded to J.P. Sauvage, J.F. Stoddard, 

and B.L. Feringa for the design and synthesis of molecular machines (i.e., molecular 

switches and motors).1–4 A key component in certain molecular machines are 

mechanically-interlocked molecules (MIMs),5–7 which are defined as molecular 

architectures held together via non-covalent interactions and whose individual 

components cannot be separated without the breaking of covalent bonds. The design of 

MIMs has often drawn upon inspiration from the well-understood motions of 

macroscopic objects; some examples of these include: rotaxanes (axle and ring),8–10 

catenanes (chains),11–13 molecular knots,14–16 and Borromean rings.17 

MIMs have been shown to undergo a variety of different motions in solution.18 

[2]catenanes (the value in brackets indicates the number of components in the MIM), 

which are composed of two interlocked ring-shaped molecules that exhibit rotational 

motion.19,20 [2]rotaxanes, which are comprised of a macrocylic molecular ring that is 

threaded onto or clipped around (i.e., generating a ring from a linear molecule via a ring-
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closing metathesis reaction) a dumbbell-shaped molecular axle, can undergo rotational 

motions similar to those of [2]catenanes.21,22 [2]rotaxanes can also display translational 

motion of the macrocycle along the molecular axle, provided there are multiple 

recognition sites on the axle with which the ring can interact (i.e., the ring shuttles 

between recognition sites, which may have different degrees of electronic charge, 

hydrogen bonds, or other non-covalent interactions with the ring).23,24 The design of 

MIMs with components whose motions can be controlled via external stimuli (e.g., 

thermal, chemical, or photochemical processes) is crucial for their incorporation into 

functional molecular machines.25–27 The dynamics of MIMs are frequently observed in 

the solution state and the relative motion of the components is incoherent (i.e., random 

and in all directions).28,29 

The ordered organization of MIMs within a solid material could allow for 

coherent control of the motion of these components and aid in the design of materials 

with finely tuned properties for purposes of designing prototypes of molecular machines. 

The incorporation of MIMs into the periodic framework structure of metal-organic 

frameworks (MOFs) offers a viable means for their precise and predictable 

organization.30–32 The large void volumes of the pores and channels of MOFs provide the 

requisite space for the large amplitude motions of the dynamic macrocyclic 

components.33–36 Furthermore, the high thermal stabilities of MOFs allow for variety of 

different modes and rates of motion over wide temperature ranges.37–39 To this end, 

rotaxanes have been designed with end groups that are able to coordinate to metals, 

which in turn can be used to form MOFs. The general synthetic procedure for producing 

such MOFs is as follows (Figure 4.1): a macrocyclic ring (usually a crown ether) is 



132 
 

either clipped around or threaded onto an axle molecule containing end groups that are 

suitable for coordination to metal ions (e.g., carboxylic acids or pyridine functional 

groups) to generate a [2]rotaxane. The [2]rotaxane is then combined with a source of 

metal ions, and in the case of pillared or mixed-linker MOFs, an organic linker, and 

allowed to react to generate the MOFs.  This procedure results in MOFs with dynamic 

components incorporated in a homogeneous and ordered manner. 

 

Figure 4.1: General procedure for the synthesis of metal-organic frameworks with 
dynamic interlocked components. First, a [2]rotaxane is made from an organic axle 
molecule and a crown ether macrocycle. The [2]rotaxane is combined with an organic 
linker and a metal source to form the MOF. 

 

Structural characterization of the resulting MOFs is usually accomplished using 

single-crystal X-ray diffraction (SCXRD), which provides detailed information on the 

arrangement of atoms in the framework structure. However, in many cases the atoms in 

the dynamic macrocycles cannot be resolved and appear to be disordered, and virtually 

no information on the natures and rates of motions of these components is available. 
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Therefore, a reliable and unambiguous method is required for the elucidation of the types 

and rates of motion, as well as the various chemical and physical properties that affect 

these motions. 

2H SSNMR is well suited to the study of molecular-level dynamics and can 

provide detailed information on the modes of motion and their respective rates.40,41 

Deuterium is a quadrupolar nucleus (I = 1) with a small nuclear quadrupole moment (Q = 

0.286 fm2).42  2H SSNMR powder patterns are strongly influenced by the quadrupolar 

interaction, which is the interaction of Q with the electric field gradients (EFG) at the 

nuclear origin.  The EFG, which is dependent upon the local ground-state electron 

distribution about the nucleus, is described by a symmetric, traceless, second-rank tensor, 

𝐕, with principal components defined such that |V33| ≥ |V22| ≥ |V11|. Since the EFG tensor 

is traceless, it can equivalently be described using just two parameters: the quadrupolar 

coupling constant (CQ = eQV33/h) and the asymmetry parameter (hQ = (V11 – V22)/V33).40 

 2H SSNMR powder patterns are characterized by two transitions that are equally 

displaced from the Larmor frequency, due to the first-order quadrupolar interaction 

(FOQI). These patterns, known as Pake doublets, are broad and mirror-symmetric about 

the isotropic chemical shift (N.B., the influences of chemical shift anisotropy (CSA) and 

the second-order quadrupolar interaction (SOQI) can break this mirror symmetry; 

however, in many cases, the magnitude of the FOQI outweighs contributions from these 

interactions, and the pattern appears to be symmetric). 2H SSNMR patterns of stationary 

samples (so-called static patterns) have three distinct sets of discontinuities: horns, 

shoulders, and feet, which are separated by frequencies Dn11, Dn22 and Dn33, respectively 

(Figure C1 in Appendix C).43 2H SSNMR powder patterns are sensitive to structural 
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differences that impact the EFG tensor (i.e., the magnitudes of the principal components 

and the tensor orientation are very sensitive to different chemical structures and 

environments), as are most powder patterns arising from NMR experiments on 

quadrupolar nuclides. However, 2H SSNMR patterns are also particularly responsive to 

motions that alter the tensor components and orientations. In some cases, certain 

molecular-level motions result in rapid reorientations of the EFG tensor, which leads to 

the observation of motionally averaged principal components, and hence, a motionally 

averaged effective EFG tensor, Veff. The rates of motion that influence 2H SSNMR 

spectra are generally classified into three distinct regimes, which are based on the relative 

magnitudes of the exchange frequency (nex) and the quadrupolar frequency (nQ = 

3CQ/(2I(2I – 1))): (1) the slow motion limit (SML) where nex ≪ nQ; (2) the intermediate 

motion regime (IMR) where nex ≈ nQ; and (3) the fast motion limit (FML) where nex ≫ 

nQ. Motions with rates within the SML and FML produce 2H NMR powder patterns that 

are relatively easily to model, since they are invariant to changes in echo spacing 

temperature (i.e., increasing or decreasing the temperature, and hence the rate, produces 

no changes in the powder patterns in the FML or SML, respectively). Motions in the IMR 

can impact the appearance of 2H powder patterns in unusual ways, and are more 

challenging to model; however, careful consideration of motions in the SML and FML, 

and the use of an assortment of software packages for the simulation of dynamically-

influenced SSNMR powder patterns, normally allow for the development of sound 

motional models.  

 2H SSNMR is ideal for the study of dynamics involving rotations, changes in 

torsional angles, and even chemical exchange. However, it is not suited for the 
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investigation of the 2H-labelled CE rings that act as molecular shuttles in MOFs, since 

their translational motion does not have a clearly defined impact on both the EFG tensor 

parameters and orientations. To observe the translational motion of molecular shuttles 

incorporated into MOFs, conventional NMR exchange experiments are used, where 

differences in the chemical shifts of a nucleus are observed as that nucleus experiences 

disparate chemical environments (i.e., 1D and 2D exchange spectroscopy (EXSY) 

experiments). In the context of a [2]rotaxane molecular shuttle, the recognition site that is 

interacting with the macrocyclic ring has a different chemical shift than that of the non-

interacting “empty” site. As the exchange rate of the shuttling motion increases, an 

average of the two chemical shifts is observed. The resulting NMR spectra can be 

simulated to extract information on the rates of the chemical exchange and the free 

energy of activation for the shuttling motion can be calculated using the Eyring equation: 

∆G‡=–RTln
kh
kbT

 

where R is the ideal gas constant, T is temperature, k is the exchange rate, h is Planck’s 

constant, and kb is Boltzmann’s constant. The comparison of free energies of activation 

between systems can be used to comment on the factors that affect the shuttling motion, 

such as ring size, axle length, steric effects, etc. 

 Herein, we use SSNMR to observe the thermally-driven dynamics of the crown 

ether molecules of [2]rotaxanes that have been incorporated into MOFs. A series of 

MOFs with different ring sizes, framework structures, and guest molecules within the 

pores are studied to determine how these factors affect ring dynamics. First, 2H SSNMR 

is used to study the University of Windsor Dynamic Material 1 (UWDM-1) series of 

MOFs to determine how the sizes and structures of the CE rings affect their motion. The 
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effects of framework structure on ring dynamics are investigated in a series of pillared, 

interpenetrated MOFs (UWDM-2 and UWDM-3). The influence of guest molecules 

within the pores of the framework is investigated with experiments on UWDM-porphyrin 

MOFs (UWDM-P1 and UWDM-P2). 13C VT CP/MAS and 2D CP/EXSY experiments 

are used to confirm shuttling motion in UWDM-4, representing the first time that 

shuttling motion has been observed to occur in a coherent fashion in the solid state. It is 

hoped that the SSNMR studies herein will provide an intimate understanding of the 

factors that affect the motion of MOFs with dynamic interlocked components, leading to 

the rational design of materials with finely-tuned properties and dynamics. 

 

4.3 Experimental Details 

4.3.1 Synthetic procedures 

The synthesis UWDM-1(22),44 UWDM-1(B24),44 UWDM-2,45 UWDM-3,45 and 

UWDM-446 have been reported in the literature. The synthetic procedures for UWDM-P1 

and UWDM-P2 are outlined in Appendix C. 

 

4.3.2 SSNMR Studies at 9.4 T 

 All SSNMR experiments were performed using either a Varian Infinity Plus or 

Bruker Avance III HD console, equipped with a 9.4 T Oxford magnet with resonance 

frequencies of: n0(1H) = 399.73 MHz, n0(19F) = 376.76 MHz, n0(13C) = 100.5 MHz, and 

n0(2H) = 61.4 MHz. 

 



137 
 

4.3.2.1 2H SSNMR 

2H SSNMR experiments for UWDM-1(22), UWDM-1(B24), UWDM-2-a, UWDM-

2-b, and UWDM-3 were conducted using a Varian Infinity Plus console and experiments 

for UWDM-P1, UWDM-P1d, UWDMP-2, UWDMP-2d were conducted using a Bruker 

Avance III HD console. A 5 mm double resonance (HX) static probe was used. 

Optimized 90° pulse lengths and recycle delays for each sample are listed in Table C1 in 

Appendix C. Temperatures of the VT unit and probe were calibrated using the 

temperature-dependent chemical shift of PbNO3.47,48 The quadrupolar-echo pulse 

sequence (90°-t1-90°-t2-acquire) was used with 30, 50, 60 or 90 µs pulse spacings. The 

quadrupolar parameters of the SML spectra were determined with simulations using 

WSolids.49 Simulations of the IMR and FML spectra were conducted using EXPRESS.50 

 

4.3.2.2 19F MAS Experiments 

 Experiments were conducted using a Varian Infinity Plus console and a 

Chemagnetics 2.5 mm HX MAS probe. The Hahn-echo pulse sequence was used with 5 

µs 90° and 10 µs 180° pulses and a pulse spacing of 50 µs. A 5 s cycle delayed was used 

for all experiments. 19F chemical shifts were referenced to CFCl3 (l) (diso(19F) = 0.0 ppm) 

using C6H5F (l) (diso(19F) = –113.15 ppm) as a secondary reference. 

 

4.3.2.3 13C SSNMR 

 13C CP/MAS SSNMR spectra for UWDM-4 were acquired using a Varian Infinity 

Plus console. Experiments were conducted using a Chemagnetics 4 mm HX MAS probe. 
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Experiments for UWDM-4 were conducted at a spinning speed of nrot = 8 kHz, using an 

optimized contact time of 2.5 ms and a recycle delay of 4 s. 13C chemical shifts were 

reference to TMS (diso(13C) = 0.0 ppm) using the high frequency peak of adamantane 

(diso(13C) = 38.57) as a secondary reference. Samples were packed into zirconia rotors 

and temperatures were calibrated using the 207Pb isotropic shift of PbNO3.47,48 

 

4.3.3 13C SSNMR at 21.1 T 

High-field VT 1D 1H-13C CP/MAS and 13C 2D EXSY SSNMR spectra were 

acquired using a Bruker Avance II console and a 21.1 T (900 MHz) Bruker Ultra-

Stabilized magnet at a resonance frequency of 226.1 MHz for 13C. A 4 mm H/C/N Bruker 

MAS probe using a MAS rate of 14.4 kHz was used for all experiments. Samples were 

packed into zirconia rotors and temperatures were calibrated using the 79Br isotropic shift 

of KBr. 1H-13C CP/MAS NMR experiments used a recycle delay of 5 s, an optimized 

contact time of 2.5 ms and 1024 scans. The 2D 13C CP/EXSY experiments were collected 

with 4096 points, 384 t1 increments, 64 scans and several different mixing time values. 

 Simulations of the spectra were performed using gNMR 5.051 to extract rates and 

thermodynamic parameters. Simulations used n0(13C) = 226.1 MHz with exchange 

occurring between the nuclei corresponding to two signals centered at d = 152.7 and 

155.2 ppm. Gaussian lineshape functions were utilized and a static line width with a full-

width at half-height (FWHH) of 180 Hz was used. 
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4.4 Results and Discussion 

 The sections that follow describe the use of 2H and 13C SSNMR to study the 

dynamics of MOFs with mechanically interlocked components. The discussion first 

focuses on the use of VT 2H SSNMR to investigate the rotational dynamics of crown 

ether molecules incorporated into the framework structure of MOFs, followed by an 

example of how 13C SSNMR is used to observe shuttling motion within a MOF. 

 The MOFs discussed herein are very diverse in composition, structure, and 

topology. To facilitate the discussion, the different structural components are summarized 

in Schemes 1-4. Scheme 1 shows the secondary building units (SBUs, i.e., metal nodes 

or clusters) used in the MOF construction, Scheme 2 shows the axles of the rotaxanes, 

Scheme 3 shows the organic molecules for the pillared MOFs, and Scheme 4 shows the 

different crown ether macrocycles. 

 

Scheme 4.1: Representations of the secondary building units (SBUs) used in MOF 
synthesis. (A) Cu paddlewheel (SBU1), (B) Zn paddlewheel (SBU2), and (C) Zn4O 
cluster (SBU3). Colour key: C = black, O = red, N = blue, Cu = cyan, Zn = grey. 
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Scheme 4.2: Organic axle molecules for the rotaxanes used in the synthesis of (A) 
UWDM-1 (A1), (B) UWDM-2, UWDM-3, UWDM-P1 (A2), (C) UWDM-P2 (A3), and 
(D) UWDM-4 (A4). 

 

 

Scheme 4.3: Schematic representation of the organic linkers used in the synthesis of 
pillared or mixed-linker MOFs. (A) 1,4-diazophenyl-dicarboxylic acid (L1), (B) 1,4-
biphenyl-dicarboxylic acid (L2), and (C) tetracarboxyphenyl-porphyrin-Pd2+ (L3). 
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Scheme 4.4: Schematic diagrams of the crown ether macrocyles used in the preparation 
the rotaxanes. (A) [24]crown-6 (CE1), (B) [22]crown-6 (CE2), (C) benzo[24]crown-6 
(CE3), (D) [24]crown-8 (CE4). For the rings that were deuterated for dynamic studies, the 
positions of the D (=2H) labels are indicated. 
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4.4.1 UWDM-1 Series 

4.4.1.1 UWDM-1(24) 

The dynamics of UWDM-1(24) have been characterized elsewhere,52 but are 

reviewed here as they provide a framework in which to discuss the dynamics of the 

MOFs investigated herein. A detailed analysis of the rates of motion in UWDM-1(24) was 

not previously reported, but the distinct modes of motion are relevant to the present 

study. UWDM-1 is composed of SBU1, A1 and CE1. The centre of the alkyl portion of 

the 24-crown-6 macrocycle was selectively deuterated upon reduction of the double bond 

with D2 gas, producing both the E and Z isomers. The VT 2H SSNMR spectra, analytical 

simulations, and depictions of the motional models are shown in Figure 4.2. 

  The low-temperature spectrum acquired at 160 K was simulated as a single site 

with quadrupolar parameters CQ = 160(5) kHz and hQ = 0.0(1). These parameters are 

typical of a deuteron bonded to a carbon atom in an alkyl group. The fact that a single set 

of quadrupolar parameters is required to simulate the spectrum indicates that all 

deuterium environments are equivalent (within the limits of uncertainty). N.B. For all of 

the materials studied herein, the EFG tensor parameters and isotropic chemical shifts for 

individual deuterons cannot be differentiated in the 2H SSNMR spectra; therefore, all 

simulations are conducted with a single set of NMR parameters and all deuterons 

undergoing the same motions. The spectrum was also simulated without the effects of 

any motion, indicating that if motion is occurring, it is at a rate that is too slow to affect 

the appearance of the 2H SSNMR powder patterns (i.e., motions are occurring at rates 

within the SML). Increasing the temperature to 225 K produces no appreciable changes 

in the powder patterns. 
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Figure 4.2: (A) Experimental VT 2H SSNMR powder patterns of UWDM-1(24), (B) 
simulated 2H SSNMR powder patterns and, (C) accompanying depictions of the motional 
models used for the (i) motions that are too slow to influence the appearance of the Pake 
doublet (i.e., in the SML), (ii) the two-site jump with β = 77°, (iii) the two-site jump with 
β = 60° combined with partial rotation of the ring over 225° in 45° steps, and (iv) two-site 
jumps of 70° combined with full rotation of the ring. 

 

 The spectrum acquired at 251 K is different than those acquired at lower 

temperatures and the presence of motion must be considered. This spectrum was 

simulated based upon a two-site jump of the deuterons through an angle of 77°. The two-
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site jump mode of motion consists of the deuterons of the CD2 groups moving between 

two positions that are related by a rotation through an angle b about an axis that is 

perpendicular to the plane of the CD2 moiety (Figure C2(B)). This mode of motion 

results in powder patterns that are dependent on the jump angle, b, and the maximum 

amount of spectral narrowing that can occur is to half the width of the static spectrum in 

the SML. The spectra resulting from this mode of motion have one set of discontinuities 

that remains at the same frequencies for every value of b.53 This set of features 

corresponds to the principal component of the EFG tensor that is parallel to the rotation 

axis (cf. Figure C1), as this component is not altered under this mode of motion (in 

Figure C2, V11, which is parallel to the rotation axis of the two-site jump, is not averaged 

or altered by this motion). For the UWDM-1 systems, simulations featured a reorienting 

EFG tensor with V33 oriented along the C–D bond and V11 parallel to the rotation axis. 

While V11 is the smallest principal component of the static EFG tensor, the relative 

magnitudes of the components of the effective EFG tensor, Veff, are dependent on b, and 

average as follows:53,54 

Vii
eff=V11 

Vjj
eff= cos2β

2
V22+ sin2β

2
V33 

Vkk
eff= sin2β

2
V22+ cos2β

2
V33 

 

It is also noted that simulations of spectra under this mode of motion with rates in both 

the SML and IMR are not very different (Figure C3) aside from the presence of some 

additional intensity in the centres and loss of intensity on the outsides of the IMR 
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patterns. In many instances, the low intensities of the “feet” of the 2H powder patterns, 

perhaps resulting from low integrated signal intensity and a poor S/N ratio, make 

distinguishing spectra corresponding to the SML and IMR difficult; hence, there are large 

uncertainties associated with the rates estimated from these spectra. 

 The spectrum acquired at 324 K is considerably narrower than those acquired at 

lower temperatures and has a width that is less than half that of the static spectrum in the 

SML (Figure 4.2(A)). Therefore, the two-site jump model is no longer sufficient for 

describing the motion, and new modes of motion must be proposed. This spectrum was 

simulated using the partial rotation model, combined with two-site jumps with b = 60°. 

The partial rotation model consists of the ring rotating about an axis that is perpendicular 

to the ring in steps separated by the angle γ (Figure C4). The jumps are made only to 

adjacent sites that allow for the interaction of the hydrogen bond donor on the axle with 

the oxygen atoms on the ring. The powder patterns resulting from partial rotation are 

dependent on the jump angle g, as well as the angle between the rotation axis and the V33 

component of the 2H EFG tensor (Figure C4). It is noted that the powder patterns 

resulting from partial rotation are not axially symmetric, except for the case where the 

product of the number of sites (n) and the angle g, is equal to 360°; this is akin to full 

rotation (vide infra).55 

The high-temperature spectrum collected at 480 K is axially symmetric, and 

therefore, cannot be described using the partial rotation model. This spectrum was 

simulated with the full rotation model, which consists of rotation of the crown ether about 

an axis with C3 symmetry of higher (Figure C4(B), right-most column), which results in 

axially symmetric powder patterns (i.e., hQ = 0). The ring is no longer constrained to 
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making jumps between adjacent oxygen atoms on the ring, but now has enough energy to 

make the full rotation in either direction. The full rotation is combined with two-site 

jumps with b = 60°. The powder pattern is not influenced by changes in echo spacing, 

indicating that the motion is occurring at rates within the FML; however, it is difficult to 

comment on the relative rates of the full rotation and two-site jump motional modes. 

Nonetheless, it is postulated that the two-site jump motion is occurring at a higher rate 

than the full rotational model due to its significantly lower onset temperature. 

 The study of UWDM-1(24) described above is the basis on which all of the work 

of the UWDM series of MOFs is based. The two MOFs discussed in this section, 

UWDM-1(22) and UWDM-1(B24), were made in a similar manner to UWDM-1(24) using 

SBU1 and A1 (therefore resulting in MOFs with same topology and structure (Figure 

4.3)), but with the CE2 and CE3 macrocycles, respectively. 

 

4.4.1.2 UWDM-1(22).  

 

This system contains a smaller 22-crown-6 macrocycle (CE2) that was also 

selectively deuterated in a manner similar to the CE1 rings in UWDM-1(24) 2H SSNMR 

VT experiments and analytical simulations (Figure 4.4) were undertaken to determine 

whether the smaller ring size would result in a more constrained (i.e., less mobile) ring, 

or if the larger void volume resulting from the smaller ring size would in fact result in a 

less constrained (i.e., more mobile) ring. 
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Figure 4.3: (A) Ball-and-stick representation of the [2]rotaxane ligand in UWDM-1(22), 
which is composed of A1 and CE2 and coordinated to SBU1 (colour key: C = black, O = 
red, N = blue, Cu = green. Hydrogen atoms are omitted for clarity). (B) View down the 
crystallographic c-axis of UWDM-1(22) depicting the hexagonal shaped channels (A1 
shown in blue, CE2 in red, and Cu2+ metal ions in green). It is noted that UWDM 1(B24) 
has the same structure, but with CE3 rings. 

 

 The spectrum acquired at 192 K was simulated with typical quadrupolar 

parameters for an alkyl deuteron and as a single site, again indicating the equivalence of 

all the deuterons (within uncertainty limits). This spectrum was taken to be the static case 
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where motions are at rates within the SML, and therefore, have no effect on the 

appearance of the 2H SSNMR powder patterns. Increasing the temperature produces 

subtle changes in the powder patterns; this was simulated by considering the two-site 

jump mode of motion with b = 65(2)° and rates within the IMR (Table 4.1). Again, it is 

noted that simulations for the two-site jump mode do not produce drastically different 

powder patterns when the rates are within the SML and IMR (Figure C3), and therefore, 

there are large uncertainties associated with these rates. The rates of the two-site jump 

continue to increase as the temperature is raised, with the onset of the FML at 318 K. 

 

 

Figure 4.4: (A) Experimental VT 2H SSNMR powder patterns for UWDM-1(22), (B) 
simulated 2H SSNMR powder patterns, and (C) accompanying depictions of the motional 
models used for the (i) motions that are too slow to influence the appearance of the Pake 
doublet (i.e., in the SML), (ii) two-site jumps with β = 65° and rates in the FML, (iii) 
two-site jumps combined with the onset of partial rotation of the ring over 250° in 50° 
steps, and (iv) two-site jumps and partial rotation with rates in the FML. 
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Table 4.1: Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for UWDM-1(22). 

Temperature (K) Two-site Jump Rate (kHz) Partial Rotation Rate (kHz) 
192 <500 0 
213 <500 0 
234 <500 0 
255 <500 0 
276 <500 1(1) 
297 500(200) 5(2) 
318 5000(1000) 10(5) 
339 10000(1000) 50(10) 
360 >10000 500(100) 
381 >10000 5000(1000) 
402 >10000 10000(1000) 
424 >10000 >10000 

Uncertainties in the rates are given in parentheses. The uncertainties are larger for faster 
rates of motion. 
 

 The spectra acquired at temperatures of 276 K and above begin to narrow 

appreciably and cannot be simulated by considering only two-site jumps; therefore, these 

spectra were simulated with the onset of partial rotation combined with the two-site 

jumps. The smaller ring size in this system means that the six rotation sites, 

corresponding to the hydrogen-bonding oxygen atoms, are separated by a larger angle 

with respect to the rotation axis (i.e., the rotational sites are separated by 50° for UWDM-

1(22) and 45° for UWDM-1(24)). The spectra acquired at 276 and 297 K were simulated 

with rates in the IMR for both the two-site jumps and partial rotation modes. The FML 

for the two-site jump is reached at 318 K, whereas the rates for the partial rotation 

continue to increase until the onset of the FML at 424 K. It is noted that there is no 

evidence for full rotation when the high-temperature limit is reached, as the spectrum is 

not axially symmetric at temperatures of 424 K or higher. 
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4.4.1.3 UWDM-1(B24).  

This system incorporates a bulky benzo-24-crown-6 macrocycle, which is thought 

to have significantly hindered motion when functioning as an interlocked component in 

comparison to the 22-crown-6 and 24-crown-6 macrocycles. Ratcliffe et al. examined a 

similar system in their study of the dynamics in carboxybenzo-24-crown-8 and its KNCS 

complexes.54 For this bulky ring, they found that rotation of the macrocycle is not 

possible, and that they only motion present is the familiar two-site jump. They also found 

that both the rate and amplitude of this motion increases with increasing temperature. A 

similar model was used in the simulation of the dynamics of UWDM-1(B24) herein. 

 The VT 2H SSNMR spectra and analytical simulations are shown in Figure 4.5 

and the rates used in the simulations are shown in Table 4.2. The spectra acquired at 171 

and 198 K were simulated with rates within the SML, where the motions are occurring 

too slowly to have any effect on the powder patterns. The spectrum acquired at 213 K 

shows subtle changes in comparison to the lower temperature spectra and was simulated 

with the onset of the two-site jump motion. It is noted that spectra simulated with rates 

between 1 × 103 and 5 × 104 Hz show no variation with jump angle, and therefore, the 

proposed rates and angles for simulations of the low temperature spectra have large 

associated uncertainties (Figure C5). 
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Figure 4.5: (A) Experimental VT 2H SSNMR powder patterns for UWDM-1(B24), (B) 
simulated 2H SSNMR powder patterns, and (C) accompanying depictions of the motional 
model used for the (i) motions that are occurring too slowly to influence the appearance 
of the Pake doublet (i.e., in the SML), (ii) two-site jumps with β = 60°, (iii) two-site 
jumps with β = 70°, and (iv) two-site jumps with β = 75°. 
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Table 4.2: Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for UWDM-1(B24). 

Temperature (K) Jump Angle (°)a Two-site Jump Rate (kHz) 
171 - <500 
192 - <500 
213 - <500 
234 - <500 
255 60 500(100) 
276 60 1000(200) 
297 60 5000(1000) 
318 65 5000(1000) 
339 65 10000(1000) 
360 70 >10000 
381 70 >10000 
402 75 >10000 
424 75 >10000 

aUncertainties in the jump angles are ±5°. 
 

 Increasing the temperature produces the characteristic powder patterns associated 

with the two-site jump model. The spectra up to 276 K were simulated with rates within 

the IMR and a jump angle of 60°. The FML for the two-site jump was reached at 297 K 

with a jump angle of 60°. Increasing the temperature further results in an increase in the 

jump angle and rate of motion, though the latter is not detectable, as the FML has been 

reached and further increases in the rate does not influence the powder patterns. The 

high-temperature spectrum acquired at 424 K was simulated with a jump angle of 75° 

and rates in the FML. 

 

4.4.1.4 Motions in the UWDM-1 series.  

It is important to comment on the effect of ring size on the dynamics in the 

UWDM-1 system. The macrocycles in UWDM-1(24) are certainly the most mobile of the 

species studied, indicating that the 24-crown-6 macrocycle provides both ample free 
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volume and limited interactions with the axle. The FML for the two-site jump motion is 

reached at approximately 251 K, partial rotation at 324 K, and full rotation at 480 K. 

 The question to be answered in the study of UWDM-1(22) was whether the smaller 

ring would result in a more or less dynamic system in comparison to UWDM-1(24) (i.e., 

would the same modes of motion be occurring at slower or faster rates, if at all).  The 

FML for the two-site jump motion is reached at 318 K for UWDM-1(22), which is almost 

70 K higher than that for UWDM-1(24). The higher onset temperature and smaller jump 

angle suggests the smaller ring in UWDM-1(22) is undergoing motion that is hindered in 

comparison that of the 24-crown-6 macrocycle. This claim is further substantiated when 

the partial rotation model in considered. The onset of partial rotation occurs at 276 K, 

similar to UWDM-1(24), and the FML is reached by about 400 K. The spectrum acquired 

in the high-temperature limit (424 K) was also simulated using the partial rotation model 

and there is no evidence of full rotation. This is in contrast to UWDM-1(24) where 

evidence of full rotation is manifested in the spectrum acquired at 423 K. The hindered 

two-site jump motion, as well as no evidence of full rotation, clearly indicates that the 

larger free volume afforded by a smaller ring size is countered by the tighter fit of the 

ring around the axle. 

 The macrocycle in the UWDM-1(B24) species fits around the axle in a similar 

manner to that in UWDM-1(24); however, the bulky phenyl substituent greatly reduces the 

free volume and increases interactions between the ring and the framework. Therefore, it 

was postulated that the motion in this species would be greatly encumbered, akin to what 

was observed by Ratcliffe et al. in their study of carboxybenzo-24-crown-8.54 The only 

motion observed for this species is the two-site jump, with the onset of the FML at ca. 
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297 K.  The higher temperature for the onset of the FML in comparison to that of 

UWDM-1(24) suggests that the bulkier ring hinders the conformational changes in the ring 

associated with the two-site jump. Furthermore, the absence of rotation (either partial or 

full) highlights the restricted nature of the motion of the crown ether ring in this MOF. 

 The three distinct motional modes in the UWDM-1 systems occur in sequential 

stages. While it may be desirable to calculate activation energies for each of the 

individual modes of motion, this is difficult for these systems due to the presence of 

multiple, simultaneous modes of motion occurring at different rates. The first mode of 

motion that occurs in all systems is the two-site jump, with the onset of the FML 

occurring at 251, 318, and 297 K for UWDM-1(24), UWDM-1(22) and UWDM-1(B24), 

respectively. The onset temperature of the two-site jump motion is dependent on both the 

fit of the macrocycle around the axle (i.e., a tighter fit results in a higher onset 

temperature) and the overall steric bulk of the ring. Second, provided there is sufficient 

free volume, partial rotation occurs, and the jump angle depends on the size of the ring. 

This mode of motion occurs for both UWDM-1(24) and UWDM-1(22) with FML onset 

temperatures of 324 and 424 K, respectively.  Finally, full rotation of the ring is possible 

only for the 24-crown-6 macrocycle in UWDM-1(24), with the FML onset occurring at 

423 K, indicating that the motion of this macrocycle is the least hindered of the series. 

4.4.2 UWDM-2.  

 UWDM-2 is an example of a pillared MOF with two-dimensional layers formed 

by coordination of SBU2 by four molecules of L1. A rotaxane is made with A2 and CE1, 

and is coordinated to SBU2 through the pyridine donor groups, joining together the 2D 

layers to form a 3D MOF (Figure 4.6(A)). Contrary to the anticipated large void volume 
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from this MOF construction, UWDM-2 has three-fold interpenetration (i.e., the 

framework lattice has two other lattices passing through it).56 The interpenetration of the 

framework places the rings of two adjacent [2]rotaxanes in close proximity to each other 

and to the Zn-L1 layers (Figure 4.6(B)). The effects of the interpenetration and the close 

proximity of the rings to one another on the ring dynamics was investigated with 2H 

SSNMR. 

 

Figure 4.6: (A) Ball-and-stick representation of UWDM-2 showing the three-fold 
interpenetration (colour key: A2 = blue, CE1 = red, L1 = yellow). (B) Ball-and-stick 
representations showing the proximity of the rings (red) to one another and to the 
framework structure (green). 
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The VT 2H SSNMR spectra, powder pattern simulations, and a depiction of the 

motional models used for UWDM-2 are shown in Figure 4.7. The static spectrum 

acquired at 171 K was simulated as a single site with typical quadrupolar parameters 

(vide supra). Increasing the temperature results in narrowing of the 2H powder patterns. 

The variations of powder patterns with temperature and echo spacing indicate that the 

motion is occurring at rates within the IMR. Therefore, the spectra were simulated using 

the two-site jump with an angle of 72° combined with the partial rotation model. A series 

of spectra were simulated as a function of the rates of the two types of motion (Figure 

C6). Examination of these simulations allowed for the isolation of approximate rates, 

which were then refined by direct comparison to the experimental spectra (Table 4.3). 

The rate of the two-site jump motion is lower than that of the partial ring rotation, unlike 

the cases discussed above. The reduced rate of motion for the two-site jump may arise 

from steric interactions between the rings that are in close proximity in UWDM-2.  

 

Table 4.3: Rates and modes of motion used in the simulations of experimental VT 2H 
SSNMR data for UWDM-2 

Temperature (K) Two-site jump Rate (kHz) Partial Rotation Rate (kHz) 
171 0 0 
255 25(5) 5000(500) 
276 50(10) 6000(1000) 
297 100(10) 7000(1000) 
318 400(100) 8000(1000) 
339 600(1000) 9000(1000) 
360 800(100) 9000(1000) 
381 900(100) 10000(1000) 
402 1000(100) 30000(5000) 
424 3000(1000) 50000(5000) 
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Figure 4.7: (A) Experimental VT 2H SSNMR powder patterns for UWDM-2. (B) 
Simulated 2H SSNMR powder patterns using the two-site jump (β = 72(2)°) and partial 
rotation models. Rates used in the simulations are listed in Table 4.3. (C) Depiction of the 
motional model used. 

 

4.4.3 a-UWDM-3  

In an attempt to prevent the interpenetration observed in UWDM-2, a shorter 

linker (L2) was used to synthesize α-UWDM-3 (Figure 4.8(A)), which has DMF solvent 

in the pores and two-fold interpenetration. The macrocyclic ring (CE1) lies within the 

“square planes” of the SBU2-L2 layers (Figure 4.8(B)). It is postulated that the 

interactions between the ring and the framework might hinder the motion of the ring.  
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Figure 4.8: (A) Ball-and-stick representation of α-UWDM-3 showing the two-fold 
interpenetration (colour key: A2 = blue, CE1 = red, L2 = yellow). (B) Ball-and-stick 
representations showing the confinement of the CE1 ring (red) within the “square plane” 
of the framework (green). (C) Schematic depiction of the reversible phase change that 
occurs in UWDM-3. 

 

The VT 2H SSNMR spectra of a-UWDM-3 are shown in Figure 4.9 along with 

the accompanying simulations and depictions of the modes of motion. The rates used in 
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the simulation of experimental data are shown in Table 4.4. The low-temperature 

spectrum collected at 234 K was simulated with a single set of quadrupolar parameters 

(vide supra). This spectrum was simulated without the inclusion of any motions, 

indicating that the motion is in the SML. This SML spectrum of a-UWDM-3 was 

obtained at a higher temperature than that of UWDM-1(24); this suggests that the motions 

of the crown ethers in the former are more hindered.  

 The spectrum acquired at 247 K is distinct and was simulated using the two-site 

jump model with an angle of 75(2)°, and the onset temperature of this motion is 

comparable to those of UWDM-1(24) and benzo-24-crown-8.54 The spectrum acquired at 

255 K was simulated by considering the onset of partial rotation (i.e., rotation of the ring 

through 225° in 45° steps), identical to that observed for UWDM-1(24), in addition to the 

two-site jump of the CD2 moieties. Collecting spectra at this temperature with different 

pulse spacings produces notable changes in the powder pattern; thus, it can be concluded 

that the rate of the new motions is within the IMR (motion occurring at a rate of 

approximately 10-100 kHz).  

 

Table 4.4:  Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for a-UWDM-3 
Temperature (K) Two-site Jump 

Rate (kHz) 
Partial Rotation 

Rate (kHz) 
Large Amplitude 
Jump Rate (kHz) 

234 <100 -- -- 
247 5000(1000) -- -- 
255 10000(1000) 10(5) -- 
276 >10000 50(10) 5(1) 
297 >10000 100(10) 50(10) 
318 >10000 5000(1000) 1000(100) 
339 >10000 10000(1000) 5000(1000) 
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Figure 4.9: (A) Experimental VT 2H SSNMR powder patterns for α-UWDM-3. (B) 
Simulated 2H SSNMR powder patterns and (C) accompanying depictions of the motional 
model used for the (i) motions that are occurring too slowly to influence the appearance 
of the Pake doublet (i.e., in the SML), (ii) two-site jump with β = 75(2)°, (iii) two-site 
jump with β = 75(2)° combined with the onset of partial rotation of the ring over 225° in 
45° steps and (iv) two-site jump and partial rotation combined with large amplitude ring 
flexing to positions 30(3)° above and below the “square plane” of the framework, and (v) 
the FML of all the above-mentioned motions. 
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 Further increasing the sample temperature produces patterns that have 

significantly narrower breadths. This degree of narrowing cannot be accounted for with 

the combination of the two-site jump and partial rotation. Hence, it is postulated that a 

third mode of motion is occurring. The 2H NMR spectra acquired at 318 K and 339 K 

were simulated with large amplitude jumps of the deuterons through an angle of 60(5)° 

about an axis in the plane of the ring, in combination with partial rotation and two-site 

jumps. This motion can be modeled in two distinct ways: the entire macrocycle is 

rotating between positions 30(3)° above and below the “square” of the framework, or the 

relatively flexible alkyl portion of the ring is moving above and below the constraining 

“square” of the metal-organic framework. While the latter process, denoted as large-

amplitude ring flexing, is more likely due to the fact that it is much less energetically 

expensive, we note that both processes are simulated in the exact same manner (i.e., using 

the same angles, parameters, and rates). Furthermore, this flexing also minimizes short-

range interactions between the crown ether and the surrounding framework. Several other 

motional models were also explored; however, those with simulations which matched 

experimental data were not chemically sensible. 

4.4.4  β-UWDM-3  

PXRD analysis of α-UWDM-3 indicates that a phase transition occurs in the 

temperature range of 100-125°C. The transition to b-UWDM-3 is attributed to the 

removal of the DMF solvent from the pores of the framework (this transition is reversible 

when b-UWDM-3 is exposed to DMF). This desolvation causes a change in the structure 

of the MOF, such that it is postulated that the ring no longer sits within the “square” of 
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the framework (Figure 4.8(C)). The “less constrained” environment suggests that the 

ring in the b-UWDM-3 is more mobile than that in the a-UWDM-3.  

The VT 2H SSNMR spectra, simulations, and depictions of the motional models 

are shown in Figure 4.10 and the rates used in the simulations are shown in Table 4.5. 

The spectra are strikingly similar to those observed in the study of UWDM-1(24), except 

for those acquired at high-temperature (vide infra), suggesting that the motions in these 

two systems are much the same at lower temperatures.52 The static spectrum at 183 K 

was simulated as a single site with typical 2H quadrupolar parameters (vide supra).  

Increasing the temperature to 208 K results in no significant change in the powder 

pattern. The spectrum acquired at 234 K indicates the onset of motion, and the spectrum 

at 255 K was simulated using the familiar two-site jump of the CD2 groups through an 

angle of 75(2)°. Increasing the temperature of the sample further induces the onset of the 

partial rotation model of the ring through 225° in 45° increments, in addition to the 

aforementioned two-site jump motion. The spectrum at 318 K was simulated with rates in 

the FML for this combined motion (Table 4.5). The onset temperature of this mode of 

motion is similar to that of UWDM-1(24) (324 K), again validating the similar motions in 

these two systems. 

Table 4.5:  Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for a-UWDM-3 
Temperature (K) Two-site Jump 

Rate (kHz) 
Partial Rotation 

Rate (kHz) 
Large Amplitude 
Jump Rate (kHz) 

234 <100 -- -- 
247 5000(1000) -- -- 
255 10000(1000) 10(5) -- 
276 >10000 50(10) 5(1) 
297 >10000 100(10) 50(10) 
318 >10000 5000(1000) 1000(100) 
339 >10000 10000(1000) 5000(1000) 
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Figure 4.10: (A) Experimental VT 2H SSNMR powder patterns for β-UWDM-3. (B) 
Simulated 2H SSNMR powder patterns and (C) accompanying depictions of the motional 
model used for the (i) motions that are too slow to influence the appearance of the Pake 
doublet (i.e., in the SML), (ii) two-site jump with β = 75(2)°, (iii) two-site jump with β = 
75(2)° combined with the onset of partial rotation of the ring over 225° in 45° steps, (iv) 
two-site jumps combined with partial rotation and jumps through the alkyl portion of the 
ring that are occurring at a rate slower than the rate of jumps between oxygen atoms, and 
(v) increased rate of jumps through the alkyl portion of the ring. 
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Table 4.6: Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for b-UWDM-3 
Temperature (K) Two-site Jump 

Rate (kHz)  
Partial Rotation 

Rate (kHz) 
Alkyl Jump Rate 

(kHz) 
183 <500 -- -- 
208 <500 -- -- 
234 5000(1000) -- -- 
255 10000(1000) -- -- 
276 >10000 500(100) -- 
297 >10000 1000(100) -- 
318 >10000 5000(1000) -- 
339 >10000 10000(1000) 50(10) 
360 >10000 >10000 100(10) 
381 >10000 >10000 500(100) 
402 >10000 >10000 1000(100) 

 

The spectra acquired at higher temperatures could not be simulated using the 

combined two-site jump and partial rotation model, nor could they be simulated with full 

rotation of the crown ether ring about an axis of Cn≥3 symmetry (as such motion produces 

axially symmetry powder patterns). The simulation of the high-temperature spectra that 

matches experiment is achieved by considering an intermediate case between partial 

rotation and full rotation, combined with the two-site jump. Specifically, eight sites 

separated by 45° rotations were used, six corresponding to the hydrogen-bonding oxygen 

atom positions, and two corresponding to the alkyl portion of the ring (Figure C7(A)). A 

rate matrix was constructed (Figure C7(B)) where jumps between the oxygen atom 

positions are occurring at rates in the FML (i.e., >107 Hz) and jumps through the alkyl 

positions occur at a significantly slower rate (i.e., 50-1000 kHz). The spectra acquired at 

381 K and 401 K were simulated using this model, and excellent agreement with the 

experimental data is obtained. It is postulated that the ring does not undergo full rotation 

due to interactions between the ring and framework. 
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4.4.5 UWDM-P MOFs 

 The studies of UWDM-2 and UWDM-3 reveal that interpenetration influences the 

motion of the rings; the more constrained environments cause by steric interactions with 

the framework and other rings greatly hinders their motion or induces new modes of 

motion so as to minimize these interactions. In an attempt to prevent interpenetration, a 

series of MOFs were synthesized with a large porphyrin-based organic linker (L3). The 

two MOFs consist of two-dimensional layers of SBU2 and L3 that are pillared by either 

A2 (UWDM-P1) or A3 (UWDM-P2). The two axles differ only by a methyl substituent on 

the pyridine functional group. Despite the inclusion of porphyrin linkers, both UWDM-

P1 and P2 have a two-fold interpenetration (Figure 4.11). Similar to UWDM-3, UWDM-

P1 and UWDM-P2 undergo reversible desolvation upon removal of the DMF from the 

pores of the framework to generate UWDM-P1d and UWDM-P2d. X-ray diffraction data 

indicates that the desolvation process induces slight structural changes (Table 4.6). It is 

noted that while structural changes induced by desolvation seem minor, the rings are in 

relatively encumbered environments and even slight changes (e.g., tilting) of the 

framework could greatly alter their motions. Below, the VT 2H SSNMR spectra are 

briefly discussed on a case-by-case basis. The spectra for UWDM-P1 and UWDM-P2, 

along with their desolvated forms, are shown in Figures 4.12 and 4.13, respectively, and 

the rates and modes of motion are summarized in Tables 4.7 to 4.10. This is followed by 

a discussion of the factors influencing the macrocyclic ring dynamics in the UWDM-P 

series. N.B. in all cases, the spectra acquired at 185 K were simulated with the absence of 

motions, or equivalently, motions occurring at rates within the SML. 
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Figure 4.11: Crystal structures showing the two-fold interpenetration of (A) UWDM-P1, 
(B) UWDM-P2, and (C) UWDM-P2d. In each case, the CE1 macrocycles sit above the 
square plane formed by the L3 ligands. It is noted that a crystal structure of UWDM-P1d 
could not be determined, however; crystal lattice parameters were obtained (Table 4.6). 

 

Table 4.7: Unit cell parameters for the UWDM-P MOF series. 
MOF a (Å) b (Å) c (Å) b (°)	 Space 

Group 
UWDM-P1 17.052(4) 16.225(4) 24.722(6) 90.977(9) P2 
UWDM-P1d 16.901(3) 16.390(3) 24.577(4) 92.421(7) P2 
UWDM-P2 16.8477(4) 16.4056(4) 24.7321(7) 94.16989(16) P2 
UWMD-P2d 16.8219(6) 16.4164(6) 49.137(2) 91.786(3) P2/c 
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Figure 4.12: (A) Experimental VT 2H SSNMR spectra for UWDM-P1 and corresponding 
simulations showing the (i) SML, (ii) onset of the two-site jump (β = 78°), (iii) FML of 
the two-site jump and onset of partial rotation, and (iv) FML of the two-site jump and 
partial rotation. (B) Experimental VT 2H SSNMR spectra for UWDM-P1d and 
corresponding simulations showing the (i) SML, (ii) IMR for the two-site jump, (iii) 
FML of the two-site jump, (iv) onset of partial rotation, and (v) FML of the two-site jump 
and partial rotation. 
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Figure 4.13: (A) Experimental VT 2H SSNMR spectra for UWDM-P2 and corresponding 
simulations showing the (i) SML, (ii) FML of the two-site jump (β = 78°) and the onset 
of partial rotation, (iii) FML of the two-site jump and partial rotation, and (iv) FML of the 
two-site jump and full rotation. (B) Experimental VT 2H SSNMR spectra for UWDM-P2d 
and corresponding simulations showing the (i) SML, (ii) FML for the two-site jump (β = 
70°), (iii) FML of the two-site jump (β = 75°) and the onset of partial rotation, and (iv) 
FML of the two-site jump and partial rotation. 
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Table 4.8: Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for UWDM-P1. 

Temperature (K) Two-site Jump Rate (kHz) Partial Rotation Rate 
185 0 0 
208 <500 0 
253 >10000 10(5) 
285 >10000 >10000 
411 >10000 >10000 

 

Table 4.9: Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for UWDM-P1d. 

Temperature (K) Two-site Jump Rate (kHz) Partial Rotation Rate 
(kHz) 

185 0 0 
275 10(5) 0 
285 50(10) 0 
298 500(100) 0 
311 5000(1000) 0 
321 >10000 0 
330 >10000 100(10) 
366 >10000 >10000 

  

Table 4.10: Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for UWDM-P2. 

Temperature (K) Two-site Jump 
Rate (kHZ) 

Partial Rotation 
Rate (kHz) 

Full Rotation Rate 
(kHz) 

185 0 0 0 
253 >10000 10(5) 0 
273 >10000 1000(500)  
343 >10000 >10000 >10000 
411 >10000 >10000 >10000 

 

Table 4.11: Rates and modes of motion used in the simulation of experimental VT 2H 
SSNMR data for UWDM-P2d. 

Temperature (K) Two-site Jump Rate (kHz) Partial Rotation Rate 
(kHz) 

185 0 0 
273 >10000 0 
298 >10000 100(10) 
343 >10000 >10000 
411 >10000 >10000 
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4.4.5.1 UWDM-P1 

 The 2H SSNMR spectrum acquired at 208 K was simulated as two-site jump 

motion with a jump angle of b = 78°. The onset of the partial rotational motion is 

observed in the spectrum acquired at 253 K. The spectrum collected at 285 K was 

simulated as the FML of the combined two-site jump and partial rotational motions. 

Increasing the temperature to 411 K (i.e., the highest temperature to which the sample 

could be heated) does not produce any significant changes to the 2H powder patterns and 

therefore, no additional modes of motion are occurring in UWDM-P1.  

4.4.5.2 UWDM-P1d 

 2H SSNMR spectra acquired above 185 K were simulated as the two-site jump 

motion with rates in the IMR. The FML for the two-site jump motion occurs at 321 K. 

Increasing the temperature further results in the onset of the partial rotational motion and 

the spectrum acquired at 366 K was simulated as the FML of the combined two-site jump 

and partial rotational motions. 

4.4.5.3 UWDM-P2 

 Increasing the temperature above 185 K results in drastic changes in the 2H 

powder patterns, indicating the rapid onset of the two-site jump motion. The spectrum 

acquired at 253 K was simulated with the FML of the two-site jump and the onset of the 

partial rotational motion, the rate of which increases with temperature. At 343 K, an 

axially symmetric pattern is obtained, indicating the FML of the full rotational motion. 

Increasing the temperature further (up to 411 K) results in no further changes in the 

spectra. 
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4.4.5.4 UWDM-P2d 

The spectrum acquired at 273 K was simulated with the two-site jump motion 

with a jump angle of 70° and rates in the FML. Increasing the temperature to 298 K 

results in an increase in the jump angle (b = 75°) and the onset of partial rotation. The 

FML of the two-site jump and partial rotational motions occurs at 343 K and increasing 

the temperature does not result in any further changes in the 2H powder patterns. 

4.4.5.5 Motions in the UWDM-P MOF series 

 In a similar manner to the UWDM-1 series (vide supra), it is important to 

summarize the factors that affect ring dynamics in the UWDM-P series. The UWDM-P 

series of MOFs are made using similar components and differ only in the presence of a 

methyl substituent on the pyridine group of the axle in UWDM-P2. The MOFs were 

found to have similar structures and XRD analysis suggests that desolvation does not 

produce drastic changes framework structure; however, the dynamics of the CE1 

macrocycles in these systems are very different. 

 The structural changes induced by desolvation have pronounced effects on the 

motion. For UWDM-P1, the onset temperature of the two-site jump motion is 208 K and 

the FML is reached by 253 K (similar to the onset temperature observed for UWDM-

1(24)). Conversely, for UWDM-P1d, the FML of the two-site jump occurs at 321 K (a 

difference of almost 75 °C). An analogous observation is made for the partial rotational 

motion with FML temperatures of 285 and 366 K for UWDM-P1 and UWDM-P1d, 

respectively. The effect is less pronounced for UWDM-P2, where the FML for the two-

site jump and partial rotation occur at same temperatures; however, increasing the 
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temperature further results in full rotation of the macrocyclic rings in UWDM-P2, but no 

additional motion for UWDM-P2d. 

 Desolvation results in a decrease in the rate(s) of motion of the rings in both 

UWDM-P1 and UWDM-P2, but it is unclear whether this is driven by structural changes, 

or is a consequence of the different chemical environments of the rings (i.e., interactions 

with solvent molecules). To address this, solvent-exchange reactions were conducted on 

UWDM-P2, where solvents were chosen to reflect a variety of polarities and viscosities. 

VT 2H SSNMR spectra were acquired and are shown in Figure C8. With the exception 

of some of the lower temperature spectra (with poor S/N), it appears that the motion of 

the rings in UWDM-P2 is the same (i.e., full rotation occurs at higher temperatures) 

regardless of the solvent within the pores. Therefore, it is concluded while desolvation 

produces only minor changes in structure, this is sufficient to cause significant changes in 

the motion of the rings, and can be attributed to a tilting of the framework structure such 

that the rings of one [2]rotaxane molecule come into close contact with the axle of 

another [2]rotaxane. 

 In comparing UWDM-P1 and UWDM-P2, it is evident that the motion of the 

macrocyclic rings is more hindered in the former. The FML for partial rotation occurs at 

343 K for UWDM-P2, which is comparable to other UWDM systems described herein 

(vide supra); however, increasing the temperature does not result in full rotation in 

UWDM-P2. It is proposed that the addition of the methyl group on A3 (which is used in 

the synthesis of UWDM-P2) increases the rigidity of the pillars and reduces the 

possibility for thermally-induced structural transformations (i.e., framework tilting) that 
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increase the steric interactions between the rings and the framework, thereby allowing for 

unhindered motions of the rings in comparison to those in UWDM-P1. 

4.4.6 UWDM-4 

 The systems discussed thus far consist of axles with a single recognition site (i.e., 

a hydrogen bond donor that can interact with the O atoms of the CE rings). Previously, it 

has been demonstrated that the design of a [2]rotaxanes consisting of an axle with two 

recognition sites allows for translational motion (or shuttling motion) of the CE rings 

along the molecular axle in solution.57,58 The incorporation of such a [2]rotaxane into a 

solid framework would allow for the coherent motion of the rings. UWDM-4, which 

consists of a [2]rotaxane made with the H-shaped A4 and CE4, which is coordinated to 

SBU3 (Figure 4.14 (A)), was synthesized and characterized in order to investigate the 

possibility of observing and controlling translation motions of the CE rings in the solid 

state. The carbon atoms in the 2-position of the benzimidazole groups of A4 were labeled 

with 13C to facilitate SSNMR experiments (vide infra). Coordination of the [2]rotaxane to 

SBU3 results in an interpenetrated MOF with an ordered arrangement of the CE4 rings 

(Figure 4.14(B)). Despite the interpenetration, the topology of UWDM-4 has channels 

with large void volumes that easily accommodate the [2]rotaxanes and provide ample 

space for the shuttling motion (Figure 4.14(C)). 
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Figure 4.14: (A) Schematic diagram of the [2]rotaxane used in the synthesis of UWDM-
4. The positions of the 13C labels are marked with asterisks. (B) Depiction of the 
interpenetration in UWDM-4 where the [2]rotaxanes serve as “crossbars” that join 
together two lattices (green and yellow). (C) View along the crystallographic c axis 
showing the open channels in the framework. 

 

 It was suspected that the addition of the HBF4 used in the synthesis of UWDM-4 

results in protonation of the axle at one of the benzimidazole recognition sites (i.e., 

UWDM-4•HBF4). Such protonation is not desirable, as the interaction of CE4 with the 
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charged (+1) recognition site is significantly stronger than that with the neutral site;59,60 if 

this is the case, the CE would preferentially interact with the charged recognition site and 

no shuttling would be observed. UWDM-4•HBF4 was treated with Proton sponge® (i.e., 

N,N,N´,N´-tetramethylnaphthalene-1,8-diamine, a strong base) to deprotonate the axle; 

deprotonation was verified using 19F MAS SSNMR (Figure C9). The 19F NMR spectrum 

of UWDM-4•HBF4 has a peak at –148 ppm corresponding to the BF4
– anion (thereby 

confirming the assertion that UWDM-4•HBF4 is being made). The 19F NMR spectrum of 

the sample treated with the proton sponge does not have this signal, confirming the 

successful deprotonation and production of neutral UWDM-4. 

 A preliminary set of VT 1H-13C CP/MAS experiments were conducted at 9.4 T 

(Figure C10). The spectrum acquired at room temperature (RT) shows a single, broad 

peak centred at ~153 ppm. Decreasing the temperature results in a slight broadening of 

the peak and what might be a small splitting. However, the spectral resolution and S/N 

are insufficient to conclusively determine if chemical exchange is actually occurring.  

 The VT 1H-13C CP/MAS (nrot = 14.4 kHz) experiments for neutral UWDM-4 

were conducted at 21.1 T in order to improve spectral resolution and S/N (Figure 4.15). 

The spectrum acquired at 298 K clearly resolves two distinct resonances at 152.7 and 

155.2 ppm; these signals are assigned to the open recognition site and one that is 

occupied by the CE4 ring, respectively (N.B. These assignments are on similar 

observations for the [2]rotaxane in solution).46 Increasing the temperature results in a 

broadening of the peaks, with coalescence is observed at 311 K. Increasing the 

temperature to 334 K gives a sharper, single peak centred at 154 ppm (the average of the 
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two chemical shifts observed in the spectrum at 298 K), indicating that chemical 

exchange is occurring (i.e., the ring is shuttling between the two recognition sites). 

 

Figure 4.15: Variable temperature 1H-13C CP/MAS (νrot = 14.4 kHz) NMR spectra 
acquired for UWDM-4 at 21.1 T. 

 

 To provide further evidence that the shuttling motion is occurring within the 

MOF, two-dimension exchange spectroscopy (2D EXSY) experiments were conducted 

(Figure 4.16). EXSY spectra are used to identify chemical exchange phenomena in the 

slow-exchange regime, and therefore, the experiments were conducted at 273 K (i.e., a 

temperature at which the two resonances are clearly resolved in the 1D 1H-13C CP/MAS 
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spectra). The spectrum acquired using a mixing time (tm) of 1 ms (Figure 4.16(A)) shows 

only diagonal peaks, as this mixing time is not sufficiently long to observe the cross 

peaks corresponding to chemical exchange. The spectrum acquired with tm = 100 ms 

shows intense cross peaks, indicating chemical exchange between the two environments. 

 

Figure 4.16: 1H-13C CP/EXSY MAS NMR spectra (νrot = 14.4 kHz) acquired at 0 °C and 
21.1 T using mixing times of (A) 1 ms, and (B) 100 ms. 
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 The 1D 1H-13C CP/MAS data were simulated to extract information on the 

shuttling rates (Table 4.11). It was determined that the shuttling rate at room temperature 

is 283 Hz, and that this rate increases with temperature. A plot of ln(kT) vs. (1/T) (Figure 

4.17) was generated and fit using the Eyring equation to extract the barrier of activation 

for the shuttling motion (DG‡) and other thermodynamic quantities (DH‡ and DS‡) (Table 

4.12). These values were compared to those obtained by simulation of the 13C solution-

state NMR data for the [2]rotaxane in solution (Table C2 and Figure C11). The 

activation barrier for UWDM-4 at room temperature is 14.1 kcal mol-1, with DH‡ = 

15.4(8) kcal mol-1 and DS‡ = 4.31(40) cal K-1 mol-1. The activation barrier for UWDM-4 

is higher than that determined for the [2]rotaxane (made from A4 and CE4) in solution 

(DG‡ = 7.7 kcal mol-1). The higher value of DG‡ for UWDM-4 is likely due to an increase 

in enthalpic contributions due to steric and/or electrostatic interactions between the CE4 

rings and the framework structure. The lower value of DS‡ is a consequence of the lower 

number of configurations or states of the CE4 molecules in the solid state (in contrast to 

in the solution state where the CE4 molecules undergo a large number of collisions with 

solvent molecules and are not in any way restricted by other outside steric influences). 
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Figure 4.17: The Eyring plot generated from the simulation of the VT 13C SSNMR data. 
Rates used in the simulations and thermodynamic parameters extracted from the plot are 
shown in Table 4.11 and Table 4.12, respectively. 

 

 In summary, an interpenetrated MOF was synthesized using a [2]rotaxane that has 

two recognition sites. VT 13C and 2D EXSY SSNMR experiments reveal that the CE4 

molecules exhibit thermally-driven shuttling motion within the MOF. This represents the 

first case of a molecular shuttle incorporated into a solid-state structure, a crucial next 

step for the design of molecular machines with coherent motions. 

 

Table 4.11: Shuttling rates obtained from simulations of the experiment VT 13C CP/MAS 
NMR spectra for UWDM-4. 

Temperature (K) Shuttling rate (Hz)a 
298 280 
301 340 
306 550 
311 910 
318 1960 
328 3170 
334 4690 

aUncertainties in the shuttling rates are ± 10 Hz. 
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Table 4.12: Thermodynamic parameters determined from the Eyring plot generated by 
simulation of the 13C NMR data. 

Parameter [2]rotaxane UWDM-4 
k (Hz) 1.4×107 a 283 

DG‡ (kcal mol-1) 7.7 14.1 
DH‡ (kcal mol-1) 13.0 15.4 
DS‡ (cal K-1 mol-1) 17.7 4.3 
–TDS‡ (kcal mol-1) –5.3 –1.3 

aValue extrapolated from the Eyring plot, Figure 4.17. 

 

4.5 Conclusions 

 A series of MOFs that incorporate dynamic interlocked components (i.e., 

[2]rotaxanes) into their framework structures were synthesized. 2H and 13C SSNMR 

experiments were conducted to provide information on the modes and rates of motions of 

the macrocyclic rings that are occurring within these MOFs, and determine the factors 

(i.e., ring size, framework structure, and guest molecules) that affect the ring dynamics. 

Comparison of the UWDM-1 series featuring an assortment of different ring sizes 

demonstrates that the use of a smaller CE molecule results in more hindered motion, and 

a bulky ring limits rotational motion. Interpenetration of the MOF structures was shown 

to greatly restrict the motion of the CE rings (UWDM-2), or to induce large amplitude 

motions (UWDM-3). Studies of the UWDM-P MOF series reveal that the structural 

changes induced by desolvation can greatly hinder the motion of the CE rings, and that 

the nature of the solvent (i.e., polarity and viscosity) does not have a substantial influence 

on these dynamics. Lastly, 13C SSNMR was used to demonstrate that shuttling motion 

occurs in a MOF made from a [2]rotaxane with two recognition sites. The rates and 

activation barrier of the shuttling motion were determined and the latter was found to be 

greater than the [2]rotaxane in solution. The data obtained from SSNMR experiments 
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provide a detailed understanding of the factors that affect ring dynamics, offering insight 

into the design of future molecular machines with a variety of components capable of 

undergoing a complex range of rotational, torsional, and/or translational motions. 
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5 Chapter 5: Multinuclear Solid-State NMR Investigations of 

Platinum(II) trans-Dihydride Molecular Rotors 
 

5.1 Overview 

 The design and synthesis of solid-state molecular rotors with low energy barriers 

of rotation represents an important step in the fabrication of molecular machines. An 

understanding of the factors that affect rotation is crucial for the design of systems with 

controlled dynamics, and for the future inclusion of unidirectional motion. Herein, we 

provide a detailed analysis of trans-D2Pt(PtBu3)2 (1-D), an inorganic random rotor (i.e., 

in which rotational motions occur in both directions) that functions in the solid state. 

Single-crystal X-ray diffraction (SCXRD) and 195Pt solid-state NMR (SSNMR) indicate 

the presence of motion, but are insufficient to elucidate the exact nature of the dynamics. 

Variable-temperature (VT) 2H SSNMR is used to study the motion over a wide range of 

temperatures, and several different models are proposed. Simulation of the VT 2H 

SSNMR spectra indicate that the deuterides exhibit a three-fold rotational motion with 

rates in the fast motion limit (FML) at temperatures as low as 75 K. The SSNMR results 

are confirmed by the DFT computation of the energy landscape associated with the 

rotational motion, revealing a low energy barrier to rotation. A preliminary investigation 

of a series of structurally similar platinum-deuteride compounds is also presented, and 

their VT 2H SSNMR spectra were simulated using the motional models developed for 1-

D. These studies reveal that the nature of the coordinating ligands greatly affects the 

motion of the deuterides and rotational barriers. It is hoped that the information provided 

herein, and the use of SSNMR and DFT calculations in tandem, will allow for the 
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rational design of solid-state rotors with tuneable, low-energy barriers and controlled 

motions. 

 

5.2 Introduction 

The design of molecular machines draws influence from analogous macroscopic 

devices.1 This design principle has led to the fabrication of molecular elevators,2 

muscles,3 and nano-cars.4 A key component in these devices are molecular rotors, which 

feature an axis of rotation that allows for the rotation of the mobile part, the rotator, with 

respect to the static part, the stator.5 The motion of molecular rotors can be broadly 

categorized as either random or unidirectional. Random motion involves the rotator 

moving in both directions with thermal energy as the driving force, whereas 

unidirectional motion occurs in a single direction, akin to a ratchet, and requires a source 

of free energy.5–7 For the design of random rotors, a key challenge is to lower the 

activation barrier for the rotational motion; properly designed molecules or materials may 

have applications as molecular gyroscopes.8–15 It is envisaged that a low activation-

barrier random rotor can be modified such that unidirectional motion can be achieved 

(e.g., with careful control of both steric and electronic interactions between the stator and 

the rotator).  

The first intensely studied class of molecular rotors, reported by Mislow et al.,16 

functioned only in the solution state. Efforts were later made to design molecular rotors 

that would operate in the solid state, and to understand the factors that govern their 

mobilities.17–20 It was determined that the size, shape, and symmetry of the components 

of the rotor affect the overall dynamics. The design of functional solid-state rotors has 
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proven to be difficult, with the limitations resulting from the synthesis of stators that 

provide enough void space to allow for the free rotation of the rotator.21,22 Most of the 

current examples of molecular rotors in the solid state consist of large organic stators and 

organic rotators; however, the design of inorganic rotators has shown promise.23 Despite 

the elegant syntheses reported for these inorganic rotors, most have suffered from high 

activation barriers to the rotational motions, greatly hindering their further development 

and application.24,25 Therefore, molecular rotors that are easily synthesized and have low 

barriers to rotation are highly sought after. 

A detailed understanding of the factors that determine the rates and modes of 

motions in solid-state rotors is crucial for the design of systems with low barriers and 

controlled dynamics. The dynamics of the rotators are usually evidenced by the apparent 

disorder of the rotator components in crystal structures determined by X-ray diffraction 

(XRD); however, XRD is limited in the information that it can provide on the exact 

nature of the dynamics. Solid-state NMR (SSNMR) spectra are sensitive to a variety of 

different motions over a wide dynamical range, and as such, it is the premier technique 

for studying dynamics in the solid state. The simulation of SSNMR spectra acquired at 

different temperatures allows for the development of models that describe the dynamics 

of the rotators and the determination of the rates of their motions. 

In this chapter, SSNMR is used to study the dynamics of a series of platinum 

hydride compounds that show potential as molecular rotors (Scheme 5.1). A detailed 

analysis of trans-D2Pt(PtBu3)2 (1-D) is provided, and several motional models are 

proposed, providing a framework in which to discuss the compounds that follow. 

SCXRD data and 195Pt SSNMR spectra indicate that the hydrides in 1 are dynamic, but 
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these techniques are insufficient for developing detailed motional models. Variable-

temperature (VT) 2H SSNMR experiments reveal that the deuterides in 1-D are in motion 

at temperatures as low as 75 K. Simulation of the 2H SSNMR powder patterns indicates 

that the deuterides are undergoing a three-site rotation with rates in the fast motion limit 

(FML), and that the relative populations of the rotational states are changing with 

temperature. An energy landscape for the rotational motion of 1 was determined using 

DFT calculations and is in excellent agreement with the results obtained from 2H 

SSNMR. Experiments conducted on trans-D2Pt(P(NMe2)3)2 (2-D) indicate that the 

deuterides are static within a temperature range from 273 to 373 K. Conversely, the 2H 

SSNMR spectra of trans-D2Pt(PCy3)2 (3-D) indicate motional averaging with very fast 

rates and equal populations of the states, even at low temperatures, suggesting a very low 

barrier to rotation. Trans-D2Pt(iPr)2 (4-D) and [trans-DPt(iPr)2][BArF
4] (5-D), while 

structurally and chemically very similar, exhibit very different dynamics. 2H SSNMR is 

an ideal technique for probing the motions of these inorganic rotors, and the 

complementary use of DFT calculations allows for an understanding of the structural 

features that affect their motions, which we believe will ultimately lead to the rational 

design of rotors with very low energy barriers. 
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Scheme 5.1: Representations of the structures of (A) trans-H2Pt(PtBu3)2 (1), (B) trans-
H2Pt(P(NMe2)3)2 (2), (C) trans-D2Pt(PCy3)2 (3-D), (D) trans-D2Pt(iPr)2 (4), and (E)  
[trans-HPt(iPr)2][BArF4] (5). For 1, 2, 4, and 5, ball-and-stick representations are derived 
from the crystal structures, whereas for 3-D, no crystal structure has been reported. Non-
hydride hydrogen atoms and the [BArF

4]– counterion have been omitted for clarity. 
Colour key: H/D = pink, C = black, N = blue, P = orange, Pt = grey. 

 

5.3 Experimental Methodologies and Computational Details 

5.3.1 Synthesis 

 The synthesis of 1-H and 1 are outlined in Appendix D. Compounds 2-D and 3-D 

were provided by Dr. Fekl from the University of Toronto at Mississauga. Compounds 4-

D and 5-D were provided by Dr. Salvador Conejero from the University of Seville, 
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Spain. Details of syntheses and crystal structures will be detailed in forthcoming 

publications by these research groups. 

5.3.2 195Pt SSNMR 

A Varian Infinity Plus spectrometer equipped with a wide-bore Oxford 9.4 T 

magnet (n0(1H) = 400 MHz and n0(195Pt) = 85.59 MHz) was used for the acquisition of 

static (i.e., stationary samples) 195Pt SSNMR spectra. The experiments were conducted on 

a Varian Chemagnetics 5 mm triple-resonance (HXY) T3 MAS NMR probe. 195Pt 

chemical shifts were referenced with respect to 1.0 M aqueous Na2PtCl6 (δiso = 0 ppm). 

The 195Pt powder patterns were too broad to excite with a single, high-powered 

rectangular pulse; therefore, the WURST-CPMG pulse sequence was used.26–28 These 

experiments made use of 50 µs WURST-80 pulses swept over 2000 kHz (sweep rate of 

40 MHz/ms). Echoes were composed of either 200 or 400 points and experiments used 

44 kHz of rf power, 40 kHz of proton decoupling, and a 5 s recycle delay. 

195Pt WCPMG spectra were processed using the NUTS program from Acorn 

software. FIDs were processed with digital filtering, followed by Fourier transformation 

and a magnitude calculation. The SSNMR spectra were simulated using the WSolids29 

program to extract the 195Pt CS tensor parameters. Errors in the values of the parameters 

were estimated by bidirectional variation and visual inspection of the resulting simulated 

powder patterns.  

5.3.3 Low-temperature 2H SSNMR 

Low temperature (i.e., 30 – 295 K) 2H SSNMR experiments for 1 were acquired 

using a homebuilt spectrometer equipped with a Bradley 4.75 T magnet (n0(1H) = 200 

MHz and n0(2H) = 32.02 MHz) at Washington University, St. Louis, MO. A homebuilt 
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probe was used for the acquisition of the static spectra. Temperatures were controlled 

using Lakeshore temperature controller equipped with both platinum and carbon-glass 

resistance thermometers and a Kadel Research helium dewar. Temperatures in the probe 

were measured using a platinum resistance thermometer. 

Experiments were conducted using the quadrupolar echo (90° - t1 - 90° - t2 - 

acquire) pulse sequence.30 Experimentally optimized 90° pulse lengths of 3.8 µs and 

interpulse delays (t) of 75 µs were used. 2H chemical shifts were referenced with respect 

to a sample of liquid D2O (0 ppm). 16 K of data points were acquired with a dwell time 

of 1 µs. 

Low-temperature 2H SSNMR spectra were processed using MatLab. The FID was 

left-shifted to the top of the echo and zero-filled once. 1500 Hz of exponential 

apodization was applied before subsequent Fourier transform and phase correction. 

5.3.4 Variable-temperature 2H SSNMR Experiments at 9.4 T 

2H SSNMR experiments were conducted using a Bruker Avance III HD console 

equipped with a wide-bore 9.4 T Oxford magnet (n0(1H) = 399.73 MHz, n0(2H) = 61.4 

MHz). A 5 mm double-resonance (HX) static probe was used. The quadrupolar echo 

pulse sequence was used with 30 or 100 µs pulse spacings. Optimized 90° pulse lengths 

of 3 µs were used and the recycle delays are listed in Table D1. 1 K of data points were 

acquired using a 1 us dwell time. Spectra were processed using TopSpin 3.5pl6. FIDs that 

were left-shifted to the top of the echo were processed using one zero fill and 2000 Hz of 

exponential apodization, followed by Fourier transform and phase correction. FIDs that 

were not left-shifted were processed with 2000 Hz of Gaussian apodization, followed by 
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a Fourier transform and a magnitude calculation. Temperatures of the VT unit and probe 

were calibrated using the temperature-dependent chemical shift of PbNO3.31,32 

5.3.5 Simulation of 2H SSNMR Data 

The SSNMR spectra acquired at all temperatures were simulated to extract the 

slow motion limit (SML) 2H EFG tensor parameters using either WSolids,29 or the Solid 

Lineshape Analysis (SOLA) tool in TopSpin. The EXPRESS software package33 was 

used to simulate the 2H SSNMR spectra affected by motions in the intermediate motional 

regime (IMR) and FML, for purposes of extracting motional rates and site populations. 

5.3.6 Calculation of 195Pt CS and 2H EFG Tensor Parameters 

DFT calculations of the platinum chemical shielding and 2H EFG tensor 

parameters were conducted with the Amsterdam Density Functional (ADF) software 

package.34,35 The calculations used the revised Perdew-Burke-Ernzerhof (rPBE) 

functional and the all-electron quadruple-zeta quadruply polarized (QZ4P) basis sets from 

the ADF basis set library.36,37 Relativistic effects were included at the spin-orbit level 

using the zeroth-order regular approximation (ZORA) formalism.38 A criterion of 10-4 

a.u. was applied to remove the linearly dependent basis function combinations. 

Calculations were performed on cluster models derived from the reported crystal 

structures. The clusters consisted of a single PtH2L2
 molecule and the positions of the 

protons were geometry optimized before computation of the CS tensor parameters. 

 To compare the calculated tensors to experimental values, the platinum chemical 

shielding values were converted to chemical shifts through calculations on a reference 

compound (PtCl6
2–). 
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5.3.7 DFT Calculations of Energy Landscapes  

Calculations were conducted on GAMESS(US),39,40 using the B3LYP functional, 

the 6-31G** basis set for C, H, and P, and the 6-31G** basis set with LANL2DZ 

effective core potentials for Pt. Heavy atom coordinates were taken from X-ray crystal 

structure of 1 and not geometry optimized, the Pt–H distance was set to DFT-optimized 

value of 1.657 Å, all P–Pt–H angles were set to 90o. The energies were calculated for 

different molecular conformations in which the H–Pt–H unit was rotated in 10° 

increments and only the tert-butyl methyl group atoms were relaxed.  

 

5.4 Results and Discussion 

 In this work, a series of square-planar platinum(II) deuteride compounds (Scheme 

5.1) were studied to determine if they behave as solid-state molecular rotors. The 

compounds consist of Pt(II) centres that are coordinated by two donor ligands (i.e., 

phosphines or carbenes) that are positioned trans to one another. Compounds 1-4 have 

two trans hydrides and 5 has a single hydride (and a [BArF4]– anion to balance the 

positive charge of the Pt(II) centre). The steric bulk afforded by the donor ligands results 

in thermodynamically stable compounds; in addition, some of these ligands allow for 

uninhibited motion of the comparatively small deuteride ligands. The structures of the 

compounds were originally determined for the hydride forms (i.e., 1, 2, 4, and 5), but the 

following discussion pertains mostly to the deuteride forms (i.e., 1-D, 2-D, 3-D, 4-D, and 

5-D). 

 VT 195Pt and 2H SSNMR experiments were conducted to observe the motion (or 

lack thereof) of the deuteride ligands. A detailed analysis of the VT NMR data and 
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motional models is provided for 1-D, providing a framework in which preliminary 

descriptions of the motions within the other compounds are discussed. A brief comment 

is made on the factors that affect the motion of the deuterides in each of the compounds. 

5.4.1 trans-H2Pt(P(tBu)3)2 (1) and trans-D2Pt(P(tBu)3)2 (1-D) 

 Compound 1 consists of a Pt(II) centre coordinated by staggered trans-tert-

butylphosphine ligands and trans-hydride ligands. Inspection of the crystal structure of 1 

indicates an unusually short Pt–H bond length of 1.35 Å.41 Previous X-ray diffraction 

(XRD) studies revealed apparent Pt–H bond lengths between 1.5-1.8 Å;42–44 we use 

“apparent” since the precise location of hydrogen atom positions with XRD techniques is 

known to be challenging. The short Pt–H bond length observed in 1 is likely the result of 

motion “smearing” the electron density over a circular path within the plane 

perpendicular to the P–Pt–P molecular axis. The refined crystal structure could only be 

obtained by implementing model in which each hydride occupies three positions, each 

with one-third occupancy (i.e., a total of six positions, Figure D1). Therefore, the XRD 

data suggest that the hydrogen atoms are mobile, but provide limited information on the 

nature of these motions, and no information on the motional rates. 

 SSNMR is the premier technique for studying molecular-level dynamics in the 

solid-state and providing detailed information on the rates and modes of motion over a 

wide range of temperatures. NMR investigations were conducted on 1 and 1-D to 

complement the XRD data and provide more detailed information on the nature of the 

dynamics of the hydrides/deuterides. 
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5.4.1.1 VT 195Pt SSNMR of 1  

The platinum chemical shift (CS) range is approximately 15,000 ppm, due to the 

extreme sensitivity of the platinum CS to the electronic environment about the Pt atom.45 

195Pt SSNMR powder patterns yield information on both the isotropic chemical shift (diso) 

and the chemical shift anisotropy (CSA, which can be described by two parameters: the 

span (W) and the skew (k), see Table 5.1 for definitions). Predicting the orientation of the 

CS tensor in the molecular frame using DFT calculations is useful for considering 

relationships between structure and chemical shift,46 as well as for considering how 

molecular motion can produce an effective CS tensor, whose principal components 

represent motional averages of the components of the original tensor.  

 

Table 5.1: Calculated (DFT) and experimental platinum chemical shift (CS) tensor 
parameters for 1. 

Method d11 
(ppm) 

d22 
(ppm) 

d33 
(ppm) 

diso 
(ppm)a 

W 
(ppm)b 

kc 

Calculatedd –3930 –5526 –5630 –5029 1700 –0.88 
Experimental (298 K) –4701 –5698 –5750 –5383 1050 –0.90 
Experimental (133 K) –4735 –5690 –5785 –5403 1050 –0.82 

a Isotropic chemical shift: diso = (d11 + d22 + d33)/3. bSpan: W = d11 – d33. Skew: k = 3(d22 – 
diso)/W. Uncertainties in the experimental values are indicated in parentheses and were 
determined by bidirectional variation and visual inspection of the simulated powder 
patterns. Platinum chemical shieldings were converted to chemical shifts through 
calculations on a reference compounds (PtCl6

2–). 
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Figure 5.1:(A) Platinum chemical shift, (B) 2H EFG, and (C) hydrogen chemical 
shielding tensor orientations for 1 determined by DFT calculations. 

 

The experimental spectrum acquired at 133 K (Figure 5.2(A)) has values of d22 

and d33 of –5690 and –5785 ppm, respectively, whereas the spectrum acquired at 298 K 

(Figure 5.2(B)) has values of –5698 and –5750 ppm. Both sets of parameters indicate 

that the CS tensor is orientated such that δ11 is along the direction of the P–Pt–P, and that 

δ22 and δ33 are perpendicular to this axis. It appears that the values of d22 and d33 approach 

each other as the temperature is increased; however, the small changes in these 

components relative to the overall span of the powder pattern does not allow for the 

determination of an accurate motional model. Lower-temperature 195Pt SSNMR 

experiments were attempted in order to extract more information on the motion and the 
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associated rates (Figure D2). These spectra have very poor signal-to-noise (S/N) ratios 

and are not of high enough quality to be of value for simulations of dynamics, due to the 

long T1(195Pt) times at low temperatures and the inability to apply 1H decoupling on the 

low-temperature probe. 

The 195Pt chemical shielding tensor parameters and orientation were predicted for 

1 using DFT calculations within the ADF software package (see Section 5.3.5 for 

computational details). The calculated 195Pt chemical shielding tensor parameters are 

shown in Table 5.1. For comparison to experimental chemical shift tensors, the chemical 

shielding tensor parameters have been converted to a chemical shift scale (see Section 

5.3.6); hereafter, all discussion is framed in terms of chemical shift tensors. The 

calculated values of d22 and d33 are in fair agreement with the experimental values, but 

there are large discrepancies in the values of d11 (Table 5.1). For heavy elements like Pt, 

it is often difficult to obtain accurate CS tensor parameters, due deficiencies in the basis 

sets or unsuitable correlation functionals being used.47,48 These problems arise from the 

(i) large number of electrons in the Pt atom (and possible need for electron correlation) 

and (ii) the requirement for a relativistic approach for the calculation of CS tensor 

parameters.49 It is the components of the CS tensor representing the directions of least 

shielding (in this case, δ11) that are the most challenging to calculate, since their accurate 

calculations are highly dependent upon accurate modeling of the virtual orbitals.  

The principal component indicating the direction of least shielding, σ11, which 

corresponds to the highest frequency component of the CS tensor, δ11, is oriented along 

the Pt-P bond (Figure 5.1(A)). d22 is oriented along the Pt–H bond and d33 is 

perpendicular to the P–Pt–H plane. A rotor-like motion of the H–Pt–H unit is therefore 
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expected to average (or partially average) the values of the d22 and d33 components, while 

having no effect on d11.  

 

Figure 5.2: Experimental 195Pt WURST-CPMG NMR spectra (blue) and accompanying 
analytical simulations (red) for 1 acquired at (A) 133 K and (B) 298 K. The platinum CS 
tensor parameters are shown in Table 5.1. The dashed lines indicate the relative positions 
of δ22 (black) and δ33 (grey) 

 

5.4.1.2 2H SSNMR of 1-D 

 2H SSNMR is an established technique for the study of molecular-level dynamics, 

providing detailed information on both the rates and modes of motion.50,51 Molecular 

motions can produce drastic changes in the appearance of 2H powder patterns if they 

dynamically alter the magnitudes of the principal components or orientation of the 2H 

EFG tensor. The extent to which the components of the EFG tensor are changed and how 
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their effective (i.e., motionally averaged) values manifest in a 2H SSNMR powder pattern 

are dependent on the modes and rates of the motion. Three motional regimes are defined 

based on the relative magnitudes of the exchange rate (nex) and the quadrupolar frequency 

(nQ = 3CQ/(2I(2I – 1)), where CQ is the quadrupolar coupling constant and is defined in 

Table 5.2): the slow-motion limit (SML), where nex << nQ; the intermediate motion 

regime (IMR), where nex ≈ nQ; and, the fast motion limit (FML), where nex >> nQ. 

Motions occurring at rates in the SML (typically nex < 103 Hz for the systems herein) are 

too slow to produce observable changes in the 2H SSNMR powder patterns, and the line 

shapes are invariant to changes in the interpulse delays (t) in the quadrupolar echo pulse 

sequence. Motions occurring at rates in the IMR (103 Hz ≤ nex ≤ 107 Hz) produce 

complex powder patterns that are dependent on both temperature and interpulse delay, 

and typically require detailed numerical simulations. Spectra influenced by motions 

occurring in the FML (nex > 107 Hz) can be simulated by utilizing the effective EFG 

tensor parameters, whose values depend on the motional model. Spectra acquired in the 

FML are independent of temperature and interpulse delays. 

Table 5.2: Calculated (DFT) and experimental 2H EFG tensor parameters. 

 Calculated Experimental a 
Compound CQ 

b hQ
c CQ hQ 

1 61.0 0.07 88(2) 0.0(1) 
2 72.7 0.01 79(3) 0.0(1) 
3 --d -- 42(1)e 0.0(1) 
4 74.0 0.02 77(4) 0.0(1) 
5 112.0 0.06 105(5) 0.0(1) 

a Experimental values were obtained from simulations of the spectra acquired at the 
lowest temperature for each compound. b CQ = eQV33/h, c ηQ = (V11 – V22)/V33. d No 
reported crystal structure for 3. e Values reflect an motionally-averaged effective EFG 
tensor (see text for details). Errors in the experimental values are shown in parentheses 
and were determined by bidirectional variation and visual inspection of the simulated 
powder patterns. 
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 To study the motion of 1, a deuterated sample, 1-D, was prepared where the 

hydrides were replaced by deuterides. Variable-temperature (VT) 2H SSNMR spectra 

were acquired (Figure 5.3(A)). N.B. A sharp feature is observed is some of the spectra of 

1-D (and the compounds that follow), which corresponds to signal from an impurity; this 

feature was not considered in the simulations of the spectra. The spectrum acquired at 30 

K was simulated with a value of CQ = 88(2) kHz and a value of hQ = 0.0(1) (a definition 

of ηQ is given in Table 5.2). These values are in good agreement with those determined 

by DFT calculations (Table 5.2). The predicted 2H EFG tensor orientation is shown in 

Figure 5.1(B). The largest component of the EFG tensor, V33, is oriented along the 

direction of the Pt–D bond, with V11 nearly parallel to the P–Pt–P rotation axis. A rotor-

like motion of the deuterides at a fast enough rate (i.e., in the IMR or FML) has two 

effects: (i) it produces effective values of all of the principal components and (ii) it can 

result in elongation of the Pt–D bond, resulting in a decrease in the absolute magnitude of 

V33. The latter effect is negligible in this system, as there are no apparent changes in V33 

with changing temperature, since all of the simulations were conducted with values of CQ 

= 88 kHz and ηQ = 0.0. However: (i) as the temperature is increased, motional averaging 

of V33 manifests as decreases in the breadths of the powder patterns (i.e., V33
eff < V33), and 

(ii) V11 and V22 produce patterns with variations in the effective ηQ values (i.e., V11
eff and 

V22
eff

 are of equal magnitude in the SML and FML, such that ηQ
eff = 0.0, but not in the 

IMR, where ηQ
eff ≠ 0.0, as manifested by changes in the relative positions of the sharp 

discontinuities). A detailed description follows:  
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Figure 5.3: (A) VT 2H SSNMR spectra of 1-D acquired at 4.75 T. (B) Accompanying 
simulations using the n:1:1 rotational model. The impurity peak that appears in the centre 
of the experimental spectra was not modeled. 

 

The spectrum acquired at 30 K indicates that the motion is occurring at rate within 

the SML (the same is observed in the spectrum acquired at 50 K). Increasing the 
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temperature to 75 K results in a narrowing of the powder pattern and an increase in the 

value of hQ
eff. Increasing the temperature above 75 K results in further narrowing of the 

pattern and an increase in the value of hQ
eff until 130 K, where the value of hQ

eff begins to 

decrease. The spectrum acquired at 295 K has a width that is half that of the static 

spectrum and an hQ
eff value of 0.15(5). 

 Several different models were used to attempt to simulate the effects of the 

motion of 1 on the 2H SSNMR powder pattern (Figure 5.4), each taking into account the 

symmetry of the molecule and the nature of the rotor-like motion suggested by the 

SCXRD data. The models involve two-, three-, four- and six-fold rotations of the 

deuterides by angles of 180°, 120°, 90° and 60°, respectively, and the assumption that the 

populations of the exchanging deuterons are equal. A two-fold rotation does not average 

the principal components of the 2H EFG tensor, producing simulations that disagree with 

the experimental data (Figure 5.4(A)). A three-site rotational model positions the 

deuterides as shown in Figure 5.4(B). The width of the FML spectrum for this model is 

half that of the SML spectrum, consistent with experimental observation; however, the 

spectra simulated with rates in the IMR do not agree with the intermediate temperature 

spectra. A four-site model yields similar results, producing simulated patterns that do not 

correspond to intermediate temperature experimental spectra (Figure 5.4(C)). Finally, a 

six-site rotational model (Figure 5.4(D)) yields the same results as those obtained for the 

three-site rotational model. Due to the three-fold rotational symmetry of 1, three- and six-

fold rotations are indistinguishable. 
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Figure 5.4: (A) two-site, (B) three-site, (C) four-site, and (D) six-site rotation motional 
models used in the simulation of the 2H SSNMR data. The red arrows in the schematic 
pictures represent the positions of the largest principal component of the 2H EFG tensor 
(V33) which is collinear with the Pt–D bonds. 

 

 Since the experimental data do not match any of the above rotational models, they 

may be influenced by the relative populations of the different deuterium sites in addition 

to the rates of motion. Therefore, additional spectra were acquired at 120 K with different 

interpulse delays (t) (Figure D3). There are no appreciable differences in these spectra, 

indicating that the motion present at 120 K is occurring with rates in the FML. The 

motional model is therefore not based on increasing rates with increasing temperature, 

but rather, different populations of the various rotational states. The effects of 
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populations were taken into account by considering a three-site (or equivalently, a six-

site) rotational model, as discussed above. The 0° site is assigned to a position where the 

deuteride is eclipsed with the P–C9 bond (Figure D1, this was chosen as first-principles 

calculations suggest that this configuration corresponds to an energy minimum, vide 

infra). The other two sites, rotated 60° and 120° from the first, correspond to the 

deuteride being eclipsed with the P–C1 and P–C5 bonds, respectively. All simulations 

were conducted with rates in the FML (i.e., nex = 109 Hz) 

 Since 1-D has a three-fold rotational symmetry axis, it is likely that a three- or 

six-fold rotational motion is the most appropriate for modeling (vide supra) the impact of 

these dynamics on the 2H SSNMR spectra. Therefore, several models were tested 

incorporating six-fold rotation and varying the relative populations n, nʹ, and nʺ for the 

0°(180°), 60°(240°), and 120°(300°) rotational states, respectively (Figure 5.5). The 

models, expressed as ratios n:nʹ:nʺ, include n:1:1, n:nʹ:1, and n2:nʹ:1. In each model, states 

separated by a 180° rotation are viewed as degenerate (vide infra).  

 Of these, only the n:1:1 model (Figure 5.5(A)) is successful in modelling the 

effects of rotational motion on the 2H SSNMR spectra. In this model, n corresponds to 

the relative population of the 0°(180°) state, which is assumed to be the lowest in energy, 

and is assigned a value greater than 1. As the temperature is increased, the 60°(240°) and 

120°(300°) states, which are higher in energy and degenerate, become increasingly 

populated. At low temperatures, the 0°(180°) state is the most populated, and the 
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Figure 5.5: Simulated 2H SSNMR spectra for the (A) n:1:1, (B) n:n':1, and (C) n2:n':1 
population models. The ratios represent the relative populations of the rotational states 
(i.e., the populations of the 0°(180°):60°(240°):120°(300°) states). 

 

60°(240°) and 120°(300°) states are only sparsely populated; hence, the motion that 

occurs in this regime is equivalent to a two-fold exchange of deuterons in the 0° and 180° 

positions. As the temperature is incremented upwards, the 60°(240°) and 120°(300°) 

states become increasingly populated, and the exchange model now resembles that of a 

six-fold rotation, where any rotational state can exchange with a neighbouring state by 

making a 60° rotation. At room temperature, the population distribution is 1.3:1:1.  
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 The n:1:1 model for the rotational motion in 1-D was confirmed at higher 

temperatures (Figure 5.6). This set of spectra was acquired at 9.4 T (as opposed to 4.75 T 

for the lower temperature data), and therefore, the effects of the CSA on the appearance 

of the spectra are increased, and are evident because of their asymmetry. Simulations of 

the high-temperature spectra were conducted using W = 60 ppm, which is consistent with 

the values previously reported for metal hydrides.52The orientation of the hydrogen 

chemical shielding tensor for 1 was predicted using DFT calculations and is shown in 

Figure 5.1(C), with the calculated hydrogen chemical shielding parameters listed in 

Table D2. This is in contrast with the value determined by DFT calculations and this 

discrepancy between calculations and experiment is likely due to an improper choice of 

functional (vide supra) that does not accurately calculate CS tensors for this system. 

 

Figure 5.6: (A) VT 2H SSNMR spectra of 1-D acquired at 9.4 T. (B) The accompanying 
simulations using the n:1:1 rotational model. The simulations include the effects of 1H 
CSA.  
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5.4.1.3 Calculation of the Energy Landscape 

This model was confirmed by first principles DFT calculations of an energy 

landscape (Figure 5.7). The Pt–H bond length was fixed at 1.657 Å (i.e., the value 

obtained from DFT calculations), and the H–Pt–P angle was kept at 90°. The H–Pt–P–C 

torsion angle was varied in increments of 10° and the positions of the hydrides were fixed 

in positions exactly trans to one another. At each rotational step, a geometry optimization 

was performed in which the heavy atom framework was kept in place and the positions of 

the tert-butyl hydrogen atoms were relaxed.  

The energy landscape is in agreement with the experimental NMR data. The 

landscape is symmetric about the global minima at 0° and 180°, corresponding to the 

hydride positions determined by XRD experiments (i.e., the hydrides are eclipsed with 

respect to the P-C9 bonds (Figure D1). Local minima are also observed when the 

hydrides are eclipsed with the P–C1 and P–C5 bonds (60° and 120°, 240° and 300°), 

confirming the three-site (or equivalently, six-site) rotation model with populations 

described by an n:1:1 ratio.  

5.4.2 trans-D2Pt(P(NMe2)3)2 (2) 

 Compound 2 consists of a H–Pt–H unit with trans-P(NMe2)3 coordinated donor 

ligands. The crystal structure of 2 shows that the hydride ligands are in eclipsed positions 

with respect to the P–N bonds.44 The Pt–H bond length is 1.667 Å, which is considerably 

longer than that observed in the crystal structure of 1. The longer bond length suggests 

that either the hydrides are static or that a different mode of motion is occurring. 
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Figure 5.7: The energy landscape for 1 as determined by DFT calculations. The hydride 
positions were rotated about the P–Pt–P axis. Global minima are observed at H–Pt–P–C 
torsion angles of 0° and 180° (hydrides eclipsed with the P-C9 bonds) and local minima 
are observed at positions where the deuterides are eclipsed with the P–C1 and P-C5 
bonds. 

 

 The VT 2H SSNMR spectra of 2-D are shown in Figure 5.8. The spectrum 

acquired at 273 K was simulated with CQ = 79(3) kHz and hQ = 0.0(1). The smaller CQ 

value in comparison to that of 1-D (CQ = 88 kHz) is consistent with the increased Pt–D 

bond length in 2-D. Increasing the temperature does not result in any changes in the 2H 

powder patterns, suggesting two possibilities: (i) either no motions are occurring and the 

deuterides are fixed in or near the positions indicated by the SCXRD structure or (ii) the 

motions are occurring at rates in the FML and that increasing the temperature does not 

result in any further changes in the powder patterns. The calculated 2H EFG tensor 

parameters (Table 5.2) are in excellent agreement with those determined experimentally, 

suggesting that the first possibility is the most likely. N.B., A two-site jump (i.e., the 

deuterides rotating 180° and exchanging positions) in the FML cannot be completely 
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ruled out, as this motional model does not result in changes in the 2H powder patterns 

(Figure 5.4(A)). 

 

Figure 5.8: VT 2H SSNMR spectra acquired at 9.4 T for 2-D. A simulation of the 
spectrum acqired at 273 K is shown as the red trace. The spectra do not change with 
temperature indicating that the motion is in the SML. 

 

 The structural differences between 1-D and 2-D (i.e., the P(tBu)3 ligands in 1-D 

and the P(NMe2)3 ligands in 2-D) are likely the primary cause of different motions of the 

deuterides. For instance, an interaction between the lone pairs on the N atoms of the 

ligand in 2-D and the deuterides, or differences in the degree of steric hindrance which 
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influence the rotation of the deuterides, may cause an increased barrier to rotation. A 

calculation of the energy landscape, similar to that of 1, is necessary to determine the 

causes of the apparent lack of motion, but is beyond the scope of the current study. 

5.4.3 trans-D2Pt(P(Cy)3)2 (3) 

 The crystal structure of 3 (or 3-D) has not been reported herein nor in the 

literature; therefore, it is not possible to determine the approximate positions of the 

hydrides, which would aid at making suggestions about the presence and/or nature of 

hydride dynamics. However, based on the chemical similarity of 1 and 3 (i.e., both have 

alkyl-phosphine donor ligands), it is posited that the hydrdies are likely in the same 

positions and undergoing similar motion. 

 The VT 2H SSNMR spectra for 3-D are shown in Figure 5.9. The spectrum 

acquired at 173 K was simulated with CQ = 42(1) kHz and hQ = 0.0(1). The value of CQ 

that is observed for 3-D is significantly smaller than that of 1-D and 2-D (both 

experimentally and computationally), indicating that either the Pt–D bond length is 

greater in 3-D and there is no motion or the rotational motion is occurring in the FML at 

this temperature that produces a narrow pattern as in the high-temperature limit for 1-D 

(i.e., an effective CQ is observed at this temperature resulting from V33
eff = ½V33). The 

former case is very unlikely, since this would correspond to a Pt–D bond length of greater 

than 2.0 Å (the CQ approximate scales as the inverse cube of the Pt–D bond length). 

Increasing the temperature to 348 K does not result in any changes to the powder 

patterns, suggesting motions with rates in the FML at all temperatures. The spectra of 3 

can be modelled using either the three- or four-site jump models, but without IMR data, 

the exact motional model cannot be determined. The observation that motions occur in 
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the FML at 173 K for 3-D suggest that the activation barrier for rotation is lower than that 

determined for 1; however, experiments conducted at lower temperature are required to 

confirm this. 

 

Figure 5.9: VT 2H SSNMR spectra of 3-D acquired at 9.4 T. A simulation of the 
spectrum acquired at 173 K is shown as the red trace. The spectra do not change with 
temperature, indicating that the motion is in the FML (see text for details) 

 

5.4.4 trans-D2Pt(iPr)2 (4) 

 According to the known crystal structure of 4 (Scheme 5.1(D)),53 the iPr ligands 

are slightly staggered with respect to one another (a N–C–C–N torsion angle of 42°), and 

Pt–H bond lengths in 4 are 1.704 and 1.962 Å. The long bond lengths could again suggest 
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the absence of motion in this system; however, there is a large difference between the two 

Pt–H distances, owing to the difficulties in accurately determining hydride positions 

using XRD. The apparent positions of the hydrides are staggered with respect to the iPr 

ligands (Figure D5(A)). 

 The VT 2H SSNMR spectra of 4-D are shown in Figure 5.10. The spectrum 

acquired at 223 K was simulated with CQ = 77(4) kHz and hQ = 0.0(1). There are no 

appreciable changes in the powder patterns with increasing temperature, suggesting that 

there is no motion of the deuterides in 4. At this point, it is not clear what structural or 

electronic factors are inhibiting the motion of the deuterides in this system and a more 

detailed computational study is needed. 

5.4.5  trans-DPt(iPr)2 (5) 

 The composition of 5 is similar to that of 4, but with only one hydride ligand and 

a [BArF4]– anion to balance the excess positive charge resulting from the missing 

hydride. The carbene ligands are in slightly staggered positions, similar to 4, but the 

apparent position of the hydride lies between the planes of the carbene ligands (Figure 

D5(B)). The Pt–H bond length is 1.518 Å, shorter than those reported for 2 and 4, which 

suggests two possibilities: (i) the observed bond length is artificially short because of the 

“smearing” effect of rotational motion, or (ii) the observed bond length is short and 

should result in the observation of a large CQ value in 2H SSNMR spectra acquired at low 

temperatures (i.e., absence of motions or motions in the SML). 
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Figure 5.10: VT 2H SSNMR spectra of 4-D acquired at 9.4 T. An analytical simulation 
of the spectrum acquired at 223 K is shown in red. The spectra do not change with 
temperature, indicating that the moition is in the SML (see text for details). 

 

 The VT 2H SSNMR spectra and corresponding simulations for 5-D are shown in 

Figure 5.11. The spectrum acquired at 173 K was simulated with CQ = 105(5) kHz and 

hQ = 0.0(1), which is in excellent agreement with those determined by DFT calculations. 

In addition, comparison of the bond lengths and CQ values for 2 and 5, and the 

assumption that the CQ value scales as the inverse cube of the internuclear distance, 
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allows for the prediction of a Pt–H bond length of ca. 1.52 Å in very good agreement 

with the crystal structure.  

 Increasing the temperature produces drastic changes in the powder patterns, with 

the intensities of the horns decreasing, and an increase of intensity of a feature in the 

centre of the pattern. At 323 K, what may be the vestiges of an axially symmetric pattern 

are observed, but the combination of poor S/N and possible interfering signal from a 

thermally decomposed species make this assignment this difficult. The spectra were 

simulated with the four-site jump model (Figure 5.4(C)), in which the deuteride is 

rotating between four positions separated by 90°. 

 

Figure 5.11: (A) VT 2H SSNMR spectra of 5-D acquired at 9.4 T. (B) Accompanying 
simulations using the four-site jump rotational model. 
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 Despite the similar structures of 4-D and 5-D, the motion of the deuterides in 

these systems is strikingly different. A 90° rotation of the single deuteride ligand in 5 

results in its occupation of a position similar to those occupied by the two deuteride 

ligands in 4-D. It is likely that the energy barrier to rotation in 5 in significantly lower; 

however, the exact reasons for this difference in activation energy is currently not known. 

Interestingly, the higher onset temperature of motion, and the observation of rates in the 

IMR, suggest that the motion in 5 is more hindered than that observed for either 1 or 3. 

 

5.5 Conclusions 

 In this chapter, we have demonstrated that platinum-hydride compounds can 

function as low energy barrier molecular rotors in the solid state, and that the nature of 

the donor ligands greatly influences the rotational motion of the hydrides. SCXRD and 

195Pt SSNMR indicate that the deuterides in trans-D2Pt(PtBu3)2 (1-D) are dynamic; 

however, it is necessary to use 2H SSNMR to elucidate the rates and modes of these 

motions. Simulation of the 2H SSNMR spectra demonstrate that the deuterides exhibit a 

three-fold rotational motion in 1-D, and that the populations of three well defined 

rotational states change with temperature. These results were confirmed using DFT 

calculations to produce an energy landscape, which reveals six-fold rotational motion 

with a very low activation energy, in good agreement with the experimental models. The 

motional models proposed for 1-D provide a framework in which to discuss the dynamics 

of other platinum-deuteride compounds. Compounds 2-D and 3-D are structurally 

similar, but the former exhibits no motion over a temperature range from 273-373 K, 
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whereas the latter has motions with rates in the FML even at 173 K. Lastly, 4-D and 5-D, 

which differ in the absence of a deuteron and presence of a charge balancing anion in the 

latter, exhibit drastically different motions; the deuterides in 4-D are static at high 

temperatures (akin to 2-D), while those in 5-D exhibit a four-fold rotation with rates in 

the IMR. The nature of the coordinating donor ligands clearly have a drastic effect on the 

deuteride motion; a more detailed computational study is needed to determine how the 

molecular-level structures can be designed with different components to influence the 

dynamics in terms of rotational modes and rates of motion. It is hoped that the 

methodologies outlined herein will allow for the rational design of solid-state molecular 

rotors with low energy barriers and finely-tuned motions. 
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6 Chapter 6: An Investigation of Chlorine Ligands in 

Transition-metal Complexes via 35Cl SSNMR and DFT 

Calculations 
 

6.1 Overview 

 Chlorine ligands in a variety of diamagnetic transition-metal (TM) complexes in 

common structural motifs were studied using 35Cl solid-state NMR (SSNMR), and 

insight into the origin of the observed 35Cl NMR parameters was gained through first-

principles density functional theory (DFT) calculations. The WURST-CPMG pulse 

sequence and the variable-offset cumulative spectrum (VOCS) methods were used to 

acquire static 35Cl SSNMR powder patterns at both standard (9.4 T) and ultra-high (21.1 

T) magnetic field strengths, with the latter affording higher signal-to-noise ratios (S/N) 

and reduced experimental times (i.e., < 1h). Analytical simulations were performed to 

extract the 35Cl electric field gradient (EFG) tensor and chemical shift (CS) tensor 

parameters. It was found that the chlorine ligands in various bonding environments (i.e., 

bridging, terminal-axial, and terminal-equatorial) have drastically different 35Cl EFG 

tensor parameters, suggesting that 35Cl SSNMR is ideal for characterizing chlorine 

ligands in TM complexes. A detailed localized molecular orbital (LMO) analysis was 

completed for NbCl5. It was found that the contributions of individual molecular orbitals 

must be considered to fully explain the observed EFG parameters, thereby negating 

simple arguments based on comparison of bond lengths and angles. Finally, we discuss 

the application of 35Cl SSNMR for the structural characterization of WCl6 that has been 
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grafted onto a silica support material. The resulting tungsten-chloride surface species is 

shown to be structurally distinct from the parent compound. 

6.2 Introduction 

Group V and VI transition metals (TM) are commonly used to fabricate a wide 

range of complexes with various uses, such as reagents in redox reactions,1–4 anti-tumour 

agents5–7 and superconducting materials.8–10 However, perhaps their most ubiquitous use 

is for the catalysis of reactions involving organic and organometallic species.11–16 Their 

multiple oxidation states and relatively large atomic sizes allow for the coordination of a 

variety of ligands and the synthesis of catalysts that can be fine-tuned for specific 

purposes. Such complexes find use in both homogeneous and heterogeneous catalytic 

processes; the latter is widely thought to afford higher selectivity and efficiency.17,18 As a 

result, the design and application of heterogeneous catalysts, which involves the chemical 

or physical immobilization of the TM species on high-surface area materials, represent 

burgeoning areas of research.19–21  

Structural characterization of heterogeneous catalysts is often difficult, as the 

support materials are almost always disordered and insoluble, thereby limiting or 

preventing their analysis by conventional techniques such as X-ray diffraction (XRD) or 

solution-state NMR spectroscopy. Surface techniques such as X-ray photoelectron 

spectroscopy (XPS)22 and IR spectroscopy23,24 have previously been used to study 

immobilized species; however, the structural information is often limited. Solid-state 

NMR (SSNMR) spectroscopy is now widely used for molecular-level characterization of 

heterogeneous catalysts,25–28 providing information on structural motifs, bonding, 

interatomic distances, symmetry and ground-state electronic distributions. Furthermore, 
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unlike XRD methods, SSNMR is capable of probing short-range order in systems lacking 

long-range order (i.e., amorphous and/or disordered solids).  

SSNMR experiments involving 1H and 13C are the most common for studies of 

heterogeneous catalysts.27,29–31 However, our research group has shown that it may be 

possible to investigate such systems from the perspective of the TM nuclei; to date, we 

have characterized bulk metallocene complexes utilizing 91Zr, 47/49Ti, 93Nb, and 139La 

SSNMR.32–36 The spectra of many of these nuclei are very broad, ranging from several 

hundred kHz to MHz in breadth; accordingly, S/N tends to be very poor in many of these 

spectra, which suggests limitations for studying the diluted, supported TM species in 

heterogeneous catalysts. However, recent developments in broadband excitation 

sequences and other signal enhancing techniques,37–39 along with the increasing 

availability of higher magnetic field strengths and improved NMR probes and hardware, 

suggest that SSNMR of such systems may hold much promise. Unfortunately, for certain 

TM nuclei such as 95/97Mo, 103Rh, 181Ta, and 183W, probing the metal centre using 

SSNMR currently remains challenging due to their inherently unreceptive natures. In 

such cases, it is often more convenient and informative to conduct NMR experiments 

involving other nuclei on the ligands surrounding the metal centre, since their NMR 

parameters are likely to be sensitive to structural differences. A prime example of this is 

chlorine, which is found widely in many TM complexes. 

Chlorine has two naturally occurring NMR-active isotopes, 35Cl and 37Cl, with 

natural abundances of 75.78 and 24.22%, respectively. Both have nuclear spins of I = 3/2 

and low gyromagnetic ratios (“low-γ”), with relatively small quadrupole moments of 
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−8.165 and −6.435 fm2.40 35Cl is the preferred target NMR nuclide due to its higher 

receptivity (i.e., both its natural abundance and Larmor frequency are higher). 

The 35Cl quadrupolar interaction (QI), which arises from coupling between the 

35Cl nuclear quadrupole moment and local electric field gradients (EFGs) at the 35Cl 

nucleus, is very sensitive to subtle differences in structure. Accordingly, the quadrupolar 

coupling constant, CQ, and the asymmetry parameter, ηQ (see Table 6.1 for definitions), 

which are determined from simulations of the 35Cl SSNMR powder patterns, reflect 

variance in structure and bonding. 35Cl SSNMR spectra typically exhibit central transition 

(CT, +1/2«–1/2) powder patterns that are strongly influenced by the second-order 

quadrupolar interaction (SOQI); the two satellite transition patterns (ST, ±3/2«±1/2) are 

predominantly broadened by the first-order quadrupolar interaction (FOQI), and are 

rarely observed in 35Cl SSNMR spectra (excepting in cases where the magnitude of CQ is 

very small). 

   The majority of 35Cl SSNMR studies to date have focused on systems with the 

chlorine atoms at the centre of ground-state electronic distributions of high spherical or 

Platonic symmetry (e.g., Cl− ions weakly coordinated by water molecules and other 

ligands, ClO4
−, etc.). Such environments are generally associated with small values of CQ 

and have relatively narrow 35Cl CT powder patterns that can be acquired using 

conventional Hahn-echo experiments and high-power rectangular pulses.41–44 Examples 

of such systems include metal-chloride salts, hydrochloride (HCl) salts of amino acids, 

and pharmaceuticals. The application of 35Cl SSNMR to systems in which Cl is involved 

in covalent bonding is very rare by comparison, since the values of CQ are much larger 

and the powder patterns much broader. Some recent works include investigations of 
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group 13 chloride salts,45 chlorine-containing metallocenes,46 organometallic transition 

metal complexes47 and organic compounds with covalent C-Cl bonds.48  All of these 

studies report the use of high magnetic fields and specialized pulse sequences due to the 

exceptionally broad 35Cl powder patterns associated with these systems. Such spectra, 

and the concomitant experiments necessary for their acquisition, fall under the 

classification of ultra-wideline (UW) NMR spectroscopy.49,50 

Herein, we describe the application of 35Cl SSNMR in conjunction with first-

principles density functional theory (DFT) calculations to study diamagnetic inorganic 

chlorine-containing TM complexes (Scheme 6.1) that exhibit a variety of common 

structural motifs and are representative of several broader classes of TM complexes 

widely used in catalysis. All of these compounds have been previously characterized by 

35Cl NQR spectroscopy; this allows us to determine whether the values of CQ extracted 

from simple analytical simulations under the high-field approximation (i.e., n0 > nQ) are 

valid, and to also accurately measure the values of hQ, which are unavailable from NQR 

spectra of spin-3/2 nuclides. First, we demonstrate the application of the Wideband 

Uniform-Rate Smooth Truncation-Quadrupolar Carr-Purcell-Meiboom-Gill (WURST-

CPMG) pulse sequence38,51 for the rapid acquisition (i.e., < 1h) of UW 35Cl SSNMR 

spectra at both 9.4 and 21.1 T. In one case, the use of 35Cl NMR and 35Cl NQR 

experiments in tandem for the differentiation of polymorphs is explored. Second, 

quadrupolar parameters determined from simulations of these spectra are compared to 

those obtained from plane wave DFT calculations. This data, along with theoretically 

derived 35Cl EFG tensor orientations, are used to propose relationships between the 35Cl 

quadrupolar parameters and the nature of the chlorine structural environments (i.e., the 
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identity of the metal (M), M-Cl bond lengths, geometric arrangements, etc.). Third, a full 

analysis of the contributions of the individual molecular orbitals to the principal 

components of the 35Cl EFG tensor for NbCl5 is presented, and utilized to explore the 

origins of the experimentally observed 35Cl quadrupolar parameters. Fourth, we present 

an example of an application of 35Cl SSNMR to a tungsten chloride species grafted onto a 

silica support material. Based on experimental and theoretical data on the bulk species 

presented herein, it is possible to make a rough structural interpretation of this result. 

Finally, we discuss the potential applications of this methodology for the study of 

heterogeneous TM chloride catalysts. 

 

6.3 Experimental and Computational Details 

6.3.1 Sample Preparation 

Compounds a-WCl6, NbCl5, and TaCl5 were purchased from Strem Chemicals, 

and compounds WOCl4 and MoOCl4 were purchased from Sigma-Aldrich Canada, Ltd. 

All samples were used without further purification or modification (phase purity was 

checked with powder XRD, vide infra). b-WCl6 was prepared by the slow sublimation of 

a-WCl6 under a nitrogen environment.52 All of the compounds were stored and packed 

under an inert nitrogen atmosphere in a dry glove box due to their air- and moisture-

sensitive natures. All samples were finely ground and packed into shortened 5 mm outer 

diameter glass NMR tubes, then capped and sealed with Parafilm to limit their exposure 

to atmosphere for the duration of the experiments. 

6.3.2 Synthesis of WCl6–SiO2 
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A toluene solution of WCl6 was added to a toluene suspension of dehydroxylated 

silica (Degussa Aerosil 250, pretreated at 700°C under 10-5 bar vacuum) and the resulting 

mixture was stirred overnight at room temperature. After filtration of the supernatant, the 

solid was washed three times with toluene, one time with pentane, and dried under 

vacuum (10-5 bar). The amount of tungsten in the sample is 5.48 wt%. HCl evolution was 

checked by IR spectroscopy as in a previous communication.53 

6.3.3 Powder X-ray Diffraction (PXRD) 

PXRD experiments were performed at 100 K on a Bruker Apex 2 Kappa 

Diffractometer using graphite monochromatized Mo Kα radiation (λ = 0.7107 Å). 

Theoretical PXRD patterns were simulated for all samples using the Powder Cell 

software package.54 

6.3.4 35Cl SSNMR Spectroscopy  

 A Varian Infinity Plus Spectrometer equipped with a wide-bore Oxford 9.4 T 

magnet (ν0(1H) = 400 MHz and ν0(35Cl) = 39.16 MHz) was used for the acquisition of 

static (i.e., stationary samples) 35Cl SSNMR spectra for all samples. The experiments 

were conducted on a Varian Chemagnetics 5 mm triple-resonance (HXY) T3 MAS NMR 

probe. Spectra were also collected using a Bruker Avance II spectrometer with a 21.1 T 

(ν0(35Cl) = 88.2 MHz) standard-bore magnet at the National Ultrahigh-field NMR 

Facility for Solids in Ottawa, Ontario, Canada. A home-built 4 mm double resonance 

probe was used for all experiments. The spectrum of WCl6-SiO2 was acquired on a 

Bruker Avance III spectrometer with an 18.8 T standard-bore magnet using a 3.2 mm HX 

MAS probe at Université Lille Nord de France. Chemical shifts were referenced to 1 M 

NaCl (aq), with NaCl(s) (δiso = 0 ppm) used as a secondary reference. 
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 All 35Cl CT powder patterns were too broad to be uniformly excited with a single, 

rectangular, high-power pulse. Hence, the WURST-CPMG pulse sequence38,51 was used 

with a 50 µs WURST pulse swept over 2000 kHz (sweep rate of 40 MHz/ms) for 

experiments at 9.4 and 21.1 T whereas at 18.8 T, the WURST pulse was swept over 4000 

kHz (sweep rate of 80 MHz/ms). The experiments at 18.8 T also used a continuous-wave 

1H decoupling field of 30 kHz that was applied for the duration of the scan, including 

during the WURST pulses. A detailed list of the experimental parameters can be found in 

Appendix E (Tables E1-E3). Spectra were acquired using the variable offset cumulative 

spectrum (VOCS) technique55–57 with each sub-spectrum acquired using a transmitter 

offset of 100 kHz. Sub-spectra were processed using the NUTS program from Acorn 

software. The free induction decays (FIDs) of the sub-spectra were processed with digital 

filtering, Fourier transformation, and a magnitude calculation. The individual sub-spectra 

were then co-added (9.4 T) or skyline projected (21.1 T) to produce the total spectrum. 

The spectra consist of a series of narrow lines, called spikelets, whose outer manifold is 

representative of the shape of the powder pattern. Analytical simulations of the spectra 

were generated using WSolids58 (9.4 T) and QUEST59 (21.1 T) software packages; 

precise values of the quadrupolar parameters are obtained by matching the positions of 

the key spectral discontinuities (i.e., “shoulders” and “horns”), and not the positions of 

the individual spikelets. Uncertainties in the quadrupolar parameters were estimated by 

bidirectional variation of each parameter, and visual comparison of experimental and 

simulated spectra. 

35Cl transverse relaxation time constants (T2) were measured using the CPMG 

pulse sequence. Echo trains were acquired by placing the transmitter at each of the 
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spectral discontinuities. The intensity of each echo train was then plotted as a function of 

time and fit to an exponential decay using the Origin software package. 

6.3.5 35Cl NQR Spectroscopy 

 Experiments were conducted on a Varian Chemagnetics triple resonance (HXY) 

T3 MAS probe with a 5 mm coil and a Varian Infinity Plus console. The probe was 

placed as far away from the magnet as possible to limit the effects from the external 

magnetic field. The Hahn-echo pulse sequence was used with a 3.5 µs 90° pulse width 

and a recycle delay of 0.5 s. Processing of the 35Cl NQR spectra was done using NUTS. 

6.3.6 Plane-wave DFT Calculations 

 35Cl EFG and CS tensor parameters were calculated using the CASTEP60 plane-

wave density functional theory code in the Materials Studio 5.0 software package. 

Calculations employed the generalized gradient approximation (GGA), the gauge-

including projector augmented wave (GIPAW) formalism and revised Perdew, Burke, 

and Ernzerhof (rPBE) functionals, with the core-valence interactions being described by 

on-the-fly pseudopotentials (Table E4). Integrals over the Brillouin zone were performed 

using a Monkhorst-Pack grid with a k-point spacing of 0.07 Å−1. Wavefunctions were 

expanded in plane waves with a kinetic energy cut-off of 300 eV. Crystal structures were 

obtained from the Inorganic Crystal Structure Database (ICSD) and calculations were 

completed both prior to and post geometry optimization of the structures (i.e., all of the 

atomic positions were allowed to vary simultaneously while the cell parameters were 

fixed). All calculations were performed on the Shared Hierarchical Academic Research 

Computing Network (SHARCNET) using either 8 or 16 cores and 16 GB of memory per 

core. 
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6.3.7 35Cl Natural Bond Orbital/Natural Local Molecular Orbital Analysis of 

NbCl5 

All computations were performed using a developer’s version of Amsterdam 

Density Functional (ADF)61 package. Experimental single-crystal XRD crystal structures 

were used as starting structures for geometry optimization. For the computation of EFG 

tensor parameters and the geometry optimization routines, relativistic effects were 

included by utilizing the zeroth-order regular approximation (ZORA) in its scalar form.62 

All calculations were carried out using the revised Perdew-Burke-Ernzerhof (rPBE) 

functional.63,64 The triple-ζ doubly polarized (TZ2P) all-electron Slater-type basis sets 

were used for Nb and Cl in all computations. Localized Molecular Orbital (LMO) 

analyses of 35Cl EFGs were performed as described previously.65 LMOs were generated 

using the natural bond orbital (NBO) algorithm66 implemented in a locally modified 

version of the NBO 5.0 program.67 The set of “natural” LMOs generated by the NBO 

code was used for the EFG analysis. 

 

Scheme 6.1: Schematic representations of (A) tungsten(VI) chloride (WCl6), (B) 
tetrachlorotungsten(VI) oxide (WOCl4) and tetrachloromolybdenum(VI) oxide 
(MoOCl4), (C) niobium(V) chloride (NbCl5) and tantalum(V) chloride (TaCl5). 
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6.4 Results and Discussion 

For ease of discussion, all complexes have been grouped according to their 

structural similarities (Scheme 6.1). Some of the complexes exist as polymorphs in the 

solid state, which are pure substances that crystallize in more than one stable phase, with 

each having a distinct arrangement of atoms.68 Powder X-ray diffraction (pXRD) 

patterns, which are useful for determining the presence of known crystalline phases, as 

well as for detecting for the presence of multiple polymorphs and crystalline impurities, 

were acquired for all of the samples (Figures E7-E11). 

Before each group of systems is discussed in detail, it is useful to comment on 

some of the common features observed for all of the 35Cl SSNMR spectra, as well as 

some of the aspects of the plane-wave DFT calculations of the 35Cl EFG tensor 

parameters. First, all 35Cl SSNMR spectra were acquired at both standard (9.4 T) and 

ultra-high magnetic field strengths (21.1 T). The higher field strength serves to increase 

S/N due to (i) a more favourable Boltzmann distribution and (ii) the reduction in the 

breadth of the SOQI-dominated CT pattern by an amount proportional to the inverse of 

B0. Despite the general superiority of the 21.1 T data in terms of increased S/N, reduced 

experimental times and improved resolution, we note that the experiments completed at 

9.4 T were crucial for parameterizing the experiments and optimizing our use of the 21.1 

T spectrometer. The spectra acquired at 21.1 T are shown in this chapter, while those 

acquired at 9.4 T are presented in Appendix E. The only exception to this was b-WCl6, 

which was only studied at 9.4 T. 
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Table 6.1: Experimentally measured 35Cl NMR parameters for transition metal chlorides. 

Sample Site |CQ|a ηQ
b δiso

c Ωd κe αf β γ 
a-WCl6 1 21.00(10) 0.029(5) 800(40) 200(100) 1.0(2) 0(10) 0(10) 0(10) 
          
b-WCl6 1 21.00(10) 0.029(5) 800(40) 200(100) 1.0(2) 0(10) 0(10) 0(10) 
          
WOCl4 1 26.05(10) 0.115(5) 620(50) 550(150) -1.0(4) 50(5) 15(10) 50(5) 
          
MoOCl4 1 30.50(10) 0.585(10) 650(50) 800(100) 1.0(2) 0(5) 90(5) 0(10) 

2 25.30(10) 0.510(5) 950(100) 800(150) 1.0(2) 0(5) 90(5) 90(5) 
3 25.00(10) 0.500(5) 800(50) 300(100) 1.0(3) 0(10) 90(10) 0(10) 
4 23.30(5) 0.540(20) 730(30) 235(50) 0.0(5) 0(20) 0(10) 0(20) 

          
NbCl5 1 25.30(5) 0.385(10) 250(150) 460(300) 1.0(2) 90(30) 0(10) 90(30) 

2 15.00(8) 0.081(7) 850(50) 200(200) 0.0(5) 0(20) 0(5) 0(30) 
3 14.70(9) 0.655(5) 990(40) 300(200) 0.0(3) 45(15) 0(20) 45(15) 

          
TaCl5 1 25.70(8) 0.430(10) 260(100) 250(200) 1.0(5) 90(30) 0(10) 90(30) 

2 15.65(15) 0.043(6) 640(50) 300(100) 1.0(3) 0(30) 0(5) 0(30) 
3 16.70(30) 0.480(20) 900(40) 700(50) -1.0(3) 0(30) 90(5) 0(30) 

          
WCl6-
SiO2 

1 25.98(5) 0.11(1) 450(30) 300(100) -1.0(5) 50(10) 15(5) 50(10) 

a CQ = eQV33/h, b ηQ = (V11 – V22)/V33, c δiso = (δ11 + δ22 + δ33)/3, d Ω = δ11 – δ33, e κ = 3(δ22 
– δiso)/Ω , f the Euler angles, a, b and g, define the relative orientation of the EFG and CS 
tensors.  The “ZYZ” convention for rotation is used herein, as described by Dye et al.,83 
and as implemented in the WSolids58 software package. 

 

Second, the breadth of each powder pattern is extremely large (700 to 1750 kHz) 

due to broadening of the CT by the SOQI. For all of the systems discussed herein, the 

SOQI has a much larger effect on the CT powder pattern than the chlorine chemical shift 

anisotropy (CSA); hence, the spectral features arise almost solely from the former. As 

such, the values obtained for the isotropic chemical shift (δiso), span (Ω), skew (κ), and 

the Euler angles (a, b and g) describing the relative orientations of the EFG and CS 

tensors (see Table 6.1 for definitions) have large uncertainties associated with them. The 

chlorine CS tensor parameters were calculated and the results are shown in Appendix E, 

along with a figure demonstrating that the inclusion of CSA has little effect on the 

appearance of the powder patterns (Table E7, Figure E17). 
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Third, the extreme breadths of the CT powder patterns make it difficult to 

distinguish chlorine environments that are chemically similar (i.e., those with comparable 

bond lengths and angles) but crystallographically distinct. However, the specific types of 

bonding environment for chlorine (i.e., bridging, terminal-axial, or terminal-equatorial, 

see Scheme 6.2) are easily discernable in the 35Cl SSNMR spectra. Furthermore, 

techniques such as 35Cl NQR and T2 editing of CPMG echo trains generally allow for the 

resolution of chemically similar environments and the accurate measurement of the NMR 

parameters. 

Fourth, higher intensity than expected is always observed in the higher frequency 

range (i.e., leftmost regions) of each spectrum in comparison to the low frequency 

(rightmost) range. This effect is more pronounced for certain samples in comparison to 

others probably due to effects such as T2 anisotropy and/or variation in probe/circuit 

characteristics over the broad range of acquisition frequencies (vide infra). Fifth, in some 

cases, it is possible to acquire signal extending past the edges of the CT in each powder 

pattern. This signal is attributed to the 35Cl satellite transition (ST) patterns (i.e., −3/2 ↔ 

−1/2 and +1/2 ↔ +3/2), which are visible owing to the high abundance of chlorine in 

each complex. ST patterns are broadened immensely by the FOQI over a range of several 

MHz, and often are associated with T2(35Cl) parameters that are distinct from those of the 

CT. In the case of 35Cl, the ST patterns result in minimal interference with the CT 

patterns. We note that the acquisition of the full ST powder pattern is generally 

unnecessary for UW SSNMR spectra, since the CT pattern provides information on all of 

the relevant NMR parameters. However, with quadrupolar parameters obtained from 
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simulations of the CT patterns, it is possible to rapidly locate the key discontinuities in 

the STs, and to potentially further refine the quadrupolar parameters.57  

Despite the extreme breadths of the CT powder patterns, it was possible to attain 

high S/N, high-resolution spectra in relatively short time frames (e.g., 32 s to 26 min at 

21.1 T) owing to the broadband excitation of the WURST pulses, the long 35Cl transverse 

relaxation times constants (T2) that favour CPMG-type experiments, and the high 

chlorine concentrations in these samples. 

As mentioned, chlorine sites that are chemically very similar are not easily 

differentiated in the 35Cl SSNMR spectra, and therefore, analytical simulations are 

representative of the convolution of the quadrupolar parameters of these sites. By fitting 

the simulations to the positions of the well-defined discontinuities of the spectra, it was 

possible to extract the 35Cl EFG tensor parameters CQ and ηQ (Table 6.1). 35Cl NQR 

measurements have previously been conducted on all of the samples discussed herein. 

Since NQR measurements on spin-3/2 nuclei involve the measurement of a single 

transition, no values of ηQ are typically reported, which is a limitation of the NQR 

experiment.69,70 Nonetheless, we see generally good agreement between our experimental 

values of CQ and those from NQR measurements on 35Cl nuclei possessing values of ηQ
 

near to zero (i.e., axially symmetric EFG tensors, Table 6.2).  
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Table 6.2: Experimental and calculated (using CASTEP) 35Cl EFG tensor parameters and 
comparison of predicted NQR frequencies obtained from 35Cl SSNMR data to those 
reported in literature. Calculation of the NMR parameters was completed both prior to 
and post geometry optimization of the structure.  

  Experimental Calculated   
    pre-geometry 

optimization 
post-geometry 
optimization 

  

Complex Site |CQ| 
(MHz) 

ηQ CQ 
(MHz) 

ηQ CQ 
(MHz) 

ηQ Predicted a 
νQ

NQR (MHz) 
Reported10, 21 
νQ

NQR (MHz) 
α-WCl6 1 21.00 0.029 −15.62 0.06 −18.58 0.05 10.501 10.520 
          
β-WCl6 1 21.00 0.029 −16.39 0.01 −18.65 0.07 10.501 10.520 
 2   −29.83 0.10 −18.60 0.07  10.525 
 3   −8.001 0.01 −18.73 0.07  10.576 
          
WOCl4 1 26.05 0.115 −22.06 0.08 −23.39 0.14 13.054 13.076 
          
MoOCl4 1 30.50 0.585 −30.66 0.10 −24.07 0.31 16.096 15.658 
 2 25.30 0.510 −15.64 0.94 −23.09 0.41 13.187 13.088 
 3 25.00 0.500 −23.39 0.56 −25.50 0.44 13.010 12.904 
 4 23.30 0.540 −26.44 0.33 −23.17 0.41 12.203 12.757 
          
NbCl5 1 14.70 0.655 −12.10 0.81 −12.72 0.77 7.858 7.612 
 2 15.00 0.081 −11.92 0.14 −12.31 0.09 7.508 7.219 
 3   −12.08 0.85 −12.95 0.77  7.365 
 4   −11.76 0.10 −12.28 0.08  7.721 
 5   −11.90 0.84 −12.80 0.77   
 6   −11.70 0.08 −12.35 0.07   
 7 25.30 0.385 24.29 0.28 23.90 0.27 12.959 13.058 
 8   23.89 0.32 23.97 0.27   
 9   23.69 0.33 23.79 0.28   
          
TaCl5 1 16.70 0.48 −13.58 0.71 −15.47 0.63 8.665 8.141 
 2 15.65 0.043 −14.35 0.09 −15.29 0.06 7.827 7.598 
 3   −13.88 0.72 −15.63 0.63  8.261 
 4   −13.99 0.08 −15.34 0.06  7.641 
 5   −13.66 0.74 −15.64 0.63  8.231 
 6   −13.82 0.07 −15.38 0.05  7.663 
 7 25.70 0.430 25.38 0.34 25.93 0.30 13.240 13.334 
 8   25.52 0.32 25.98 0.31  13.356 
 9   25.54 0.32 25.89 0.31  13.377 
a The NQR frequencies were calculated from NMR parameters obtained from solid-state 
35Cl SSNMR spectra using nQ

NQR = (CQ/2)√(1+(hQ)2/3) 
 

The quadrupolar parameters determined from 35Cl NMR spectra, in conjunction 

with 35Cl EFG tensor parameters obtained from DFT calculations, were used to 

differentiate chlorine sites in distinct bonding arrangements (i.e., bridging (Clbr), 

terminal-axial (Clax) and terminal-equatorial (Cleq); Scheme 6.2 and vide infra). No 
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consideration is given to the theoretical chlorine nuclear magnetic shielding tensors 

herein, since in most cases, the experimentally determined values of the chemical shift 

tensor parameters are associated with large uncertainties (as discussed above). The 35Cl 

EFG tensor parameters were calculated using CASTEP60 both prior to and post-geometry 

optimization of each structure (Table 6.2). Geometry optimization of the structures 

resulted in small changes in bond lengths (Table E5), large changes in the computed 

EFG tensor parameters, and greatly reduced forces between atoms (Table E6). In all 

cases, it was found that terminal chlorines have negative values of CQ whereas bridging 

chlorines have positive values. The theoretical magnitudes of CQ are found to be 

consistently less than the experimentally measured values (Figure 6.1), similar to the 

observations of Rossini et al.46  We note that the sign of CQ cannot be measured directly 

from the 35Cl NMR spectra, but is readily determined by the calculations. 

6.4.1 Tungsten(VI) Chloride (WCl6) 

WCl6 exists as one of two polymorphs, α or β. α-WCl6 form has one tungsten 

atom and one chlorine atom within the asymmetric unit (i.e., there is one unique chlorine 

environment). There are six chlorine atoms arranged around a central tungsten atom in an 

octahedral arrangement (Scheme 6.1). β-WCl6 has two tungsten atoms and three chlorine 

atoms within the asymmetric unit. The three chlorine sites have similar W–Cl bond 

lengths (2.23, 2.26 and 2.34 Å) and comparable Cl–W–Cl bond angles (91.3, 91.6 and 

90.3°), resulting in a slightly distorted octahedral arrangement of chlorine atoms about 
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Figure 6.1: Comparison between the experimental and calculated values of (A) CQ and 
(B) ηQ for all sites. All calculated values were obtained from 35Cl EFG tensor calculations 
completed on geometry optimized structures using CASTEP. The values of both CQ and 
ηQ for the pseudo-bridging chlorine sites in MoOCl4 were omitted due to poor correlation 
between experiment and calculation. 

 

the central tungsten atom.71 Both forms feature hexagonal close packed lattices of 

chlorine atoms with tungsten ions filling the octahedral holes. β-WCl6 can be prepared 

from α-WCl6 by the slow sublimation under N2(g), or annealing a sample at a 

temperature greater than 200 °C (we chose the former procedure, see Section 6.3.1 for 

details).52 

The 35Cl static SSNMR spectra of a-WCl6 and b-WCl6 acquired at 21.1 T and 

9.4 T, respectively, are shown in Figure 6.2(A) and 6.2(B). The latter compound was 
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synthesized after experiments on all other samples had been conducted at 21.1 T; for 

reasons described below, no high-field data for this compound is presented. The CT of a-

WCl6 has a breadth of ca. 700 kHz and is characteristic of a powder pattern broadened by 

the second-order quadrupolar interaction. The discontinuities typical of such a spectrum 

are clearly visible and the overall manifold of the spikelet pattern is representative of a 

single distinct chlorine site. This spectrum was best simulated with one site, CQ = 21.0 

MHz and ηQ = 0.029 (Table 6.1). This result is consistent with α-WCl6, which has one 

distinct chlorine environment. The CT of b-WCl6 is ca. 1.5 MHz in breadth (due to the 

inverse dependence of the CT breadth on the applied external magnetic field strength). 

Despite the presence of multiple, magnetically and crystallographically distinct chlorine 

sites in b-WCl6, there appears to be only a single CT pattern, almost identical to the 

pattern acquired for a-WCl6 at 9.4 T (Figure E12). In fact, this pattern can be subjected 

to a similar one-site simulation, yielding identical quadrupolar parameters to those of a-

WCl6 (within the limits of their uncertainties). 

The benefit of ultra-wideline SSNMR experiments for rapidly acquiring spectra of 

anisotropically broadened powder patterns is tempered by their ability to resolve patterns 

arising from sites with very similar quadrupolar parameters. Even our attempts to acquire 

higher-resolution Hahn-echo spectra at key discontinuities failed to aid in clearly 

resolving the three unique chlorine sites in b-WCl6 (Figure 6.2 (C)). In this case, 35Cl 

NQR is clearly very useful for trying to resolve the structurally similar sites in b-WCl6, 

as well as confirming the identity of each of these polymorphs. Both the α and β forms 
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Figure 6.2: Static 35Cl SSNMR spectra acquired using frequency-stepped WURST-
CPMG for (A) α-WCl6 at 21.1 T and (B) β-WCl6 at 9.4 T with corresponding analytical 
simulations shown in red. (C) Hahn-echo experiments conducted on β-WCl6 at (i) the 
high and (ii) the low frequency discontinuities. 
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have previously been studied by 35Cl NQR spectroscopy. The 35Cl NQR spectrum of α-

WCl6 has a single peak corresponding to a frequency at νQ
NQR = 10.520 MHz, whereas 

that of β-WCl6 has three peaks (νQ
NQR = 10.520, 10.525 and 10.576 MHz).72 The values 

of νQ
NQR predicted from the experimentally determined 35Cl EFG tensor parameters 

obtained for WCl6 (Table 6.2), using the expression νQ
NQR = (CQ/2)(1+(ηQ

2/3))1/2,73 are in 

good agreement with the previously reported NQR frequencies. Using the same NMR 

probe, we conducted our own 35Cl NQR experiments, and found a single peak at νQ
NQR = 

10.5154 MHz for a-WCl6 and three peaks at νQ
NQR = 10.512, 10.519, and 10.548 MHz 

for b-WCl6 (Figures 6.3(A) and (B)), in excellent agreement with previous results. The 

quadrupolar parameters extracted for b-WCl6 from NQR experiments are so similar, that 

not even experiments at 21.1 T could effectively separate these patterns; hence, no further 

NMR experimentation was carried out. 

It is clear that NMR and NQR are ideal partners for studying polymorphs, 

especially in cases where there is no a priori knowledge of the quadrupolar parameters. 

The specificity of the NQR experiment, while valuable for differentiating sites with 

similar quadrupolar parameters, is also a crutch, in that it results in tedious searches for 

NQR resonances over broad frequency ranges. However, the UW SSNMR experiments 

are capable of providing rapid and accurate determinations of quadrupolar parameters, 

allowing for the NQR experiment to be conducted in a frequency region of high 

specificity, and forgoing the monotonous, long “search periods” associated with 

conventional NQR experimentation.  
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In both a-WCl6 and b-WCl6, the CQ values are at the lower end of the range of 

values reported for a chlorine directly bound to a transition metal.74 As well, the values of 

ηQ are close to zero, indicating that the 35Cl EFG tensors are nearly axially symmetric in 

each case, and that the chlorine atoms are in environments of high cylindrical symmetry.  

This is expected for chlorine atoms that are in terminal bonding arrangements with 

respect to the central metal atom, and indicates that V33 is likely to be oriented directly 

along or close to the direction of the metal-chlorine bond (vide infra). 

 

Figure 6.3: 35Cl NQR spectra for (A) α-WCl6 and (B) β-WCl6. The NQR frequencies 
(νQ

NQR) for each of the sites are shown in the figure. The spectra were acquired with a 
transmitter frequency of 10.52 MHz. 

 

Plane-wave DFT calculations of the 35Cl EFG tensors for both α-WCl6 and β-

WCl6 are presented in Table 6.2. In both forms of the compound, the values of CQ are 
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found to be negative (consistent with the terminal chlorine site) and consistently lower in 

magnitude than the experimental values. The values of ηQ are predicted to be near zero, 

also in agreement with experiment. The calculated 35Cl NMR parameters obtained prior 

to optimization of the structure are in poorer agreement with experiment, highlighting the 

need for geometry optimization of the structures. For example, in the set of calculations 

on model systems of b-WCl6 without geometry optimization, there is a large range of CQ 

values predicted, which is not expected for chlorine environments that are chemically 

very similar. This suggests that the reported crystal structure of β-WCl6 may be 

inaccurate, as geometry optimization of the structure yields quadrupolar parameters that 

are more consistent with the 35Cl SSNMR data, and not subject to wild variations from 

site to site. It is also important to note that the predicted quadrupolar parameters are not 

ideal (i.e., quite far from experimental values) for use as a priori starting points for the 

acquisition of NQR spectra; however, NQR experiments featuring the use of WURST 

pulses may be useful in this respect.75 

The theoretically determined 35Cl EFG tensor orientations for α- and β-WCl6 are 

shown in Figures 6.4(A) and (B), respectively. In both cases, the largest principal 

components of each 35Cl EFG tensor, V33, are oriented along, or nearly along the W–Cl 

bonds (ÐV33-Cl-W = 178° for a-WCl6 and 180° for b-WCl6). The value of ηQ is close to 

zero in both forms, so the orientations of V11 and V22 are of little consequence, since V11 ≈ 

V22. 
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Figure 6.4: Theoretical 35Cl EFG tensor orientations in the molecular frames for (A) α-
WCl6 and (B) β-WCl6, as determined from 35Cl EFG tensor calculations completed on 
geometry-optimized structures using CASTEP. 

 

6.4.2 Tetracholorotungsten(VI) oxide (WOCl4) and tetrachloromolybdenum(VI) 

oxide (MoOCl4) 

The crystal structure of WOCl4 has one molecule in the asymmetric unit with 

four chlorine atoms in magnetically equivalent environments (r(W-Cl) = 2.285 Å).76 The 

molecule has a square pyramidal structure with an oxygen atom double bonded to the 

central tungsten atom at the apex (Scheme 6.1). The chlorine atoms sit in a square plane, 

which lies slightly below the plane of the tungsten atoms. Previous XRD studies of 

WOCl4 have suggested that the molecules are associated through weak interactions 

between the oxygen of one molecule and the tungsten of another. The molecules stack on 

top of one another to form linear arrays with asymmetric W–O–W bridges (the 

intramolecular W–O distance is 1.737 Å, whereas the intermolecular W–O distance is 

2.258 Å).  
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The local molecular structure of MoOCl4 is similar to that of WOCl4 (Scheme 

6.1); however, their extended structures are strikingly different. Neutron and X-ray 

diffraction studies have shown that MoOCl4 contains two molecules in the asymmetric 

unit with four chemically and magnetically distinct chlorine sites. The square pyramidal 

units do not form linear arrays, but instead, are associated through weak interactions 

between the chlorine atoms of one molecule and the molybdenum atom of another (the 

Mo–Cl bond length is ca. 2.3 Å, and the intermolecular Mo×××Cl distance is 2.9 Å). These 

intermolecular interactions cause the molecules to form quasi-dimeric structures, with a 

single chlorine from each molecule forming the pseudo-bridge between adjacent 

pyramidal units.77 

The 35Cl SSNMR spectra for WOCl4 and MoOCl4 are shown in Figures 6.5(A) 

and (B), respectively. The CT of the WOCl4 pattern has a breadth of ca. 1075 kHz. The 

appearance of the discontinuities indicates that there is only one chlorine environment 

within the complex, in agreement with the aforementioned structure. The markedly 

different appearance of the 35Cl SSNMR spectrum for MoOCl4 clearly reflects the 

structural differences between the two complexes. The discontinuities in the MoOCl4 

spectrum are less well defined than those in the WOCl4 spectrum, and it appears that 

there are at least four discernible patterns, three of which are very similar and 

overlapping with each other. The spectrum for MoOCl4 has a much larger breadth (ca. 

1750 kHz) than that of WOCl4 and exhibits notable distortions, with greater intensity 

apparent in the high-frequency region of the spectrum. 
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Figure 6.5: Static 35Cl SSNMR spectra acquired at 21.1 T for (A) WOCl4 and (B) 
MoOCl4. Analytical simulations representative of the entire powder patterns are shown 
in red, while individual sites are shown in blue (Cl1), green (Cl2), black (Cl3) and orange 
(Cl4). 
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The WOCl4 spectrum is best simulated with a single site CQ = 26.05 MHz and ηQ 

= 0.115 (Table 6.1). The MoOCl4 spectrum is simulated with four overlapping patterns 

of equal intensity arising from chlorine environments with distinct quadrupolar 

parameters (Table 6.1). Three of the patterns have values of CQ and ηQ that lie within 

experimental error of one other, indicating that there are three chlorine sites with similar 

chemical environments. The resulting overlap of these three patterns causes broadening 

of the outer discontinuities. 

The magnitudes of CQ for WOCl4 and MoOCl4 are considerably larger than that 

of WCl6; it is not trivial to explain this difference, given the distinct modes of bonding in 

and different symmetries of these two sets of compounds. In particular, one must be 

cautious in looking for relationships between M-Cl bond lengths and magnitudes of CQ. 

The natures of the M-Cl bonds in WCl6 are likely to be very different from those in the 

MOCl4 species, despite the very similar M-Cl bond lengths (i.e., by natures, we mean the 

differences in bonds in terms of their covalent/ionic character, hybridization of s and p 

orbitals, and multiple bond characters).78 Even the comparison of the structurally similar 

WOCl4 and MoOCl4 species does not reveal any simple explanation for the variation in 

values of CQ (clearly the nature of the extended structure in the latter case plays a role in 

influencing the EFG tensor). The value of ηQ for WOCl4 is comparable to that of WCl6 

and is consistent with previous observations for terminal chlorine environments. The 

values of ηQ for MoOCl4 are all moderate, indicating non-axial EFG tensors, and 

reflecting the association of the molecules into dimeric structures. Indeed, a careful 

analysis of the contributions from individual molecular orbitals to the EFG tensors is 

necessary to account for differences in values of CQ, as well as for examining the 
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relationships between intra- and intermolecular contacts and EFG tensor orientations and 

parameters (vide infra).65   

 

Figure 6.6: Theoretical 35Cl EFG tensor orientations for (A) WOCl4 and (B) MoOCl4 
with (i) the pseudo-bridging chlorine sites (Cl1), (ii) the terminal chlorine sites opposite 
the pseudo-bridging sites (Cl2) and (iii) the terminal chlorine sites adjacent to the pseudo-
bridging chlorine sites (Cl3 and Cl4). All pictured orientations were determined from 35Cl 
EFG tensor calculations completed on geometry-optimized models using CASTEP. 

 

Both WOCl4 and MoOCl4 systems have previously been studied by 35Cl NQR 

spectroscopy and similar results regarding the types and multiplicities of chlorine 

environments were found. The NQR spectrum for the WOCl4 complex has a single peak 

corresponding to the single chlorine chemical environment, and the value of the NQR 

frequency is in good agreement with the experimentally determined value of CQ (Table 

6.2). The spectrum of the MoOCl4 complex has four NQR frequencies, three of which 

are very similar. The highest frequency resonance (ca. 3 MHz higher than the others) was 
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assigned to the chlorine atoms which act as the pseudo-bridge between the metal 

centres.72 This is consistent with our findings discussed above.   

Plane-wave DFT calculations were performed for WOCl4 and MoOCl4 using 

structures obtained from the ICSD. The DFT calculations of the 35Cl EFG tensors for 

WOCl4 predict one magnetically distinct chlorine environment, as expected. The value of 

CQ predicted from post-geometry optimized calculations is found to be negative, and ηQ 

close to zero, consistent with the chlorine atoms being in a terminal environment. The 

theoretical magnitudes of CQ are considerably lower than the experimentally determined 

values, but the values of ηQ are more closely reproduced. 35Cl DFT calculations 

completed for MoOCl4 predict four chlorine environments, all with negative values of CQ 

and moderate values of ηQ, consistent with our assignments above. 

The 35Cl EFG tensor orientations for WOCl4 and MoOCl4 are shown in Figures 

6.6(A) and (B) respectively. Since the value of ηQ is near zero for the single chlorine site 

in WOCl4, this indicates that V33 is the distinct component in the 35Cl EFG tensor and 

that the values of V11 and V22 are similar in magnitude. Due to the symmetry of the 

WOCl4 molecule, the presence of the chlorine atoms in a plane below the tungsten atom, 

and the covalently bound O atom, V33 is not oriented exactly along the W–Cl bond (i.e., 

 Ð(V33-Cl-W = 4.45°). In MoOCl4, the three magnetically distinct chlorine sites (the 

pseudo-bridging chlorine atom (Cl1), the terminal chlorine atom opposite to the pseudo-

bridge (Cl2), and the terminal chlorine atom adjacent to the pseudo-bridge (Cl3 and Cl4)) 

have distinct 35Cl EFG tensor orientations. The designation pseudo-bridging refers to a 

chlorine atom that has a covalent bond with one metal centre, and a distant contact with a 

second metal centre from a neighbouring molecule. All three sites have moderate values 
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of ηQ, indicating that their 35Cl EFG tensors are not axially symmetric, which is indicative 

of an absence of cylindrical symmetry of the ground-state electron density about these 

chlorine sites. For Cl1, V33 is oriented near the Mo–Cl bond ( Ð(V33-Cl-Mo = 1.85°) and 

the value of CQ is negative, which is consistent with similar observations for terminal 

chlorine environments.45 It has been shown that chlorine atoms which are involved in true 

bridging interactions between transition metal centres have 35Cl EFG tensor orientations 

in which V33 is oriented perpendicular (or approximately perpendicular) to the plane of 

the M–Cl–M bonding arrangement and positive values of CQ.46 Sites Cl2, Cl3 and Cl4 all 

have the V33 components directed near the direction of their respective Mo–Cl bonds 

(Ð(V33-Cl-Mo = 5.67° and 12.95°, respectively), as is typical of chlorines in terminal 

bonding arrangements. 

6.4.3 Niobium(V) chloride (NbCl5) and tantalum(V) chloride (TaCl5) 

The crystal structure of niobium pentachloride (NbCl5) has one molecule in the 

asymmetric unit with nine crystallographically distinct chlorine atoms. The complex 

forms a dimeric structure in which the chlorine atoms form two octahedra sharing a 

common edge, with the niobium atoms occupying the centres of the octahedra. This 

structure results in three specific bonding arrangements for the chlorine atoms: bridging 

(Clbr), terminal-axial (Clax), and terminal-equatorial (Cleq) (Scheme 6.2). The average 

Nb–Cl bond distances are 2.555, 2.302, and 2.250 Å for Clbr, Clax, and Cleq, 

respectively.79  Tantalum(V) chloride (TaCl5) is isostructural to NbCl5, and has average 

Ta–Cl bond lengths of 2.547, 2.307, and 2.225 Å for Clbr, Clax, and Cleq, respectively.80 
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Scheme 6.2: Schematic representation of the different chlorine bonding environments in 
the bridging pentahalide species. Bridging chlorine atoms (Clbr) are shown in blue, 
terminal-axial (Clax) in green and terminal-equatorial (Cleq) in orange. 

 

The static 35Cl SSNMR spectra of NbCl5 and TaCl5 are shown in Figures 6.7(A) 

and (B), respectively. The CT patterns have breadths of ca. 1300 kHz (NbCl5) and ca. 

1400 kHz (TaCl5). For each system, the outer manifolds of the spikelet patterns reveal 

several clearly defined discontinuities that indicate the presence of three distinct patterns, 

consistent with the presence of the Clbr, Clax, and Cleq bonding environments (vide infra). 

The analytical simulation for the entire powder pattern of NbCl5 is shown in 

Figure 6.7(A) as the red trace, with the individual patterns shown as the blue (CQ = 25.30 

MHz and ηQ = 0.385), green (CQ = 15.0 MHz and ηQ = 0.081), and orange (CQ = 14.70 

MHz and ηQ = 0.655) traces. We note that the patterns are simulated with 1:1:1 signal 

intensity (instead of the expected 1:2:2, Clbr:Clax:Cleq) as the WURST-CPMG technique 

is non-quantitative (since each Cl site is likely to have a slightly different T2 constant) 

and the relative signal intensity does not accurately reflect the relative populations of the 

individual chlorine environments. Using results obtained via DFT calculations (vide 

infra), it is possible to assign the three patterns in the spectrum to the specific chlorine 

bonding environments. The pattern with the largest absolute magnitude of CQ 
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corresponds to the Clbr environment, consistent with the results obtained for Cp*ZrCl3 in 

the study by Rossini et al.,46 but distinct from those for bridging chlorine sites in main 

group compounds.45 This suggests that the value of CQ for the bridging chlorine is 

strongly dependent on the nature of the metal to which it is bonded, as well as the overall 

structure of the complex. The Clbr has a moderate value of ηQ, as is typical for this type of 

environment. The pattern with the value of ηQ close to zero is assigned to the Clax, again 

consistent with high cylindrical symmetry about such terminal M–Cl bonds. The final 

pattern has a value of ηQ closest to unity and is assigned to the Cleq, which differs from 

results obtained by Rossini et al. where it was found that terminal chlorine environments 

had values of hQ close to zero. Since the values of CQ for the two types of terminal sites 

are almost identical, it is clear that ηQ is useful for their differentiation. 

In a similar manner, analytical simulations of the entire 35Cl CT pattern, as well as 

the three contributing patterns, are shown in Figure 6.7(B) for TaCl5. The site 

assignments are identical to those described for NbCl5. The values for CQ for all three 

sites of TaCl5 are larger than the corresponding values for NbCl5. Since NbCl5 and 

TaCl5 are isostructural, and tantalum is one row below niobium in the periodic table, it is 

the relative size of the metal atom which appears to influence the magnitude of the 

quadrupolar interaction, with the larger central metal atom corresponding to a larger 

value of CQ. Interestingly, the M–Cl bond lengths are very similar in these two systems, 

with the largest difference being 0.03 Å, again discouraging the invoking of simple 

correlations between bond length and CQ. 

 



253 
 

 

Figure 6.7: Static 35Cl SSNMR spectra acquired at 21.1 T for (A) NbCl5 and (B) TaCl5. 
Corresponding analytical simulations representative of the entire powder patterns are 
shown in red and simulations of the individual sites are shown in blue (Clbr), green (Clax), 
and orange (Cleq). 

 

Both of these complexes were previously studied by 35Cl NQR spectroscopy, with 

the measured quadrupolar frequencies given in Table 6.2. The room temperature NQR 

study of NbCl5 reveals seven distinct sites, five of which have comparable NQR 

frequencies. The two remaining sites have substantially higher NQR frequencies, and are 
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assigned to Clbr, which is consistent with our results.72 Similar NQR results were found 

for TaCl5,81 and are also consistent with this work.  

Plane-wave DFT calculations of 35Cl EFG tensors were performed on NbCl5 and 

TaCl5 (Table 6.2). Calculated values of CQ and ηQ distinguish bridging and terminal 

chlorine sites, not only by the absolute magnitudes of CQ, but also by their signs: bridging 

and terminal chlorines have positive and negative values of CQ, respectively. The 

CASTEP calculations for post-geometry optimized NbCl5 and TaCl5 models are in good 

agreement with experimental values of CQ and reasonable agreement for values of ηQ 

(Figure 6.1). 

The theoretical 35Cl EFG tensor orientations were determined for both complexes. 

Since they are isostructural, only the results for NbCl5 are shown in Figure 6.8. The Clbr 

sites, which have moderate values of ηQ, have V33 components oriented nearly 

perpendicular (90.30°) to the M–Cl–M plane, which is consistent with observations by 

Rossini et al.46 The moderate values of ηQ for these sites indicate that the 35Cl EFG tensor 

is non-axial (i.e., V11 ¹ V22), which is consistent with the local geometry of a Clbr atom. 

The Clax sites have values of ηQ close to zero, with V33 components oriented near the 

directions of the M–Cl bonds in each case, as expected. Finally, the Cleq sites have large 

values of ηQ, indicating that V11 is the distinct component of the 35Cl EFG tensor (i.e., the 

absolute magnitudes of V22 and V33 are similar). In each system, V11 is oriented towards 

the bridging chlorine environments, and V33 is directed near the M–Cl bonds, in good 

agreement with previous studies. 
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Figure 6.8: Theoretical 35Cl EFG tensor orientations in the molecular frame for the (A) 
Clbr, (B) Cleq, and (C) Clax environments in NbCl5. Orientations were determined from 
35Cl EFG tensor calculations completed on geometry-optimized models using CASTEP. 
Similar tensor orientations were found for the isostructural TaCl5 complex. 

 

6.4.4 35Cl Transverse Relaxation Time (T2) measurements 

As mentioned above, the 35Cl SSNMR spectra obtained for each of the 

compounds investigated exhibit variations in spectral intensity that do not precisely 

match the intensities produced from analytical simulations. For example, higher intensity 

is consistently observed in the high-frequency (leftmost) regions of the spectra. While 

there are no detailed studies in literature that investigate this phenomenon, we have 

reported instances of this intensity variation in several other papers on ultra-wideline 

NMR of quadrupolar nuclei.47,82  We speculate that it may be caused by two factors: (i) 

tuning limitations of the probe used that may cause uneven excitation/detection across the 

range of frequencies studied and/or (ii) variation of the transverse relaxation times across 

the breadth of the pattern, which we refer to as T2 anisotropy. 

In order to investigate this further, we measured the transverse relaxation time 

constants across the patterns by placing the transmitter at frequencies corresponding to 
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different discontinuities of the patterns, and acquiring a series of echoes using a CPMG 

experiment. By plotting the echo intensity against the echo time and fitting the data to an 

exponential decay, the T2 values and their associated errors were determined. The process 

is shown for WCl6 in Figure 6.9 and the remaining data is shown in Table E8. We found 

that in most cases, T2 values measured at the low-frequency discontinuities are smaller 

than those measured at higher frequency. The overall differences in T2 values are not 

large, certainly well under an order of magnitude. At this time, it is unclear that the 

tuning characteristics of the probe are responsible for any of the intensity variation, since 

we have used the exact same probes and tuning configurations to acquire spectra where 

the intensity variations do not follow the patterns described above. Clearly, a more 

detailed study of this intensity variation is required; if T2 anisotropy is solely responsible 

for this phenomenon, some interesting physical models and chemical interpretations 

could arise in the future. 
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Figure 6.9: T2 relaxation time constants and corresponding CPMG echo trains from 
experiments on α-WCl6 at (A) the high-frequency, (B) central and (C) low-frequency 
discontinuities. 
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6.4.5 LMO Analysis of the 35Cl EFG Tensors 

Upon examining the results obtained for the dimer pentahalide species, certain 

questions arise: (i) why do the Clbr sites have significantly larger values of CQ compared 

to the terminal chlorines, and (ii) why do the Cleq sites have values of ηQ ≈ 1 when the 

Clax have values of ηQ ≈ 0? In order to further probe the origins of the 35Cl EFG tensors 

for the various chlorine environments in the pentahalide species, we performed Localized 

Molecular Orbital (LMO) analysis, in which the contributions of each LMO to the 35Cl 

EFG tensors are determined.65 The LMOs are quantum-mechanical representations of 

bonds and lone pairs as well as core shell electron pairs.  For Nb2Cl10, there are also 

three-centre µ-bonding LMOs centred on the bridging chlorine atoms. Here, we chose to 

conduct calculations and analysis upon the Nb2Cl10 dimer, which possesses distinct types 

of terminal and bridging chlorine sites. We note that DFT MO calculations and 

concomitant LMO analyses were only conducted upon Nb2Cl10 clusters, since these 

species are sufficiently isolated from surrounding lattice that 35Cl EFG tensors are not 

adversely affected by long-range electrostatic interactions. Compounds like a-WCl6, b-

WCl6 and MoOCl4 all feature shorter intermolecular contacts that may influence the 35Cl 

EFG tensors, so LMO analyses on isolated clusters from these systems were not 

conducted (a full study of inter- and intramolecular electrostatic effects on EFG tensors 

for all of these systems is beyond the scope of the current work). 

The 35Cl EFG tensor parameters calculated using ADF and CASTEP are in good 

agreement with one another as well as the experimentally obtained parameters (Table 

E10). This indicates that the 35Cl EFG tensor parameters are highly dependent upon 

EFGs originating within the individual Nb2Cl10 units, and almost independent of EFGs 



259 
 

arising from intermolecular interactions within the solid. Furthermore, geometry 

optimization of the structure improves the agreement between the calculated parameters 

and those obtained experimentally.  

 The contribution of each LMO to the principal components of the 35Cl EFG 

tensors are tabulated in Table 6.3, and the atom labels for the Nb2Cl10 unit are shown in 

Figure 6.10(A). The individual LMOs that contribute to the EFGs are shown in Figure 

6.10(B) as isosurfaces.65 The calculations describe contributions from core, lone-pair (LP, 

with the π and σ referring to local symmetry with respect to the metal-chlorine bond 

axis), dative Nb-Cl σ-bonds, π-bonds, and 3-centred bridging µ-bonds. Graphical 

representations of the 35Cl EFG tensors for the distinct chlorine environments (Clax, Claeq 

and Clbr) in the form of polar plots (EFG in the direction of the electric field) are shown 

in Figure 6.11. The blue regions of the graphical representations correspond to positive 

EFGs and the orange regions represent negative EFGs. 

The case of the Clax environment is the most straightforward and agrees with 

previous findings in the literature for terminal chlorines.46 The largest component of the 

EFG tensor, V33, is positive and oriented roughly parallel to the Nb-Cl bond axis (Figure 

6.11(A)), indicating a loss of electron density in this direction to the covalent Cl-Nb 

interactions. The σ(Clax-Nb) (MO1) and the σ LP Clax (MO2) LMOs both make large 

negative contributions to the value of V33 (Table 6.3). The π LPs (MO3 and MO4) make 

large positive contributions that outweigh those of the s orbitals and therefore, the overall 

V33 for the Clax is positive. The axial symmetry of the EFG tensor at the Clax, with a value 

of ηQ close to 0, is due to the cylindrical electronic distribution about the nucleus caused 
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by contributions of MO3 and MO4 to V11 and V22 that are roughly equal in magnitude but 

opposite in sign. 

 

 

 

Figure 6.10: (A) Atom numbering of the Nb2Cl10 unit used in the LMO analysis. (B) 
Isosurface representations of the LMOs (1) σ(Clax-Nb), (2) σ LP Clax, (3) πx LP Clax, (4) 
πy LP Clax, (5) σ(Cleq-Nb), (6) σ LP Cleq, (7) π(Cleq-Nb), (8) πz LP Cleq, (9) πx LP Clbr 
(with some µ-bonding character), (10) µ(Nb-Cl-Nb), (11) σ LP Clbr and (12) πz LP Clbr. 
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Table 6.3: LMO contributions to the 35Cl EFG tensors of the various chlorine 
environments in NbCl5  
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Figure 6.11: Graphical representations (polar plots) of 35Cl EFG tensors of NbCl5 for (A) 
Clax, (B) Cleq and (C) Clbr environments. The blue colour indicates a positive EFG while 
orange indicates a negative EFG. The values of V33 are +0.71, +0.81 and –1.32 a.u., for 
(A) - (C) respectively. 

 

Like the Clax, the Cleq sites also have a positive V33, which is oriented along the 

direction of the Nb-Cl bond (Figure 6.11(B)). The σ(Cleq-Nb) (MO5) and σ LP Cleq 

(MO6) orbitals cause large negative contributions to V33, in a similar manner to the 

terminal-axial chlorine atoms. The p(Cleq-Nb) (MO7) and the pz LP Cleq (MO8) orbitals 

make positive contributions to V33 that outweigh those of the s orbitals, and results in an 

overall positive EFG. The π orbitals of the Cleq contribute quite differently to the values 

of V11 and V22. MO7 generates a negative contribution to V11 and a positive contribution 

to V22, whereas MO8 makes a positive contribution to V11 and an even larger negative 
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contribution to V22. The unequal contribution to V11 and V22 of MO7 and MO8 is 

reflected in the large asymmetry parameter of the 35Cl EFG tensor (ηQ is near unity). This 

is contrasted to the case of the Clax, in which equal involvement from the orbitals with π 

symmetry leads to an axially symmetric tensor with ηQ close to zero. 

For the Clbr, V33 is oriented perpendicular to the equatorial plane formed by the 

two Nb atoms and the Clbr atom (Figure 6.11(C)), as is typical for bridging chlorines.47  

The Clbr environment consists of two equivalent, weakly covalent Nb-Clbr orbitals per Cl 

atom at an angle of 102° and two relatively “pure” LP orbitals. The orbitals in the plane 

of the Nb-Cl-Nb bond (px LP Clbr (MO9), µ(Nb-Cl-Nb) (MO10) and s LP Clbr (MO11)) 

create positive contributions to V33; however, these contributions are outweighed by the 

enormous negative contribution made by the out-of-plane pz LP Clbr (MO12). MO12 is 

almost entirely non-covalent in nature and therefore, contributes very strongly to the 

EFG. The result is a large, negative V33 at the Clbr nuclei which is oriented in the 

direction of the lone-pair (MO12). The moderate value of hQ for the Clbr nuclei is caused 

by unequal contributions of the in-plane orbitals (MO9, MO10, and MO11) to V11 and 

V22. 

6.4.6 35Cl SSNMR of WCl6 supported on silica   

WCl6 has been grafted onto a silica support material, as described in the 

Experimental Section. Our aim in the current work was to see if it was possible to 

acquired a high quality spectrum of this sample in a reasonable time frame, and make 

comparisons between this new spectrum and some of the spectra of the tungsten chlorides 

discussed herein. Only two other attempts at acquiring 35Cl SSNMR spectra of such 

systems have been reported, by our group (silica-supported TiCl4),47 and by Mania et al. 
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(silica-supported TiCl4).26 The 35Cl SSNMR spectrum of this sample, acquired using the 

WURST-CPMG pulse sequence at a field of 18.8 T is shown in Figure 6.12.  The 

spectrum was acquired in a single experiment (i.e., no piecewise acquisitions), over a 

period of ca. 15.8 hours. It is noted that the long experimental times are a result of the 

low weight percentage of WCl6 loaded onto the silica support material (W wt% = 

5.48%). The CT powder pattern spans a range of just over 1.2 MHz, which is far wider 

than that observed for the spectrum of pure a-WCl6, which spans only ca. 650 kHz at 

21.1 T (it would span ca. 740 kHz at 18.8 T, Figure E20). Simulations of the spectrum of 

grafted WCl6 yield CQ = 25.98(5) MHz and hQ = 0.11(1), which are far different values 

from those of pure WCl6 (CQ = 21.0(1) MHz and hQ = 0.029(5)). In fact, this new set of 

quadrupolar parameters bears a striking resemblance to those of WOCl4 (CQ = 26.05(10), 

hQ = 0.115(5)), which suggests that a major change in the structure and bonding of WCl6 

has taken place. A full structural analysis and interpretation of this result is currently 

underway, and beyond the scope of the current work; however, we have again 

demonstrated that it is possible to acquire high quality ultra-wideline 35Cl SSNMR 

spectra of diluted, surface-bound species, and that such spectra are potentially very rich 

in structural information. 
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Figure 6.12: Static 35Cl SSNMR spectrum acquired using the WURST-CPMG pulse 
sequence at 18.8 T for WCl6–SiO2 with corresponding analytical simulation shown in 
red. 

6.5 Conclusions 

Using the WURST-CPMG pulse sequence and the VOCS technique we have 

demonstrated it is possible to acquire broad 35Cl SSNMR powder patterns for 

diamagnetic chlorine-containing TM complexes exhibiting a variety of structural motifs. 

The experiments were conducted at both moderate (9.4 T) and ultra-high (21.1 T) 

magnetic field strengths, with the latter affording great reductions in experimental times 

due to increases in S/N ratios and reductions in CT pattern breadths. The 35Cl SSNMR 

spectra prove to be very useful as probes of structure, due to the sensitivity of the 35Cl 

EFG tensors to both subtle and significant differences in molecular geometry and 

chemical environment. 

The 35Cl SSNMR spectra of a-WCl6 and b-WCl6 were acquired, but were not of 

high enough resolution to differentiate the two polymorphic forms; however, the two 

polymorphs could be differentiated by 35Cl NQR experiments. This highlights the 
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efficacy of using SSNMR and NQR in tandem; the rapid acquisition of the SSNMR 

spectra provides an estimation of the quadrupolar parameters and substantially refines the 

frequency region in which to search for NQR signal. The effects of molecular packing in 

the solid state were also visible in the 35Cl SSNMR spectra of WOCl4 and MoOCl4. The 

WOCl4 molecules stack in symmetric linear arrays resulting in a single chlorine 

environment whereas the MoOCl4 complex forms quasi-dimeric structures resulting in 

several distinct chlorine environments (i.e., pseudo-bridging and terminal). In the dimeric 

pentahalide complexes, NbCl5 and TaCl5, the individual chlorine environments were 

distinguished based on their values of CQ. It was found that the Clbr environments had 

larger values of CQ when compared to the terminal chlorine environments. Furthermore, 

the two terminal chlorine environments, Clax and Cleq, could be distinguished based on 

their values of ηQ, the former having values close to 0 and the latter having values close 

to unity. It was also observed that the tantalum complex had larger absolute magnitudes 

of CQ for all chlorine environments, suggesting that the size of the metal centre influences 

the value of CQ. 

Plane-wave DFT calculations were completed for model structures of each 

complex. The 35Cl EFG tensor parameters were found to be in generally good agreement 

with experimental results, especially in systems in which intermolecular interactions have 

little influence on the 35Cl EFG. The theoretical 35Cl EFG tensor orientations reveal that 

V33 is directed either along or near the M-Cl bond for chlorine atoms in terminal bonding 

environments. Conversely, for chlorine atoms in bridging bonding environments, V33’s 

are oriented approximately perpendicular to the M-Cl-M planes. An LMO analysis 

completed on the NbCl5 system revealed that the 35Cl NMR parameters are determined 
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by the composition and relative orientations of the MOs participating in bonding to 

chlorine. The hQ value close to zero for the Clax arises from equivalent contributions of 

the p LP orbitals to V11 and V22 whereas the p orbitals for the Cleq do not contribute 

equivalently, leading to an hQ close to unity. The large value of CQ for the Clbr arises 

from the large, negative contribution of the pz LP orbital that is perpendicular to the Cl-

M-Cl plane, because positive contributions from other orbitals centred on Clbr are 

reduced due to the true Cl-Nb covalency.  

We also demonstrated the application of 35Cl SSNMR to the study of a transition-

metal catalyst that has been grafted onto a silica support material. The resulting spectrum 

is drastically different than the bulk species, indicating that the structure of the WCl6 

species changes upon grafting. Given the rapidity with which the 35Cl SSNMR spectra 

can be acquired, and the fact that “focused” NQR experiments can be conducted in the 

wake of SSNMR experiments to examine site specificities, we believe that an enormous 

number of chlorinated transition-metal complexes can be structurally probed in both the 

bulk and supported forms. We hope to establish this protocol as a strong basis for the 

study of chlorine-containing transition-metal complexes, and extend this study to 

catalytic systems of increasing complexity, with the aim of studying immobilized 

heterogeneous catalysts with very dilute chlorine contents. 
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7 Chapter 7: Conclusions and Future Outlook 

7.1 General Overview 

In this thesis, the structure, formations, and dynamics of porous materials were 

investigated. The numerous applications of porous materials, both potential and already 

realized, has resulted an intense area of research which aims to develop cleaner, more 

efficient means for their production. In addition, an intimate understanding of the 

structure-property relationships of porous materials is crucial for their rational design and 

fine-tuning of their properties. 

As demonstrated herein, SSNMR is well-suited to the study of porous materials 

and provides detailed, molecular-level structural information and a means for 

unambiguously determining motional models for systems with dynamic components. The 

application of multinuclear SSNMR in tandem with both experimental techniques (e.g., 

SCXRD and PXRD) and theoretical approaches (i.e., DFT calculations) allows for the 

accurate description of many systems; however, in some instances, the information 

provided by SSNMR can stand alone for their full characterization. Furthermore, the 

details on structure and dynamics afforded by SSNMR are not available from any other 

characterization technique. Wherever possible, a multinuclear SSNMR approach was 

utilized, taking advantage of the fact that nearly every element on the periodic table has at 

least one NMR-active nuclide. This multinuclear SSNMR methodology, coupled with the 

development of NMR techniques for the study of unreceptive nuclides, is essential for 

ensuring the routine application of SSNMR to a wide variety of systems beyond those 

investigated herein. 
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7.2 Solid-state Synthesis of Cadmium-imidazolate Frameworks 

 In Chapters 2 and 3, two solid-state synthetic techniques (i.e., accelerated aging 

reactions and mechanochemical synthesis) were utilized for the generation of cadmium-

containing zeolitic imidazolate frameworks. Both of these synthetic approaches adhere to 

the Twelve Principles of Green Chemistry,1 as they require little or no solvent, make use 

of readily available reagents, involve low energy inputs, and afford quantitative yields. 

Despite the great promise of these techniques for the synthesis of a wide range of 

materials, little is known about the underlying mechanisms that drive the chemical 

transformations. A detailed mechanistic understanding is essential so that these reactions 

can be optimized and to ensure clean and reproducible generation of the desired products. 

 In Chapter 2, accelerated aging reactions were used for the synthesis of a new 

cadmium-imidazole framework (CdIF) with an unknown structure. By varying the 

stoichiometry of the reagents, it was determined that the Cd:imidazole ratio in this CdIF 

is 1:3, instead of the typical 1:2 ratio found in most ZIFs. A combination of multinuclear 

SSNMR and PXRD were used to refine and elucidate its structure. It was determined that 

the structure of the CdIF consists of Cd atoms in four-coordinate, tetrahedral 

environments in a framework structure with a diamondoid topology. The multinuclear 

SSNMR experiments indicate that there is excess, unreacted 2-methylimidazole guest 

molecules within the pores of the framework structure. This demonstrates that the 

combination of SSNMR and PXRD, a technique known as NMR-assisted 

crystallography, is useful for elucidating the structures of new materials. 

 In Chapter 3, the mechanochemical formation of CdIFs was monitored using 

SSNMR and PXRD. SSNMR experiments reveal the presence of an intermediate that 
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undergoes chemical transformation in situ within the NMR rotor. PXRD identifies this 

intermediate as the previously reported CdIF-1 framework, and the SSNMR experiments 

suggest the presence of solvent and HMeIm molecules in the pores. It was observed that 

chemical transformations occur within the closed environments of the rotors and milling 

jars, but not in the XRD capillaries that are left often to the atmosphere. It is suggested 

that ball milling provides the activation energy required to initiate the reactions, but that 

aging processes drive the reactions to completion. Finally, a reaction pathway was 

proposed in which the reaction proceeds towards products of decreasing void volume and 

increasing thermodynamic stability, consistent with Ostwald’s Rule of Stages. 2,3 

 

7.3 Future Work – Monitoring the Formation of Porous Materials 

 A full mechanistic understanding of the formation of porous materials using solid-

state synthetic techniques has not been achieved to date. There is evidence to suggest that 

the sequential formation of products with lower densities and high thermodynamic 

stabilities follows Ostwald’s rule of stages;2,3 however, at this point, the exact nature of 

these transformations is unclear. The use of in situ multinuclear SSNMR experiments 

provide a more detailed understanding in this regard. Both accelerated aging reactions 

and mechanochemical syntheses use a catalytic protic salt, which is known to not only 

accelerate the reactions, but to play a role in determining the structures and compositions 

of final products; however, the exact role of the salt is not understood. The results of the 

15N MAS NMR in Chapter 3 suggests that there are NO3
– ions within the pores of the 

framework that possibly act as templating agents (a similar effect was observed by 

Friščić et al.).4 Therefore, multinuclear SSNMR experiments on the products of reactions 
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conducted with different salts, especially those containing NMR-active nuclides (e.g., 

ND4NO3) could aid in the determination of reaction mechanisms. Monitoring the reaction 

processes at intermediate stages may also be of great value in this respect. 

 Mixed-linker MOFs and ZIFs have shown promise as porous materials whose 

properties can be tuned by varying the relative amounts of the constituent linker 

molecules.5–7 There is currently no general theory that describes how the distribution of 

the linkers within the framework structure affect the bulk properties of the material. 

SSNMR has been shown to provide information on linker distributions in MOFs that 

have been synthesized using conventional solvothermal techniques.8,9 The mechanisms of 

MOF and ZIF formation in solid-state synthetic techniques are certainly different than 

those of analogous solvothermal reactions; therefore, it is possible that mixed-linker 

MOFs and ZIFs made using these techniques may have different linker distributions or 

entirely different structures. In a preliminary study, our group synthesized a series of 

mixed-linker ZIFs using mechanochemical methods, and used SSNMR to characterize 

the resulting products. The 111Cd CP/MAS NMR spectrum of the mixed-linker species 

are drastically different than those of the single-linker species made using the same 

imidazole linkers, implying a rich and distinct set of chemistries that should be further 

investigated.  

 The majority of ZIFs feature Zn as the metal linker; hence, it would be of great 

interest to probe the formations and structures of Zn-containing ZIFs with 67Zn SSNMR 

(this is an especially attractive project due to the successes with 111Cd SSNMR described 

in this thesis). 67Zn is an unreceptive, quadrupolar nucleus with a nuclear quadrupole 

moment of moderate size (I = 5/2; ν0(67Zn) = 25.027 MHz at 9.4 T; n.a. = 4.1%, Q = 15.0 
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fm2). While there have been some preliminary explorations of 67Zn SSNMR of MOFs by 

Huang and co-workers,10–12 for the purpose of examining framework structures, there 

have been no generalized applications to the study of the formation of ZIFs, the 

monitoring of impurities and by-products, or the effects of molecular-level motions on 

host-guest chemistry. The application of 67Zn SSNMR for these purposes is challenging 

due to the poor receptivity of 67Zn; however, we plan to apply an arsenal of methods and 

hardware to make this possible. A combination of carefully calibrated WURST-CPMG 

pulse sequences, 1H-67Zn BRAIN-CP NMR experiments under both static and MAS 

conditions, and the use of these UWNMR methods under DNP conditions (9.4 T at the 

Ames Lab) and at ultra-high magnetic fields (i.e., the 36 T, 1.59 GHz series connected 

hybrid (SCH) NMR magnet at the National High Magnetic Field Laboratory (NHMFL) 

in Tallahassee, FL, will allow us to probe the molecular-level structures and dynamics of 

reaction mixtures, intermediate mixtures, and final products, both ex situ and in situ, 

under a variety of conditions. 

 The ability to determine three-dimensional structures of both crystalline and 

amorphous solids is a primary concern for chemists and materials scientists. The 

emerging field of NMR crystallography shows great promise for the characterization of 

such systems, by using the well-established “triumvirate of methods that include solid-

state NMR spectroscopy, X-ray crystallography, and first-principles DFT calculations on 

periodic solids.13–15 The relationships between NMR observables and structure are at the 

heart of this method: if NMR interaction tensors can be calculated to reliably match those 

obtained experimentally, then it is possible to use these structure-property relationships 

for the refinement of known structures and the prediction of unknown structures. Our 
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group is currently pursuing this from the perspective of EFG tensors (e.g., 35Cl, 14N, 17O) 

associated with molecules in organic solids. We believe that a combination of CS and 

EFG tensor data from nuclides such as 111Cd, 67Zn, 13C, 14N, 17O, and 1H may prove 

invaluable in aiding in the prediction and refinement of structures of new ZIFs. Our first 

steps will be to optimize such calculations for Zn- and Cd-containing ZIFs with known 

crystal structures, and then to extend the optimized calculations to intermediate and final 

product states to probe structures and reaction pathways. Calculations on solids 

containing heavy atoms such as cadmium will likely require relativistic treatment of the 

electronic structure to obtain agreement with experimental results Such calculations may 

also be able to predict hitherto unknown ZIFs, which may guide future rational 

preparations of these materials. 

 

7.4 Dynamics of Molecular Machines 

 The design and synthesis of molecular machines represents a “hot topic” in 

modern chemistry, especially in light of the awarding of the Nobel Prize in Chemistry to 

Stoddard, Sauvage, and Feringa for their contributions to this field. The current state of 

the materials being developed today still pale in comparison to those envisioned by 

Richard Feynman; however, complex systems, with increasingly intricate constructions 

and motions are constantly being synthesized.16–18 SSNMR experiments are ideal to study 

the motions of simple molecular machines in the solid state (Chapters 4 and 5), and are 

able to provide correlations between the modes and rates of motions, and numerous 

chemical and physical factors, including electrostatic interactions, void spaces, steric 

hindrance, effects guest molecules, and temperature. 
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 In Chapter 4 the motions of crown ether (CE) rings incorporated into the 

framework structures of MOFs were investigated using 2H and 13C SSNMR. The CE 

rings mainly exhibit three types of rotational motions (i.e., two-site jumps, partial 

rotation, and full rotation). CE rings of smaller sizes undergo more restricted rotational 

motions and the inclusion of bulky substituents on the rings also leads to hindered 

rotational motions. It was found that interactions between the framework structures and 

the CE rings also impedes motion and that reversible solvation/desolvation processes can 

be used to affect ring rotation. Lastly, 13C SSNMR experiments reveal that spatially-

coherent shuttling motion of the CE rings is possible within the free volume of MOFs. 

 Multinuclear SSNMR experiments were also used to investigate the rotational 

motion in inorganic metal hydride rotors (Chapter 5). A detailed analysis was given for 

trans-D2(tBu3P)2, and rotational motion was observed in the 2H SSNMR spectra acquired 

at temperatures as low as 75 K. Several motional models were proposed, but it was 

determined that the changes observed in the 2H SSNMR spectra are not due to the rates of 

the motions, but rather to differences in the populations of the various rotational states. A 

series of compounds with various coordinating donor ligands was then investigated using 

2H SSNMR. The nature of the coordinating ligand has a drastic effect on the motion, and 

for some cases, no motion was observed over large temperature ranges. 

 

7.5 Future Work – Molecular Machines  

 MOFs that use zirconium clusters as SBUs are stable under conditions of high 

temperatures and can withstand treatment with strong acids and bases.19–21 Furthermore, 

they have very large void spaces, making them attractive for a wide range of applications. 
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Therefore, incorporating [2]rotaxanes into such framework structures offers the 

possibility of creating chemically switchable devices (i.e., through 

protonation/deprotonation of recognition sites on the axles). However, due to the 

geometries of these MOFs, [2]rotaxane molecules must be doped into the structures (i.e., 

usually in a 1:5 ratio with other organic linkers). The doping of [2]rotaxanes, combined 

with the low densities of these materials, lead to the dynamic components being very 

dilute. Preliminary 2H SSNMR investigations conducted on Zr-based MOFs with 

rotaxane ligands yield spectra with very low S/N, making simulation of the spectra 

difficult. The use of 2H MAS NMR could greatly increase the S/N of the NMR spectra of 

these dilute species; however, such spectra are significantly more challenging to simulate 

than their static counterparts. The a priori knowledge of motion provided by the static 2H 

SSNMR experiments will greatly facilitate the simulation of MAS spectra and allow for 

the study of more complex systems with dilute dynamic components.  

 Our research group is currently developing methods to improve the acquisition 

and interpretation of 2H SSNMR spectra under both static and MAS conditions. For static 

samples, plan to utilize optimal control theory (OCT) to develop pulses capable of 

broadband excitation that are superior to WURST pulse sequences. In this process, we 

plan to monitor the density matrices associated with the equilibrium and non-equilibrium 

states, and how they are influenced by frequency-swept pulses (like WURST) and OCT 

pulses that use WURST pulses as a starting condition. For MAS samples, we plan to 

utilize the WURST pulses for irradiation of single spinning sidebands within the 2H ST 

patterns, in the hoped that we will obtain high-resolution powder patterns with high that 

will aid in identification of chemical shifts, quadrupolar parameters, and the affects of 
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molecular dynamics. The combination of these two techniques is key for rapidly 

acquiring 2H SSNMR spectra and successfully modeling motions in complex molecular 

machines. 

 It may also be very interesting to probe the Zr metal-clusters in these MOFs via 

91Zr SSNMR ((I = 5/2; ν0(91Zr) = 37.185 MHz at 9.4 T; n.a. = 11.22000%, Q = –17.6 

fm2). This work can be done in concert with that on the much less receptive 67Zn nucleus 

discussed above, utilizing the aforementioned pulse sequences and hardware for similar 

purposes. Intriguingly, there are currently no 91Zr SSNMR studies of Zr clusters reported 

in the literature; hence, as a starting point, it may be of great value to study some simple 

molecular 91Zr clusters, in order to determine the if structural or dynamical effects 

manifest in the second-order CT 91Zr powder patterns. 

 Lastly, the results of Chapter 5 indicate that motion can occur in the solid state 

without having to incorporate dynamic components into a porous material. However, 

these systems were limited to very small rotators (i.e., hydrides and deuterides), and 

therefore, the applications of these materials in their current forms are likely limited. By 

using very bulky stopper groups on the [2]rotaxanes, it can be envisioned that crystalline 

materials can be synthesized such that the free volume within the crystals will be 

sufficient to allow rotation of the crown ether rings. [2]rotaxanes have been synthesized 

which use bulky trityl stoppers, and preliminary 2H SSNMR studies reveal that these 

rotaxanes undergo dynamics over a wide temperature range. These results indicate that it 

is possible to achieve large amplitude dynamics in strictly organic materials. 

 Our group has recently obtained a 5 mm HX static NMR probe that is optimized 

for low-gamma use over a temperature range of 20 to 450 K. Not only will this probe be 



282 
 

of utility for some on-site investigations of the systems with unreceptive 67Zn and 91Zr 

nuclides described above, but it will serve a much grander purpose for the study of 

molecular-level dynamics over a temperature range from 20 to 120 K. This temperature 

range is often studied by physicists conducting NMR experiments on materials that 

exhibit superconducting phase transitions (in fact, these often go to ca. 1 K), but it is a 

range that is not often explored by chemists. The reason for this is that most SSNMR 

spectroscopy involves MAS NMR experiments on nuclides like 13C and 15N at rates of 4 

kHz or higher. For such experim∂ents to be conducted at low temperatures, very 

expensive hardware and sample holders are required. Fortunately, the collection of 

UWNMR techniques developed in our laboratory are applicable to stationary samples; 

given the enormous selection of NMR-active nuclides from across the periodic table at 

our disposal, there are amazing possibilities for investigation of static structures 

(corresponding to temperatures around 77 K, at which many crystal structures are 

determined) or low-temperature dynamic motions (e.g., Me group rotations). With 

respect to the work in this thesis, projects will be pursued focused upon elucidating the 

low temperature motions of many of the molecular rotors described in Chapter 5; in 

particular, compound 3 (trans-D2Pt(PCy3)2), which appears to have a mobile rotor at 

temperatures greater than 173 K, is of great interest. Multinuclear SSNMR experiments 

on MOFs from the UWDM series described herein, and new MOFs that are currently 

designed, may also reveal much new information on structure and dynamics over this 

range of low temperatures. 
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7.6 Surface Supported Catalysts 

 The use of high magnetic fields and the WURST-CPMG pulse sequence allowed 

for the rapid acquisition of 35Cl SSNMR spectra for a series of transition-metal chloride 

compounds (Chapter 6). The compounds have molecular geometries commonly 

exhibited by organometallic catalysts, and the different bonding environments (i.e., 

bridging, terminal axial, and terminal equatorial) could be distinguished using 35Cl 

SSNMR. A detailed analysis of the origin of the 35Cl EFG tensor parameters was 

provided by DFT calculations. These techniques were then applied to study a transition-

metal compound supported onto a porous material (i.e., silica). Despite the dilute nature 

of the surface supported species, it was possible to acquire a 35Cl SSNMR spectrum, and 

preliminary structural assignments were made. 

 

7.7 Future Work – Ultra-wideline 35Cl SSNMR 

 The 35Cl EFG tensor parameters are very sensitive to the bonding environments of 

Cl atoms, and to the oxidation states of the metals to which they are bound. While the 

acquisition of SSNMR spectra of paramagnetic materials is often challenging owing to 

very efficient paramagnetic relaxation, we have shown that such experiments are possible 

for simple transition metal halides. MoCl5 is isostructural to the pentahalide compounds 

studied in Chapter 6; however, the metal centres have a d1 electron configuration and the 

compound is paramagnetic. The 35Cl SSNMR spectrum has a single powder pattern and 

through the use of DFT calculations, the powder pattern was assigned to the terminal 

axial environments. These results suggest that 35Cl SSNMR could be used as a probe of 

unpaired spin density in transition-metal compounds. 
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 Finally, our group recently demonstrated that it is possible to acquire 35Cl UW 

NMR experiments under DNP conditions, by utilizing the BRAIN-CP sequence for 1H-

35Cl polarization transfer.22 If the metal chlorides mentioned above (or derivatives 

thereof) can be stabilized on surfaces of porous materials via chemical grafting or 

physical confinement, there is certainly a major role for DNP 1H-35Cl SSNMR to play. 

The surfaces of silica and other porous materials provide an ample source of protons that 

should allow us to successfully use 1H-35Cl BRAIN-CP methods for CP from protons on 

the surface to 35Cl nuclides in the metal chlorides.23 We plan to explore this from the 

perspectives of the choices of the best radicals, solvents, and loading levels of the metal 

chloride catalysts. 
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8 Appendix A Supplementary Tables and Figures for 

Chapter 2 
 
Table A1: Optimized recycle delays for 1H MAS experiments 

Compound Recycle Delay (s) 
1 5 
2 5 
3 5 
4 7.5 

 
 

Table A2: 1H-13C CP/MAS contact times and recycle delays 

Compound Contact Time (ms) Recycle Delay (s) 
1 1 5 
2 10 5 
3 2 5 
4 2 7.5 

HMeIm 15 60 
 
 

 

Table A3: 1H-111Cd CP contact times and recycle delays 

Compound Contact Time (ms) Recycle Delay (s) 
1 8 5 
2 17 5 
3 7 5 
4 5 7.5 

 

 

 

Table A4: 1H-14N BCP/WCPMG experimental parameters 

Compound Recycle Delay 
(s) 

Contact Time 
(ms) 

# of echoes # of 
subspectra 

1 1 20 40 15 
HMeIm 30 20 80 26 
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Table A5: Selected bond lengths in the Cd-imidazole compounds with known structures 

Compound Bond Length (Å) 
2 Cd-N1 2.215 

Cd-N2 2.228 
Cd-N3 2.260 
Cd-N4 2.226 

   
3 Cd1-N2 2.203 

Cd1-N3 2.198 
Cd1-N5 2.199 
Cd1-N6 2.258 
Cd1-N7 2.167 
Cd2-N1 2.201 
Cd2-N2 2.209 

   
4 Cd-N1 2.401 

 

 

Table A6: Selected bond angles in the Cd-imidazole compounds with known structures 

Compound Bond Angle (°) 
2 N1-Cd-N2 113.5 

N1-Cd-N3 115.2 
N1-Cd-N4 112.2 
N2-Cd-N3 96.66 
N2-Cd-N4 112.9 
N3-Cd-N4 105.3 

   
3 N2-Cd1-N3 115.3 

N2-Cd1-N5 115.6 
N2-Cd1-N6 80.97 
N2-Cd1-N7 107.4 
N3-Cd1-N5 109.9 
N3-Cd1-N6 126.1 
N3-Cd1-N7 102.0 
N5-Cd1-N6 106.5 
N5-Cd1-N7 105.1 
N6-Cd1-N7 29.33 
N1-Cd2-N2 106.8 
N1-Cd2-N2 117.4 

   
4 N1-Cd-N1 89.769 

N1-Cd-N1 90.231 
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Figure A1: Experimental PXRD patterns for (A) the dry-milled reaction mixture before 
aging and (B) CdO. (C) Simulated PXRD pattern for HMeIm. 

 

 
Figure A2: Experimental PXRD patterns for the products of the aging reaction treated 
with either (NH4)2(SO4) after (A) one day and (B) seven days of aging, or HCafHSO4 
after (C) one day and (D) seven days of aging. Simulated PXRD patterns from the crystal 
structures (E) 1 and (F) 3. 
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Figure A3: The coordination environment of the Cd atoms in dia-Cd[Im]2 (2). 

 

 
Figure A4: Coordination environment about (A) the Cd1 site, (B) the Cd2 site and atom 
labeling in thle yqt1-Cd[MeIm]2 (3) framework. There is an apparent positional disorder 
of one of the MeIm– ligands at the Cd1 site. 
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Figure A5: Coordination environment about the Cd atom and atom labelling in the 
Cd[Im]6CO3 •3H2O (4) molecule. 

 

 
Figure A6: 1H MAS (νrot = 16 kHz) NMR spectra acquired at 9.4 T for (A) framework 2, 
(B) framework 3, and (C) compound 4. 
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Figure A7: 1H-13C CP/MAS (νrot = 10 kHz) NMR spectra acquired at 9.4 T of (A) 
framework 2, (B) framework 3, and (C) compound 4. The asterisks (*) denoted spinning 
sidebands. 
 

 
Figure A8: Proposed 111Cd isotropic chemical shift ranges based on the compounds 
investigated herein and on studies conducted by Ellis et al. 
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Figure A9: 1H-14N BRAIN-CP/WURST-CPMG spectrum of bulk HMeIm (blue trace) 
and simulation of the powder pattern (red trace). A deconvolution of the simulation into 
the two distinct powder patterns is also shown. The purple trace is the pattern 
corresponding to the N1 site (CQ = 1.95(5) MHz, ηQ = 0.44(2)) and the green trace is the 
pattern corresponding to the N2 site (CQ = 3.13(5) MHz, ηQ = 0.21(2)). 
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9 Apendix B: Supplementary Tables and Figures for Chapter 

3 
 
Table B1: 1H-111Cd CP/MAS NMR contact times and recycle delays 

Reaction Set/Compound Contact Time (ms) Recycle Delay (s) 
1 10 1 
2 10 1 
3 10 1 
4 10 1 

Amorphous framework 10 1 
CdIF-1as 15 2.5 

CdIF-1dried 15 2.5 
CdIF-1HMeIm 15 2.5 

 
 
 
 
 
Table B2: Calculated pore volumes for the Zn and Cd ZIFs. 

Compounds Void volume (Å3)a % of unit cell 
volume 

DHtrans  
(kJ mol-1) 

sod-Zn[MeIm]2 1268.47 25.8 26.25 
a-Zn[MeIm]2 -- -- 19.38 

kat-Zn[MeIm]2 12.30 0.3 17.95 
dia-Zn[MeIm]2 0 0 15.61 

CdIF-1b 1859.21 31.2 -- 
dCdMc 235.06 14.6 -- 
yCdM 8.45 0.3 -- 

a Calculated using Mercury 3.9 with a 1.2 Å radius probe (i.e., the volume of void spaces 
which can be occupied by a fictitious molecule with a 1.2 Å radius). b Water molecules 
were removed from the pores before the calculation. c HMeIm molecules were removed 
from the pores before the calculation. 
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Figure B1: (A) 1H-111Cd CP/MAS NMR spectrum acquired for the products of 3 (twenty 
minute acquisition time). (B) 111Cd NMR spectrum of the same sample acquired for an 
additional twenty minutes (the two spectra are non-cumulative). 
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Figure B2: 1H-111Cd CP NMR spectra acquired under static conditions (i.e., no sample 
rotation) for products 3 at different time intervals (the spectra are non-cumulative). 
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Figure B3: Experimental PXRD patterns obtained for (A) 185m and (B) 125m-a1h. 
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Figure B4: Experimental PXRD pattern acquired for aCdM that was synthesized by 
milling a sample of yCdM for three hours. The broad features confirm the amorphous 
nature of this material. 

 
Figure B5: (A) Experimental PXRD pattern obtained for CdIF-1. (B) Simulated PXRD 
pattern of CdIF-1 from the crystal structure reported by Tian et al. 
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Figure B6: (A) Experimental PXRD pattern for CdIF-1HMeIm. (B) Simulated PXRD 
pattern from the crystal structure of dCdM. 
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Figure B7: Comparison of the peak widths in the 111Cd NMR spectra of (A) CdIF-1dried, 
(B) CdIF-1, and (C) 130s. Experimental spectra are shown in blue and the corresponding 
simulations are shown as the red traces. 
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10 Appendix C Synthetic Information and Supplementary 

Tables and Figures for Chapter 4 
 

Synthetic procedures: 

Synthesis of A3: 

The synthesis of A2 has been reported in the literature.1 A3 was made in a similar 

fashion to A2, but using 2-methylpyridine-4-boronic acid instead of 4-pyridinylboronic 

acid. 

Synthesis of L3: 

Meso-tetra-(4-carboxyphenyl)porphine (250 mg, 0.3 mmol) and PdCl2 (225 mg, 

1.2 mmol) were added into a 80 mL microwave tube. DMF (25 mL) was added, the tube 

was placed inside the microwave reactor and heated at 155 °C for three cycles of 5 min. 

After cooling it down, THF (50 mL) was added and the reaction was filtered. The 

resultant organic layer was washed with water, centrifuged and filtered to yield a purple 

powder.  Yield: 250 mg, 89 %. 1H NMR (500 MHz, DMSO-d6, 298 K) δ (ppm) = 8.82 (s, 

8H), 8.39 (d, J = 8.3 Hz, 8H), 8.32 (d, J = 8.3 Hz, 8H). 

 

Synthesis of UWDM-P1: 

Zn(NO3)2·6H2O (6 mg, 0.02 mmol), A2 (30 mg, 0.04 mmol), and L3 (9 mg, 0.01 

mmol) were loaded into a 20 mL scintillation vial. DMF (2 mL) and HBF4·Et2O (1 drop) 

were added and the mixture sonicated for 1 minute. The mixture was heated in a 

programmable oven at 85 °C for 48 hours and cooled to room temperature over 6 hours. 
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Red plate crystals were collected by filtration and stored in fresh DMF. Yield based on 

porphyrin: 238 mg, 90%. 

Synthesis of UWDM-P2: 

Zn(NO3)2·6H2O (6 mg, 0.02 mmol), A2 (30 mg, 0.04 mmol), and L3 (9 mg, 0.01 

mmol) were loaded into a 20 mL scintillation vial. DMF (2 mL) and HBF4·Et2O (1 drop) 

were added and the mixture sonicated for 1 minute. The mixture was heated in a 

programmable oven at 80 °C for 48 hours and cooled to room temperature over 6 hours. 

Red plate crystals were collected by filtration and stored in fresh DMF. Yield based on 

porphyrin: 210 mg, 80%. 

 

Desolvation of UWDM-P1 and UWDM-P2: 

 UWDM-P1d and UWDM-P2d were made by soaking UWDM-P1 and UWDM-P2 

in CH2Cl2 for 8-10 hours, changing the solvent every 2 hours to exchange the DMF in the 

pores of the framework for CH2Cl2. The samples were then filtered and left to air dry to 

evaporate the CH2Cl2. 

 
Table C1: Optimized recycle delays and 90° pulse lengths used in the acquisition of 2H 
SSNMR spectra at 9.4 T. 

Sample Recycle delay (s) 90° pulse length (µs) 
UWDM-1(22) 0.1 3.25 
UWDM-1(B24) 0.05 3.25 

UWDM-2 0.5 3.5 
a-UWDM-3 0.5 3.25 
b-UWDM-3 0.5 3.25 
UWDM-P1 1 3.25 
UWDM-P1d 1 3.25 
UWDM-P2 1 3.00 
UWDM-P2d 1 3.25 
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Table C2: Shuttling rates obtained from the simulation of solution-state 13C NMR data 
for the [2]rotaxane made from A4 and CE4. 

Temperature (K) Rate (Hz) 
210 565 
213 830 
218 2800 
223 7000 
228 13000 
233 25000 
238 65000 
243 110000 
253 310000 
273 1400000 
298 6900000 

 
 

 
Figure C1: Simulation of a 2H SSNMR powder pattern showing the positions of the three 
sets of discontinuities (horns, shoulders and feet) and their respective frequency 
separations (Δν11, Δν22 and Δν33). Also shown are the relations between the positions of 
the discontinuities and the quadrupolar parameters (CQ and ηQ). 
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Figure C2: (A) Orientation of the 2H EFG tensor for the deuterons in the alkyl region of 
the macrocycles in the MOF systems. (B) Depiction of the two-site jump motional model. 
The CH2 group jumps through an angle β about an axis that is in the plane of the ring. (C) 
Simulated 2H powder patterns for this motional model simulated in the FML with the 
corresponding values of β. The powder patterns were simulated using a SML EFG tensor 
with CQ = 165 kHz and hQ = 0.0. 
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Figure C3: Simulated 2H SSNMR powder patterns for the two-site jump model with β = 
77° using rates within the three motional regimes. Rates in the SML are considered to be 
≤103 Hz, IMR rates are between 103 and 107 Hz and FML rates are ≥107 Hz. 
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Figure C4: (A) Depiction of the partial rotation motional model. The V33 component of 
the EFG tensor is depicted with the red arrows and jumps between n sites separated by an 
angle γ. Jumps can only occur to adjacent sites. The sites that the deuteron can visit are 
offset from the rotation axis by the angle α. (B) Simulated 2H powder patterns for this 
motional model simulated in the FML as a function of the angles α and γ and by 
considering six rotational steps. The powder patterns were simulated using a SML EFG 
tensor with CQ = 165 kHz and ηQ = 0.0. It is noted that the right-most column represents 
the special case of full rotation. 
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Figure C5: Simulated 2H powder patterns using various rates (k) for different two-site 
jump angles (β). Simulations used a SML EFG tensor with CQ = 165 kHz and ηQ = 0.0. 



309 
 

 
Figure C6: Simulated 2H SSNMR powder patterns for a motional model consisting of 
two-site jumps through an angle of 72° combined with partial rotation where the ring 
jumps through an angle 225° in 45° steps. 
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Figure C7: (A) Schematic diagram showing the sites used in the simulation of β-
UWDM-3. The numbered positions correspond to the rotational sites (1-6 are sites where 
the oxygen atoms on the ring form hydrogen bonds with the axle and sites 7 and 8 
correspond to rotation through the alkyl portion of the ring). Sites a and b correspond to 
the two positions in the two-site jump model where the CD2 groups rotate about an axis 
in the plane of the ring. (B) Kinetic matrix used in the simulation of the high-temperature 
data for β-UWDM-3. j is the rate constant for the two-site jump motion, r is the rate 
constant for rotation between hydrogen-bonding positions and a is the rate constant for 
rotation through the alkyl portion of the ring. 
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Figure C8: VT 2H SSNMR spectra of UWDM-P2 with (A) no solvent, or the addition of 
(B) dimethylformamide, (C) mesitylene, (D) dioxane, (E) 1-butanol, (F) ethylene glycol, 
or (G) triethylene glycol within the pores of the framework. 
 

 

Figure C9: 19F MAS NMR spectra acquired for (A) UWDM-4 (νrot = 18 kHz) and (B) 
UWDM-4•HBF4 (νrot = 9.5 kHz). The blue shaded region shows signal from the BF4

 – 

anion, † denote signal from the Teflon spacers and caps, and * denote spinning sidebands 
of the Teflon signal. 
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Figure C10: 1H-13C CP/MAS (νrot = 8 kHz) acquired at 9.4 T for neutral UWDM-4. The 
resolution of these spectra is too low to observe chemical exchange. 
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Figure C11: (A) Solution-state VT 13C NMR data of the [2]rotaxane made from A4 and 
CE4. (B) The Eyring plot is generated from the 13C NMR data and used to calculate the 
thermodynamic parameters listed in Table 4.12. 
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11 Apendix D Supporting Tables and Figures for Chapter 5 
 
Synthetic procedures: 

Synthesis of (cod)PtCl2 

 (cod)PtCl2 was synthesized using a modified literature procedure.1 K2PtCl4 (830 

mg, 2.00 mmol) was dissolved in distilled H2O which was degassed with N2(g) in a round 

bottomed flask fitted with a condenser. 30 mL of an ethanol solution of 1,5-

cyclooctadiene (0.267 M, 8.00 mmol) was added and the solution was refluxed at 100oC 

for 1 h. After 1 h, the reaction mixture was cooled in an ice bath. The white precipitate 

was collected by Millipore filtration, washed with H2O (3 x 5 mL) and Et2O (3 x 5 mL), 

and dried under high-vacuum to give pure (cod)PtCl2 (620 mg, 83% yield). 

 

Synthesis of 1-H 

 trans-H2Pt(PtBu3)2 was synthesized using a modified literature procedure.2 A 

slurry containing (cod)PtCl2 (112 mg, 0.300 mmol) and NaBH4 (57.0 mg, 1.50 mmol) in 

3.00 mL of dry toluene was prepared in a Pyrex bomb in a glove box under argon 

atmosphere. 600 µL of PtBu3 (1.00 M in toluene, 0.600 mmol) was added and the Pyrex 

bomb sealed. 500 µL of dry EtOH (13.8 mmol) was added using Schlenk line techniques 

under argon. The reaction was stirred overnight (15 h). The solvent was removed in 

vacuo and the crude product was extracted with dry toluene (3 x 2 mL) and filtered 

through a medium grain sintered filter. Slow evaporation of the filtrate under high-

vacuum afforded colourless microcrystals of trans-H2Pt(PtBu3)2 (150 mg, 83.3% yield) 

which were collected and washed with dry hexanes (3 x 250 µL). Recrystallization from 

toluene/hexanes at -30oC gave single crystals suitable for X-ray crystallography. 
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Synthesis of 1 

A slurry containing (cod)PtCl2 (100 mg, 0.267 mmol) and NaBD4 (90.0 mg, 2.14 

mmol) in 3.00 mL of dry toluene was prepared in a Pyrex bomb in a glove box under 

argon atmosphere. 535 µL of PtBu3 (1.00 M in toluene, 0.535 mmol) was added and the 

Pyrex bomb sealed. 500 µL of dry EtOD (13.5 mmol) was added using Schlenk line 

techniques under argon. The reaction was stirred overnight (15 h). The solvent was 

removed in vacuo and the crude products were extracted with dry toluene (3 x 2 mL) and 

filtered through a medium grain sintered filter. Slow evaporation of the filtrate under 

high-vacuum afforded colourless microcrystals composed of a mixture of trans-

H2Pt(PtBu3)2 (1-H), trans-D2Pt(PtBu3)2 (1), trans-HDPt(PtBu3)2, and trans-Pt(PtBu3)2 

[150 mg, 93.8% yield], which was collected and washed with dry hexanes (3 x 250 µL). 

 
Table D1: Recycle delays used in the acquisition of VT 2H SSNMR spectra at 9.4 T 

Compound Recycle delay (s) 
1-D 30 
2-D 30 
3-D 0.5 
4-D 30 
5-D 2.5 

 
 
Table D2: Calculated hydrogen chemical shielding tensor parameters. 

Compound siso W k 
1 31.3 16.4 –0.19 
2 32.7 23.2 –0.03 
4 31.7 23.6 0.35 
5 62.4 27.3 0.57 

a Isotropic chemical shielding: siso = (s11 + s22 + s33)/3. b Span: W = s33 – s11. Skew: k = 
3(diso – d22)/W. The shielding tensor parameters were not converted into chemical shift 
tensor parameters as a suitable reference compound for hydrogen shifts was not 
determined 
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Figure D1: Crystal structure of 1-H showing the disorder of the hydride ligands. Atom 
numbering is shown for one of the phosphine ligands. 

 

 

 
Figure D2: VT 195Pt SSNMR spectra for 1–H acquired at 4.75 T. The low S/N is due to 
the long T1(195Pt) at low temperatures and the experiments being run without 1H 
decoupling. The spectrum at 40 K was acquired with significantly more scans. 
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Figure D3: 2H SSNMR spectra acquired for 1-D at 120 K with different values of the 
interpulse delay (τ). There are no appreciable differences in the spectra, indicating that 
the motion is occurring with rates in the FML. 
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Figure D4: Simulations of the experimental 2H SSNMR for 1 pattern collected at 9.4 T 
and 298 K using Ω = 60 and 13 ppm. The latter value was obtained from DFT 
calculations. The dashed lines show the relative positions of the low-frequency 
discontinuities. 
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Figure D5: View along the C–Pt–C rotation axis showing the relative positions of the 
hydrides in (A) 4-H and (B) 5-H. 

 
References: 
(1)  Baker, M. V.; Brown, D. H.; Simpson, P. V.; Skelton, B. W.; White, A. H.; 

Williams, C. C. J. Organomet. Chem. 2006, 691, 5845–5855. 
(2)  Goel, A. B.; Goel, S. Inorg. Chim. Acta 1982, 65, L77–L78. 
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12 Apendix E Supplementary Information for Chapter 6 
 
Detailed discussion of NLMO analysis of NbCl5 

For atom numbering refer to Figure 6.10(A). Structural data are collected in 
Table E9. Selected LMOs in the Nb2Cl10 complex are displayed in the form of 
isosurfaces in Figure 6.10(B) (see also Figure E18). Calculated and experimental EFG 
parameters are collected in Table 6.2. Graphical representations of the calculated EFG 
tensors are shown in Figure 6.11. An LMO analysis of the V33 for the different chlorine 
types is provided in Table E11. Further details about the composition of the most 
important LMOs are listed in Table E12. The discussion of the results refers frequently 
to the EFG paper by Autschbach, Zheng, and Schurko (AZS), Reference 64. 
The chlorine electronic environment  

The EFGs are best discussed in reference to spherical Cl–
 ions, for which all 

components of the EFG tensor vanish identically.  The LMOs representing the three lone 
pairs (LPs) of a Cl ligand, as calculated with the NBO program, are typically in the form 
of two p LPs and one s LP, where p and s refer to the local metal–Cl bond axis. In 
addition, one finds dative ClàNb s bonds. The pattern is most obvious for the axial 
chlorines, Clax, and similar for the terminal equatorial chlorines Cleq (Figure 6.10(B)). 
The Nb contributions in the s(Cl–Nb) orbitals are 22% (Cleq) and 15% (Clax), 
respectively, indicating that the bonds are only partially covalent. 

In the sets of p LPs, there is also a significant degree of Cl–Nb covalency visible 
in the p LP orbitals. Since Nb(V) has no occupied 4d orbitals, one can indeed expect a 
degree of ClàNb p donation. 

The bridging chlorines, Clbr, afford two formal lone pairs, and two LMOs that 
have 3-center bonding character (labeled as µ in Figure 6.10(B)). When taking linear 
combinations of the 3-center LMOs, the Clbr environment is revealed as affording two 
partially covalent Cl–Nb bonding LMOs, one s LP and one p LP. 
EFGs for the axial terminal chlorines  

The case of the Clax appears to be most straightforward. Because the LPs are 
generated with local p and s symmetry, we discuss the EFG based on an atomic 
hybridization model with two pp lone pairs, and two sp1

 hybrids, one of which is forming 
the ClàNb bond. The orientation of the EFG tensor for Clax is shown in Figure 6.11; the 
principal axis associated with the positive V33 is roughly parallel to the Cl–Nb axis. 
Without a covalent bond, and assuming that V33 lies exactly in the direction of the sp1

 

hybrids, the two p LPs would create relative contributions of +1 each to V33, while each 
sp hybrid would contribute –1, resulting in a vanishing EFG. The LMO compositions in 
Table E12 reveal that the s LP is s-rich while s(Cl–Nb) is p-rich. Sharing of electron 
density of the p-rich hybrid with Nb results, therefore, in a particularly strong loss of 
negative EFG at Cl (i.e., V33 > 0). However, the partially covalent nature of the p LPs 
simultaneously reduces their positive contributions to V33 as well. Therefore, the positive 
EFG for Clax is created by a balance between the s and p donation from Cl to Nb, with 
the latter being weaker. 

The numerical EFG analysis in Table E11 fully supports the qualitative 
assessment. The imbalance between s(Cl–Nb) and s LP Cl(5) due to the p-rich character 
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of the former and the s-rich character of the latter is evident. If s(Cl–Nb) had 100% Cl p 
character and no Nb contributions, its negative contribution to V33 would be twice as large 
in magnitude as those from the p LPs (assuming that the latter also had no Nb character). 

The relatively pure cylindrical symmetry of the Clax environment is visible in the 
equal Nb character of 11% of the two p LP LMOs. The axial symmetry of the EFG 
tensor, with h close to zero, is a consequence of the approximately cylindrical electron 
distribution around the Clax. 
EFGs for the equatorial terminal chlorines  

The graphical representation of the Cleq EFG tensor in Figure 6.11 immediately 
indicates the large asymmetry parameter. The V33 component is in the direction of the Cl-
Nb bonds. The strong asymmetry of the tensor can be traced back to the non-equivalency 
of the formal Cl p LP orbitals. In fact, one of them (labeled py, with the Cl 3py orbital 
lying in the equatorial plane), has a covalent Cl–Nb character of 18%, almost 
approaching that of the s(Cleq–Nb) LMO (22%), while the Cleq pz LP has only 8% Nb 
character which is less than found for the p LPs of Clax. The numerical EFG analysis 
shows that, indeed, the two p orbitals centered at Cleq contribute very differently to V33 at 
Cleq.  The positive contribution from the partially bonding orbital is significantly lower 
than that of the pz LP. 

The EFG for the Cleq is positive overall. The reason is that the s(Cl–Nb) LMO has 
an even larger Nb character (22%) than the chlorine p orbitals. As a consequence, the 
negative V33 contribution from this orbital is particularly small in magnitude. Compare, 
for instance, the contribution of this orbital to V33, –3:9 au, with the –5:7 au generated by 
s(Cl–Nb) LMO at Clax.  Both orbitals have very similar 3p character at Cl (75 and 74%, 
respectively), and therefore the difference in the EFG contributions must be due to the 
differences in the covalent Cl–Nb character. In comparison, the contributions from the s 
LP orbitals at Cleq and Clax are approximately equal. Both of these orbitals also have very 
similar chlorine 3p characters of 26% and 27%, respectively. 

The different nature of the EFG tensor, compared to that for the Clax, with an 
asymmetry parameter much closer to unity and a positive EFG component in the 
direction of the Cl–Nb bond, can be understood with the help of an atomic hybrid orbital 
model. Assume a chlorine sp1

 hybridization with the two sp hybrids along the y direction. 
The set of valence hybrid orbitals can be labeled px; pz; sp1; sp2. Furthermore, assume that 
sp1 is p-rich (75% p character) and sp2 is s-rich (25% p character). We assume 
populations of these Cl centered orbitals that reflect the partially covalent Cl–Nb 
bonding. For instance, consider a configuration (px)1.8(pz)1.9(sp1)1.6(sp2)2, where sp2 is the 
s LP hybrid. The setup approximately reflects the relative magnitudes of the Nb 
contributions in the LMOs according to Table E11. Next, evaluate the EFG tensor for 
such an atomic configuration (see the AZS paper for details and further examples). One 
obtains an h = 1 tensor with Cartesian components (arbitrary units): 

The small depopulation of the pz orbital plays an important role in determining 
the balance between V22 and V33, i.e., in which direction the largest-magnitude component 
lies. For example, for a configuration (px)1.8(pz)2(sp1)1.6(sp2)2, the tensor would be 
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in the same arbitrary units. The axis associated with V33 would now point in the z 
direction (the axial direction in the complex), and the second largest EFG tensor 
component would be along the Cl–Nb direction. 

Without any bonding involving the Cl orbitals of local p symmetry, the EFG 
tensor would afford h = 1, with V33 positive and oriented along the Cl–Nb direction. 
Likewise, equal involvement of the p orbitals would create a tensor with h close to zero, 
as seen for the Clax environments. The experimentally determined large values for the 
asymmetry parameters for the terminal equatorial chlorine atoms can therefore be linked 
to the different involvement of orbitals with local p symmetry in the ligand–metal bonds. 
EFGs for the equatorial bridging chlorines 

The case of the bridging chlorines, Clbr, is also very interesting. As the LMOs 
show, there are two equivalent weakly covalent Clbr–Nb bonds per Cl, along with 
relatively pure LP orbitals, one p (100% Cl 3p), and one s (s-rich, about 70% Cl 3s). The 
largest-magnitude component of the EFG tensor points in the axial direction of the 
complex (along the z direction), as shown in Figure 6.11. 

An understanding of why the tensor adopts this particular orientation in the 
complex derives from an atomic hybridization model for variable hybridization in the xy 
plane as previously adopted in the AZS paper. The set of hybrids formed from a set of s; 
px; py; pz atomic orbitals reads 

 

where g = cot(q/2) goes from 1 to 1/√3 to zero, for an angle q = 90° to q = 120° to q = 
180°, respectively.  The orbitals spn2 and spn3 form a set of bonding hybrids at an angle 
of q, whereas spn1 and pz are considered lone pairs. For a 90° angle, one obtains a set of 
pure s and p orbitals, with spn1 being the s orbital, and spn2 and spn3 being two p orbitals 
pointing along the bonds at 90°. For an angle of 120°, one obtains an sp2 set, along with 
pz. For an angle of 180°, one obtains two sp hybrids and two p orbitals. We refer to this 
set of hybrids as a variable-n spn set. The corresponding EFG tensor for populations of 
less than two for the bonding orbitals has been calculated previously4 as: 

  
Configuration (spn1)2(spn2)2z(spn3)2z(spn4)2 with 0 ≤ z ≤ 1: 
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For a bridging angle of 102°, as adopted in the Nb2Cl10 complex (Table E9), the 
parameter in this model works out to be about 0.81, which gives a negative V33 in z 
direction (axial direction), and a positive V22 component in the xy plane perpendicular to 
the direction of Cl to the Nb–Nb midpoint. The EFG tensor for such an idealized atomic 
configuration is shown in Figure E19 for q = 102° and z = 0.9. It is seen to be a suitable 
approximation of the calculated Clbr EFG tensor for (NbCl5)2 displayed in Figure 6.11. 
The fact that the Clbr s LP orbital is s-rich is already incorporated in the model to a large 
degree. The idealized set of spn hybrids affords 66% s character for orbital spn1. The 
actual s character of the Clbr s LP LMO obtained from the DFT calculation and 
subsequent orbital localization is 70% (Table E12). 

The numerical EFG analysis for Clbr in Table E11 supports the qualitative 
conclusions drawn from the atomic hybrid model: Since the V33 tensor component is 
perpendicular to the equatorial plane (V33 is along z, the axial direction), any depletion of 
chlorine electron density ‘in-plane’,	relative to a spherical Cl– ion, results in a negative 
V33.  The numerical data indeed shows that the positive in-plane EFG contributions at Clbr 
are not capable of balancing the huge negative EFG from the Cl 3pz. The particularly 
large magnitude of V33 for the bridging chlorines may be attributed to two factors: (1) 
The 3pz orbital at Cl is not involved in covalent bonding and therefore fully contributes to 
the EFG. For the other chlorines in the complex, the analysis has shown that there is a 
partial cancellation of EFG contributions from orbitals with local s and p symmetry. (2) 
The Nb–Clbr–Nb angle is only 102°, which means that the partially covalent bonds 
formed between Nb and Cl involve chlorine hybrids that are particularly p-rich. A loss in 
electron density from p-rich orbitals oriented perpendicular to a given axis (z in our case), 
as compared to an electron density loss from hybrids with higher s character, creates a 
particularly large EFG negative magnitude in the axis direction. 

 
Table E1: Experimental times for the acquisition of 35Cl SSNMR spectra at 9.4 and  
21.1 T. 

 9.4 T 21.1 T 
 

Complex 
Number 
of sub-
spectra 

Acquisition 
time per 

sub-
spectrum 

(min) 

Total 
acquisition 

time 
(hours) 

Number 
of sub-
spectra 

Acquisition 
time per 

sub-
spectrum 

(min) 

Total 
acquisition 

time 
(hours) 

WCl6 21 13.5 4.7 2 0.27 0.01 
WOCl4 29 26.9 13 2 2.13 0.07 
MoOCl4 37 13.5 8.3 4 8.53 0.57 
NbCl5 33 13.5 7.4 3 8.53 0.43 
TaCl5 35 13.5 7.9 3 8.53 0.43 

 

V = (1−ζ )
−(1− 2γ 2 ) 0 0

0 (2 −γ 2 ) 0
0 0 −(1+ γ 2 )
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Table E2: WURST-CPMG acquisition parameters for 35Cl SSNMR spectra acquired at 
9.4 T for all samples. 

 WCl6 WOCl4 MoOCl4 NbCl5 TaCl5 
Pulse 
sequence 

WURST-
CPMG 

WURST-
CPMG 

WURST-
CPMG 

WURST-
CPMG 

WURST-
CPMG 

Number of 
sub-spectra 

76 29 37 33 69 

Number of 
scans per sub-
spectrum 

1000 2000 1000 1000 1000 

Recycle delay 
(s) 

0.8 0.8 0.8 0.8 0.8 

Meiboom-Gill 
loops [N] 

40 40 40 40 40 

Real points 
per loop 

100 100 100 100 100 

Acquisition 
length 
(number of 
points) 

4000 4000 4000 4000 4000 

Dwell (µs) 1.0 1.0 1.0 1.0 1.0 
Sweep of 
WURST pulse 
(kHz) 

2000 2000 2000 2000 2000 

Sweep rate of 
WURST pulse 
(MHz/ms) 

40 40 40 40 40 

Spectral width 
(kHz) 

1000 1000 1000 1000 1000 

WURST pulse 
width (µs) 

50 50 50 50 50 

RF power 
(kHz) 

21.7 21.7 21.7 21.7 21.7 

 
  



326 
 

Table E3: WURST-CPMG acquisition parameters for 35Cl SSNMR spectra acquired at 
21.1 T for all samples. 

 WCl6 WOCl4 MoOCl4 NbCl5 TaCl5 WCl6-
SiO2 

Pulse 
sequence 

WURST-
CPMG 

WURST-
CPMG 

WURST-
CPMG 

WURST-
CPMG 

WURST-
CPMG 

WURST-
CPMG 

Number of 
sub-spectra 

2 2 4 3 3 1 

Number of 
scans per 
sub-spectrum 

16 128 512 512 512 56832 

Recycle 
delay (s) 

1 1 1 1 1 1 

Meiboom-
Gill loops 
[N] 

160 160 320 320 160 360 

Real points 
per loop 

1600 1600 1600 1600 1600 200 

Acquisition 
length 
(number of 
points) 

256k 256k 512k 512k 256k 128k 

Dwell (µs) 0.25 0.25 0.25 0.25 0.25 0.25 
Sweep of 
WURST 
pulse (kHz) 

2000 2000 2000 2000 2000 4000 

Sweep rate of 
WURST 
pulse 
(MHz/ms) 

40 40 40 40 40 80 

Spectral 
width (kHz) 

4000 4000 4000 4000 4000 4000 

WURST 
pulse width 
(µs) 

50 50 50 50 50 50 

RF Power 35.7 35.7 35.7 35.7 35.7 35.7 
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Table E4: Pseudopotential information for CASTEP calculations. 

Atom Pseudopotential String 
O 2|1.3|16.537|18.375|20.212|20UU:21UU(qc=7.5)[] 
Cl 2|1.7|5.88|7.35|9.187|30UU:31UU:32LGG[] 
Nb 3|2.2|2.2|1|7.7|8.8|10|40U=–2.145:50U=–0.145:41U=–1.27U=+0.25:42U=–

0.1U=+0[] 
Mo 3|2|2|2|8.9|10.1|11.7|40U=–2.365:50U=–0.15:41U=–1.415U+0.25:42U=–

0.14U=+0.25[] 
Ta 1|2.4|2.4|1.2|7|8.8|10|60U=–0.2U=+1.75:52U=–0.14U=+0[] 
W 3|2.1|2.1|2.1|8.5|9.6|10.6|50U:60U:51UU:52UU[] 
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Table E5: Pre- and post-geometry optimization bond lengths. 

Complex Bond Pre-opt length (Å) Post-opt length (Å) 
a-WCl6 W1-Cl1 2.2374 ± 0.0568 2.2993 
    
b-WCl6 W1-Cl1 2.2551 ± 0.0125 2.2998 
 W1-Cl1 2.2551 ± 0.0103 2.2998 
 W2-Cl2 2.5163 ± 0.0321 2.3007 
 W2-Cl2 2.5170 ± 0.0328 2.3008 
 W2-Cl3 2.0720 ± 0.0252 2.3005 
 W2-Cl3 2.0728 ± 0.0240 2.3006 
    
WOCl4 W1-O1 1.8177 ± 0.1000 1.7369 
 W1-O1 2.1773 ± 0.1000 2.2581 
 W1-Cl1 2.2853 ± 0.0057  2.2971 
    
MoOCl4 Mo1-O1 1.6984 ± 0.0422 1.6638 
 Mo1-Cl1 2.3952 ± 0.0999 2.2839 
 Mo1-Cl2 2.2044 ± 0.0591 2.2956 
 Mo1-Cl3 2.3517 ± 0.1307 2.3625 
 Mo1-Cl4 2.3655 ± 0.0619 2.2941 
 Mo1-Cl3 2.9913 ± 0.0389 3.1039 
    
NbCl5 Nb1-Cl1 2.5719 ± 0.0565 2.5678 
 Nb1-Cl2 2.2587 ± 0.0737 2.2736 
 Nb1-Cl3 2.3045 ± 0.1106 2.3197 
 Nb2-Cl4 2.5691 ± 0.0555 2.5676 
 Nb2-Cl5 2.2519 ± 0.0734 2.2760 
 Nb2-Cl6 2.3027 ± 0.1159 2.3191 
 Nb2-Cl7 2.5559 ± 0.0514 2.5662 
 Nb2-Cl8 2.2560 ± 0.0736 2.2748 
 Nb2-Cl9 2.3043 ± 0.1166 2.3203 
    
TaCl5 Ta1-Cl1 2.5437 ± 0.0104 2.5576 

 Ta1-Cl2 2.2508 ± 0.0134 2.2902 
 Ta1-Cl3 2.3123 ± 0.0217 2.3372 
 Ta2-Cl4 2.5506 ± 0.0103 2.5580 
 Ta2-Cl5 2.2520 ± 0.0132 2.2915 
 Ta2-Cl6 2.3074 ± 0.0224 2.3376 
 Ta2-Cl7 2.5475 ± 0.0103 2.5564 
 Ta2-Cl8 2.2483 ± 0.0132 2.2921 
 Ta2-Cl9 2.3024 ± 0.0223 2.3384 
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Table E6: Initial and post-optimization atomic forces in the structures. 

Complex Atom Pre-optimization Forces 
(eV/Å) 

Post-optimization Forces 
(eV/Å) 

a-WCl6 Cl1 1.537072341 0.007916729 
Cl2 1.537072341 0.007916729 
Cl3 1.537072341 0.007916729 
Cl4 1.537077134 0.007916773 
Cl5 1.537077134 0.007916773 
Cl6 1.537077134 0.007916773 
Cl7 1.537075852 0.007918264 
Cl8 1.537075852 0.007918264 
Cl9 1.537075852 0.007918264 
Cl10 1.537072341 0.007916729 
Cl11 1.537072341 0.007916729 
Cl12 1.537072341 0.007916729 
Cl13 1.537077134 0.007916773 
Cl14 1.537077134 0.007916773 
Cl15 1.537077134 0.007916773 
Cl16 1.537075852 0.007918264 
Cl17 1.537075852 0.007918264 
Cl18 1.537075852 0.007918264 
W1 0 0 
W2 0 0 
W3 0 0 

    
b-WCl6 Cl1 1.098937213 0.005427053 

Cl2 0.881171831 0.004108832 
Cl3 4.224856502 0.003680666 
Cl4 1.098937213 0.005427053 
Cl5 0.881171831 0.004108832 
Cl6 4.224856502 0.003680666 
Cl7 1.098939076 0.005423099 
Cl8 0.881172545 0.004107761 
Cl9 4.22486116 0.003683653 
Cl10 1.098937213 0.005427053 
Cl11 0.881171831 0.004108832 
Cl12 4.224856502 0.003680666 
Cl13 1.098939076 0.005423099 
Cl14 0.881172545 0.004107761 
Cl15 4.22486116 0.003683653 
Cl16 1.098937213 0.005427053 
Cl17 0.881171831 0.004108832 
Cl18 4.224856502 0.003680666 
W1 0 0 
W2 7.88254 0.00658 
W3 7.88254 0.00658 
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WOCl4 O1 2.26108 0.02615 

O2 2.26108 0.02615 
Cl1 0.246414192 0.032597715 
Cl2 0.246414192 0.032597715 
Cl3 0.246414192 0.032597715 
Cl4 0.246414192 0.032597715 
Cl5 0.246414192 0.032597715 
Cl6 0.246414192 0.032597715 
Cl7 0.246414192 0.032597715 
Cl8 0.246414192 0.032597715 
W1 2.027 0.02052 
W2 2.027 0.02052 

    
MoOCl4 O1 1.668418499 0.00342965 

O2 1.668418499 0.00342965 
Cl1 1.047502325 0.007060779 
Cl2 0.960480992 0.006229486 
Cl3 0.104390131 0.007912357 
Cl4 0.536009503 0.006370377 
Cl5 1.047502325 0.007060779 
Cl6 0.960480992 0.006229486 
Cl7 0.104390131 0.007912357 
Cl8 0.536009503 0.006370377 
Mo1 3.067000005 0.009570042 
Mo2 3.067000005 0.009570042 

    
NbCl5 Cl1 0.286530543 0.001447964 

Cl2 0.281517328 0.006154064 
Cl3 0.453164882 0.00643461 
Cl4 0.360999519 0.009185124 
Cl5 0.35690131 0.005401805 
Cl6 0.327939184 0.004142053 
Cl7 0.286530543 0.001447964 
Cl8 0.281517328 0.006154064 
Cl9 0.453164882 0.00643461 
Cl10 0.360999519 0.009185124 
Cl11 0.35690131 0.005401805 
Cl12 0.327939184 0.004142053 
Cl13 0.286530543 0.001447964 
Cl14 0.281517328 0.006154064 
Cl15 0.453164882 0.00643461 
Cl16 0.360999519 0.009185124 
Cl17 0.35690131 0.005401805 
Cl18 0.327939184 0.004142053 
Cl19 0.286530543 0.001447964 
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Cl20 0.281517328 0.006154064 
Cl21 0.453164882 0.00643461 
Cl22 0.360999519 0.009185124 
Cl23 0.35690131 0.005401805 
Cl24 0.327939184 0.004142053 
Cl25 0.286530543 0.001447964 
Cl26 0.281517328 0.006154064 
Cl27 0.453164882 0.00643461 
Cl28 0.360999519 0.009185124 
Cl29 0.35690131 0.005401805 
Cl30 0.327939184 0.004142053 
Cl31 0.286530543 0.001447964 
Cl32 0.281517328 0.006154064 
Cl33 0.453164882 0.00643461 
Cl34 0.360999519 0.009185124 
Cl35 0.35690131 0.005401805 
Cl36 0.327939184 0.004142053 
Cl37 0.286530543 0.001447964 
Cl38 0.281517328 0.006154064 
Cl39 0.453164882 0.00643461 
Cl40 0.360999519 0.009185124 
Cl41 0.35690131 0.005401805 
Cl42 0.327939184 0.004142053 
Cl43 0.286530543 0.001447964 
Cl44 0.281517328 0.006154064 
Cl45 0.453164882 0.00643461 
Cl46 0.360999519 0.009185124 
Cl47 0.35690131 0.005401805 
Cl48 0.327939184 0.004142053 
Cl49 0.171257926 0.004525273 
Cl50 0.120437444 0.008294558 
Cl51 0.371876174 0.002959409 
Cl52 0.171257926 0.004525273 
Cl53 0.120437444 0.008294558 
Cl54 0.371876174 0.002959409 
Cl55 0.171257926 0.004525273 
Cl56 0.120437444 0.008294558 
Cl57 0.371876174 0.002959409 
Cl58 0.171257926 0.004525273 
Cl59 0.120437444 0.008294558 
Cl60 0.371876174 0.002959409 
Nb1 0.387779713 0.003866614 
Nb2 0.387779713 0.003866614 
Nb3 0.387779713 0.003866614 
Nb4 0.387779713 0.003866614 
Nb5 0.387779713 0.003866614 
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Nb6 0.387779713 0.003866614 
Nb7 0.387779713 0.003866614 
Nb8 0.387779713 0.003866614 
Nb9 0.28832 0.00532 
Nb10 0.28832 0.00532 
Nb11 0.28832 0.00532 
Nb12 0.28832 0.00532 

    
TaCl5 Cl1 0.912403647 0.002330536 

Cl2 0.558784658 0.007632876 
Cl3 0.932347808 0.003890578 
Cl4 0.677532468 0.009191175 
Cl5 1.021712316 0.006893976 
Cl6 0.763711531 0.007362228 
Cl7 0.912403647 0.002330536 
Cl8 0.558784658 0.007632876 
Cl9 0.932347808 0.003890578 
Cl10 0.677532468 0.009191175 
Cl11 1.021712316 0.006893976 
Cl12 0.763711531 0.007362228 
Cl13 0.912403647 0.002330536 
Cl14 0.558784658 0.007632876 
Cl15 0.932347808 0.003890578 
Cl16 0.677532468 0.009191175 
Cl17 1.021712316 0.006893976 
Cl18 0.763711531 0.007362228 
Cl19 0.912403647 0.002330536 
Cl20 0.558784658 0.007632876 
Cl21 0.932347808 0.003890578 
Cl22 0.677532468 0.009191175 
Cl23 1.021712316 0.006893976 
Cl24 0.763711531 0.007362228 
Cl25 0.912403647 0.002330536 
Cl26 0.558784658 0.007632876 
Cl27 0.932347808 0.003890578 
Cl28 0.677532468 0.009191175 
Cl29 1.021712316 0.006893976 
Cl30 0.763711531 0.007362228 
Cl31 0.912403647 0.002330536 
Cl32 0.558784658 0.007632876 
Cl33 0.932347808 0.003890578 
Cl34 0.677532468 0.009191175 
Cl35 1.021712316 0.006893976 
Cl36 0.763711531 0.007362228 
Cl37 0.912403647 0.002330536 
Cl38 0.558784658 0.007632876 
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Cl39 0.932347808 0.003890578 
Cl40 0.677532468 0.009191175 
Cl41 1.021712316 0.006893976 
Cl42 0.763711531 0.007362228 
Cl43 0.912403647 0.002330536 
Cl44 0.558784658 0.007632876 
Cl45 0.932347808 0.003890578 
Cl46 0.677532468 0.009191175 
Cl47 1.021712316 0.006893976 
Cl48 0.763711531 0.007362228 
Cl49 0.310815588 0.004346596 
Cl50 0.222146514 0.005438318 
Cl51 0.24656556 0.002262145 
Cl52 0.310815588 0.004346596 
Cl53 0.222146514 0.005438318 
Cl54 0.24656556 0.002262145 
Cl55 0.310815588 0.004346596 
Cl56 0.222146514 0.005438318 
Cl57 0.24656556 0.002262145 
Cl58 0.310815588 0.004346596 
Cl59 0.222146514 0.005438318 
Cl60 0.24656556 0.002262145 
Ta1 0.730966338 0.008209294 
Ta2 0.730966338 0.008209294 
Ta3 0.730966338 0.008209294 
Ta4 0.730966338 0.008209294 
Ta5 0.730966338 0.008209294 
Ta6 0.730966338 0.008209294 
Ta7 0.730966338 0.008209294 
Ta8 0.730966338 0.008209294 
Ta9 0.67992 0.00479 
Ta10 0.67992 0.00479 
Ta11 0.67992 0.00479 
Ta12 0.67992 0.00479 
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Table E7: Calculated (using CASTEP) 35Cl CS tensor parameters. Calculation of the 
NMR parameters was completed both prior to and post geometry optimization of the 
structure. 

Complex Atom Pre-optimization Post-optimization 
diso (ppm) W (ppm) k diso (ppm) W (ppm) k 

a-WCl6 Cl1 837.67 58.39 –0.057 899.92 69.83 0.593 
        
b-WCl6 Cl1 833.16 196.15 0.497 887.60 228.91 0.471 

Cl2 703.09 430.12 –0.277 884.81 248.47 0.435 
Cl3 960.76 337.20 0.868 899.30 217.62 0.450 

        
WOCl4 Cl1 767.43 305.65 –0.618 740.92 342.07 –0.868 
        
MoOCl4 Cl1 910.467 517.37 –0.427 886.95 660.23 –0.515 

Cl2 974.01 798.07 –0.521 921.73 695.72 –0.189 
Cl3 620.29 487.24 –0.398 604.14 419.02 –0.571 
Cl4 901.71 725.77 0.104 875.33 762.19 –0.050 

        
NbCl5 Cl1 983.63 986.15 0.228 963.76 1080.89 0.308 

Cl2 819.59 617.09 0.888 837.78 659.78 0.807 
Cl3 978.82 1012.70 0.216 983.04 1082.83 0.365 
Cl4 821.88 600.31 0.961 854.32 700.90 0.734 
Cl5 982.61 1005.64 0.229 998.06 1025.27 0.169 
Cl6 802.45 614.45 0.972 841.50 669.54 0.837 
Cl7 378.80 172.63 0.046 363.55 255.67 0.462 
Cl8 352.46 231.48 0.450 386.77 194.88 0.602 
Cl9 373.91 242.50 0.374 354.48 227.72 –0.079 

        
TaCl5 Cl1 893.95 856.60 0.306 928.36 955.42 0.293 
 Cl2 710.42 502.02 0.853 734.55 540.63 0.927 
 Cl3 890.23 864.97 0.280 931.61 927.24 0.286 
 Cl4 711.71 490.51 0.902 742.93 558.12 0.884 
 Cl5 894.66 856.47 0.277 927.06 930.19 0.349 
 Cl6 705.12 509.10 0.862 735.30 571.27 0.844 
 Cl7 310.50 217.23 0.228 323.33 251.67 0.529 

 Cl8 302.39 214.81 0.311 334.30 189.24 0.306 
 Cl9 306.71 216.35 0.260 338.56 214.42 0.428 
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Table E8: T2 measurements made by placing the transmitter on each of the 
discontinuities of the 35Cl SSNMR powder patterns. 

Complex Discontinuity a Frequency (MHz) T2 (ms) 
WCl6 HF horn 88.484744 126(3) 
 central 88.2361209 116(3) 
 LF horn 87.8422801 88(1) 
    
WOCl4 HF horn 88.5861728 93(2) 
 central 88.2163264 61(2) 
 LF horn 87.6489894 62(1) 
    
MoOCl4 HF horn, large 88.5282208 53(1) 
 HF horn, mid 88.4728915 51(1) 
 HF horn, small 88.4240720 50(1) 
 central 88.2792384 46(1) 
 central 2 88.2515733 44(1) 
 LF horn, small 87.9944541 42(1) 
 LF horn, mid 87.9684169 41(1) 
 LF horn, large 87.8677108 42(1) 
    
NbCl5 HF horn, large 88.4684169 66(3) 
 HF horn, mid 88.3638598 76(1) 
 HF horn, small 88.2329408 82(1) 
 central 88.2320458 84(1) 
 central 2 88.2108905 82(1) 
 LF horn, small 88.1848523 86(1) 
 LF horn, mid 88.0546653 79(1) 
 LF horn, large 87.8203284 58(2) 
    
TaCl5 HF horn, large 88.4561412 13(1) 
 HF horn, mid 88.3659350 33(1) 
 HF horn, small 88.3364512 34(1) 
 central 88.2229182 30(1) 
 LF horn, small 88.1346461 30(1) 
 LF horn, mid 88.0093982 27(1) 
 LF horn, large 87.8818843 26(1) 
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Table E9: Structural parameters of (NbCl5)2. Selected averaged XRD and optimized 
(OPT)a bond distances (Å) and bond angles (°). 

Bond XRD OPT 
Nb-Clax 2.304 2.333 
Nb-Cleq 2.254 2.290 
Nb-Clbr 2.563 2.604 

Nb-Nb-Clax 84.3 84.9 
Nb-Clbr-Nb 101.9 102.9 

aXRD were used as starting geometries then optimized with scalar-ZORA/revPBE/TZ2P. 

 

Table E10:Comparison of experimental (EXP) and calculated 35Cl EFG tensor 
parameters (using ADF and CASTEP (CSP)) on a geometry optimized structure of 
NbCl5, as well as ADF calculations performed on non-optimized crystal structures 
(XRD). 

 CQ (MHz)a ηQ
b V33 (au)c 

Cl EXP ADF CSP XRD EXP ADF CSP XRD EXP ADF CSP XRD 
2  14.30 −15.55 −12.61 −13.53 0.72 0.79 0.75 0.85 −0.75 0.81 0.66 0.71 
3  −15.55 −12.61 −13.53  0.79 0.75 0.85  0.81 0.66 0.71 
7  −15.54 −14.28 −13.31  0.79 0.80 0.85  0.81 0.74 0.69 
8  −15.54 −14.28 −13.31  0.79 0.80 0.85  0.81 0.74 0.69 
1 25.35 25.40 24.74 25.28 0.375 0.40 0.42 0.31 −1.32 −1.32 −1.29 −1.32 
6  25.39 23.22 24.96  0.40 0.48 0.32  −1.32 −1.21 −1.30 
4 14.25 −13.54 −13.24 −12.94 0.052 0.01 0.10 0.07 −0.74 0.71 0.69 0.67 
5  −13.54 −13.24 −12.94  0.01 0.10 0.07  0.71 0.69 0.67 
9  −13.40 −13.07 −12.87  0.01 0.17 0.07  0.70 0.68 0.67 

10  −13.40 −13.07 −12.87  0.01 0.17 0.07  0.70 0.68 0.67 
a CQ = eQV33/h, b ηQ = (V11 – V22)/V33, c V33 is the largest component of the EFG tensor in 
its principal axis system. 
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Table E11: LMO contributions to the V33 component of equatorial (eq), bridging (br) and 
axial (ax) chlorides in the complex (NbCl5)2. All values are in au. 

LMO type Cleq(8) Clbr(6) Clax(5) 
core Cl(5) 0.03 –0.05 0.06 
core Cl(6) 0.02 –0.16 0.01 
core Cl(8) 0.08 0.01 0.04 
core Cls 0.26 –0.17 0.23 
core Nb –0.57 0.40 –0.52 

px LP Cl(5) 0.00 –0.01 3.91 
py LP Cl(5) 0.01 –0.01 4.28 
px LP Cl(6)(µ) 0.01 3.89 0.00 
µ(Nb-Cl-Nb) 0.01 2.71 0.00 
pz LP Cl(6) 0.01 –9.19 0.01 
p LP Cl(8) 4.46 0.00 0.09 
p LP Cls 0.06 0.02 0.15 
p (Cl4-Nb) 0.02 –0.02 0.02 
p (Cl8-Nb) 2.38 0.01 0.00 
s LP Cl(5) 0.01 –0.01 –2.02 
s LP Cl(6) 0.01 1.32 0.01 
s LP Cl(8) –2.13 0.00 0.01 
s LP Cls 0.05 –0.03 0.05 
s (Cl5-Nb) 0.00 –0.01 –5.66 
s (Cl8-Nb) –3.93 0.00 0.00 
s (Cls-Nb) 0.03 –0.02 0.01 
S Analysis 0.81 –1.33 0.69 

Total Calculated +0.81 –1.32 +0.71 
Cls = All other chlorides not listed in sites 5,6 or 8 of complex NbCl5. LP = lone pair 
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Table E12: Bonds orders and compositions of selected chlorine-centered LMOs 

Equatorial Cl Bridging Cl Axial Cl 
WBI(Cleq-Nb) = 1.17 WBI(Clbr-Nb) = 0.49 (ea.) WBI(Clax-Nb) = 1.06 

   
py(Cleq-Nb) px LP Clbr (µ bonding) px LP Clax 

82 Cl s(1)p(99)d(0) 86 Cl s(0)p(100)d(0) 87 Cl s(1)p(99)d(0) 
18 Nb s(1)p(0)d(99) 6 Nb s(18)p(3)d(79) 11 Nb s(1)p(1)d(98) 

 5 Nb s(19)p(3)d(78)  
   

pz LP Cleq µ(Nb-Cl-Nb) py LP Clax 
89 Cl s(0)p(100)d(0) 84 Cl s(30)p(70)d(0) 87 Cl s(0)p(100)d(0) 
8 Nb s(0) p(1) d(98) 6 Nb s(15)p(1)d(83) 11 Nb s(0)p(1)d(99) 

 6 Nb s(16)p(1)d(83)  
   

s LP Cleq pz LP Clbr s LP Clax 
99 Cl s(74)p(26)d(0.02) 98 Cl s(0)p(100)d(0) 99 Cl s(73)p(27)d(0) 

   
s(Cleq-Nb) s LP Clbr s(Clax-Nb) 

78 Cl s(25)p(75)d(0) 98 Cl s(70)p(30)d(0) 82 Cl s(26)p(74)d(0) 
22 Nb s(20)p(1)d(79) 1 Nb s(9)p(1)d(89) 15 Nb s(18)p(1)d(81) 

All integers are in percent(%). ea. = each of the bridging chlorides 
 
 

 
Figure E1: Depections of the packing of atoms in the unit cell for α-WCl6 with views 
along the crystallographic (A) a-axis, (B) b-axis, (C) c-axis and (D) [111] plane. 



339 
 

 

Figure E2: Depections of the packing of atoms in the unit cell for β-WCl6 with views 
along the crystallographic (A) a-axis, (B) b-axis, (C) c-axis and (D) [111] plane. 

 

Figure E3: Depections of the packing of atoms in the unit cell for WOCl4 with views 
along the crystallographic (A) a-axis, (B) b-axis, (C) c-axis, and (D) the [111] plane. 
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Figure E4: Depections of the packing of atoms in a 2x2x2 supercell for MoOCl4 with 
views along the crystallographic (A) a-axis, (B) b-axis, (C) c-axis, and (D) [111] plane. 

 

Figure E5: Depections of the packing of atoms in the unit cell for NbCl5 with views 
along the crystallographic (A) a-axis, (B) b-axis, (C) c-axis, and (D) [111] plane. 
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Figure E6: Depections of the packing of atoms in the unit cell for TaCl5 with views 
along the crystallographic (A) a-axis, (B) b-axis, (C) c-axis, and (D) [111] plane. 

 

Figure E7: Experimental PXRD pattern for WCl6 shown as the black trace. Simulated 
patterns for α-WCl6 (red trace) and β-WCl6 (blue trace). 
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Figure E8: Experimental (black trace) and simulated (red trace) PXRD patterns for 
WOCl4. 

 

 

Figure E9: Experimental (black trace) and simulated (red trace) PXRD patterns for 
MoOCl4. 
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Figure E10: Experimental (black trace) and simulated (red trace) PXRD patterns for 
NbCl5. 

 

Figure E11: Experimental (black trace) and simulated (red trace) PXRD patterns for 

TaCl5. 
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Figure E12: Static 35Cl SSNMR spectrum of α-WCl6 acquired at 9.4 T with 
corresponding analytical simulation (red trace). 

 

Figure E13: Static 35Cl SSNMR powder pattern for WOCl4 acquired at 9.4 T and 
corresponding analytical simulation (red trace). 
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Figure E14: Static 35Cl SSNMR powder pattern for MoOCl4 acquired at 9.4 T. 
Analytical simulations for the individual sites are show in blue, green, black, and orange. 
The red trace is an analytical simulation representative of the entire powder pattern 

 

Figure E15: Static 35Cl SSNMR powder pattern for NbCl5. Analytical simulations are 
shown in blue (bridging), green (terminal axial), and orange (terminal equatorial). The 
red trace is an analytical simulation representative of the entire powder pattern. 
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Figure E16: Static 35Cl SSNMR powder pattern for TaCl5. Analytical simulations are 
shown in blue (bridging), green (terminal axial), and orange (terminal equatorial). The 
red trace is an analytical simulation representative of the entire powder pattern. 

 

Figure E17: Simulation of the 35Cl SSNMR powder pattern for the terminal-equatorial 
site in NbCl5 including only the quadrupolar interaction (bottom trace) and both the 
quadrupolar and CSA interactions (top trace). 
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Figure E18: Dative (Cl→Nb) bonds in NbCl5. Linear combinations of (A) (v+vi)/√2 
and (B) (v-vi)/√2 of LMOs (v) and (vi) of Figure 6.9(B). 

 

Figure E19: Graphical representation of the EFG related to the spn set of hybrid orbitals 
of Eq. (3). Electron configuration (spn1)2(spn2)1.8(spn3)1.8(spn4)2. Angle θ between spn2 
and spn3: 102°. The negative tensor component V33 (orange) is perpendicular to the plane 
spanned by the directional vectors of the two bonding hybrids with occupancy lower than 
two. 
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Figure E20: Analytical simulations of static 35Cl SSNMR spectra acquired at 18.8 T for 
α-WCl6 (red trace) and WCl6-SiO2 (blue trace). 
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