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Abstract

Blind source separation/extraction (BSS/BSE) is a powerful signal processing

method and has been applied extensively in many fields such as biomedical sci-

ences and speech signal processing, to extract a set of unknown input sources from

a set of observations. Different algorithms of BSS were proposed in the literature,

that need more investigations, related to the extraction approach, computational

complexity, convergence speed, type of domain (time or frequency), mixture prop-

erties, and extraction performances. This work presents a three new BSS/BSE

algorithms based on computing new transformation matrices used to extract the

unknown signals. Type of signals considered in this dissertation are speech, Gaus-

sian, and ECG signals. The first algorithm, named as the BSE-parallel linear

predictor filter (BSE-PLP), computes a transformation matrix from the the co-

variance matrix of the whitened data. Then, use the matrix as an input to linear

predictor filters whose coefficients being the unknown sources. The algorithm has

very fast convergence in two iterations. Simulation results, using speech, Gaus-

sian, and ECG signals, show that the model is capable of extracting the unknown

source signals and removing noise when the input signal to noise ratio is varied

from –20 dB to 80 dB.

The second algorithm, named as the BSE-idempotent transformation matrix (BSE-

ITM), computes its transformation matrix in iterative form, with less computa-

tional complexity. The proposed method is tested using speech, Gaussian, and

ECG signals. Simulation results show that the proposed algorithm significantly

vi



Abstract vii

separate the source signals with better performance measures as compared with

other approaches used in the dissertation.

The third algorithm, named null space idempotent transformation matrix (NSITM)

has been designed using the principle of null space of the ITM, to separate the un-

known sources. Simulation results show that the method is successfully separating

speech, Gaussian, and ECG signals from their mixture. The algorithm has been

used also to estimate average FECG heart rate. Results indicated considerable

improvement in estimating the peaks over other algorithms used in this work.
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Chapter 1

Introduction

1.1 Motivation of this work

Blind source separation (BSS) is a powerful signal processing method that was

proposed in the late 1980s. As the product of artificial neural networks, statistical

signal processing, and information theory, BSS has become an important topic

in research and development in the biomedical sciences, speech signal communi-

cation, image processing, earth science, and text data mining [1]. The Source

Separation (SS), also called Signal Separation, is defined as the process of recov-

ering a set of unknown source “signals” (time series, images. . . ) from a set of

observations (i.e. measured signals), which are mixtures of these source signals.

The BSS configuration corresponds to the case when the parameter values of the

considered mixing model are unknown [1]. In BSS, we can either simultaneously

recover all the source signals from their mixtures, or extract only one or a sub-

set of the sources at a time. The latter case is also referred to as blind source

extraction (BSE) [3]. Fig. 1.1 illustrates a block diagram of BSS system. The sig-

nals s1(n), s2(n), . . . , sL(n) are L unknown source signals, where n is the sampling

index. The mixing system produces M mixing signals x1(n), x2(n), . . . , xM(n).

1
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Figure 1.1: Block diagram of BSS system [1]

These signals are captured by M sensors. The mixing system can be regarded as

an M × L matrix A, with entries [A]ij = aij, i = 1, 2, . . . ,M, j = 1, 2, . . . , L, such

that [2, 3]

x(n) = As(n), (1.1)

where

x(n) =


x1(n)

x2(n)
...

xM(n)

 , A =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

...

aM1 aM2 · · · aMN

 ,

s(n) =


s1(n)

s2(n)
...

sL(n)

 . (1.2)



Introduction 3

1.2 BSS problem

The aim of BSS problem is to solve (1.1) in which s(n) and A are unknowns [4].

The solution involves finding an L×M demixing matrix H such that

y(n) = Hx(n), (1.3)

where y(n) is the extracted source signals, given by

y(n) =


y1(n)

y2(n)
...

yL(n)

 ,

and H is the generalized inverse of A. As A is an M × L matrix, three possible

situations arises:

First: M = L, the complete problem, or the critically-determined case [7]. This

is the BSS problem in which H = A−1. Both H and A are square matrices.

Many algorithms in BSS have been developed for the linear instantaneous mix-

tures assume M = L, which is referred to as “complete”.

Second: M > L, the over-determined problem in which number of mixtures are

greater than the unknown sources, and H = A+ is the Moore-Penros inverse of

A, such that H = AT (AAT )−1 [6, 7].
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Third: M < L, the under-determined problem in which number of mixtures are

less than the unknown sources. This problem is complex and required special al-

gorithms to extract the sources [8, 9].

In this dissertation, we consider only the first two cases, i.e, the critically deter-

mined case (M = L), and the over-determined case M > L.

1.3 BSS algorithms

Several BSS approaches were proposed in the literature to solve (1.3) and estimate

H and s(n) . Most of these algorithms assumed prior knowledge about the un-

known sources.

The independent component analysis (ICA) approach assumes statistically inde-

pendent sources [2, 3]. The core concept of ICA is to use higher order statistics

to minimize the statistical dependence between the sources. This can be achieved

using different algorithms such as FastICA [10], Joint approximate diagonalization

of eigen-matrices (JADE) [11], Infomax [12], and c-ICA [14]. Note that statisti-

cal independence is a strong condition that makes the BSS solution unique up to

scaling and permutation ambiguity [14].

The second-order blind identification (SOBI) approach assumes that sources are

stationary, but mutually uncorrelated in time. Under this assumption, the BSS

problem can be resolved using the second-order statistics rather than the higher

order statistics used for ICA [13].

The BSE based linear predictor (BSE-LP) approach assumes that the sources are

not correlated with each other and every source has a different temporal struc-

ture. The core concept of BSE-LP is to minimise the normalized mean squared

prediction error (MSPE) and address the optimized extracted sources [3].

The null space component (NCA) approach uses a deterministic method based on
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the assumption that the sources are linearly independent rather than statistically

independent. The NCA approach associates each signal with a signature operator

so that the rotation ambiguity can be removed. Both ICA and NCA represent the

smallest amount of information that can be adopted for solving the BSS problem

[14].

The BSS based non-negative matrix factorization (BSS-NMF) approach assumes

non-negativity of the observations, mixing coefficients and sources. The principle

of BSS-NMF consists in finding non-negative matrix product factors of the input

mixture then apply different updating rules to address the optimum source and

demixing matrix solution [15].

BSS based Sparse component analysis (BSS-SCA) approach assumes that the

sources are sparse or can be “sparsified”, and contains as many zeros as possi-

ble. The sources need not be statistically independent. The mixing matrix entries

can be retrieved from the scatter plot of the sparsified mixtures [16].

1.4 BSS applications

The BSS found many applications such as acoustics, biomedical signal processing,

and image processing.

1.4.1 BSS based Acoustics

A wide range of BSS applications in acoustics were recorded in the literature,

including cross-talk removal, speech separation, auditory perception, scene anal-

ysis,coding, recognition, synthesis and segmentation, psycho-acoustics, reverbera-

tion, echo and noise suppression and cancellation, signal enhancement, automatic

speech recognition (ASR) in reverberant and noisy acoustical settings. Potential

uses in mobile telephony, hands-free devices, human-machine interfaces (HMIs),
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Figure 1.2: Speech signal separation using BSS [20].

hearing aids, cochlear implants, airport surveillance, automobiles and aircraft

cockpit environments [17, 18, 20–23]. Speech Signal Separation is one of the im-

portant applications in acoustic. The method solves the well known cocktail-party

problem. Fig. 1.2 illustrates an example of a speech separation system using BSS

[20]. The observed signal is the convolution of impulse responses produced by

the comprehensive interaction of the source speech signal, the sensor, and the

surrounding environment. Since in real-life situations the positions of the micro-

phones with respect to the sources can be rather arbitrary, the mixing process is

not known, and thus has to be estimated blindly. In this situation, BSS algorithms

are important.

1.4.2 BSS based biomedical signal processing

This is a very promising area of application for BSS techniques, not only because

it is an area of rapid growth and great importance, but also because certain kinds

of brain imaging data seem to be quite well described by the BSS model [1]. In

biomedical signal processing, the BSS algorithms were applied to solve many prob-

lems, including non-invasive separation of fetal from maternal electrocardiograms

(ECGs), enhancement, and decomposition [25–28]. The fetal ECG (FECG) ex-

traction and enhancement method requires the elimination of the maternal ECG
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Figure 1.3: Block diagram of FECG extraction system [29]. RE is the refer-
ence electrode, and FSE is the Fetal Scalp Electrode.

Figure 1.4: Typical ECG signals. (a) maternal ECG (MECG). (b) fetal ECG
(FECG). (c) abdominal ECG (mixture of FECG and MECG) [30].

(MECG) from the ECG mixture which is the abdominal signals. The frequencies

of both signals (FECG and MECG) are few Hertz’s and are possibly overlap-

ping. Thus, separating them using the conventional linear filter fails. To address

this problem, a non-invasive BSS based FECG extraction algorithms have been

proposed. Fig. 1.3 illustrates an example of a FECG extraction system. The ab-

dominal signals were passed to the BSS algorithm to separate the FECG from the

MECG signals. Fig. 1.4 illustrates examples of MECG, FECG, and the abdominal

signals. The aim of the non-invasive BSS is to recover the FECG signal from the

knowledge of the abdominal signals.
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Figure 1.5: separation of overwriting and underwriting from an RGB real-fake
palimpsest. (a) the red channel; (b) the green channel; (c) the blue channel; (d)

first separated text; (e) second separated text [36]

1.4.3 BSS based image processing

BSS based image processing is widely used in image feature extraction, face recog-

nition, moving object detection, digital image watermarks, image denoising, im-

age separation, and image restoration [1, 32, 36]. Fig. 1.5 illustrates separation

of overwriting and underwriting from an RGB real-fake palimpsest [36], gener-

ated by hand and then scanned. The purpose of this analysis is the recovery

of the underwriting, which simulates an older text erased and then overwritten.

Figure. 1.5(a-c) illustrates the red, green, and blue channels, respectively. Fig-

ure. 1.5(d-e) illustrates the first and second ICA outputs which represent the

extracted underwriting.
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1.5 Research contribution

The main research contributions described in this dissertation are as follows.

1.5.1 Efficient blind source extraction of noisy mixture uti-

lizing a class of parallel linear predictor filters

An efficient blind source extraction algorithm of a noisy mixture using a class

of parallel linear predictor filters has been designed. Analysis of a noisy mixture

equation is carried out to address new autoregressive source signal model based on

the covariance matrix of the whitened data. A method of interchanging the rules

of filter inputs is proposed such that this matrix becomes the filter input while the

estimated source signals are considered as the parallel filter coefficients. As the

matrix has unity norm and unity eigenvalues, the filter becomes independent on

the mixture signal norm and eigenvalues variations, thus solving drastically the

ambiguity due to the dependency of the filter on the mixture power levels if the

mixture is considered as the filter input. Furthermore, the unity eigenvalues of

the matrix result in a very fast convergence in two iterations. Simulation results,

using speech and Gaussian signals, show that the model is capable of extracting

the unknown source signals and removing noise when the input signal to noise

ratio is varied from –20 dB to 80 dB. The work has been published in IET signal

processing [37].
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1.5.2 Extraction of fetal electrocardiogram signals using

Blind Source Extraction Based Parallel Linear Pre-

dictor filter (BSE-PLP)

The blind source extraction (BSE) based parallel linear predictor filter (PLP) al-

gorithm has been applied to extract Fetal Electrocardiogram (ECG) signals. First,

the ECG signals are modelled using the linear mixture model. Then, the BSE-

PLP algorithm is applied to extract both the maternal and fetal ECG signals.

Simulation results show that the model is successfully extracting all the unknown

FECG and MECG signals, for both synthesized and real ECG data. The algo-

rithm is also tested using the sensitivity and accuracy R-peak extraction metrics.

The recorded values for the two metrics are 95.45% and 91.3%, respectively, and

show considerable improvements as compared to PCA, FastICA, and SOBI algo-

rithms. The work has been accepted for publication in the proceedings of the 2018

IEEE international symposium on signal processing and information technology

(ISSPIT).

1.5.3 A computationally efficient blind source extraction

using Idempotent Transformation Matrix (ITM)

A computationally efficient blind source extraction algorithm based on idempo-

tent transformation matrix (ITM) has been designed. The algorithm computes

the ITM with less computational complexity as compared with the standard sin-

gular value decomposition (SVD) method. New optimization problem was defined

according to the proposed matrix equation, and solved by an iterative algorithm

with low computational complexity. The proposed method is tested using speech,

Gaussian, and ECG signals. The performance measures used in this work are

the signal-to-interference ratio, signal-to-distortion ratio, and signal-to-artifact ra-

tio. Simulation results show that the proposed algorithm significantly separate
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the source signals with better performance measures as compared with the state

of the art approaches such as the BSE-PLP, second order blind identification

(SOBI), Principal Component Analysis (PCA), and fast independent component

analysis (FastICA). The work has been published in Circuits, Systems, and Signal

Processing [34].

1.5.4 Detection and extraction of fetal electrocardiogram

signals using null space transformation matrices

A new algorithm of FECG extraction based on null space transformation matrix,

named as Null space idempotent transformation matrix (NSITM), has been de-

signed. First, the ECG mixture signals are used to compute the transformation

matrix based on the mixture covariance matrix. Then, the fetal ECG signal is

extracted from the null space of the ITM. The algorithm is tested to extract the

FECG and maternal ECG (MECG) signals, as well as to detect the R peaks.

Real ECG Data considered in this paper are collected from DAISY and Physionet

databases. The synthesized ECG data are collected from Physionet/Fetal ECG

Synthetic database. Results from real database indicate improvement in average

FECG heart rate estimation and in R peaks evaluation metrics, as compared with

values from principal component analysis (PCA) and fast independent component

analysis (FastICA) algorithms. Results from synthesized ECG data show success-

ful extracting of both FECG and MECG signals from all data. The extraction

performances of the synthesized ECG data show considerable improvement over

other algorithms used in this work, when signal-to-noise ratio (SNR) increases

from 0 dB to 12 dB. The work has been submitted for publication.
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1.6 Dissertation structure

The rest of this dissertation is organized as follows:

− Chapter 2 presents a paper on blind source extraction of a noisy mixture us-

ing a class of parallel linear predictor filters, oriented to speech and Gaussian

signal extraction. This work has been published in IET signal processing,

2018, vol. 12, issue 8, pp, 1009-1016.

− Chapter 3 presents another work on using the parallel linear predictor filters,

oriented to ECG extraction. The work has been accepted for publication in

the proceedings of the 2018 IEEE international symposium on signal pro-

cessing and information technology (ISSPIT), Dec. 6-8, 2018, Louisville,

KY, USA.

− Chapter 4 presents a paper on Blind Source Extraction Using Idempotent

Transformation Matrix. The work has been published in Circuits, Systems,

and Signal Processing, Oct 2018, pages 1-21, Springer publisher.

− Chapter 5 presents a work on using the null space method, oriented to ECG

signal separation. The work has been submitted for publication.

− Chapter 6 outlines the summary of this work, conclusions and the future

work.

− Appendix A contains the list of published journal and conference papers.
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Chapter 2

Blind Source Extraction Using

Parallel Linear Predictor Filter

(BSE-PLP)

2.1 Introduction

Blind source separation (BSS) is the reconstruction of some unobserved sources

from a set of observed signals [1]. Blind source extraction (BSE) is a special type

of BSS framework, that extracts one or limited source signals at a time, instead

of recovering the entire source signals [2]. BSS/BSE applications can be found in

telecommunications, signal processing, biomedical sciences and machine learning

[3, 4].

In BSE, linear prediction (LP) technique has been recently used to extract the

original source signals by estimating their autoregressive (AR) models from the

knowledge of the input mixtures [5–9]. The prediction error can be minimized us-

ing different algorithms, such as the recursive least squares (RLS) [7, 8], Kalman

filter [8, 10], and the standard gradient descent algorithm (GDA) [5, 11]. Due to

18
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the complex computations of RLS algorithms, only BSE-LP based GDA will be

investigated in this chapter.

Ferdowsi et al proposed a joint BSE-LP model based on short-term and long-term

prediction [5]. The GDA was used to estimate the demixing vector and the filter

coefficients. However, the update of these terms require complex computations.

Liu et al. proposed a class of BSE-LP algorithms of noiseless mixture based on a

new cost function needed to solve the ambiguity associated with the power levels

of the sources [12]. A similar approach was reported for noisy mixture using dual

LP structure [13]. The noise effect was removed implicitly in the cost function.

However, the cost function requires complex computations since it considers the

ambiguity of the source signals power level. Also, the performance of the model

with signal-to-noise ratio (SNR) variations is not investigated.

In addition to the complexity in updating the coefficients in the methods described

in [5, 12, 13], these methods have another drawbacks in which the prediction filter

length is unknown and being selected arbitrary. This affect the convergence speed

and the extraction performance. Also, the convergence is slow and its learning

rate is altered by the input mixture power.

In this chapter, we consider the above factors and propose a novel BSE system

based on a new class of parallel linear predictor (PLP) filters. The new system

model estimates the source AR temporal structure from the knowledge of the co-

variance matrix of the whitened data. Then, parallel adaptive filtering based on

GDA is applied, by interchanging the rules of filter inputs, to estimate the in-

put sources and the demixing matrix. The design factors considered in this work

include the methods of updating PLP filter coefficients, the length and type of

PLP filter, the noise level in mixture, and the separation performance measure

[5, 7, 8, 14]. The work is also fortified with rigorous analysis and simulations

to evaluate its performance. The proposed BSE-PLP method has several prop-

erties. (a) The filter input is taken from the covariance matrix of the whitened

data. This has an important advantages of fixing the filter input power to unity.
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Thus, there is no ambiguity associated with the power levels, as in [5, 12, 13],

and the filter convergence becomes very fast to converge in few samples. (b) The

estimated input sources are extracted from the predication filter coefficients. (c)

The predication filters have a fixed length that is equal to the number of input

samples. This resolves the unknown filter length problem associated in previous

works [5, 7, 8, 14], and improves the extraction performance.

The remaining of this chapter is organized as follows. In Section 2, we briefly re-

view the BSE-LP methods type GDA [5, 7, 8, 14] in the context of BSS. In Section

3, we present the BSE-PLP method, including its formulation, implementation,

justification and mathematical proofs. The experimental results are demonstrated

in Section 4. Finally, Section 5 concludes the chapter.

2.2 Brief review of BSE-LP type GDA

The general form of instantaneous Blind Source Separation (BSS) problem can be

modeled by [1, 15]

X(n) = AS(n) + G(n), (2.1)

where X(n) = [x1(n),x2(n), . . . ,xM(n)]T ⊂ RM×N is the mixture matrix, xl(n) =

[xl(n), xl(n− 1), . . . , xl(n−N + 1)], l = 1, 2, . . . ,M , M is the number of mixtures,

n is the sampling index, N is the number of samples, A ⊂ RM×L is an unknown

full rank mixing matrix, S(n) = [s1(n), s2(n), . . . , sL(n)]T ⊂ RL×N is the unknown

source matrix, sk(n) = [sk(n), sk(n−1), . . . , sk(n−N+1)], k = 1, 2, . . . , L, L is the

number of unknown sources, assumed less than or equal to M , and G(n) ⊂ RM×N

is the unknown additive noise matrix consisting of M uncorrelated noise vectors.

Defining ỹk(n) as the estimated source signal of sk(n), and can be computed using

the AR equation given by [5, 7, 13, 14]

ỹk(n) =
N∑
i=1

bk,iyk(n− i), (2.2)
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where bk,i is the unknown linear predictor filter weight of index ki.

The main goal of BSE-LP is to estimate the source signal sk(n) by minimizing the

kth prediction error term, ek(n), given by

ek(n) = yk(n)− ỹk(n). (2.3)

Let assume that A+ ⊂ RL×M is the Moore-Penros inverse of A, such that A+ =

AT (AAT )−1, if L ≤M [16, 17]. Defining W(n), equals to A+, as an unknown L×

M demixing matrix with entries [W]kl = wkl, k = 1, 2, . . . , L, l = 1, 2, . . . ,M . Also,

W(n) can be expressed by W(n) = [w1(n),w2(n), . . . , wL(n)]T , where wk(n) =

[wk1(n), wk2(n), . . . , wkM(n)]. Then, yk(n) can be expressed by

yk(n) =
M∑
i=1

wk,i(n)xi(n). (2.4)

From (2.2)-(2.4) we get [5, 7, 13, 14]

ek(n) =
M∑
i=1

wk,i(n)xi(n)

−
N∑
i=1

bk,i

M∑
j=1

wk,j(n− i)xj(n− i) (2.5)

Equation (2.5) can be optimized using GDA for the unknowns bki and wkj, k =

1, 2, . . . ,M, i = 1, 2, . . . , N, j = 1, 2, . . . ,M . For noisy mixture, another linear pre-

dictor filter may be required to cancel the effect of noise [13]. This is also required

for BSE based short term and long term predictors [5]. These methods have sev-

eral properties. (a) 1-2 predictors are required for source extraction. (b) The

predictors weights and demixing vector are unknown and estimated after solving

optimization problem. (c) The length of the predictor filter affect the extraction

performance, thus must be carefully selected [5]. (d) The update equations for the

predictors weights and demixing vector require variable learning rate due to the

ambiguity of input power levels. This adds complexity to the update equations.
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(e) The convergence of these method is slower than BSS techniques due to ac-

cumulation of error during deflation procedures [5]. Also, the variations of input

power level affect the convergence. These drawbacks will be considered and solved

in our proposed BSE-PLP technique discussed in next section.

2.3 Proposed BSE-PLP

2.3.1 System model

From (2.1), S(n) is given by

S(n) = W(n)X(n)−W(n)G(n). (2.6)

Let Cx be the sample covariance matrix of X(n) which is computed by [11]

Cx =
1

N
X(n)XT (n). (2.7)

As CxC
−1
x is equal to an N ×N identity matrix IN then W(n) can be written as

W(n) = W(n)CxC
−1
x . (2.8)

Substituting Cx from (2.7) into (2.8) to obtain

W(n) =
1

N
W(n)X(n)XT (n)C−1x . (2.9)

The matrix Cx can also be computed using singular value decomposition (SVD)

[18]

Cx = EDET , (2.10)

where E is a M ×M matrix with the columns being the eigenvectors of Cx, and

D is a M ×M diagonal matrix with the eigenvalues of Cx. Multiplying (4.16) by
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X(n) and considering (2.6) and (2.10), we have

S(n) =
1

N
(S(n) + W(n)G(n))

(
XT (n)ED−1ETX(n)

)
−W(n)G(n). (2.11)

Defining the whitened matrix X̃(n) ⊂ RM×N as [19]

X̃(n) = ED−1/2ETX(n), (2.12)

then (2.11) can be easily written as

S(n) = S(n)R(n) + W(n)G(n)Q(n), (2.13)

where R(n) is an N ×N symmetrical matrix given by

R(n) =
1

N
X̃

T
(n)X̃(n), (2.14)

with entries [R]p,q = rp,q, p, q = 1, 2, . . . , N,Q(n) = R(n) − IN . Moreover,

R = [R1(n),R2(n), . . . ,RN(n)], where Rk(n) is a column vector equals to [r1k(n),

r2k(n), . . . , rNk(n)]T , k = 1, 2, . . . , N . Comparing (2.7) with (2.14), it is clear that

R(n) is the covariance matrix of X̃(n). Equation (2.13) can be rewritten as

S(n) = S(n)R(n) + W(n)Ts(n), (2.15)

where Ts(n) = G(n)Q(n). Since the entries of the noise matrix G(n) in (2.1)

are not known, we generate a white noise matrix V(n) with known sample entries

[V]lp = νlp, l = 1, 2, . . . ,M, p = 1, 2, . . . , N , such that a matrix equivalent to

Ts(n) is generated and denoted as T(n), and is equal to V(n)Q(n), [T]ln = τln =∑N
p=1 νlprpn−δlp, l = 1, 2, . . . ,M, n = 1, 2, . . . , N , δlp is Kronecker delta. Moreover,

T = [T1(n),T2(n), . . . ,TN(n)], where Tk(n) = [τ1k(n), τ2k(n), . . . , τMk(n)]T , k =

1, 2, . . . , N .

Based on (2.15), the optimization problem may be defined to estimate S and W.
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However, BSE can also be used to extract one source signal at a time. This requires

some modifications to (2.15). Defining ỹk(n− j), j = 0, 1, 2, . . . , N − 1 as the kth

estimated source signal of sk(n− j), then from (2.15) we have

ỹk(n− j) =
N−1∑
i=0

ri+1,j+1yk(n− i) +
M∑
l=1

wkl(n)τlj+1(n). (2.16)

Thus, a set of N equations can be formulated from (2.16) to model the estimated

source vector, defined by ỹk(n − j) = [ỹk(n), ỹk(n − 1), . . . , ỹk(n − N + 1)]T . As

these equations are independent to each other and can be computed in parallel,

we propose the name parallel linear predictor (PLP). From (2.16), the jth error

term, defined as ejk(n), is given by

ejk(n) = yk(n− j)− ỹk(n− j)

= yk(n− j)−
N−1∑
i=0

ri+1,j+1yk(n− i)−
M∑
l=1

wkl(n)τlj+1(n). (2.17)

Equation (2.17) represents a new LP model that can be used for BSE of AR

input sources. As the coefficients ri+1,j+1 in (2.17) are known and computed

from (2.14), we propose a new adaptive filtering approach to estimate ỹk(n − j)

and wkl(n) from the knowledge of ri+1,j+1 and ejk(n). The proposed approach

is based on interchanging the rules of inputs and the filter coefficients in (2.17).

Thus, the filter coefficients are considered as the unknown source signals yk(n) =

[yk(n), yk(n − 1), . . . , yk(n − N + 1)]T . The coefficients ri+1,j+1 are considered as

the adaptive filter inputs which will be repeated every iteration till the filter con-

verges. Figure 2.1 illustrates the proposed BSE-PLP model for extracting one

source vector yk(n) from the mixture X(n).

The proposed adaptive filter needs further investigation about the properties of

the matrix R(n) whose elements represent the new filter input. In the follow-

ing, two theorems are provided. The first theorem is a mathematical proof of the

properties of R(n) and Q(n) matrices, related to their norms and their minimum
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(a)

(a)

Figure 2.1: Structure of the jth stage of the proposed BSE-PLP. (a) Whitening
and R(n) matrix generation, (b) The proposed PLP filter

and maximum eigenvalues. The second theorem is a proof of the transformation

property of the R(n) matrix.

Theorem 1: Given a whitened matrix X̃(n) of an input mixture X(n), the matrices

R(n) and Q(n) will have unity norm. The maximum and minimum eigenvalues

of R(n) will be 1 and 0, respectively. The maximum and minimum eigenvalues of

Q(n) are 0 and −1, respectively. The proof is established in the Appendix A.
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Theorem 2: The R(n) matrix described in Theorem 1 has the following transfor-

mation properties

R(n) =

R(n)RT (n) for noiseless mixture ,

R(n)RT (n) + Ψ(n) for noisy mixture ,

where Ψ(n) is the noise error term. The proof is established in the Appendix B.

2.3.2 Optimization methodology

In this section, the GDA is applied to (2.17) to address the updates of yk(n)) and

wk(n). We propose a new cost function Jk(wk(n),yk(n)) using the mean squares

prediction error (MSPE) [5, 7], we can write

Jk(wk(n),yk(n)) =
1

N

N−1∑
j=0

[
ejk(n)

]2
, (2.18)

First, the gradients are evaluated as

∇wkl
Jk(wk(n),yk(n)) = −

N−1∑
i=0

eik(n)τli+1(n), (2.19)

and

∇yk(n−j)Jk(wk(n),yk(n)) = ejk(n)−
N−1∑
i=0

rj+1,i+1e
i
k(n), (2.20)

then, the updates of wkl(n) and yk(n− j) now become

wkl(n+ 1) = wkl(n) + µw

N−1∑
i=0

eik(n)τli+1(n), (2.21)
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and

yk(n− j + 1) = yk(n− j)− µy

[
ejk(n)−

N−1∑
i=0

rj+1,i+1e
i
k(n)

]
, (2.22)

where µw and µy are the learning rates. From (2.21)-(2.22), the updates of wk(n)

and yk(n− j) are obtained as follows

wk(n+ 1) = wk(n) + µwT(n)Er(n), (2.23)

yk(n+ 1) = yk(n) + µyQ(n)Er(n), (2.24)

where Er(n) = [e0k(n), e1k(n), . . . , eN−1k (n)]T .

To check the convergence of the method, let assume that yopt(n) is the optimum

solution having minimum noise contents. Then, subtracting yopt(n) from both

sides of (2.24) and multiplying by R(n) we get

R(n)
[
yk(n+ 1)− yopt(n)

]
= R(n)

[
yk(n)− yopt(n)

]
+ µyR(n)Q(n)Er(n). (2.25)

From (2.15) and (2.25), and considering the optimum solution, we have R(n)yk(n+

1) ≈ yk(n + 1), R(n)yk(n) ≈ yk(n), R(n)yopt(n) ≈ yopt(n). Furthermore,

using theorem 2, the term µyR(n)Q(n)Er(n) in (2.25) approaches zero since

R(n)Q(n) = R2(n) − R(n) ≈ 0, (see also the simulation results shown in Fig.

2.4). Then (2.25) is reduced to

yk(n+ 1)− yopt(n) ≈ yk(n)− yopt(n). (2.26)

From (2.26), we have

yk(n+ 1)→ yk(n), (2.27)
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thus (2.24) converges as n → ∞. This conclusion is confirmed by simulation in

Fig. 2.4.

To address the optimum values of µw and µy when ejk(n + 1) approaches zero,

Taylor series expansion is used. Ignoring second and higher order derivatives,

ejk(n+ 1) is given by [14]

ejk(n+ 1) ≈ ejk(n) +
N−1∑
i=0

∂ejk(n)

∂yk(n− i)
∆yk(n− i)

+
M∑
l=1

∂ejk(n)

∂wkl(n)
∆wkl(n). (2.28)

From (2.17), (2.21)-(2.22) the followings can be verified

∂ejk(n)

∂yk(n− i)
= δij − ri+1,j+1,

∂ejk(n)

∂wkl(n)
= −τl,j+1(n),

∆yk(n− i) = −µy

[
ejk(n)−

N−1∑
i=0

rj+1,i+1e
i
k(n)

]
, (2.29)

∆wkl(n) = µw

N−1∑
i=0

eik(n)τl,i+1(n),

where j = 0, 1, . . . , N − 1. From (2.28)-(2.29), and assuming j = 0, then e0k(n+ 1)

can be simplified to

e0k(n+ 1) =e0k(n)− µy

N−1∑
i=0

eik(n) + µyR1(n)Er(n)

− µwe
0
k(n)

M∑
l=1

τ 2ll(n). (2.30)
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For optimum case, the noise term is minimized. Thus,
∑N−1

i=0 eik(n) ≈ 0 and

R1(n)Er(n) ≈ e0k(n) then (2.30) can be further simplified to

e0k(n+ 1) ≈ e0k(n)
(
1 + µy − µw‖T1(n)‖2

2

)
. (2.31)

Assuming µy ≈ µw = µopt, where µopt is the optimum value of µ. As e0k(n+1)→ 0

then (2.31) can be minimized, and µopt will be equal to

µopt =
1

‖T1(n)‖2
2
− 1

. (2.32)

Similar equation to (2.32) can be found, for j > 0, if T1(n) is replaced by Tj+1(n).

As T(n) = V(n)Q(n) then from (A.14) in theorem 1, and using the norm inequal-

ity

‖T(n)‖2 ≤ ‖V(n)‖2‖Q(n)‖2 , (2.33)

we have

‖T(n)‖2 ≤ ‖V(n)‖2 ,

‖Tj(n)‖2 < ‖V(n)‖2 . (2.34)

From (2.32)-(4.4), µopt is inversely proportional to the input noise power only. The

estimation of noise power requires further investigation and is beyond the scope of

this dissertation. For noise free case, µopt is constant and is equal to −1. In both

cases, µopt is independent on the mixture input X(n). This solves the problem in

previous works such as [5, 12, 13].

2.3.3 Algorithm of the proposed BSE-PLP

The BSE-PLP Algorithm is designed based on the proposed optimization method-

ology described in Section 2.3.2. The algorithm extracts wk(n), yk(n), and ejk(n),
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j = 0, 1, . . . , N − 1 from the input mixture X(n). Maximum number of iterations

is denoted by maxiter. We present the following algorithmic procedure:

Algorithm 1 Proposed BSE-PLP algorithm

1: Set the values of N , k, M , wk(n), yk(n) and V(n).

2: Set the value of maxiter.

3: Update X̃(n), R(n), T(n), and µ by (2.12), (2.14), (2.15), and (2.32), respec-

tively.

4: for iteration = 1 to maxiter

5: Update ejk(n), wk(n), and yk(n), in each iteration, by (2.17), (2.23) and (2.24),

respectively.

6: end for

7: Return ejk(n+ 1), wk(n+ 1), and yk(n+ 1).

2.4 Experiments

In this section, three different simulations are provided. They are: the signal

extraction versus maxiter variations, the error analysis of Ψ(n) in (B.5) and ejk(n)

in (2.17), and the extraction performance of the proposed BSE-PHP algorithm

and comparison with SOBI and FastICA algorithms [16, 21]. These algorithms

are selected because they have become benchmark methods due to their popularity

and their success in extracting signals from input mixture [1, 3, 22, 23].

2.4.1 Signal extraction

To check the signal extraction versus maxiter variations, we use the algorithm

shown in Section 2.3.3 and set first maxiter = 2. Two independent simulation

sets are performed to extract white Gaussian noise (WGN) and speech signals.

Three uncorrelated WGN signals [s1(n), s2(n), s3(n)], shown in Fig. 2.2(a), are
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mixed by a randomly generated mixing matrix A then adding a non stationary

WGN to each source signal such that the SNR = 30 dB. Number of samples is

selected as N = 80. The added noise is uncorrelated with source signals. The

simulation extracts one source signal at a time, then is repeated to extract other

signals. Figure 2.2(b) illustrates the mixture signals [x1(n), x2(n), x3(n)]. Figure

2.2(c) illustrates the extracted signals [y1(n), y2(n), y3(n)] which match the signals

[s1(n), s2(n), s3(n)] in Fig. 2.2(a).

The previous simulation is repeated to extract three uncorrelated clean speech

signals [s1(n), s2(n), s3(n)], shown in Fig. 2.3(a), corresponding to three English

numbers ′One′, ′Two′, and ′Eight′, respectively. The signals are sampled at 8

kHz. Number of samples is selected as N = 6000. Figure 2.3(b) illustrates the

mixture signals [x1(n), x2(n), x3(n)]. Figure 2.3(c) illustrates the extracted signals

[y1(n), y2(n), y3(n)] which match the original source signals [s1(n), s2(n), s3(n)] in

Fig. 2.3(a).

The above two simulations are repeated for maxiter = 4, 6, . . . , 10. Results from

simulations, regarding the extracted Gaussian and speech signals, are almost the

same as in Fig. 2.2(c) and Fig. 2.3(c), respectively. For example, the results of

the extracted signals for maxiter = 6 are shown in Fig. 2.2(d) and Fig. 2.3(d),

respectively. The similarities between the extracted signals and the original source

signals will be investigated in Section 2.4.3.
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Figure 2.2: Extraction of Gaussian signals(a)Input Gaussian source signals
(b)Mixture signals (c)Extracted signals, considering maxiter = 2 (d)Extracted

signals, considering maxiter = 6
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Figure 2.3: Extraction of Speech signals(a)Input clean speech signals
(b)Mixture signals (c)Extracted signals, considering maxiter = 2 (d)Extracted

signals, considering maxiter = 6
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Figure 2.4: Variations of ε(n) with SNR

2.4.2 Error analysis

The same simulation steps in Section 2.4.1 are used to measure the mean squares

error (MSE) of Ψ(n), denoted by ε(n), when N varies from 50-350. This error was

analyzed in Appendix B. Figure 2.4 illustrates the results; for any value of N , the

results show that ε(n) decreases to zeros as the SNR approaches 0 dB. Thus, the

error can be ignored to simplify (B.5) by (B.3), as shown in appendix B.

The simulation is repeated to measure the MSE of ejk(n), denoted by γ(n), and

considering the noiseless and the stationary and non stationary WGN case (SNR

= 20 dB). Results are shown in Fig. 2.5; All MSE curves converge fast to min-

imum values in 2 iterations. This proves the conclusion drawn in (2.27). Also,

maxiter = 2 justifies the results in Section 2.4.1. Thus, the proposed BSE-PLP

can be considered as a class of deterministic BSE methods. This point will be

further justified using performance analysis in Section 2.4.3.

2.4.3 Extraction performance

The last simulation has four parts. The first part is used to investigate the effect of

varying maxiter, used in Algorithm 1, on the similarity performance index (SPI),

that is based on the correlations between sk(n) and yk(n) [5, 6], given by the
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Figure 2.5: Variations of γ(n) with number of iterations(a)noiseless
case(b)with stationary noise, SNR = 20 dB (c)with non stationary noise, SNR

= 20 dB

relation

SPI =
1

M

M∑
i=1

10log10

∣∣∣∣∣ 〈yk(n), sk(n)〉√
〈yk(n), yk(n)〉 〈sk(n), sk(n)〉

− 1

∣∣∣∣∣ ,
where 〈.〉 denotes the inner product. We follow the same simulation procedure

steps in Section 2.4.1 by setting first maxiter = 2 then recording the mean val-

ues of SPI after 1000 trials of independent simulations. The process is repeated

by varying maxiter from 2 to 10. The unknown signals used for extractions are
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Gaussian, Speech (the same used in Section 2.4.1) and three uncorrelated saw-

tooth, sinusoidal, and square signals, with number of samples taken as 100, and

having frequencies of 3 kHz, 5 kHz, and 10 kHz, respectively. The additive WGN

considered in this experiment is of non stationary type. Results of simulation are

illustrated in Fig. 2.6. It is clear from the results that increasing the value of

maxiter will not give considerable advantages in remarkably enhancing SPI per-

formances. Thus, we can select maxiter = 2 in Algorithm 1. This conclusion is

also obtained in Section 2.4.1 and Section 2.4.2. Thus, Algorithm 1 can be pre-

sented without the iteration loop, by removing steps 2, 4, and 6, and writing step

5 twice. The simplified algorithmic procedure is shown in Algorithm 2.

Algorithm 2 The simplified BSE-PLP algorithm

1: Set the values of N , k, M , wk(n), yk(n) and V(n).

2: Update X̃(n), R(n), T(n), and µ by (2.12), (2.14), (2.15), and (2.32), respec-

tively.

3: Update ejk(n), wk(n), and yk(n) by (2.17), (2.23) and (2.24), respectively.

4: Update ejk(n), wk(n), and yk(n) by (2.17), (2.23) and (2.24), respectively.

5: Return ejk(n+ 1), wk(n+ 1), and yk(n+ 1).

The second part is intended to apply Algorithm 2 by following the same simula-

tion procedure steps in Section 2.4.1 (for extracting the WGN) then recording the

mean values of SPI after 1000 trials of independent simulations. The simulation is

repeated for N = 10, 50, 150, 250, 350. Results are shown in Fig. 2.7 and indicate

that with N = 10 and at low SNR, the SPI is better than that with N = 50 to

350. At high SNR, all plots show good SPI, below −20 dB.

The third part is similar to the second part but used to compare the SPI mea-

sured from the proposed BSE-PLP (Algorithm 2), with the SPI measured using

SOBI and FastICA algorithms. The source signals considered in this simulation

are sawtooth, sinusoidal, and square signals, with the same simulation settings
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Figure 2.6: Variations of SPI with maxiter

used in part 1 of this section. The additive WGN is of stationary and non sta-

tionary type. The same data was also used by SOBI and FastICA algorithms,

for comparison purposes. Comparing the results in Fig. 2.8, it is clear that the

proposed method has better SPI than the other two algorithms, when the SNR

is varied according to the specified ranges in Fig. 2.8. The SPI remains almost

constant for all three algorithms at high SNR (above 60 dB for stationary additive

WGN case and above 40 dB for stationary additive WGN case ). However, the

proposed BSE-PLP algorithm still shows better SPI.

The fourth part is similar to the third part but includes the estimation of the

source-to-interference ratio (SIR), the source-to-artifacts ratio (SAR), and the

source-to-distortion ratio (SDR) [8]. The computation of these terms involves

first the decomposition of the extracted signals yk(n) according to [25]

yk(n) = starget + einterf + enoise + eartif , (2.35)

where starget is the component of sk(n) in yk(n), einterf , enoise, and eartif are the
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Figure 2.7: Variations of SPI with SNR, using Algorithm 2

interference, noise and artifact error terms, respectively. Second, the SIR, SAR,

and SDR terms are computed using the BSS EVAL toolbox [25–27]

SIR = 10log10
‖starget‖22
‖einterf‖22

, (2.36)

SAR = 10log10
‖starget + einterf + enoise‖22

‖eartif‖22
, (2.37)

SDR = 10log10
‖starget‖22

‖einterf + enoise + eartif‖22
. (2.38)

As above performance measures are inspired by the usual definition of the SNR,

their higher values reflect better separation algorithm [8, 25–27]. Comparing the

results in Tables (2.1-2.2), it is clear that the proposed method has better SIR,

SAR, and SDR, than the other two algorithms, when the SNR is varied according

to the specified ranges in Tables 2.1 and 2.1.
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Figure 2.8: SPI versus SNR for the Proposed BSE-PLP (Algorithm 2), SOBI,
and FastICA methods (a)Assuming stationary additive WGN (b)Assuming non

stationary additive WGN
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Table 2.1: Comparison between SIR, SAR, and SDR, using the proposed
BSE-PLP (Algorithm 2), SOBI, and FastICA algorithms. Assuming stationary

additive WGN

Algorithm SNR = 10 dB SNR = 20dB SNR = 40 dB Noiseless case

SIR SOBI 1.56 20.6 28.5 28.7
(dB) FastICA −4.6 10.04 33.5 33.9

Proposed BSE-PLP 7.99 24.7 34.03 34.1
SAR SOBI 9.2 8.5 31.04 180.1
(dB) FastICA −0.89 4.5 22.7 55.08

Proposed BSE-PLP 10.6 14.6 34.1 183.6
SDR SOBI 0.356 8.09 26.39 28.3
(dB) FastICA −9.14 2.61 21.69 31.24

Proposed BSE-PLP 2.65 14.2 30.8 32.3

Table 2.2: Comparison between SIR, SAR, and SDR, using the proposed BSE-
PLP (Algorithm 2), SOBI, and FastICA algorithms. Assuming non stationary

additive WGN

Algorithm SNR = 10 dB SNR = 20dB SNR = 40 dB Noiseless case

SIR SOBI 24.9 26.9 27.01 27.13
(dB) FastICA 5.75 22.1 35.3 35.76

Proposed BSE-PLP 25.89 27.03 35.74 36.8

SAR SOBI 12.7 12.71 41.36 179.02
(dB) FastICA 2.67 7.12 26.2 41.17

Proposed BSE-PLP 17.7 23.22 44.84 181.14

SDR SOBI 12.3 12.46 26.41 27.13
(dB) FastICA −2.57 6.9 25.5 30.6

Proposed BSE-PLP 16.53 21.66 29.01 30.88

2.5 Conclusion

A novel BSE algorithm, referred to as BSE-PLP, has been presented. The model

combined the source extraction and noise cancellation in one framework. The de-

sign problem has been formulated and an analysis has also been provided, with

mathematical proofs. The interchangeability between the mixture input X(n) (the

normal BSE input) with the R(n) matrix has an impact on fixing the eigenvalues

and power input to the filter, thus making the learning rate µ constant for noiseless

case, or dependable only on the input noise power, for noisy case. The proposed

algorithm converged very fast in 2 iterations for different filter lengths. Simulation

results have shown that the proposed algorithm significantly separated the source

signals when the SNR varied from −20 dB to 80 dB. The algorithm performance
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indices SPI, SIR, SAR and SDR were provided and were shown considerable im-

provement as compared to SOBI and FastICA algorithms.
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Chapter 3

Extraction of Fetal

Electrocardiogram Signals Using

BSE Based PLP

3.1 Introduction

The Fetal Electrocardiogram (FECG) have been used to provide description on

the electrical activity of the fetal heart. Monitoring FECG is useful to early diag-

nosis the cardiovascular disorder states[1–3].

Different approaches of FECG extraction were reported in the literature such

as principle component analysis (PCA), independent component analysis (ICA),

singular value decomposition (SVD), wavelet transform, blind source separation

(BSS), blind source extraction (BSE), least mean squares (LMS), artificial neural

networks (ANN), and Kalman filters[3–7]. Some of existing works used LMS with

adaptive noise cancellation techniques and the wavelet transform technique. Also

the accuracy, sensitivity and positive predictive value are also determined for fe-

tal QRS detection technique [2]. The work in [7] proposed using the compressive

46
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sensing (CS) theory, for the compression and joint detection and classification of

mother and fetal heart beats. The scheme was based on the sparse representation

of the components derived from ICA. In [8], a non-linear multi-sensory adaptive

noise canceller (ANC, MsANC) with both multi-primary and multi-reference chan-

nels was proposed for FECG extraction. The primary channels are connected by

a linear combiner (LC) whose output serves as a primary signal for the whole

MsANC. A new method of using the kernel non-linear PCA was proposed in [9] to

extract the non-linear PCs from multidimensional data then estimate the foetal

ECG signal precisely. The work in [10] presented a new method of FECG extrac-

tion by subtracting the mapped thoracic signal from an abdominal signal. The

singular value decomposition (SVD) and smooth window (SW) techniques were

combined to build a reference signal in an ANC and used for FECG signal extrac-

tion in [11]. The work in [12] presented a method of estimating the fetal heart

rate (FHR) using sequential total variation denoising and compare its performance

with that of other single-channel fetal ECG extraction methods via simulation us-

ing the Fetal ECG Synthetic Database.

The aim of this chapter is to investigate the FECG extraction using our proposed

BSE-PLP method [13], presented in chapter 2. The method is tested by simulation

using synthesized and real ECG signals.

3.2 Simulation and results

Three different simulations are provided in this section. The fist simulation syn-

thesizes the ECG signal using [15] then extracts the FECG signals using BSE-PLP

algorithm. The second simulation uses real data from DAISY (Database for the

Identification of Systems) [16] as ECG mixture signals, then extracts the FECG

signals. Both simulations use four ECG source signals, two MECG and two FECG

signals. The second simulation is repeated using PCA, FastICA, and SOBI, for
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comparison purposes. These algorithms are popular and are successful in extract-

ing signals from input mixture [14]. The third simulation is similar to the second

simulation but intended to evaluate the extracting metrics of all algorithms used

in this chapter. All simulations were carried out using Matlab.

3.2.1 FECG extraction using synthesized ECG data

Four ECG signals (two MECG and two FECG) are generated using MatLab so

that the MECG and the FECG frequencies are 82 Hz and 140 Hz, respectively.

Number of samples is selected as N = 500. Then, the signals are mixed by a

randomly generated mixing matrix A. BSE-PLP algorithm is then applied to

extract the FECG signals.

Fig. 3.1 illustrates the synthesized MECG and FECG signals that models the QRS

complexes. Fig. 3.2 illustrates the synthesized ECG mixture. Fig. 3.3 illustrates

the extracted signals. Comparing the results from Fig. 3.1 and Fig. 3.3, its is

clear that the BSE-PLP algorithm is successfully extracting MECG and FECG

signals from their mixture, since the extracted signals y1(n),y2(n),y3(n) match

the original signals s1(n), s2(n), s3(n).

3.2.2 FECG extraction using real ECG data

A 9 channels data (three from abdominal and 6 from thorax) were recorded from

pregnant women for 10s. The sampling frequency was 250 Hz. However, only the

first 500 samples were used for simulation. Also, only four mixture ECG signals

(three abdominal and one thorax) were used in this simulation. Then, BSE-PLP,

PCA, FastICA, and SOBI algorithms were applied to extract the FECG signals.
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Figure 3.2: Synthesized ECG mixture.
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Figure 3.3: Extracted MECG and FECG signals using BSE-PLP algorithm.

Fig. 3.4 illustrates the recorded ECG signals. Fig. 3.5–3.8 illustrate the extracted

ECG signals using all selected algorithms. Several conclusions were recorded from

the results. First, from Fig. 3.4–3.5, its is clear that the BSE-PLP algorithm is

successfully extracting all MECG and FECG signals from their mixture. This

conclusion was also drawn in Section 5.5.1. Thus, the BSE-PLP algorithm can be

used to extract both MECG and FECG signals from synthesized and real ECG

data. Second, from Fig. 3.4, 3.6, the PCA algorithm shows also a successful

extraction of the ECG signals. However, the extracted signal y1(n) contains large

amount of noise. Thus, y1(n) cannot be considered as an extracted signal without

further denoising process. Third, from Fig. 3.4, 3.7–3.8, both FastICA and SOBI

algorithms are able to extract the three signals y1(n)–y3(n). However, they failed

in extracting the FECG signal y4(n). Forth, the BSE-PLP algorithm shows a

considerable improvement, in signal extraction, as compared with PCA, FastICa,

and SOBI algorithms.
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Figure 3.4: Recorded ECG signals.
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Figure 3.5: Extracted ECG signals using BSE-PLP algorithm.
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Figure 3.6: Extracted ECG signals using PCA.
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Figure 3.7: Extracted ECG signals using FastICA.



Extraction of Fetal Electrocardiogram Signals Using BSE Based PLP 53

y 1(n
)

y 2(n
)

y 3(n
)

samples

y 4(n
)

Figure 3.8: Extracted ECG signals using SOBI.

3.2.3 FECG evaluation metrics

In this simulation, we used the same ECG data in Section 3.2.2 with N = 2500,

i.e, covers all the 10s data length. To evaluate extracting process, the sensitivity

(SE) and accuracy (ACC) are being used for R-peaks detection [2, 3]. Defining

NOP, TP, FN, and FP as number of peaks, true positive, false negative, and false

positive, respectively, the SE and Acc are computed as follows:

SE % =
TP

TP + FN
× 100% (3.1)

ACC % =
TP

TP + FN + FP
× 100% (3.2)

We follow the same simulation procedure as in Section 3.2.2 then measure SE and

ACC using (3.1) and (3.2), respectively. The NOP in the extracted FECG is found

to be 22 using all algorithms. Results are show in Table 3.1. From the results,

it is clear that the BSE-PLP algorithm scores the highest values in SE and ACC.

Thus, BSE-PLP algorithms has significant improve in FECG signal detection as

compared with other algorithms used in this chapter.
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Table 3.1: Evaluation of detected peaks

Algorithm NOP TP FP FN SE(%) Acc(%)

PCA 22 19 3 3 86.36 76
FastICA 22 20 2 2 90.9 83.3

SOBI 22 20 3 2 90.9 80
BSE-PLP 22 21 1 1 95.45 91.3

3.3 Conclusion

The BSS linear model has been used in this chapter to model the ECG signal.

The design problem has been formulated and the mathematical equations used

for FECG extraction and evaluation have also been provided. The BSE-PLP

algorithm is applied to extract the FECG signals using both synthesized and real

ECG data. A successful extraction of FECG and MECG signals have recorded for

four synthesized ECG data consisting of two MECG and two FECG data. The

success was also recorded when applying four real ECG data (three from abdominal

and one from thorax). The evaluation of R-peaks using BSE-PLP algorithm has

been investigated in this chapter, and based on the SE and ACC extracing metrics.

Results have shown considerable improvement as compared to PCA, FastICA, and

SOBI algorithms.
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Chapter 4

Blind Source Extraction Using

Idempotent Transformation

Matrix (BSE-ITM)

4.1 Introduction

Blind source separation (BSS) is aimed to reconstruct some unobserved sources

from a set of observed signals without prior knowledge of the source signals or the

mixture [1, 2]. In many applications, one or limited source signals are only required

for extractions. Thus, Blind source extraction (BSE) is used for these purposes

[3, 4]. BSE has the merits of low computation complexity and greater flexibility [3].

Applications of BSS/BSE can be found in telecommunications, speech signal pro-

cessing, astronomical imaging, biomedical sciences, machine learning, audio signal

separation, mechanical signal separation and machine fault diagnosis [5–13].

Different approaches of BSS and BSE were reported in the literature, such as inde-

pendent component analysis (ICA) [7, 9, 11, 14], linear prediction [15–18], SOBI

[19], Null Space Component analysis (NCA) [5], non-negative matrix factorization

58



Blind Source Extraction Using Idempotent Transformation Matrix (BSE-ITM) 59

(NMF) [20], and sparse component analysis (SCA) [21].

In BSS/ICA technique, the observed data are whitened to make the data uncor-

related.Then, higher-order statistics are used to minimized the cost function and

address the independent sources. FastICA uses non-Gaussianity measures to min-

imize the statistical independence of the estimated source data [14].

The computational complexity is a challenging factor that must be considered in

these approaches. Furthermore, in BSE type linear prediction, the input source

signals power, the methods of updating filter coefficients and the length of adap-

tive filter must also be considered [4, 6, 15, 18, 22, 23].

BSS algorithm complexity is also affected by number of unknown sources and

mixture. If the later is greater than the former, the problem is denoted as over

determined BSS problem and can be solved by all BSS approaches. Otherwise, the

problem becomes complex and denoted as under-determined BSS problem since

the mixing matrix becomes non-invertible [23].

This work presents a method of BSE-based on idempotent transformation matrix

(ITM). First, a computationally efficient algorithm is designed to compute the

matrix without using SVD. Next, optimization is carried out by an iterative algo-

rithm based on least mean squares (LMS) and block LMS (BLMS) [24], with low

computational complexity. The filter coefficients are updated from the elements of

the ITM, and not from the output error. This drastically reduces the filter length

problems, increases its error convergence, and reduces the system complexity. The

proposed method is applied to separate speech and white Gaussian signals. Sim-

ulation is provided to investigate the performance measure of extraction.

The paper is organized as follows. Section 4.2 presents the theory of the BSE

problem that is based on linear prediction. The computational complexity of the

proposed ITM using new iterative algorithm based on ITM properties is provided

in Section 4.3, and compared with SVD. Section 4.4 explains full analysis of the

proposed BSE-ITM model and a comparison with the state of the arts models in

terms of the length of the filter and the methods of using the predication error in
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updating the filter coefficient. A computationally efficient BSE-ITM algorithm us-

ing BLMS is also provided, and compared with LMS algorithm. The performance

of the proposed BSE-ITM model using BLMS algorithm is tested for evaluation

in Sect. 4.5. This includes error analysis of computing the ITM using SVD and

the proposed algorithm, quality of separation, and convergence analysis of the

proposed algorithm. Section 4.6 is devoted to concluding remarks.

4.2 BSE-based linear prediction

In BSS/BSE problem, the instantaneous noiseless mixture equation can be mod-

eled by [1, 25]

X(m) = AS(m), (4.1)

where X(m) is the mixture matrix, equal to [x1(m),x2(m), . . . ,xM(m)]T , m is

the sampling index, M is the number of mixture vectors, xi(m) is the ith zero

mean mixture vector such that xi(m) = [xi(m), xi(m− 1), . . . , xi(m−N + 1)], i =

1, 2, . . . ,M ; N is the number of samples, A is an unknown full rank M×L mixing

matrix, L is the number of unknown sources, and S(m) is the unknown source

matrix consisting of L zero mean vectors, equal to [s1(m), s2(m), . . . , sL(m)]T ,

sj(m) is the jth source vector such that sj(m) = [sj(m), sj(m − 1), . . . , sj(m −

N + 1)], j = 1, 2, . . . , L. The goal of the BSS problem is to estimate A and S(m)

from the knowledge of X(m). However, and as mentioned in Section 5.1, BSE can

be used to extract one or limited source signals. In this paper, only BSE-based

algorithms will be considered.

In BSE-based linear predication, the goal is to find one source signal, defined by

yj(m) as the extracted (also called the desired) source signal of sj(m). Then, the
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general linear prediction problem can be expressed as [6]

ej(m) = yj(m)− ŷj(m)

=
M∑
l=1

zjl(m)xl(m)−
K∑
p=1

bjpyj(m− p) (4.2)

where ej(m) is the jth prediction error term, yj(m) is the jth extracted source

signal, computed from the unknown demixing vector [zj1(m), zj2(m), . . . , zjM(m)]

and xl(m), and ŷj(m) is the jth predicted source signal, computed from bjp, the

unknown linear predictor filter weight of index jp, and the delayed yj(m) signal,

with K being the unknown prediction order. Equation (4.2) can be optimized for

the unknowns zjl(m) and bjp, l = 1, 2, . . . ,M, p = 1, 2, . . . , K. This method has

some challenges. First, the value of the unknown K must be assumed prior to

optimization. This affects the performance of the method in extracting signals.

Second, the optimization is carried out for two unknowns, zjl(m) and bjp. This

adds complexity to both computations and realizations. Thus, developing a new

BSE method with fixed prediction filter length and having only one unknown

parameter (zjl(m) or bjp) is crucial. These challenges will be considered in our

proposed BSE-ITM method discussed in Sections 4.3 -4.4.

4.3 The proposed Idempotent Transformation

Matrix (ITM)

4.3.1 Motivation

In this section, we propose a new ITM, named W(m), that can be efficiently com-

puted from the mixture X(m) using the algorithm proposed in Section 4.3.2. The

W(m) matrix has a fixed size equal to N ×N . Thus, the length of the linear pre-

diction filter K in (4.2) is constant that is equal to N . The qth row, q = 1, 2, . . . , N ,
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in the matrix W(m) holds the qth linear prediction filter coefficients. Once the

W(m) matrix is computed, the BSE optimization problem will be simplified to a

one unknown parameter, named zjl(m). The proposed BSE algorithm based on

W(m) will be discussed in Section 4.4.

4.3.2 Properties and computation of W(m) matrix

Assume that there exists a square matrix W(m) ⊂ RN×N , with entries [W]q,k =

wq,k, q, k = 1, 2, . . . , N , such that R

S(m) = S(m)W(m), (4.3)

then using the norm inequality

‖S(m)‖2 ≤ ‖S(m)‖2‖W(m)‖2 ,

hence

‖W(m)‖2 ≤ 1. (4.4)

Without loss of generality, we shall assume that ‖W(m)‖2 = 1. Thus, the maxi-

mum eigenvalue of W(m), denoted by λmax [W(m)], is given by

λmax [W(m)] = 1. (4.5)

Multiplying (4.3) by ST (m) , we have

S(m)ST (m) = S(m)W(m)WT (m)ST (m),
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hence

S(m) = S(m)W(m)WT (m), (4.6)

and from (4.3) and (4.6), we obtain

W(m) = W(m)WT (m) = W2(m), (4.7)

thus, W(m) is an idempotent matrix, satisfying also the followings

λq [W(m)] =

 1 for q = 1, 2, . . . , L

0 for q = L+ 1, L+ 2, . . . , N
(4.8)

tr[W(m)] = L, (4.9)

where tr[.] is the trace operator. Next, the summation of row and column elements

of W(m) are investigated. From (4.3), the jth source signal sj(m − k + 1), j =

1, 2, . . . , L, k = 1, 2, . . . , N , is given by

sj(m− k + 1) =
N∑
q=1

wq,ksj(m− q + 1), (4.10)

hence

N∑
k=1

sj(m− k + 1) =
N∑
q=1

N∑
k=1

wq,ksj(m− q + 1). (4.11)

Since we assumed that the individual source vectors have zero mean, then
∑N

k=1 sj(m−

k+1) = 0. Thus, using (4.11) and considering that W(m) is a symmetrical matrix,

we have

N∑
k=1

wq,k =
N∑
k=1

wk,q = 0, q = 1, 2, . . . , N, (4.12)
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thus, each row and column in W(m) has zero mean value.

Next, we compute the W(m) matrix. Assume that A−1 is the generalized inverse

of A, then from (4.1), S(m) is given by

S(m) = A−1X(m). (4.13)

To compute W(m) matrix, it is required to find a similarity between (4.3) and

(4.13). Equation (4.13) can be written as

S(m) = A−1INX(m) = A−1σxσ
−1
x X(m). (4.14)

where IN is an N ×N identity matrix and σx is the M ×M covariance matrix of

X(m), which is computed as in [25]

σx = UxDxU
T
x =

1

N
X(m)XT (m), (4.15)

where UxDxU
T
x is the SVD of σx, Ux is the M×M unitary matrix whose columns

being the eigenvectors of σx, and Dx is the M×M diagonal matrix whose diagonal

elements are the eigenvalues of σx. Then from (4.13)-(4.15) we obtain

S(m) =
1

N
A−1X(m)XT (m)UxD

−1
x UT

xX(m), (4.16)

= S(m)
1

N
XT (m)σ−1x X(m). (4.17)

Comparing (4.3) with (4.17), the matrix W(m) is given by

W(m) =
1

N
XT (m)σ−1x X(m). (4.18)

It is clear from (4.18) that the computation of W(m) involves the product of three

matrices with a computational complexity equal to O(M4N2). Also, σ−1x requires

the estimation of the matrices Ux and Dx using SVD approach. For example,

the computational complexity of SVD using Golub-Reinsch algorithm is O(6N3 +
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14
3
N3) [26]. Various methods for reducing the SVD computational complexity

were reported in the literature [27, 28]. However, the reduction is not significant

and still the computational burden for implementing SVD is a challenging task.

In [29], the BSS-null space approach was used to compute W(m) . The null

space involves the computations of eigenvalues and eigenvectors of W(m) using

SVD. This method has the same computational complexity encountered in (4.18).

Thus, finding an alternative method of computing W(m) with less computational

complexity is crucial.

In this paper, we propose an iterative method for estimating W(m) without using

SVD. The method applies the properties of this matrix, depicted in this section,

using the following derivations:

From (4.1)-(4.3), we can write

X(m) = AS(m)W(m),

= X(m)W(m), (4.19)

Ex
r = X(m)−X(m)W(m), (4.20)

εx(m) =
1

MN

M∑
i=1

N∑
k=1

υ2ik(m), (4.21)

where Ex
r is the M ×N error matrix between X(m) and X(m)W(m), with entries

[E]i,k = υi,k, i = 1, 2, . . . ,M, k = 1, 2, . . . , N , and εx(m) is the mean squares error

(MSE) of Ex
r (m). The computational complexity of (4.21) is O(M2N2).

Next, we define W(m) using SVD, as follows

W(m) = UwDwVT
w, (4.22)

where Uw and Vw are N×N unitary matrices, and Dw is a N×N diagonal matrix,

whose diagonal elements being the eigenvalues of W(m) according to (4.8). Then,

from (4.7)-(4.8), (4.22), and considering that VT
wVw = IN , D2

w = Dw, the matrix
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W(m) can be written as

W(m) = UwDwUT
w. (4.23)

As the elements of Dw are either 0 or 1, the product UwDw requires no multipli-

cations, and all its columns, whose index is greater than M , have zero elements.

Thus, the computational complexity of (4.23) is reduced to O(MN2).

Next, we assume that W(m) = [w1(m),w2(m), . . . ,wN(m)], where wq(m) is the

qth row of W(m), q = 1, 2, . . . , N . Algorithm 3 illustrates the iterative method of

computing W(m). In this algorithm, we assume that the maximum values of εx(m)

and number of iterations are εmax and imax, respectively. In each iteration, W(m)

rows are adjusted such that their mean values become zero. Another update is

needed by converting W(m) to a symmetrical unity norm matrix to satisfy (4.4).

The iteration will be repeated till the error εx(m) becomes less than εmax. Then,

the estimated W(m) and εx(m) are recorded as Ŵ(m) and ε̂x(m), respectively.

This algorithm has a computational complexity equal to O(M2N2 +MN2). Thus,

there is a considerable reduction in computations when using this algorithm, as

compared with the SVD method in (4.18). Figure 4.1 illustrates a comparison

between the variations of numerical complexities of SVD and iterative methods,

with N . We assumed that εmax < 10−4 and qmax = 3. The iterative method shows

considerable reduction in complexity for all values of N .

4.4 The proposed BSE-ITM algorithm

4.4.1 Motivation

Once the transformation matrix W(m) is computed, optimization method will be

carried out to extract A and S(m). In this paper, we use (4.10), (4.18), and Algo-

rithm 3, to develop a new BSE algorithm that extracts one source at a time. The
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Figure 4.1: Numerical complexities of computing W(m) using SVD and the
proposed iterative methods.

Algorithm 3 the proposed iterative method of computing W(m)

1: Initials N , L, M , m,εmax, qmax

2: Read the values of the M ×N mixture matrix X(m).
3: Compute Dw by (4.8).
4: Set Uw as a random N ×N unitary matrix.
5: Compute W(m) by (4.23), as an initial guess.
6: q = 1.
7: while q < qmax do
8: for j = 1 to L
9: Compute µj

w(m), the mean value of wj(m),
10: wj(m) = wj(m)− µj

w(m).
11: end for
12: ‖W(m)‖2 = tr[W(m)]/L,

13: W(m) = 1
2
W(m)+WT (m)
‖W(m)‖2

14: update Ex
r by (4.20).

15: update εx(m) by (4.21).
16: if εx(m) < εmax

17: Ŵ(m) = W(m),
18: ε̂x(m) = εx(m),
19: exit while.
20: endif
21: q = q + 1.
22: end while
23: Return Ŵ(m), ε̂x(m)
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process is repeated to extract another signal. The similarity (correlation) between

the two extracted signals is checked to avoid duplication in the extraction. If dupli-

cation exists, the extraction and similarity checking is repeated until no similarity

is recorded. Similar procedure will be followed for extracting third, fourth, . . .

signals. Once all source signals are extracted, the process is terminated. Figure

4.2(a) illustrates the block diagram of the proposed BSE-ITM model. We define

the de-mixing matrix as Z(m) = [z1(m), z2(m), . . . , zM(m)]T , with entries [Z]jl =

zjl, j = 1, 2, . . . , L, l = 1, 2, . . . ,M , where zj(m) = [zj1(m), zj2(m), . . . , zjM(m)] is

the jth de-mixing vector. Then from [23], we can write

Y(m) = Z(m)X(m), (4.24)

where Y(m) is the L × N estimated source matrix, which is equal to [y1(m),

y2(m), . . . ,yL(m)]T , yj(m) is the jth estimated source vector such that yj(m) =

[yj(m), yj(m− 1), . . . , yj(m−N + 1)], j = 1, 2, . . . , L.

The coefficients of the jth FIR filter in Fig. 4.2(a) is assigned by the jth row of

the matrix W(m). As W(m) has N rows and N columns, the FIR filter has N

coefficients, as well. The difference between the jth desired signal yj(m) (which

is the extracted signal) and the predicted signal ŷj(m) is denoted by the error

ej(m), and used to update zj(m). The proposed model is compared with the

noiseless BSE models in [15, 17, 25]. These models can be simplified as illustrated

in Fig. 4.2(b). The error ej(m) is used to update both zj(m) and the FIR filter

coefficients. This adds complexity to the algorithm and needs long iterations till

the filter converges. Furthermore, the filter requires different lengths for different

extracted signals. However, in the proposed BSE-ITM model, the FIR coefficients

are fixed byN and are computed directly from W(m). This reduces the complexity

of the FIR filter.
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(a) The proposed BSE-ITM model.

(b) BSE model in [15, 17, 25].

Figure 4.2: Comparison between the proposed BSE model and the simplified
model for [15, 17, 25]

4.4.2 Optimization analysis

From (4.10) and Fig. 4.2(a), ŷj(m) can be written as

ŷj(m) =
N∑
q=1

wq,1yj(m− q + 1), (4.25)

and from (4.24), yj(m) can be written as

yj(m) =
M∑
l=1

zjl(m)xl(m). (4.26)
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From (4.25) and (4.26), ej(m) can be evaluated as

ej(m) = yj(m)− ŷj(m)

=
M∑
l=1

zjl(m)xl(m)−
N∑
q=1

wq,1

M∑
l=1

zjl(m− q + 1)xl(m− q + 1) (4.27)

Defining the cost function J [zj(m)] using the mean squares prediction error (MSPE)

[17], we have

J [zj(m)] =
1

2
e2j(m), (4.28)

then the weight updates of zj(m) can be found by applying the LMS technique

[23, 24]. First, the gradient is evaluated as

∇zjlJ [zj(m)] = xl(m)ej(m), (4.29)

then the update of zj(m) is as follows

zj(m+ 1) = zj(m)− µzx(m)ej(m), (4.30)

where x(m) is the mixture vector, equals to [x1(m), x2(m), . . . , xM(m)]T , and µz

is the LMS learning rate of zj(m), and can be computed as [23]

µz =
α

‖x(m)‖2
, (4.31)

where α is any number that can be chosen between 0 and 1.
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4.4.3 Computational complexity

Assume that the LMS algorithm processes X(m) mixture which is formed as a

block of N samples. Then, from (4.27) and (4.30), the LMS algorithm requires

number of real multiplications, denoted as CLMS, given by

CLMS = MN2 + 2MN +N = O(MN2). (4.32)

To reduce the computational complexity, BLMS technique is used since zj(m) will

be updated only once per block, instead of at every sample [24]. Following the

same procedure as in LMS technique, the coefficient updates will be

zj(r + 1) = zj(r)−
µz

N

N∑
k=1

xk(rN + k − 1)ej(rN + k − 1), (4.33)

where the sampling index r is replaced by rN + k − 1, r = 0, 1, 2, . . . , is the block

index, k = 1, 2, 3, . . . , N , is the sampling index defined in each block. From (4.27)

and (4.33), the BLMS model requires number of real multiplications, denoted as

CBLMS, given by

CBLMS = CLMS = 2MN + 2M = O(MN). (4.34)

Comparing (4.32) with (4.34), it is clear that the computational complexity has

been drastically decreased if BLMS model is used.

4.4.4 The proposed algorithm

Based on the proposed model discussed in Section 4.4, Algorithm 4 will be applied

to extract the zj(m) and yj(m), j = 1, 2, . . . , L. Maximum number of data samples

is assumed to be Nmax. The input mixture X(m) is segmented into blocks of

length N . First, the algorithm sets the values of Nmax, j, N , M , zj(m), µz. Then,
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iteration starts and the data from the rth block of the mixture, denoted by Xr, is

captured. Xr is given by

Xr, r = 0, 1, 2, · · · =


x1(rN) x1(rN + 1) · · · x1(rN +N − 1)

x2(rN) x2(rN + 1) · · · x2(rN +N − 1)
...

...
...

...

xM(rN) xM(rN + 1) · · · xM(rN +N − 1)

 . (4.35)

Next, steps (6-7) update W(m), yj(m), ŷj(m), and ej(m). steps (8-13) update

zj(m) according to the type of selected optimization technique (LMS or BLMS).

Finally, zj(r + 1) is normalized to a unit length in step (14) to avoid the critical

case where the norm of zj(r+ 1) become too small [30]. Steps (4-16) are repeated

till all input blocks are processed.

Algorithm 4 Proposed BSE-ITM algorithm using LMS and BLMS techniques

1: Initials Nmax, j, N , M , zj(m), µz.
2: Enter select.
3: r = 0.
4: while r < Nmax do
5: Read the rth block of X(m) by (4.35).
6: update W(m) by Algorithm 3.
7: update yj(m), ŷj(m), and ej(m) in each iteration by (4.26), (4.25), and (4.27),

respectively.
8: if select = LMS
9: update zj(m) in each iteration by (4.30).

10: elseif select = BLMS
11: update zj(m) in each iteration by (4.33).
12: else (wrong selection, go to step 2).
13: endif
14: normalize zj(r + 1).
15: r = r + 1.
16: end while
17: Return yj(m), ej(m), zj(r + 1).
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4.5 Simulation results

In this section, a detailed simulation is provided to test the performance of the pro-

posed algorithms 3-4, used for BSE-ITM. Results of extraction signals were com-

pared with other BSS algorithms such as Principal Component Analysis (PCA)

[14], SOBI and FastICA. These algorithms are selected because they become

benchmark methods due to their popularity and their success in extracting signals

from input mixture [31–33]. The results were also compared with the BSE-parallel

linear predictor (PLP) algorithm. The BSE-PLP algorithm is based on interchang-

ing the rules of filter inputs such that the transformation matrix becomes the filter

input while the estimated source signals are considered as the parallel filter co-

efficients [34]. The Results are recorded as the mean values of 100 independent

simulations. In all simulation experiments, the mixing matrix A is randomly gen-

erated. Three types of input source signals are used, speech, white Gaussian, and

electrocardiogram (ECG) signals, and chosen according to the experiment. The

mixture X(m) is computed by (4.1). The proposed Algorithm 4 is used to extract

the sources based on BLMS. All experiments are simulated in MATLAB.

4.5.1 Experiment 1

In this experiment, we test the error in computing W(m) matrix by two ap-

proaches, (4.18) and Algorithm 3. The W(m) computed by (4.18) is considered

as the reference matrix. We use three uncorrelated randomly generated white

Gaussian signals as the input sources. The signals are mixed by a randomly gen-

erated mixing matrix A. Then, W(m) matrix is computed by the two approaches.

Defining Ew
r (m) as the error matrix WSVD(m)−Witer(m), where WSVD(m) and

Witer(m) are the numerical values of W(m), computed by (4.18) and algorithm



Blind Source Extraction Using Idempotent Transformation Matrix (BSE-ITM) 74

Block size(N)
100 101 102 103

ǫ
w

(m
)

10-6

10-5

10-4

10-3

10-2

10-1

Figure 4.3: εw versus block size.

3, respectively. Then, Ew
r (m) can be written as

Ew
r (m) =


ŵ11(m) ŵ12(m) · · · ŵ1N(m)

ŵ21(m) ŵ22(m) · · · ŵ2N(m)
...

...
...

...

ŵN1(m) ŵN2(m) · · · ŵNN(m)

 , (4.36)

where ŵqk(m), q, k = 1, 2, . . . , N is the difference between wqk(m), computed by

(4.18), and wqk(m), computed by Algorithm 3. The MSE of Ew
r (m), defined by

εw(m), can be computed as

εw(m) =
1

N2

N∑
q=1

N∑
k=1

ŵ2
qk(m). (4.37)

The simulation is repeated for different values of the block size N . Results are

illustrated in Fig. 4.3. Results indicate that εw(m) decreases as N increases. For

N ≥ 50, εw(m) will be less than 10−3, which is an acceptable error value. For

better accuracy, we may choose N ≥ 100, thus εw(m) will be less than 10−4 .
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4.5.2 Experiment 2

In this experiment, we investigate the performance of Algorithm 4 for signal ex-

traction. We use three uncorrelated clean speech signals s1(m), s2(m), and s3(m),

correspond to three English words ′How′, ′Seven′, and ′Electrical′, respectively.

The signals are sampled at 8 kHz, and mixed by a randomly generated mixing

matrix A. The values of Nmax and N are selected to be 12,000 and 200, respec-

tively. The resultant mixture X(m) is used as an input to Algorithm 4. The zj(m)

vector is randomly initialized. The simulation extracts one source signal at a time

then is repeated to extract other signals. Figure 4.4(a) illustrates the input source

signals, while the extracted signals are shown in Fig. 4.4(b).

The simulation is repeated to extract three uncorrelated randomly generated white

Gaussian signals, with Nmax = 4000 and N = 100. Figure 4.5(a) illustrates por-

tion of the input source signals, while the extracted signals are shown in Figure

4.5(b).

The simulation is also repeated to extract a fetal ECG (FECG) and maternal ECG

(MECG) signals, with Nmax = 500 and N = 100. As a comparison between the

ECG source signals (MECG and FECG) and the extracted signals is required in

this experiment, the ECG source signals must be first synthesized [35–37]. The

synthesized ECG signals were then mixed by a randomly generated mixing matrix

A. We selected in this experiment one MECG signal and one FECG signal. The

heart beats of the FECG was assumed to be 140 beats per minute (BPM) while

80 BPM was selected for the MECG signal. We assume that some of the heart

beats coincide [4]. The ECG signals were simulated using Matlab [38]. Figure

4.6(a) illustrates the synthesized ECG source signals, while the extracted signals

are shown in Fig. 4.6(b).

Results from Fig. 4.4−4.6 indicate that the new algorithm is successfully extract-

ing signals from their mixture.

Next, we test the performance of speech, Gaussian, and ECG signal extraction. We
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(a) Input source signals sj(m), (b)Extracted signals yj(m),
j = 1, 2, 3. j = 1, 2, 3.

Figure 4.4: Results of extracting speech signals using the proposed BSE-ITM
algorithm based BLMS.

use the same simulation settings for speech, Gaussian and ECG signal extraction as

explained in section 4.5.2. In the case of ECG signal extraction, we added one more

MECG signal having the same beat rate used in 4.5.2. The extraction performance

includes the estimation of the source-to-interference ratio (SIR), the source-to-

artifacts ratio (SAR), the source-to-distortion ratio (SDR), and the signal-to-noise

ratio (SNR) [22, 39]. These performance measures require first the decomposition
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Figure 4.5: Results of extracting white Gaussian signals using the proposed
BSE-ITM algorithm based BLMS.

of the extracted signals yj(m), as follows [40]

yj(m) = starget + einterf + enoise + eartif , (4.38)

where starget is the component of sk(n) in yk(n), einterf , enoise, and eartif are the

interference, noise and artifact error terms, respectively. Second, the terms are
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(a) Synthesized ECG signals sj(m), (b)Extracted signals yj(m),
j = 1, 2. j = 1, 2.

Figure 4.6: Results of extracting ECG signals using the proposed BSE-ITM al-
gorithm based BLMS. s1(m) and s2(m) are the synthesized FECG and MECG,
respectively. y1(m) and y2(m) are the extracted FECG and MECG, respec-

tively.

computed using BSS EVAL toolbox, as follows [40–42]

SIR = 10log10
‖starget‖22
‖einterf‖22

, (4.39)

SAR = 10log10
‖starget + einterf + enoise‖22

‖eartif‖22
, (4.40)

SDR = 10log10
‖starget‖22

‖einterf + enoise + eartif‖22
, (4.41)

SNR = 10log10
‖sk(n)‖2

2

‖sk(n)− yk(n)‖2
2

. (4.42)

To compare the results with other BSS methods, the experiment is repeated using

PCA [14, 39], BSE-PLP, SOBI and FastICA algorithms. Results of simulation are

shown in Tables 4.1-4.3. The proposed BSE-ITM based BLMS algorithm, provided
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Table 4.1: Comparison between the proposed BSE-ITM based BLMS with
PCA, BSE-PLP, SOBI, and FastICA, in terms of SIR, SAR, SDR, and SNR.

Assuming that the unknown sources are three speech signals

Algorithm
Input source signals

Average
s1(m) s2(m) s3(m)

SIR (dB)

PCA [14, 39] 9.647 4.653 3.736 6.012
BSE-PLP [34] 5.146 8.614 8.3364 7.365

SOBI [19] 20.588 17.568 25.736 21.297
FastICA [7, 9, 11, 14] 19.337 24.837 20.689 21.621

BSE-ITM based BLMS 23.787 23.484 18.078 21.783

SAR (dB)

PCA [14, 39] 9.211 9.055 9.540 9.268
BSE-PLP [34] 18.641 26.593 24.792 23.342

SOBI [19] 9.3196 13.352 7.8809 10.184
FastICA [7, 9, 11, 14] 15.316 17.204 22.033 18.184

BSE-ITM based BLMS 38.842 34.511 32.861 35.405

SDR (dB)

PCA [14, 39] 9.647 4.653 3.736 6.012
BSE-PLP [34] 5.146 8.614 8.336 7.365

SOBI [19] 8.9717 11.903 7.7989 9.5577
FastICA [7, 9, 11, 14] 15.299 17.129 21.475 17.967

BSE-ITM based BLMS 23.653 23.152 17.934 21.58

SNR (dB)

PCA [14, 39] 19.697 10.187 9.995 13.293
BSE-PLP [34] 48.632 26.645 61.349 45.543

SOBI [19] 50.403 45.708 41.417 45.943
FastICA [7, 9, 11, 14] 54.133 49.290 38.073 47.165

BSE-ITM based BLMS 67.915 63.124 66.752 65.93

in bold letters in Tables 4.1-4.3, shows better average performance in terms of

the three performance measures (SIR, SAR and SDR), with SIR parameter only

slightly improved, compared to other methods. However, a considerable improve

in SNR are recorded, as compared with all other algorithms.
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Table 4.2: Comparison between the proposed BSE-ITM based BLMS with
PCA, BSE-PLP, SOBI, and FastICA, in terms of SIR, SAR, SDR, and SNR.
Assuming that the unknown sources are three uncorrelated Gaussian signals)

Algorithm
Input source signals

Average
s1(m) s2(m) s3(m)

SIR (dB)

PCA [14, 39] 0.950 1.588 4.414 2.317
BSE-PLP [34] 1.683 3.232 10.986 5.300

SOBI [19] 1.587 3.507 8.348 4.481
FastICA [7, 9, 11, 14] -1.74 12.427 -1.0992 3.195

BSE-ITM based BLMS 7.603 11.373 19.398 12.791

SAR (dB)

PCA [14, 39] 14.847 14.922 14.749 14.839
BSE-PLP [34] 16.226 16.238 17.49 16.651

SOBI [19] 15.018 15.2 15.021 15.08
FastICA [7, 9, 11, 14] 14.926 15.291 14.852 15.023

BSE-ITM based BLMS 19.85 19.223 17.232 18.762

SDR (dB)

PCA [14, 39] 0.950 1.588 4.414 2.317
BSE-PLP [34] 1.683 3.232 10.986 5.300

SOBI [19] 1.587 3.507 8.348 4.481
FastICA [7, 9, 11, 14] -1.740 12.427 -1.099 3.195

BSE-ITM based BLMS 6.735 9.451 11.427 9.204

SNR (dB)

PCA [14, 39] 10.144 9.926 11.692 10.588
BSE-PLP [34] 10.047 11.596 23.954 15.199

SOBI [19] 9.596 11.8 16.28 12.559
FastICA [7, 9, 11, 14] 7.232 26.186 7.602 13.673

BSE-ITM based BLMS 12.631 20.307 22.14 18.359

4.5.3 Experiment 3

In this experiment, we test the convergence of error ej(m) in (4.27). Defining

Ee
r(m) as Y(m)− S(m), and can be written as

Ee
r(m) =


e1(m) e1(m− 1) · · · e1(m−N + 1)

e2(m) e2(m− 1) · · · e2(m−N + 1)
...

...
...

...

eL(m) eL(m− 1) · · · eL(m−N + 1)

 , (4.43)

then, the MSE of Ee
r(m), defined by εe(m), can be computed as

εe(m) =
1

LN

L∑
j=1

N∑
k=1

e2j(m− k + 1), (4.44)
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Table 4.3: Comparison between the proposed BSE-ITM based BLMS with
PCA, BSE-PLP, SOBI, and FastICA, in terms of SIR, SAR, SDR, and SNR.
Assuming that the unknown sources are three ECG signals (two from a mother

and one from its fetus)

Algorithm
Input source signals

Average
s1(m) s2(m) s3(m)

SIR (dB)

PCA [14, 39] 10.778 7.132 -12.699 1.7369
BSE-PLP [34] 5.146 8.614 8.3364 7.365

SOBI [19] 16.957 0.386 14.52 10.621
FastICA [7, 9, 11, 14] 22.885 11.529 13.284 15.899

BSE-ITM based BLMS 19.141 9.652 20.228 16.341

SAR (dB)

PCA [14, 39] 29.905 30.085 29.611 29.867
BSE-PLP [34] 86.399 82.594 84.835 84.609

SOBI [19] 11.494 13.857 298.99 108.11
FastICA [7, 9, 11, 14] 27.236 23.038 190.54 80.271

BSE-ITM based BLMS 13.441 17.938 293.1 108.16

SDR (dB)

PCA [14, 39] 18.538 7.1161 -12.084 4.523
BSE-PLP [34] 9.167 4.961 14.519 9.549

SOBI[19] 10.34 0.027 14.52 8.295
FastICA [7, 9, 11, 14] 16.546 11.213 13.284 13.681

BSE-ITM based BLMS 12.656 9.5071 20.228 14.13

SNR (dB)

PCA [14, 39] 22.188 17.064 0.9784 13.41
BSE-PLP [34] 31.552 24.793 60.581 38.975

SOBI [19] 64.682 38.261 38.261 44.046
FastICA [7, 9, 11, 14] 86.776 33.447 30.552 50.258

BSE-ITM based BLMS 58.761 44.106 80.168 61.012

We use the same simulation settings in Experiment 2, for white Gaussian signal

extraction. Figure 4.7 illustrate the simulation results. Results show that εe(m)

convergences very fast for all values of N . Also, all errors for N > 50 are below

10−4, which is an acceptable error level.

4.6 Conclusion

This work introduced a new method for BSE using the ITM that is computed by

the input mixture. The matrix has good properties in terms of its unity norm and
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Figure 4.7: Convergence of εe(m) using the proposed BSE-ITM algorithm
based BLMS.

zero mean (rows and columns). New iterative algorithm was presented to com-

pute the ITM with less computational complexity as compared to the standard

SVD method. New optimization problem was defined according to the proposed

ITM, and solved using BLMS algorithm with low computational complexity. The

impact of scaling down the real multiplications using the new algorithm has been

investigated. Also, the proposed algorithm used the ITM as a filter coefficients.

Thus, the filter coefficients are controlled by the mixture input, not by the output

error signals. This has the merits of fixing the filter length and improving the

output error convergence. The proposed algorithm was evaluated using speech,

white Gaussian, and ECG signals. Simulation results have shown that the pro-

posed algorithm significantly separating the source signals with better performance

measures in terms of SIR, SAR, SDR, and SNR.
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Chapter 5

Detection and Extraction of

FECG signals Using Null Space

Approach

5.1 Introduction

The electrocardiogram (ECG) signal, in non-invasive method, incorporates of the

maternal ECG (MECG) signal, the fetal ECG (FECG) signal, and several sources

of interference such power line interference, baseline wander, motion artifact, fetal

brain activity, muscle artifact, and instrumentation noise [1–3]. FECG signal is

used to monitor the health status of the fetus by determining its maturity level,

reactivity, development and existence of fetal distress [4].

FECG extraction and enhancement method requires the elimination of the MECG

as well as optimal detection of the FECG. The frequencies of both signals are few

Hertz’s and are possibly overlapping. Thus, separating them using the conven-

tional linear filter fails. To address this problem, large number of FECG extraction

algorithms have been proposed over the past decades. Some of these algorithms

89
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were based on the blind source separation (BSS) or blind source extraction (BSE)

techniques [6, 7]. In general, the extraction algorithms can be classified as ei-

ther spatial (non adaptive) or temporal (adaptive) algorithms [7]. Examples of

the BSS/BSE based non adaptive algorithms include principal component analy-

sis (PCA) [8], null space component (NCA)[9], independent component analysis

(ICA) [10], and parallel linear predictor (PLP) filters [11, 12]. Examples of the

adaptive algorithms include the multi-sensory adaptive noise canceller (MSANC)

[7], fast adaptive orthogonal group ICA [13], adaptive Volterra filter (AVF) [14],

adaptive neuro fuzzy inference system (ANFIS) and wavelet transform [15], and

Kalman filtering [16].

The comparison between the relative performances of these algorithms is a chal-

lenging task due to the absence of a large public database and of also the absence

of a defined evaluation methodology. However, It is possible to highlight the

strengths and weaknesses of limited algorithms, evaluated on the same database

and using the same methodology [17].

It has been reported that NCA and ICA algorithms represent the smallest amount

of information that can be adopted for solving the BSS problem [9]. Note that

ICA algorithm requires data whitening prior to applying the algorithm. This is

necessary to minimize the correlation between the mixture signals. The PCA ap-

proach may be used for data whitening. The NCA approach assumes that the

sources are linearly independents. However, the ICA approach considers that the

sources are statistically independents.

The NCA was proposed in 2007 by R. B. Chena and Y. NianWub [18] to solve the

over-complete BSS problem. The solution space of the source signals were charac-

terized by the null space of the mixing matrix using singular value decomposition

(SVD). The problem were formulated in the framework of Bayesian latent variable

model. The work was only applied to three sound signals. There is no information

about the performance of this approach when the number of signals is increased.

The computational complexity of this algorithm was not provided. Also, there
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were no comparisons with other methods. Another NCA algorithm was presented

in [19] for noisy mixture. This algorithm used a transformation matrix to resolve

the rotation ambiguity and extract the source signals that were assumed to be

linearly independent. The initial guess of this algorithm depends more heavily on

the solutions as compared with ICA. Also, it has higher complexity than many

existing ICA methods. The work in [9] presented an extension of NCA framework,

named constraint NCA (c-NCA) approach. This approach was considered as an

alternative approach to the c-ICA. The c-NCA used signal-dependent semidefinite

operators, which is a bilinear mapping, as signatures for operator design. A prior

knowledge of how the data are prepared, collected, and mixed, is needed in this

approach. This method has many issues. First, the algorithm requires a little

knowledge about the sources during initialization. This is not suitable for real-life

cases. Second, the condition for convergence requires the calculation of maximal

eigenvalues of the Hessian matrix of the objective function. The calculation of

eigenvalues is numerically intractable. Third, the complexity of the algorithm is

high and approaches O(N1N2N
3), where N1 is the number of iterations, N2 is the

number of proximal splitting iterations, and N is the number of samples. Thus,

designing new null space separating operator with less computational complexity,

with no initialization constraint, and fast convergence, is crucial.

This paper is aimed to develop a non-adaptive FECG detection and extraction

algorithm, based on using the null space approach in estimating the FECG and

MECG signals from the ITM. The algorithm first minimizes the effect of noise

then extracts the FECG and MECG signals, and detects the fetal heart rate. A

comparison between the proposed algorithms and other similar algorithms will be

provided.

The rest of this paper is organized as follows. In Section 5.2, we briefly define

the BSS problem and how it can be used in FECG extraction. The ECG sig-

nal is also illustrated in this section. A review on the popular FECG extraction

methods (PCA and FastICA), in the context of BSS, is shown in Section 5.3. In
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Section 5.4, we present the proposed FECG and MECG extraction algorithms,

and how to detect the R peaks in the QRS complex. The experimental results are

demonstrated in Section 5.5. Finally, Section 5.6 concludes the paper.

5.2 Problem formulation

The biological ECG signal of a pregnant woman is a composite signal between the

FECG, MECG, and the noise. It has been proven that the noiseless ECG signals

can be modelled using the linear BSS model expressed by [8]:

X = AS, (5.1)

where X is the M ×N zero mean recorded ECG mixture signals, from the thorax

and the abdominal channels, A is the M ×L unknown full rank mixing matrix, S

is the L×N unknown source signals (the FECG and the MECG signals), recalling

that M is the number of recorded ECG signals, L is the number of the unknown

source signals, and N is the number of samples of each measurement. We assume

that both M and L are less than N . The matrices X and S have M and L

row vector signals, respectively. A typical ECG signal for N = 500 is illustrated

in Fig. 5.1, [17]. It is clear from Fig. 5.1 that the ECG signal is composed of

P wave, QRS complex, S wave, and T wave. Both FECG and MECG signals

are periodic and take the same shape shown in Fig. 5.1. However, the amplitude

and duration of P, QRS, and T waves are different. Also, the FECG signal has

higher frequency than the MECG signal [2, 4]. The ECG signal is captured by

appropriate electrodes placed at the abdominal and thorax.

The estimation of S and A from X is the main goal of the BSS problem. To

estimate S, we denote matrix Y , having the same dimension of S, as the estimated

source matrix, given by

Y = HX, (5.2)
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Figure 5.1: Typical ECG signals, N = 500.

where H is the L×M estimated transformation matrix.

As the BSS model shown in (5.1) is affected by scaling, permutation, and rotation

ambiguities [22], several methods has been developed to extract S using (5.2).

This will be discussed in Section 5.3.

5.3 FECG extraction methods

In this section, we discus some important extraction approaches, such as PCA and

ICA.

5.3.1 PCA approach

Different methods were reported in the literature to estimate H based on PCA [23].

The PCA whitening method is one of the popular methods, in which the matrix

H is equal to C
− 1

2
x , where Cx is the M ×M whitening matrix. This matrix is

estimated from covariance matrix of X. From (5.2), the estimated source matrix
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Y , using PCA approach, is given by:

Y = C
− 1

2
x X. (5.3)

The output signals (the row vectors) from Y , after applying PCA whitening, has

the property of being uncorrelated. However, these vectors do not necessarily

represent independent sources [23]. Thus, the PCA method is weak in signal

extraction. Despite this weakness, the PCA algorithm has less amount of compu-

tations as compared with other methods, and shows acceptable detection of FECG

R peaks. Thus, the PCA method is still showing interest by researchers in the

field of FECG detection and extraction [25, 26].

5.3.2 ICA approach

In ICA approach, the matrix H is equal to A+ which is the Moore-Penros inverse

of A, such that A+ = AT (AAT )−1, if L ≤ M [11]. The resultant estimated row

vectors in Y must be statistically independents. In many ICA algorithms, whiten-

ing process is needed. Denoting x̂(n) as the output of the PCA whitening process

at sample n, the Y matrix can be estimated by first solving the optimization

problem [24]

minimize ‖z(n)− s(n)‖2

subject to z(n) = A+x̂(n),
(5.4)
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where

z(n) =


z1(n)

z2(n)
...

zL(n)

 ,A
+ =


p11 p12 · · · p1M

p21 a22 · · · p2M
...

...
...

...

pL1 aL2 · · · pLM

 ,

x̂(n) =


x̂1(n)

x̂2(n)
...

x̂M(n)

 , s(n) =


s1(n)

s2(n)
...

sL(n)

 , (5.5)

then, for a block of N samples, the Y matrix is computed as follows

Y =


z1(n) z1(n− 1) · · · z1(n−N + 1)

z2(n) z2(n− 1) · · · z2(n−N + 1)
...

...
...

...

zL(n) zL(n− 1) · · · zL(n−N + 1)

 , (5.6)

The ICA based FECG extraction has some challenges. First, it assumes inde-

pendent sources and its performance is directly affecting the quality and speed of

FECG signal extraction. Second, The background noise has a considerable affect

on its performance [3]. Some works were reported to combine the ICA approach

with other approaches such as wavelet decomposition [10] and adaptive noise can-

cellation (ANC) [27].
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5.4 The proposed FECG extraction and detec-

tion method

The null space idempotent transformation matrix (NSITM) algorithm is explained

in this section. A proposed R peak detection method is also presented in this

section.

5.4.1 FECG extraction using Null Space ITM (NSITM)

Define the jth signal yj(n−k+1), j = 1, 2, . . . , L, k = 1, 2, . . . , N , as the extracted

FECG or MECG source signal, and expressed by the following N prediction filter

[20, 21, 28]

yj(n− k + 1) =
N∑
q=1

wq,kyj(n− q + 1), (5.7)

where wq,k is the AR coefficients of yj(n− k + 1). where i = 1, 2, . . . , L and wik is

the AR coefficients of yi(n). Re-writing (5.7) in matrix form, we obtain

Y = Y W , (5.8)

where Y is the extracted source matrix of dimension L ×N , and can be written

as

Y =


y1(n) y1(n− 1) · · · y1(n−N + 1)

y2(n) y2(n− 1) · · · y2(n−N + 1)
...

...
...

...

yL(n) yL(n− 1) · · · yL(n−N + 1)

 , (5.9)
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and W is the N ×N symmetrical idempotent transformation matrix, and is given

by

W =


w1,1 w1,2 · · · w1,N

w2,1 w2,2 · · · w2,N

...
...

...
...

wN,1 wN,2 · · · wN,N

 . (5.10)

The matrix W can be computed as follows [21]

W =
1

N
XTC−1x X, (5.11)

where Cx is the covariance matrix of X. Equation (5.8) can be rewritten as

QY T = 0N×L, (5.12)

Q = W − IN , (5.13)

where Q is the required N × N separation matrix, and 0N×L is an N × L zero

matrix. Equation (5.12) can be solved for the unknown Y using the null space of

Q, as follows:

Y = Null(Q). (5.14)

Since the extracted signals of the Y matrix are computed based on (5.14), i.e, the

Null space (NS) of Q, and since W is an ITM, we name this method as NSITM.

The solution of (5.14) can be obtained using SVD. First, we express Q by

Q = UqDqV
T
q , (5.15)

where Uq is an N ×N unitary matrix, Dq is an N ×N diagonal matrix with

the eigenvalues of Q, and Vq is an N × N matrix with the columns being the
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eigenvectors of Q. Assume that Vq is expressed by

Vq =


v1,1 v1,2 · · · v1,N

v2,1 v2,2 · · · v2,N
...

...
...

...

vN,1 vN,2 · · · vN,N

 , (5.16)

then, from (5.14), (5.15) and (5.16), and since L < N , the solution Y will be

taken from the last L column vectors of Vq, and is given by

Y =


v1,N−L+1 v1,N−L+2 · · · v1,N

v2,N−L+1 v2,N−L+2 · · · v2,N
...

...
...

...

vN,N−L+1 vN,N−L+2 · · · vN,N



T

(5.17)

From (5.11), (5.14), (5.15), and (5.17), we propose the NSITM algorithm 5 that

extracts the FECG signals from the ECG mixture signals. The algorithm needs

first a prepossessing stage to remove the noises since the ECG signals are contam-

inated with different types of noise, as declared in Section 5.1. A second order

notch filter having cutoff frequency of 50 Hz or 60 Hz is needed to remove the

50 Hz or the 60 Hz power line interference, respectively. The selection of cutoff

frequency depends upon the power line standard which is either European or US

standard [10]. The baseline wander is reduced using high pass filter of 0.5 Hz

cutoff frequency [17]. A low pass Butterworth filter with 100 Hz cutoff frequency

is applied to limit the frequency band of the ECG signals. Other noise sources are

minimized using LMS based adaptive noise cancellation (ANC) algorithm [4].
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Algorithm 5 The proposed NSITM algorithm

1: Initials N , L, M
2: Read the ECG signals X.
3: Prepossessing by denoising filters (low pass, high pass, notch) and ANC.
4: Compute W by (5.11).
5: Compute Q by (5.13)
6: Compute Vq by (5.15) using SVD method.
7: Compute Y by (5.17).
8: Return Y .

5.4.2 FECG R peaks detection

The R peak in the fetal QRS complex, shown in Fig. 5.1, are detected by search-

ing for FECG signal values between 50% – 100% of the global maximum. This

threshold level minimizes the searching error. Due to the periodic nature of the

FECG signal, and since the time needed to record ECG signals is typically long

and contains many periods of the signals, we define p as a vector that contains the

sampling indices of all detected peaks, and H as the number of detected peaks,

then the difference in sampling indices between two consecutive peaks, defined as

dp, is given by

dp(k) = p(k + 1)− p(k), k = 1, 2, . . . , H − 1. (5.18)

The kth fetal heart rate (FHRk) can be calculated from (5.18) as follows

FHRk = 60fs/dp(k). (5.19)

5.5 Experiments

Four different simulations are provided in this section. The first simulation uses

real ECG signals from Database for the Identification of Systems (DAISY) [29].

Then, the FECG signal is extracted using our proposed NSITM algorithm. The
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simulation is repeated using PCA and FastICA algorithms, for comparison pur-

poses. The R peak detection of FECG signal is also provided. The second simula-

tion is similar to the first simulation but using another real data from Physionet/-

Computing in Cardiology Challenge 2013 database [30, 31]. The third simulation

is intended to evaluate the R peaks detection metrics of the proposed NSITM

algorithm by comparing the results from the first and second simulation, with

the results obtained from PCA and FastICA algorithms. The fourth simulation

extracts the FECG signals from a synthesized ECG data then evaluates its per-

formance. The synthesized data were taken from Physionet/Fetal ECG Synthetic

Database (FECGSYNDB) [31, 32]. All simulations were conducted in Matlab.

5.5.1 FECG extraction and R peaks detection of real ECG

data from DAISY database

A recorded real ECG signals, from pregnant women for 10s, were used from [29].

The signals were acquired from 8 channels sensors ( five abdominal and three

thorax channels). The sampling frequency fs was selected to be 250 Hz. Then,

the proposed NSITM algorithm was applied to extract the FECG signals. The

PCA and FastICA algorithms were also applied to extract the FECG signals, and

their results will be compared with the results from the proposed algorithm.

Fig. 5.2 illustrates the recorded ECG signals, with N = 2500 samples, and M =

7, using five abdominal signals x1(n)-x5(n) and two thorax signals x6(n)-x7(n).

Figs. 5.3-5.4 illustrate the extracted FECG and MECG signals, respectively, using

the selected algorithms. Figs. 5.5-5.6 illustrate the extracted FECG and MECG

signals, respectively, using the selected algorithms, considering all mixture signals

shown in Fig. 5.2. From Fig. 5.3 and Fig. 5.5 and applying (5.18)-(5.19), the mean

values of the FHR are estimated and shown in Table 5.1. This table also illustrates

the estimation of FHR by considering five different selections of abdominal and

thorax signals. Several conclusions were recorded from the results. First, the
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Figure 5.2: Recorded ECG signals using DAISY data set, N = 2500, M = 7,
fs = 250 Hz. The abdominal signals are the first 5 signals from the top while

the remaining two are thorax signals.

proposed NSITM algorithm, the PCA algorithm, and the FastICA algorithm were

successfully extracting the FECG and MECG signals from the ECG mixture.

Second, The estimated FECG signals using NSITM and FastICA show less noise

contents as compared with PCA. Third, the extraction using M = 7 is better

than that with M = 5. Forth, the mean value of FHR using NSITM algorithm

is equal to ≈134 beats per minute (bpm), which is almost the same as the result

obtained in [4]. This provides confidence in the ability of the proposed algorithm

to successfully detect the fetal R peaks.
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Figure 5.3: Extracted FECG signals from ECG signals in Fig. 5.2, using
NSITM, PCA, and FastICA, assuming M = 5 (three abdominal signals x1(n)-

x3(n) and two thorax signals x6(n)-x7(n)
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Figure 5.4: Extracted MECG signals from ECG signals in Fig. 5.2, using
NSITM, PCA, and FastICA, assuming M = 5 (three abdominal signals x1(n)-

x3(n) and two thorax signals x6(n)-x7(n)

5.5.2 FECG extraction and R peaks detection of real ECG

data from Physionet Database

A recorded real ECG signals, from pregnant women for 1 minute, were used from

Physionet Challenge 2013 data set a [30, 31]. Each recording includes four nonin-

vasive abdominal signals. The data were obtained from multiple sources using a
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Figure 5.5: Extracted FECG signals from ECG signals in Fig. 5.2, using
NSITM, PCA, and FastICA, assuming M = 7 (five abdominal signals x1(n)-

x5(n) and two thorax signals x6(n)-x7(n)
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Figure 5.6: Extracted MECG signals from ECG signals in Fig. 5.2, using
NSITM, PCA, and FastICA, assuming M = 7 (five abdominal signals x1(n)-

x5(n) and two thorax signals x6(n)-x7(n)

variety of instrumentation with differing frequency response, resolution, and con-

figuration. The sampling frequency for all data is 1 kHz. We selected the data files

(a04, a08, a14, a15, a25) from the database, and used them in this experiment.

Then, we followed the same simulation procedure as in Section 5.5.1. For illustra-

tion purposes, we visualize only the results of file a15 due to the excessive number

of figures. However, their results for FHR estimation were recorded in Table 5.2.
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Figure 5.7 illustrates the recorded abdominal ECG signals, file a15, with M = 4.

We selected a block of 5000 data samples, from 0-4999. Figures 5.8-5.9 illus-

trate the extracted FECG and MECG signals, respectively, using the selected

algorithms. Figure 5.8 shows unsatisfactory extraction of FECG signals using all

algorithms (the proposed NSITM algorithm, as well as the PCA and FastICA algo-

rithms). This is due to the absence of thorax signals from the input ECG mixture.

However, all used algorithms were successfully extracting the MECG signals from

the ECG mixture, as shown in Fig. 5.9. Figure 5.8 shows that both FECG and

MECG R peaks exist, and marked by red dashed lines and green dashed lines,

respectively 1 [35]. The ACF has periodic hanning windows. Each window is

centered at the locations of one of the MECG R peaks shown in Fig. 5.9. As

these MECG R peaks exist also at the same locations in Fig. 5.8, we apply the

ACF to all signals in this figure, thus removing the MECG R peaks. The loca-

tions of the ACF are illustrated in Fig. 5.8 by block arrows. The length of the

ACF window is a variable quantity and depends upon the duration of the QRS

complex of the selected MECG signal. In this simulation, a length of 20 samples

were found appropriate in removing the MECG R peaks, for the used file a15. For

other used files, the length of ACF must be selected between 20 and 45 samples,

to avoid the removal of portions of the required FECG signal when the two signals

are very close in their locations. Our method may fail in MECG removal if the

the locations of FECG and MECG R peaks overlap.

Figure 5.10 illustrates the clean extracted FECG signals of Fig. 5.8 after the re-

moval of MECG signals by ACF. The first signal from the top is the abdominal

ECG signal x1(n), which is considered at the top of the figure for illustration

purposes, since it contains a reference annotation taken from LightWAVE anno-

tation viewer [30]. It is clear from Fig. 5.10 that the proposed NSITM algorithm,

1The red dashed lines and the green dashed lines are at the left and the right side of Fig. 5.8,
respectively. These MECG R peaks can be removed by adaptive comb filter (ACF)
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Figure 5.7: Recorded abdominal ECG signals from Physionet Challenge 2013
data set a, file a15, M = 4, N = 5000, data samples from 0− 4999.

the PCA algorithm, and the FastICA algorithm were successfully extracting the

FECG and MECG signals from the ECG mixture. The extraction performances

will be considered later in Section 5.5.4.

From Fig. 5.10 and applying (5.18)–(5.19), the mean values of the FHR are esti-

mated and shown in Table 5.2. Next, the simulation is repeated for other files (a4,

a8, a14, a25) and their results for FHR estimation were recorded also in Table 5.2.

Comparing the average value of the annotated FHR (141.24) [30] with the results

in Table 5.2, it is clear that NSITM algorithm has the best estimation of the FHR

(140.8). The FastICA is coming next with FHR equals to 143.3. The PCA has

the lowest score (137). In general, the proposed NSITM algorithm is successfully

extracting FECG signals with the highest closest values of FHR to the reference

FHR.

To ensure the stability of extraction performance over time, the simulation is re-

peated by taking blocks of data samples from 5000-9999, and from 55000-59999

which is the last available data samples. Results from the first block is shown in

Figs. 5.11-5.14 while Figs. 5.15-5.18 illustrate the results from the second block.



Detection and Extraction of FECG signals Using Null Space Approach 106

0 1000 2000 3000 4000 5000
-1

0

1
E

xt
ra

ct
ed

F
E

C
G

 u
si

ng
 N

S
IT

M

0 1000 2000 3000 4000 5000
Sample

-1

0

1

E
xt

ra
ct

ed
F

E
C

G
 u

si
ng

 F
as

tIC
A

0 1000 2000 3000 4000 5000
-1

0

1

E
xt

ra
ct

ed
F

E
C

G
 u

si
ng

 P
C

A

Arrows indicate ACF locations

Figure 5.8: Unsatisfactory Extracted FECG signals from ECG signals in
Fig. 5.7, using NSITM, PCA, and FastICA, assuming M = 4. Both FECG
and MECG R peaks exist. For illustration, only one marked FECG peak and
one marked MECG peak are shown by red dashed lines (left located) and green
dashed lines (right located), respectively. The block arrows indicate the position

of the ACF used to remove the MECG R peaks.
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Figure 5.9: Extracted MECG signals from ECG signals in Fig. 5.7, using
NSITM, PCA, and FastICA, assuming M = 4. Only MECG R peaks exist. For

illustration, only one marked MECG peak is shown by green dashed lines.
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Figure 5.10: Clean extracted FECG signals of Fig. 5.8 after the removal of
MECG signals by ACF, and based on R peaks locations in Fig. 5.9. The ’x’
and ’∆’ markers refer to the reference positions of the R peaks in FECG and
MECG signals, respectively. The red dashed lines refers to one position of the
extracted FECG R peaks. The green dashed lines refers to one position of the

removed MECG R peaks.

The results obtained are very similar to the results using data samples from 0-

4999, except that PCA fails in extracting the FECG signal for data samples from

55000-59999, as shown in Fig. 5.8. In general, the proposed NSITM algorithm as

well as the other algorithms are successfully extracting both FECG and MECG

signals from the abdominal ECG mixture if ACF is used to remove the MECG R

peaks from the unsatisfactory extracted FECG signals shown in Fig. 5.8, Fig. 5.12,

and Fig. 5.16, respectively.
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Table 5.1: Evaluation of detected FECG R peaks using SE, ACC, and PPV.
The mean values of FHR is also shown
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Table 5.2: Evaluation of detected FECG R peaks using SE, ACC, and PPV.
The mean values of FHR is also shown
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Figure 5.11: Recorded abdominal ECG signals from Physionet Challenge 2013
data set a, file a15, M = 4, N = 5000, data samples from 5000− 9999.
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Figure 5.12: Unsatisfactory Extracted FECG signals from ECG signals in
Fig. 5.11, using NSITM, PCA, and FastICA, assuming M = 4. Both FECG
and MECG R peaks exist. For illustration, only one marked FECG peak and
one marked MECG peak are shown by red dashed lines (left located) and green
dashed lines (right located), respectively. The block arrows indicate the position

of the ACF used to remove the MECG R peaks.
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Figure 5.13: Extracted MECG signals from ECG signals in Fig. 5.11, using
NSITM, PCA, and FastICA, assuming M = 4. Only MECG R peaks exist. For

illustration, only one marked MECG peak is shown by green dashed lines.
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Figure 5.14: Clean extracted FECG signals of Fig. 5.12 after the removal of
MECG signals by ACF, and based on R peaks locations in Fig. 5.13. The ’x’
and ’∆’ markers refer to the reference positions of the R peaks in FECG and
MECG signals, respectively. The red dashed lines refers to one position of the
extracted FECG R peaks. The green dashed lines refers to one position of the

removed MECG R peaks.
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Figure 5.15: Recorded abdominal ECG signals from Physionet Challenge 2013
data set a, file a15, M = 4, N = 5000, data samples from 55000− 59999.
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Figure 5.16: Unsatisfactory Extracted FECG signals from ECG signals in
Fig. 5.15,using NSITM, PCA, and FastICA, assuming M = 4. Both FECG
and MECG R peaks exist. For illustration, only one marked FECG peak and
one marked MECG peak are shown by red dashed lines (left located) and green
dashed lines (right located), respectively. The block arrows indicate the position

of the ACF used to remove the MECG R peaks.
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Figure 5.17: Extracted MECG signals from ECG signals in Fig. 5.15, using
NSITM, PCA, and FastICA, assuming M = 4. Only MECG R peaks exist
using NSITM, and FastICA. However, both FECG and MECG R peaks exist
using PCA. For illustration, one marked FECG peak and one marked MECG

peak are shown by red dashed lines and green dashed lines, respectively.
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Figure 5.18: Clean extracted FECG signals of Fig. 5.16 after the removal of
MECG signals by ACF, and based on R peaks locations in Fig. 5.17. The ’x’
and ’∆’ markers refer to the reference positions of the R peaks in FECG and
MECG signals, respectively. The red dashed lines refers to one position of the
extracted FECG R peaks. The green dashed lines refers to one position of the

removed MECG R peaks.
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5.5.3 Evaluation metrics of FECG R peaks detection

In this simulation, we used the sensitivity (SE), the accuracy (ACC), and the

positive predictive value (PPV) to evaluate the performance of the FECG R peaks

detection [4, 7, 17]. we used the same real ECG Data in Sections 5.5.1 and 5.5.2.

The SE, ACC, and PPV are computed as follows:

SE % =
TP

TP + FN
× 100% (5.20)

ACC % =
TP

TP + FN + FP
× 100% (5.21)

PPV % =
TP

TP + FP
× 100% (5.22)

where TP, FN, and FP are true positive, false negative, and false positive, re-

spectively. We followed the same simulation procedure explained in Sections 5.5.1

and 5.5.2 then measured SE, ACC, and PPV using (5.20), (5.21), and (5.22),

respectively. Results were recorded in Tables 5.1-5.2.

From the results in Table 5.1, it is clear that the the proposed NSITM algorithm

scores the highest mean values in SE, ACC, and PPV, as compared with other

algorithms. The mean value of FHR computed using NSITM algorithm is close to

the expected value (134 bpm), whereas the values diverge using PCA and FastICA

(129.4 bpm and 129.28 bpm, respectively). Thus, NSITM algorithm has resulted

in significant improvement in FECG signal detection as compared with other al-

gorithms used in this paper.

From the results in Table 5.2, it is clear that the the proposed NSOTM algorithm

scores the highest mean values in SE, ACC, and PPV, as compared with other

algorithms. The mean value of FHR computed using NSITM algorithm is close

to the expected value (141.24 bpm), whereas the values diverge using PCA and
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FastICA (137 bpm and 143.3 bpm, respectively). Thus, NSITM algorithm has

resulted in significant improvement in FECG signal detection as compared with

other algorithms used in this paper.

5.5.4 FECG extraction using synthesized ECG data

To study the extraction performance of the proposed algorithms, the ECG signals

(FECG and MECG) must be first modelled then mixed according to (5.1). The

modelling of ECG signals involves the generation of P, QRS, and T waves shown

in Fig. 5.1. This can be accomplished using the synthesized data taken from

Physionet/Fetal ECG Synthetic Database (FECGSYNDB) [31, 32]. This database

and its collection methods are described in [33]. Each signal had a duration of

5 minutes, and was sampled at 250 Hz with a 16-bit resolution. The FECG and

MECG signals are generated by treating each abdominal signal component (e.g.

foetal/maternal ECG or noise signals) as an individual source, whose signal is

propagated onto the observational points, also called the electrodes. Thus, the

database provides separate waveform files for each signal source [31, 32]. the

simulator generates 34 ECG channels (32 abdominal and 2 maternal ECG reference

channels). Adding the three individual signals (FECG, MECG, and noise) per

channel is then needed to generate the ECG mixture [34]. In our experiment, we

selected four abdominal channels (10, 11, 18, 19) and the two reference channels

(33 and 34) with different signal to noise ratio (SNR), equals to 0 dB, 6 dB, and

12 dB, respectively. We selected eight pregnant women with simulated pregnancy

numbers (01, 02, 03, 06, 07, 08, 09, 10). The selected event is maternal heart rate

(MHR) /FHR acceleration / deceleration plus noise. As there are many entries

needed to download a file, the file name format is long. To simplify the file format

and use it in the paper, we propose a short file format. Table 5.3 illustrates

examples of how to rename the downloaded files for different simulated pregnancy

numbers, SNR, and signal type. Other file names can also be obtained based on
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this table.

Figure 5.19 illustrates the synthesized abdominal FECG, MECG, and noise signals,

from channel (10), assuming simulated pregnancy number = 01, SNR =12 dB, and

event of MHR/FHR acceleration / deceleration plus noise. The signal number (4)

from the top is the mixture signal after adding the FECG, MECG, and noise

signals. Other signals from channels (11, 18, 19) and their corresponding mixtures

were not shown in the paper due to excessive number of figures. Fig. 5.20 illustrates

the synthesized maternal reference ECG (MECG) signals, from channels (33-34).

The proposed NSITM algorithm was then applied to these six signals (the four

abdominal mixture signals plus the two reference signals) to extract the FECG

and MECG signals. The simulation is repeated to extract the FECG and MECG

based on PCA and FastICA algorithms, for comparison purposes. The extracted

FECG and MECG signals from all algorithms are illustrated in Fig. 5.21 and

Fig. 5.22, respectively. Comparing the synthesized FECG and MECG signals

shown in Fig. 5.19 with the extracted FECG and MECG signals shown in Fig. 5.21–

5.22, it is clear that the all algorithms were successfully extracting FECG and

MECG signals from their mixture, since all extracted signals (MECG and FECG)

match the original signals (MECG (10) and FECG (10)), respectively.

To evaluate the FECG extraction performance of the previous simulation, we

used the similarity performance index (SPI) [7, 21], the source-to-interference ratio

(SIR), the source-to-artifacts ratio (SAR), and the source-to-distortion ratio (SDR)

[36]. We Define yi(n), i = 1, 2, . . . , L as the ith row vector of the extracted matrix

Y . The extracted signal yi(n) is estimated using PCA, FastICA, an NSITM

algorithms. We also define si(n) as the corresponding ith row vector of the source

matrix S, having the same form of Y , as in (5.9). Then the SPI is computed as

SPI =
1

L

L∑
i=1

10log10

∣∣∣∣∣ 〈yi(n), si(n)〉√
〈yi(n),yi(n)〉 〈si(n), si(n)〉

− 1

∣∣∣∣∣ , (5.23)

where L = 2 (the FECG and MECG sources), and 〈.〉 denotes the inner product.

To compute SIR, SAR, and SDR, it is required first to decompose the extracted
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Table 5.3: Examples of how to rename the files downloaded from
FECGSYNDB large database [32], assuming SNR = 0 dB, 3 dB, and 12 dB. The
paper file name is used in this paper to shorten the long file name from [32]. Its
format is XYYZZ, where X is an abbreviation for the synthesized signal, and is
equal to F (for FECG), or M (for MECG), or N (for Noise), YY is the simulated
pregnancy number (00-10), ZZ is the SNR ( 00 dB, or 06 dB, or 12 dB). The
’l1’ code in the downloaded file name refers to the repetition number (1 to 5).

It was selected as 1 in this paper.

Simulated SNR Type of File name File name downloaded
pregnancy synthesised used in from [32]

number signal the paper

FECG F0100 sub01/snr00dB/sub01

snr00dB l1 fecg1

01 0 dB MECG M0100 sub01/snr00dB/sub01

snr00dB l1 MECG

Noise N0100 sub01/snr00dB/sub01

snr00dB l1 noise1

FECG F0506 sub05/snr06dB/sub05

snr06dB l1 fecg1

05 6 dB MECG M0506 sub05/snr06dB/sub05

snr06dB l1 MECG

Noise N0506 sub05/snr06dB/sub05

snr06dB l1 noise1

FECG F1012 sub10/snr12dB/sub105

snr12dB l1 fecg1

10 12 dB MECG M1012 sub10/snr12dB/sub10

snr12dB l1 MECG

Noise N1012 sub10/snr12dB/sub10

snr12dB l1 noise1

signals yi(n), as follows

yi(n) = starget + einterf + enoise + eartif , (5.24)

where starget is the component of si(n) in yi(n), einterf , enoise, and eartif are the

interference, noise and artifact error terms, respectively. Second, the terms are
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Figure 5.19: Synthesized abdominal FECG, MECG, and Noise signals, from
channel (10), using [32]. Assuming simulated pregnancy number = 01, SNR
= 12 dB, and event of MHR /FHR acceleration / deceleration plus noise. The
corresponding paper file names are F0112, M0112, and N0112. The signal num-
ber (4) from the top is the mixture signal after adding the FECG, MECG, and

noise signals.
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Figure 5.20: Synthesized maternal reference ECG (MECG) signals, from
channels (33−34), using [32]. Assuming the same simulation settings used in

Fig. 5.19. The corresponding paper file name is M0112.
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Figure 5.21: Extracted FECG signals using NSTM, PCA, and FastICA algo-
rithms.
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Figure 5.22: Extracted MECG signals using NSTM, PCA, and FastICA al-
gorithms.
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Table 5.4: Comparison between the FECG extraction performances (SPI, SIR,
SAR, and SDR), using the proposed NSITM, PCA, and FastICA algorithms.
Assuming SNR = 0 dB. Data are collected from Physionet/Fetal ECG Synthetic

Database (FECGSYNDB).

Paper file names

F0100 F0200 F0300 F0600 F0700 F0800 F0900 F1000
Extraction Algorithm M0100 M0200 M0300 M0600 M0700 M0800 M0900 F1000 Average

metric N0100 N0200 N0300 N0600 N0700 N0800 N0900 N1000

PCA 14.6 25.4 39.8 27.6 28.2 34.4 28.4 17.7 27.01
SIR FastICA 22.7 26.4 29.3 31.7 27.2 39.4 24.3 23.3 28.09
(dB) NSITM 24.5 28.1 29.1 32.7 21.6 35.7 33.04 16.1 27.6

PCA −11.9 −0.33 8.86 12.6 3.98 2.8 −12.4 0.36 0.49
SAR FastICA −2.42 6.44 5.9 2.6 4.41 2.47 −0.56 3.1 2.74
(dB) NSITM −2.2 6.5 6.43 6.47 −3.9 2.21 1.6 .5 2.57

PCA −12.7 −0.38 8.8 12.4 3.8 2.8 −13.01 0.2 0.24
SDR FastICA −2.43 6.4 5.8 2.55 4.1 2.41 −0.52 3.03 2.66
(dB) NSITM −2.4 6.4 6.09 6.2 −4.1 2.2 1.57 3.1 2.38

PCA −1.3 −6.6 −12.6 −10.2 −8.6 −8.01 −6.9 −5.5 −7.4
SPI FastICA −5.1 −10.37 −9.7 −7.2 −8.6 −7.6 −5.8 −7.3 −7.7
(dB) NSITM −5.2 −11.03 −10.6 −10.7 −4.12 −6.5 −11.3 −7.6 −8.38

computed using BSS EVAL toolbox, as follows [37]

SIR = 10log10

‖starget‖22
‖einterf‖22

, (5.25)

SAR = 10log10

‖starget + einterf + enoise‖22
‖eartif‖22

, (5.26)

SDR = 10log10

‖starget‖22
‖einterf + enoise + eartif‖22

. (5.27)

The simulation was repeated by first fixing SNR at 0 dB then varying simulated

pregnancy numbers from 01 to 10. For each step the SPI, SIR, SAR, and SDR

were computed then the average values were computed. The simulation is repeated

by varying SNR to 6 dB then to 12 dB. Results of simulation are recorded in

Tables 5.4-5.6. Results from the proposed NSITM algorithm are provided in bold

letters in these tables. The average values of the extraction performances were

plotted as shown in Fig. 5.23. Results from Fig. 5.23 indicates that for SNR equals

to 0 dB, the proposed NSITM algorithm shows considerable improve over others

in terms of SPI. However, is shows a slightly less values in terms of SIR, SAR, and
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Table 5.5: Comparison between the FECG extraction performances (SPI, SIR,
SAR, and SDR), using the proposed NSITM, PCA, and FastICA algorithms.
Assuming SNR = 6 dB. Data are collected from Physionet/Fetal ECG Synthetic

Database (FECGSYNDB).

Paper file names

F0103 F0203 F0303 F0603 F0703 F0803 F0903 F1000
Extraction Algorithm M0103 M0203 M0303 M0603 M0703 M0803 M0903 F1030 Average

metric N0103 N0203 N0303 N0603 N0703 N0803 N0903 N1030

PCA 17.6 19.8 15.6 12.4 25.3 16.4 19.2 20.1 18.3
SIR FastICA 8.1 27.2 19.3 26.1 26.4 20.9 22.1 21.8 22.7
(dB) NSITM 14.6 36.7 18.9 33.1 32.5 22.2 41.74 24.8 28.0

PCA −13.8 −0.96 3.1 7.2 5.82 −3.3 −1.9 −0.83 −0.58
SAR FastICA 1.9 4.56 5.1 2.4 5.88 3.6 5.5 −0.91 3.5
(dB) NSITM −2.17 4.23 4.2 6.3 6.77 5.06 6.92 1.47 4.1

PCA −13.8 −1.62 3.05 7.1 5.77 −3.5 −2.1 −0.84 −0.742
SDR FastICA 1.1 4.55 5.1 2.35 5.81 3.3 5.2 −0.9 3.31
(dB) NSITM −3.17 4.23 3.7 6.2 6.75 4.8 6.82 1.41 3.84

PCA −1.67 −6.4 −7.9 −9.3 −10.1 −3.4 −4.07 −2.1 −5.62
SPI FastICA −6.2 −9.2 −9.6 −7.01 −9.6 −8.36 −9.47 −3.1 −7.82
(dB) NSITM −4.6 −9.5 −9.3 −11.5 −10.7 −10.8 −13.7 −3.6 −9.21

Table 5.6: Comparison between the FECG extraction performances (SPI,
SIR, SAR, and SDR), using the proposed NSITM, PCA, and FastICA algo-
rithms. Assuming SNR = 12 dB. Data are collected from Physionet/Fetal ECG

Synthetic Database (FECGSYNDB).

Paper file names

F0112 F0212 F0312 F0612 F0712 F0812 F0912 F1012
Extraction Algorithm M0112 M0212 M0312 M0612 M0712 M0812 M0912 F1012 Average

metric N0112 N0212 N0312 N0612 N0712 N0812 N0912 N1012

PCA 16.1 22.8 33.4 19.8 27.3 41.6 22.5 26.3 26.2
SIR FastICA 25.7 39.8 33.4 49.5 36.3 28.7 15.5 33.1 32.7
(dB) NSITM 36.6 30.9 29.8 28.9 26.9 18.7 24.9 21.3 27.2

PCA −10.2 −0.6 3.01 10.8 7.0 7.0 −11.8 2.78 1.05
SAR FastICA 0.24 6.5 7.93 4.97 5.7 0.23 −6.5 1.11 2.52
(dB) NSITM 0.099 5.97 8.33 9.66 5.6 0.58 −0.39 4.35 4.27

PCA −10.3 −0.66 2.99 9.9 7.1 7.01 −12.1 2.73 0.829
SDR FastICA 0.21 6.5 7.91 4.97 5.68 0.15 −7.07 1.1 2.43
(dB) NSITM 0.089 5.91 8.23 9.51 5.4 0.38 −0.6 4.18 4.14

PCA -1.6 -6.35 -11.4 -13.8 -11.0 -10.8 -9.7 -7.18 -8.98
SPI FastICA -2.16 -10.6 -11.4 -8.9 -9.5 -7.07 -4.3 -5.93 -7.48
(dB) NSITM -5.9 -10.6 -12.6 -14.2 -9.6 -5.7 -7.07 -9.1 -9.35
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Figure 5.23: Comparing between Extraction metrics using NSTM, PCA, and
FastICA algorithms.

SDR, as compared with the FastICA, that scores the highest performance measure.

For SNR equals to 6 dB, the proposed NSITM method has the highest score. For

SNR equals to 12 dB, the proposed NSITM method showed the highest scores in

SAR, SDR, and SPI, and its SIR is the next highest score after the FastICA. As a

general conclusion, the extraction performances of NSITM algorithm are improved

with the increase in SNR.

5.6 Conclusion

A noninvasive FECG detection and extraction algorithm, referred to as NSITM,

has been presented. The design problem has been formulated and an analysis has

also been provided. The proposed algorithm was simulated using real ECG data

and synthesised ECG data. Results using (DAISY) real data have shown success-

ful extraction of FECG and MECG signals, using the proposed NSITM algorithm,

when selecting number of abdominal signals to be 3 and 5, with 2 reference signals

taken from thorax. Using the same data, the R peaks detection were evaluated by
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varying the number of abdominal and thorax signals. The average values of SE,

ACC, and PPV using NSITM have shown the highest scores as compared with

other algorithms used in the paper. The estimated average FHR using NSITM has

shown minimum deviation from the reference FHR, as compared with PCA and

FastICA. Results using real data from (Physionet/set a) have shown uncleaned

extracted FECG signals due to the existence of MECG R peaks in the FECG sig-

nals. The MECG peaks have been removed using filtering process, thus extracting

clean FECG signals. The robustness of the proposed algorithm over time was

checked and results have shown success in extracting the required FECG signals.

The R peaks detection were evaluated by considering five different real data. The

average values of SE, ACC, and PPV using NSITM have shown the highest scores

as compared with other algorithms. The estimated average FHR using NSITM

has shown minimum deviation from the reference FHR, as compared with PCA

and FastICA.

Results of applying NSITM algorithm to (Physionet/synthesized data) have shown

successful extracting of both FECG and MECG signals from all eight data signals

used in simulation, and for all selected SNR values, with MHR/FHR accelera-

tion/deceleration plus noise being selected as the event type. The average values

of the extraction performance metrics (SIR, SAR, SDR, and SPI) for the NSITM

algorithm have mostly shown significant improvement compared to other algo-

rithms, when SNR was increased.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this work, two blind source extraction and one blind source separation algo-

rithms have been proposed to solve for the unknown parameters (input sources

and the mixing matrix) in the BSS mixture equation. The algorithms are based

on computing new transformation matrices that have shown to be successfully

estimating the the unknown sources. The sources used in this dissertation are

speech, Gaussian, and ECG signals.

The first algorithm is named as the blind source extraction using parallel linear

predictor filter (BSE-PLP). This algorithm is based on computing a transforma-

tion matrix from the the covariance matrix of the whitened data. Then, use the

matrix as an input to linear predictor filters whose coefficients being the unknown

sources. As the transformation matrix has unity norm and unity eigenvalues, the

filter becomes independent on the mixture signal norm and eigenvalues variations,

thus solving drastically the ambiguity due to the dependency of the filter on the

mixture power levels if the mixture is considered as the filter input. Furthermore,
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the unity eigenvalues of the matrix result in a very fast convergence in two itera-

tions. Simulation results, using speech and Gaussian signals, show that the model

is capable of extracting the unknown source signals and removing noise when the

input signal to noise ratio is varied from –20 dB to 80 dB. The algorithm has been

applied to extract both the maternal and fetal ECG signals. Simulation results

show that the model is successfully extracting all the unknown FECG and MECG

signals, for both synthesized and real ECG data. The algorithm is also tested

using the sensitivity and accuracy R-peak extraction metrics. The recorded values

for the two metrics are 95.45% and 91.3%, respectively, and show considerable

improvements as compared to PCA, FastICA, and SOBI algorithms.

The second algorithm is named as the blind source extraction using idempotent

transformation matrix (ITM). This algorithm computes the ITM with less compu-

tational complexity as compared with the standard singular value decomposition

(SVD) method. New optimization problem was defined according to the proposed

matrix equation, and solved by an iterative algorithm with low computational

complexity. The proposed method is tested using speech, Gaussian, and ECG

signals. The performance measures used in this work are the signal-to-interference

ratio, signal-to-distortion ratio, and signal-to-artifact ratio. Simulation results

show that the proposed algorithm significantly separate the source signals with

better performance measures as compared with the state of the art approaches

such as the BSE-PLP, second order blind identification (SOBI), principal compo-

nent analysis (PCA), and fast independent component analysis (FastICA).

The third algorithm is named as the blind source separation using null space ap-

proach. This algorithm has been designed for autoregressive (AR) signals and

for complete and over-complete cases. Analysis of a mixture equation is carried

out to estimate the separating matrix using the null space of the input mixture.

Simulation results show that the method is successfully separating speech and

Gaussian signals from their mixture with MSE less than 0.14. The approach has

been extended to extract the Fetal ECG and the maternal ECG form the ECG
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abdominal and maternal signals. Two transformation matrices has been designed

for this purpose, named as Null space idempotent transformation matrix (NSITM)

and the dual null space matrix (DNSM). First, the ECG mixture signals are used

to compute the transformation matrices based on the mixture covariance matrix

and on the null space of the mixture. Then, the fetal ECG signal is extracted

from the null space of the transformation matrices. The algorithms are tested to

extract the FECG and MECG signals, as well as to detect the R peaks. Real ECG

Data considered in this paper are collected from DAISY and Physionet databases.

The synthesized ECG data are collected from Physionet/Fetal ECG Synthetic

database. Results from real database indicate improvement in average FECG

heart rate estimation and in R peaks evaluation metrics, as compared with values

from principal component analysis (PCA) and fast independent component anal-

ysis (FastICA) algorithms. Results from synthesized ECG data show successful

extracting of both FECG and MECG signals from all data. The extraction perfor-

mances of the synthesized ECG data show considerable improvement over other

algorithms used in this work, when signal-to-noise ratio (SNR) increases from 0

dB to 12 dB.

6.2 Future directions

The hardware structure of the linear predictor filter in BSE-PLP algorithm can

be implemented in parallel. Thus, the overall system becomes a BSS rather than

BSE, since all unknown signal can be extracted, simultaneously. Furthermore, the

convergence time of the PLP filter is very fast (2 iterations). Thus, a real time

BSS system based on PLP algorithm is a viable solutions to fast extraction of the

unknown signals. Also, the estimation of extraction time of BSE-PLP algorithm,

and comparing it with extraction times of other algorithms, needs further inves-

tigation. Furthermore, The algorithm needs more investigations to apply it for

real ECG data and address the merits and pitfalls of the algorithm for different
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subjects, events, and signal-to-noise ratio.

The Null space algorithms based on idempotent transformation matrix needs more

investigation and modifications to include the noise in the original mixture equa-

tion. Type of noise could be stationary or non stationary.

All designed algorithms have been seen to be successfully working with instanta-

neous mixture. The work can be extended to consider the convolutive mixture,

especially in speech and ECG signal extraction. Time-frequency BSS is a viable

approach to solve this problem.



Appendix A: Proof of Theorem 1

Let the whitened matrix X̃(n) be expressed by

X̃(n) =


x̃1(n) x̃1(n− 1) · · · x̃1(n−N + 1)

x̃2(n) x̃2(n− 1) · · · x̃2(n−N + 1)
...

...
...

...

x̃M(n) x̃M(n− 1) · · · x̃M(n−N + 1)



=


x̃1(n)

x̃2(n)

· · ·

x̃M(n)

 (A.1)

where x̃i(n) = [x̃i(n)x̃i(n − 1) . . . x̃i(n − N + 1)], i = 1, 2, . . . ,M , is the ith zero

mean whitened row vector whose variance, var(.), is equal to unity [1]. Then

var(x̃i(n)) =
1

N

N−1∑
j=0

x̃2i (n− j)

=
1

N
‖x̃i(n)‖2

2
= 1, (A.2)

where ‖.‖2 is the Euclidean norm (spectral norm) [2]. From (A.2) and [3], the norm

of x̃i(n) and the maximum eigenvalue of x̃T
i (n)x̃i(n), denoted by λmax(x̃T

i (n)x̃i(n))
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will be

‖x̃i(n)‖2
2

= λmax(x̃T
i (n)x̃i(n)) = N. (A.3)

From (A.3), we have

λmax(X̃(n)T X̃(n)) = λmax(x̃T
i (n)x̃i(n)) = N, (A.4)

λmax(X̃(n)T X̃(n)) = ‖X̃(n)‖2
2

= N, (A.5)

then from (2.14) and (A.5), we have

λmax(R(n)) = ‖R(n)‖2 = 1, (A.6)

‖Rk(n)‖2 < 1, k = 1, 2, . . . , N. (A.7)

Defining tr(.) as the trace operator, then from (2.14) and (A.1), tr(R(n)) is given

by

tr(R(n)) =
1

N
tr
[
X̃T (n))X̃(n))

]
=

1

N

N−1∑
j=0

M∑
i=1

x̃2i (n− j) =
1

N

M∑
i=0

‖ x̃i(n)‖2
2
. (A.8)

From (A.4) and (A.8)

tr(R(n)) = M. (A.9)

The value of tr(R(n)) can also be calculated from the eigenvalues of R(n), denoted

by λk(R(n)), [4]

tr(R(n)) =
N∑
k=1

λk(R(n)), (A.10)
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then for M mixture input signals and N > M , there will be M non zero eigenvalues

and N −M zero eigenvalues. Thus, from (A.9) and (A.10), we have

N∑
k=1

λk(R) =
M∑
k=1

λk(R) = M. (A.11)

Solving (A.6) and (A.11) for λ(R(n)) we obtain

λk(R(n)) = λmax(R(n)) = 1, k = 1, 2, . . . ,M,

= λmin(R(n)) = 0, k = M + 1, . . . , N. (A.12)

As matrix Q(n) = R(n)− IN , then

λk(Q(n)) = λk(R(n))− 1,

= 0, k = 1, 2, . . . ,M, (A.13)

= −1, k = M + 1,M + 2, . . . , N,

‖Q(n)‖2 = 1. (A.14)
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Next, the derivation of the transformation property of R(n) is provided. From

(2.1) and (2.15), we have

X(n) = A [S(n)R(n) + W(n)Ts(n)] + G(n)

= X(n)R(n) + V1(n), (B.1)

where V1(n) = Ts(n) + G(n)Q(n) is a white noise matrix correlated with V(n)

according to the central limit theorem [1]. From (2.15) and multiplying (B.1) by

S(n), and using the transpose rule (X(n)R(n))T = RT (n)XT (n), we have

S(n)XT (n) = [S(n)R(n) + W(n)Ts(n)] RT (n)XT (n) + S(n)VT
1 (n)

S(n)XT (n) = S(n)R(n)RT (n)XT (n) + V2(n)XT (n) + S(n)VT
1 (n), (B.2)

where V2(n) = W(n)Ts(n)RT (n) is a white noise term. For noise free condition,

(B.2) is reduced to S(n) = S(n)R(n)RT (n), which, if compared with the noise

free condition in (2.15), i.e, (S(n) = S(n)R(n)), will result in

R(n) = R(n)RT (n) = R2(n), (B.3)

and in general, we can write

R(n) = Rk(n), k = 2, 3, . . . . (B.4)
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For noisy case, an assumption is required for (B.2). Without loss of generality,

we shall assume that SVT
1 (n) = V3(n)XT (n), where V3(n) is another white noise

term correlated with V2(n) and V3(n). Under this assumption, (B.2) can be

reduced to S(n) = S(n)R(n)RT (n) + V2(n) + V3(n). Comparing the result with

(2.15), we get

R(n) = R(n)RT (n) + Ψ(n), (B.5)

where Ψ(n) ⊂ RN×N is the noise error term between V2(n)+V3(n) and W(n)Ts(n)

in (2.15). As the correlation between the two noise terms is high, their difference

Ψ(n) is small. Thus, (B.3) is being used in this chapter, as an approximation to

(B.5). Simulation results in Fig. 2.4 confirm that.



Bibliography

[1] Ahmadian, P., Sanei, S., Ascari, L., González-Villanueva, L. and Umiltà,
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