
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2019

Using Multi Population Cultural Algorithms to prune Deep Neural Using Multi Population Cultural Algorithms to prune Deep Neural

Networks Networks

Anish Saurabh Desai
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Desai, Anish Saurabh, "Using Multi Population Cultural Algorithms to prune Deep Neural Networks"
(2019). Electronic Theses and Dissertations. 7695.
https://scholar.uwindsor.ca/etd/7695

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/215527165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7695?utm_source=scholar.uwindsor.ca%2Fetd%2F7695&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Using Multi Population Cultural

Algorithms to prune Deep Neural

Networks

By

Anish Saurabh Desai

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

 at the University of Windsor

Windsor, Ontario, Canada

2019

© Anish Saurabh Desai, 2019

Using Multi Population Cultural Algorithms to prune

Deep Neural Networks

by

Anish Saurabh Desai

APPROVED BY:

__

R. J. Urbanic

Department of Mechanical, Automotive and Materials Engineering

__

J. Lu

School of Computer Science

__

Z. Kobti, Advisor

School of Computer Science

April 16, 2019

iii

DECLARATION OF CO-AUTHORSHIP

/ PREVIOUS PUBLICATION

1. Co-Authorship

I hereby declare that this thesis incorporates material that is the result of research conducted

under the supervision of Dr. Ziad Kobti (Advisor). In all cases, the key ideas, primary

contributions, experimental designs, data analysis and interpretation, were performed by

the author, and the contribution of co-authors was primarily through the proofreading of

the published manuscripts.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis, and

have obtained written permission from each of the co-author(s) to include the above

material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

2. Previous Publication

This thesis includes one original paper that has been previously submitted for publication

in peer reviewed journals, as follows:

iv

Section Publication title/full citation Publication status

1.2, 3.3, 4.5, 4.6,

4.7, 6.1, 6.2 and

6.3

Anish Desai and Ziad Kobti. “Using

Multi-Population Cultural

Algorithms to prune Deep Neural

Networks. In Proceedings of the

Genetic and Evolutionary

Computation Conference 2019

(GECCO’19).

Submitted

I certify that the above material describes work completed during my registration

as a graduate student at the University of Windsor.

3. General

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis.

v

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

vi

ABSTRACT

The success of Deep Neural Networks (DNN) in classification is accompanied by a drastic

increase in weight parameters which also increases the computational and storage costs.

Pruning of DNN involves identifying and removing redundant parameters with little or no

loss of accuracy. Layer-wise pruning of weights by their magnitude has shown to be an

efficient method to prune neural networks. However, finding the optimal values of the

threshold for each layer is a challenging task given the large search space. To solve this

problem, we use multi population cultural algorithm which is an evolutionary algorithm

that takes advantage of knowledge domains and faster convergence and is used in many

optimization problems. We experiment it on LeNet-style models and measure the level of

pruning through the pruning ratio. Results show that our method achieves the best pruning

ratio (864 on LeNet5) compared with some state-of-the-art DNN pruning methods. By

removing redundant parameters, the computational and storage costs are reduced

significantly.

vii

DEDICATION

I would like to dedicate this thesis to my parents.

Father: Saurabh Desai

Mother: Dipti Desai

viii

ACKNOWLEDGEMENTS

There are many people whom I would like to thank for the successful completion of this

thesis. First and foremost, I would like to thank my parents, whose endless support kept

me motivated throughout my research journey.

I would also like to express my gratitude to my advisor, Dr. Kobti, who helped me in

accomplishing my goals and has provided valuable guidance improving my research skills

and knowledge. I highly appreciate the amount of time he dedicated for me, the knowledge

he imparted to me and the funding he provided to me. Without his support, this thesis

wouldn’t be complete.

I would also thank my committee members – Dr. Lu and Dr. Urbanic – whose inputs and

feedbacks have given a better shape to my research. I also admire the support of Mrs.

Melissa and Mrs. Gloria for helping me in various academic issues.

Last, but not the least, I would like to thank God for giving me this ability and opportunity

to undertake this research and complete it satisfactorily.

ix

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION iii

ABSTRACT .. vi

DEDICATION... vii

ACKNOWLEDGEMENTS .. viii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

Introduction ..1

1.1 Background ..1

1.2 Problem Definition ...7

1.3 Thesis Motivation ...8

1.4 Thesis Statement ..10

1.5 Thesis Contribution ..11

1.6 Thesis Organization..12

Literature Review ..14

2.1 Neuron-based pruning ..14

2.2 Weight-based pruning ..16

2.3 Evolutionary Pruning ...21

Evolutionary Computation ...25

x

3.1 Evolutionary Algorithms ..25

3.2 Genetic Algorithms ..27

3.2.1 Crossover Operation ..28

3.2.2 Mutation Operation..29

3.3 Cultural Algorithms..30

3.3.1 Belief Space ...31

3.3.2 Multi-Population Cultural Algorithms ..32

Proposed Approach ...35

4.1 Proposed Strategies to prune DNN ..35

4.2 Evolutionary Pruning of DNN ...36

4.3 Individual Representation ..37

4.4 Fitness Evaluation ..37

4.5 Pruning Neurons ...38

4.6 Adjusting Cultures..39

4.6.1 Situational Component ..39

4.6.2 Spatial Component ..40

4.6.3 Normative Component ..41

4.7 Influence Functions ..42

4.8 Using CA to prune DNN ..45

4.9 Using MPCA to prune DNN ..47

Experiments and Results ...50

5.1 Dataset ..50

5.2 Models ..51

5.3 Setting Hyperparameters ..51

5.3 Using CA to prune LeNet300-100 ...52

xi

5.4 Using MPCA to prune LeNet300-100 ...53

5.5 Using CA to prune LeNet5...55

5.6 Using MPCA to prune LeNet5 ...56

5.7 Error Analysis ..58

Comparison, Analysis and Discussion..59

6.1 Comparison between CA and MPCA ..59

6.2 Comparisons with the LeNet300-100 model ...61

6.3 Comparisons with the LeNet5 model ...63

Conclusion and Future Work ...67

7.1 Limitations ...67

7.2 Future Work ...68

REFERENCES ...69

APPENDIX ...74

VITA AUCTORIS ...75

xii

LIST OF TABLES

Table 1 - Development of synapses in human brain ... 8

Table 2 - Comparison of various methods to prune neural networks 21

Table 3 - Recent use of evolutionary techniques to prune DNN 22

Table 4 - Comparison of PR achieved by different methods for pruning LeNet300-100 61

Table 5 - Pruning details by each layer of the LeNet300-100 network 62

Table 6 - Comparison of PR achieved by different methods for pruning LeNet5 63

Table 7 - Pruning details by each layer of the LeNet5 network 65

xiii

LIST OF FIGURES

Figure 1 - Architecture of a Feedforward Neural Network [1] ... 2

Figure 2 - Architecture of a CNN ... 3

Figure 3 – Kernel computations in a CNN ... 4

Figure 4 - Max-Pooling ... 5

Figure 5 - Space reduction due to a sparse matrix of a pruned network. 9

Figure 6 - Since the first and third neuron of the hidden layer do not have any input and

output weights respectively, it can be pruned. .. 17

Figure 7 - Pruning Feature Map and its associated filters [14] ... 17

Figure 8 - Weights and neurons before and after pruning [7]... 19

Figure 9 - The OLMP method of pruning network [10] ... 23

Figure 10 - Relation between Genomes and Phenomes [24] .. 27

Figure 11 - Types of crossover operations .. 28

Figure 12 - Types of mutations ... 29

Figure 13 - Components of cultural algorithm [30] .. 31

Figure 14 - Architecture of a variant of CA having multiple population space but a single

belief space [32] .. 32

Figure 15 - Architecture of a variant of CA having multiple population and belief spaces

[33] .. 33

Figure 16 - Representation of an individual. .. 37

Figure 17 - Example of the crossover operation. .. 44

Figure 18 - Example of the mutation operation .. 45

Figure 19 - Example of knowledge migration in MPCA .. 48

Figure 20 - Images in MNIST dataset that are difficult even for humans to recognize ... 51

Figure 21 - Graph showing the best cost achieved at each pruning epoch for pruning

LeNet300-100 by CA .. 52

Figure 22 - Improvement in accuracy after finetuning. .. 53

xiv

Figure 23 - Graph showing the best cost achieved at each pruning epoch for pruning

LeNet300-100 by MPCA .. 54

Figure 24 - Finetuning LeNet300-100 after pruning with MPCA 54

Figure 25 - Graph showing the best cost achieved at each pruning epoch for pruning

LeNet5 by CA ... 55

Figure 26 - Finetuning LeNet5 after pruning with CA ... 56

Figure 27 - Graph showing the best cost achieved at each pruning epoch for pruning

LeNet5 by MPCA ... 57

Figure 28 - Finetuning LeNet5 after pruning with MPCA ... 57

Figure 29 - Comparison of CA and MPCA for pruning LeNet300-100 60

Figure 30 - Comparison of CA and MPCA for pruning LeNet5 60

1

Chapter 1

Introduction

Classification is the process of classifying data according to shared qualities or

characteristics. It is the problem of finding a function by training over a given set of

instances whose category membership is known, also known as training data, to classify or

predict new instances. Although there exist many models for classification problems, Deep

Neural Networks have emerged to be the most promising of them all.

1.1 Background

Neural Networks are an information processing paradigm that is inspired by the way

biological nervous systems, such as the brain, process information [1]. Various

architectures of neural networks have successfully achieved high accuracy rates in many

classification problems. A simple Feedforward Neural Network (FNN) consists of an input

layer, one or more hidden layers and an output layer as shown in Figure 1 [2]. Every hidden

layer contains one or more neurons. Every neuron of a layer is connected to all the neurons

of the next layer through weight parameters. In addition, every layer except the output layer

contain one bias parameter for each neuron of the next layer. Each neuron calculates its

2

activation value by computing the sum of the bias parameter with the product of the weight

parameters with their corresponding activation values of the input neurons.

Mathematically,

𝑎𝑗
𝑙 = 𝜎 (∑ 𝑤𝑗𝑘

𝑙−1𝑎𝑘
𝑙−1

𝑘

+ 𝑏𝑗
𝑙−1) (1)

Where 𝑎𝑗
𝑙 is the activation value of the 𝑗𝑡ℎ neuron of the 𝑙𝑡ℎ layer, 𝑏𝑗

𝑙−1 is the bias

parameter of the 𝑙 − 1𝑡ℎ layer connected to the 𝑗𝑡ℎ neuron of the 𝑙𝑡ℎ layer, 𝑤𝑗𝑘
𝑙−1 is the

weight parameter connecting the 𝑘𝑡ℎ neuron of the 𝑙 − 1𝑡ℎ layer to the 𝑗𝑡ℎ neuron of the

𝑙𝑡ℎ layer and 𝜎 (z) is known as an activation function. One of the commonly used activation

functions is the sigmoid function which is formulated as,

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (2)

Figure 1 - Architecture of a Feedforward Neural Network [1]

3

The hidden layers of FNN are known as dense layers since every neuron of one layer is

connected to every other neuron of the next layer. It has been shown that FNN are universal

approximators, i.e., FNN can in principle approximate any measurable function to any

desired accuracy, if the network contains enough "hidden" neurons between the input and

output layers [3]. There exist models of Neural Networks with different architecture which

have shown to be more efficient when dealing with complex data. One of the models is

Convolutional Neural Network (CNN) which are used extensively to classify images [4].

CNN consists of one input layer, one or more convolutional layer followed by one or more

dense layer and an output layer as shown in Figure 2.

Figure 2 - Architecture of a CNN

For the convolutional layers, the neurons are arranged in a two-dimensional array known

as a feature map. The weight parameters are also arranged in a two-dimensional array

known as the kernel. The kernel maps a region of the input feature maps to produce the

activation value of a single neuron of the next output feature map as shown in Figure 3.

The kernel then slides through the input layer to produce the entire feature map. An array

of kernels, also known as a filter, produces an array of feature maps which forms the next

convolutional layer. Due to massive weight replication, relatively few weight parameters

are necessary to describe the behavior of a convolutional layer, resulting in small kernel

sizes [5].

4

Figure 3 – Kernel computations in a CNN

There also exists a shared bias parameter for each kernel in the convolutional layer. The

output activation value is expressed as

𝑎𝑗,𝑘
𝑙 = 𝜎 (𝑏𝑙−1 + ∑ ∑ 𝑤𝑚,𝑛

𝑙−1

𝑞

𝑛=0

𝑝

𝑚=0

𝑎𝑗+𝑚,𝑘+𝑛
𝑙−1) (3)

where 𝑎𝑗,𝑘
𝑙 is the activation value of the 𝑘𝑡ℎ neuron in the 𝑗𝑡ℎ row of the 𝑙𝑡ℎ layer, b is the

shared bias, w is the weight parameter of the pxq kernel and 𝜎(𝑧) is the activation function.

Pooling layers are usually used immediately after convolutional layers. They replace the

output at a certain location with a summary statistic of the nearby outputs [6]. One common

pooling operation is the max-pooling operation which simply outputs the maximum

activation in a mxn input region as shown in Figure 4. Other popular pooling functions

include the average of a rectangular neighborhood, the L2-norm of a rectangular

neighborhood, or a weighted average based on the distance from the central pixel [6]. The

last convolutional layer is then flattened into a dense layer.

5

Figure 4 - Max-Pooling

Convolution helps in detecting the same pattern at different locations in the input image.

Thus, convolutional networks are well adapted to the translation invariance of images.

Neural Networks learn through backpropagation where the cost is propagated back to each

neuron of the hidden layer. Based on this cost, the value of each weight and bias parameter

attached to that neuron is updated. This process continues until the values converge giving

high accuracy.

First, the predicted output is compared with the desired output and the cost is calculated.

We have used the cross-entropy cost function shown below -

𝐶 = −
1

𝑛
∑[𝑦 𝑙𝑛 𝑎 + (1 − 𝑦) 𝑙𝑛(1 − 𝑎)]

𝑥

 (4)

where n is the number of instances, 𝑦 is the desired output and 𝑎 is the activation output.

The advantage of cross-entropy function over quadratic cost is that it prevents slow

6

learning of sigmoidal function [1]. The error to be backpropagated is also to be

distributed amongst the weight and bias parameters. This distribution is given by the rate

of change of cost with respect to the weight and bias parameters. This rate of change is

given as follows –

𝜕𝐶

𝜕𝑏𝑗
𝑙 =

1

𝑛
∑(𝜎(𝑧) − 𝑦)

𝑥

 (5)

𝜕𝐶

𝜕𝑤𝑗
𝑙 =

1

𝑛
∑ 𝑥𝑗 . (𝜎(𝑧) − 𝑦)

𝑥

 (6)

The above two partial derivatives signify the amount of change required to the

corresponding weight and bias parameters. After some iterations the cost tends to approach

zero signifying that the activation output and the desired output are the same.

As the number of layers and neurons in each layer increases, the number of parameters also

increase drastically. Certain parameters of these networks are redundant and removing

them does not affect the accuracy of the network. Hence, pruning a neural network involves

identifying and removing the connections that are not relevant in classifying the data.

However, searching for these redundant parameters is difficult as the search space is huge.

Modern networks like LeNet5 contains 430500 parameters [7] whereas AlexNet contains

60 million parameters [8]. There also exists networks having more than a billion parameters

[9]. Hence, we need to implement an optimization technique that can quickly search for

maximum number of redundant parameters and prune them.

Here, we shall define a general problem statement for pruning a neural network.

7

1.2 Problem Definition

Let a Neural Network model with L+1 layers be represented as

𝑊 = {𝑤 | 𝑤 ≠ 0, 𝑤 ∈ 𝑊𝑙 , 1 ≤ 𝑙 ≤ 𝐿} (7)

where 𝑊𝑙 is a set of weight parameters of the 𝑙𝑡ℎ layer. For dense layers, it consists of all

the weight parameters that exists between the two layers. Mathematically,

𝑊𝑙 = {𝑤𝑗,𝑘
𝑙 ∶ 1 ≤ 𝑗 ≤ 𝑛𝑙 , 1 ≤ 𝑘 ≤ 𝑛𝑙+1} (8)

where 𝑤𝑗,𝑘
𝑙 is the weight parameter connecting the 𝑗𝑡ℎ neuron of the 𝑙𝑡ℎ layer to the 𝑘𝑡ℎ

neuron of the 𝑙 + 1𝑡ℎ layer and 𝑛𝑙 is the number of neurons present in the 𝑙𝑡ℎ layer.

For convolutional layers, it is the union of all the weight parameters that exists in all the

kernels between the two convolutional layers. Mathematically,

𝑊𝑙 = ⋃{

𝑘𝑙

𝑤𝑗,𝑘
𝑙 | 𝑤𝑗,𝑘

𝑙 ∈ 𝑘𝑙, 1 ≤ 𝑗 ≤ 𝑝, 1 ≤ 𝑘 ≤ 𝑞} (9)

where 𝑘𝑙 is a kernel of size pxq present in the 𝑙𝑡ℎ layer and 𝑤𝑗,𝑘
𝑙 is the weight parameter

present in that kernel.

8

Then, the problem can be stated as [10]:

𝑊∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑊′⊆𝑊

 |𝑊′| 𝑠. 𝑡. 𝑓(𝑊) − 𝑓(𝑊′) ≤ 𝛿 (10)

where |𝑊′| is the size of 𝑊′, 𝛿 is the tolerance, 𝑓(𝑊) is the accuracy of the network

before pruning and 𝑓(𝑊′) is the accuracy of the network after pruning.

𝑊∗ denotes the best pruned model. Thus, pruning of neural network can be considered as

a constraint optimization problem.

1.3 Thesis Motivation

Since the neural networks are modelled after the human biological nervous system, it is

interesting to see how the brain develops its synapses with the passage of time. Table 1

shows that during the first few months of the birth, trillions of synapses are generated in

the human brain. It peaks at 1000 trillion synapses for a one-year old baby. However, at

the age of 10 there are only 500 trillion synapses left in the brain. This is due to a natural

pruning mechanism that removes redundant synapses from the brain [11]. This pruning

reduces the complexity and fastens the information processing in our brain.

Age Number of Connections Stage

At birth 50 Trillion Newly formed

1 year old 1000 Trillion Peak

10 years old 500 Trillion Pruned and stabilized

Table 1 - Development of synapses in human brain

9

Also, neural networks are generally regarded as black box algorithm due to the fact that it

is hard to produce interpretable rules from the network of weights. Hence, many rule-

extraction algorithms have been built that produce simple human readable rules from the

neural network. In these algorithms [12], pruning the network is usually a preceding step

to rule extraction. It is done as pruning leads to creation of simple rules compared to

unpruned networks that create large number of complex rules.

Moreover, in [13] the authors have stated that the pruned network can further achieve a

space compression up to 40 times the original network using quantization and Huffman

encoding as shown in Figure 5. Thus, pruning a neural network helps in reducing the space

required to store large networks.

Figure 5 - Space reduction due to a sparse matrix of a pruned network.

The most beneficial outcome of pruning a neural network is the reduction in the

computational costs associated it. In dense layers of a neural network, removing neurons

drastically reduces the size and computational cost of the network. Let 𝑛𝑖 denote the

number of neurons in the 𝑖𝑡ℎ dense layer. The dense layer transforms the input activation

10

layer 𝑥𝑖 𝜖 𝑅𝑛𝑖 into the output activation layer 𝑥𝑖+1 𝜖 𝑅𝑛𝑖+1, which is used as the activation

layer for the next dense layer. The number of operations of the dense layer is 𝑛𝑖+1𝑛𝑖. When

a neuron in the (𝑖 + 1)𝑡ℎ layer is pruned, its corresponding input weights are removed,

which reduces 𝑛𝑖 operations. The output weights of the pruned neuron are also removed,

which saves an additional 𝑛𝑖+2 operations.

Similarly, in convolutional layers removing a feature map reduces the size and the

computational cost associated with the network. Let the number of input feature maps for

the 𝑖𝑡ℎ convolutional layer be denoted by 𝑛𝑖 , ℎ𝑖 be the height and 𝑤𝑖 be the width of the

input feature maps. In the convolutional layer, the input layer 𝑎𝑖 ∈ 𝑅𝑛𝑖∗ℎ𝑖∗𝑤𝑖 is transformed

into the output layer 𝑎𝑖+1 ∈ 𝑅𝑛𝑖+1∗ℎ𝑖+1∗𝑤𝑖+1, which is used as the input layer for the next

convolutional layer. To achieve this, 𝑛𝑖+1 3D filters 𝐹𝑖,𝑗 ∈ 𝑅𝑛𝑖∗𝑘∗𝑘 are applied on the 𝑛𝑖

input feature maps 𝑥𝑖 ∈ 𝑅ℎ𝑖∗𝑤𝑖 . One filter generates one output feature map 𝑥𝑖+1 ∈

𝑅ℎ𝑖+1∗𝑤𝑖+1. Each filter is composed by 𝑛𝑖 2D kernels 𝐾 ∈ 𝑅𝑘∗𝑘. Together, all these filters

constitute the filter matrix 𝐹𝑖 ∈ 𝑅𝑛𝑖∗𝑛𝑖+1∗𝑘∗𝑘 . The number of operations of the

convolutional layer is 𝑛𝑖+1𝑛𝑖𝑘2ℎ𝑖+1𝑤𝑖+1 [14]. When a feature map 𝑥𝑖+1 is pruned, its

corresponding input filter 𝐹𝑖,𝑗 is also pruned, which saves 𝑛𝑖𝑘2ℎ𝑖+1𝑤𝑖+1 operations [14].

The kernels associated with the pruned feature maps from the filters of the next

convolutional layer are also pruned, saving an additional 𝑛𝑖+1𝑘2ℎ𝑖+2𝑤𝑖+2 operations [14].

Thus, pruning deep neural networks saves space and computational costs and is crucial for

other applications including rule extraction algorithms.

1.4 Thesis Statement

The objective of this research is to prune the neural network by removing as many

redundant weight parameters as possible. This will reduce the size of the network. Along

11

with the weight parameters, neurons and feature maps can also be removed for dense and

convolutional layers respectively.

Our approach to prune the network is to remove all the weight parameters whose absolute

value lie below a certain threshold level. However, finding optimal threshold values is a

challenge due the large search space. To find the optimal values quickly, we have used the

modern evolutionary algorithms like Cultural Algorithms (CA) and Multi Population

Cultural Algorithms (MPCA). These algorithms use domain knowledge that will lead to

faster convergence. Moreover, MPCA uses a different population for each parameter to be

optimized which we propose would give better results that a single population used in CA.

In Section 4.2 , we will restate the problem definition taking the thresholds into account.

We measure the quality of our algorithm with pruning ratio which will be explained later.

We expect to see high pruning ratio as that would signify that the network is highly pruned.

1.5 Thesis Contribution

This thesis presents the problem of pruning deep neural networks as an optimization

problem. Two different models of neural networks (LeNet300-100 and LeNet5) were

pruned using the standard Cultural Algorithms (CA). It also uses a novel idea to use the

topography of the network as the situational knowledge of the belief space in the CA.

Moreover, a more sophisticated variant of the standard CA, known as Multi-Population

Cultural Algorithms (MPCA), is also used to prune the network. A comparison is done on

the effectiveness of MPCA over CA.

12

Also, dynamic pruning is implemented where an untrained network is pruned and trained

simultaneously. Thus, this thesis contributes by implementing the following strategies –

• Using CA to prune LeNet300-100

• Using MPCA to prune LeNet300-100

• Using CA to prune LeNet5

• Using MPCA to prune LeNet5

1.6 Thesis Organization

The rest of the thesis/research work is organized in the following manner.

In chapter II, we discuss the related work/literature review in the field of pruning neural

network using different techniques.

In chapter III, we introduce Evolutionary Computation and explain its working in detail.

We also introduce CA and its variants like MPCA that are used in this research.

Chapter IV, we explain our proposed approach which makes it possible to utilize

evolutionary techniques to reduce the search space and prune neural networks.

In Chapter V, we present the experimental setup and results with its assumptions.

In Chapter VI, we compare our work with other state-of-the-art methods and analyze the

result. We also compare the results of CA and MPCA.

13

Chapter VII concludes the research, explaining the insights received during the work and

setting up a wide range of opportunities for the future work.

14

Chapter 2

Literature Review

Many pruning methods are widely used to prune neural networks [15]. A network is pruned

either by pruning the neurons or by pruning the weight parameters. There exist certain

criteria, which when fulfilled leads to the pruning of neurons or weight parameters. For

many methods, the criterion is incorporated in the form of a threshold which is either fixed

or determined during training. There can also be a different threshold value for each layer.

2.1 Neuron-based pruning

Neuron based pruning methods prune neurons of the layer based on its relevance and the

threshold. All the input and output weights connected with the pruned neuron are also

pruned. For convolutional layers, the feature map is pruned instead of the neuron.

In [16], the sensitivity of a neuron is the criterion of pruning. The researchers calculate the

sensitivity of each neuron and keep only the top 𝑘𝑙 neurons for the layer 𝑙 where 𝑘𝑙 is a

hyper-parameter. It then updates the remaining weights by using the non-linear

15

reconstruction error as the distance between the activation values of the unpruned model.

The sensitivity of each neuron is calculated by the formula -

𝛿𝑖
(𝑙)

≈ ∑ (𝑊𝑖ℎ
(𝑙)

)
2

. ∑ (𝑊𝑗𝑖
(𝑙+1)

)
2

𝑗ℎ
 (11)

where 𝛿𝑖
(𝑙)

 is the sensitivity of the 𝑖𝑡ℎ neuron of the 𝑙𝑡ℎ layer and 𝑊𝑖ℎ
(𝑙)

 is the weight

parameter that connects the 𝑖𝑡ℎ neuron of the 𝑙𝑡ℎ layer to the ℎ𝑡ℎ neuron of the 𝑙 + 1𝑡ℎ

layer. Thus, weight parameters having high absolute values will increase the sensitivity of

the neurons to which it is connected. Intuitively, it keeps neurons that are connected to

weight parameters having high absolute value and prunes neurons that are connected to

weight parameters having low absolute value.

One limitation of this approach is that it depends upon the user defined hyper-parameter

𝑘𝑙. If the user gives a large value for 𝑘𝑙, then there would not be optimal pruning of neurons.

On the other hand, if the user gives a small value of 𝑘𝑙, then even the important neuron will

get pruned from the network. Hence, the efficiency of the network depends upon the

optimal values of 𝑘𝑙 provided by the user.

Another limitation of all neuron based pruning methods is that, although it prunes

redundant neurons, the unpruned neurons are still fully connected. There exist weight

parameters from each neuron of one layer to every other neuron of the next layer. Hence,

the network is still dense. For this reason, weight-based pruning methods have become

more popular.

16

2.2 Weight-based pruning

In the weight based pruning approach, the weight parameters of a network are pruned based

on certain criterion. The criterion can be the magnitude of the weight parameters or it can

be calculated iteratively based on regularization.

Although we prune the weight parameters of a network, the neurons can still be pruned. If

all the input weight parameters of a neuron are pruned, then that neuron will never get

activated. Hence it is better to prune that neuron. Similarly, if all the output weight

parameters of a neuron are pruned, then that neuron plays no role in the classification of

the network. Even if such a neuron gets activated, it will not be able to activate any neuron

of the next layer. Hence, it should be pruned.

As shown in Figure 6, the first and the third neuron will be pruned as it does not have any

input or output weights respectively. When a neuron is pruned in a dense layer, the weights

connected to the neuron are also removed. In Figure 6, when the first neuron is pruned, the

output weights connected to it are also pruned.

17

Figure 6 - Since the first and third neuron of the hidden layer do not have any input and output weights

respectively, it can be pruned.

In case of a convolutional layer, the weights are arranged in a kernel. When all the weights

within a kernel are pruned, the kernel is assumed to be pruned. When all the input or output

kernels associated with a feature map are pruned, the feature map is also pruned. Similar

to a neuron, when a feature map is pruned, all the remaining kernels associated with that

feature map are also pruned.

Figure 7 - Pruning Feature Map and its associated filters [14]

18

As shown in Figure 7, when all the input kernels in the filter 𝐹𝑖,𝑗 are pruned, the

corresponding feature map is also pruned. Then, all the output kernels associated with the

feature map are also pruned.

The researchers in [14] pruned the filters of a convolutional layer in the neural network by

calculating the sum of the absolute kernel weight parameters for each filter. This sum is

the criterion for pruning and is formulated as –

𝑠𝑗 = ∑ ∑|𝐾𝑙|
𝑛𝑙

𝑙=1
(12)

where 𝑠𝑗 is the sum for the 𝑗𝑡ℎ filter, 𝑛𝑙 is the number of kernels in that filter and |𝐾𝑙| is the

kernel with absolute values of weight parameters. Once the sum is calculated for all the

filters, the filters having the m smallest sum are pruned where m is a user defined hyper

parameter. Clearly, weight parameters having small absolute value will lead to a small sum

and will be pruned.

19

Figure 8 - Weights and neurons before and after pruning [7]

This idea of pruning weight parameters having small absolute value is carried forward in

[7] where the researchers prune weight parameters with absolute value below a certain

threshold level in the trained neural network. It further removes neurons that have zero

input or output weight parameters. This process is repeated iteratively followed by

retraining. Figure 8 shows the sparsity in the network after pruning.

Similarly, Dynamic Network Surgery (DS) [17] calculates the importance of each weight

parameter and prunes the weights if its importance falls below certain threshold. The

importance is calculated as –

ℎ𝑘(𝑊𝑘
𝑖,𝑗

) = {

0, 𝑖𝑓 𝑎𝑘 > 𝑊𝑘
𝑖,𝑗

𝑇𝑘
𝑖,𝑗

, 𝑖𝑓 𝑎𝑘 ≤ 𝑊𝑘
𝑖,𝑗

≤ 𝑏𝑘

1, 𝑖𝑓 𝑊𝑘
𝑖,𝑗

> 𝑏𝑘

 (13)

20

where ℎ𝑘(𝑧) is the importance of the 𝑧𝑡ℎ weight parameter of the 𝑘𝑡ℎ layer, 𝑊𝑘
𝑖,𝑗

 is the

weight parameter connecting the 𝑖𝑡ℎ weight parameter of the 𝑘𝑡ℎ layer to the 𝑗𝑡ℎ weight

parameter of the 𝑘 + 1𝑡ℎ layer, 𝑎𝑘 and 𝑏𝑘 are user defined thresholds for the 𝑘𝑡ℎ layer and

𝑇𝑘 is a binary matrix of the 𝑘𝑡ℎ layer which gets updated during each iteration.

There are two novel approaches used in this method. First is the existence of two thresholds

for each layer. This incorporates a small margin which is argued to have increased the

robustness of the method. Another novelty is the dynamic property of the method as against

the greedy approach. This means that a weight parameter that is once pruned can be re-

established if they appear to be more important in the later iterations.

Method Approach Prunes

Jiang et al. [16] Layer-wise pruning of neurons that are

less sensitive.

Neurons

Dynamic Network

Surgery [17]

Prunes weights based on their

importance and threshold levels.

Weights

Li et al. [14] Prunes filters having lowest sum of

absolute kernel weights.

Filters

21

Han et al. [7] Iterative Greedy search that finds the

best connections and prunes the rest.

Weights

Table 2 - Comparison of various methods to prune neural networks

All the methods described above for pruning neural networks, through neurons or weight

parameters, revolve around the central idea that weight parameters having low absolute

value and neurons associated with such weight parameters are more likely to be pruned.

The idea is that weight parameters with small absolute value do not activate the neurons of

the next layer and hence, pruning them will not affect the result of classification. Recent

researches [10] have found that having different values of threshold for each layer is better

than having a single threshold value for every layer..

2.3 Evolutionary Pruning

In 1990, Genetic Algorithm was used to prune a trained network [18]. A binary

representation was used for the weight parameters with the bits set to 0 to 1 depending if a

weight parameter is pruned or not. Moreover, heavily trained networks are given more

training cycles as a reward for fewer weights.

Since then, various evolutionary techniques have been used for evolving the architecture

of neural networks. Table 3 shows the list of all the recent uses of evolutionary techniques

to prune DNN.

22

Author Approach

Li et al. 2018 [10] Used Negative Correlated Search (NCS) to prune Deep

Neural Networks

Jaddi et al. 2015 [19] Used modified bat algorithm to optimize weight and

structure of neural networks

Alencar et al. 2016 [20] Used Genetic Algorithms to prune Extreme Learning

Machines (ELM)

Samala et al. 2018 [21] Used Evolutionary pruning for deep convolutional neural

networks

Wong et al. 2016 [22] Used Evolutionary Algorithms for optimizing and pruning

neural networks

Table 3 - Recent use of evolutionary techniques to prune DNN

A recent and efficient method to prune networks is the Optimization-based Layer-wise

Magnitude Pruning (OLMP) [10], which tries to automatically find the optimal threshold

values using Negatively Correlated Search (NCS) technique. NCS is a population based

heuristic optimization algorithm. The flowchart of the entire process is shown in Figure 9.

It starts with a population of randomly initialized threshold levels for each layer. It prunes

the network using these threshold values to calculate the fitness value, which determines

how much the network has been pruned, incorporating the accuracy constraint. The

thresholds are then updated, and the process is repeated resulting in iterative pruning and

adjusting. The best threshold values are returned to prune the trained model and the pruned

model is then retrained for a better accuracy.

23

Figure 9 - The OLMP method of pruning network [10]

OLMP extends magnitude-based pruning where the fitness function is calculated based on

the layer wise error and a threshold value. It achieves a better pruning ratio than other

magnitude-based pruning methods.

24

The model of OLMP has been further investigated and improved in our research. We have

used cultural algorithms and its variants to find the optimal threshold values. Also, we are

pruning and training our network simultaneously, saving the time required by the network

during the training phase.

25

Chapter 3

Evolutionary Computation

Optimization is a process which is executed to minimize or maximize an objective function

until an optimum or a satisfactory solution is found. There exist many optimization

problems where the computational time required to find the optimal solution is

exponentially high. Evolutionary Computation contains a set of evolutionary algorithms

(EA) that can find optimal or near-optimal solutions in polynomial time.

3.1 Evolutionary Algorithms

Evolutionary algorithms are metaheuristic optimization algorithms which use mechanisms

inspired by the Darwin’s theory of biological evolution [23]. They are population-based

algorithms using the concepts of mutation, crossover, natural selection, and survival of the

fittest, in order to refine a set of candidate solutions iteratively in a cycle [24].

Optimization using evolutionary algorithms involve understanding the concepts of

phenotypes, genotypes, objective function, fitness function and search operations. The

following definitions are stated in [24].

26

Definition 1. (Phenome)

The set of all the elements 𝑥 that can be the solution of the optimization problem is known

as the problem space or the phenome 𝑋.

Definition 2. (Phenotype)

The elements 𝑥 ∈ 𝑋 of the phenome are known as the phenotypes.

Although we need to find the optimal phenotypes, the phenotypes are represented in

mathematical terms so that it is possible to compute their score and execute different search

operations. This representation of phenomes is known as genomes. For example, in pruning

the neural networks, we need to optimize the architecture of the network so that it has a

smaller number of weight parameters and neurons. For this, we find the optimal threshold

values that help in pruning the weight parameters. Thus, although we need to optimize the

architecture of the neural network (phenotypes), we actually optimize the threshold values

(genotypes). This is because the threshold values are a better representation for the

computation purposes as compared to the architectural design. The genotypes are mapped

into their corresponding phenotypes using a mapping function.

Definition 3. (Genome)

The set of all elements 𝑔 which can be processed by the search operations in an

optimization problem is known as the search space or the genome 𝐺.

Definition 4. (Genotype)

The elements 𝑔 ∈ 𝐺 of the genome are known as genotypes.

A genotype may consist of many parameters, where each parameter may represent a certain

property of the genotype. These parameters are known as genes. Genes can be binary,

where it’s value can be either 0 or 1, or real coded, where its value is a real number. The

value of a gene is known as an allele.

27

Figure 10 - Relation between Genomes and Phenomes [24]

Figure 10 shows the relation between the genomes and phenomes. The phenomes (problem

space) contains a set of point on the Cartesian plane from which an optimum point is to be

found for a particular optimization problem. This problem space is represented through

genomes (search space) which is computationally easier to optimize. Each genotype

present in the genome has binary genes. Once the optimal genotype is found, it is mapped

into the corresponding optimal phenotype using a genotype phenotype mapping (gpm)

function.

3.2 Genetic Algorithms

One of the most standard evolutionary algorithms is the Genetic Algorithms (GA). Genetic

Algorithms, first proposed by John Holland [25] and popularized by the works of Goldberg

[26], are able find good solutions to problems that were otherwise computationally

intractable. They are heuristic search techniques that starts with a random population and,

based on the fitness evaluation, selects individuals that will produce the successor

population. This process is iterated until a stopping criterion is reached. GA helps in

searching for solutions even when the domain knowledge is minimum [27].

28

A population is a group of individuals, where a population corresponds to a genome and

each individual is a genotype. The genes of the individuals can be either binary or real

coded. The search operations - crossover and mutation - directly modify these genes [28].

3.2.1 Crossover Operation

In a crossover over operation, certain genes of one individual are exchanged with the genes

present at the same position of the other individual to produce two new individuals. Figure

11 shows various types of crossover operations. The simplest of all is the single point

crossover where the genes after a particular point are interchanged with the genes of

another genotype. In multi-point crossover, two or more points are used, and every

alternate gene sequence is interchanged. In uniform crossover, there exists a probability

distribution for each gene. This distribution indicates the probability with which a gene

should be exchanged.

Figure 11 - Types of crossover operations

29

3.2.2 Mutation Operation

Crossover operation may converge all the individuals to a particular genotype. To maintain

diversity and to explore new genotypes, the mutation operation is applied on a genotype.

Figure 12 shows various types of mutation operations. The operation varies from a single

gene mutation, which mutates only one gene of the genotype, to a complete mutation,

which mutates all the genes of the genotype. Consecutive multi-gene mutation mutates a

sequence of genes whereas uniform multi-gene mutation applies a probability distribution

on each gene indicating the probability with which a gene is to be mutated.

Figure 12 - Types of mutations

30

3.3 Cultural Algorithms

The conventional GA have little or no domain knowledge due to which it does not make

full use of the historical or domain information and lack prediction about the search space

[29]. However, if some domain knowledge is incorporated into the search process, then the

search space is drastically reduced. Thus, domain knowledge reduces the search space by

removing undesirable parts of the solution space, and by promoting desirable parts.

Reynolds [30] in 1994 proposed Cultural Algorithms where the search process incorporates

domain knowledge as well as knowledge acquired due to evolution to yield a better result.

Unlike GA, CA enables societies to adapt to their changing environments at rates that

exceed that of biological evolution. Engelbrecht [31] defines a culture as “Cumulative

deposit of knowledge, experience, beliefs, values, attitudes, meanings, hierarchies,

religion, notions of time, roles, spatial relations, concepts of the universe, and material

objects and possessions acquired by a group of people in the course of generations through

individual and group striving”.

Cultural algorithm maintains two search spaces - the population representing the genetic

component and the belief space representing the cultural component. Both these search

spaces evolve in parallel and exert significant influence over one another. The experiences

of individuals in the population space, identified through an acceptance function, are used

for the creation of knowledge residing within the belief space. An acceptance function

determines which individual’s experiences should be considered to contribute to the current

beliefs. This knowledge is stored and manipulated in the belief space – also known as

adjusting the belief space. These adjusted beliefs then influence the evolution of the

population. The communication between the two components, population space and belief

space, is shown in Figure 13.

31

Figure 13 - Components of cultural algorithm [31]

3.3.1 Belief Space

The belief space is the central component where knowledge or beliefs of the individuals in

the population space is stored. This knowledge makes the search biased towards a

particular direction, resulting in the significant reduction of the search space. The belief

space is updated after each iteration by the most fit individuals. The belief space has been

classified into five basic categories [32]:

• Normative Knowledge: This knowledge represents a set of desirable value ranges

residing within the population space. It indicates the acceptable behavior for the

individuals in the population.

• Domain Specific Knowledge: This reflects some knowledge pertaining to the

problem being optimized. It is also called “prior” in the Bayesian statistics.

32

• Situational Knowledge: This knowledge refers to the beliefs pertaining to the vital

individuals in the search space.

• Historical/Temporal Knowledge: This knowledge represents the historical or the

temporal patterns of the search space.

• Spatial Knowledge: This knowledge represents the landscape or topography of the

search space.

3.3.2 Multi-Population Cultural Algorithms

Standard CA have only one population space where all the individuals reside. However,

there have been variants of this approach. In [33], the researchers have created multiple

population spaces with a single belief space as shown in Figure 14. The advantage of

having multiple population spaces is that each population will try to optimize a certain

parameter of the problem which is better than a single population trying to optimize all the

parameters. This fastens the search process as the optimal values of the parameters are

found quickly.

Figure 14 - Architecture of a variant of CA having multiple population space but a single belief space [33]

A more sophisticated variant of CA is having multiple population and belief spaces and

transferring the implicit knowledge through another component as shown in Figure 15.

33

Since the belief space influences the population, it is better to have different belief spaces

for different population spaces. By doing so, each belief space can influence the population

space at a rate and direction that is suitable for the optimization of the parameter of that

population space. Thus, rather than having one belief space influencing all the population

spaces towards optimal value, this architecture would increase the speed of the search

process. Such an architecture is also known as Multi-Population Cultural Algorithms

(MPCA).

Figure 15 - Architecture of a variant of CA having multiple population and belief spaces [34]

34

In this research, Normative, Situational and Spatial knowledge have been used for pruning

the neural networks. A comparison is also made between CA and MPCA by pruning the

network through both the approaches.

35

Chapter 4

Proposed Approach

In this section, a description of the methods used in the processing of neural networks and

in applying the cultural algorithm to prune them will be given.

4.1 Proposed Strategies to prune DNN

There are two different strategies used to prune DNN. Each strategy is used to prune two

different model of DNN – one Feedforward Neural Network (FNN) and other

Convolutional Neural Network (CNN). Hence there are four approaches as follows –

• Using CA to prune FNN

• Using CA to prune CNN

• Using MPCA to prune FNN

• Using MPCA to prune CNN

36

4.2 Evolutionary Pruning of DNN

We follow a weight-based pruning approach where the weights having a value below a

certain threshold are pruned. In the layer-wise magnitude-based pruning (LMP) approach

[10], there exists thresholds for each layer.

Let 𝑐 = (𝑐1, 𝑐2 … 𝑐𝐿) be the set of thresholds for each layer. Then, we can redefine our

model from our problem definition in Section 1.2 by incorporating the thresholds as

𝐿𝑀𝑃(𝑊, 𝑐) = {𝑤 | |𝑤| > 𝑐𝑙, 𝑤 ∈ 𝑊𝑙, 1 ≤ 𝑙 ≤ 𝐿} (14)

where |𝑤| is the absolute value of 𝑤 . Now, we need to find the best values of threshold for

each layer so that the pruned network has minimum number of weight parameters. Thus,

the problem can be restated as [10] -

𝑐∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐∈𝑅𝐿, 𝑊′=LMP(W, c)

|𝑊′| 𝑠. 𝑡. 𝑓(𝑊) − 𝑓(𝑊′) ≤ 𝛿 (15)

where |𝑊′| is the size of 𝑊′ and 𝛿 is the user defined tolerance.

𝑐∗ denotes the best threshold values which is found by running the CA and MPCA over a

population of networks. After getting the hyper-parameter vector 𝑐∗ , we can get a

corresponding pruned model 𝐿𝑀𝑃(𝑊, 𝑐∗).

37

4.3 Individual Representation

The individual is represented with the threshold values. Each gene of an individual is a

threshold value for a layer of the neural network. This value evolves during the epochs.

Figure 16 shows the genes of an individual. The gene values are uniformly initialized from

the range of 0 to 1.

Figure 16 - Representation of an individual.

4.4 Fitness Evaluation

The objective of pruning the network is to have a high pruning ratio. The pruning ratio is

the ratio of the size of the network before pruning to the size of the network after pruning.

The size of the network is the number of non-zero weight parameters. This ratio indicates

the extent to which a network is pruned. Higher the pruning ratio, more is the network

pruned.

However, there exists a constraint on the objective. We do not want the accuracy to be

drastically less than the accuracy of the unpruned network. Hence, we have defined 𝛿,

38

which is the tolerance of the network. Thus, if the accuracy of the network falls by more

than 𝛿, the pruning ratio will be simply ignored.

As before, let 𝑓(𝑊) be the accuracy of the initial network and 𝑓(𝑊′) be the accuracy of

the pruned network. Let |𝑊| denoted the initial network size and |𝑊′| denotes the pruned

network size. Then,

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = {

𝑓(𝑊′) − 100, 𝑖𝑓 𝑓(𝑊′) < 𝑓(𝑊) − 𝛿
|𝑊|

|𝑊′|
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16)

4.5 Pruning Neurons

In the LMP approach, we prune the weights of the network. If all the input weights of a

neuron are pruned, then that neuron will never get activated. Hence it is better to prune that

neuron. Similarly, if all the output weights of a neuron are pruned, then that neuron plays

no role in the classification of the network and is thus to be pruned. Thus, in our algorithm,

we check if there exists any neuron whose input or output weights are all pruned. If such a

neuron exists, then that neuron is immediately pruned. Pruning of neurons takes place in

the spatial component of the culture.

Thus, in our algorithm, we check if there exists any neuron whose input or output weights

are all pruned. If such a neuron exists, then that neuron is immediately pruned. Similarly,

a feature map is pruned if all the input or output kernels have been pruned. Pruning of

neurons and filters take place in the spatial component of the culture.

When a feature map is pruned, the kernels associated with the pruned feature maps are also

removed. Once a neuron or a filter is pruned, it is not considered again for the next

39

generations. Also, when a neuron or a filter is pruned for one individual network, then it is

also pruned for all the networks in the population. This reduces the search space and

increases the pruning ratio quickly.

4.6 Adjusting Cultures

The belief space is the most important aspect of the cultural algorithm. In our method, we

have used normative, situational and spatial knowledge to adjust the belief space and

influence the networks. Mathematically, the belief space is a tuple represented as

𝐵(𝑡) = [𝑁(𝑡), 𝑆(𝑡), 𝑆𝑝(𝑡)] (17)

where 𝐵(𝑡) represents the belief space at generation 𝑡, 𝑁(𝑡), 𝑆(𝑡) and 𝑆𝑝(𝑡) represent the

Normative, Situational and Spatial components respectively. Each of these components get

updated simultaneously and influence every individual of the next generation.

4.6.1 Situational Component

Let 𝑥𝑏𝑒𝑠𝑡(𝑡) represent the individual having the best fitness value at generation 𝑡. Then, we

update the situational component as follows -

𝑆(𝑡 + 1) = {
𝑥𝑏𝑒𝑠𝑡(𝑡) 𝑖𝑓 𝑥𝑏𝑒𝑠𝑡(𝑡) > 𝑆(𝑡)

𝑆(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (18)

This property of storing the best individual is known as Elitism.

40

Definition 5. (Elitism)

An elitist approach in an evolutionary algorithm ensures that at least one copy of the best

individual(s) of the current generation is propagated on to the next generation. [24]

Elitism guarantees that the evolutionary algorithm will converge. Hence, once a global

optimum basin is discovered, the algorithm will converge to that basin. However, the

chances of converging to a local optimum also increases due to elitism. At the beginning

of the first generation, the situational component is an empty individual, i.e., an individual

which has all the genes of the value 0. Since the gene value represents the threshold value

below which a weight parameter will be pruned, a gene value of 0 would indicate no

pruning as there cannot be a weight parameter with an absolute value of less than 0.

4.6.2 Spatial Component

The Spatial component stores the dimension of the network. For dense layers, it is the

number of unpruned neurons in that layer. For convolutional layers, it is the number of

unpruned feature maps in that layer. Whenever a neuron or a feature map in any layer is

pruned, the Spatial component is updated. Thus,

𝑆𝑝(𝑡 + 1) = {
[𝑛1(𝑡), 𝑛2(𝑡), 𝑛3(𝑡), … 𝑛𝐿(𝑡)], 𝑖𝑓 𝑓(𝑊) − 𝑓(𝑊′) ≤ 𝛿

𝑆𝑝(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(19)

where 𝑛𝑙(𝑡) represents the number of neurons for the 𝑙𝑡ℎ dense layer or the number of

feature maps for the 𝑙𝑡ℎ convolutional layer at generation 𝑡. This shows that the spatial

component is updated only when the accuracy after pruning is within the tolerance level.

41

At the beginning of the first generation, the spatial component is the given input model of

the neural network.

4.6.3 Normative Component

The Normative component stores the lower and upper bounds which decide the size of the

search space. Its representation is similar to [31] –

𝑁(𝑡) = [𝑥𝑚𝑖𝑛,𝑗(𝑡), 𝑥𝑚𝑎𝑥,𝑗(𝑡), 𝐿𝑗(𝑡), 𝑈𝑗(𝑡)] (20)

where,

𝑥𝑚𝑖𝑛,𝑗(𝑡 + 1) = {
𝑥𝑙𝑗(𝑡), 𝑖𝑓 𝑥𝑙𝑗(𝑡) ≤ 𝑥𝑚𝑖𝑛,𝑗(𝑡) 𝑜𝑟 𝑓(𝑥𝑙(𝑡)) < 𝐿𝑗(𝑡)

𝑥𝑚𝑖𝑛,𝑗(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥𝑚𝑎𝑥,𝑗(𝑡 + 1) = {
𝑥𝑙𝑗(𝑡), 𝑖𝑓 𝑥𝑙𝑗(𝑡) ≥ 𝑥𝑚𝑎𝑥,𝑗(𝑡) 𝑜𝑟 𝑓(𝑥𝑙(𝑡)) < 𝑈𝑗(𝑡)

𝑥𝑚𝑎𝑥,𝑗(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐿𝑗(𝑡 + 1) = {
𝑓(𝑥𝑙(𝑡)), 𝑖𝑓 𝑥𝑙𝑗(𝑡) ≤ 𝑥𝑚𝑖𝑛,𝑗(𝑡) 𝑜𝑟 𝑓(𝑥𝑙(𝑡)) < 𝐿𝑗(𝑡)

𝐿𝑗(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈𝑗(𝑡 + 1) = {
𝑓(𝑥𝑙(𝑡)), 𝑖𝑓 𝑥𝑙𝑗(𝑡) ≥ 𝑥𝑚𝑎𝑥,𝑗(𝑡) 𝑜𝑟 𝑓(𝑥𝑙(𝑡)) < 𝑈𝑗(𝑡)

𝑈𝑗(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For each 𝑥𝑙(𝑡), 1 ≤ 𝑙 ≤ 𝑛𝑝 .

42

In the above set of equations, 𝑥𝑙(𝑡) represents the 𝑙𝑡ℎ individual at generation 𝑡, 𝑛𝑝 is the

number of individuals in the populations (also known as the population size), 𝑓(𝑥𝑙(𝑡)) is

the fitness value of the 𝑙𝑡ℎ individual at generation 𝑡 and 𝑥𝑙𝑗(𝑡) is the value of the 𝑗𝑡ℎ gene

of the 𝑙𝑡ℎ individual at generation 𝑡. Thus, 𝑥𝑚𝑖𝑛,𝑗(𝑡) would signify the smallest value of

the 𝑗𝑡ℎ gene in the population or the value of the 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ individual whose

fitness value is less than that of the individual with the smallest 𝑗𝑡ℎ gene at generation 𝑡.

𝐿𝑗(𝑡) would represent the fitness value of the smallest 𝑗𝑡ℎ gene in the population or the

fitness value of the individual that is less that the fitness value of the individual having the

smallest 𝑗𝑡ℎ gene at generation 𝑡. Similarly, 𝑥𝑚𝑎𝑥,𝑗(𝑡) would signify the highest value of

the 𝑗𝑡ℎ gene in the population or the value of the 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ individual whose

fitness value is less than that of the individual with the highest 𝑗𝑡ℎ gene at generation 𝑡.

𝑈𝑗(𝑡) would represent the fitness value of the largest 𝑗𝑡ℎ gene in the population or the

fitness value of the individual that is less that the fitness value of the individual having the

largest 𝑗𝑡ℎ gene at generation 𝑡.

4.7 Influence Functions

Once the belief space is updated, it is used to influence the population of the next

generation. Let the size of the normative component be represented as-

𝜎𝑗 = 𝑥𝑚𝑎𝑥,𝑗(𝑡 + 1) − 𝑥𝑚𝑖𝑛,𝑗(𝑡 + 1) (21)

The individuals of the next generation are updated by using both normative and situational

components. The change in direction is determined by the normative component whereas

the step sizes are determined by the situational component.

43

𝑥𝑖𝑗(𝑡 + 1) = {

𝑥𝑖𝑗(𝑡) + |𝜎𝑖𝑗𝑁(0,1)| 𝑖𝑓 𝑥𝑖𝑗(𝑡) < 𝑆𝑗(𝑡 + 1)

𝑥𝑖𝑗(𝑡) − |𝜎𝑖𝑗𝑁(0,1)| 𝑖𝑓 𝑥𝑖𝑗(𝑡) > 𝑆𝑗(𝑡 + 1)

𝑥𝑖𝑗(𝑡) + 𝜎𝑖𝑗𝑁(0,1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (22)

𝑁(0,1) represents the normal distribution, 𝑥𝑖𝑗(𝑡) represents the value of the 𝑗𝑡ℎ gene of the

𝑙𝑡ℎ individual at generation 𝑡 and 𝑆𝑗(𝑡 + 1) is the value of the 𝑗𝑡ℎ gene of the situational

component.

The situational component also plays a role in the crossover operation. Figure 17 shows

the crossover operation which is defined as –

𝑥𝑗(𝑡 + 1) = 𝑥𝑗(𝑡) ∗ 0.5 + 𝑆(𝑡 + 1) ∗ 0.5 (23)

44

Figure 17 - Example of the crossover operation.

This is followed by a mutation operation where the gene values of an individual are

increased by a factor of 1.1. The probability of a gene getting mutated is set to 10%. This

is illustrated in Figure 18.

45

Figure 18 - Example of the mutation operation

Finally, the spatial component, if updated during a generation, influences all the individuals

of the generation by updating the dimensions of every individual network. Thus, every

individual network prunes the neurons and the features maps that were pruned by one

individual in the previous generation. This drastically reduces the search space and leads

to convergence quickly.

4.8 Using CA to prune DNN

The standard CA starts with a population of neural networks. Each network is initialized

with random weight and bias parameters. Apart from these weight and bias parameters,

each network also has a threshold array which would signify the individual in the

evolutionary algorithm. The size of the array corresponds to the number of layers in the

network. The thresholds for each layer of each network is also randomly initialized. These

threshold values form the genes of the individual.

46

Each neural network is then trained for one epoch and the weight parameters whose

absolute value lie below the threshold value are then pruned. This pruned network is further

retrained for one more epoch and the accuracy of the network on the test data is then

calculated. If the accuracy falls by a margin greater than 𝛿, the fitness value is 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 −

 100, else the pruning ratio is calculated and is returned as the fitness value. The value

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 100 represents the negative error since 100 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the error of the

network. Thus, an individual will have a positive fitness value only if the accuracy is within

the tolerance levels.

The culture of the population is then adjusted based on the fitness values of the individual

networks. The network having the best fitness value gets stored in the situational

component of the belief space. If there exists any individual with a positive fitness value

whose neurons or feature maps can be pruned, then the spatial component is updated with

the new dimension of the network. The normative component is updated to find the

maximum and minimum gene value for each gene of the threshold of the individual. It also

stores the fitness values achieved by such genes.

Once the belief space is updated, it is used to influence the individual to create a new

population. If the spatial component is updated, then the dimension of all the individual

networks are also updated. The situational and normative components are used together to

influence the population as shown in Equation 22. The new population of networks is

created using the crossover and mutation operations. The new threshold values will now

be used in the next generation of the networks.

This process is repeated over a number of generations, which is also the number of pruning

epochs. Once the last epoch ends, the network having the best fitness value from the

population is selected and is further finetuned for another 100 epochs. The weight

parameters, bias parameters and threshold values of this network are then recorded.

47

4.9 Using MPCA to prune DNN

MPCA works in a similar way but has a different population for each threshold value. Thus,

a network having four layers of weight parameters would need four threshold values – one

for each layer – and hence would have four populations in the MPCA method. The

individuals in the populations would have only one gene.

Each population has its own belief space. The situational and the normative components

work the same way as they work in the standard CA. Similarly, the spatial component, if

updated for any one of the individuals in any population, will influence all the individuals

in all the populations. The dimensions of the network would thus change for all the

individual network.

An important aspect of the MPCA method is the knowledge migration. Figure 19 shows

the flow of the knowledge migration that happen in MPCA. Initially we start with a

threshold array having all values set to zero. Each population has individuals with only one

gene. Initially these gene values are randomly initialized. The individuals only change that

value of the threshold array to which its population belongs to. Hence, the individuals of

population 1 would only change the value of the first element of the threshold array,

individuals of population 2 would change the second value of the threshold array and so

on. This is done for all the individuals and the fitness value is calculated. The gene value

of the individuals having the best fitness value in each population is then selected. These

best gene values are then set to the threshold array to be used for the next epochs.

48

Figure 19 - Example of knowledge migration in MPCA

49

50

Chapter 5

Experiments and Results

In this chapter, we give the details about the experimental setup and the results obtained

from those experiments.

5.1 Dataset

The algorithm was tested on the standard MNIST handwritten digits dataset [35]. The

dataset consists of 60000 training images and 10000 testing images. Each image is a

grayscale handwritten digit of size 28*28 pixels. Each pixel has a value ranging from 0 to

255 with 0 indicating pure black and 255 indicating pure white.

Before using the pixel values directly into our algorithm, we have to normalize the dataset.

To normalize the data, we divide each pixel value by 255. This changes the range of the

pixel values from 0 - 255 to 0 – 1.

51

Figure 20 - Images in MNIST dataset that are difficult even for humans to recognize

5.2 Models

We have used the LeNet300-100 and the LeNet5 model which was tested by DS [17] and

OLMP [10]. The LeNet300-100 contains two dense layers. The first dense layer has 300

neurons and the second dense layer has 100 neurons. Thus, the model contains a total of

266200 weight parameters. The LeNet5 model contains two convolutional layers followed

by a dense layer. The first convolutional layer contains 20 feature maps. The second

convolutional layer contains 50 feature maps. The first dense layer contains 500 neurons.

Thus, the model contains 430500 weight parameters. Both the models were tested on the

MNIST dataset.

5.3 Setting Hyperparameters

In the next chapter, we have compared our methods with ITR [7], DS [17] and OLMP [10].

To make our methods comparable with those of other author’s work, the values of various

hyper parameters are same as that of other methods. The value of 𝛿 was set to 6%. In CA,

the population size was 10. In MPCA, each population had 4 individuals. The number of

populations depended on the number of thresholds required in pruning the model. In

LeNet300-100 model, there were three populations while in LeNet5 model, there were four

populations. The number of pruning epochs was 15. After pruning, the network was

finetuned for another 100 epochs.

52

The Pruning Ratio (PR) is the ratio of the size of the unpruned network to the size of the

pruned network, i.e.,
|𝑊|

|𝑊′|
.

5.3 Using CA to prune LeNet300-100

Figure 21 shows the best cost achieved by an individual network of the population during

each pruning epoch. The best cost is the Pruning Ratio (PR) if the accuracy of the pruned

network is within the tolerance level, else it is 0. The pruning ratio increased significantly

to end at 200 at the end of the fifteenth epoch.

Figure 21 - Graph showing the best cost achieved at each pruning epoch for pruning LeNet300-100 by CA

53

Figure 22 - Improvement in accuracy after finetuning.

Figure 22 shows an improvement of 2% in the accuracy of the network at the end of

finetuning. However, the accuracy remains the same after 20 epochs of finetuning. Hence,

the finetuning is done only for a hundred epochs.

5.4 Using MPCA to prune LeNet300-100

Figure 23 shows the pruning ratio achieved at each epoch after pruning the LeNet300-100

model by using MPCA. At the end of the 14th epoch, the pruning ratio achieved was 277.

Figure 24 shows the effect of finetuning the model after pruning. Similar to the case before,

the accuracy increases by 2% during finetuning.

54

Figure 23 - Graph showing the best cost achieved at each pruning epoch for pruning LeNet300-100 by

MPCA

Figure 24 - Finetuning LeNet300-100 after pruning with MPCA

55

5.5 Using CA to prune LeNet5

Figure 25 shows the pruning ratio achieved by pruning LeNet5 with the standard CA. The

pruning ratio was 592. This cannot be compared with the pruning ratio achieved in pruning

the LeNet300-100 model since the two models are different. The LeNet5 model contains

more layers and weight parameters as compared to the LeNet300-100 model. Figure 26

shows a similar increase of 2% in the accuracy after finetuning the model.

Figure 25 - Graph showing the best cost achieved at each pruning epoch for pruning LeNet5 by CA

56

Figure 26 - Finetuning LeNet5 after pruning with CA

5.6 Using MPCA to prune LeNet5

Figure 27 shows a pruning ratio of 864 achieved after pruning the LeNet5 model with the

MPCA method. This clearly shows that MPCA achieves higher pruning ratio quicker as

compared to the standard CA. Similar to all the cases mentioned above, Figure 28 shows

an increase of roughly 2% in accuracy after finetuning the model.

57

Figure 27 - Graph showing the best cost achieved at each pruning epoch for pruning LeNet5 by MPCA

Figure 28 - Finetuning LeNet5 after pruning with MPCA

58

5.7 Error Analysis

All the above experiments were run three times and the best result was recorded. However,

the three results didn’t differ by a huge margin. The difference in the error recorded was

less than 1% for each run of the algorithm. The standard deviation in the error was 0.16.

This shows that the results given by the algorithm was consistent throughout the

experiment.

59

Chapter 6

Comparison, Analysis and

Discussion

In this chapter, we compare and analyze our results with that of other methods.

6.1 Comparison between CA and MPCA

Figure 29 and Figure 30 show the comparison in the performance of CA and MPCA in

pruning the LeNet300-100 and LeNet5 model respectively. The graphs show the best

fitness value, which is the pruning ratio if accuracy is within the tolerance levels, achieved

by both the methods at each epoch. The graphs show that the MPCA prunes the network

quickly as compared to the CA. For LeNet5, it takes thirteen epochs for CA to reach a

fitness value of approximately 600 whereas MPCA achieves that fitness value within the

fifth epoch.

60

Figure 29 - Comparison of CA and MPCA for pruning LeNet300-100

Figure 30 - Comparison of CA and MPCA for pruning LeNet5

61

6.2 Comparisons with the LeNet300-100 model

Table 4 compares CA and MPCA with other methods for pruning LeNet300-100. It can be

seen that although our methods slightly increase the error, the PR achieved is way higher

compared to other methods. While ITR achieves the best error rate of 1.59%, the pruning

ratio it achieves is a mere 12. As the various methods increase the pruning ratio, they do

so at the expense of the error. CA further improves the pruning ratio to 200 with a

simultaneous increase in error to 3.75%. The best pruning ratio of 298 is achieved by

MPCA with a corresponding error of 5.17%. It is to be noted that the tolerance level was

set to 6% and hence the error posted by both - CA and MPCA – fall with the tolerance

level.

Method Error (%) Pruning Ratio

ITR 1.59 12

DS 1.99 56

OLMP 2.18 114

CA 3.75 200

MPCA 3.44 277

Table 4 - Comparison of PR achieved by different methods for pruning LeNet300-100

Since the LeNet300-100 model contains two hidden layers, it will have three fully

connected (fc) layers of weight parameters. The first fully connected layer (fc1) is between

the input layer and the first hidden layer, the second fully connected layer (fc2) is between

the first hidden layer and the second hidden layer, and the third fully connected layer (fc3)

is between the second hidden layer and the output layer.

62

Since each input image has a size of 28*28 pixels, the total number of neurons in the input

layer is 28*28 = 784. The hidden layers have 300 and 100 neurons and the output layer has

10 neurons representing the 10 output categories of digits (0-9). In dense layers, there exist

weight parameters that connect every neuron of one layer to each neuron of the next layer.

Thus, the number of weight parameters is simply the product of the number of neurons

present in the two layers. Hence, the calculations of the number of weight parameters in

each fully connected layer is as follows –

The fc1 layer connects the input layer with 784 neurons to the first hidden layer with 300

neurons. Hence, the total number of weight parameters in fc1 is 784*300 = 235200. The

fc2 layer connects the first hidden layer with 300 neurons to the second hidden layer with

100 neurons. Hence, the total number of weight parameters in fc2 is 300*100 = 30000. The

fc3 layer connects the second hidden layer with 100 neurons to the output layer with 10

neurons. Hence, the total number of weight parameters in fc3 is 100*10 = 1000. Thus, the

total number of weight parameters in the model is 235200 + 30000 + 1000 = 266200.

Table 5 displays the number of initial weight parameters and the percentage of weight

parameters remaining after pruning in each layer of the LeNet300-100 model.

Layer Params Params (%)

ITR

Params (%)

DS

Params (%)

CA

Params (%)

MPCA

fc1 235.2K 8% 1.8% 0.38% 0.28%

fc2 30K 9% 1.8% 0.98% 0.49%

fc3 1K 26% 5.5% 15.20% 15.30%

Total 266.2K 8% 1.8% 0.50% 0.36%

Table 5 - Pruning details by each layer of the LeNet300-100 network

63

6.3 Comparisons with the LeNet5 model

Table 6 compares CA and MPCA with other methods for pruning LeNet5. Once again,

despite a slight increase in the error, the pruning ratio achieved by CA and MPCA is

considerably higher compared to other methods. Similar to the LeNet300-100 pruning, ITR

achieves the best error rate of 0.77%. However, the pruning ratio is only 12. OLMP has

achieved a significant improvement with a pruning ratio of 298 at the expense of increasing

the error to 0.91%. CA doubles the pruning ratio to 598 with a moderate increase in error

to 2.50%. Finally, the best pruning ratio of 864 is achieved by MPCA with an error of

3.75%.

Method Error (%) Pruning Ratio

ITR 0.77 12

DS 0.91 108

OLMP 0.91 298

CA 2.50 592

MPCA 3.75 864

Table 6 - Comparison of PR achieved by different methods for pruning LeNet5

The LeNet5 model contains two convolutional hidden layers and one dense hidden layer.

Thus, it will have four layers of weight parameters – two convolutional (conv) and two

fully connected (fc) layers of weight parameters. The first convolutional layer (conv1) of

weight parameters is between the input layer and the first layer of feature maps and the

second convolutional layer (conv2) of weight parameters is between the first layer of

feature maps and the second layer of feature maps. The second layer is then flattened. The

first fully connected layer (fc1) is between the flattened layer of neurons and the first dense

hidden layer, and the second fully connected layer (fc2) is between the first dense hidden

layer and the output layer.

64

The convolutional layer of weight parameters is an array of filters, with each filter being

an array of kernels. The kernel size is 5*5. Hence, the number of weight parameters is 25

is each kernel. The number of filters and the number of kernels in a filter depends on the

number of feature maps present in the input and output layers of feature maps respectively.

The input layer is the input image of size 28*28 pixels. Thus, the number of feature maps

is 1. The first hidden output layer has 20 feature maps. Thus, the number of weight

parameters in the first convolutional layer (conv1) is 25*1*20 = 500. The second hidden

output layer has 50 feature maps. Hence, the number of weight parameters in the second

convolutional layer (conv2) is 25*20*50 = 25000.

When a kernel of size 𝑛 ∗ 𝑛 is applied on a feature map of size 𝑝 ∗ 𝑞, then the output feature

map has size (𝑝 − 𝑛 + 1) ∗ (𝑞 − 𝑛 + 1). Also, in a pooling layer when a max-pool with

size 𝑛 ∗ 𝑚 is applied on a feature map of size 𝑝 ∗ 𝑞, then the output feature map has size

(𝑝/𝑛) ∗ (𝑞/𝑚). Hence, when we apply the kernel of size 5*5 on the input feature map of

size 28*28, then the size of the feature maps of the first hidden output layer is 24*24. After

this, we apply max-pool of size 2*2 which reduces the size of the feature maps to 12*12.

When the kernel is again applied on these feature maps, then the size of the feature maps

in the second hidden output layer is 8*8. Again, max-pool is applied which further reduces

the size of the feature maps to 4*4. This layer of 50 feature maps, with each feature map

of size 4*4, is then flattened. The total number of neurons in this flattened layer is 4*4*50

= 800.

Then, the fc1 layer connects the flattened layer with 800 neurons to the first hidden layer

with 500 neurons. Hence, the total number of weight parameters in fc1 is 800*500 =

400000. The fc2 layer connects the first hidden layer with 500 neurons to the output layer

with 10 neurons. Hence, the total number of weight parameters in fc2 is 500*10 = 5000.

Thus, the total number of weight parameters in the entire LeNet5 model is 500 + 25000 +

400000 + 5000 = 430500.

65

Table 7 displays the number of initial weight parameters and the percentage of weight

parameters remaining after pruning in each layer of the LeNet5 model.

Layer Params Params (%)

ITR

Params (%)

DS

Params (%)

CA

Params (%)

MPCA

conv1 500 66% 14.2% 19.00% 16.80%

conv2 25K 12% 3.1% 0.66% 0.32%

fc1 400K 8% 0.7% 0.06% 0.06%

fc2 5K 19% 4.3% 4.68% 1.74%

Total 430.5K 8% 0.9% 0.17% 0.12%

Table 7 - Pruning details by each layer of the LeNet5 network

Since our objective function gives more importance to pruning, the layers having a greater

number of weight parameters will be pruned heavily as compared to layers having a smaller

number of weight parameters. This effect can be seen in Table 5 and Table 7. In LeNet300-

100, the fc3 layer has the least number of parameters – only 1000. Hence, it is the least

pruned layer and retains approximately fifteen percent of all the weight parameters.

Similarly, in LeNet5, the conv1 layer has only 500 parameters and retains more than

sixteen percent of the parameters. In contrast, the fc1 layer has 400K parameters and is

heavily pruned, retaining only 0.06% of the total weight parameters. Thus, layers having

more parameters will be heavily pruned compared to layers having less parameters.

Thus, we have made various comparisons of pruning different models of neural networks

with CA, MPCA and other widely accepted methods. In each model, we have found that

both CA and MPCA achieve a very high pruning ratio compared to its counterparts. Also,

MPCA achieves a higher pruning ratio more quickly than the standard CA. The only

66

disadvantage is a slight increase in the error. Despite this increase, the error is still under

the defined tolerance levels.

67

Chapter 7

Conclusion and Future Work

We proposed pruning of neural networks as a constraint optimization problem. We solved

this problem by iteratively pruning and retraining the network. The pruning is based on

threshold values which are different for each layer. Cultural Algorithms (CA) and Multi-

Population Cultural Algorithms (MPCA) are used to find the best threshold values for each

layer. Our results show that MPCA outperforms CA in pruning neural networks. Also, it

has achieved better pruning ratio (864 for LeNet5 and 277 for LeNet300-100) compared to

other state-of-the-art methods.

7.1 Limitations

One major limitation is the training of large neural networks multiple times. Consider a

population of ten individuals. This would mean that a large neural network would be

trained for ten times in each generation. However, as the network becomes more smaller,

the time taken to train the network reduces significantly. This may be advantageous for

large networks that have high number of training epochs.

68

Moreover, the pruned weight parameters are not realistically pruned but are set to 0 forming

a sparse weight matrix. This matrix needs to be further encoded using techniques like

Huffman encoding as shown by Han et al. [13] to truly achieve space reduction.

7.2 Future Work

We have used our algorithms to prune sequential neural netwoks, where the output of one

layer become the input of the next layer. However, we would also like to extend the use of

CA and MPCA to prune non-sequential deep neural network models such as Recurrent

Neural Networks (RNN), ResNets [36] and Inception [37].

We would also like to test the algorithms on more complex data like the Cifar dataset [38]

and ImageNet [39]. Also, we shall incorporate the idea of pruning layers in a given model

of neural network.

We would also like to have a sensitivity analysis of the effect of the tolerance. We could

change the tolerance value and note the pruning ratio and the error for different values of

tolerance and plot a pareto front.

There exists a lot of scope for the implementation of these algorithms in pruning deep

neural networks. Smaller, simpler and faster neural networks would be highly used in many

applications in various fields.

69

REFERENCES

[1] M. A. Neilsen, Neural Networks and Deep Learning, Determination Press, 2015.

[2] C. Stergiou and D. Siganos, "NEURAL NETWORKS," [Online]. Available:

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html. [Accessed

21 March 2019].

[3] K. Hornik, M. Stinchcombe and H. White, "Multilayer Feedforward Neural

Networks are Universal Approximators," Neural Networks, vol. 2, pp. 359-366,

1989.

[4] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444,

2015.

[5] J. Schmidhuber, "Deep Learning in Neural Networks: An Overview," 2014.

[6] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

[7] S. Han, J. Pool, J. Tran and W. Dally, "Learning both Weights and Connections for

Efficient Neural Network," in Neural Information Processing Systems (NIPS), 2015.

[8] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep

Convolutional Neural Networks," in Neural Information Processing Systems (NIPS),

2012.

[9] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton and J. Dean,

"Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts

Layer," in International Conference on Learning Representations (ICLR), 2017.

[10] G. Li, C. Qian, C. J. X. Lu and K. Tang, "Optimization based Layer-wise Magnitude-

based Pruning for DNN Compression," in International Joint Conference on

Artificial Intelligence (IJCAI), 2018.

70

[11] P. R. Huttenlocher and A. S. Dabholkar, "Regional differences in synaptogenesis in

human cerebral cortex," Journal of Comparative Neurology, vol. 387, no. 2, pp. 167-

178, 1997.

[12] R. Sentiono and H. Liu, "Understanding neural networks via rule extraction," in Proc.

of the 14th International Joint Conference on Artificial Intelligence, (pp. 480- 485),

1995.

[13] S. Han, H. Mao and W. Dally, "Deep Compression: Compressing Deep Neural

Networks with pruning, trained quantization and huffman coding," in International

Conference on Learning Representations (ICLR), 2016.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet and H. P. Graf, "Pruning Filters for

Efficient ConvNets," in International Conference on Learning Representations

(ICLR), 2017.

[15] R. Reed, "Pruning Algorithms - A Survey," IEEE Transactions on Neural Networks,

vol. 4, no. 5, pp. 740-747, 1993.

[16] C. Jiang, G. Li, C. Q. and K. Tang, "Efficient DNN Neuron Pruning by Minimizing

Layer-wise Nonlinear Reconstruction Error," in International Joint Conferences on

Artificial Intelligence (IJCAI), 2018.

[17] Y. Guo, A. Yao and Y. Chen, "Dynamic Network Surgery for Efficient DNNs," in

Advances in Neural Information Processing Systems 29 (NIPS'16), Barcelona, Spain,

2016.

[18] D. Whitley and C. Bogart, "The evolution of connectivity: Pruning neural networks

using genetic algorithms," in International Joint Conference on Neural Networks,

Washington DC, USA, 1990.

[19] N. S. Jaddi, S. Abdullah and A. R. Hamdan, "Optimization of neural network model

using modified bat-inspired algorithm," Applied Soft Computing, vol. 37, pp. 71-86,

2015.

71

[20] A. S. Alencar, A. R. R. Neto and J. P. P. Gomes, "A new pruning method for extreme

learning machines via genetic algorithms," Applied Soft Computing, vol. 44, pp. 101-

107, 2016.

[21] R. K. Samala, H.-P. Chan, L. M. Hadjiiski, M. A. Helvie, C. Richter and K. Cha,

"Evolutionary pruning of transfer learned deep convolutional neural network for

breast cancer diagnosis in digital breast tomosynthesis," Physics in Medicine &

Biology, vol. 63, no. 9, 2018.

[22] W. Wong, C. Ali, W. K. Ing, L. K. Haw and V. Lee, "Optimisation of Neural Network

with Simultaneous Feature Selection and Network Prunning using Evolutionary

Algorithm," Journal of Telecommunication, Electronic and Computer Engineering,

vol. 8, no. 12, 2016.

[23] S. Upadhyayula, "Dominance in multi-population cultural algorithms," 2015.

[24] T. Weise, Global Optimization Algorithms – Theory and Application, www.it-

weise.de, 2011.

[25] J. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, MI: The

University of Michigan Press, 1975.

[26] L. B. Booker, D. E. Goldberg and J. H. Holland, "Classifier systems and genetic

algorithms," 1989.

[27] A. Bhullar, "Improving Quality of the Solution for the Team Formation Problem in

Social Networks Using SCAN Variant and Evolutionary Computation," 2018.

[28] P. Parikh, "Knowledge migration strategies for optimization of multipopulation

cultural algorithm," 2017.

[29] Z. Xue and Y. Guo, "Improved Cultural Algorithm based on Genetic Algorithm," in

IEEE International Conference on Integration Technology, 2007.

72

[30] R. Reynolds, "An introduction to cultural algorithms," in Proceedings of the 3rd

Annual Conference on Evolutionary, SebaldRiver Edge, NJ, 1994.

[31] A. P. Engelbrecht, Computational Intelligence: An Introduction 2nd Edition, John

Wiley Publication, 2007.

[32] Z. Kobti, R. Reynolds and T. Kohler, "A multi-agent simulation using cultural

algorithms: the effect of culture on the resilience of social systems," in Proceedings

of Congress on Evolutionary Computation, 3:1988-95, 2003.

[33] P. M. Zadeh and Z. Kobti, "A Multi-Population Cultural Algorithm for Community

Detection in Social Networks," Procedia Computer Science, vol. 52, pp. 342-349,

2015.

[34] Y.-n. Guo, J. Cheng, Y.-y. Cao and Y. Lin, "A novel multi-population cultural

algorithm adopting knowledge migration," Soft Computing, vol. 15, no. 5, pp. 897-

905, 2011.

[35] Y. LeCun, C. Cortes and C. J. Burges, "THE MNIST DATABASE of handwritten

digits," 1998. [Online]. Available: http://yann.lecun.com/exdb/mnist/. [Accessed 01

12 2018].

[36] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image

Recognition," in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke and A. Rabinovich, "Going Deeper With Convolutions," in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[38] A. Krizhevsky, "Learning Multiple Layers of Features from Tiny Images," 2009.

[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, "ImageNet Large

73

Scale Visual Recognition Challenge," International Journal of Computer Vision

(IJCV), vol. 115, no. 3, pp. 211-252, 2015.

[40] G. v. Rossum and F. Drake, "Python Reference Manual," PythonLabs, 2001.

[Online]. Available: https://www.python.org/. [Accessed 21 March 2019].

[41] O. Travis E, "A guide to NumPy," Trelgol Publishing, USA, 2006.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher and M. Perrot, "Scikit-learn: Machine Learning in Python,"

Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[43] M. Abadi, A. Agarwal, P. Barham and E. Brevdo, "TensorFlow: Large-scale machine

learning on heterogeneous systems," 2015. [Online]. Available:

http://tensorflow.org/. [Accessed 21 March 2019].

[44] J. D. Hunter, "Matplotlib: A 2D Graphics Environment," Computing in Science &

Engineering, vol. 9, pp. 90-95, 2007.

[45] Yarpiz, "Cultural Algorithm (CA) in MATLAB," [Online]. Available:

http://yarpiz.com/425/ypea125-cultural-algorithm. [Accessed 21 March 2019].

74

APPENDIX

All the experiments were done in Python [40]. Python is an easy to use programming

language highly used in machine learning. It can be download from

https://www.python.org/downloads/. To develop the above models in python, I would

highly recommend installing the following python libraries –

• NumPy [41]: It is used for scientific computing in python. The installation steps are

provided in http://www.numpy.org/.

• Scikit-Learn [42]: It consists of various machine learning model embedded in it.

Creating and using these models are easy using this library.

• Tensorflow [43]: It is used to build and train complex machine learning models

with relative ease of coding. The installation steps are listed in

https://www.tensorflow.org/install.

• Matplotlib [44]: It is used to plot graphs.

The Cultural Algorithm was created using the ideas from Yarpiz [45] who developed CA

in Matlab. The Multi-Population Cultural Algorithm was developed by creating different

belief spaces and populations and implementing knowledge migration in the standard CA.

One may need to change the hyper-parameters, activation functions or even the code used

in the above references to better suit their dataset and experiments.

The code was executed on an Intel® Core™ i5-7200U CPU @ 2.50GHz 2.70GHz

processor.

https://www.python.org/downloads/
http://www.numpy.org/
https://www.tensorflow.org/install

75

VITA AUCTORIS

NAME: Anish Desai

PLACE OF BIRTH:

Mumbai, India

YEAR OF BIRTH:

1994

EDUCATION:

Bachelor of Technology in Computer Science,

Veermata Jijabai Technological Institute (VJTI),

Mumbai, India, 2016

Master of Science in Computer Science,

University of Windsor, Windsor, ON, Canada,

2019

	Using Multi Population Cultural Algorithms to prune Deep Neural Networks
	Recommended Citation

	tmp.1560992408.pdf.Krvog

