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ABSTRACT 

The purpose of the current study was to examine the influence of lower limb muscle 

fatigue on the mechanics of the knee joint during an athletic cutting task. A biomechanical 

methodology was utilized to examine 12 recreationally active females, who cycled through a 

fatigue-inducing protocol, using a slideboard, followed by the performance of five maximal cuts, 

until fatigue resulted in trial termination. 3D motion capture was utilized to capture full body 

movements and changing joint angles of the hip, knee and ankle during the weight acceptance of 

the cutting maneuver. A force plate was used to record the ground reaction forces of the 

participants during weight acceptance of the athletic cut. Lastly, surface electromyography 

monitored the muscle activity of nine muscles on the dominant leg of the participants. Repeated 

measures ANOVA (p<0.05), with Tukey’s significant post hoc test, was used to determine 

significance of the main effect of time on the measured variables. Analysis of the kinematic data 

revealed that, as fatigue progressed, hip and knee flexion angle significantly decreased during 

weight acceptance. Kinetic data revealed that peak anterio-posterior shear force significantly 

increased, and medial-lateral impulse of force significantly decreased, as participants progressed 

through the fatiguing protocol.  Finally, surface electromyography data showed an overall 

significant decrease in muscle activation from the beginning to the end of trial, however, further 

investigation of pairwise comparisons indicated that, from 60-100% of the trial, muscle 

activation significantly increased. This work contributes to the body of work concerning exercise 

induced muscle fatigue and provides further insight into the underlying mechanism of acute 

injury during heightened fatigued states.  The knowledge gained from this study can be used to 

advise and improve training prescription and monitoring strategies. 
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CHAPTER 1 

INTRODUCTION 

1.1 THE PROBLEM 

 The knee joint is the most common site of injury by athletes, accounting for about 60% of 

all sports related injuries (Gage, McIlvain, Collins, Fields, & Comstock, 2012; Ingram, Fields, 

Yard, & Comstock, 2008). Of these, 45% involve injury to the anterior cruciate ligament (ACL) 

(Majewski, Susanne, & Klaus, 2006). There is consensus in the literature that approximately 

70% of ACL injuries in sport happen in non-contact situations, which occur without a direct 

blow to the knee (Boden, Scott, Feagin, & Garrett, 2000; Sharir, et al., 2016; Shimokochi & 

Shultz, 2008; Olsen, Myklebust, Engebretsen, & Bahr, 2004). These may involve rapid dynamic 

activities and multidirectional knee loadings. One of such activities, and arguably the most risk 

inducing, is an athletic cutting maneuver, which involves a rapid deceleration and change in 

direction by the athlete. In addition, there is evidence that injury in sport occurs most frequently 

at the end of matches, and that injury rate increases as each division of the game (half, quarter, 

period) progresses. Though the reasoning may be multifactorial, this suggests the influential role 

that fatigue may play with regard to injury (Price, Hawkins, Hulse, & Hodson, 2004).  

Mechanical failure, whether it be to the ACL or any other structure, living or not, occurs 

when the strength capacity of the structure is exceeded by the demand or stress placed upon it 

(Besier, Lloyd, & Ackland, 2003). The plant and cut movement present risk to the ACL about all 

three axes of rotation, making it the most common injury inducing action in sport (Hughes & 

Watkins, 2006). These multi-axial risk factors include increased knee extension, internal 

rotation, and knee valgus, described as femoral adduction and knee abduction (Laughlin, 

Weinhandl, Kernozek, Cobb, & Keenan, 2011). The dynamic valgus position is the primary 
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predictor of ACL injury risk, as it pulls the ACL at its distal attachment point on the tibia, in an 

anterior-medial direction, and twists it medially away from its proximal end (Hewett, et al., 

2005).  

Fatigue, defined as “a temporary decline in the force and power capacity of skeletal 

muscle resulting from muscle activity” (Potvin & Fuglevand, 2017), may interfere with lower 

extremity kinetics and kinematics (McLean, et al., 2007), neuromuscular control and dynamic 

stabilization (Liederbach, Dilgen, & Rose, 2008), force capacity and contractile rate (Potvin & 

Fuglevand, 2017), and proprioceptive function (Miura, et al., 2004). By definition, as the muscle 

fatigues, its ability to generate contractile force decreases and, therefore, energy absorption may 

also be reduced (Mair, Seaber, Glisson, & Garrett, 1996). This leaves the joints passive 

stabilizers with a larger demand to dissipate energy, exposing them to a higher risk for failure.  

Though the literature is lacking in its demonstration of the effects of fatigue when 

performing an athletic cut, there is evidence showing its detriments during other exercises and 

athletic tasks. During vertical jumping, as fatigue progresses, knee flexion angles decrease 

during landing (Chappell, et al., 2005). Landing forces, with a more extended knee, are 

significantly increased and have less range to dissipate the impulse over, resulting in higher peak 

impact forces at the knee (Laughlin, Weinhandl, Kernozek, Cobb, & Keenan, 2011; Kernozek & 

Torry, 2005). Anterior tibial translation and shear force significantly increases by over 30% with 

quadriceps fatigue, which is known to stress the ACL and increase the risk of ligament injury 

(Ireland, 2002; Chappell et al., 2005). Increased valgus moments, and decreased knee flexion 

angles, have also been demonstrated during landings of stop-jump tasks when fatigued 

(Chappell, et al., 2005). In single leg drop landings, a task with similar components to cutting, 

fatigue induced significant increases in hip and knee extension, hip internal rotation, knee 
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abduction and ankle plantar flexion angles, as revealed by Borotikar et al. in 2008. These 

positions not only strain the structures of the knee joint but, compromise the ability of the 

hamstrings and quadriceps to lengthen optimally and oppose external knee abduction loads 

(Borotikar, Newcomer, Koppes, & McLean, 2008). Each of these findings are representative of 

the many different ways in which fatigued athletes may be at an increased risk of non-contact 

ACL injury.  

Males and females demonstrate different susceptibilities with respect to risk of knee 

injury. Research has shown that females are 2-8 times more likely to sustain an ACL injury than 

their male counterparts (Landry, McKean, Hubley-Kozey, Stanish, & Deluzio, 2009). The 

reasoning for the increased incidence in female athletes may be multifactorial, including risk 

factors related to anatomical, hormonal, neuromuscular, environmental and biomechanical 

differences (Hewett, Lindenfeld, Riccobene, & Noyes, 1999; Gage, McIlvain, Collins, Fields, & 

Comstock, 2012). Some of the hypothesized anatomical reasons for the increase in female risk 

include: a more narrow intercondylar space; a wider pelvis, creating a larger Q angle, defined as 

the acute angle between the line connecting the anterior superior iliac spine to the middle of the 

patella, and the line connecting the tibial tuberosity to the center of the patella; increased 

flexibility of ligaments, muscles and tendons due to hormone differences; and a generally lower 

strength capacity of women (Hewett, Myer, & Ford, 2006; Hughes & Watkins, 2006). Altered 

neuromuscular control strategies and movement patterns are also likely to contribute to the 

increased incidence of injury in females during exercise. More specific to the interests of this 

study, decreased knee flexion angles and increased knee valgus are more pronounced in female 

athletes when performing an athletic cut (Malinzak, Colby, Kirkendall, Yu, & Garrett, 2001; 

Pollard, Davis, & Hamill, 2004; Sigward & Powers, 2006). Quadriceps dominance in females is 
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another phenomenon contributing to the imbalanced injury ratio between sexes. This is the 

general finding, that females activate the quadriceps to a greater extent than males during cutting, 

and other athletic tasks (Lephart, Ferris, Riemann, Myers, & Fu, 2002; Landry, McKean, 

Hubley-Kozey, Stanish, & Deluzio, 2009; Sigward & Powers, 2006). The quadriceps pull the 

knee into extension and, as a result, translates the tibia anteriorly, placing stress on the ACL. 

Each of these risk factors, in combination with the suggested anatomical risk factors, create a 

high-risk profile for ACL injury in female athletes.  

Despite all that is known about the separate risks associated with both cutting maneuvers 

and muscle fatigue, the literature is limited regarding their combined effects on athletes and the 

physically active population. The mechanical response of knee joint to fatiguing muscles during 

the plant and cut maneuver remains unclear including: which of the muscles are most fatigable 

and, how the fatigue states of muscles compromise the safety of the joint during complex tasks.  
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1.2 THESIS OBJECTIVE 

 This study examined the influence of lower limb muscle fatigue on the mechanics of the 

knee joint during an athletic cutting task. Specifically, participants performed a fatigue-inducing 

protocol, using a slideboard, followed by the performance of five maximal cuts, and then 

returned to the slideboard. This cycle continued until fatigue threshold was exceeded, which in 

this study was defined as a 20% decrease in the maximal cut distance during the step out phase 

of the cut. This study aimed to provide more insight into the relatively shallow research pool 

related to the effects of fatigue on knee kinetics and kinematics when executing a cutting task. 

The knowledge gained may be further used to develop better training programs and sport-

specific techniques to help prevent risk of ACL injury, as well as strengthen the appropriate 

muscles which best accommodate the negative neuromuscular and movement patterns which 

accompany fatiguing exercise. 

1.3 HYPOTHESES 

 1) Participants would demonstrate a decrease in knee flexion angles and increase in knee 

valgus angles during the weight acceptance phase of the cutting task as fatigue progressed. 

2) Participants would experience greater vertical ground reaction forces and effective 

duration decreases as fatigue progressed. 

3) Fatigue progression would have a significant effect on normalized sEMG for RF, VL, 

VM, BF, ST, GL, GM, GR and TA. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 EPIDEMIOLOGY  

For athletes, and the physically active population, the knee joint is a common site for 

injury, accounting for about 60% of all sports related surgeries (Gage, McIlvain, Collins, Fields, 

& Comstock, 2012; Ingram, Fields, Yard, & Comstock, 2008). Injury to the ACL is involved in 

about 45% of all knee traumas (Majewski, Susanne, & Klaus, 2006). Knee injury in sport may 

result from a contact mechanism, which is defined as resulting from a direct blow to the knee, or 

a non-contact mechanism, which occurs in absence of direct contact to the knee (Olsen, 

Myklebust, Engebretsen, & Bahr, 2004). Approximately 70% of ACL injuries in sport, 

reportedly, occur in non-contact situations, which may involve rapid dynamic activities and 

multiplane knee loadings such as sudden deceleration, directional changes, jump landings, 

pivoting and cutting maneuvers (Boden, Scott, Feagin, & Garrett, 2000; Sharir, et al., 2016; 

Shimokochi & Shultz, 2008). As a result of these injuries, athletes often are unable to compete 

for the remainder of the season and are likely to require invasive surgical procedures and 

rehabilitation, which may further limit their participation (Ruiz, Kelly, & Nutton, 2002; 

Lohmander, Östenberg, Englund, & Roos, 2004). About 90% of individuals who sustain an ACL 

injury in the USA eventually undergo ACL reconstructive surgery and, as a result, are at a 

heightened risk of subsequent injury as well as knee osteoarthritis and loss of functional ability 

(Paterno, Rauh, Schmitt, Ford, & Hewett, 2012). Economically, athletes are burdened with not 

only the cost of reconstructive surgery, but the treatment of complications, subsequent knee 

surgery, physical therapy and outpatient visits if they wish to attempt to return to play or try and 

maintain the same quality of life as before the injury. According to 2010 USA Census data for 
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the age group of 15-24 years, the cost of ACL reconstruction and physical therapy totaled over 

$32000 (adjusted to 2015 USD) per patient (Stewart, Momaya, Silverstein, & Lintner, 2016). 

This cost does not include that associated with lost time at work or school, or alternative 

transportation needs. After all this, the rate of surgical success, with respect to return to play rate 

at the pre-injury level, is only 60% (Gobbi, Mahajan, Zanazzo, & Tuy, 2003). In addition to the 

negative effects such an injury may have on the individual’s future in sport, potential scholarship 

opportunities, mental health and day-to-day livelihood are also placed at risk, further 

emphasizing the potential burden to recreational and professional athletes (Freedman, Glasgow, 

Glasgow, & Bernstein, 1998; Noyes, Matthews, Mooar, & Grood, 1983).  

2.2 KNEE ANATOMY 

 By drawing attention to the anatomical structures of the knee, the internal and external 

factors which place stress on it and the mechanisms in which it can be injured may be more 

easily understood. 

 The knee joint is located between two of the longest weight bearing bones in the human 

body, the femur and tibia, and is comprised of two joints. The first is the patellofemoral joint 

which articulates between the anterior surface of the femoral plateau and the posterior surface of 

the patella. Second is the tibiofemoral joint, which articulates between the distal end of the femur 

and the proximal end of the tibia. This joint is held together by both passive and dynamic 

stabilizers (Hughes & Watkins, 2006). Passive stability comes from non-contractile structures, 

such as ligaments, which guide and limit joint motion (Daniel, 1991). These include the lateral 

and medial menisci, lateral collateral ligament (LCL), medial collateral ligament (MCL), 

posterior cruciate ligament (PCL) and the anterior cruciate ligament (ACL) (Figure 1). Dynamic 

stability is provided by the muscles crossing the joint, primarily from the quadriceps and 
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hamstrings muscle groups. As a result of their large anatomical moment arms, these muscles 

possess the ability to support large external loads, as well as reduce the loading on the ligaments 

(Lloyd & Buchanan, 2001).  

 

Figure 1: Anterior (left) and posterior (right) views of passive structures of the right knee (BioDigital, Inc., 2018). 

 
The primary role of the ACL in joint stability is to resist anterior translation and internal 

rotation of the tibia with respect to the femur (Landry, McKean, Hubley-Kozey, Stanish, & 

Deluzio, 2007). Along with the PCL, the ACL is located in the intercondylar notch where it 

attaches to the posterior medial aspect of the lateral femoral plateau, and the posterior aspect of 

anterior intercondylar area of the tibial table (Hughes & Watkins, 2006).  

 The muscles surrounding the knee joint work together to provide dynamic stability 

(Lloyd & Buchanan, 2001). For the purpose of this study, the focus will be on vastus lateralis 

(VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), 

gracilis (GR), gastrocnemius medial (GM), gastrocnemius lateral (GL), and tibialis anterior (TA) 

(Figure 2). 
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Figure 2: Anterior and posterior view of the muscles of the right lower extremity (BioDigital, Inc., 2018). 

 The vastus lateralis, vastus medialis and rectus femoris all belong to the quadriceps 

muscle group. Primarily, these are responsible for the extension of the knee. In addition to knee 

extension, the RF assists in hip joint flexion. The VL muscle originates on the lateral surface of 

the greater trochanter of the femur, VM on the distal part of the intertrochanteric line of the 

femur, and the RF on the acetabular roof of the hip joint. All have a common insertion point on 

the tibial tuberosity of the patellar ligament. The VM and VL additionally insert on the medial 

and lateral condyles of the tibia, respectively (Schuenke, Schulte, & Schumacher, 2010).  

 The hamstring muscles are antagonistic to the quadriceps muscles. Biceps femoris, and 

semitendinosus belong to this group. Each of these muscles originates on the ischial tuberosity of 

the pelvis and the sacrotuberous ligament, as well as the linea aspera on the femur for BF short 

head. The BF inserts onto the head of the fibula, and the ST to the upper part of the medial 
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surface of the tibia. These muscles are responsible for knee joint flexion, as well as hip joint 

extension and stabilization of the pelvis in the sagittal plane. Knee external rotation and internal 

rotation moments are provided by the BF and ST, respectively (Schuenke, Schulte, & 

Schumacher, 2010). 

 The gracilis muscle is located medial to the femur. It originates on the inferior pubic 

ramus below the symphysis and inserts onto the medial border of the tibial tuberosity. The GR 

muscle assists in hip adduction, knee internal rotation and flexion of both the hip and knee joint 

(Schuenke, Schulte, & Schumacher, 2010). 

 The gastrocnemius muscles belong to the triceps surae muscle group. The GM and GL 

originate from the medial and lateral epicondyle of the femur, respectively. Both heads insert 

onto the Achilles tendon. These muscles are responsible for plantar flexion and supination of the 

ankle, and also assists with knee joint flexion (Schuenke, Schulte, & Schumacher, 2010). 

 Lastly, tibialis anterior is located in the anterior compartment of the tibia. This muscle 

originates at the upper lateral surface of the tibia, the crural interosseous membrane, and the 

superficial crural fascia. It inserts at the medial and plantar surface of the foot. Tibialis anterior 

functions to dorsiflex and supinate at the ankle (Schuenke, Schulte, & Schumacher, 2010).   

2.3 KNEE INJURY MECHANICS 

Mechanical failure, whether it be to the ACL or any other structure, living or not, occurs 

when the strength capacity of the structure is exceeded by the demand, or stress, placed upon it 

(Besier, Lloyd, & Ackland, 2003). Injury to the ACL is likely multifactorial, with no single 

factor being the sole cause for the increased risk of injury (Ford, Myer, & Hewett, 2003). The 

strength, or capacity, of the ACL may be dependent on variables such as hormone levels, loading 

history, and prior injury (Besier, Lloyd, & Ackland, 2003). The non-contact mechanism of knee 
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injury commonly involves a deceleration before a change in direction or landing with the knee 

between 20° of flexion and full extension (Ford, Myer, & Hewett, 2003). During such 

maneuvers, the position of the lower extremities increases the stress and, thus, the demand, on 

the structures of the knee, particularly the ACL. Cadaveric studies show that combined applied 

moments of flexion, valgus and internal rotation place the greatest amount of stress on the ACL 

(Besier, Lloyd, & Ackland, 2003). These risk factors all describe the events which occur during 

an athletic cutting maneuver. 

The plant and cut movement is the most common action being performed at the time of 

injury (Hughes & Watkins, 2006).  Changes in the alignment of the lower limbs during this 

movement occur about all three axes, with increasing knee extension, internal rotation, knee 

abduction and knee valgus (Laughlin, Weinhandl, Kernozek, Cobb, & Keenan, 2011). During 

weight acceptance, increased peak valgus moments may place an athlete at higher risk of injury 

due to increased loads on the ACL (Dempsey, et al., 2007). The dynamic valgus position pulls 

the ACL at its distal attachment point on the tibia in an anterior-medial direction, as well as 

twists it medially away from its proximal end. Knee internal rotation and abduction moments, 

through logistic regression analysis, have been identified as significant predictors of ACL injury. 

These postures contribute directly to dynamic valgus, the primary predictor of ACL injury risk 

(Hewett, et al., 2005). 

The deceleration and change in direction, involved when cutting, requires a significant 

amount of quadriceps activation. When the quadriceps contract at flexion angles less than 45°, 

the tibia translates anteriorly and increases the strain on the ACL. This, in addition to the external 

loading, may increase the risk of injury to the ACL (Landry, McKean, Hubley-Kozey, Stanish, & 

Deluzio, 2009). Hamstring activity, working in an agonistic manner, aids the ACL in decreasing 
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anterior shift of the tibia, and thus decreases the stress on the ACL (Simonsen, et al., 2000). Co-

contraction of the hamstrings and quadriceps is proposed to protect the knee joint not only from 

anterior drawer, but also from dynamic valgus (Hewett T. E., et al., 2005).  

2.4 EFFECTS OF FATIGUE 

 Fatigue is defined as “a temporary decline in the force and power capacity of skeletal 

muscle resulting from muscle activity” (Potvin & Fuglevand, 2017). As fatigue sets in, it may 

interfere with many functions of the body during exercise such as lower extremity kinetics and 

kinematics (McLean, et al., 2007), neuromuscular control and dynamic stabilization (Liederbach, 

Dilgen, & Rose, 2008), force capacity and contractile rate (Potvin & Fuglevand, 2017), and 

proprioceptive function (Miura, et al., 2004). When the muscle is activated, it can absorb a 

significantly larger amount of energy. However, as the muscle fatigues, its ability to generate 

contractile force decreases, and, therefore, energy absorption may also be reduced. One study 

demonstrated that the reduction in energy absorption decreased by 25% in the fatigued limb 

when compared to baseline measures (Mair, Seaber, Glisson, & Garrett, 1996). This leaves the 

joints passive stabilizers with a larger demand to dissipate energy, exposing them to a higher risk 

of failure, suggesting that fatigue may be an important factor in muscle and knee injury. 

There is little research on how muscle fatigue effects body kinetics and kinematics during 

the cutting maneuver specifically, however, there is evidence showing its detriments during other 

exercises and athletic tasks, such as: vertical jumping, rapid run and stop maneuvers and single 

leg drop landings. In vertical jumping tasks, landing softly significantly decreases landing forces 

(Laughlin, Weinhandl, Kernozek, Cobb, & Keenan, 2011). Greater knee flexion may protect the 

ACL by allowing for the dissipation of energy over a larger range of motion (Kernozek & Torry, 

2005). As the quadriceps muscles fatigue, however, the range of motion during landing decreases 
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due to lowered capacity of the muscle to eccentrically contract and stop the body from 

downward movement. During rapid run and stop maneuvers, anterior tibial translation showed 

increases of over 30% during a fatigued state (Ireland, 2002). This action is known to stress the 

ACL and increase the risk of ligament injury. These findings are in agreeance with a later study 

by Chappell et al. (2005), where participants had significantly increased peak proximal tibial 

anterior shear forces after completing a fatigue protocol consisting of consecutive vertical jumps 

and sprints. In addition, participants also demonstrated increased valgus moments and decreased 

knee flexion angles during landings of stop-jump tasks when fatigued (Chappell, et al., 2005). In 

a study by Gehring et al. (2009), using leg press as a fatiguing protocol and drop landing as a 

post-measure, hamstring and gastrocnemius activation was significantly reduced, and indicated a 

reduction in the active muscle control of the knee joint after fatigue (Gehring, Melnyk, & 

Gollhofer, 2009). These muscles act in support of the ACL and, thus, after fatigue the potential 

for additional ACL loading was increased.  

Another study, by Borotikar et al. (2008), investigated the adverse effects of muscle 

fatigue on single legged drop landing kinematics. Similar to cutting, this exercise involves 

deceleration and the reduction of momentum using only one limb. That study observed 

significant increases in hip and knee extension, hip internal rotation, knee abduction and ankle 

plantar flexion angles when fatigue was induced. These postures are not only more stressful to 

the knee joint but place the hamstrings and quadriceps further from their optimal lengths for 

force production and compromise their ability to oppose external knee abduction loads 

(Borotikar, Newcomer, Koppes, & McLean, 2008).  
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2.5 SEX DIFFERENCES 

Males and females differ with respect to risk of knee injury. Landry et al. (2009) found 

that females are 2-8 times more likely to sustain an ACL injury than their male counterparts. In a 

2007 survey of 100 US high schools, females with ligamentous knee injuries required surgery 

twice as often as males and were 50% more likely to sustain season ending injuries (Fernandez, 

Yard, & Comstock, 2007).  

The reasoning for the increased incidence in female athletes is multifactorial and includes 

risk factors related to anatomical, hormonal, neuromuscular, environmental and biomechanical 

differences (Hewett, Lindenfeld, Riccobene, & Noyes, 1999; Gage, McIlvain, Collins, Fields, & 

Comstock, 2012). One of the hypothesized anatomical contributors to the increase in female risk 

includes a narrower intercondylar space, possibly causing increased lengthening of the ACL 

under tension (Hewett, Myer, & Ford, 2006). Another is that females have, in general, a wider 

pelvis. This creates a larger Q angle, defined as the acute angle between the line connecting the 

anterior superior iliac spine to the middle of the patella, and the line connecting the tibial 

tuberosity to the center of the patella. Larger Q angles allow for greater knee valgus angles and 

moments. This is known to stress the ACL as supported by findings from Bendjaballah et al. 

(1997), indicating that the load on the ACL may increase up to six times with a 5° increase in 

knee valgus. Females also exhibit increased flexibility of ligaments, muscles and tendons due to 

hormone differences. This may decrease the tensile strength of the ACL, as well as decrease the 

amount of passive stability to the joint. Finally, a generally lower strength capacity of women 

decreases the contractile strength that the muscles can apply to provide dynamic stability to the 

joint. The muscle stiffness of females can range between 55.8-73.9% for the quadriceps, when 
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compared to males. This may increase the dependence on passive structures to maintain stability 

at the knee, increasing the risk for injury (Hughes & Watkins, 2006).   

Altered neuromuscular control strategies and movement patterns are also likely to 

contribute to the increased incidence of injury in females. As demonstrated in a side cutting task, 

Malinzak et al. (2001) found knee flexion angles were generally lower than males by about 15° 

as well as increased knee valgus angles, by 11°, which was consistent throughout the entire 

movement, when compared to males. These findings are consistent with others which suggest 

that females demonstrate greater knee valgus and smaller knee flexion angles than males during 

cutting tasks (Pollard, Davis, & Hamill, 2004; Sigward & Powers, 2006). Females are identified 

as being quadriceps dominant, such that quadriceps activation occurs as the initial response to 

injury mechanism perturbations and selected athletic maneuvers (Lephart, Ferris, Riemann, 

Myers, & Fu, 2002). The general finding that females activate the quadriceps to a greater extent 

than males during cutting is widely agreed upon in the literature (Landry, McKean, Hubley-

Kozey, Stanish, & Deluzio, 2009; Sigward & Powers, 2006). In support of this, for example, one 

study by Malinzak et al. (2001), found the normalized quadriceps EMG of females to be 17-40% 

greater during running and side cut maneuvers than that of males. As previously stated, the 

quadriceps pull the knee into extension via connection to the tibia through their insertion on the 

patellar tendon.  This as a result translates the tibia anteriorly, causing anterior drawer, directly 

placing stress on the ACL. Each of these risk factors, in combination with the suggested 

anatomical risk factors, create a high-risk profile for ACL injury in female athletes. 
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2.6 PROTOCOLS 

2.6.1 SLIDEBOARD EXERCISE 

The slideboard exercise is a closed kinetic chain (CKC) exercise, meaning that the foot 

meets external resistance with the surface during muscle contraction. By using this form of 

exercise, proprioception about all axes, through Golgi tendon organ and muscle spindle 

stimulation, as well as dynamic stabilization, through the co-contraction of muscles, can be 

improved without placing unnecessary stress on the ACL (Heller & Pincivero, 2003; Bunton, 

Pitney, Kane, & Cappaert, 1993). The co-contraction of these muscles during this exercise is also 

suggested to benefit the eccentric strength of the quadriceps and hamstrings muscle groups 

(Blanpied, et al., 2000). Heller and Pincivero conducted a study in 2003 which evaluated the 

EMG activity of the quadriceps and hamstring muscles during the slideboard exercise. 

Participants performed six sliding cycles, on a slideboard set at approximately double the length 

of the lower extremity, measured from the anterior superior iliac spine to the medial malleolus. 

The cadence was chosen by the participant as a comfortable pace. The results of this study 

revealed that the VM, VL, TA and medial hamstring muscles showed the greatest amount of 

EMG activity, followed by the GM and lateral hamstrings. These activation patterns are similar 

to that of an athletic cut, whereby the VM, VL, GL GM, BF and ST demonstrate the highest 

EMG amplitudes (Branch, Hunter, & Donath, 1989; Bencke, Næsborg, Simonsen, & Klausen, 

2000). 

2.6.2 QUANTIFYING FATIGUE 

An early study by Viitasalo et al. (1993), aimed at understanding the effects of fatigue 

during continuous jumping drills, used several biomechanical parameters to quantify the 

changing state. Male volleyball players were assessed while completing continuous hurdle 
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jumping using EMG on the muscles of the dominant leg, three-dimensional ground reaction 

forces from force plates, an electrical goniometer, and video footage for unilateral digitization of 

body segment position. There were significant differences between the first and last series of 

their fatiguing protocol in average force (p<0.05), contact time (p<0.05) and time to peak angular 

velocity (p<0.01) during the concentric phase of hurdle jumping. Though not calculated by the 

researchers, it is important to note that these variables may be used to calculate the average 

power during the concentric phase (𝑃𝑜𝑤𝑒𝑟 = �⃑� ∙ �⃑� ). Based on this particular study, it may be 

assumed that because there are significant decreases in the average force (N) and increases in the 

time to takeoff (ms), that there would be a significant decrease in the power during the 

concentric phase of the hurdle jump as the muscles fatigue. 

Micklewright et al. (2017) introduced a new method of measuring perceived fatigue, 

called the Rating-of-Fatigue (ROF) scale. This ROF scale incorporates numerical, descriptive as 

well as diagrammatic components. Using empirical data, the alignment of these components was 

determined. Physiological, performance and psychophysical measurements were also provided in 

order to calculate a correlation for each measurement against the ROF components. Significant 

correlations were found between all tested physiologic, performance and psychophysical 

constructs, some of which included rating of perceived exertion, heart rate, power output and 

time to exhaustion. The highest correlation with the numeric ROF was the performance 

measurement of power output (r=0.992, p<0.0001). There was also some correlation between the 

ROF scale with recovery, as monitored 30 minutes past the point of volitional exhaustion. The 

ROF of participants, at the time of volitional exhaustion, ranged from an 8 to a 10. This research 

team was successful in building a ROF with high face validity that is comprehensive and easy to 

use (Micklewright, St Clair Gibson, Gladwell, & Al Salman, 2017).  
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CHAPTER 3 

METHODS 

3.1 PARTICIPANTS 

 Twelve healthy females (mean (SD): age 23.4 (1.6) years, height 1.64 (0.05) m, body 

mass 62.7 (10.9) kg, H:Q 53.2 (4.7) %), were recruited to participate in the study (Appendix A). 

Participants were recreational athletes with minimal to no prior experience using a slide board as 

a form of exercise. Participants were excluded from the study if they had sustained either an 

acute or chronic injury to the lower extremity in the last two years, or if their Hamstring to 

Quadriceps (H:Q) strength ratio was below 45% as measured on the Biodex (Leuty, 2016). 

Participants were asked to sign a letter of consent (Appendix B) to participate in the study after a 

detailed description of methodology was given. 

3.2 INSTRUMENTATION AND DATA ACQUISITION 

 Nine channels of sEMG were used to record electric activity of Vastus Medialis (VM), 

Vastus Lateralis (VL), Rectus Femoris (RF), Biceps Femoris (BF), Semitendinosus (ST), 

Gracilis (GR), Gastrocnemius Medial (GM), Gastrocnemius Lateral (GL) and Tibialis Anterior 

(TA) on the dominant leg (Figure 3). For each muscle, a pair of disposable surface electrodes 

(Medi-trace, Graphic Controls, Gananoque, ON) was placed along its line of action between the 

myotendinal junctions and innervation zones, with an inter-electrode distance of 3 cm. 
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Figure 3: Anterior (left) lateral (middle) and posterior (right) view of sEMG electrode placement on the dominant 
leg (Appendix C). 
 

Electrode placement (Appendix C) for each muscle was as follows, in correspondence 

with the protocol used by Cashaback & Potvin (2012), with the addition of GR and TA: VM (one 

fifth of the distance from the medial tibial plateau to the anterior superior iliac spine, or 2 cm 

medial to the superior rim of the patella); VL (3 to 5 cm above the patella, on an oblique angle 

just lateral to the midline); RF (half of the distance between the anterior superior iliac spine and 

the superior pole of the patella); BF (two thirds of the distance from the greater trochanter to the 

back of the knee); ST (half the distance between the gluteal fold and the posterior aspect of the 

knee, approximately 3 cm from the medial border of the thigh); GM (approximately 2 cm medial 

to the midline of the leg, over the bulge of the muscle belly); GL (one third the length of the 

distance from the head of the fibula to the tuberosity of the calcaneus on the heel); GR (1/3 of the 

way from the pubic tubercle to the medial edge of the knee joint); TA (approximately 1/3 of the 
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distance between the head of the fibula to the medial malleolus). Two ground electrodes were 

placed on the anterior surface of the patella as well as the lateral malleolus.  

The sEMG signals were amplified using two 8-channel Bortec AMT-8 systems (gain = 

1000-5000 Hz, input impedance = 10 GWs, 10-1000 Hz, CMRR 115 db at 60 Hz, Bortec 

Biomedical, Calgary, AB), analog to digitally converted (A/D) using a 16-bit A/D card (National 

Instruments, Austin, TX) at a sampling rate of 2048 Hz.  

Ground reaction forces during the weight acceptance and step-out phase of the cutting 

task for the participant’s dominant leg were collected using an AMTI-OR6 (Advanced Medical 

Technologies Inc., Watertown, MA, USA) force plate with dimensions of 46.35 ´ 50.8 cm. 

Along with sEMG, Ground reaction forces were sampled at a rate of 2048 Hz, amplified and 

converted using the same 16-bit A/D card as with the sEMG (National Instruments, Austin, 

Texas). 

Whole body kinematics were collected using a 14-camera motion capture passive marker 

system (Raptor 4, Motion Analysis, Santa Rosa, CA), sampled at a rate of 120 Hz, captured 

using Cortex Software (version 5.5, Motion Analysis, Santa Rosa, CA). The marker set consisted 

of 45 reflective markers (Appendix D). Markers were placed bilaterally on each foot, lower leg, 

thigh, shoulder, arm and forearm, as well as on the pelvis, lower trunk, upper trunk and head 

(Figure 4). Any missing kinematic data identified during post-processing were fitted using a 

cubic spline interpolation, and trials that resulted in gaps that exceeded 200 ms were removed 

from further analysis (Howarth & Callaghan, 2010). 
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Figure 4: List of the marker set used during motion capture and diagram of marker placements. 

All sEMG, force and motion data were collected in synchronization on the same 

computer using Cortex Motion Analysis Software (Cortex version 5.5, Motion Analysis, Santa 

Rosa, C A, USA) (Figure 5). 

 

Figure 5: Cortex Motion Analysis display showing synchronized collection between instruments. Posterior view of 
motion capture MarkerSet and force plate setup (left), and sEMG analog graphs (right). 
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3.3 EXPERIMENTAL PROCEDURES AND PROTOCOL 

 Participants were required to attend two different sessions: (1) an orientation session and 

(2) a testing session, separated by at least 72 hours.  

ORIENTATION SESSION 

 Participants began by signing a letter of consent (Appendix B) to participate in this study, 

then filling out the Lower Limb Questionnaire (Appendix E) and the Get Active Questionnaire 

(Appendix F). Participant height and lower limb length were measured using a measuring tape, 

and weight (N) was measured using a force plate.  Participants were then taken through a general 

warm-up on a stationary bicycle, followed by dynamic stretching. Next, participants were seated 

on the Biodex (System 4 Pro, Biodex Medical System, Shirley, NY), adjusted so that the hip, 

knee and ankle angles were at 90˚. The maximum strength of the hamstrings and quadriceps 

muscle groups were then tested to determine the H:Q ratio. The H:Q protocol consists of the 

participant performing 3 maximum voluntary exertions (MVE) of the quadriceps, resting for 15 

seconds between bouts, then performing 3 MVEs of the hamstrings, resting for 15 seconds 

between bouts, then 2 bouts of subsequent quadricep and hamstring MVEs, separated by 15 

seconds. MVE’s were performed at a velocity of 60˚/s, between the angle range of 40˚-100˚ of 

knee flexion. The peak torque of the hamstrings and quadriceps during these maximal concentric 

contractions were used to evaluate the H:Q of each individual. Participants whose H:Q > 0.45 

were able to continue with the study. The remainder of the orientation session was used to 

practice the fatiguing slide board task and the cutting techniques, as well as familiarize the 

participant with the Rating of Fatigue scale to be used in the testing session (Appendix G-H).  
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TESTING SESSION 

Participants arrived at the lab and filled out the Returning Participant Questionnaire 

(Appendix I) and completed the same warmup as during the orientation session. Once complete, 

five maximal cuts were performed, led by the dominant leg. Participants started back at a 

comfortable distance from the force plate, marked on the floor, and cut at a 45˚ angle from the 

centre of the force plate. The maximal cut distance was observed, and 80% of that distance was 

marked. Next, nine pairs of sEMG electrodes (Appendix C) were affixed to the skin, and 

participants laid still and quiet for a 30 second noise trial collection.  

 Maximum voluntary exertions (MVEs) for each muscle group being recorded were then 

collected. This involved the participant holding a 3-second contraction against resistance, three 

separate times with 30 seconds of rest between efforts. From a seated position on the Biodex, 

with the trunk, knee and hip angles at 90°, participants were instructed to maximally extend, for 

the quadriceps MVEs, and flex, for the hamstrings MVEs, the knee against resistance (Figure 6). 

 

Figure 6: Participant performing MVEs of the quadriceps (left) and hamstring (right) muscle groups while seated 
on the Biodex. 



 

 24 

Participants were then instructed to step into a hand-crafted calf press, and maximally 

plantar flex their ankle against resistance, for the gastrocnemius medial and lateral MVEs. Next, 

they were instructed to maximally dorsiflex against resistance for the MVE of TA. Lastly, from a 

standing position, participants performed an isometric adduction effort with their leg against 

resistance for the MVE of GR (Figure 7). 

 

Figure 7: Participant performing MVEs of the gastrocnemius (left) tibialis anterior (middle) and gracilis (right) 
muscles while assisted by researcher. 

Following MVEs, the 45 retroreflective markers (Figure 8) to be used for motion capture 

purposes were placed on the participants (Appendix D), and a heart rate monitor was strapped 

around their chest. Range of motion trials and calibration of the Cortex system to the MarkerSet 

in use were then carried out. During this time participants were refamiliarized with the Rating of 

Fatigue scale to be used during the trial (Appendix G-H). Once set up of the instrumentation was 

complete, the trial commenced.  
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Figure 8: Participant setup with 45 retro-reflective markers for motion capture, and 9 pairs of sEMG electrodes. 

Participants began the trial by performing five maximal cuts on the force plate as a 

baseline measure. At this time, participant’s heart rate and Rating of Fatigue were recorded.  

After this, participants began the fatiguing protocol, which consisted of sliding back and forth, 

on alternating legs, on an adjustable slide board (Blue Sports Import-Export Inc., Nicolet, QC, 

Canada). ‘Speed booties’ were worn in order to reduce friction during sliding (Figure 9). 

 

Figure 9: “Speed Booties” to be worn during sliding in order to reduce friction. 
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Participants began, on cue, by pushing off of the end plate of the slide board with the 

dominant leg (Figure 10). A metronome then cued the beginning of each subsequent stride. 

Sliding lasted for one minute, during which participants completed 45 slides. Once complete, the 

participant was assisted in removing the speed booties quickly. The participant’s Rating of 

Fatigue and heart rate were recorded at this point. They then immediately stepped to the force 

plate area and performed five maximal cuts on the force plate. 

 

Figure 10: Push-off (left), mid-stance (middle) and end (right) phases of one stride using a slideboard. 

A successful cut was one in which the participant planted their dominant foot within the 

area of the force plate, and their new direction was in line with a line drawn on the floor at a 45° 

to the point of contact.  Participants then rapidly returned to the slide-board, and were assisted 

with putting on the speed booties, to continue the fatiguing protocol. This process continued until 

the trial was terminated. Trial termination could result from any of the following criteria: (1) the 

inability to reach 80% of the participant’s maximal cut distance, as recorded at the beginning of 

the session; (2) a Rating-of-Fatigue of 9 or higher is reached, or a reading of 8 three consecutive 

times; (3) noticeable change in body mechanics putting the participant at risk; or (4) volitional 

exhaustion by the participant.  
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3.4 DATA ANALYSIS 

 Collected digital sEMG data were high pass filtered with a cut-off of 140 Hz, using a 

second order Butterworth filter, then full-wave rectified, and low-pass filtered using a second 

order Butterworth filter at 2.5 Hz (Potvin & Brown, 2004). Force data were low-pass filtered 

using a second order Butterworth filter with a cut-off of 50 Hz. All sEMG and force data were 

down-sampled from 2048 Hz to 120 Hz to match the sample rate of the collected motion data, 

thereby syncing the collected data in the same time domain. All sEMG data recorded during 

experimental trials was normalized to the highest value recorded during the MVE trials for each 

individual muscle.  

 For the purposes of this study, the cutting maneuver was separated into three phases: (1) 

step-in, (2) weight acceptance, and (3) step-out (Figure 11). The step-in phase was defined as the 

interval of flight prior to the cut to initial contact of the dominant foot. The weight acceptance 

phase is defined as the time interval between initial contact and peak knee flexion of the 

dominant leg. The step-out phase is defined as the time interval from the point of peak knee 

flexion of the dominant leg to the moment the foot leaves the ground. Average sEMG activation 

for each muscle was calculated during the weight acceptance phase of the side-cut and examined 

throughout the duration of the trial to monitor fatigue related changes. 



 

 28 

 

Figure 11: Phases of cutting maneuver: Step-In (a to b), Weight Acceptance (b to c) and Step-Out (c to d). 

 

Motions of the retro-reflective markers were used to calculate three-dimensional joint 

angles. These data were imported into the Software for Interactive Musculoskeletal Modeling 

(SIMM, MusculoGraphics, Inc., Santa Rosa, CA, USA) (Figure 12), and examined during the 

weight acceptance phase, as this is when non-contact ACL injuries are suggested to occur 

(Jamison, McNally, Schmitt, & Chaudhari, 2013). The calculated joint angles included: hip 

flexion (negative values are extension), adduction (negative values are abduction) and internal 

rotation (negative values are external rotation); knee flexion (negative values are extension); 

ankle dorsiflexion (negative values are plantar flexion). 



 

 29 

 

Figure 12: Model skeleton of a participant completing a cut as captured through Cortex Motion Analysis (top) and 
imported to SIMM (bottom) in order to calculate joint angles. 

 

The weight acceptance phase of the cutting maneuver was the period of interest, from 

which all values of dependent variables were recorded (Figure 13). For each effort, this time 

period began with the point of initial contact on the force plate and ended at the point of maximal 

knee flexion, as indicated by motion capture data. Because all data collections were 

synchronized, this same chunk could be distinguished from each dataset. Calculations for the 

mean, effective duration, force at peak knee flexion and impulse of each variable were done for 

each dependent variable for each effort during this time.  
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Figure 13: Example of vertical ground reaction force (vGRF) curve from an athletic cut performed on the force 
plate, outlining the timepoints at which the phases of cutting occur. The Weight Acceptance phase, indicated in blue, 
samples the time period in which the dependent variables were evaluated throughout the phase of the cut. 
 

A method referred to as ‘rubber-banding’, adapted from Winter (2005), was used in order 

to time-normalize the data based on the number of cutting efforts completed by each participant 

(Figure 14). Because of individual differences in fatigue progression and trial length, this 

allowed for averaging and comparison between each participant to be made. A particular point in 

the trial may be referred to in relation to its total relative duration, and thus fatigue progression, 

(%Trial) as opposed to the absolute number of cutting efforts. Using this method, each 

participant’s total sample period was fit to a polynomial curve ranging from the beginning of 

trial (%Trial=0), defined as the participant’s first cutting effort on the force plate, to the 

termination of the trial (%Trial=100). 



 

 31 

 

Figure 14: (a) A schematic of the rubber-banding technique used to normalize trial time across participants for 
peak knee flexion. The blue diamond’s represent participant 1, whereas the red squares represent participant 2, as 
each participant progressed through the maximal fatigue trial. The lines (solid for participant 1 and dashed for 
participant 2) represent a fitted second order polynomial curves fit to the respective decline in jump height of each 
participant respectively over time. The y-intercept would represent the value at t = 0.0 s. For participant 1 (blue 
bars), a total of 6 intervals were equally spaced at (0%), completed slides = 12 (20%), 24 (40%), 36 (60%), 48 
(80%) and 60 (100%), and compared with participant 2 (red bars), intervals from completed slide 1 (0%), 10 
(20%), 20 (40%), 30 (60%), 40 (80%) and 50 (100%). (b) represents the data points, and how rubber banding 
aligns time-history between participants, as adapted from the second order polynomial curves, for both participants 
from (a). This allows for averages to be calculated over time, across participants performing a different number of 
jumps 

  

Values for the angle of the resultant force were calculated using the average force at peak 

knee flexion from each linear force component (X, Y, Z). The arctan of the resultant of the X and 

Y force components and Z force component were used to get the average angle of the resultant 

force for each tenth of trial completion. 
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This study used the variable ‘effective duration’ in order to evaluate the strategies utilized 

by participants to dissipate downward momentum during the weight acceptance phase. The 

effective duration is calculated as the impulse normalized to the peak force during landing and, 

essentially indicates how long the peak would need to occur for the same impulse as that 

measured (Figure 15).  

 

 

Figure 15: (left) full time-history of vertical ground reaction force and center of gravity (CofG) velocity. (right) 
expanded view of the landing phase from first contact to the bottom of the crouch (velocity = 0). The full duration is 
0.21 s, but ED = 0.122 s, such that the area in the orange box is equal to the area under the GRF curve during the 
landing phase (i.e. 217.4 Ns). The participant in this example had a body weight of 582 N.  
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3.5 STATISTICAL ANALYSIS 

Eighteen separate one-way repeated measures analysis of variance (ANOVA) were used, with 
%Trial (11 levels), as the independent variable. The dependent variables used in these analyses 
included: 

• Rating of fatigue: mean rating 
• Heart Rate: mean beats/minute 
• hip: flexion, internal rotation, and adduction angles at peak knee flexion 
• knee: flexion angle at peak knee flexion 
• ankle: flexion angles at peak knee flexion 
• resultant force: angle with the force plate surface, impulse, force at peak knee flexion, 

and effective duration  
• vertical ground reaction force (Z): impulse, force at peak knee flexion, and effective 

duration  
• medial/lateral ground reaction force (X): impulse, and force at peak knee flexion 
• anterior/posterior (Y): impulse, and force at peak knee flexion 

Additionally, a two-way mixed repeated measures ANOVA was performed with %Trial 

(11 levels) and Muscle (n = 9) as the independent variables, and average normalized EMG 

amplitude as the dependent variable (%EMG). 

The significance level for all main and interaction effects was set at p<0.05. Effect sizes 

were determined using eta squared (h2) analyses. For effects meeting significance (p<.05), a 

Tukey’s HSD test were run. All data used in statistical analysis can be found in Appendix J. 
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CHAPTER 4 

RESULTS 

The results have been separated into four sections: rating of fatigue and heart rate, kinetic, 

kinematic, and muscle activation data. A summary of each ANOVA can be found in Table 1.  

Table 1: Summary of statistical analysis from Repeated Measures ANOVA. 

 
 
* significance met at the p < 0.05 level 
** significance met at the p < 0.01 level 
*** significance met at the 0.0001 level 
 

Dependent 
Variable 

Effect/ 
Interaction Measure F MSE 

 Effect Size 
(η2) Sig. (p) 

Rating of Fatigue %Trial Mean 225.92 1.386 0.9576 0.0001*** 
Heart Rate %Trial Mean 125.889 484.255 0.9264 0.0001*** 
Resultant Force %Trial Angle 3.001 2.346 0.2308 0.073 

 %Trial 
Effective 
Duration 0.81 0.001 0.08 0.447 

 %Trial Impulse 2.215 729.186 0.1813 0.147 

 %Trial Peak 0.847 6597.07 0.0781 0.585 
Vertical Ground 
Reaction Force %Trial 

Effective 
Duration 0.593 0.001 0.04 0.541 

 %Trial Impulse 2.042 710.861 0.1696 0.167 

 %Trial Peak 0.708 6626.212 0.0661 0.487 
Anterio-posterior 
Shear Force %Trial Impulse 1.553 29.663 0.1344 0.239 

 %Trial Peak  4.778 891.209 0.3233 0.026* 
Medial-Lateral 
Shear Force %Trial Impulse 4.416 57.693 0.3063 0.035* 

 %Trial Peak 0.023 216.435 0.0023 0.924 
Hip Flexion 
Angle %Trial Peak 4.607 47.463 0.3154 0.033* 
Hip Adduction 
Angle %Trial Peak 2.463 40.537 0.1976 0.116 
Hip Internal 
Rotation Angle %Trial Peak 3.17 104.457 0.2407 0.076 
Knee Flexion 
Angle %Trial Peak 6.194 9.128 0.3825 0.012* 
Ankle Flexion 
Angle %Trial Peak 0.446 134.39 0.0427 0.535 
sEMG Amplitude %Trial Mean 4.240 342.971 0.1798 0.048* 

 %Trial*Muscle Mean 0.796 159.019 0.0413 0.526 

 Muscle Mean 1.640 1405.021 0.779 0.187 



 

 35 

4.1 RATING OF FATIGUE & HEART RATE 

There was a significant main effect of %Trial, F (2.619, 26.193) = 225.92, p = 0.0001, 

η,=0.9576 on mean Rating of Fatigue. There was also a significant main effect of %Trial, F 

(1.707, 17.074) = 125.889, p = 0.0001, η,=0.9264 on mean Heart Rate (Figure 16). 

 

 

 Figure 16: Average Rating of Fatigue and Heart Rate progression throughout the trial (n = 12). 
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4.2 KINETIC DATA 

4.2.1 ANTERIO-POSTERIOR SHEAR FORCE 

There was no significant main effect of %Trial on the anterio-posterior shear force impulse 

during weight acceptance (p = 0.239). There was a significant main effect of %Trial, F (1.757, 

17.568) = 4.778, p = 0.026, η,=0.323, on the anterio-posterior shear force at peak knee flexion 

during weight acceptance (Figure 17). Post-hoc comparisons revealed a steady increase in 

anterio-posterior shear force, becoming significant at 90% of the trial  (Table 2).  

 

Figure 17: The effect of time on the anterio-posterior shear force at peak knee flexion during the weight acceptance 
phase of cutting. Standard error bars are shown (n=12). 
 
Table 2: Summary of post-hoc comparisons from Repeated Measures ANOVA for anterio-posterior shear force at 
peak knee flexion 

.  

%Trial 0 10 20 30 40 50 60 70 80 90 100
0 0.041* 0.013*
10 0.041* 0.013* 0.005**
20 0.041* 0.013* 0.005** 0.005**
30 0.041* 0.013* 0.005** 0.005** 0.009**
40 0.041* 0.013* 0.005** 0.005** 0.009** 0.017*
50 0.005** 0.005** 0.009** 0.017* 0.031*
60 0.009** 0.017* 0.031* 0.048*
70 0.031* 0.048*
80
90
100

* significance met at the p < 0.05 level

** significance met at the p < 0.01 level
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4.2.2 MEDIAL-LATERAL SHEAR FORCE 

There was a significant main effect of %Trial, F (1.634, 16.343) = 4.416, p = 0.035, η,=0.306, 

on the impulse of the medial-lateral shear force during weight acceptance (Figure 18). Post-hoc 

comparisons between trial periods are shown in Table 3. There was no significant main effect of 

%Trial on the medial-lateral shear force at peak knee flexion during weight acceptance (p = 

0.924). Post-hoc comparisons revealed a steady decrease in the impulse of medial-lateral shear, 

becoming significant at 60% of trial and plateauing (Table 3).  

 
Figure 18: The effect of time on the impulse of medial-lateral shear force during the weight acceptance phase of 
cutting. Standard error bars are shown (n=12) 
 
Table 3: Summary of post-hoc comparisons from Repeated Measures ANOVA for impulse of medial-lateral shear 
force 
 

 

%Trial 0 10 20 30 40 50 60 70 80 90 100
0 0.049* 0.042* 0.035* 0.030* 0.030*
10 0.049* 0.042* 0.035* 0.030* 0.030* 0.047*
20 0.049* 0.042* 0.035* 0.030* 0.030* 0.047*
30 0.042* 0.035* 0.030* 0.030* 0.047*
40 0.030* 0.030* 0.047*
50 0.047*
60
70
80
90
100

* significance met at the p < 0.05 level
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4.2.3 VERTICAL GROUND REACTION FORCE 

There was no significant main effect of %Trial on the ground reaction force effective duration  

(p = 0.541), impulse (p = 0.167), or at peak knee flexion (p = 0.487).  

4.2.4 RESULTANT FORCE 

There was no significant main effect of %Trial on the resultant ground reaction force angle 

(p = 0.073), effective duration (p = 0.447), impulse (p = 0.147) or at peak knee flexion  

(p = 0.585). 

4.3 KINEMATIC DATA 

4.3.1 HIP ADDUCTION ANGLE 

There was no significant main effect of %Trial on hip adduction angle at peak knee flexion  

(p = 0.116). 

4.3.2 HIP INTERNAL ROTATION ANGLE 

There was no significant main effect of %Trial on hip internal rotation angle at peak knee flexion 

(p = 0.076). 

4.3.3 ANKLE FLEXION ANGLE 

There was no significant main effect of %Trial on ankle flexion angle at peak knee  

flexion (p = 0.535).  
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4.3.4 HIP FLEXION ANGLE 

There was a significant main effect of %Trial, F (1.6, 16.0) = 4.607, p= 0.033, η,=0.315, on hip 

flexion angle at peak knee flexion during the weight acceptance phase (Figure 19). Post-hoc 

comparisons showed a steady decrease in hip flexion at peak knee flexion, becoming significant 

at 90% of the trial (Table 4).  

 
Figure 19: The effect of time on the hip flexion angle at peak knee flexion during the weight acceptance phase of 
cutting. Standard error bars are shown (n=12) 
 
 
Table 4: Summary of post-hoc comparisons from Repeated Measures ANOVA for hip flexion angle at peak knee 
flexion. 
 

 

%Trial 0 10 20 30 40 50 60 70 80 90 100
0 0.038* 0.016*
10 0.038* 0.016* 0.008**
20 0.038* 0.016* 0.008** 0.008**
30 0.014* 0.008** 0.008** 0.016* 0.038*
40 0.038* 0.016* 0.008** 0.008** 0.014* 0.029*
50 0.008** 0.008** 0.014* 0.029*
60 0.014* 0.029*
70
80
90
100

* significance met at the p < 0.05 level

** significance met at the p < 0.01 level
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4.3.5 KNEE FLEXION ANGLE  

There was a significant main effect of %Trial, F (1.713, 17.126) = 6.194, p = 0.012, η,=0.382, 

on peak knee flexion angle (Figure 20). Post-hoc comparisons showed a steady decrease in peak 

knee flexion angle, becoming significant at 60% of trial and then plateauing (Table 5).  

 

Figure 20: The effect of time on the peak knee flexion angle during the weight acceptance phase of cutting. Standard 
error bars are shown (n=12). 
 
Table 5: Summary of post-hoc comparisons from Repeated Measures ANOVA for peak knee flexion angle. 

 

 

 

%Trial 0 10 20 30 40 50 60 70 80 90 100
0 0.043* 0.025* 0.012* 0.005** 0.002**
10 0.043* 0.025* 0.012* 0.005** 0.002** 0.004**
20 0.043* 0.025* 0.012* 0.005* 0.002* 0.004* 0.020*
30 0.025* 0.012* 0.005** 0.002** 0.004** 0.020*
40 0.005** 0.002** 0.004** 0.020*
50 0.004** 0.020*
60
70
80
90
100

* significance met at the p < 0.05 level

** significance met at the p < 0.01 level
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4.4 MUSCLE ACTIVATION DATA 

The interaction between Muscle and %Trial was not significant (p = 0.526), nor was the main 

effect of muscle on EMG amplitude (p = 0.187). There was a significant main effect of %Trial, F 

(1.388, 13.878) = 4.240, p = 0.048, η, = 0.1798, on average EMG amplitude (Figure 21). Post-

hoc comparisons show a steady decrease from the start, becoming significant by 10% of trial, 

then an increase after 60%, becoming significant by trial end (100%) (Table 6). 

 
Figure 21: The effect of time on sEMG amplitude during the weight acceptance phase of cutting. Means are shown 
for each time point for each channel of sEMG. Standard error bars are shown the mean are shown (n=12).  
 
Table 6: Summary of post-hoc comparisons from Repeated Measures ANOVA for mean sEMG amplitude. 
%Trial 0 10 20 30 40 50 60 70 80 90 100
0 0.002** 0.002** 0.003** 0.004** 0.005** 0.007** 0.013* 0.027*
10 0.003** 0.004** 0.006** 0.008** 0.015* 0.030*
20 0.005** 0.008** 0.014* 0.030*
30 0.015* 0.030*
40
50
60
70
80
90 0.039*
100

* significance met at the p < 0.05 level

** significance met at the p < 0.01 level
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CHAPTER 5 
 

DISCUSSION  

The most important finding of this study was that, across all monitored muscles, there 

was a significant main effect of time on muscle activity such that the pooled average of the 

normalized sEMG activity demonstrated an overall decrease of 11.9% from the start to the end of 

the trials. However, it should be noted that, by 60% trial completion, sEMG activity began to 

increase and this may reflect a practice effect or a potentially harmful response to fatigue. There 

were significant decreases in the flexion angles at the hip and knee at peak by 8.1% and 3.7%, 

respectively. Lastly, anterio-posterior shear forces at peak knee flexion increased from the 

beginning of trial by approximately 20%, and the impulse of medial-lateral shear force decreased 

by about 7% during the weight acceptance phase of the cut, though there were no significant 

changes seen in vGRF or resultant force of this task. 

The EMG results were unexpected and not consistent with many other studies showing 

an increase in sEMG amplitude with muscle fatigue (Rodacki, Fowler, & Bennett, 2002; 

Kallenberg, Schulte, Disselhorst-Klug, & Hermens, 2007; Cirfrek, Medved, Tonkovic, & 

Ostojić, 2009). Upon inspecting the pattern of muscle activity in more detail, it became apparent 

that sEMG amplitudes did decrease to a point, but then started to increase until the trial was 

terminated. For most muscles, this turning point was at 60% of trial completion – the exceptions 

were VM at 40% of trial completion and GM at 70% of trial completion. Upon further 

examinations of pairwise comparisons for all muscles, there were significant increases in average 

sEMG amplitudes from 60%-100% of trial completion.  
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It is possible that this resulted from a learning effect occurring as participants cycled 

repeatedly through the trial. Although participants were required to attend an orientation session, 

in which they were able to practice the exact methods to be executed during the testing session, 

the cutting maneuver - especially performed in isolation - is not a common movement in 

everyday life. It is possible that, as individuals became more familiar with and acclimated to the 

task, their pattern of muscle activity were becoming more optimized. This may suggest that 

participants were refining their recruitment strategies, limiting the amount of antagonistic muscle 

activity needed to perform the task, and coordinating muscle contractions in a more synergistic 

manner (Hobart & Vorro, 1974; Bernardi, Solomonow, Nguyen, Smith, & Baratta, 1996; Carson 

& Riek, 2001). This, presumably, occurred for most muscles until 60% of trial completion.  

It is also possible that the decrease in sEMG activity was a reflection of a decrease in the 

muscle forces and their stability contributions about the knee joint. This theory can be explained 

with reference to the kinematic data. There was a steady decrease in both hip and knee flexion 

angles resulting in a straightened leg as participants continued to cycle through the trial. It is 

possible that, to conserve energy expenditure, participants used less muscle force when landing 

on the force plate and arresting their momentum before changing directions. This would mean 

that individuals would land with less hip and knee flexion, increasing the burden to dissipate 

energy on the passive structures of the knee, such as the ACL. Though this strategy may preserve 

energy in order to continue the activity for a longer period of time, the reduction in muscle 

contractions during dynamic movements, such as cutting, has the potential to increase the risk 

associated with injury to the ACL. As muscle activation and contractile forces decrease, there is 

a reduction in the capacity of the muscles to absorb energy (Mair, Seaber, Glisson, & Garrett, 

1996). This decreases their contribution as dynamic stabilizers and could leave the joint’s passive 
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stabilizers, such as the ACL, with a larger demand to dissipate energy,  After the 60% point of 

trial, sEMG amplitudes began to increase, and it is in this portion of the data which seems as 

though the fatiguing state of the muscles overshadowed the initial function of decreasing EMG.  

From its minimum values at 60% of the trials, to the end of the trials, overall average 

muscle activity increased by 9.3%. Gracilis was observed trending towards having the largest 

change, increasing its muscle activation by 18.8%; 5% greater than any other muscle. The 

Gracilis plays a role in hip adduction and knee internal rotation, which both contribute to the 

dynamic valgus position, compromising the safety of the ACL (Laughlin, Weinhandl, Kernozek, 

Cobb, & Keenan, 2011). While observing the cutting task itself it is evident that, to achieve the 

desired performance, slight adduction at the hip during the weight acceptance phase may be 

necessary to allow for more range to abduct at the hip while pushing off during the step-out 

phase. Therefore, the Gracilis is instrumental in controlling the speed and degree to which an 

individual adducts at the hip. Participants in this study did not differ significantly in the degree to 

which they rotated in adduction at the hip, which may suggest that the increase in EMG was a 

reflection of an increase in muscle force required to maintain stability at the joint, or increase 

activation necessary to produce the same force due to fatigue. 

At the hip and knee, there were significant decreases in the angle of flexion at peak knee 

flexion during the cut. These results are in agreement with those of Borotikar and colleagues, 

which demonstrated increases in hip and knee extension during single leg drop landings, a 

different unilateral deceleration task (Borotikar, Newcomer, Koppes, & McLean, 2008). The 

average hip angle at peak from the beginning of the trial decreased by 5.7°; an 8.1% change in 

flexion. The average peak knee angle from the beginning of the trial decreased by 2.7°; a 3.7% 

change in peak flexion. This means that participants, during their initial cutting efforts, were in a 
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more crouched position during the weight acceptance phase of the cut than when executing their 

later cutting efforts, where the position of their lower extremity was, relatively, more extended. 

This decreased the range of motion over which energy could be dissipated and, during this time 

of rapid deceleration and change in direction, created the potential for increasing strain on the 

structures of the knee and, of particular concern, the ACL (Kernozek & Torry, 2005).  

As participants came into contact with the force plate and experienced weight acceptance 

during the cutting phase, the resultant of the ground reaction forces experienced did not vary 

significantly between their initial cutting efforts to those performed at the end of the trial. The 

average angle of the resultant force remained within a 1.04° range, suggesting that individuals 

did not alter the angle at which they landed on the force plate. The impulse, force at peak knee 

flexion and effective duration of the resultant force at this time also did not differ significantly. 

Though the change in the resultant remained fairly consistent in its direction and amplitude, by 

dissecting this force into its X, Y and Z components, it became apparent that the distribution of 

force was, in fact, affected by time. Such that the X and Y components, contributing to the shear 

forces, were more influential than the Z component. 

The vertical ground reaction force at the weight acceptance phase did not change 

significantly from the beginning of the trial to termination. This finding is interesting considering 

that there was decrease in both hip and knee flexion. This change in landing form was expected 

to have an increase in the vertical ground reaction force, as with less rotation of the joints, the 

duration of the landing would be shorter and, thus, for the same momentum the force would have 

to be higher to arrest the motion over a shorter time. This would reduce the amount energy 

dissipated by the muscles and be represented as a higher vGRF. There was however a significant 

increase in the anterio-posterior shear force at peak by 20.5%. This increase is in agreement with 
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the work of Chappell et al. (2005), who observed significant increases in anterior shear forces at 

peak knee flexion after participants completed a fatiguing protocol involving consecutive vertical 

jumping and sprints. The current findings are also similar to those of Ireland (2002), who 

observed more than a 30% increase in anterior tibial translation in response to fatigue during 

rapid run and stop maneuvers. This increase can be attributed to more anterior shear force 

occurring at the lower extremity as individuals landed on the force plate. As previously stated, 

one of the main functions of the ACL in joint stability is to resist anterior translation of the tibia 

with respect to the femur (Landry, McKean, Hubley-Kozey, Stanish, & Deluzio, 2007). Anterior 

shear is known to stress the ACL, and thus increase the risk of injury to the ligament. Though the 

measure of force through the force plate is not a direct estimate of the shear forces experienced at 

the knee, correlations between the two have been presented. For example, a study by D’Lima and 

colleagues,  comparing internal and external measures of force at the knee, correlated peak 

tibiofemoral knee forces in vivo to peak ground reaction forces (D'Lima, Fregly, Patil, Steklov, 

& Colwell, Jr., 2012). There was also a significant decrease in the impulse of the medial-lateral 

shear force by 7.4%, however no significant difference in force at peak knee flexion. This can be 

interpreted as there being a shorter application time of lateral shear force to the lower extremity, 

and thus a higher rate of energy dissipation. 
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5.1 HYPOTHESES REVISITED 

1) Participants would demonstrate a decrease in knee flexion angles and increase in knee valgus 
angles during the weight acceptance phase of the cutting task as fatigue progressed. 
 
 The current results reject the null hypothesis that there was no change in the knee flexion 

angles as fatigue progressed. Participants did have significant decreases in knee flexion angle 

during the weight acceptance phase. However, this study failed to reject the null hypothesis that 

there would not be an increase in knee valgus angles during the weight acceptance phase of the 

cutting task as fatigue progressed. Participants did not show significant increases in hip 

adduction and internal rotation from the beginning of the trial to the end, both of which are 

contributors to the dynamic valgus position.  

2) Participants would experience greater vertical ground reaction forces and effective duration 
decreases as fatigue progressed. 
 
 The current results failed to reject the null hypothesis that vertical ground reaction forces 

would not increase as fatigue progressed throughout the trial. The study also failed to reject the 

null hypothesis that effective duration of the vertical ground reaction force would not decrease as 

fatigue progressed.  

3) Fatigue progression would have a significant effect on normalized sEMG for RF, VL, VM, BF, 
ST, GL, GM, GR and TA. 
 

The current results reject the null hypothesis that there would be no effect of fatigue 

progression on normalized sEMG for all muscles recorded. There was indeed a significant effect 

of time on the normalized sEMG for the recorded muscles. However, there was no main or 

interacting effect of muscle on the average sEMG amplitude.  It is important to note that the 

main effect of time showed a significant decrease in sEMG amplitude from the beginning of the 

trial to the end. However further inspection into pairwise comparisons revealed the expected 

significant increase in sEMG after ~60% of the trial duration.  
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5.2 LIMITATIONS AND ASSUMPTIONS 

 In the current study, the main limitations and assumptions pertained to the relationship 

between the independent and dependent variables during the time between the beginning (%Trial 

= 0) and end (%Trial = 100) points. It is likely that the direct relationship was confounded due to 

either what has been identified as a possible learning effect, external motivation factors which 

were not measured. It is also possible that this relationship was misinterpreted, due to the 

measure of muscle force not being directly measured.  

The cutting maneuver, especially performed in isolation from sport, is not a well-

practiced skill. Participants were required to attend an orientation session in which they were 

able to practice this athletic task in the same way it would be performed during the testing 

session. For there to be an adequate amount of rest time between the two sessions, to minimize 

cumulative muscle fatigue, participants were made to wait at least of 72 hours before their testing 

day. This time gap was important to the study from the perspective of obtaining valid outcome 

measures, however, it may have hindered one of the objectives of the training session: to 

properly learn the test protocol. It is also possible that participants had external motivations 

while completing the trial, such as a better performance in terms of how long they lasted. 

Because of this they may have altered the way that they would normally complete the cutting 

task had they not expected to have to continuously repeat their performance. It is possible that 

this could have confounded the effects of fatigue on the outcome measures for this study, thus 

affecting the interpretation of the results. 
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Using surface EMG, we were able to determine the degree of activation of the muscles 

recorded, and although this is strongly correlated with muscle force, we were not able to predict 

the forces which resulted as a product of these activations. It could only be hypothesized what 

these magnitudes mean in terms of the force being produced by the muscles. Had force been 

directly measured, there may have been a different interpretation, and better understanding of 

each variable. Additionally, we did not record for every single muscle in the dominant leg, as 

this could lead to a more invasive and complicated collection, but there may have been muscles 

unaccounted for that contributed to the results.  

It was assumed that the participants would have reached a near maximal level of muscle 

fatigue by the end of the trial. The termination of the trial could have resulted from any of the 

following: (1) The inability to reach 80% of the participant’s maximal cut distance, as recorded 

at the beginning of the session;  (2) A Rating-of-Fatigue of 9 or higher is reached, or a reading of 

8 three consecutive times; (3) Noticeable change in body mechanics putting the participant at 

risk; (4) Volitional exhaustion by the participant. For all participants in this study, termination 

was a result of criteria (2) or (4). Because these two criteria represent the most subjective ratings 

from the participant, it is possible that there could have been other reasons for ending the trial. 

One possible reason is that, due to the nature of the fatiguing slideboard protocol, individuals 

reached a threshold of cardiovascular fatigue causing them to be unable to continue. In this 

study, we recorded the heart rate of participants after each cycle. Participants’ heart rate, on 

average, quickly rose and began to plateau between around %Trial = 30. Therefore, it is possible 

that feelings of cardiovascular fatigue, rather than the intended muscular fatigue, contributed to 

the participants’ ROF and when the trial was stopped. Despite this potential limitation, the safety 
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of the participants in this study was a priority, and these precautions were set in place to 

minimize the increase in injury risk due to high levels of fatigue. 

During the motion capture collection, there were moments when not all 45 markers were 

recognized in 3-dimensional space by the cameras. Prediction of the location of those markers, 

using the Cortex software, was required for those cases, creating the potential for some error in 

the exact positioning of these markers. There were also times when a retro-reflective marker 

would fall off the individual, either because of sweat removing the adhesive or from the 

participants physically knocking off the marker accidentally. This caused a very brief pause to 

occur before the next effort began, while the researcher rushed to re-attach the marker. Recovery 

during these brief pauses was a possibility.  

With regard to the force plates, due to the dynamic nature of the cutting task, there were times 

when participants slipped upon landing on the force plate and this may have caused a different 

reading in the force application during that effort. As well, because we were unable to provide 

each participant with an identical pair of shoes, there may have been individual differences in the 

force impact and lateral control upon landing due to the variability in footwear composition. 

Participants were instructed to wear as close to a “court shoe” as possible, but this was as much 

as we could do to control this portion of the study.  

 Finally, in order to increase the control of the study, the athletic cutting task was 

performed in isolation and from a stationary position. During sport, this maneuver is most likely 

to occur in the midst of a run, and at a variety of angles from the planted foot. Therefore, it is 

possible that the effect during a ‘game-time’ situation maybe be more intense, and that our 

results reflect a more conservative situation.  
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CHAPTER 6 

CONCLUSION 

This study demonstrated that, as fatigue progressed during performance of repeated 

cutting maneuvers, there was an increase in the shear force at peak knee flexion in the anterior-

posterior direction by approximately 20%, and a decrease in the impulse of the medial-lateral 

direction by about 7% during the weight acceptance phase. No significant difference was seen in 

the vertical ground reaction forces or in the resultant force of this task.  

Kinetic data from this study revealed significant changes in both the hip and knee joint 

angles as fatigue progressed. The average hip angle at peak knee flexion from the beginning of 

the trial decreased by 5.7°; an 8.1% change in flexion. The average peak knee angle from the 

beginning of the trial decreased by 2.7°; a 3.7% change in peak flexion. These changes are 

indicative of a relatively more extended leg posture, which is associated with more anterior tibial 

translation, and increases the stress placed on the ACL during this loading task. There were no 

statistically significant changes in the angle of ankle flexion during the weight acceptance phase 

as fatigue progressed. Additionally, there were no statistically significant changes in hip 

adduction and hip rotation angles from the beginning of the trial to the end.  

Lastly, there was a significant decrease in relative overall average muscle activation from 

the beginning to the end of trial by 11.9%. However, further investigation of pairwise 

comparisons indicated that, from 60%-100% of the trial, average muscle activation significantly 

increased by 9.3%. No significant difference was seen in sEMG amplitudes between muscles 

during this task. 
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6.1 FUTURE RESEARCH DIRECTIONS 

 It is recommended that, for future research in this area, an estimate of muscle force to 

accompany the monitored sEMG be calculated, in order to better understand the reasoning for 

the changes observed in sEMG amplitude. It may also be beneficial that a higher volume of 

training be done to reduce any potential effects of learning from occurring during the testing 

session. This can be done by adding more full testing sessions to the study, allowing the 

participants to return and repeat the protocol on more than one occasion. It may also be 

beneficial to have a different method of fatiguing participants rather than the slide board exercise 

which is less aerobic in nature, so that the subjective indications of fatigue from participants 

more reflect the extent of muscular fatigue rather than cardiovascular fatigue. These may reduce 

the effects of confounding factors on the data and allow for more control of the study. 

  Future studies should continue to examine the capacity of the structures of the lower 

extremity and the demands which pose the greatest risks to injury and performance. The data 

gained from this type of research could provide the insights needed to enhance the monitoring 

strategy and training techniques needed in order to identify and manage the presence of high 

injury risk situations in sport. In response to an editorial, calling for the exploration of ‘critical 

mediators’ serving as strong drivers of both neuromuscular fatigue and tissue damage by the 

British Journal of Sports Medicine, Harper and Kiely (2018) state that “empirically informed 

training strategies focused on increasing player resilience to the negative consequences of 

repeated decelerations are urgently required”. By continuing to improve the methods in which 

we conduct these research studies, we provide the empirical information necessary to supplement 

the interventions necessary to aid in the reduction of the detrimental effects which follow 

fatiguing exercise. 
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APPENDIX A 
 

PARTICIPANT DEMOGRAPHICS 

Participant Age (years) Height (cm) Weight (kg) H:Q Ratio  Dominant Leg 
P01 24 170 87.8 0.51 Right 
P02 24 164 61.4 0.49 Right 
P03 25 165.5 53.7 0.56 Right 
P04 23 169 69.6 0.53 Right 
P05 23 168.5 56 0.52 Right 
P06 24 163 57.6 0.51 Right 
P07 21 156.5 54 0.59 Right 
P08 25 171 73.3 0.62 Right 
P09 21 165 65.5 0.47 Right 
P10 22 166 67 0.52 Right 
P11 26 157 60.3 0.59 Right 
P12 23 160 46.5 0.49  Left 

Mean (SD) 23.4 (1.6) 164.6 (4.8) 62.7 (10.9)  0.53 (0.05)  
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APPENDIX C 
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APPENDIX D 

 
 
 
  



 

 70 

APPENDIX E 
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APPENDIX F 
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APPENDIX G 

RATING OF FATIGUE SCALE 
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APPENDIX H 

RATING OF FATIGUE SCALE INSTRUCTIONS 

Familiarize yourself with the scale by looking closely at the ROF scale now. You will notice that 
the ROF scale consists of 11 numerical points that range from 0 to 10. There are also five 
descriptors and five diagrams that are intended to help you understand the scale and make your 
rating. 

When you are presented with the ROF scale please carefully inspect the scale before giving a 
numerical response from 0 to 10. Always try to respond as honestly as possible giving a rating 
that best reflects how fatigued you feel at the time. 

Try not to hesitate too much and make sure you only give ONE number as a response. For 
example, avoid responding by giving two numbers such as 'three or four'. 

Now please read the following examples of what some of the ROF ratings mean: 

A response of 0 would indicate that you do not feel at all fatigued. An example of this might be 
soon after you wake up in the morning after having a good night's sleep. Now try to think of a 
similar occasion in your past where you have experienced the lowest feelings of fatigue and use 
this as your reference. 

A response of 10 would indicate that you feel totally fatigued and exhausted. An example of this 
might be not being able to stay awake, perhaps late at night but equally could include situations 
such as sprinting until you can no longer physically continue. Again, try to think of a similar 
example that you have actually experienced in the past. 
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APPENDIX J 

TRIAL DATA 

Table 7: Heart rate data (bpm) 
 

 
%Trial 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

P01 66 130 163 176 180 184 186 187 190 191 188 

P02 78 137 181 186 190 194 194 196 198 199 200 

P03 68 82 102 160 161 170 170 174 176 177 179 

P04 78 143 159 163 137 162 168 171 165 161 174 

P05 86 144 173 182 184 184 183 185 188 189 189 

P06 78 147 156 166 167 167 172 169 169 172 171 

P07 85 158 166 178 176 179 178 180 181 183 183 

P08 80 135 133 157 156 154 160 154 152 158 162 

P09 86 158 183 186 188 186 189 189 190 191 190 

P10 71 152 160 168 165 167 169 171 171 170 171 

P11 87 164 174 175 180 181 184 182 183 188 189 

P12 89 130 161 168 173 178 179 181 183 184 183 

Mean 79 140 159 173 175 177 179 179 180 182 182 
 
Table 8: Rating of Fatigue data 
 

 
%Trial 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

P01 0 2 3 4 5 6 7 7 8 8 9 

P02 0 2 4 5 6 7 7 8 8 8 8 

P03 0 1 2 3 4 5 6 7 7 8 8 

P04 1 3 4 5 6 7 8 8 8 8 9 

P05 0 1 2 3 4 5 6 7 8 8 9 

P06 0 2 4 5 5 6 7 7 7 8 8 

P07 0 1 3 5 6 7 8 8 8 9 9 

P08 1 3 4 5 5 6 6 7 7 7 8 

P09 0 1 2 3 4 5 6 7 8 9 10 

P10 1 2 3 4 5 6 6 7 7 8 8 

P11 1 3 3 4 5 5 6 7 7 8 9 

P12 0 2 3 5 6 7 8 8 8 9 9 

Mean 0.27 1.82 3.00 4.18 5.00 5.91 6.64 7.27 7.55 8.18 8.64 
 
 



 

 77 

 
Table 9: Resultant Force Data 

  %Trial          
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Angle (Degrees)            

 P01 81.7 81.2 80.8 80.4 80.1 79.9 79.8 79.7 79.7 79.8 79.9 

 P02 85.7 85.4 85.1 84.9 84.8 84.7 84.7 84.7 84.9 85.0 85.2 

 P03 80.1 80.1 80.1 80.1 79.9 79.7 79.4 79.0 78.6 78.0 77.4 

 P05 86.8 86.4 86.1 85.8 85.6 85.5 85.3 85.3 85.3 85.3 85.4 

 P06 85.0 84.5 84.1 83.6 83.2 82.8 82.4 82.1 81.8 81.5 81.3 

 P07 78.1 77.7 77.3 77.0 76.8 76.7 76.8 76.9 77.2 77.5 77.9 

 P08 84.7 85.4 85.9 86.2 86.5 86.6 86.7 86.6 86.5 86.2 85.9 

 P09 84.1 84.0 83.8 83.7 83.7 83.7 83.7 83.9 84.1 84.3 84.6 

 P10 83.3 84.3 85.0 85.5 85.7 85.8 85.6 85.3 84.7 83.8 82.7 

 P11 82.1 82.5 82.8 83.0 83.0 82.9 82.7 82.3 81.8 81.1 80.2 

 P12 69.1 69.4 69.6 69.8 69.9 69.9 69.8 69.7 69.5 69.2 68.8 

 Mean 81.9 81.9 81.9 81.8 81.7 81.7 81.5 81.4 81.3 81.1 80.8 

Effective Duration 
(s)            
 P01 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 P02 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 P03 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 

 P05 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 P06 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 P07 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 

 P08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 P09 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

 P10 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 P11 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 P12 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 Mean 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Impulse 
(N-s)              
 P01 278 270 263 257 252 248 245 242 241 241 241 

 P02 200 203 204 205 205 204 203 200 197 193 188 

 P03 192 186 180 177 175 174 175 177 181 186 193 

 P05 181 177 174 171 168 166 165 164 163 164 164 

 P06 170 176 181 185 187 188 187 185 182 178 172 

 P07 133 132 132 131 130 130 129 128 127 126 125 

 P08 204 193 184 177 172 169 168 170 173 178 186 

 P09 168 166 164 163 161 159 158 156 154 152 150 

 P10 243 225 211 199 190 185 182 183 186 193 203 

 P11 196 185 175 167 162 158 157 158 161 167 174 

 P12 178 181 184 189 194 200 206 214 222 230 240 
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 Mean 195 190 187 184 181 180 180 180 181 183 185 

Peak (N)              
 P01 1337 1368 1396 1421 1442 1460 1475 1487 1495 1499 1501 

 P02 884 882 882 884 888 895 904 915 929 945 963 

 P03 786 796 803 807 807 805 799 791 779 764 747 

 P05 903 902 902 904 907 910 915 921 928 936 946 

 P06 973 952 934 919 907 899 895 893 895 901 909 

 P07 888 864 847 834 828 827 832 843 859 881 909 

 P08 1423 1476 1520 1554 1579 1595 1600 1596 1583 1559 1527 

 P09 1127 1096 1071 1053 1041 1036 1037 1044 1058 1079 1106 

 P10 1313 1348 1377 1399 1414 1423 1424 1418 1406 1387 1362 

 P11 959 979 994 1005 1010 1011 1006 997 983 964 941 

 P12 793 781 772 765 759 756 754 755 757 762 768 

 Mean 1023 1028 1033 1037 1041 1043 1046 1047 1048 1048 1047 
 
Table 10: FZ Force Data (Vertical Ground Reaction Force) 

  %Trial          
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Effective Duration 
(s)            
 P01 0.20 0.19 0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.15 0.15 

 P02 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.21 0.20 0.19 0.18 

 P03 0.23 0.22 0.21 0.21 0.20 0.20 0.21 0.21 0.22 0.23 0.25 

 P05 0.19 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.16 0.16 0.16 

 P06 0.16 0.17 0.18 0.19 0.19 0.20 0.20 0.20 0.19 0.19 0.18 

 P07 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.13 0.13 

 P08 0.13 0.12 0.11 0.10 0.10 0.10 0.09 0.10 0.10 0.10 0.11 

 P09 0.14 0.14 0.14 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.13 

 P10 0.17 0.16 0.14 0.13 0.12 0.12 0.12 0.12 0.12 0.13 0.14 

 P11 0.19 0.18 0.17 0.16 0.15 0.15 0.15 0.15 0.16 0.17 0.18 

 P12 0.23 0.24 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 

 Mean 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18 
Impulse 

(N-s)              
 P01 265 256 248 242 236 232 228 226 225 225 225 

 P02 190 191 193 193 193 192 190 187 184 180 175 

 P03 180 173 167 163 161 160 161 164 168 174 181 

 P05 166 163 160 157 155 153 152 151 151 151 152 

 P06 159 164 169 172 174 175 175 174 171 168 163 

 P07 120 120 120 119 119 118 117 116 115 114 113 

 P08 184 174 166 159 155 152 152 153 156 162 169 

 P09 154 154 153 152 151 149 148 146 145 143 141 

 P10 226 208 194 182 174 168 166 167 171 178 188 

 P11 184 173 164 157 152 149 148 149 152 157 164 

 P12 169 172 176 180 186 191 198 205 213 221 230 
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 Mean 182 177 174 171 169 167 167 167 168 170 173 

Peak (N)              
 P01 1323 1352 1378 1401 1421 1438 1452 1463 1471 1476 1478 

 P02 882 879 878 880 884 891 900 911 925 941 960 

 P03 774 784 791 794 795 792 786 776 764 748 729 

 P05 901 900 900 902 904 907 912 918 925 933 943 

 P06 970 947 928 913 901 892 887 885 886 891 899 

 P07 869 844 826 813 806 805 810 821 838 861 889 

 P08 1417 1471 1516 1551 1576 1592 1597 1593 1580 1556 1523 

 P09 1121 1090 1065 1046 1035 1029 1030 1038 1053 1074 1101 

 P10 1304 1342 1372 1395 1410 1419 1420 1414 1400 1379 1351 

 P11 950 971 986 997 1003 1003 998 988 973 952 927 

 P12 740 731 724 717 713 710 708 708 709 712 716 

 Mean 1023 1028 1033 1037 1041 1043 1046 1047 1048 1048 1047 
             

 
Table 11: FY Force Data (Anterior-Posterior Shear) 
 

  %Trial          
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Impulse (N-s)              

 P01 20.37 23.47 26.01 28.00 29.43 30.31 30.63 30.40 29.61 28.27 26.38 

 P02 9.74 10.92 11.85 12.54 12.99 13.20 13.17 12.89 12.37 11.61 10.61 

 P03 17.35 16.85 16.54 16.40 16.45 16.68 17.10 17.70 18.48 19.45 20.60 

 P05 9.14 8.65 8.28 8.05 7.94 7.97 8.13 8.42 8.84 9.39 10.07 

 P06 9.59 10.86 12.04 13.13 14.12 15.02 15.83 16.55 17.18 17.71 18.15 

 P07 17.78 17.78 17.78 17.78 17.79 17.80 17.81 17.83 17.85 17.88 17.91 

 P08 13.18 11.17 9.52 8.24 7.31 6.75 6.54 6.70 7.22 8.09 9.33 

 P09 9.79 10.58 11.18 11.58 11.79 11.81 11.64 11.27 10.71 9.96 9.01 

 P10 15.64 13.69 12.08 10.79 9.82 9.19 8.88 8.91 9.26 9.94 10.95 

 P11 15.75 14.76 14.04 13.61 13.45 13.56 13.96 14.63 15.58 16.81 18.32 

 P12 15.58 15.95 16.56 17.42 18.52 19.87 21.47 23.31 25.40 27.74 30.32 

 Mean 13.99 14.06 14.17 14.32 14.51 14.74 15.02 15.33 15.68 16.08 16.51 
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 Peak (N) 

 P01 190.1 207.8 223.2 236.3 247.0 255.4 261.4 265.1 266.4 265.4 262.0 

 P02 65.3 70.3 74.5 77.9 80.6 82.4 83.4 83.7 83.1 81.8 79.7 

 P03 133.1 134.1 135.6 137.4 139.6 142.3 145.3 148.7 152.5 156.7 161.3 

 P05 50.6 56.2 61.2 65.5 69.0 71.9 74.1 75.6 76.4 76.5 75.9 

 P06 85.1 90.9 96.6 102.2 107.7 113.0 118.3 123.4 128.4 133.3 138.0 

 P07 182.2 184.2 186.0 187.4 188.5 189.4 189.9 190.1 190.0 189.6 188.8 

 P08 131.9 119.3 109.0 101.0 95.2 91.7 90.6 91.6 95.0 100.6 108.5 

 P09 94.0 97.8 100.6 102.6 103.6 103.8 103.0 101.3 98.7 95.3 90.9 

 P10 153.3 133.7 118.9 108.9 103.7 103.2 107.5 116.6 130.4 149.1 172.5 

 P11 128.4 123.5 120.4 119.0 119.3 121.4 125.2 130.8 138.1 147.2 158.0 

 P12 82.9 85.1 87.8 91.0 94.7 98.9 103.5 108.7 114.4 120.6 127.2 

 Mean 117.9 118.5 119.4 120.8 122.6 124.8 127.5 130.5 134.0 137.8 142.1 
 
Table 12: FX Force Data (Medial-Lateral Shear) 

  %Trial          

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Impulse 

(N-s)              

 P01 83.20 83.11 83.02 82.93 82.84 82.75 82.66 82.58 82.49 82.40 82.32 

 P02 62.91 65.21 67.09 68.55 69.59 70.20 70.38 70.15 69.49 68.41 66.90 

 P03 65.40 65.52 65.58 65.58 65.53 65.43 65.27 65.05 64.78 64.46 64.08 

 P05 71.57 69.63 67.90 66.39 65.09 64.00 63.13 62.48 62.04 61.81 61.80 

 P06 61.47 63.43 64.79 65.55 65.71 65.26 64.22 62.57 60.32 57.47 54.02 

 P07 54.01 52.77 51.75 50.95 50.36 49.99 49.84 49.90 50.18 50.67 51.39 

 P08 87.14 82.87 79.32 76.49 74.38 73.00 72.34 72.40 73.18 74.69 76.92 

 P09 65.27 62.31 59.73 57.52 55.68 54.22 53.14 52.42 52.09 52.13 52.54 

 P10 89.68 85.58 82.09 79.23 76.97 75.34 74.32 73.93 74.14 74.98 76.43 

 P11 66.21 61.47 57.58 54.54 52.35 51.02 50.53 50.90 52.11 54.18 57.09 

 P12 54.13 53.43 53.04 52.96 53.18 53.71 54.55 55.69 57.14 58.90 60.96 

 Mean 69.18 67.76 66.54 65.52 64.70 64.08 63.67 63.46 63.45 63.65 64.04 
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Peak (N) 

 P01 -28.3 -21.1 -15.3 -10.8 -7.5 -5.7 -5.1 -5.8 -7.9 -11.3 -16.0 

 P02 9.4 8.0 6.8 5.8 5.1 4.5 4.1 3.9 4.0 4.2 4.6 

 P03 -25.2 -23.9 -22.9 -22.1 -21.6 -21.4 -21.5 -21.8 -22.4 -23.2 -24.3 

 P05 3.2 1.3 -0.3 -1.6 -2.6 -3.4 -3.8 -3.9 -3.8 -3.3 -2.6 

 P06 -7.7 -6.5 -5.5 -4.6 -4.0 -3.5 -3.1 -3.0 -3.0 -3.1 -3.5 

 P07 -15.4 -14.9 -14.6 -14.5 -14.7 -15.2 -15.9 -16.8 -18.0 -19.4 -21.1 

 P08 -6.9 -9.3 -11.5 -13.5 -15.2 -16.7 -17.9 -18.9 -19.6 -20.1 -20.4 

 P09 -67.3 -61.5 -56.6 -52.7 -49.6 -47.4 -46.2 -45.9 -46.5 -47.9 -50.3 

 P10 -8.7 -11.7 -13.9 -15.2 -15.8 -15.5 -14.5 -12.6 -9.8 -6.3 -2.0 

 P11 -33.1 -32.0 -31.0 -30.1 -29.4 -28.9 -28.5 -28.2 -28.1 -28.1 -28.3 

 Mean -18.0 -17.2 -16.5 -15.9 -15.5 -15.3 -15.2 -15.3 -15.5 -15.9 -16.4 
 
Table 13: Joint Angle Data (Degrees) 
 

  %Trial          
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Hip Internal 
Rotation              

 P01 -6.92 -3.29 -0.49 1.48 2.63 2.94 2.43 1.10 -1.07 -4.06 -7.88 

 P02 50.15 44.19 39.55 36.21 34.18 33.45 34.04 35.93 39.12 43.63 49.44 

 P03 -0.19 2.78 5.21 7.10 8.44 9.23 9.47 9.17 8.32 6.93 4.99 

 P05 16.78 20.60 23.29 24.85 25.27 24.57 22.73 19.75 15.65 10.41 4.04 

 P06 24.13 23.22 22.61 22.28 22.25 22.51 23.05 23.89 25.02 26.44 28.15 

 P07 4.76 5.33 5.74 6.00 6.11 6.07 5.88 5.54 5.04 4.40 3.60 

 P08 34.81 35.76 36.13 35.91 35.11 33.72 31.76 29.21 26.08 22.37 18.07 

 P09 6.45 6.75 6.93 7.00 6.94 6.77 6.48 6.07 5.54 4.89 4.13 

 P10 6.44 9.72 12.24 14.00 15.00 15.24 14.72 13.44 11.40 8.61 5.05 

 P11 -16.35 
-

11.24 -7.20 -4.22 -2.30 -1.44 -1.65 -2.91 -5.24 -8.62 
-

13.07 

 P12 13.77 17.36 19.88 21.34 21.73 21.05 19.29 16.47 12.59 7.63 1.60 

 Mean 12.17 13.74 14.90 15.63 15.94 15.83 15.29 14.33 12.95 11.15 8.92 
Hip Adduction              
 P01 -5.33 -5.19 -5.03 -4.85 -4.65 -4.43 -4.20 -3.94 -3.67 -3.38 -3.07 

 P02 -4.32 -3.75 -3.44 -3.40 -3.61 -4.09 -4.84 -5.84 -7.11 -8.64 
-

10.43 

 P03 -6.31 -5.90 -5.45 -4.95 -4.40 -3.81 -3.17 -2.49 -1.76 -0.98 -0.16 

 P05 -13.80 
-

15.22 
-

16.05 
-

16.29 
-

15.95 
-

15.02 
-

13.50 
-

11.40 -8.71 -5.43 -1.57 

 P06 -0.99 -1.09 -1.07 -0.94 -0.70 -0.34 0.13 0.72 1.42 2.23 3.16 

 P07 -6.96 -6.69 -6.55 -6.53 -6.63 -6.85 -7.19 -7.65 -8.24 -8.94 -9.77 

 P08 -12.61 
-

15.02 
-

16.74 
-

17.77 
-

18.11 
-

17.75 
-

16.70 
-

14.96 
-

12.53 -9.40 -5.58 
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 P09 -4.84 -4.51 -4.26 -4.10 -4.01 -4.01 -4.10 -4.26 -4.51 -4.84 -5.26 

 P10 -1.41 -0.96 -0.43 0.18 0.86 1.63 2.47 3.39 4.38 5.46 6.61 

 P11 7.17 2.56 -1.20 -4.10 -6.15 -7.35 -7.69 -7.18 -5.82 -3.61 -0.54 

 P12 -6.41 -5.89 -5.28 -4.57 -3.77 -2.87 -1.87 -0.78 0.40 1.68 3.05 

 Mean -5.08 -5.61 -5.96 -6.12 -6.10 -5.90 -5.52 -4.95 -4.19 -3.26 -2.14 
Hip Flexion              

 P01 73.52 75.63 77.25 78.38 79.02 79.17 78.83 77.99 76.67 74.86 72.55 

 P02 95.09 90.10 85.80 82.21 79.32 77.13 75.64 74.86 74.77 75.39 76.70 

 P03 77.72 77.25 76.93 76.75 76.72 76.83 77.08 77.47 78.01 78.68 79.51 

 P05 66.20 66.69 66.84 66.65 66.11 65.24 64.02 62.47 60.57 58.33 55.75 

 P06 71.96 69.95 68.28 66.94 65.94 65.28 64.95 64.96 65.31 65.99 67.01 

 P07 50.11 50.50 50.77 50.93 50.98 50.91 50.74 50.44 50.04 49.52 48.89 

 P08 64.62 65.44 66.00 66.29 66.33 66.09 65.60 64.84 63.81 62.52 60.97 

 P09 53.27 53.59 53.88 54.14 54.37 54.58 54.75 54.89 55.01 55.10 55.16 

 P10 66.65 63.37 60.56 58.22 56.35 54.94 54.01 53.55 53.56 54.04 54.99 

 P11 70.23 72.67 74.45 75.57 76.02 75.81 74.93 73.39 71.18 68.31 64.77 

 P12 82.95 82.83 82.52 82.01 81.29 80.38 79.27 77.97 76.46 74.75 72.85 

 Mean 70.21 69.82 69.39 68.92 68.40 67.85 67.26 66.62 65.94 65.23 64.47 
Knee Flexion              

 P01 76.20 74.76 73.46 72.28 71.24 70.32 69.53 68.88 68.35 67.95 67.69 

 P02 71.73 70.30 69.17 68.32 67.76 67.49 67.51 67.82 68.42 69.31 70.49 

 P03 80.44 79.12 78.00 77.10 76.41 75.93 75.65 75.59 75.74 76.09 76.66 

 P05 71.96 71.69 71.39 71.07 70.72 70.34 69.94 69.50 69.04 68.55 68.04 

 P06 73.74 73.15 72.63 72.18 71.79 71.47 71.22 71.03 70.91 70.85 70.86 

 P07 75.18 74.08 73.16 72.41 71.85 71.47 71.27 71.25 71.40 71.74 72.26 

 P08 75.22 74.17 73.34 72.72 72.30 72.10 72.11 72.33 72.76 73.40 74.25 

 P09 75.46 75.23 75.01 74.80 74.60 74.41 74.23 74.06 73.90 73.74 73.60 

 P10 71.96 71.05 70.29 69.67 69.21 68.89 68.72 68.70 68.83 69.10 69.52 

 P11 67.28 69.42 71.08 72.25 72.93 73.13 72.84 72.06 70.80 69.05 66.81 

 P12 77.89 78.39 78.75 78.98 79.08 79.05 78.88 78.58 78.15 77.59 76.90 

 Mean 74.28 73.76 73.30 72.89 72.54 72.24 71.99 71.80 71.66 71.58 71.55 

Ankle 
Dorsiflexion              

 P01 33.76 25.89 20.17 16.59 15.15 15.85 18.68 23.66 30.77 40.02 51.42 

 P02 33.07 33.10 33.19 33.33 33.52 33.77 34.07 34.43 34.84 35.31 35.83 

 P03 37.83 36.84 36.10 35.58 35.31 35.27 35.47 35.90 36.57 37.48 38.63 

 P05 40.91 40.68 40.46 40.25 40.03 39.83 39.62 39.42 39.23 39.03 38.85 

 P06 30.45 30.65 30.57 30.21 29.57 28.65 27.45 25.97 24.22 22.18 19.86 

 P07 36.13 35.86 35.58 35.30 35.01 34.72 34.41 34.10 33.78 33.46 33.12 

 P08 47.13 46.53 46.02 45.60 45.27 45.04 44.90 44.86 44.90 45.04 45.27 

 P09 36.44 36.39 36.32 36.25 36.17 36.08 35.97 35.86 35.74 35.61 35.47 

 P10 29.94 30.03 30.07 30.06 30.00 29.88 29.72 29.50 29.23 28.91 28.54 

 P11 35.71 36.53 37.12 37.50 37.66 37.60 37.33 36.83 36.12 35.19 34.05 

 P12 34.94 35.70 36.34 36.84 37.20 37.44 37.54 37.51 37.35 37.06 36.63 

 Mean 36.03 35.29 34.72 34.32 34.08 34.01 34.11 34.37 34.80 35.39 36.15 
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Table 14: Muscle Activation Data (%EMG) 

  %Trial          
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Rectus Femoris              
 P01 22.7 23.0 23.5 24.2 25.0 25.9 26.9 28.1 29.4 30.9 32.5 

 P02 5.7 6.3 6.6 6.7 6.6 6.2 5.6 4.8 3.7 2.3 0.8 

 P03 18.9 17.5 16.3 15.3 14.6 14.1 13.8 13.8 14.0 14.4 15.0 

 P05 26.8 25.3 24.2 23.3 22.6 22.3 22.2 22.3 22.8 23.4 24.4 

 P06 15.2 13.1 11.3 9.9 8.8 8.1 7.8 7.8 8.1 8.8 9.9 

 P07 23.6 20.6 18.2 16.3 15.0 14.3 14.1 14.5 15.5 17.0 19.1 

 P08 20.9 19.6 18.5 17.5 16.7 16.1 15.6 15.2 15.1 15.1 15.2 

 P09 49.1 44.5 40.8 37.9 35.9 34.8 34.6 35.2 36.8 39.2 42.4 

 P10 32.7 28.2 24.5 21.4 19.1 17.5 16.6 16.4 16.9 18.1 20.0 

 P11 10.9 9.9 9.1 8.4 8.0 7.7 7.6 7.6 7.9 8.3 9.0 

 P12 12.6 12.3 12.1 11.9 11.8 11.7 11.6 11.6 11.7 11.8 12.0 

 Mean 21.7 20.0 18.6 17.5 16.7 16.2 16.0 16.1 16.5 17.2 18.2 

Vastus Lateralis              
 P01 32.4 32.1 31.9 31.9 32.1 32.4 32.9 33.5 34.3 35.2 36.2 

 P02 8.7 9.4 9.9 10.0 10.0 9.6 9.1 8.2 7.1 5.8 4.2 

 P03 25.6 25.1 24.5 24.0 23.6 23.2 22.8 22.5 22.2 22.0 21.8 

 P05 26.6 25.9 25.4 25.0 24.7 24.5 24.4 24.4 24.5 24.7 25.0 

 P06 15.9 14.1 12.5 11.2 10.2 9.4 8.9 8.7 8.7 9.0 9.5 

 P07 19.5 19.1 18.9 18.8 18.8 18.9 19.1 19.5 19.9 20.5 21.2 

 P08 21.7 20.2 19.0 18.0 17.3 16.8 16.5 16.5 16.7 17.2 17.9 

 P09 29.0 26.4 24.3 22.6 21.5 20.8 20.5 20.8 21.5 22.6 24.3 

 P10 21.4 19.6 18.1 16.9 15.9 15.1 14.6 14.3 14.2 14.4 14.9 

 P11 27.0 24.7 22.8 21.3 20.2 19.6 19.3 19.4 19.9 20.9 22.2 

 P12 19.5 20.5 21.4 22.1 22.8 23.5 24.0 24.4 24.8 25.1 25.2 

 Mean 22.5 21.6 20.8 20.2 19.7 19.4 19.3 19.3 19.4 19.8 20.2 

Vastus Medialis             
 P01 25.7 26.0 26.3 26.7 27.1 27.6 28.2 28.8 29.4 30.1 30.9 

 P02 6.9 7.7 8.3 8.6 8.6 8.3 7.8 6.9 5.8 4.4 2.6 

 P03 30.4 29.7 29.2 28.8 28.5 28.3 28.2 28.3 28.4 28.7 29.1 

 P05 31.2 30.9 30.6 30.3 30.0 29.6 29.3 28.9 28.6 28.2 27.8 

 P06 19.9 17.6 15.8 14.2 13.0 12.2 11.7 11.5 11.7 12.2 13.1 

 P07 1.9 0.5 -0.1 0.3 1.7 4.0 7.3 11.6 16.8 22.9 30.1 

 P08 29.0 28.1 27.1 26.2 25.3 24.4 23.5 22.7 21.8 21.0 20.2 

 P09 33.8 31.3 29.3 27.7 26.6 25.9 25.7 25.9 26.6 27.7 29.3 

 P10 -1.1 5.3 10.5 14.6 17.5 19.2 19.8 19.2 17.5 14.6 10.5 

 P11 26.7 23.9 21.6 19.8 18.6 17.9 17.6 18.0 18.8 20.2 22.1 

 P12 21.1 20.0 19.1 18.5 18.2 18.2 18.4 18.9 19.6 20.6 21.9 

 Mean 20.5 20.1 19.8 19.6 19.5 19.6 19.8 20.1 20.5 21.0 21.6 
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Gracilis              
 P01 12.6 13.7 15.2 17.0 19.2 21.7 24.6 27.9 31.5 35.4 39.8 

 P02 3.6 4.5 5.1 5.5 5.5 5.2 4.6 3.7 2.6 1.1 -0.7 

 P03 13.0 12.6 12.2 11.8 11.5 11.2 10.9 10.7 10.5 10.4 10.3 

 P05 22.9 21.1 19.6 18.4 17.4 16.8 16.5 16.4 16.6 17.2 18.0 

 P06 18.0 16.3 14.8 13.5 12.6 11.8 11.4 11.1 11.2 11.4 12.0 

 P07 20.3 18.5 17.0 15.8 14.9 14.4 14.2 14.4 14.8 15.6 16.8 

 P08 17.4 16.0 15.0 14.1 13.5 13.2 13.1 13.3 13.7 14.3 15.2 

 P09 53.6 48.0 43.5 39.9 37.5 36.0 35.6 36.3 37.9 40.7 44.4 

 P10 37.0 33.0 29.7 27.0 25.1 23.8 23.3 23.4 24.2 25.6 27.8 

 P11 27.3 24.7 22.6 20.9 19.7 19.0 18.7 18.9 19.6 20.8 22.4 

 P12 11.9 11.4 10.9 10.5 10.3 10.1 10.0 10.0 10.1 10.3 10.5 

 Mean 21.6 20.0 18.7 17.7 17.0 16.7 16.6 16.9 17.5 18.4 19.7 

Biceps Femoris              
 P01 29.2 29.9 31.0 32.4 34.1 36.2 38.7 41.4 44.6 48.1 51.9 

 P02 7.2 8.2 8.9 9.3 9.5 9.3 8.9 8.2 7.2 5.9 4.3 

 P03 12.9 11.9 11.0 10.3 9.6 9.1 8.8 8.5 8.4 8.4 8.5 

 P05 25.4 24.0 22.8 21.8 21.1 20.5 20.2 20.1 20.2 20.6 21.1 

 P06 13.4 12.7 12.0 11.3 10.8 10.3 9.8 9.4 9.1 8.8 8.6 

 P07 21.3 18.9 16.9 15.3 14.1 13.2 12.7 12.6 12.9 13.6 14.6 

 P08 28.8 29.3 29.7 29.9 29.9 29.8 29.5 29.1 28.6 27.8 27.0 

 P09 22.8 20.1 17.8 16.0 14.6 13.6 13.1 13.0 13.3 14.1 15.3 

 P10 21.6 19.6 18.0 16.6 15.5 14.6 14.0 13.6 13.5 13.6 14.1 

 P11 34.5 30.4 27.1 24.5 22.6 21.5 21.1 21.4 22.5 24.3 26.9 

 P12 16.9 16.5 16.1 15.9 15.7 15.7 15.7 15.9 16.1 16.4 16.8 

 Mean 21.3 20.1 19.2 18.5 17.9 17.6 17.5 17.6 17.8 18.3 19.0 

Semitendinosus              
 P01 26.0 28.8 31.5 34.1 36.5 38.9 41.1 43.2 45.2 47.0 48.8 

 P02 15.1 15.5 15.7 15.7 15.6 15.3 14.7 14.0 13.1 12.1 10.8 

 P03 15.6 15.0 14.5 14.1 13.8 13.6 13.4 13.3 13.3 13.4 13.6 

 P05 46.8 40.7 35.5 31.3 28.0 25.7 24.4 24.0 24.6 26.1 28.6 

 P06 33.4 30.8 28.6 26.7 25.2 24.0 23.3 22.8 22.8 23.1 23.8 

 P07 23.7 21.5 19.8 18.5 17.7 17.3 17.4 18.0 19.0 20.4 22.3 

 P08 55.6 52.5 50.0 48.0 46.7 46.0 45.9 46.3 47.4 49.1 51.3 

 P09 24.0 22.6 21.4 20.3 19.3 18.4 17.6 16.9 16.4 15.9 15.6 

 P10 25.0 24.6 24.3 23.9 23.6 23.3 23.0 22.7 22.4 22.1 21.9 

 P11 25.0 22.4 20.2 18.6 17.4 16.7 16.5 16.8 17.6 18.9 20.6 

 P12 14.7 15.1 15.5 15.6 15.7 15.6 15.4 15.0 14.6 14.0 13.2 

 Mean 27.7 26.3 25.2 24.3 23.6 23.2 23.0 23.0 23.3 23.8 24.6 
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Gastrocnemius 
Lateral 

 P01 19.4 17.9 16.9 16.4 16.5 17.0 18.1 19.7 21.8 24.5 27.6 

 P02 1.8 2.4 2.8 3.1 3.2 3.1 2.9 2.5 2.0 1.3 0.4 

 P03 21.2 14.8 9.5 5.3 2.0 -0.2 -1.3 -1.4 -0.5 1.5 4.6 

 P05 14.0 12.3 10.9 9.8 9.1 8.7 8.7 9.0 9.6 10.5 11.8 

 P06 21.2 19.7 18.5 17.5 16.8 16.3 16.0 16.0 16.2 16.7 17.4 

 P07 10.4 9.4 8.6 8.0 7.7 7.6 7.8 8.3 8.9 9.9 11.0 

 P08 30.6 29.8 29.1 28.7 28.6 28.6 28.9 29.3 30.0 31.0 32.1 

 P09 32.6 29.9 27.6 25.7 24.1 23.0 22.1 21.7 21.7 22.0 22.7 

 P10 24.5 22.8 21.3 20.1 19.1 18.4 18.0 17.8 17.9 18.3 18.9 

 P11 10.6 13.1 15.2 16.9 18.2 19.1 19.6 19.7 19.4 18.7 17.5 

 P12 14.1 14.5 14.8 14.9 14.9 14.7 14.4 14.0 13.4 12.7 11.8 

 Mean 18.2 17.0 15.9 15.1 14.6 14.2 14.1 14.2 14.6 15.2 16.0 

Gastrocnemius 
Medial              

 P01 28.4 22.9 18.6 15.4 13.2 12.2 12.2 13.3 15.6 18.9 23.3 

 P02 8.1 8.6 8.8 8.9 8.9 8.7 8.3 7.8 7.1 6.3 5.3 

 P03 21.6 20.1 18.8 17.6 16.7 15.9 15.3 14.9 14.7 14.7 14.8 

 P05 15.6 13.8 12.2 11.0 10.2 9.6 9.4 9.5 9.9 10.6 11.7 

 P06 19.0 17.1 15.5 14.1 13.0 12.2 11.7 11.4 11.5 11.7 12.3 

 P07 21.6 19.3 17.3 15.7 14.5 13.8 13.4 13.4 13.8 14.7 15.9 

 P08 39.9 38.8 37.8 36.8 36.0 35.3 34.6 34.1 33.7 33.3 33.1 

 P09 41.1 38.2 35.7 33.7 32.1 31.1 30.6 30.5 30.9 31.8 33.2 

 P10 19.1 20.5 21.6 22.2 22.5 22.4 21.9 21.0 19.8 18.2 16.2 

 P11 44.1 42.4 40.8 39.5 38.4 37.6 37.0 36.6 36.4 36.5 36.8 

 P12 24.0 21.1 18.7 16.6 15.0 13.7 12.9 12.4 12.4 12.8 13.5 

 Mean 25.7 23.9 22.3 21.1 20.1 19.3 18.8 18.6 18.7 19.0 19.6 

Tibialis Anterior              
 P01 -2.5 1.5 5.5 9.5 13.5 17.5 21.5 25.5 29.5 33.5 37.5 

 P02 18.2 18.6 18.7 18.6 18.1 17.3 16.3 14.9 13.3 11.4 9.1 

 P03 40.7 36.6 33.2 30.2 27.9 26.1 24.9 24.2 24.1 24.6 25.6 

 P05 60.9 55.6 51.0 47.3 44.3 42.0 40.6 39.9 40.0 40.9 42.5 

 P06 44.0 40.1 36.8 34.1 32.1 30.7 30.0 29.9 30.5 31.7 33.5 

 P07 25.2 24.7 24.3 24.1 24.0 24.0 24.2 24.5 25.0 25.6 26.3 

 P08 14.8 14.6 14.5 14.4 14.4 14.5 14.7 15.0 15.3 15.7 16.3 

 P09 20.9 18.9 17.3 16.0 15.2 14.6 14.4 14.6 15.2 16.1 17.4 

 P10 30.6 26.2 22.5 19.5 17.1 15.3 14.2 13.8 14.0 14.9 16.4 

 P11 35.1 31.3 28.0 25.2 22.9 21.1 19.9 19.1 18.9 19.2 20.0 

 P12 31.8 32.0 31.9 31.8 31.5 31.1 30.5 29.8 29.0 28.0 26.9 

 Mean 29.1 27.3 25.8 24.6 23.7 23.1 22.8 22.8 23.2 23.8 24.7 
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