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ABSTRACT

In this thesis, we consider inference problems about the drift parameter vector

in generalized mean reverting processes with multiple and unknown change-points.

In particular, we study the case where the parameter may satisfy uncertain restric-

tions. As compared to the results in the literature, we generalize some findings in

five ways. First, we consider a statistical model which incorporates uncertain prior

information and the uncertain restriction includes as a special case the nonexistence

of the change-points. Second, we derive the unrestricted estimator (UE) and the

restricted estimator (RE), and we study their asymptotic properties. Specifically, in

the context of a known number of change-points, we derive the joint asymptotic nor-

mality of the UE and the RE, under the set of local alternative hypotheses. Third,

we derive a test for testing the hypothesized restriction and we derive its asymptotic

local power. We also prove that the proposed test is consistent. Fourth, we construct

a class of shrinkage type estimators (SEs) which includes as special cases the UE,

RE, and classical SEs. Fifth, we derive the relative risk dominance of the proposed

estimators. More precisely, we prove that the SEs dominate the UE. The novelty of

the derived results consists in the fact that the dimensions of the proposed estimators

are random variables. Finally, we present some simulation results which corroborate

the established theoretical findings.
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Chapter 1

Introduction and contributions

Nowadays, Ornstein-Uhlenbeck (O-U) processes are applied in different fields, such

as physical sciences (Lansky and Sacerdote (2001)) and biology (Rohlfs et al. (2010)).

The O-U process is also called the mean reverting process since the mean reverting

level is the component which has large effect on it. For the classical O-U processes,

the mean reverting level is constant. However, the classical O-U processes do not fit

well to data whose mean reverting level may change with the time. This is partic-

ularly the case for some phenomena which heavily depend on factors which change

with the time. For instance, government policy is one factor which affects the stock

price. Thus, if the government policies are changed in different time periods, the

mean reverting level of the stock price may change. As a result, the stock price is

changed. To overcome such a problem, Dehling et al. (2010) proposed a stochas-

tic process which has a time-dependent periodic mean reverting function. This is

the so called generalized Ornstein-Uhlenbeck process. Further, to take into account

some unconventional shocks of the process, Dehling et al. (2014) and Nkurunziza and

Zhang (2018) considered inference problems in generalized O-U processes. To give
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a closely related reference, we quote Chen et al. (2017) who proposed a method for

detecting multiple change-points in generalized O-U process. In this thesis, we study

the inference problem in generalized O-U processes with multiple unknown change-

points where the drift parameter is suspected to satisfy some restrictions. We also

revisit the conditions for the main results in Chen et al. (2017) to hold. In particu-

lar, we show that the results in Chen et al. (2017) hold without their Assumption 2.

Nevertheless, the authors of the quoted paper omitted an important condition about

the initial value of the SDE for their main results to hold. In the subsequent section,

we highlight the main contribution of this thesis.

1.1 Main contributions

In this section, we present the main contributions of this thesis. Briefly, we generalize

the methods in Chen et al. (2017) as well as that in Nkurunziza and Zhang (2018).

In particular, the proposed method generalizes the work of Chen et al. (2017) in five

ways.

1. We consider a statistical model which incorporates the uncertain prior knowl-

edge.

2. We derive the unrestricted estimator (UE) and the restricted estimator (RE)

for the drift parameter.

3. For a known number of change-points, we derive the joint asymptotic normality

of the UE and the RE under the set of local alternative hypotheses.

4. We derive a test for testing the hypothesized restriction and we derive its asymp-

totic power. The proposed test is also useful for testing the absence of change
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points.

5. We construct a class of shrinkage estimators (SEs) which includes as a special

case the UE, the RE and classical SEs. The proposed SEs are expected to be

robust with respect to the restriction.

The novelty of the derived results consists in the fact that the dimensions of the

proposed estimators are random variables. To overcome the difficulty due to the

randomness of the dimension, we establish two asymptotic results which are of interest

on their own.

1.2 Organization of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

the statistical model and assumptions. In Chapter 3, we study the joint asymptotic

normality of the UE and the RE in the case of known change-points. In Chapter

4, we study the joint asymptotic normality of the UE and the RE in the case of

unknown change-points. In Chapter 5, we present inference methods in the case of

unknown change-points and unknown number of change-points. In Chapter 6, we

construct a class of SEs and test the restriction. In Chapter 7, we compare the

relative performance between estimators. In Chapter 8, we present some simulation

results, and Chapter 9 gives some concluding remarks. Finally, for the convenience

of the reader, some technical results and proofs are given in the Appendix A and B.
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Chapter 2

Statistical model and regularity

conditions

In this section, we present the statistical model of the generalized Ornstein-Uhlenbeck

process which is mainly studied in this thesis. Two assumptions are presented. Un-

der these assumptions, we derive the log-likelihood function. In Chapter 3 and 4, we

use this log-likelihood function to derive the Maximum Likelihood Estimator (MLE)

without restriction and with restriction.

The inference problem studied in this thesis was mainly inspired by the work in

Chen et al. (2017) where the authors proposed a method for detecting multiple

change-points in generalized O-U processes. To give some other references about

inference problem in generalized O-U processes, we quote Dehling et al. (2010),

Dehling et al. (2014), Nkurunziza and Zhang (2018). To introduce some notation,

let {Wt; t ≥ 0} be a one-dimensional standard Brownian motion (Wiener process)

defined on some probability space (Ω,F, P ) and let σ > 0. The change points are

denoted by τj = φjT , where j = 1, . . . ,m and 0 < φ1 < · · · < φm < 1. We let

4



τ0 = 0 and τm+1 = T to simplify the notation. Let > denote the transpose of a

matrix, let θ = (θ>1 , . . . , θ
>
m+1)> with θj = (µ1,j, . . . , µp,j, aj)

> for τj−1 < t ≤ τj

where, for j = 1, . . . ,m + 1 and k = 1, . . . , p, µk,j is real value and aj > 0. Let

ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕp(t)). Let I{.} be an indicator function, and let Ip be the

p-dimensional identity matrix. As in Chen et al. (2017), we consider the stochastic

differential equation (SDE) given by

dXt = S(θ, t,Xt)dt+ σdWt, 0 ≤ t ≤ T (2.1)

where the drift coefficient, S(θ, t,Xt), is as follows

S(θ, t,Xt) =
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}. (2.2)

In the SDE given in (2.1) and (2.2), m represents the number of unknown change-

points (m ≥ 1), while τ1, τ2, . . . , τm are the locations of change-points. In this thesis,

the parameter of interest is θ while m, τ1, τ2, . . . , τm are the unknown nuisance pa-

rameters.

Sometimes, there exists a prior knowledge, called prior information, so that we might

use both the non-sample information and the sample information to estimate the

parameters. In this thesis, the prior information is considered as a form of a linear

constraint on θ for a given m, τ1, τ2, . . . , τm. Then, when τ1, τ2, . . . , τm and m are

known, the maximum likelihood estimator, which is derived based on linear restric-

tions, is called the Restricted Maximum Likelihood Estimator (RMLE). In particular,

we consider the scenario where the target parameter may satisfy the restriction

H0 : Bθ = r (2.3)

where B is a known q × (m + 1)(p + 1) full rank matrix with q < (m + 1)(p + 1), r

is a known q-column vector, and θ is the vector of parameters. This restriction leads

5



to the hypothesis testing problem

H0 : Bθ = r vs H1 : Bθ 6= r. (2.4)

Particularly, if we choose r = 0 and

B =



Ip+1 −Ip+1 0 . . . 0 0

0 Ip+1 −Ip+1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Ip+1 −Ip+1


= B0,

the restriction in (2.3) corresponds to the case where there are no change points.

Thus, the testing problem in (2.4) includes as a special case testing the absence of

change points.

Assumption 1. The distribution of the initial value, X0, of the SDE in (2.1) does

not depend on the drift parameter θ. Further, X0 is independent of {Wt : t ≥ 0} and

E[|X0|d] <∞, for some d ≥ 2.

Assumption 2. For any T > 0, the basis functions {ϕk(t), k = 1, ..., p} are Riemann-

integrable on [0, T ] and satisfy

(1) Periodicity: ϕ(t+ v) = ϕ(t) where v is the period in the data.

(2) Orthogonality in L2([0, v] 1
v
dλ):

∫ v

0

ϕ(t)ϕ>(t)dt = vIP .

Remark 1. Assumption 2 corresponds to a similar assumption in Chen et al. (2017).

Assumption 1 is not explicitly given in Chen et al. (2017), but their results require the

Assumption 1 to hold. For example, if E[|X0|2] =∞, the relation (3.8) in Chen et al.

(2017) does not hold. Further, if the distribution of X0 depends on θ, by Theorem 1.12

in Kutoyants (2004), the likelihood function given in Section 3.1 of Chen et al. (2017,

see p. 2204) does not hold.
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Since, for k = 1, ..., p, ϕk(t) is bounded on [0, T ] and is periodic, this implies that

ϕk(t) is bounded on R+. Without loss of generality, as in Chen et al. (2017), we

assume that v = 1.

The following proposition shows that the SDE (2.5) admits a strong and unique

solution.

Proposition 2.1. The SDE

dXt =
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}dt+ σdWt (2.5)

0 ≤ t ≤ T admits a strong and unique solution that is L2-bounded on [0, T ], i.e.,

sup
0≤t≤T

E[X2
t ] <∞.

Proof. It suffices to check whether the coefficients of SDE satisfy both space-variable

Lipschitz condition and the spatial growth condition. For more details, see the proof

of Proposition 3.2 in Chen et al. (2017).

Lemma 2.1. The solution of SDE in (2.5) has the explicit representation

Xt =
m+1∑
j=1

Xj(t)I(τj−1<t≤τj), Xj(t) = e−ajtX0 + hj(t) + zj(t), (2.6)

where

hj(t) = e−ajt
p∑

k=1

µk,j

∫ t

0

eajsϕk(s)ds, zj(t) = σe−ajt
∫ t

0

eajsdWs. (2.7)

Further, sup
t≥0

E[|Xt|2] <∞.

The proof is given in Appendix B.

Note that process {Xt}{τj−1<t≤τj} is not stationary. Because of that we cannot apply

the ergodic theorem for stationary processes. However, we can introduce some

stationary stochastic processes associated to {Xt : t ≥ 0}.

7



We define, for τj−1 < t ≤ τj, j = 1, ...,m+ 1,

X̃j(t) = h̃j(t) + z̃j(t) (2.8)

where

h̃j(t) = e−ajt
p∑

k=1

µk,j

∫ t

−∞
eajsϕk(s)ds, z̃j(t) = σe−ajt

∫ t

−∞
eajsdB̃s, (2.9)

where {B̃s}s∈R denotes a bilateral Brownian motion. i.e.

B̃s = BsIR+(s) + B̄−sIR−(s)

with {Bs}s≥0 and {B̄−s}s≥0 being two independent standard Brownian motions.

Let Σj be a (p+ 1)× (p+ 1) non-random matrix as, for j = 1, ...,m+ 1,

Σj =

IP Λj

ΛT
j ωj

 (2.10)

where

Λj = −
∫ 1

0

h̃j(t)ϕ(t)dt, ωj =

∫ 1

0

h̃2
j(t)dt+

σ2

2aj
,

with the function h̃j(t) : [0,∞]→ R

h̃j(t) = e−ajt
p∑

k=1

µk,j

∫ t

−∞
eajsϕk(s)ds.

Proposition 2.2. Suppose that Assumptions 1-2 hold, then, for k = 0, 1, . . . ,

(1) E[X̃j(t+ k)] = h̃j(t);

(2) Cov(X̃j(t), X̃j(t+ k)) = e−ajk
σ2

2aj
.

The proof is given in Appendix B. From Proposition 2.2, we derive the following

lemma which shows that our introduced processes are stationary and ergodic.

8



Lemma 2.2. For t ∈ [0, 1], for j = 1, 2, . . . ,m, the sequence of random variables

{X̃j(k + t)}k∈N0 is stationary and ergodic.

The proof is given in Appendix B.

Remark 2. From Proposition 2.1, we have P

(∫ T

0

S2(θ, t,Xt)dt <∞
)

= 1, for all

0 < T < ∞ and elements θj of θ involved in S(θ, t,Xt) given by equation (2.1). In

passing, it should be noticed that this condition is given as a required assumption in

Chen et al. (2017, Assumption 2). Thus, here we show that the results in Chen et al.

(2017) hold without their Assumption 2.

This condition is useful in deriving the likelihood function of the SDE in (2.1).

Proposition 2.3. If Assumption 1-2 hold, then the log likelihood function is

logL(θ,Xt) =
1

σ2

m+1∑
j=1

θ>j r̃(τj−1,τj) −
1

2σ2

m+1∑
j=1

θ>j Q(τj−1,τj)θj (2.11)

where

r̃(τj−1,τj) =

(∫ τj

τj−1

ϕ1(t)dXt, ...,

∫ τj

τj−1

ϕp(t)dXt,−
∫ τj

τj−1

XtdXt

)>
(2.12)

and

Q(τj−1,τj) =



∫ τj

τj−1

ϕ2
1(t)dt . . .

∫ τj

τj−1

ϕ1(t)ϕp(t)dt −
∫ τj

τj−1

ϕ1Xtdt

...
...

...
...

−
∫ τj

τj−1

ϕ1Xtdt . . . −
∫ τj

τj−1

ϕpXtdt

∫ τj

τj−1

X2
t dt

 . (2.13)

The proof is given in Appendix B. The following proposition shows that the matrix

Q(φ,m) is positive definite. By using Proposition 2.3, we derive in the next section
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the UMLE for θ. To introduce some notation, let φ = (φ1, . . . , φm)>. Let

R̃(φ,m) = (r̃(0,τ1), ..., r̃(τm,T ))
>, Q(φ,m) =



Q(0,τ1) 0 . . . 0

0 Q(τ1,τ2) . . . 0

...
...

. . .
...

0 0 . . . Q(τm,T )


. (2.14)

Proposition 2.4. Suppose that Assumption 1-2 holds. Then, if

T ≥ 1

(φj − φj−1)
, Q(τj−1,τj) is positive definite for j = 1, . . . ,m+ 1. Further, if

T ≥ 1

min
1≤j≤m+1

(φj − φj−1)
, Q(φ,m) is a positive definite matrix.

The proof of this proposition is similar to that of Proposition 3.2 of Shen (2018, p. 32).

Further, for the convenience of the reader, we also give the proof in Appendix B.
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Chapter 3

Estimation in the case of known

change points

3.1 The unrestricted estimator

In this chapter, we assume that the change point τj = φjT is known, j = 1, ...,m.

Then, some preliminary results related to the Maximum Likelihood Estimator (MLE)

of drift parameter are developed. In this chapter, all the estimation problems are

studied on the basis of the sample information. Hence, the derived MLE is called the

Unrestricted Maximum Likelihood estimator (UMLE). We also derive the asymptotic

normality of the UMLE.

3.1.1 The UMLE θ̂(φ,m)

The UMLE θ̂(φ,m) is derived based on Proposition 2.3 along with the positive defi-

niteness of Q(φ,m).
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By relation (2.11) in Proposition 2.3, we have

logL(θ,Xt) =
1

σ2
θ>R̃(φ,m)− 1

2σ2
θ>Q(φ,m)θ. (3.1)

Next, from Proposition 2.4, we derive the UMLE which is given in the following

lemma.

Lemma 3.1. Suppose that Assumptions 1-2 hold, and let R̃(φ,m) and Q(φ,m) be as

defined in (2.14). Then the UMLE of θ is

θ̂(φ,m) = Q−1(φ,m)R̃(φ,m).

.

The proof is given in Appendix B. Let

R(φ,m) = (r(0,τ1), ..., r(τm,T ))
> (3.2)

and

r(a, b) =

(∫ b

a

ϕ1(t)dWt, ...,

∫ b

a

ϕp(t)dWt,−
∫ b

a

XtdWt

)>
for 0 ≤ a < b ≤ T , and Q(φ,m) defined in (2.14). From Lemma 3.1, we derive

the following proposition which is useful in deriving the asymptotic normality of the

UMLE.

Proposition 3.1. Suppose that Assumptions 1-2 hold. The UMLE of θ can be

rewritten as

θ̂(φ,m) = θ + σQ−1(φ,m)R(φ,m). (3.3)

The proof is given in Appendix B.

By Lemma 3.1, we can rewrite the UMLE of the drift parameter

θ̂ = Q−1(φ,m)R̃(φ,m) = TQ−1(φ,m)
1

T
R̃(φ,m) = (

1

T
Q(φ,m))−1 1

T
R̃(φ,m). (3.4)
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Thus, in order to study the convergence of θ̂(φ,m), we study first the convergence of

(
1

T
Q(φ,m))−1. To introduce some notation, let

P−−−→
T→∞

,
d−−−→

T→∞
,

Lp−−−→
T→∞

,
a.s.−−−→
T→∞

denote

convergence in probability, in distribution , in Lp-space and almost surely respectively,

as T tends to infinity.

Proposition 3.2. If Assumption 2 holds, then, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+ 1,
1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt
a.s.−−−→
T→∞

(φj − φj−1)IP .

The proof is given in Appendix B.

Proposition 3.3. Suppose that Assumptions 1-2 hold. Then, 0 ≤ φj−1 < φj ≤ 1

where j = 1, ...,m+ 1,

1

T

∫ φjT

φj−1T

Xtϕ(t)dt
P−−−→

T→∞
(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt.

The proof is given in Appendix B.

Proposition 3.4. Suppose that Assumptions 1-2 hold. Then, 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+ 1,

1

T

∫ φjT

φj−1T

X2
t dt

P−−−→
T→∞

(φj − φj−1)

[∫ 1

0

(h̃j(t))
2dt+

σ2

2aj

]
.

The proof is given in Appendix B. Let

Σ =



φ1Σ1 0 . . . 0

0 (φ2 − φ1)Σ2 . . . 0

...
...

. . .
...

0 0 . . . (1− φm)Σm+1


.

Proposition 3.5. Suppose that Assumption 2 holds. Then, Σj is a positive definite

matrix for j = 1, ...,m+ 1. Further, Σ is a positive definite matrix.
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The proof is given in Appendix B. By combining Propositions 3.2-3.4, we derive

the following proposition.

Proposition 3.6. If Assumptions 1-2 hold, then, for 0 ≤ φj−1 < φj ≤ 1, j =

1, ...,m+ 1, TQ−1
(τj−1,τj)

P−−−→
T→∞

1

φj − φj−1

(Σj)
−1. Further, TQ−1(φ,m)

P−−−→
T→∞

Σ−1.

The proof is given in Appendix B. It should be noticed that in Nkurunziza and

Fu (2018), we prove a stronger result. Indeed, we prove that the above convergences

hold almost surely.

3.1.2 Asymptotic normality of the UMLE θ̂(φ,m)

In this subsection, we study the convergence of
1√
T
R(φ,m). Then, based on that

convergence, we establish the asymptotic normality of the UMLE θ̂(φ,m).

The following proposition gives the limiting distribution of
1√
T
R(φ,m).

Proposition 3.7. Suppose that Assumptions 1-2 hold. Then,

1√
T
R(φ,m)

d−−−→
T→∞

r∗ ∼ N(m+1)(p+1)(0,Σ).

The proof is given in Appendix B. From Proposition 3.7, we derive below a

proposition which gives the asymptotic normality of the UMLE. To simplify some

mathematical expressions, let ρT (φ,m) =
√
T (θ̂(φ,m)− θ).

Proposition 3.8. Suppose that Assumptions 1-2 hold. Then, the UMLE θ̂(φ,m) is

asymptotically normal, i.e., ρT (φ,m)
d−−−→

T→∞
ρ ∼ N(m+1)(p+1)(0, σ

2Σ−1).

The proof is given in Appendix B.

3.2 The restricted estimator

In this section, we derive the restricted maximum likelihood estimator (RMLE).
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Proposition 3.9. Suppose that Assumptions 1-2 hold along with (2.3) and let

G = Q−1(φ,m)B>(BQ−1(φ,m)B>)−1. Then, the RMLE of θ is

θ̃(φ,m) = θ̂(φ,m)−G(Bθ̂(φ,m)− r). (3.5)

The proof is given in Appendix B.

3.2.1 Asymptotic normality of the RMLE θ̃(φ,m)

In this subsection, we study the asymptotic property of the RMLE θ̃(φ,m) based on

the asymptotic normality of the UMLE θ̂(φ,m). Based on Proposition 3.9, we have

√
T (θ̃(φ,m)− θ) =

√
T [Gr + (I(m+1)(p+1) −GB)θ̂(φ,m)− θ]

=
√
T (Gr − θ) +

√
T (I(m+1)(p+1) −GB)θ̂(φ,m).

This gives

√
T (θ̃(φ,m)− θ) = (I(m+1)(p+1) −GB)

√
T (θ̂(φ,m)− θ)−

√
TG(Bθ − r).

Now, we define ζT (φ,m) =
√
T (θ̃(φ,m)− θ). We have

ζT (φ,m) = (I(m+1)(p+1) −GB)
√
T (θ̂(φ,m)− θ)−

√
TG(Bθ − r). (3.6)

Consider a continuous function g(X) = XB>(BXB>)−1 where X is a positive definite

matrix. We have

g(TQ−1(φ,m)) = G = TQ−1(φ,m)B>(BTQ−1(φ,m)B>)−1.

By combining Proposition 3.6, and the continuous mapping theorem,

G
P−−−→

T→∞
G∗ = Σ−1B>(BΣ−1B>)−1,
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and

I(m+1)(p+1) −GB
P−−−→

T→∞
I(m+1)(p+1) −G∗B. (3.7)

To study the asymptotic normality of the RMLE θ̃(φ,m), we consider the following

set of local alternative restrictions,

Ha,T : Bθ − r =
r0√
T
, T > 0 (3.8)

where r0 is a fixed q-column vector. Then,

√
TG(Bθ − r) =

√
TG

r0√
T

= Gr0
P−−−→

T→∞
G∗r0. (3.9)

Proposition 3.10. Suppose that Assumptions 1-2 hold along with the set of local

alternatives in (3.8). Then RMLE θ̃(φ,m) given in (3.5) is asymptotically normal,

i.e., ζT (φ,m)
d−−−→

T→∞
ζ ∼ N(m+1)(p+1)

(
−G∗r0, σ

2(Σ−1 −G∗BΣ−1)
)
.

The proof is given in Appendix B.

3.3 Joint asymptotic normality of θ̂(φ,m) and θ̃(φ,m)

In this section, we establish the joint asymptotic normality of UMLE θ̂(φ,m) and

RMLE θ̃(φ,m). This property is the foundation of developing a test for the testing

problem in (2.4) as well as its power. The established result is also useful in construct-

ing shrinkage estimators and their asymptotic efficiency. The following proposition

presents the asymptotic property of

(ρ>T (φ,m), ζ>T (φ,m))> =
√
T
(

(θ̂(φ,m)− θ)>, (θ̃(φ,m)− θ)>
)>

.

Proposition 3.11. Suppose that Assumption 1-2 hold along with the set of local
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alternatives in (3.8). Then, (ρ>T (φ,m), ζ>T (φ,m))>
d−−−→

T→∞
(ρ>, ζ>)>, whereρ

ζ

 ∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 .

Proof. We observe that√T (θ̂(φ,m)− θ)
√
T (θ̃(φ,m)− θ)

 =

 √
T (θ̂(φ,m)− θ)

(I(m+1)(p+1) −GB)
√
T (θ̂(φ,m)− θ)−

√
TG(Bθ − r)


=

 I(m+1)(p+1)

I(m+1)(p+1) −GB

√T (θ̂(φ,m)− θ) +

 0

−Gr0

 .

From (3.7), we get I(m+1)(p+1)

I(m+1)(p+1) −GB

 P−−−→
T→∞

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

 (3.10)

where all the elements in (3.10) are non-random. Similarly, by (3.9), we have 0

−Gr0

 P−−−→
T→∞

 0

−G∗r0

 . (3.11)

Then, by combining Proposition 3.8 and the relations (3.10) and (3.11) along with

Slutsky’s Theorem,√T (θ̂(φ,m)− θ)
√
T (θ̃(φ,m)− θ)

 d−−−→
T→∞

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

 ρ+

 0

−G∗r0

 =

ρ
ζ

 .

Then, by Proposition A.2 in Appendix A, (ρ>T (φ,m), ζ>T (φ,m))>
d−−−→

T→∞
(ρ>, ζ>)> with

ρ
ζ

 ∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

Σ−1

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B


>
 .
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Note that

σ2

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

Σ−1

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B


>

= σ2

 Σ−1 Σ−1 − Σ−1B>G∗>

Σ−1 −G∗BΣ−1 Σ−1 − Σ−1B>G∗> −G∗BΣ−1 +G∗BΣ−1B>G∗>

 .

By the proof of Proposition 3.10, we know

G∗BΣ−1B>G∗> = Σ−1B>G∗>, (3.12)

and, since G∗ = Σ−1B>(BΣ−1B>)−1,

Σ−1B>G∗> = Σ−1B>(BΣ−1B>)−1BΣ−1 = G∗BΣ−1. (3.13)

Therefore, by (3.12) and (3.13),

σ2

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

Σ−1

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B


>

= σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1

 .

Finally, we have (ρ>T (φ,m), ζ>T (φ,m))>
d−−−→

T→∞
(ρ>, ζ>)>, whereρ

ζ

 ∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 .

This completes the proof.

Now, we define ξT (φ,m) =
√
T (θ̂(φ,m)− θ̃(φ,m)). Next, we study the asymptotic

distribution of (ρ>T (φ,m), ξ>T (φ,m))> =
√
T
(

(θ̂(φ,m)− θ)>, (θ̂(φ,m)− θ̃(φ,m))>
)>

.

18



Proposition 3.12. Suppose that Assumptions 1-2 hold along with the set of local

alternatives in (3.8). Then, (ρ>T (φ,m), ξ>T (φ,m))>
d−−−→

T→∞
(ρ>, ξ>)>, whereρ

ξ

 ∼ N2(m+1)(p+1)


 0

G∗r0

 , σ2

 Σ−1 G∗BΣ−1

G∗BΣ−1 G∗BΣ−1


 .

Proof. We have √
T (θ̂(φ,m)− θ)

√
T (θ̂(φ,m)− θ̃(φ,m))

 =

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


√T (θ̂(φ,m)− θ)
√
T (θ̃(φ,m)− θ)

 .

We know I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)

 P−−−→
T→∞

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)

 ,

and, by Proposition 3.11 and Slutsky’s Theorem, we have √
T (θ̂(φ,m)− θ)

√
T (θ̂(φ,m)− θ̃(φ,m))

 =

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


√T (θ̂(φ,m)− θ)
√
T (θ̃(φ,m)− θ)


d−−−→

T→∞

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


ρ
ζ

 =

ρ
ξ

 .

Note that I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


 0

−G∗r0

 =

 0

G∗r0

 ,
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and I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)

σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


×

I(m+1)(p+1) I(m+1)(p+1)

0 −I(m+1)(p+1)


= σ2

 Σ−1 Σ−1 −G∗BΣ−1

G∗BΣ−1 0


I(m+1)(p+1) I(m+1)(p+1)

0 −I(m+1)(p+1)


= σ2

 Σ−1 G∗BΣ−1

G∗BΣ−1 G∗BΣ−1

 .

Therefore, by Proposition A.2 in Appendix A,ρT (φ,m)

ξT (φ,m)

 d−−−→
T→∞

ρ
ξ

 ∼ N2(m+1)(p+1)


 0

G∗r0

 , σ2

 Σ−1 G∗BΣ−1

G∗BΣ−1 G∗BΣ−1


 ,

this completes the proof.

From Proposition 3.12, we have following corollary.

Corollary 3.1. Suppose that Assumptions 1-2 hold along with the set of local alter-

natives in (3.8). Then, ξT (φ,m)
d−−−→

T→∞
ξ ∼ N(m+1)(p+1)(G

∗r0, σ
2G∗BΣ−1).

The proof follows directly from Proposition 3.12. Further, we study the asymptotic

property of (ζ>T (φ,m), ξ>T (φ,m))> =
√
T
(

(θ̃(φ,m)− θ)>, (θ̂(φ,m)− θ̃(φ,m))>
)>

.

Proposition 3.13. Suppose that Assumptions 1-2 hold along with the set of local

alternatives in (3.8). Then, (ζ>T (φ,m), ξ>T (φ,m))>
d−−−→

T→∞
(ζ>, ξ>)>, whereζ

ξ

 ∼ N2(m+1)(p+1)


−G∗r0

G∗r0

 , σ2

Σ−1 −G∗BΣ−1 0

0 G∗BΣ−1


 .
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Proof. We observe that √
T (θ̃(φ,m)− θ)

√
T (θ̂(φ,m)− θ̃(φ,m))

 =

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


√T (θ̂(φ,m)− θ)
√
T (θ̃(φ,m)− θ)

 .

(3.14)

Further,  0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)

 P−−−→
T→∞

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)

 ,

andρT (φ,m)

ζT (φ,m)

 d−−−→
T→∞

ρ
ζ


∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 . (3.15)

Then, by combining (3.14) and (3.15) and Slutsky’s Theorem, we getζT (φ,m)

ξT (φ,m)

 d−−−→
T→∞

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


ρ
ζ

 =

ζ
ξ

 .

Note that  0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


 0

−G∗r0

 =

−G∗r0

G∗r0

 ,

21



and  0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)

σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


×

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


= σ2

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1

G∗BΣ−1 0


 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


= σ2

Σ−1 −G∗BΣ−1 0

0 G∗BΣ−1

 .

Therefore, by Proposition A.2 in Appendix A, (ζ>T (φ,m), ξ>T (φ,m))>
d−−−→

T→∞
(ζ>, ξ>)>

with ζ
ξ

 ∼ N2(m+1)(p+1)


−G∗r0

G∗r0

 , σ2

Σ−1 −G∗BΣ−1 0

0 G∗BΣ−1


 .

This completes the proof.
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Chapter 4

Estimation in the case of unknown

change points

4.1 The unrestricted estimator

In the previous chapter, the locations of change-points, τ = (τ1, . . . , τm)>, and the

number of change points, m, are assumed to be known. Nevertheless, in practice,

the change points are also unknown. Thus, the change points have to be estimated

from the data. In this chapter, we assume that the number of change points, m, is

known but the locations of change points are unknown. We show that the asymptotic

property, in the case of known change points, holds when we replace change points

by their consistent estimators. Let φ̂j be a consistent estimator of the parameter φj,

j = 1, ...,m, and for convenience, let φ̂0 = 0 and φ̂m+1 = 1. Let φ̂ = (φ̂1, φ̂2, . . . , φ̂m)>.

First, for estimating the locations of change points, we recall the least sum of squared

errors (LSSE) method, which is similar to that in Chen et al. (2017). We partition

the time period [0, T ] into n parts, i.e., 0 = t0 < · · · < tn = T . The time increments,
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∆t = ti+1 − ti, are exactly the same for i = 0, ..., n − 1. Moreover, we define Yi =

Xti+1 −Xti and zi = (ϕ1(ti), ..., ϕp(ti),−Xti)∆t.

The exact value of the drift parameters θ may be different with the value of their

MLE because of the uncertain location of estimated change points. For instance, if

τ̂j > τj, then for all ti ∈ (τj, τ̂j], it is obvious that the corresponding true value of

the drift parameters is θ(j+1). However, in the same condition, the MLE of the drift

parameters is θ̂(j) for all ti ∈ (τj, τ̂j]. Therefore, we let θi =
∑m+1

j=1 θjI{τj−1<ti≤τj} be

the true value of the drift parameter at ti. Also, θ̂i =
∑m+1

j=1 θ̂jI{τ̂j−1<ti≤τ̂j} , where

θ̂j = Q−1
(τ̂j−1,τ̂j)

r̃(τ̂j−1,τ̂j) for j = 1, ...,m + 1, is set up to be the MLE of the drift

parameters at ti. By the Euler-Maruyama discretisation method, we have

Yi = ziθi + εi, i = 1, ..., n (4.1)

where εi is the error term σ
√

∆tωi, and ωi is the ith independent draw from a standard

normal variable. From (4.1), the estimators for the m change points, τ , are given by

τ̂ = arg min
τ

SSE([0, T ], τ, θ̂(τ)) (4.2)

where

SSE([0, T ], τ, θ̂(τ)) =
∑

ti∈[0,T ]

(Yi − ziθ̂i)T (Yi − ziθ̂i) (4.3)

Assumption 3. For every j = 1, ...,m, there exists an L0 > 0 such that for all

L > L0 the minimum eigenvalues of
1

L

∑
ti∈(τj ,τj+L]

zTi zi and of
1

L

∑
ti∈(τj−L,τj ]

zTi zi as

well as their respective continuous-time versions
1

L
Q(τj ,τj+L) and

1

L
Q(τj−L,τj), are all

bounded away from 0.

Remark 3. For the estimators of φj, we can directly obtain φ̂j =
τ̂j
T

,

j = 1, ...,m+1. The consistency of φ̂j to φj is proved in Proposition B.1 in Appendix
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B. Clearly, the estimator φ̂j is FT -measurable and φ̂j ∈ [0, 1] for j = 1, ...,m + 1.

Further, there exists δ0 > 0 such that φ̂j − φj = OP (T−δ0) for j = 1, ...,m.

We introduce another method to estimate the locations of the change points. This

is based on the Maximum log-likelihood. By Theorem 7.6 of Lipster and Shiryaev

(2001), the log-likelihood function is given by

logL(τ, θ) =
1

σ2

∫ T

0

S(θ, t,Xt)dXt −
1

2σ2

∫ T

0

S2(θ, t,Xt)dt,

where τ = (τ1, τ2, . . . , τm). Note that, by (B.16),

1

σ2

∫ T

0

S(θ, t,Xt)dXt =
1

σ2

∫ T

0

m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}dXt

=
1

σ2

m+1∑
j=1

∫ T

0

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}dXt.

This gives

1

σ2

∫ T

0

S(θ, t,Xt)dXt =
1

σ2

m+1∑
j=1

∫ τj

τj−1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
dXt.

Further, by the proof of Proposition 2.3,

1

2σ2

∫ T

0

S2(θ, t,Xt)dt =
1

2σ2

∫ T

0

[
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}

]2

dt

=
1

2σ2

∫ T

0

m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)2

I{τj−1<t≤τj}dt

=
1

2σ2

m+1∑
j=1

∫ T

0

(
p∑

k=1

µk,jϕk(t)− ajXt

)2

I{τj−1<t≤τj}dt.

This gives

1

2σ2

∫ T

0

S2(θ, t,Xt)dt =
1

2σ2

m+1∑
j=1

∫ τj

τj−1

(
p∑

k=1

µk,jϕk(t)− ajXt

)2

dt.

25



Therefore, for the change points τ1, . . . , τm, the log-likelihood function for SDE (2.1)

is given by

logL(τ, θ) =
1

σ2

m+1∑
j=1

∫ τj

τj−1

S(θj, t, Xt)dXt −
1

2σ2

m+1∑
j=1

∫ τj

τj−1

S(θj, t, Xt)
2dt (4.4)

where S(θj, t, Xt) =

p∑
k=1

µk,jϕk(t) − ajXt. From (4.4), when the number of change

point, m, is known, the estimator of τ is

τ̂ = arg max
τ

logL(τ, θ̂(τ)) (4.5)

where θ̂(τ) is the MLE of θ by using the given change points τ . Auger and Lawrence (1989)

introduced a numerical method to approximate the integrals inside the log-likelihood

function. In this case, we use this method to calculate logL(τ, θ̂(τ)) in (4.5). Divide

[0, T ] into n parts, i.e. 0 = t∗0 < · · · < t∗n = T with ∆∗t = t∗i+1 − t∗i . By the Riemann

sum, the log-likelihood function in (4.5) is approximated as

logL∗([0, T ], τ, θ̂(τ)) =
1

σ2

m+1∑
j=1

∑
t∗i∈(τj−1,τj ]

θ̂>j V (t∗i )(Xt∗i+1
−Xt∗i

)

− 1

2σ2

m+1∑
j=1

∑
t∗i∈(τj−1,τj ]

(
θ̂>j V (t∗i )

)2
∆∗t (4.6)

where V (t) = (ϕ1(t), . . . , ϕp(t),−Xt)
>. Then, the estimator of τ is given by

τ̂ = arg max
τ

logL∗([0, T ], τ, θ̂(τ)). (4.7)

For convenience, let φ̂0 = 0 and φ̂m+1 = 1. In order to study the asymptotic properties

of the estimators of θ, we derive first the following preliminary results.

Lemma 4.1. Let {Yt, t ≥ 0} be a stochastic process {Ft, t ≥ 0}-adapted and L2-

bounded. Suppose that φ̂j and φ̂j−1 are FT -measurable and consistent estimators for

φj and φj−1 respectively, j = 1, ...,m+ 1, and 0 ≤ φ̂1 < ... < φ̂m ≤ 1 a.s.. Then,

1

T

∫ φ̂jT

φ̂j−1T

Ytdt−
1

T

∫ φjT

φj−1T

Ytdt
L1

−−−→
T→∞

0.
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The proof is given in Appendix B.

Lemma 4.2. Let {Yt, t ≥ 0} be a Rp-valued deterministic and bounded function.

Suppose that φ̂j and φ̂j−1 are FT -measurable and consistent estimators for φj and

φj−1 respectively, j = 1, ...,m+ 1, and 0 ≤ φ̂1 < ... < φ̂m ≤ 1 a.s.. Then,

1√
T

∫ φ̂jT

φ̂j−1T

YtdWt −
1√
T

∫ φjT

φj−1T

YtdWt
L2

−−−→
T→∞

0.

The proof is given in Appendix B. By using Lemma 4.1, we establish Proposi-

tions 4.1 and 4.2.

Proposition 4.1. If Assumptions 1-3 hold, then, 0 ≤ φj−1 < φj ≤ 1, j = 1, ...,m+1,

1

T

∫ φ̂jT

φ̂j−1T

ϕ(t)ϕ>(t)dt
P−−−→

T→∞
(φj − φj−1)IP .

The proof is given in Appendix B.

Proposition 4.2. Suppose that Assumptions 1-3 hold. Then, 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+ 1,

(i)
1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt
P−−−→

T→∞
0;

(ii)
1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt

P−−−→
T→∞

0.

The proof is given in Appendix B. By using Proposition 4.2, we derive Proposi-

tions 4.3 and 4.4.

Proposition 4.3. Suppose that Assumptions 1-3 hold. Then, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+ 1,
1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt
P−−−→

T→∞
(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt.
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Proof. We have

1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt =

(
1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt

)

+

(
1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt

)

+

(
1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt

)

+
1

T

∫ φjT

φj−1T

Xtϕ(t)dt.

By Proposition 4.2

1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt
P−−−→

T→∞
0. (4.8)

By Lemma 4.1,

1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
L1

−−−→
T→∞

0,

which implies that

1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
P−−−→

T→∞
0. (4.9)

As in the proof of Proposition 3.3, we have

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt
P−−−→

T→∞
0. (4.10)

By Proposition 3.3,

1

T

∫ φjT

φj−1T

Xtϕ(t)dt
P−−−→

T→∞
(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt. (4.11)

Finally, combining (4.8), (4.9), (4.10) and (4.11),

1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt
P−−−→

T→∞
(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt,

and this completes the proof.
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Proposition 4.4. Suppose that Assumptions 1-3 hold. Then, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+ 1,
1

T

∫ φ̂jT

φ̂j−1T

X2
t dt

P−−−→
T→∞

(φj − φj−1)

[∫ 1

0

(h̃j(t))
2dt+

σ2

2aj

]
.

Proof. We have

1

T

∫ φ̂jT

φ̂j−1T

X2
t dt =

(
1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt

)

+

(
1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X̃2
t dt

)

+

(
1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

)

+
1

T

∫ φjT

φj−1T

X2
t dt.

By Proposition 4.2

1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt

P−−−→
T→∞

0. (4.12)

By Lemma 4.1,

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X̃2
t dt

L1

−−−→
T→∞

0,

which implies that

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X̃2
t dt

P−−−→
T→∞

0. (4.13)

As in the proof of Proposition 3.4, we have

1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

P−−−→
T→∞

0. (4.14)

By Proposition 3.4,

1

T

∫ φjT

φj−1T

X2
t dt

P−−−→
T→∞

(φj − φj−1)

[∫ 1

0

(h̃j(t))
2dt+

σ2

2aj

]
. (4.15)

Finally, combining (4.12), (4.13), (4.14) and (4.15),

1

T

∫ φ̂jT

φ̂j−1T

X2
t dt

P−−−→
T→∞

(φj − φj−1)

[∫ 1

0

(h̃j(t))
2dt+

σ2

2aj

]
,

this completes the proof.
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By combining Proposition 4.1, Proposition 4.3 and Proposition 4.4, we derive the

following propositions which give the same results as in Proposition 3.6 in case the

change points φj and φj−1 are replaced by their consistent estimators φ̂j and φ̂j−1

respectively.

First, we define

Q(τ̂j−1,τ̂j) =



∫ τ̂j

τ̂j−1

ϕ2
1(t)dt . . .

∫ τ̂j

τ̂j−1

ϕ1(t)ϕp(t)dt −
∫ τ̂j

τ̂j−1

ϕ1Xtdt

...
...

...
...

−
∫ τ̂j

τ̂j−1

ϕ1Xtdt . . . −
∫ τ̂j

τ̂j−1

ϕpXtdt

∫ τ̂j

τ̂j−1

X2
t dt

 (4.16)

where τ̂j = φ̂jT , τ̂j−1 = φ̂j−1T for j = 1, ...,m+ 1.

Proposition 4.5. Suppose that Assumptions 1-3 hold. Then, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+ 1, TQ−1
(τ̂j−1,τ̂j)

P−−−→
T→∞

1

φj − φj−1

(Σj)
−1.

Proof. By Proposition 4.1, Proposition 4.3 and Proposition 4.4, we have

1

T
Q(τ̂j−1,τ̂j)

P−−−→
T→∞

(φj − φj−1)Σj, j = 1, ...,m+ 1.

By combining Propositions 2.4, 3.5, and the continuous mapping theorem, we get

TQ−1
(τ̂j−1,τ̂j)

P−−−→
T→∞

1

φj − φj−1

(Σj)
−1. This completes the proof.

Now, we define

Q(φ̂,m) =



Q(0,τ̂1) 0 . . . 0

0 Q(τ̂1,τ̂2) . . . 0

...
...

. . .
...

0 0 . . . Q(τ̂m,T )


. (4.17)
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Proposition 4.6. Suppose Assumptions 1-3 hold. Then, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+ 1, TQ−1(φ̂,m)
P−−−→

T→∞
Σ−1.

The proof is given in Appendix B.

Next, we derive some results which generalize Proposition 3.7 and Proposition 3.8.

The results show that similar propositions hold with the change-points replaced by

their consistent estimators. Let τ̂j = φ̂jT , j = 1, ...,m+ 1, and let

R(φ̂,m) = (r(0,τ̂1), ..., r(τ̂m,T ))
>, (4.18)

r(a, b) =

(∫ b

a

ϕ1(t)dWt, ...,

∫ b

a

ϕp(t)dWt,−
∫ b

a

XtdWt

)>
,

for 0 ≤ a < b ≤ T .

4.1.1 Asmptotic normality of the UE θ̂(φ̂,m)

In deriving the asymptotic normality of the UE, we use the following lemma.

Lemma 4.3. Let {Yt, t ≥ 0} be a solution of SDE

dYt =
m+1∑
k=1

f(µk, Yt)I{τj−1<t≤τj}dt+ σdWt, 0 ≤ t ≤ T (4.19)

where f(θ, x) is a real-valued function such that the processes {Yt, t ≥ 0} and

{f(θ, Yt), t ≥ 0} are L2-bounded. Suppose that φ̂j and φ̂j−1 are FT -measurable and

consistent estimators for φj and φj−1 respectively, j = 1, ...,m+ 1, and

0 ≤ φ̂1 < ... < φ̂m ≤ 1 a.s.. Further, assume there exists δ0 >
1
2

such that
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max
1≤j≤m

(|φ̂j − φj|) = OP (T−δ0). Then, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, . . . ,m+ 1,
1√
T

∫ φ̂jT

φ̂j−1T

YtdWt −
1√
T

∫ φjT

φj−1T

YtdWt
P−−−→

T→∞
0.

The proof is given in Appendix B. Lemma 4.3 yields Lemma 3.3 in Nkurunziza

and Zhang (2018) for which m = 1.

Proposition 4.7. Suppose that Assumptions 1-3 hold. Then, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+1,
1√
T

(
R(φ̂,m)−R(φ,m)

)
P−−−→

T→∞
0, where R(φ̂,m) is defined in (4.18)

and R(φ,m) is defined in (3.2).

The proof is given in Appendix B. By using Proposition 4.7, we derive the following

proposition which shows the limiting distribution of
1√
T
R(φ̂,m).

Proposition 4.8. If the conditions in Proposition 4.7 hold, then, for

0 ≤ φj−1 < φj ≤ 1, j = 1, ...,m+ 1,
1√
T
R(φ̂,m)

d−−−→
T→∞

r∗ ∼ N(m+1)(p+1)(0,Σ).

Proof. By Proposition 3.7 and Proposition 4.7, we have

1√
T
R(φ,m)

d−−−→
T→∞

r∗ ∼ N(m+1)(p+1)(0,Σ)

and

1√
T

(
R(φ̂,m)−R(φ,m)

)
P−−−→

T→∞
0.

Hence, by Slutsky’s Theorem,

1√
T
R(φ̂,m) =

1√
T

(
R(φ̂,m)−R(φ,m)

)
+

1√
T
R(φ,m)

d−−−→
T→∞

r∗ ∼ N(m+1)(p+1)(0,Σ).

This completes the proof.

Now, let τ̂j = φ̂jT , j = 1, ...,m+ 1, and

R̃(φ̂,m) = (r̃(0,τ̂1), ..., (r̃(τ̂m,T ))
>, (4.20)
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r̃(a, b) =

(∫ b

a

ϕ1(t)dXt, ...,

∫ b

a

ϕp(t)dXt,−
∫ b

a

XtdXt

)>
,

for 0 ≤ a < b ≤ T .

Further, let θ̂(φ̂,m) = Q−1(φ̂,m)R̃(φ̂,m) be the plug-in estimator where Q(φ̂,m) and

R̃(φ̂,m) are defined in (4.17) and (4.20). Now, we define ρT (φ̂,m) =
√
T (θ̂(φ̂,m)−θ).

By combining Propositions 4.6 and 4.8, we derive the asymptotic normality of UE

θ̂(φ̂,m) in the following proposition.

Corollary 4.1. Suppose that the conditions in Proposition 4.7 hold. Then,

ρT (φ̂,m)
d−−−→

T→∞
ρ ∼ N(m+1)(p+1)(0, σ

2Σ−1).

The proof is given in Appendix B.

4.2 The restricted estimator

In the previous chapter, we studied the asymptotic property of the Restricted Es-

timator (RE) in context of known multiple change points. In this section, we give

the Restricted Estimator (RE) in context of unknown multiple change-points. The

estimator of the rate of change point φ̂j, which is consistent, will be involved instead

of the known rate of change point φj, j = 1, ...,m.

Proposition 4.9. Suppose that Assumptions 1-3 hold along with (2.3) and let

J = Q−1(φ̂,m)B>(BQ−1(φ̂,m)B>)−1. Then, the RE of θ is

θ̃(φ̂,m) = θ̂(φ̂,m)− J(Bθ̂(φ̂,m)− r). (4.21)

This proof follows from the similar steps of the proof of Proposition 3.9. Since we

consider the case of unknown change points, we just replace R̃(φ,m) and Q(φ,m) by

R̃(φ̂,m) and Q(φ̂,m), respectively.
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4.2.1 Asymptotic normality of the RE θ̃(φ̂,m)

In this section, we derive the asymptotic normality of the RE θ̃(φ̂,m) based on the

asymptotic normality of the Unrestricted Estimator (UE) θ̂(φ̂,m). We show that the

RE θ̃(φ̂,m) has the same limiting distribution as the RMLE θ̃(φ,m). The established

result is similar to that in Perron and Qu (2006), Chen and Nkurunziza (2015),

Nkurunziza and Zhang (2018) among others.

Based on Proposition 4.9, we have

√
T (θ̃(φ̂,m)− θ) =

√
T [Jr + (I(m+1)(p+1) − JB)θ̂(φ̂,m)− θ]

=
√
T (Jr − θ) +

√
T (I(m+1)(p+1) − JB)θ̂(φ̂,m),

this gives

√
T (θ̃(φ̂,m)− θ) = (I(m+1)(p+1) − JB)

√
T (θ̂(φ̂,m)− θ)−

√
TJ(Bθ − r).

Now, we define ζT (φ̂,m) =
√
T (θ̃(φ̂,m)− θ). Then,

√
T (θ̃(φ̂,m)− θ) = (I(m+1)(p+1) − JB)

√
T (θ̂(φ̂,m)− θ)−

√
TJ(Bθ − r). (4.22)

Consider a continuous function g(X) = XB>(BXB>)−1 where X is a positive definite

matrix. We have g(TQ−1(φ̂,m)) = J = TQ−1(φ̂,m)B>(BTQ−1(φ̂,m)B>)−1.

By combining Proposition 4.6 and the continuous mapping theorem, we get

J = TQ−1(φ̂,m)B>(BTQ−1(φ̂,m)B>)−1 P−−−→
T→∞

Σ−1B>(BΣ−1B>)−1 = G∗,

and

I(m+1)(p+1) − JB
P−−−→

T→∞
I(m+1)(p+1) −G∗B. (4.23)

Under the set of local alternatives in (3.8), we have

√
TJ(Bθ − r) =

√
TJ

r0√
T

= Jr0
P−−−→

T→∞
G∗r0. (4.24)
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Corollary 4.2 which shows the asymptotic normality of the RE θ̃(φ̂,m) is given in the

next section.

4.3 Joint asymptotic normality of θ̂(φ̂,m) and θ̃(φ̂,m)

In this section, we present the joint asymptotic normality of UE θ̂(φ̂,m) and RE

θ̃(φ̂,m). First, we study the asymptotic distribution of

(ρ>T (φ̂,m), ζ>T (φ̂,m))> =
√
T
(

(θ̂(φ̂,m)− θ)>, (θ̃(φ̂,m)− θ)>
)>

.

Proposition 4.10. Suppose that Assumptions 1-3 hold along with the set of local

alternatives in (3.8). Then, if r0 6= 0, (ρ>T (φ̂,m), ζ>T (φ̂,m))>
d−−−→

T→∞
(ρ>, ζ>)> and if

r0 = 0, (ρ>T (φ̂,m), ζ>T (φ̂,m))>
d−−−→

T→∞
(ρ>0 , ζ

>
0 )>, whereρ

ζ

 ∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 ,

ρ0

ζ0

 ∼ N2(m+1)(p+1)


0

0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 .

Proof. We can observe that√T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)

 =

 √
T (θ̂(φ̂,m)− θ)

(I(m+1)(p+1) − JB)
√
T (θ̂(φ̂,m)− θ)−

√
TJ(Bθ − r)


=

 √
T (θ̂(φ̂,m)− θ)

(I(m+1)(p+1) − JB)
√
T (θ̂(φ̂,m)− θ)− Jr0


=

 I(m+1)(p+1)

I(m+1)(p+1) − JB

√T (θ̂(φ̂,m)− θ) +

 0

−Jr0

 .

By (4.23), we know

I(m+1)(p+1) − JB
P−−−→

T→∞
I(m+1)(p+1) −G∗B.
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Then,  I(m+1)(p+1)

I(m+1)(p+1) − JB

 P−−−→
T→∞

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

 (4.25)

where all the elements in (4.25) are non-random. Similarly, by (4.24), we have 0

−Jr0

 P−−−→
T→∞

 0

−G∗r0

 . (4.26)

By combining Corollary 4.1 and the relations (4.25), (4.26) along with Slutsky’s

Theorem,ρT (φ̂,m)

ζT (φ̂,m)

 =

 I(m+1)(p+1)

I(m+1)(p+1) − JB

√T (θ̂(φ̂,m)− θ) +

 0

−Jr0


d−−−→

T→∞

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

 ρ+

 0

−G∗r0

 =

ρ
ζ


Then, by Proposition A.2 in Appendix A,√T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)

 d−−−→
T→∞

ρ
ζ



∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B

Σ−1

 I(m+1)(p+1)

I(m+1)(p+1) −G∗B


>
 .

Note that, from the proof of Proposition 3.11, we get√T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)

 d−−−→
T→∞

ρ
ζ


∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 ,

and this completes the proof.
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By using Proposition 4.10, we derive the following corollary which shows that the

RE is asymptotically normal.

Corollary 4.2. Suppose that Assumptions 1-3 hold along with the set of local alter-

natives in (3.8). Then, ζT (φ̂,m)
d−−−→

T→∞
ζ ∼ N(m+1)(p+1)

(
−G∗r0, σ

2(Σ−1−G∗BΣ−1)
)
.

The proof follows from Proposition 4.10.

Now, we define ξT (φ̂,m) =
√
T (θ̂(φ̂,m) − θ̃(φ̂,m)). Next, we study the asymptotic

distribution of (ρ>T (φ̂,m), ξ>T (φ̂,m))> =
√
T
(

(θ̂(φ̂,m)− θ)>, (θ̂(φ̂,m)− θ̃(φ̂,m))>
)>

.

Proposition 4.11. Suppose that Assumption 1-3 hold along with the set of local

alternatives in (3.8). Then, if r0 6= 0, (ρ>T (φ̂,m), ξ>T (φ̂,m))>
d−−−→

T→∞
(ρ>, ξ>)> and if

r0 = 0, (ρ>T (φ̂,m), ξ>T (φ̂,m))>
d−−−→

T→∞
(ρ>0 , ξ

>
0 )>, whereρ

ξ

 ∼ N2(m+1)(p+1)


 0

G∗r0

 , σ2

 Σ−1 G∗BΣ−1

G∗BΣ−1 G∗BΣ−1


 ,

ρ0

ξ0

 ∼ N2(m+1)(p+1)


0

0

 , σ2

 Σ−1 G∗BΣ−1

G∗BΣ−1 G∗BΣ−1


 .

Proof. We have √
T (θ̂(φ̂,m)− θ)

√
T (θ̂(φ̂,m)− θ̃(φ̂,m))

 =

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


√T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)

 .

We know I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)

 P−−−→
T→∞

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)

 ,
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and √T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)

 d−−−→
T→∞

ρ
ζ


∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 .

Then, by Slutsky’s Theorem, √
T (θ̂(φ̂,m)− θ)

√
T (θ̂(φ̂,m)− θ̃(φ̂,m))

 =

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


√T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)


d−−−→

T→∞

I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


ρ
ζ

 .

Note that I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)


 0

−G∗r0

 =

 0

G∗r0

 ,

and I(m+1)(p+1) 0

I(m+1)(p+1) −I(m+1)(p+1)

σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


×

I(m+1)(p+1) I(m+1)(p+1)

0 −I(m+1)(p+1)


= σ2

 Σ−1 Σ−1 −G∗BΣ−1

G∗BΣ−1 0


I(m+1)(p+1) I(m+1)(p+1)

0 −I(m+1)(p+1)


= σ2

 Σ−1 G∗BΣ−1

G∗BΣ−1 G∗BΣ−1

 .
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Therefore, by Proposition A.2 in Appendix A, (ρ>T (φ̂,m), ξ>T (φ̂,m))>
d−−−→

T→∞
(ρ>, ξ>)>

with (ρ>, ξ>)> ∼ N2(m+1)(p+1)


 0

G∗r0

 , σ2

 Σ−1 G∗BΣ−1

G∗BΣ−1 G∗BΣ−1


. This com-

pletes the proof.

From Proposition 4.11, we derive the following result which gives the limiting

distribution of ξT (φ̂,m).

Corollary 4.3. If Assumptions 1-3 hold along with the set of local alternatives in

(3.8), then, ξT (φ̂,m)
d−−−→

T→∞
ξ ∼ N(m+1)(p+1)(G

∗r0, σ
2G∗BΣ−1).

The proof follows from Proposition 4.11. We also derive the asymptotic

distribution of (ζ>T (φ̂,m), ξ>T (φ̂,m))> =
√
T
(

(θ̃(φ̂,m)− θ)>, (θ̂(φ̂,m)− θ̃(φ̂,m))>
)>

.

Proposition 4.12. Suppose that Assumption 1-3 hold along with the set of local

alternatives in (3.8). Then, (ζ>T (φ̂,m), ξ>T (φ̂,m))>
d−−−→

T→∞
(ζ>, ξ>)>, whereζ

ξ

 ∼ N2(m+1)(p+1)


−G∗r0

G∗r0

 , σ2

Σ−1 −G∗BΣ−1 0

0 G∗BΣ−1


 .

Proof. We have √
T (θ̃(φ̂,m)− θ)

√
T (θ̂(φ̂,m)− θ̃(φ̂,m))

 =

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


√T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)

 .

Further, we have 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)

 P−−−→
T→∞

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)

 ,
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and √T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)

 d−−−→
T→∞

ρ
ζ


∼ N2(m+1)(p+1)


 0

−G∗r0

 , σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


 .

Then, by Slutsky’s Theorem, √
T (θ̃(φ̂,m)− θ)

√
T (θ̂(φ̂,m)− θ̃(φ̂,m))

 =

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


√T (θ̂(φ̂,m)− θ)
√
T (θ̃(φ̂,m)− θ)


d−−−→

T→∞

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


ρ
ζ

 .

Note that  0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


 0

−G∗r0

 =

−G∗r0

G∗r0

 ,

and  0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)

σ2

 Σ−1 Σ−1 −G∗BΣ−1

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1


×

 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


= σ2

Σ−1 −G∗BΣ−1 Σ−1 −G∗BΣ−1

G∗BΣ−1 0


 0 I(m+1)(p+1)

I(m+1)(p+1) −I(m+1)(p+1)


= σ2

Σ−1 −G∗BΣ−1 0

0 G∗BΣ−1

 .
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Therefore, by Proposition A.2 in Appendix A, √
T (θ̃(φ̂,m)− θ)

√
T (θ̂(φ̂,m)− θ̃(φ̂,m))

 d−−−→
T→∞

ζ
ξ


∼ N2(m+1)(p+1)


−G∗r0

G∗r0

 , σ2

Σ−1 −G∗BΣ−1 0

0 G∗BΣ−1


 .

This completes the proof.
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Chapter 5

The case of an unknown number of

change points

In Chapters 3 and 4, we suppose that the number of change points, m, is known.

However, for some data sets, m is unknown. Thus, in this chapter, we solve a more

general problem where the nuisance parameter m, τ1, τ2, . . . , τm are unknown.

5.1 Estimating the number of change points

In this section, we consider detecting the unknown number of change points. We use

similar methodology as introduced by Chen et al. (2017). In Chen et al. (2017), they

treated estimating the number of change points as selecting the best fitting model.

Thus, for models with different possible numbers of change points, we choose the

model which fits the data best. To choose the best fitting model, we are looking for

the one which minimizes the log-likelihood-based information criterion

IC(m) = −2 logL(τ, θ̂) + (m+ 1)h(p)Υ(T ) + λ>(Bθ̂ − r) (5.1)
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where logL(τ, θ̂) is defined in (4.4); τ̂ is established by (4.5) corresponding to each

m; h(p) = p + 1 if there is no change in σ or h(p) = p + 2 if there is a change in σ;

Υ(T ) is a non-decreasing function of T , the total time period of the data set; and m

is the potential number of change points to be set; B and r are defined in (2.3).

From the asymptotic property of Riemann sum approximation of logL(τ, θ̂), the

information criterion is given by

IC(m) = −2 logL∗([0, T ], τ, θ̂(τ)) + (m+ 1)h(p)Υ(T ) + λ>(Bθ̂ − r) (5.2)

where logL∗([0, T ], τ, θ̂(τ)) is defined in (4.6); and τ̂ is established by (4.7) corre-

sponding to each m.

It should be noticed that the term (m+1)h(p)Υ(T ) is fixed when the number of change

points is known. Then, the approach involving (5.2) is the same as the maximum log-

likelihood method introduced in Section 4.1. It is obvious that (5.2) represents the

well-known information criterion called Akaike information criterion (AIC) Akaike

(1973) when Υ(T ) = 2. However, as mentioned in Chen et al. (2017), due to the

problem of the consistency of AIC, one uses the Schwarz information criterion (SIC)

as proposed in Schwarz (1978). In SIC, Υ(T ) is set as the logarithm of the sample

size. In Schwarz (1978), the authors used the SIC successfully in change-point anal-

ysis.

By Proposition B.2 in Appendix B, as T is large, IC(m) given in (5.2) reaches its

minimum value when m = m0 where m0 is the exact value of the number of change

points. Hence, detecting m0 is the same as finding the IC(m) in (5.2) which reaches

its minimum. Then, its corresponding m is the number of change points we would

like to estimate.
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5.2 Computational algorithms

In this section, we introduce an algorithm which is useful in finding θ, τ and m. In

particular, the algorithm is based on (5.2). Let m̂ be the estimator of m, let τ̂(m̂)

be the estimator of τ(m). For estimating τ(m), we apply the LSSE method or the

Maximum log-likelihood method in Section 4. Note that some steps of the algorithm

are based on the dynamic programming algorithm from Bai and Perron (1998),

Perron and Qu (2006).

Algorithm. Let H1(r, Tr) be either H1(r, Tr) = minτ SSE([0, Tr], τ, θ̂(τ)), the least

sum squared error for (4.2) or H1(r, Tr) = maxτ logL∗([0, Tr], τ, θ̂(τ)), the maximum

Riemann sum approximation of log-likelihood for (4.7) computed based on the opti-

mal partition of time interval [0, Tr] that contains r change points. Also, let H2(a, b)

be the SSE for (4.2) or Riemann sum approximation of log-likelihood for (4.7) com-

puted based on a time regime (a, b]. Further, let h = εT be the minimal permissible

length of a time regime. Then, (4.2) or (4.7) with m change points can be computed

as follows.

Step 1: Compute and save H2(a, b) for all time periods (a, b] that satisfy b− a ≥ h.

Step 2: Compute and save H1(1, T1) for all T1 ∈ [2h, T − (m − 1)h] by solving the

optimization problem

H1(1, T1) =


mina∈[h,T1−h][H2(0, a) +H2(a, T1)] for (4.2)

maxa∈[h,T1−h][H2(0, a) +H2(a, T1)] for (4.7).
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Step 3: Sequentially compute and save

H1(r, Tr) =


mina∈[rh,Tr−h][H1(r − 1, a) +H2(a, Tr)] for (4.2)

maxa∈[rh,Tr−h][H1(r − 1, a) +H2(a, Tr)] for (4.7).

for r = 2, . . . ,m− 1, and Tr ∈ [(r + 1)h, T − (m− r)h].

Step 4: Finally, the estimated change points are obtained by solving

H1(m,T ) =


mina∈[mh,T−h][H1(m− 1, a) +H2(a, T )] for (4.2)

maxa∈[mh,T−h][H1(m− 1, a) +H2(a, T )] for (4.7),

and H1(m− 1, a) = H2(0, a) if m = 1.

Step 5: Follow steps 1-4 to search for the optimal locations of the m estimated change

points then store the computed value of (5.2) for m = 0, 1, 2. Note that the results

of H2(a, b) for all (a, b] such that a − b ≥ h as well as the optimization results of

H1(r, Tr) for all r = 1, . . . ,m and Tr ∈ [(r + 1)h, T − (m− r)h] need to be stored for

future use.

Step 6: For m = 3, . . . ,mmax, first let r = m − 1 and Tr ∈ [(r + 1)h, T − (m − r)h]

then compute and store H1(r, Tr). Next let r = m and the estimated change points

are obtained by solving H1(m,T ), where H1(r, Tr) and H1(m,T ). Finally, based on

the estimated m change points, compute and store IC(m).

Step 7: m̂ is obtained from m = 1, . . . ,mmax that returns the smallest value of (5.2).

To find m̂, at first, we need to find the range of m, 0 < m ≤ mmax where

0 ≤ mmax ≤ d[T/h]e. The mmax can be determined by observing and analyzing the

given process. By Proposition B.2 in Appendix B, m̂ is a consistent estimator

provided m0 ∈ [0,mmax].
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5.3 Asymptotic properties of the UE and the RE

In this section, we derive some asymptotic properties of θ̂(φ̂, m̂) and θ̃(φ̂, m̂). As

compared to the results of Chapter 3-4, the problem studied here is very challenging.

The main difficulty consists in the fact that the dimensions of θ̂(φ̂, m̂) and θ̃(φ̂, m̂)

depend on m̂ which is random variable. To overcome this difficulty, we establish a

lemma and a proposition which are of interest in their own.

Let m̂ be a consistent estimator for m. The UE and RE are obtained as in

Section 4, by plug-in i.e. by replacing , in θ̂(φ̂,m) and θ̃(φ̂,m), m by m̂. Thus, the

UE is given by θ̂(φ̂, m̂) and the RE is given by θ̃(φ̂, m̂). Below, we derive a result

which is useful in establishing a test for the testing problem in (2.4), as well as in

studying the relative efficiency of the UE and the RE. As a preliminary result, we

prove the following lemma.

Lemma 5.1. Let m̂ be non-negative integer valued random variable and let m be a

nonrandom integer number such that m̂
P−−−→

T→∞
m. Let XT (m̂), XT (m) and X(m) be

q-column random vectors such that XT (m)
d−−−→

T→∞
X(m). Then, XT (m̂)

d−−−→
T→∞

X(m).

Proof. For the sake of simplicity, for q-column vectors a and b, we write a ≤ b to

stand for ai ≤ bi, i = 1, 2, . . . , q. Let x be a point of continuity of the cdf of X(m).

We have

lim
T→∞

P(XT (m̂) ≤ x) = lim
T→∞

P(XT (m̂) ≤ x, m̂ = m) + lim
T→∞

P(XT (m̂) ≤ x, m̂ 6= m).

lim
T→∞

P(XT (m) ≤ x) = lim
T→∞

P(XT (m) ≤ x, m̂ = m) + lim
T→∞

P(XT (m) ≤ x, m̂ 6= m).

Since lim
T→∞

P(m̂ = m) = 1, then,

lim
T→∞

P(XT (m̂) ≤ x) = lim
T→∞

P(XT (m) ≤ x, m̂ = m), (5.3)
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lim
T→∞

P(XT (m) ≤ x) = lim
T→∞

P(XT (m) ≤ x, m̂ = m). (5.4)

By combining (5.3), (5.4) and lim
T→∞

P(XT (m) ≤ x) = P(X(m) ≤ x), we have

lim
T→∞

P(XT (m̂) ≤ x) = P(X(m) ≤ x). This complete the proof.

By combining this lemma with Proposition 4.10 and Proposition 4.11., we establish

the following proposition. Let ρT (φ̂, m̂) =
√
T (θ̂(φ̂, m̂)− θ), let

ζT (φ̂, m̂) =
√
T (θ̃(φ̂, m̂)− θ) and let ξT (φ̂, m̂) =

√
T (θ̂(φ̂, m̂)− θ̃(φ̂, m̂)).

In the following proposition, let g : R(m+1)(p+1) × R(m+1)(p+1) → Rq be a continuous

function, where q does not depend on m.

Proposition 5.1. Suppose that Assumption 1-3 hold along with the set of local

alternatives in (3.8). Then, if r0 6= 0, g(ρT (φ̂, m̂), ζT (φ̂, m̂))
d−−−→

T→∞
g(ρ, ζ), and

g(ρT (φ̂, m̂), ξT (φ̂, m̂))
d−−−→

T→∞
g(ρ, ξ), where ρ, ζ and ξ are defined in Proposition 4.10

and Proposition 4.11. Moreover, if r0 = 0, g(ρT (φ̂, m̂), ζT (φ̂, m̂))
d−−−→

T→∞
g(ρ0, ζ0), and

g(ρT (φ̂, m̂), ξT (φ̂, m̂))
d−−−→

T→∞
g(ρ0, ξ0), where ρ0, ζ0 and ξ0 are defined in Proposition

4.10 and Proposition 4.11.

The proof follows directly from Proposition 4.10 and Proposition 4.11. Proposi-

tion 5.1 is useful in constructing a test statistic for the testing problem in (2.4). It is

also used to derive the local power as well as the asymptotic distribution risk of the

proposed estimators.
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Chapter 6

Shrinkage estimators

In this chapter, we construct a test for testing the restriction and derive a class of

shrinkage estimators which includes as special cases the UE, the RE, the shrinkage

estimator (SE) and positive-part shrinkage estimator (PSE) for θ. As compared to

the results in statistical literature, the novelty of the established results consists in the

fact that, the distributions of the RE and the UE are random, as they are functions

of m̂.

6.1 Testing the restriction

In this section, we develop a test for testing H0 : Bθ = r versus Ha : Bθ 6= r. First,

note that, in the continuous time observation, the diffusion coefficient (i.e. σ2) is

considered as known as it is equal to the quadratic variation of the process. Let σ̂2

be the discretized version of quadratic variation of the process, and note that σ̂2 is a

consistent estimator for σ2. Let χ2
q(λ) be the chi-square random variable (r.v.) with

q-degrees of freedom (df), and non-centrality parameter λ; let χ2
q be the chi-square
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r.v. with q df. Also, define ∆ =
1

σ2
r>0 (BΣ−1B>)−1r0 where r0 is given as in (3.8),

and let Γ̂ =
1

σ̂2
B>(BTQ−1(φ̂, m̂)B>)−1B, Γ =

1

σ2
B>(BΣ−1B>)−1B.

From Proposition 5.1, we derive the following corollary. This corollary is the founda-

tion to test H0 : Bθ = r versus Ha : Bθ 6= r. Let ψT (m̂) = ξT (φ̂, m̂)>Γ̂ξT (φ̂, m̂), let

ψ(m) = ξ>Γξ, and let ψ0(m) = ξ>0 Γξ0.

Corollary 6.1. Suppose that the conditions of Proposition 5.1 hold. Then, if r0 6= 0,

ψT (m̂)
d−−−→

T→∞
ψ(m) ∼ χ2

q(∆). Moreover, if r0 = 0, then ψT (m̂)
d−−−→

T→∞
ψ0(m) ∼ χ2

q.

Proof. We first give the proof for the case when r0 6= 0. By Proposition 5.1,

we have g(ρT (φ̂, m̂), ξT (φ̂, m̂))
d−−−→

T→∞
g(ρ, ξ), where (ρ>, ξ>)> are given by

Proposition 4.11, for any function g : R(m+1)(p+1) × R(m+1)(p+1) → Rq.

Take g(x, y) = y>Γy. We get

ξ>T (φ̂, m̂)ΓξT (φ̂, m̂)
d−−−→

T→∞
ξ>Γξ. (6.1)

Further, from lemma 5.1, we have

Γ̂ =
1

σ̂2
B>(BTQ−1(φ̂, m̂)B>)−1B

P−−−→
T→∞

Γ =
1

σ2
B>(BΣ−1B>)−1B. (6.2)

Then, combining (6.1) and (6.2) with Slutsky’s Theorem,

ψT (m̂) = ξT (φ̂, m̂)>Γ̂ξT (φ̂, m̂)
d−−−→

T→∞
ψ(m) = ξ>Γξ.

It suffices to apply Theorem 5.1.3 in Mathai and Provost (1992) (see also Theorem

A.5 in the Appendix A) to prove that ξ>Γξ ∼ χ2
q(∆). Namely, it suffices to show that

(i) trace(Γσ2G∗BΣ−1) = q and (G∗r0)>ΓG∗r0 = ∆

(ii) σ2G∗BΣ−1Γσ2G∗BΣ−1Γσ2G∗BΣ−1 = σ2G∗BΣ−1Γσ2G∗BΣ−1

(iii) (G∗r0)>Γσ2G∗BΣ−1ΓG∗r0 = (G∗r0)>ΓG∗r0
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(iv) (G∗r0)>(Γσ2G∗BΣ−1)2 = (G∗r0)>Γσ2G∗BΣ−1

For the statment in (i), since we defined G∗ = Σ−1B>(BΣ−1B>)−1,

(G∗r0)>ΓG∗r0 = r>0 (BΣ−1B>)−1BΣ−1 1

σ2
B>(BΣ−1B>)−1BΣ−1B>(BΣ−1B>)−1r0

=
1

σ2
r>0 (BΣ−1B>)−1r0 = ∆,

and

Γσ2G∗BΣ−1 =
1

σ2
B>(BΣ−1B>)−1Bσ2Σ−1B>(BΣ−1B>)−1BΣ−1

= B>(BΣ−1B>)−1BΣ−1,

which implies that

trace(Γσ2G∗BΣ−1) = trace(B>(BΣ−1B>)−1BΣ−1)

= trace((BΣ−1B>)−1BΣ−1B>) = q,

this proves the statement in (i).

For the statement in (ii), we have

σ2G∗BΣ−1Γσ2G∗BΣ−1Γσ2G∗BΣ−1 = σ2Σ−1B>(BΣ−1B>)−1BΣ−1 1

σ2
B>(BΣ−1B>)−1B

× σ2Σ−1B>(BΣ−1B>)−1BΣ−1Γσ2G∗BΣ−1.

This gives

σ2G∗BΣ−1Γσ2G∗BΣ−1Γσ2G∗BΣ−1 = σ2Σ−1B>(BΣ−1B>)−1BΣ−1Γσ2G∗BΣ−1

= σ2G∗BΣ−1Γσ2G∗BΣ−1,

this proves the statement in (ii).

For the statement in (iii), we have

Γσ2G∗BΣ−1Γ =
1

σ2
B>(BΣ−1B>)−1Bσ2Σ−1B>(BΣ−1B>)−1BΣ−1 1

σ2
B>(BΣ−1B>)−1B,
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This gives

Γσ2G∗BΣ−1Γ =
1

σ2
B>(BΣ−1B>)−1B = Γ,

which implies that

(G∗r0)>Γσ2G∗BΣ−1ΓG∗r0 = (G∗r0)>ΓG∗r0,

this proves the statement in (iii).

For the statement in (iv), since we have Γσ2G∗BΣ−1Γ = Γ,

(G∗r0)>(Γσ2G∗BΣ−1)2 = (G∗r0)>Γσ2G∗BΣ−1,

this proves the statement in (iv).

Similarly, in the case of r0 = 0, we have

ψT (m̂)
D−−−→

T→∞
ψ0(m) = ξ>0 Γξ0 ∼ χ2

q,

this completes the proof.

Then, let χ2
α;q be the αth-quantile of a χ2

q where 0 < α ≤ 1. From Corollary 6.1,

we propose a test for the hypothesis testing problem in (2.3). We suggest

κ(φ̂, T ) = I{ψT (m̂)>χ2
α;q}. (6.3)

The following corollary shows that the test κ(φ̂, T ) is consistent.

Corollary 6.2. Suppose that the conditions of Corollary 6.1 hold. Then, the asymp-

totic power function of the test in (6.3) is given by Π(∆) = P
(
χ2
q(∆) ≥ χ2

α;q

)
.

The proof follows directly from Corollary 6.1.

It is obvious that r0 = 0 under the null hypothesis in (2.3). It implies that ∆ = 0.

Then, by Corollary 6.2, the asymptotic power of the test is equal to α. Moreover, the

asymptotic power tends to 1 as ∆ tends to infinity.
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6.2 A class of shrinkage estimators

Usually, the RE should dominate the UE if the restriction holds. In contrast, when the

restriction is wrong, the UE is more efficient than the RE. As a comprising estimation

method, we construct shrinkage estimators (SEs) by combining the RE and the UE

in the optimal way. To this end, by following Nkurunziza (2012b), we consider the

following class of shrinkage type estimators

θ̂s(h) = θ̃(φ̂, m̂) + h(‖θ̂(φ̂, m̂)− θ̃(φ̂, m̂)‖Γ̂)(θ̂(φ̂, m̂)− θ̃(φ̂, m̂)), (6.4)

where ‖x‖A = x>Ax, h is continuous real-valued function on (0,+∞). It should be

noticed that although (6.4) looks like some existing results in literature, this is not

the case. Indeed, the dimensions of the random vectors in (6.4) are random, as they

depend on m̂. Because of that, the derivation of the asymptotic distributional risk

does not follow from the results in literature. In particular, if h(x) = (1− q−2
x

), x > 0,

we get the shrinkage estimator (SE) given by

θ̂s = θ̃(φ̂, m̂) + [1− (q − 2)ψT (m̂)−1](θ̂(φ̂, m̂)− θ̃(φ̂, m̂)), (6.5)

where 2 < q = rank(B) < (m + 1)(p + 1), and ψT (m̂) is given as in Corollary

6.1. Further, let a+ = max{0, a}, and let h(x) = (1 − q−2
x

)+, x > 0. We get the

positive-part shrinkage estimator (PSE) given by

θ̂s+ = θ̃(φ̂, m̂) + [1− (q − 2)ψT (m̂)−1]+(θ̂(φ̂, m̂)− θ̃(φ̂, m̂)). (6.6)

Note that the proposed class of estimators includes also the UE and the RE by taking

h ≡ 1 and h ≡ 0, respectively. Further, note that the SEs in (6.5) and (6.6) have the

same form as that in Saleh (2006), Sen and Saleh (1987) among others. Nevertheless,

the dimensions of θ̂s and θ̂s+ are random variables. Thus, the derivation of the relative

efficiency does not follow from the results in literature.
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Chapter 7

Comparison between estimators

In this chapter, we derive the asymptotic distributional risk (ADR) functions of the

proposed class of estimators as well as that of SEs, UE and RE. We also compare the

performance of these estimators.

7.1 Asymptotic distributional risk

In this section, we derive the ADR functions based on Theorem 2.1-2.3 of Nkurunziza

(2012) along with Proposition 5.1. Let Ω be the (m+1)(p+1)×(m+1)(p+1) positive

symmetric semi-definite weighting matrix. First of all, we introduce the quadratic loss

function in the form of

L
(
θ̂0, θ; Γ

)
= T (θ̂0 − θ)>Ω(θ̂0 − θ), (7.1)

where θ̂0 represents an estimator such as θ̂s, θ̂s+, θ̂(φ̂, m̂) and θ̃(φ̂, m̂).

The ADR of an estimator θ̂0 is defined as

ADR
(
θ̂0, θ,Ω

)
= E[ε>Ωε], (7.2)

where ε is the random vector such that T (θ̂0 − θ)>Ω(θ̂0 − θ)
d−−−→

T→∞
ε>Ωε.
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Proposition 7.1. Suppose that Assumptions 1-3 hold along with the set of local

alternatives in (3.8). Then, the following two conditions hold.

(i) (σ2G∗BΣ−1)Ξ is an idempotent matrix;

(ii) Ξ(σ2G∗BΣ−1)ΞG∗r0 = ΞG∗r0.

Proof. To prove the statement in (i), we observe that

(σ2G∗BΣ−1)Ξ = (σ2G∗BΣ−1)
1

σ2
Σ = G∗B.

Then, we have

(σ2G∗BΣ−1)Ξ(σ2G∗BΣ−1)Ξ = G∗BG∗B.

Note that, since G∗ = Σ−1B>(BΣ−1B>)−1,

G∗BG∗B = Σ−1B>(BΣ−1B>)−1BΣ−1B>(BΣ−1B>)−1B

= Σ−1B>(BΣ−1B>)−1B = G∗B.

This gives

(σ2G∗BΣ−1)Ξ(σ2G∗BΣ−1)Ξ = (σ2G∗BΣ−1)Ξ,

this proves the statement in (i). To prove the statement in (ii), we have

Ξ(σ2G∗BΣ−1)ΞG∗r0 =
1

σ2
Σ(σ2Σ−1B>(BΣ−1B>)−1BΣ−1)

1

σ2
ΣΣ−1B>(BΣ−1B>)−1r0

=
1

σ2
ΣΣ−1B>(BΣ−1B>)−1r0 = ΞG∗r0,

this proves the statement in (ii).

Let Λ22 = Σ−1 −G∗BΣ−1.

Theorem 7.1. Suppose that Assumptions 1-3 hold. Then,

ADR(θ̂s(h), θ,Ω) = σ2trace(ΩΛ22) + r>0 G
∗>ΩG∗r0 − 2E[h(χ2

q+2(∆))]r>0 G
∗>ΩG∗r0

+ σ2E[h2(χ2
q+2(∆))]trace(Ω(Σ−1 − Λ22)) + E[h2(χ2

q+4(∆))]r>0 G
∗>ΩG∗r0.
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The proof follows from Proposition 5.1 and Theorems 2.1-2.3 of Nkurunziza (2012b)

by taking L1 ≡ B, L2 ≡ 1, Ξ1 ≡ 1
σ2B

>(BΣ−1B>)−1B, δ ≡ G∗r0, Σ∗ ≡ σ2(Σ−1−Λ22),

p ≡ 1. By using Theorem 7.1, we derive the ADR functions of UE and RE in

Theorem 7.2 and Theorem 7.3.

Theorem 7.2. Suppose that Assumptions 1-3 hold. Then, the ADR of the UE θ̂(φ̂, m̂)

is given by ADR
(
θ̂(φ̂, m̂), θ,Ω

)
= σ2trace(ΩΣ−1).

The proof follows from Theorem 7.1 by taking h = 1. We also give an alternative

proof in the Appendix B.

Theorem 7.3. Suppose that Assumptions 1-3 hold along with the set of local alter-

natives in (3.8). Then, the ADR of the RE θ̃(φ̂, m̂) is

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
− σ2trace(ΩG∗BΣ−1) + r>0 G

∗>ΩG∗r0.

The proof follows from Theorem 7.1 by taking h = 0. We also give an alternative

proof in the Appendix B.

In this section, the ADR function of the shrinkage estimator is derived based

on the Theorem 3.1 in Nkurunziza (2012b) (see also Theorem A.8 in Appendix A).

First, we prove the conditions in Theorem 2.2 and 2.3 in Nkurunziza (2012b) (see

also Theorem A.6 and Theorem A.7 in Appendix A).

By Proposition 5.1, we have g(ζT (φ̂, m̂), ξT (φ̂, m̂))
d−−−→

T→∞
g(ζ, ξ), withξ

ζ

 ∼ N2(m+1)(p+1)


 G∗r0

−G∗r0

 , σ2

G∗BΣ−1 0

0 Σ−1 −G∗BΣ−1


 .

Now, we define Ξ =
1

σ2
Σ. By the way, by Proposition 3.5, one can prove that it is

positive definite. Now, the ADR of the shrinkage estimator is shown in the following

theorem. Before that, we recall that ∆ =
1

σ2
r>0 (BΣ−1B>)−1r0.
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Theorem 7.4. Suppose that the conditions of Proposition 7.1 hold. Then, the ADR

of the shrinkage estimator θ̂s is

ADR
(
θ̂s, θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
+ (q + 2)(q − 2)r>0 G

∗>ΩG∗r0E[χ−4
q+4(∆)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2E[χ−2
q+2(∆)]− (q − 2)E[χ−4

q+2(∆)]).

Proof. Let L1 = B, L2 = 1, k = 1, Ξ1 = 1
σ2B

>(BΣ−1B>)−1B, δ = G∗r0 and

Σ∗ = σ2G∗BΣ−1. Since the conditions (i) and (ii) in Proposition 7.1 hold, we can

apply Theorem 3.1 in Nkurunziza (2012b) by taking the measurable function

h(x) =
[
1− q−2

x

]
, x > 0. We have

ADR
(
θ̂s, θ,Ω

)
= trace

[
Ω(σ2Σ−1 − σ2G∗BΣ−1)

]
+ r>0 G

∗>ΩG∗r0

− 2r>0 G
∗>ΩG∗r0E[1− (q − 2)χ−2

q+2(∆)]

+ σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2]

+ r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+4(∆))2].

Then, we have

ADR
(
θ̂s, θ,Ω

)
= σ2trace(ΩΣ−1)− σ2trace(ΩG∗BΣ−1) + r>0 G

∗>ΩG∗r0

− 2r>0 G
∗>ΩG∗r0 + 2(q − 2)r>0 G

∗>ΩG∗r0E[χ−2
q+2(∆)]

+ σ2trace(ΩG∗BΣ−1)− 2(q − 2)σ2trace(ΩG∗BΣ−1)E[χ−2
q+2(∆)]

+ (q − 2)2σ2trace(ΩG∗BΣ−1)E[χ−4
q+2(∆)]

+ r>0 G
∗>ΩG∗r0 − 2(q − 2)r>0 G

∗>ΩG∗r0E[χ−2
q+4(∆)]

+ (q − 2)2r>0 G
∗>ΩG∗r0E[χ−4

q+4(∆)].
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This gives that

ADR
(
θ̂s, θ,Ω

)
= σ2trace(ΩΣ−1) + 2(q − 2)r>0 G

∗>ΩG∗r0(E[χ−2
q+2(∆)]− E[χ−2

q+4(∆)])

− (q − 2)σ2trace(ΩG∗BΣ−1)(2E[χ−2
q+2(∆)]− (q − 2)E[χ−4

q+2(∆)])

+ (q − 2)2r>0 G
∗>ΩG∗r0E[χ−4

q+4(∆)].

Since

E[χ−2
q+2(∆)]− E[χ−2

q+4(∆)] = 2E[χ−4
q+4(∆)],

then,

ADR
(
θ̂s, θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
+ (q + 2)(q − 2)r>0 G

∗>ΩG∗r0E[χ−4
q+4(∆)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2E[χ−2
q+2(∆)]− (q − 2)E[χ−4

q+2(∆)]),

this completes the proof.

The following theorem shows the ADR function of the positive-part shrinkage

estimator.

Theorem 7.5. Suppose that Assumptions 1-3 hold along with the set of local alter-

natives in (3.8). Then, the ADR of the positive-part shrinkage estimator θ̂s+ is

ADR
(
θ̂s+, θ,Ω

)
= ADR

(
θ̂s, θ,Ω

)
+ 2r>0 G

∗>ΩG∗r0E[(1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)<q−2}]

− σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}]

− r>0 G∗>ΩG∗r0E[(1− (q − 2)χ−2
q+4(∆))2I{χ2

q+4(∆)<q−2}].

Proof. To begin this proof, we redefine the measurable function

h(x) =

[
1− q − 2

x

]
I{x≥q−2}, x > 0.
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Then, by Theorem 3.1 in Nkurunziza (2012b), we have

ADR
(
θ̂s+, θ,Ω

)
= trace

[
Ω(σ2Σ−1 − σ2G∗BΣ−1)

]
+ r>0 G

∗>ΩG∗r0

− 2r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+2(∆))I{χ2
q+2(∆)≥q−2}]

+ σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)≥q−2}]

+ r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+4(∆))2I{χ2
q+4(∆)≥q−2}].

Note that

E[(1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)≥q−2}] = E[(1− (q − 2)χ−2
q+2(∆))]

− E[(1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)<q−2}],

E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)≥q−2}] = E[(1− (q − 2)χ−2
q+2(∆))2]

− E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}],

E[(1− (q − 2)χ−2
q+4(∆))2I{χ2

q+4(∆)≥q−2}] = E[(1− (q − 2)χ−2
q+4(∆))2]

− E[(1− (q − 2)χ−2
q+4(∆))2I{χ2

q+4(∆)<q−2}].

This gives

ADR
(
θ̂s+, θ,Ω

)
= trace

[
Ω(σ2Σ−1 − σ2G∗BΣ−1)

]
+ r>0 G

∗>ΩG∗r0

− 2r>0 G
∗>ΩG∗r0E[1− (q − 2)χ−2

q+2(∆)]

+ σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2]

+ r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+4(∆))2]

+ 2r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+2(∆))I{χ2
q+2(∆)<q−2}]

− σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}]

− r>0 G∗>ΩG∗r0E[(1− (q − 2)χ−2
q+4(∆))2I{χ2

q+4(∆)<q−2}],
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which implies that

ADR
(
θ̂s+, θ,Ω

)
= ADR

(
θ̂s, θ,Ω

)
+ 2r>0 G

∗>ΩG∗r0E[(1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)<q−2}]

− σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}]

− r>0 G∗>ΩG∗r0E[(1− (q − 2)χ−2
q+4(∆))2I{χ2

q+4(∆)<q−2}].

This completes the proof.

7.2 Risk Analysis

In this section, by using the ADR function derived in Section 7.1, we compare the

performance of the proposed estimators. To this end, let λ1 denote the smallest eigen-

value of the matrix
[
(G∗>ΓG∗)−1G∗>ΩG∗

]
and let λn denote the largest eigenvalue

of it. First, we compare the relative efficiency of the UE and the RE by the following

proposition.

Proposition 7.2. Suppose that Assumptions 1-3 hold along with the set of local

alternatives in (3.8). If ∆ ≤ (σ2trace(ΩG∗BΣ−1)) /λn, then the θ̃(φ̂, m̂) dominates

the θ̂(φ̂, m̂), and if ∆ ≥ (σ2trace(ΩG∗BΣ−1)) /λ1, then the θ̂(φ̂, m̂) dominates the

θ̃(φ̂, m̂).

Proof. By Theorem 7.3, we have

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
− σ2trace(ΩG∗BΣ−1) + r>0 G

∗>ΩG∗r0,

which implies that

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
= r>0 G

∗>ΩG∗r0 − σ2trace(ΩG∗BΣ−1).
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We observe that, since G∗ = Σ−1B>(BΣ−1B>)−1 and Γ = 1
σ2B

>(BΣ−1B>)−1B,

G∗>ΓG∗ = (BΣ−1B>)−1BΣ−1 1

σ2
B>(BΣ−1B>)−1BΣ−1B>(BΣ−1B>)−1 =

1

σ2
(BΣ−1B>)−1,

which is positive definite for σ > 0.

Then, by Theorem 2.4.7 in Mathai and Provost (1992), we have

λ1 ≤
r>0 G

∗>ΩG∗r0

r>0 G
∗>ΓG∗r0

≤ λn.

Note that, since ∆ =
1

σ2
r>0 (BΣ−1B>)−1r0, (BΣ−1B>)−1 is positive definite, ∆ =

1

σ2
r>0 (BΣ−1B>)−1r0 ≥ 0.

If ∆ > 0, from the proof of Corollary 6.1, we have ∆ = r>0 G
∗>ΓG∗r0, then

λ1∆− σ2trace(ΩG∗BΣ−1) ≤ ADR
(
θ̃(φ̂, m̂), θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
, (7.3)

and

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
≤ λn∆− σ2trace(ΩG∗BΣ−1). (7.4)

By (7.3), if

λ1∆− σ2trace(ΩG∗BΣ−1) ≥ 0,

then, ADR
(
θ̃(φ̂, m̂), θ,Ω

)
≥ ADR

(
θ̂(φ̂, m̂), θ,Ω

)
.

Similarly, by (7.4), if

λn∆− σ2trace(ΩG∗BΣ−1) ≤ 0,

then, ADR
(
θ̃(φ̂, m̂), θ,Ω

)
≤ ADR

(
θ̂(φ̂, m̂), θ,Ω

)
. This completes the proof.

Next, we present the following proposition to show the dominance between θ̂(φ̂, m̂)

and θ̂s.

Proposition 7.3. Suppose that Assumptions 1-3 hold along with the set of local

alternatives in (3.8). If σ2trace(ΩG∗BΣ−1)/λn ≥ (q+2)/2 with q ∈ (2, (m+1)(p+1)),

then the shrinkage estimator θ̂s dominates the UE θ̂(φ̂, m̂).
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Proof. By Theorem 7.4, we have

ADR
(
θ̂s, θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
+ (q + 2)(q − 2)r>0 G

∗>ΩG∗r0E[χ−4
q+4(∆)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2E[χ−2
q+2(∆)]− (q − 2)E[χ−4

q+2(∆)]).

Then, by the identity in Saleh (2006, p. 32), we have

∆E[χ−4
q+4(∆)] = E[χ−2

q+2(∆)]− (q − 2)E[χ−4
q+2(∆)],

this gives

ADR
(
θ̂s, θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
+ (q + 2)(q − 2)r>0 G

∗>ΩG∗r0E[χ−4
q+4(∆)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2∆E[χ−4
q+4(∆)] + (q − 2)E[χ−4

q+2(∆)]).

Note that, since ∆ =
1

σ2
r>0 (BΣ−1B>)−1r0, (BΣ−1B>)−1 is positive definite and,

∆ =
1

σ2
r>0 (BΣ−1B>)−1r0 ≥ 0. Then, ∆ = 0 if an only if r0 = 0.

If ∆ = 0, we have

ADR
(
θ̂s, θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
− (q − 2)2σ2trace(ΩG∗BΣ−1)E[χ−4

q+2],

this gives

ADR
(
θ̂s, θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
= −(q − 2)2σ2trace(ΩG∗BΣ−1)E[χ−4

q+2].

Since ΩG∗BΣ−1 is positive definite, we have

trace(ΩG∗BΣ−1) ≥ 0. (7.5)

Further, since χ−4
q+2 is a non-negative random variable, by (7.5), we have

ADR
(
θ̂s, θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
= −(q − 2)2σ2trace(ΩG∗BΣ−1)E[χ−4

q+2] ≤ 0,
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which implies that ADR
(
θ̂s, θ,Ω

)
≤ ADR

(
θ̂(φ̂, m̂), θ,Ω

)
. If ∆ > 0, we have

ADR
(
θ̂s, θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
+ (q + 2)(q − 2)r>0 G

∗>ΩG∗r0E[χ−4
q+4(∆)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2∆E[χ−4
q+4(∆)] + (q − 2)E[χ−4

q+2(∆)]),

then,

ADR
(
θ̂s, θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
= −(q − 2)σ2trace(ΩG∗BΣ−1)

×
[
2∆E[χ−4

q+4(∆)]

(
1− (q + 2)r>0 G

∗>ΩG∗r0

2∆σ2trace(ΩG∗BΣ−1)

)
+ (q − 2)E[χ−4

q+2(∆)]

]
.

Now, let

H =

(
1− (q + 2)r>0 G

∗>ΩG∗r0

2∆σ2trace(ΩG∗BΣ−1)

)
,

we have

ADR
(
θ̂s, θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
= −(q − 2)σ2trace(ΩG∗BΣ−1)

[
2∆E[χ−4

q+4(∆)]H + (q − 2)E[χ−4
q+2(∆)]

]
.

From (7.5) with the fact that χ−4
q+2(∆) and χ−4

q+4(∆) are non-negative random variables,

we have, ADR
(
θ̂s, θ,Ω

)
− ADR

(
θ̂(φ̂, m̂), θ,Ω

)
≤ 0 for all ∆ > 0 given that q > 2

and

H = 1− (q + 2)r>0 G
∗>ΩG∗r0

2∆σ2trace(ΩG∗BΣ−1)
≥ 0. (7.6)

Then, by Theorem 2.4.7 in Mathai and Provost (1992), we have

λ1 ≤
r>0 G

∗>ΩG∗r0

r>0 G
∗>ΓG∗r0

≤ λn.

This gives, from the proof of Corollary 6.1, we know that ∆ = r>0 G
∗>ΓG∗r0,

1− (q + 2)λn∆

2∆σ2trace(ΩG∗BΣ−1)
≤ 1− (q + 2)r>0 G

∗>ΩG∗r0

2∆σ2trace(ΩG∗BΣ−1)
,
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and

1− (q + 2)λ1∆

2∆σ2trace(ΩG∗BΣ−1)
≥ 1− (q + 2)r>0 G

∗>ΩG∗r0

2∆σ2trace(ΩG∗BΣ−1)
.

Then, the relation in (7.6) holds if

1− (q + 2)λn∆

2∆σ2trace(ΩG∗BΣ−1)
≥ 0,

and this holds if and only if

σ2trace(ΩG∗BΣ−1)

λn
≥ q + 2

2
,

this completes the proof.

Finally, we compare the relative performance between θ̂s and θ̂s+ in the proposition

below.

Proposition 7.4. Suppose that Assumptions 1-3 hold along with the set of local

alternatives in (3.8). Then, the positive-part shrinkage estimator θ̂s+ dominates the

shrinkage estimator θ̂s.

Proof. By Theorem 7.5

ADR
(
θ̂s+, θ,Ω

)
= ADR

(
θ̂s, θ,Ω

)
+ 2r>0 G

∗>ΩG∗r0E[(1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)<q−2}]

− σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}]

− r>0 G∗>ΩG∗r0E[(1− (q − 2)χ−2
q+4(∆))2I{χ2

q+4(∆)<q−2}].
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This gives

ADR
(
θ̂s, θ,Ω

)
− ADR

(
θ̂s+, θ,Ω

)
= −2r>0 G

∗>ΩG∗r0E[(1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)<q−2}]

+ σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}]

+ r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+4(∆))2I{χ2
q+4(∆)<q−2}].

Note that Ω is positive semi-definite matrix, r>0 G
∗>ΩG∗r0 is a non-negative real

number. Also, we observe that (1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)<q−2} < 0, then

E[(1− (q − 2)χ−2
q+2(∆))I{χ2

q+2(∆)<q−2}] < 0. Hence,

−2r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+2(∆))I{χ2
q+2(∆)<q−2}] ≥ 0. (7.7)

Since ΩG∗BΣ−1 is positive definite, trace(ΩG∗BΣ−1) is a non-negative real number.

Also, we observe that (1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2} ≥ 0, then

E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}] ≥ 0. Hence,

σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(∆))2I{χ2

q+2(∆)<q−2}] ≥ 0. (7.8)

We observe that (1− (q − 2)χ−2
q+4(∆))2I{χ2

q+4(∆)<q−2} ≥ 0, then

E[(1−(q−2)χ−2
q+4(∆))2I{χ2

q+4(∆)<q−2}] ≥ 0. Hence, since r>0 G
∗>ΩG∗r0 is a non-negative

real number, we have

r>0 G
∗>ΩG∗r0E[(1− (q − 2)χ−2

q+4(∆))2I{χ2
q+4(∆)<q−2}] ≥ 0. (7.9)

Therefore, by (7.7)-(7.9), we establish that

ADR
(
θ̂s, θ,Ω

)
− ADR

(
θ̂s+, θ,Ω

)
≥ 0,

this gives

ADR
(
θ̂s, θ,Ω

)
≥ ADR

(
θ̂s+, θ,Ω

)
,

this completes the proof.
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Chapter 8

Numerical study

In previous chapter, we derived the UE, RE, SE and PSE. In this chapter, we estimate

the number of change points by using the algorithm introduced in Section 5.2. We

also estimate the positions of change points, and compare the relative performance

of these estimators.

8.1 Simulation study

We illustrate the performance of the proposed method by using the simulation stud-

ies. We use Monte-Carlo simulation to generate the generalized O-U process. Two

cases are reported here: 1. The case of two change points; 2. The case of three change

points. For both cases, we generate the O-U process with a periodic two-dimensional

incomplete set of basis functions
{

1,
√

2 cos
(

2πt
∆

)}
where ∆ = ti+1 − ti is the time

increment in time period [0, T ]. Thus, the process is given as

dXt =
m∑
j=1

(
µ1,j + µ2,j

√
2 cos

(
2πt

∆t

)
− αjXt

)
I(τj−1,τj)dt+ σdWt (8.1)
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where j = 1, . . . ,m (m is the number of change points), φj−1T < t ≤ φjT and

X0 = 0.05. To simplify, we take σ = 1. In each case, 500 iterations are performed.

In each iteration, the positions of change points and the number of change points

are estimated. Moreover, we take Ω = I(p+1)(m+1)×(p+1)(m+1), and we also compare

the relative performance of estimators via empirical ADR. To estimate σ2, we use

σ̂2 =
1

T

n∑
i=1

(Xti −Xti−1
)2.

8.2 Performance comparison

First, we consider the case of two change points so that we let m = 2, with φ1 = 0.35

and φ2 = 0.7. In order to evaluate the effect of time period T , we generate the O-U

process with T = 20 and T = 50, with the time increment of ∆ = 0.001. Table 8.1

shows the value of coefficients which are used to generate the process. To set a linear

restriction, we take the matrix B which is given as

B = [(I3, 0)>, (−I3, I3)>, (0,−I3)>]. (8.2)

Table 8.1: Two change points (φ1 = 0.35, φ2 = 0.7)

coefficient j = 1 j = 2 j = 3

µ1,j 10 5 15

µ2,j 5 2 8

αj 3 1 4

We also consider the case of three change points. Let φ1 = 0.25, φ2 = 0.5 and

φ3 = 0.75. The value of coefficients is given in the Table 8.2. In this case, we choose

66



the linear restriction as

B = [(I3, 0, 0)>, (−I3, I3, 0)>, (0,−I3, I3)>, (0, 0,−I3)>]. (8.3)

Table 8.2: Three change points (φ1 = 0.25, φ2 = 0.5, φ3 = 0.75)

coefficient j = 1 j = 2 j = 3 j = 4

µ1,j 10 5 15 20

µ2,j 5 2 7 10

αj 3 1 3 5

For the two cases considered, we estimate the number of change points based on the

algorithm in Section 5.2. To estimate the number of change points, we take mmax = 6.

From 500 iterations, the cumulative frequency (CF) and the relative frequency (RF)

are shown in Table 8.3. The CF and RF are defined as CF =
500∑
i=1

I(m̂i=m) and

RF =
1

500

500∑
i=1

I(m̂i=m) × 100%.

Table 8.3: Cumulative frequency and relative frequency of 500 iterations

T = 20 T = 20 T = 50 T = 50

case CF RF CF RF

m = 2 497 99.4% 500 100%

m = 3 492 98.4% 500 100%

From Table 8.3, the cumulative frequency and relative frequency become larger when

we change T from 20 to 50. Thus, it seems accurate to estimate the number of change

points when T is large.
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From 500 iterations, we also estimate the locations of change points based on LSSE

method in (4.2). The mean of these locations are recorded in Table 8.4 and Table

8.5.

Table 8.4: Mean of estimates of φ1, φ2 (m = 2)

T = 20 T = 50

φ̂1 0.3522 0.3492

φ̂2 0.6996 0.7

Table 8.5: Mean of estimates of φ1, φ2, φ3 (m = 3)

T = 20 T = 50

φ̂1 0.2519 0.2501

φ̂2 0.4995 0.5002

φ̂3 0.7497 0.7502

From Tables 8.4 and 8.5, it is obvious that, as T becomes large, the estimated

locations of change points are closer to the pre-assigned values. In other words, the

method is more accurate as T increases. Further, under the case of two change points,

we estimated φ̂1 and φ̂2 in 100 replicates as T = 20, 35, 50 where φ = (0.35, 0.7). In

Figure 8.1, all the histograms are quite symmetric and unimodal with the mode

which corresponds to the exact value. As T increases, the estimates become closer to

the pre-assigned values. In the case of three change points, we also estimated φ̂ as

T = 20, 35, 50 in 100 replicates where φ = 0.25, 0.5, 0.7. From Figure 8.2, we observe

the similar results as in the case of two change points.
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Figure 8.1: Histogram of estimates of φ̂, m = 2, T = (20, 35, 50), φ = (0.35, 0.7)
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Figure 8.2: Histogram of estimates of φ̂, m = 3, T = (20, 35, 50), φ = (0.25, 0.5, 0.75)
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As in Nkurunziza and Zhang (2018), we compute the relative mean squared efficiency

(RMSE) by

RMSE(θ̂0) = ADR(θ̂(φ̂, m̂), θ; Ω)/ADR(θ̂0, θ; Ω) (8.4)

where θ̂0 represents an estimator such as θ̂s, θ̂s+, θ̂(φ̂, m̂) and θ̃(φ̂, m̂). We compute

∆ by using ∆ = 1
σ2 r
>
0 (BΣ−1B>)−1r0. We take r0 = 0.5nr, n = 1, 2, 3, 4, 5, 6.
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Figure 8.3: RMSE of UE, RE, SE, PSE versus ∆ (m = 2, T = 20)

For the two change point case, from Figures 8.3 and 8.4, near ∆ = 0, RMSE of

RE is higher than the RMSE of UE, RMSE of SE and RMSE of PSE. It means that,

near the restriction, RE is more efficient than other three estimators. These figures

also show that the efficiency of RE decreases as one moves far away from the null

hypothesis. Further, PSE and SE outperform than UE, and PSE is more efficient

than SE.
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Figure 8.4: RMSE of UE, RE, SE, PSE versus ∆ (m = 2, T = 50)
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Figure 8.5: RMSE of UMLE, RMLE, SE, PSE versus ∆ (m = 3, T = 20)
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Figure 8.6: RMSE of UMLE, RMLE, SE, PSE versus ∆ (m = 3, T = 50)

For the three change points case, from Figures 8.5 and 8.6, near H0, the perfor-

mance of the RE is better than that of UE, SE and PSE. However, as ∆ increases,

RE performs worse. Both figures show that although the efficiency of SE and PSE

decreases as ∆ increases, they are more efficient than UE. Also, PSE is more efficient

than SE. In conclusion, the numerical results of both cases are in agreement with the

theoretical results established in Section 7.2.

From Figures 8.7-8.12, it is obvious that the empirical power tends to 1 as ∆ increases

to infinity. Also, as T inceases, the empirical power also increases. It means that the

numerical results coincide with the theoretical results which show that the test in

(6.3) is consistent.
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Figure 8.7: The empirical power of the test versus ∆ and T (m = 2)
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Figure 8.8: The empirical power of the test versus ∆ and T (m = 2)
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Figure 8.9: The empirical power of the test versus ∆ and T (m = 2)
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Figure 8.10: The empirical power of the test versus ∆ and T (m = 3)

75



0.4

0.6

0.8

1.0

0 5 10 15 20

∆

P
ow

er
 (

α=
0.

05
)

T=10

T=20

T=30

T=50

Figure 8.11: The empirical power of the test versus ∆ and T (m = 3)
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Figure 8.12: The empirical power of the test versus ∆ and T (m = 3)
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Chapter 9

Conclusion

In this thesis, we considered the inference problem in generalized O-U processes with

unknown multiple change-points. In particular, the target parameter is the drift

parameter whereas the number of change-points and the locations of the change-

points are the nuisance parameters. In summary, we generalized the methods in

Chen et al. (2017) as well as in Nkurunziza and Zhang (2018). More precisely, we

generalized the main results in Chen et al. (2017) in five ways. First, we considered

the statistical model which incorporates uncertain prior information and the uncer-

tain restriction includes as a special case the nonexistence of the change-points. We

derived the unrestricted estimators (UE) and the restricted estimators (RE). Sec-

ond, in context of a known number of change-points, we derived the joint asymptotic

normality of the UE and the RE. Third, we developed a hypothesis test for testing

the restriction and we derived its asymptotic power. Fourth, we derived a class of

shrinkage estimators (SEs) which encloses as special cases the UE, the RE as well as

the classical SEs. Fifth, we derived the asymptotic distributional risk (ADR) func-

tions of the UE, the RE, the SEs, and compared their relative risk efficiency. From
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the simulation study, we found that the simulation results corroborate the derived

theoretical results.

On the top of these contributions, we derived two asymptotic properties which are of

interest on their own. Further, we waived the conditions for the results in Chen et al. (2017)

to hold. More precisely, we showed that Assumption 2 in Chen et al. (2017) is not

required for their results to hold.
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Appendix A

Theoretical Background

Lemma A.1. (Bessel’s Inequality) Let H be a Hilbert space. If {ϕi : i = 1, ..., p} is

a finite orthonormal set in H, then for any x ∈ H,

p∑
i=1

|〈x, ϕi〉|2 ≤ ‖x‖2.

Definition A.1. (Weakly Stationary) A stochastic process {Xk}k∈S is weakly sta-

tionary if it has finite first and second moments and

(i) E(Xk) is a constant, i.e., it does not depend on k

(ii) Cov(Xk, Xj) is a function of |j − k|.

Definition A.2. (Strongly Stationary) A stochastic process {Xk}k∈S is (strongly)

stationary if for any finite integer a, the joint distribution of {Xk}k∈S is equal to

the joint distribution of {Xk+a}k∈S.

Note: These two definitions of strongly and weakly stationary come with the case

of Gaussian process. For more detail, we refer to Koralov and Sinai (2007, p.234).

Let C[0, T ] be a space of continuous function from [0, T ] to R.

Proposition A.1. (Wiener integral) If f ∈ C[0, T ], then the process defined by

Xt =

∫ t

0

f(s)dBs , t ∈ [0, T ]
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is a mean zero Gaussian process with independent increment and with covariance

function

Cov(Xs, Xt) =

∫ min(s,t)

0

f 2(u)du.

Moreover, if we take the partition of [0,T] given ti = iT
n

for 0 ≤ i ≤ n and choose t∗i

to satisfy ti−1 ≤ t∗i ≤ ti for all 1 ≤ i ≤ n, then we have

lim
n→∞

n∑
i=1

f(t∗i )(Bti −Bti−1
) =

∫ T

0

f(s)dBs

where the limit is understood in the sense of convergence in probability.

For the proof of this result, we refer to Steele (2001 Proposition 7.6, p.101).

Theorem A.1. Let (Ω, A, P, τ) be a measure-preserving dynamical system. Further,

suppose that a stationary Gaussian process {Xn}n∈N0 with correlation coefficient Rn

satisfies lim
n→∞

Rn = 0. Then, τ is weakly-mixing.

For the proof of this result, we refer to Lemma 5 and Theorem 5 of Chapter II in

Gikhman and Skorohod (2004). Also, we refer to Stout (1974, Example 3.5.2, p.185.)

Theorem A.2. (Ω, A, P, τ) is ergodic if and only if for all A ,B ∈ A, the measure

preserving transformation τ is weakly-mixing.

Definition A.3. Let X = {Xt}t∈S be a stochastic process where the index set S could

be R, N, N0,Z and so on. Then, the stochastic process is X is called ergodic if

(Ω, A, P, τ) is ergodic.

Theorem A.3. Let {Xi, i ≥ 1} be stationary ergodic and let φ be a measurable

function φ : R∞ → R1. Let Yi = φ(Xi, Xi+1, ...) and define {Yi, i ≥ 1}. Then,

{Yi, i ≥ 1} is stationary ergodic.

The proof of this result is given in Stout (1974 Theorem 3.5.8, p.182).
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Theorem A.4. (Stout, 1974, Theorem 3.5.7, p.181) Let {Xi, i ≥ 1} be a stationary

and ergodic process with E[|Xi|] <∞. Then, 1
n

∑n
i=1Xi

a.s.−−−→
n→∞

E[X1].

Theorem A.5. (Mathai and Provost, 1992, Theorem 5.1.3 ) If X ∼ Np(µ,Σ) and Σ

is positive semidefinite, then a set of necessary and sufficient conditions for X>AX ∼

χ2
q(∆) is

(i) tr(AΣ) = q and µ>Aµ = ∆,

(ii) ΣAΣAΣ = ΣAΣ,

(iii) µ>AΣAµ = µ>Aµ,

(iv) µ>(AΣ)2 = µ>AΣ.

The proof is referred to Mathai and Provost (1992 Theorem 5.1.3, p.199).

Proposition A.2. Let X ∼ Nm(µ,Σ). If A is n × m-matrix and B is n-column

vector, then AX +B ∼ N (Aµ+B,AΣA>).

A.1 Identities in Shrinkage method

Theorem A.6. (Nkurunziza, 2012b, Theorem 2.2) LetX
Y

 ∼ N2q×2k


M1

M2

 ,

Υ11 ⊗ Λ11 0

0 Υ22 ⊗ Λ22




where Λ11 is positive definite matrix, and Υ11, Υ22 and Λ22 are non-negative definite

matrices with rank p ≤ k. Also, let Ξ be a symmetric and positive definite matrix

which satisfies the following two conditions:

(i) Υ11Ξ is an idempotent matrix ;(ii) ΞΥ11ΞM1 = ΞM1.

Then, for any h Borel measurable and integrable function, and any non-negative def-
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inite matrix A, we have

E[h(trace(Λ−1
11 X

>ΞΥ11ΞX))Y >AX] = E[h(χ2
pq+2(trace(Λ−1

11 M
>
1 ΞΥ11ΞM1)))]M>

2 AM1.

Theorem A.7. (Nkurunziza, 2012b, Theorem 2.3) Let X ∼ Nq×k(M,Υ⊗Λ), where

Λ is a positive definite matrix and Υ is a non-negative definite matrix with rank p ≤ k.

Also, let A and Ξ be positive definite symmetric matrices and assume that Ξ satisfies

the following two conditions:

(i) ΥΞ is an idempotent matrix ;(ii) ΞΥΞM = ΞM .

Then, for any h Borel measurable and integrable function, we have

E[h(trace(Λ−1X>ΞΥΞX))trace(X>AX)]

= E[h(χ2
pq+2(trace(Λ−1M>ΞΥΞM)))]trace(AΥ)trace(A)

+ E[h(χ2
pq+4(trace(Λ−1M>ΞΥΞM)))]trace(M>AM).

Theorem A.8. (Nkurunziza, 2012b, Theorem 3.1) Let Σ = Λ−1, Σ∗ = ΛL>1 (L1ΛL>1 )−1L1Λ,

and δ = ΛL>1 (L1ΛL>1 )−1(L1θL2 − d). Then, the risk function of the estimator θ̂ is

given by

R(θ̂, θ,Ω) = trace(Ω(Σ− Σ∗))trace(L>2 L2) + trace(δ>Ωδ)

− 2E[h(χ2
pq+2(trace((L>2 L2)−1δ>Ξ1δ)))]trace(δ>Ωδ)

+ E[h2(χ2
pq+2(trace((L>2 L2)−1δ>Ξ1δ)))]trace(ΩΣ∗)trace(L>2 L2)

+ E[h2(χ2
pq+4(trace((L>2 L2)−1δ>Ξ1δ)))]trace(δ>Ωδ).
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Appendix B

Some Technical Results and Proofs

Proposition B.1. Suppose that the conditions in Proposition 4.1 hold. Then, φ̂ is a

consistent estimator for φ. Further, for every ε > 0, there exists a C > 0 such that

for large T , P(T max
1≤j≤m

|φ̂j − φj| > C) < ε.

The proof is similar to that given for Proposition 4.2 of Chen et al. (2017).

Proposition B.2. Under Assumption 1-4. we have that for large T,

(i) IC(m0) < IC(m) a.s. ∀ m < m0 and (ii) IC(m0) < IC(m) a.s. ∀ m > m0 .

The proof is similar to that given for Proposition 5.1 of Chen et al. (2017).

Proof of Lemma 2.1. Consider the SDE without change-point,

dUt =

(
p∑

k=1

µkϕk(t)− aUt

)
dt+σdWt, 0 ≤ t ≤ T . Let g(t, x) = eatx and Yt = g(t, Ut)

By Itô’s lemma,

dYt =
∂g

∂t
(t, Ut)dt+

∂g

∂Ut
(t, Ut)dUt +

1

2

∂2g

∂U2
t

(t, Ut)d〈Ut, Ut〉.

Since dUt =

(
p∑

k=1

µkϕk(t)− aUt

)
dt+ σdWt, then,

dYt = aeatUtdt+ eatdUt = eat
p∑

k=1

µkϕk(t)dt+ eatσdWt.
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Integrating both sides from 0 to t, we get

Ut = e−atU0 + e−at
p∑

k=1

µk

∫ t

0

easϕk(s)ds+ σe−at
∫ t

0

easdWs.

Further, we have

E
[
|Xt|2

]
= E

(m+1∑
j=1

Xj(t)I(τj−1<t≤τj)

)2
 .

By convexity of the quadratic function,(
m+1∑
j=1

1

m+ 1
Xj(t)I(τj−1<t≤τj)

)2

≤
m+1∑
j=1

1

m+ 1
(Xj(t)I(τj−1<t≤τj))

2.

Then,

E

(m+1∑
j=1

Xj(t)I(τj−1<t≤τj)

)2
 ≤ (m+ 1)

m+1∑
j=1

E
[
(Xj(t))

2I(τj−1<t≤τj)
]
,

and then, sup
t≥0

E[|Xt|2] ≤ (m + 1)
m+1∑
j=1

sup
t≥0

E[|Xj(t)|2]. Now, it is sufficient to prove

sup
t≥0

E[|Xj(t)|2] < ∞, j = 1, 2, . . . ,m + 1. Then, from the convexity of the quadratic

function, (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, then,

E[|Xj(t)|2] = E[|e−ajtX0 + hj(t) + zj(t)|2] ≤ 3e−2ajtE[|X0|2] + 3E[h2
j(t)] + 3E[z2

j (t)].

(B.1)

Let

p∑
k=1

|µk,j| ≤ Kµ <∞ and |ϕk(t)| ≤ Kϕ <∞ for all j = 1, ...,m+1 and k = 1, ..., p,

t ≥ 0. By Triangular Inequality and Jensen’s Inequality, we have

E[h2
j(t)] = E

(e−ajt p∑
k=1

µk,j

∫ t

0

eajsϕk(s)ds

)2
 ≤ e−2ajtK2

µK
2
ϕ

∫ t

0

e2ajsds.

Then, for t ≥ 0

E[h2
j(t)] ≤ e−2ajtK2

µK
2
ϕ

1

2aj
(e2ajt − 1) = K2

µK
2
ϕ

1

2aj
(1− e−2ajt) ≤

K2
µK

2
ϕ

2aj
. (B.2)
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Also, we have

E[z2
j (t)] = E

[(
σe−ajt

∫ t

0

eajsdWs

)2
]

= σ2e−2ajtE

[(∫ t

0

eajsdWs

)2
]
.

By using Itô’s Isometry, we have

E[z2
j (t)] = σ2e−2ajtE

[∫ t

0

e2ajsds

]
= σ2e−2ajt

1

2aj
(e2ajt − 1).

Then, for t ≥ 0

E[z2
j (t)] = σ2 1

2aj
(1− e−2ajt) ≤ σ2

2aj
. (B.3)

Finally, by combining (B.1), (B.2) and (B.3), we establish

sup
t≥0

E[|Xj(t)|2] ≤ 3E[|X0|2] + 3
K2
µK

2
ϕ

2aj
+ 3

σ2

2aj
<∞,

this completes the proof.

Proof of Proposition 2.2. We have

E[X̃j(t+ k)] = E[h̃j(t+ k)] + E[z̃j(t+ k)] = h̃j(t+ k) + E[z̃j(t+ k)].

Let r = s− k and by Assumption 2,

h̃j(t+ k) = e−aj(t+k)

p∑
i=1

µi,j

∫ t+k

−∞
eajsϕi(s)ds

= e−ajt
p∑
i=1

µi,j

∫ t

−∞
eajrϕi(r)dr = h̃j(t).

Therefore, h̃j(t+ k) does not depend on k and is a constant for every t ∈ [0, 1].

E[z̃j(t+ k)] = σe−aj(t+k)

[
E

[∫ 0

−∞
eajsdB̄−s

]
+ E

[∫ t+k

0

eajsdBs

]]

Since Itô’s integral is martingale, we have E

[∫ t+k

0

eajsdBs

]
= 0, and

E

[∫ 0

−∞
eajsdB̄−s

]
= E

[∫ ∞
0

e−ajudB̄u

]
= E

[
lim
U→∞

∫ U

0

e−ajudB̄u

]
= E

[
lim
U→∞

IU

]
.
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By (B.11), IU
L2

−−−→
U→∞

I∞. This implies that IU
L1

−−−→
U→∞

I∞. Then, by the martingale

property, E[ lim
U→∞

IU ] = lim
U→∞

E[IU ] = 0, and then,

E[z̃j(t+ k)] = 0, k = 0, 1, . . . . (B.4)

Therefore,

E[X̃j(t+ k)] = h̃j(t+ k) + E[z̃j(t+ k)] = h̃j(t), k = 0, 1, . . . , (B.5)

which is a constant. For Cov(X̃j(t), X̃j(t+ k)), since E[z̃j(t+ k)] = 0, we have

Cov(X̃j(t), X̃j(t+ k)) = Cov(z̃j(t), z̃j(t+ k)) = E[z̃j(t)z̃j(t+ k)].

We have

E[z̃j(t)z̃j(t+ k)] = E

[(
σe−ajt

∫ t

−∞
eajsdB̃s

)(
σe−aj(t+k)

∫ t+k

−∞
eajsdB̃s

)]
= e−ajkE

[(
σe−ajt

∫ t

−∞
eajsdB̃s

)2
]

+ σ2e−aj(2t+k)E

[∫ t

−∞
eajsdB̃s

∫ t+k

t

eajsdB̃s

]
= e−ajkE[z̃2

j (t)]

since, by the independent increments of Wiener process, we have

E

[∫ t

−∞
eajsdB̃s

∫ t+k

t

eajsdB̃s

]
= E

[∫ t

−∞
eajsdB̃s

]
E

[∫ t+k

t

eajsdB̃s

]
= 0,

then, by (B.13), E[z̃2
j (t + k)] =

σ2

2aj
for k = 0, 1, 2, . . . , and then, we can establish

E[z̃2
j (t)] =

σ2

2aj
. Then, Cov(X̃j(t), X̃j(t+k)) = e−ajk

σ2

2aj
, this completes the proof.

Proof of Lemma 2.2. First, we prove for all k and t, E[|X̃j(k + t)|2] <∞.

Since (a+ b)2 ≤ 2a2 + 2b2, we have

E[|X̃j(k + t)|2] = E[|h̃j(t+ k) + z̃j(t+ k)|2] ≤ 2E[h̃2
j(t+ k)] + 2E[z̃2

j (t+ k)].
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Let

p∑
i=1

|µi,j| ≤ Kµ < ∞ and |ϕi(t + k)| ≤ Kϕ < ∞ for all j = 1, ...,m + 1 and

k = 1, ..., p, t ≥ 0. By Triangle Inequality and Jensen’s Inequality,

E[h̃2
j(t+ k)] ≤ e−2aj(t+k)

(
p∑
i=1

|µi,j|

)2 ∫ t+k

−∞
(eajsKϕ)2ds

≤ e−2aj(t+k)K2
µK

2
ϕ

∫ t+k

−∞
e2ajsds.

Then,

E[h̃2
j(t+ k)] ≤ e−2aj(t+k)K2

µK
2
ϕ

e2aj(t+k)

2aj
=
K2
µK

2
ϕ

2aj
<∞, k = 0, 1, . . . . (B.6)

Since Bs and B−s are independent,

E[z̃2
j (t+ k)] = σ2e−2aj(t+k)E

[(∫ 0

−∞
eajsdB̃s +

∫ t+k

0

eajsdB̃s

)2
]

= σ2e−2aj(t+k)

[
E

[(∫ 0

−∞
eajsdB̄−s

)2
]

+ 2E

[∫ 0

−∞
eajsdB̄−s

]
E

[∫ t+k

0

eajsdBs

]

+ E

[(∫ t+k

0

eajsdBs

)2
]]

.

Then,

E[z̃2
j (t+ k)] = σ2e−2aj(t+k)

[
E

[(∫ 0

−∞
eajsdB̄−s

)2
]

+ E

[(∫ t+k

0

eajsdBs

)2
]]

,

since Itô’s integral is a martingale, E

[∫ t+k

0

eajsdBs

]
= 0. Then, we have

E[z̃2
j (t+ k)] = σ2e−2aj(t+k)

[
E

[(∫ 0

−∞
eajsdB̄−s

)2
]

+ E

[(∫ t+k

0

eajsdBs

)2
]]

. (B.7)

From (B.7), by Itô’s Isometry,

E

[(∫ t+k

0

eajsdBs

)2
]

= E

[∫ t+k

0

e2ajsds

]
=

1

2aj
(e2aj(t+k) − 1). (B.8)

From (B.7), by using substitution with s = −u,

E

[(∫ 0

−∞
eajsdB̄−s

)2
]

= E

[(∫ ∞
0

e−ajudB̄u

)2
]
. (B.9)
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Now, we define IU =

∫ U

0

e−ajudB̄u. By Itô’s Isometry,

E[I2
U ] = E

[(∫ U

0

e−ajudB̄u

)2
]

= E

[∫ U

0

e−2ajudu

]
=

1

2aj
(1− e−2ajU) (B.10)

which is bounded for all U ≥ 0. Thus, by L2-Bounded Martingale Convergence

Theorem,

IU
L2

−−−→
U→∞

I∞ =

∫ ∞
0

e−ajudB̄u and E[I2
∞] <∞. (B.11)

Then, we have

E

[(∫ 0

−∞
eajsdB̄−s

)2
]

= E[I2
∞] = lim

U→∞
E[I2

U ] =
1

2aj
. (B.12)

By (B.7), (B.8) and (B.12), we have

E[z̃2
j (t+k)] = σ2e−2aj(t+k)

[
1

2aj
(e2aj(t+k)−1)+

1

2aj

]
=

σ2

2aj
<∞, k = 0, 1, . . . . (B.13)

Since E[h̃2
j(t+ k)] <∞ and E[z̃2

j (t+ k)] <∞, it implies

E[|X̃j(k + t)|2] ≤ 2E[h̃2
j(t+ k)] + 2E[z̃2

j (t+ k)] <∞.

Now, we will start to prove E[X̃j(t+ k)] is a constant. From Proposition 2.2,

{X̃j(t+ k)}k∈N0 is weakly stationary.

For every t ∈ [0, 1] and k ∈ N0, we have X̃j(t + k) = h̃j(t) + z̃j(t + k). By some

algebraic computations, one can verify that {X̃j(t+ k)}k∈N is Gaussian process. This

implies that the weekly stationary Gaussian process {X̃j(t+ k)}k∈N0 is also strongly

stationary. Now, for t ∈ [0, 1] and k ∈ N0, the correlation coefficient function is

Rk =
Cov(X̃j(t), X̃j(t+ k))

Var(X̃j(t))
,

where Var(X̃j(t)) = E[X̃2
j (t)]− E[X̃j(t)]

2 = h̃2
j(t) + E[z̃2

j (t)]− h̃2
j(t) = E[z̃2

j (t)] =
σ2

2aj
,

and Cov(X̃j(t), X̃j(t + k)) = e−ajk
σ2

2aj
. Then, Rk = e−ajk, and then, Rk → 0 as
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k →∞. By Definition A.3, Theorem A.1 and Theorem A.2, we have {X̃j(t+ k)}k∈N0

is ergodic, this completes the proof.

Proof of Proposition 2.3. From Remark 2, we apply Theorem 7.6 of Lipster and

Shiryaev (2001). Then, the likelihood function is

L(θ,Xt) = exp

(
1

σ2

∫ T

0

S(θ, t,Xt)dXt −
1

2σ2

∫ T

0

S2(θ, t,Xt)dt

)
. (B.14)

Then, the log-likelihood function is

logL(θ,Xt) =
1

σ2

∫ T

0

S(θ, t,Xt)dXt −
1

2σ2

∫ T

0

S2(θ, t,Xt)dt. (B.15)

By (2.2), we have

1

σ2

∫ T

0

S(θ, t,Xt)dXt =
1

σ2

∫ T

0

m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}dXt

=
1

σ2

m+1∑
j=1

∫ T

0

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}dXt.

Then,

1

σ2

∫ T

0

S(θ, t,Xt)dXt =
1

σ2

m+1∑
j=1

(
p∑

k=1

∫ τj

τj−1

µk,jϕk(t)dXt −
∫ τj

τj−1

ajXtdXt

)
. (B.16)

This gives

1

σ2

∫ T

0

S(θ, t,Xt)dXt =
1

σ2

m+1∑
j=1

θ>j r̃(τj−1,τj)

where

r̃(τj−1,τj) =

(∫ τj

τj−1

ϕ1(t)dXt, ...,

∫ τj

τj−1

ϕp(t)dXt,−
∫ τj

τj−1

XtdXt

)>
.

Further, from (2.2), we have

1

2σ2

∫ T

0

S2(θ, t,Xt)dt =
1

2σ2

∫ T

0

[
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}

]2

dt.

91



Note that[
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}

]2

=
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)2

I{τj−1<t≤τj}

+
m+1∑
i 6=j

(
p∑

k=1

µk,iϕk(t)− aiXt

)
I{τi−1<t≤τi}

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}.

This gives[
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}

]2

=
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)2

I{τj−1<t≤τj}

=
m+1∑
j=1

(
p∑

k=1

µ2
k,jϕk(t)

2 +

p∑
k 6=q

µk,jϕk(t)µq,jϕq(t)− 2

p∑
k=1

µk,jϕk(t)ajXt + a2
jX

2
t

)
I{τj−1<t≤τj}.

Hence,

1

2σ2

∫ T

0

S2(θ, t,Xt)dt =
1

2σ2

∫ T

0

m+1∑
j=1

(
p∑

k=1

µ2
k,jϕk(t)

2 +

p∑
k 6=q

µk,jϕk(t)µq,jϕq(t)

− 2

p∑
k=1

µk,jϕk(t)ajXt + a2
jX

2
t

)
I{τj−1<t≤τj}dt

=
1

2σ2

m+1∑
j=1

(
p∑

k=1

∫ τj

τj−1

µ2
k,jϕk(t)

2dt+

p∑
k 6=q

∫ τj

τj−1

µk,jϕk(t)µq,jϕq(t)dt

− 2

p∑
k=1

∫ τj

τj−1

µk,jϕk(t)ajXtdt+

∫ τj

τj−1

a2
jX

2
t dt

)
.

Then,

1

2σ2

∫ T

0

S2(θ, t,Xt)dt =
1

2σ2

m+1∑
j=1

θ>j Q(τj−1,τj)θj

where

Q(τj−1,τj) =


∫ τj
τj−1

ϕ2
1(t)dt . . .

∫ τj
τj−1

ϕ1(t)ϕp(t)dt −
∫ τj
τj−1

ϕ1(t)Xtdt

...
...

...
...

−
∫ τj
τj−1

ϕ1(t)Xtdt . . . −
∫ τj
τj−1

ϕp(t)Xtdt
∫ τj
τj−1

X2
t dt

 .
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Finally, we can conclude that

logL(θ,Xt) =
1

σ2

m+1∑
j=1

θ>j r̃(τj−1,τj) −
1

2σ2

m+1∑
j=1

θ>j Q(τj−1,τj)θj.

This completes the proof.

Proof of Proposition 2.4. Let a = (a>1 , a2)> where a1 is p-column vector and a2

is scalar. Then, we have

a>Q(τj−1,τj)a

= (a>1

∫ τj

τj−1

ϕ(t)ϕ>(t)dt− a2

∫ τj

τj−1

ϕ>(t)Xtdt,−a>1
∫ τj

τj−1

Xtϕ(t)dt+ a2

∫ τj

τj−1

X2
t dt)(a

>
1 , a2)>

= a>1

∫ τj

τj−1

ϕ(t)ϕ>(t)dta1 − 2a2a
>
1

∫ τj

τj−1

Xtϕ(t)dt+ a2
2

∫ τj

τj−1

X2
t dt

=

∫ τj

τj−1

(a>1 ϕ(t)− a2Xt)
2dt ≥ 0 for all t on (τj−1, τj),

and then,

∫ τj

τj−1

(a>1 ϕ(t)− a2Xt)
2dt = 0 iff a>1 ϕ(t) = a2Xt. Taking expected value and

variance in both sides, we have a>1 E[ϕ(t)] = a2E[Xt] and a>1 Var(ϕ(t))a1 = a2
2V ar[Xt].

Since Var(ϕ(t))=0, we have a2
2V ar[Xt] = 0. We know V ar[Xt] 6= 0, then a2 =

0. Then, a>1 E[ϕ(t)] = 0 which implies a>1 ϕ(t) = 0. From Assumption 2, we have

orthogonality of ϕ(t). This implies the linear independence of ϕ(t). Then, we have

a1 = 0. Therefore, we can conclude that a>Q(τj−1,τj)a > 0 for all t on (τj−1, τj) and

for all a 6= 0, this completes the first part of the proof. Further, we have Q(τj−1,τj)

is positive definite, for j = 1, ...,m + 1. Since Q(φ,m) is a Block diagonal matrix,

Q(φ,m) is positive definite, this completes the proof.

Proof of Lemma 3.1. First, taking first derivative of logL(θ,Xt) respect to θ

∂

∂θ
logL(θ,Xt) =

1

σ2
R̃(φ,m)− 1

σ2
Q(φ,m)θ.
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Then, setting ∂
∂θ

logL(θ,Xt) = 0, we get
1

σ2
R̃(φ,m) =

1

σ2
Q(φ,m)θ̂. Then,

θ̂ = Q−1(φ,m)R̃(φ,m)

since, by Proposition 2.4, Q(φ,m) is positive definite, which implies that Q(φ,m) is

invertible. Next, taking second derivative of logL(θ,Xt) respect to θ

∂2

∂θ∂θ>
logL(θ,Xt) = − 1

σ2
Q(φ,m) = − T

σ2

1

T
Q(φ,m)

since, by Proposition 2.4, Q(φ,m) is positive definite, and σ > 0, we have− T
σ2

1

T
Q(φ,m)

is negative definite, which completes the proof.

Proof of Proposition 3.1. We have

dXt =
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}dt+ σdWt.

For fixed j, j = 1, ...,m+ 1∫ τj

τj−1

ϕi(t)dXt =

∫ τj

τj−1

ϕi(t)

[
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}

]
dt

+ σ

∫ τj

τj−1

ϕi(t)dWt.

Then, ∫ τj

τj−1

ϕi(t)dXt =

∫ τj

τj−1

ϕi(t)

(
p∑

k=1

µk,jϕk(t)− ajXt

)
dt+ σ

∫ τj

τj−1

ϕi(t)dWt,

and then,∫ τj

τj−1

ϕi(t)dXt =

p∑
k=1

µk,j

∫ τj

τj−1

ϕi(t)ϕk(t)dt− aj
∫ τj

τj−1

ϕi(t)Xtdt+ σ

∫ τj

τj−1

ϕi(t)dWt.

Further, we have∫ τj

τj−1

XtdXt =

∫ τj

τj−1

Xt

[
m+1∑
j=1

(
p∑

k=1

µk,jϕk(t)− ajXt

)
I{τj−1<t≤τj}

]
dt

+ σ

∫ τj

τj−1

XtdWt.
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Then, ∫ τj

τj−1

XtdXt =

∫ τj

τj−1

Xt

(
p∑

k=1

µk,jϕk(t)− ajXt

)
dt+ σ

∫ τj

τj−1

XtdWt

=

p∑
k=1

µk,j

∫ τj

τj−1

Xtϕk(t)dt− aj
∫ τj

τj−1

X2
t dt+ σ

∫ τj

τj−1

XtdWt.

Hence, we observe that

r̃(τj−1,τj) =

(∫ τj

τj−1

ϕ1(t)dXt, ...,

∫ τj

τj−1

ϕp(t)dXt,−
∫ τj

τj−1

XtdXt

)>
= Q(τj−1,τj)θj + σr(τj−1,τj).

Then,

R̃(φ,m) = Q(φ,m)θ + σR(φ,m).

Finally, we have

θ̂ = Q−1(φ,m)R̃(φ,m) = Q−1(φ,m)Q(φ,m)θ +Q−1(φ,m)σR(φ,m)

= θ + σQ−1(φ,m)R(φ,m).

This completes the proof.

Proof of Proposition 3.2. We have, for ν ∈ (0, 1),

1

νT

∫ νT

0

ϕ(t)ϕ>(t)dt =
1

νT

bνT c∑
i=1

∫ i

i−1

ϕ(t)ϕ>(t)dt+
1

νT

∫ νT

bνT c
ϕ(t)ϕ>(t)dt.

By Assumption 2,

1

νT

bνT c∑
i=1

∫ i

i−1

ϕ(t)ϕ>(t)dt =
bνT c
νT

Ip
a.s.−−→ Ip as T →∞. (B.17)

Also, by Jensen’s Inequality, property of periodic function and substitution,∥∥∥∥ 1

νT

∫ νT

bνT c
ϕ(t)ϕ>(t)dt

∥∥∥∥ ≤ 1

νT

∫ νT

bνT c
‖ϕ(t)ϕ>(t)‖dt ≤ 1

νT

∫ bνT c+1

bνT c
‖ϕ(t)ϕ>(t)‖dt

=
1

νT

∫ 1

0

‖ϕ(t)ϕ>(t)‖dt a.s.−−→ 0 as T →∞,
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which implies

1

νT

∫ νT

bνT c
ϕ(t)ϕ>(t)dt

a.s.−−−→
T→∞

0. (B.18)

By (B.17) and (B.18), we have

1

νT

∫ νT

0

ϕ(t)ϕ>(t)dt
a.s.−−−→
T→∞

Ip.

Therefore, we have

1

T

∫ νT

0

ϕ(t)ϕ>(t)dt = ν
1

νT

∫ νT

0

ϕ(t)ϕ>(t)dt
a.s.−−−→
T→∞

νIp.

Finally, for 0 ≤ φj−1 < φj ≤ 1 where j = 1, ...,m+ 1,

1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt =
1

T

∫ φjT

0

ϕ(t)ϕ>(t)dt− 1

T

∫ φj−1T

0

ϕ(t)ϕ>(t)dt

a.s.−−−→
T→∞

(φj − φj−1)Ip.

This completes the proof.

Proof of Proposition 3.3. By Markov Inequality, we have, for ξ > 0 and

τj−1 < t ≤ τj,

P

(∥∥∥∥∥ 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt

∥∥∥∥∥ ≥ ξ

)
≤

E

[∥∥∥∥∥ 1

T

∫ φjT

φj−1T

(X̃t −Xt)ϕ(t)dt

∥∥∥∥∥
]

ξ
.

By Assumption 2, let |ϕk(t)| ≤ Kϕ <∞, t ≥ 0. Then, by Jensen’s Inequality, for all

j = 1, ...,m+ 1,

E

[∥∥∥∥∥ 1

T

∫ φjT

φj−1T

(X̃t −Xt)ϕ(t)dt

∥∥∥∥∥
]

=
1

T
E

[∥∥∥∥∥
∫ φjT

φj−1T

(X̃t −Xt)ϕ(t)dt

∥∥∥∥∥
]

≤ 1

T
E

[∫ φjT

φj−1T

‖(X̃t −Xt)ϕ(t)‖dt

]

=
1

T
E

[∫ φjT

φj−1T

|X̃t −Xt|‖ϕ(t)‖dt

]
.
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Then,

E

[∥∥∥∥∥ 1

T

∫ φjT

φj−1T

(X̃t −Xt)ϕ(t)dt

∥∥∥∥∥
]
≤ Kϕ

T

∫ φjT

φj−1T

E[|X̃t −Xt|]dt.

By Triangle Inequality, for τj−1 < t ≤ τj,

E[|(X̃t −Xt)|] = E[|h̃j(t) + z̃j(t)− e−ajtX0 − hj(t)− zj(t)|]

≤ E[|h̃j(t)− hj(t)|] + E[|z̃j(t)− zj(t)|] + E[|e−ajtX0|].

Now, let

p∑
k=1

|µk,j| ≤ Kµ <∞ for all j = 1, ..,m+ 1. We have,

E[|h̃j(t)− hj(t)|] = E

[∣∣∣∣∣e−ajt
p∑

k=1

µk,j

∫ 0

−∞
eajsϕk(s)ds

∣∣∣∣∣
]

≤ e−ajt
p∑

k=1

|µk,j|Kϕ

∫ 0

−∞
eajsds,

then,

E[|h̃j(t)− hj(t)|] ≤ e−ajtKµKϕ
1

aj
, (B.19)

and then, by Cauchy Schwartz Inequality,

E[|z̃j(t)− zj(t)|] ≤ E[|z̃j(t)− zj(t)|2]
1
2 = E

[(
σe−ajt

∫ 0

−∞
eajsdB̃s

)2] 1
2

= σe−ajtE

[(∫ 0

−∞
eajsdB̃s

)2] 1
2

.

Since, for s ∈ (−∞, 0), B̃s = B̄−s,

E

[(∫ 0

−∞
eajsdB̃s

)2]
= E

[(∫ 0

−∞
eajsdB̄−s

)2]
= E

[(∫ ∞
0

e−ajudB̄u

)2]
. (B.20)

Now, we define IU =

∫ U

0

e−ajudB̄u. By (B.10) and (B.11), we have E[I2
∞] < ∞. Let

E

[(∫ 0

−∞
eajsdB̃s

)2] 1
2

≤ K1 <∞,

E[|z̃j(t)− zj(t)|] ≤ σe−ajtE

[(∫ 0

−∞
eajsdB̃s

)2] 1
2

≤ σe−ajtK1. (B.21)
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By (B.19) and (B.21), we have

Kϕ

T

∫ φjT

φj−1T

E[|(X̃t −Xt)|]dt ≤
Kϕ

T

∫ φjT

φj−1T

(
e−ajtE[|X0|] + e−ajtKµKϕ

1

aj
+ σe−ajtK1

)
dt

=
Kϕ

T
(E[|X0|] +KµKϕ

1

aj
+ σK1)

∫ φjT

φj−1T

e−ajtdt

=
Kϕ

T
(E[|X0|] +KµKϕ

1

aj
+ σK1)

1

aj
(e−ajφj−1T − e−ajφjT ).

Then,

Kϕ

T

∫ φjT

φj−1T

E[|(X̃t −Xt)|]dt→ 0 as T →∞.

Therefore,

0 ≤ lim
T→∞

P

(∥∥∥∥∥ 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt

∥∥∥∥∥ ≥ ξ

)
≤ 0,

which implies

lim
T→∞

P

(∥∥∥∥∥ 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt

∥∥∥∥∥ ≥ ξ

)
= 0.

Then, we have

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt
P−−−→

T→∞
0. (B.22)

Further, we have

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt = (φj − φj−1)
1

(φj − φj−1)T

∫ φjT

φj−1T

X̃tϕ(t)dt

= (φj − φj−1)
1

(φj − φj−1)T

bφjT c∑
i=bφj−1T c+1

∫ i

i−1

X̃tϕ(t)dt

+ (φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃tϕ(t)dt

+ (φj − φj−1)
1

(φj − φj−1)T

∫ φjT

bφjT c
X̃tϕ(t)dt.
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Now, we define Yi =

∫ i

i−1

X̃tϕ(t)dt, and let u = t − i + 1 ∈ [0, 1]. According to

Assumption 2, ϕ(u+ i− 1) = ϕ(u). Then, we have

Yi =

∫ i

i−1

X̃tϕ(t)dt =

∫ 1

0

X̃u+i−1ϕ(u+ i− 1)du =

∫ 1

0

X̃u+i−1ϕ(u)du.

According to Lemma 2.2, {X̃u+i−1}i∈N is a stationary and ergodic process. Since Yi

is measurable function of the stationary and ergodic process {X̃u+i−1}i∈N, by

Theorem 3.5.8 in Stout (1974) (see also Theorem A.3), {Yi}i∈N is stationary and

ergodic process. By Birkhoff Ergodic Theorem (see also Theorem A.4), and since

{Yi}i∈N is stationary and ergodic process,

(φj − φj−1)
1

(φj − φj−1)T

bφjT c∑
i=bφj−1T c+1

∫ i

i−1

X̃tϕ(t)dt

= (φj − φj−1)
1

(φj − φj−1)T

bφjT c∑
i=bφj−1T c+1

Yi

= (φj − φj−1)
1

(φj − φj−1)T

b(φj−φj−1)T c∑
i=1

Yi

a.s−−−→
T→∞

(φj − φj−1)E

[∫ 1

0

X̃tϕ(t)dt

]
,

which implies

(φj − φj−1)
1

(φj − φj−1)T

bφjT c∑
i=bφj−1T c+1

∫ i

i−1

X̃tϕ(t)dt
P−−−→

T→∞
(φj − φj−1)E

[∫ 1

0

X̃tϕ(t)dt

]
.

(B.23)
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By Jensen’s Inequality,

E

[∥∥∥∥∥(φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃tϕ(t)dt

∥∥∥∥∥
]

≤ E

[
(φj − φj−1)

1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

|X̃t|‖ϕ(t)‖dt

]

≤ (φj − φj−1)
1

(φj − φj−1)T
E

[∫ bφj−1T c+1

φj−1T

|X̃t|Kϕdt

]

= (φj − φj−1)
Kϕ

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

E[|X̃t|]dt.

By (B.27), E[|X̃t|2] ≤ K ′ <∞, t ≥ 0 (in the Proof of Proposition 3.4).

By Cauchy Schwartz Inequality, E[|X̃t|] ≤ E[|X̃t|2]
1
2 , which implies E[|X̃t|] is bounded.

Then, we have

(φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃tϕ(t)dt
L1

−−−→
T→∞

0,

which implies

(φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃tϕ(t)dt
P−−−→

T→∞
0. (B.24)

Similarly, we also have

(φj − φj−1)
1

(φj − φj−1)T

∫ φjT

bφjT c
X̃tϕ(t)dt

L1

−−−→
T→∞

0,

which implies

(φj − φj−1)
1

(φj − φj−1)T

∫ φjT

bφjT c
X̃tϕ(t)dt

P−−−→
T→∞

0. (B.25)

By (B.23),(B.24) and (B.25),

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
P−−−→

T→∞
(φj − φj−1)E

[∫ 1

0

X̃tϕ(t)dt

]
. (B.26)

We know

E

[∫ 1

0

X̃tϕ(t)dt

]
=

∫ 1

0

E[X̃t]ϕ(t)dt,
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and, for τj−1 < t ≤ τj,

E[X̃t] = h̃j(t) + E[z̃j(t)].

We observe that

E[z̃j(t)] = E

[
σe−ajt

∫ 0

−∞
eajsdB̄−s + σe−ajt

∫ t

0

eajsdBs

]

= σe−ajtE

[∫ ∞
0

e−ajudB̄u

]
+ σe−ajtE

[∫ t

0

eajsdBs

]
.

By L2-Bounded Martingale Convergence Theorem, (B.9) and (B.10), IU
L2

−−−→
T→∞

I∞ =∫ ∞
0

e−ajudB̄u, which implies IU
L1

−−−→
T→∞

I∞ =

∫ ∞
0

e−ajudB̄u. Then, by the Martingale

of Itô’s integral,

E

[∫ ∞
0

e−ajudB̄u

]
= lim

U→∞
E

[∫ U

0

e−ajudB̄u

]
= 0,

and

E

[∫ t

0

eajsdBs

]
= 0.

Hence, E[z̃j(t)] = 0. Then, E[X̃t] = h̃j(t). By (B.26),

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
P−−−→

T→∞
(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt.

Also, by (B.22), we have

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt
P−−−→

T→∞
0.

Therefore, we establish

1

T

∫ φjT

φj−1T

Xtϕ(t)dt
P−−−→

T→∞
(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt.

This completes the proof.
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Proof of Proposition 3.4. By Markov Inequality, for ξ > 0 and τj−1 < t ≤ τj,

P

(∣∣∣∣∣ 1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

∣∣∣∣∣ ≥ ξ

)
≤

E

[∣∣∣∣∣ 1

T

∫ φjT

φj−1T

(X̃t −Xt)(X̃t +Xt)dt

∣∣∣∣∣
]

ξ
.

By Jensen’s Inequality,

E

[∣∣∣∣∣ 1

T

∫ φjT

φj−1T

(X̃t −Xt)(X̃t +Xt)dt

∣∣∣∣∣
]

=
1

T
E

[∣∣∣∣∣
∫ φjT

φj−1T

(X̃t −Xt)(X̃t +Xt)dt

∣∣∣∣∣
]

≤ 1

T
E

[∫ φjT

φj−1T

|(X̃t −Xt)(X̃t +Xt)|dt

]
=

1

T
E

[∫ φjT

φj−1T

|X̃t −Xt||X̃t +Xt|dt

]
.

Then, by Triangle Inequality,

E

[∣∣∣∣∣ 1

T

∫ φjT

φj−1T

(X̃t −Xt)(X̃t +Xt)dt

∣∣∣∣∣
]
≤ 1

T

∫ φjT

φj−1T

E[|X̃t −Xt||X̃t +Xt|]dt

≤ 1

T

∫ φjT

φj−1T

E[|X̃t||X̃t −Xt|]dt+
1

T

∫ φjT

φj−1T

E[|Xt||X̃t −Xt|]dt.

Then, by Cauchy Swartz Inequality,

E

[∣∣∣∣∣ 1

T

∫ φjT

φj−1T

(X̃t −Xt)(X̃t +Xt)dt

∣∣∣∣∣
]

≤ 1

T

∫ φjT

φj−1T

E[|X̃t|2]
1
2 E[|X̃t −Xt|2]

1
2dt+

1

T

∫ φjT

φj−1T

E[|Xt|2]
1
2 E[|X̃t −Xt|2]

1
2dt.

We know the unique strong solution Xt is bounded in L2, i.e., sup E[|Xt|2] <∞.

Since (x+ y)2 + (x− y)2 = 2x2 + 2y2 and (x− y)2 ≥ 0, (x+ y)2 ≤ 2x2 + 2y2. Then,

for τj−1 < t ≤ τj,

E[|X̃t|2] = E[(h̃j(t) + z̃j(t))
2] ≤ 2E[(h̃j(t))

2] + 2E[(z̃j(t))
2].

By (B.6) and (B.13), we have

E[|X̃t|2] ≤ K ′ <∞, ∀ t ≥ 0. (B.27)
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By Lemma 2.1, sup
t≥0

E[X2
t ] <∞.

Now, we denote sup
t≥0
{E[X2

t ]
1
2 ,E[X̃2

t ]
1
2} ≤ K2 <∞. Then,

E

[∣∣∣∣∣ 1

T

∫ φjT

φj−1T

(X̃t −Xt)(X̃t +Xt)dt

∣∣∣∣∣
]

≤ K2

T

∫ φjT

φj−1T

E[|X̃t −Xt|2]
1
2dt+

K2

T

∫ φjT

φj−1T

E[|X̃t −Xt|2]
1
2dt

=
2K2

T

∫ φjT

φj−1T

E[|X̃t −Xt|2]
1
2dt.

From the convexity of the quadratic function, (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2. Hence,

2K2

T

∫ φjT

φj−1T

E[|X̃t−Xt|2]
1
2dt =

2K2

T

∫ φjT

φj−1T

E[|h̃j(t)+z̃j(t)−e−ajtX0−hj(t)−zj(t)|2]
1
2dt.

We have

E[|h̃j(t) + z̃j(t)− e−ajtX0 − hj(t)− zj(t)|2]

≤ 3E[|h̃j(t)− hj(t)|2] + 3E[|z̃j(t)− zj(t)|2] + 3E[|e−ajtX0|2].

We observe that

E[|h̃j(t)− hj(t)|2] = E

[∣∣∣∣∣e−ajt
p∑

k=1

µk,j

∫ 0

−∞
eajsϕk(s)ds

∣∣∣∣∣
2]

≤ e−2ajt

(
p∑

k=1

µk,j

)2

K2
ϕ

(∫ 0

−∞
eajsds

)2

.

Then,

E[|h̃j(t)− hj(t)|2] ≤ e−2ajtK2
µK

2
ϕ

1

a2
j

. (B.28)

Also, we observe that

E[|z̃j(t)− zj(t)|2] = E

[(
σe−ajt

∫ 0

−∞
eajsdB̃s

)2]
= σ2e−2ajtE

[(∫ 0

−∞
eajsdB̃s

)2]
.

Then, from (B.9)-(B.11), let E

[(∫ 0

−∞
eajsdB̃s

)2] 1
2

≤ K1,

E[|z̃j(t)− zj(t)|2] ≤ σ2e−2ajtK2
1 . (B.29)
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Hence, by (B.28) and (B.29),

2K2

T

∫ φjT

φj−1T

E[|X̃t −Xt|2]
1
2dt

≤ 2K2

T

∫ φjT

φj−1T

(3e−2ajtK2
µK

2
ϕ

1

a2
j

+ 3σ2e−2ajtK2
1 + 3e−2ajtE[X2

0 ])
1
2dt

=
2K2

T
(3K2

µK
2
ϕ

1

a2
j

+ 3σ2K2
1 + 3E[X2

0 ])
1
2

∫ φjT

φj−1T

e−ajtdt

=
2K2

T
(3K2

µK
2
ϕ

1

a2
j

+ 3σ2K2
1 + 3E[X2

0 ])
1
2

1

aj
(e−ajφj−1T − e−ajφjT ).

Then,

2K2

T

∫ φjT

φj−1T

E[|X̃t −Xt|2]
1
2dt→ 0 as T →∞.

Therefore,

0 ≤ lim
T→∞

P

(∣∣∣∣∣ 1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

∣∣∣∣∣ ≥ ξ

)
≤ 0.

Then, we have

lim
T→∞

P

(∣∣∣∣∣ 1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

∣∣∣∣∣ ≥ ξ

)
= 0,

which implies that

1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

P−−−→
T→∞

0. (B.30)

Further,

1

T

∫ φjT

φj−1T

X̃2
t dt = (φj − φj−1)

1

(φj − φj−1)T

∫ φjT

φj−1T

X̃2
t dt

= (φj − φj−1)
1

(φj − φj−1)T

bφjT c∑
i=bφj−1T c+1

∫ i

i−1

X̃2
t dt

+ (φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃2
t dt

+ (φj − φj−1)
1

(φj − φj−1)T

∫ φjT

bφjT c
X̃2
t dt.
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According to Lemma 2.2, {X̃u+i−1}i∈N is stationary and ergodic process. Let Yi =∫ i

i−1

X̃2
t dt which is a measurable function. Then, by Theorem 3.5.8 in Stout (1974)

(see also Theorem A.3), {Yi}i∈N is stationary and ergodic process. By Birkhoff Ergodic

Theorem (see also Theorem A.4),

(φj − φj−1)
1

(φj − φj−1)T

bφjT c∑
i=bφj−1T c+1

∫ i

i−1

X̃2
t dt

= (φj − φj−1)
1

(φj − φj−1)T

b(φj−φj−1)T c∑
i=1

∫ i

i−1

X̃2
t dt

a.s.−−−→
T→∞

(φj − φj−1)E

[∫ 1

0

X̃2
t dt

]
,

which implies

(φj−φj−1)
1

(φj − φj−1)T

bφjT c∑
i=bφj−1T c+1

∫ i

i−1

X̃2
t dt

P−−−→
T→∞

(φj−φj−1)E

[∫ 1

0

X̃2
t dt

]
. (B.31)

By Jensen’s Inequality,

E

[∣∣∣∣∣(φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃2
t dt

∣∣∣∣∣
]

≤ E

[
(φj − φj−1)

1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

|X̃2
t |dt

]

= (φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

E[X̃2
t ]dt.

Since E[|X̃t|2] ≤ K ′ <∞, t ≥ 0, E[X̃2
t ] is bounded.

Hence,

(φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃2
t dt

L1

−−−→
T→∞

0,

which implies

(φj − φj−1)
1

(φj − φj−1)T

∫ bφj−1T c+1

φj−1T

X̃2
t dt

P−−−→
T→∞

0. (B.32)
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Similarly, we also have

(φj − φj−1)
1

(φj − φj−1)T

∫ φjT

bφjT c
X̃2
t dt

P−−−→
T→∞

0. (B.33)

By (B.31), (B.32) and (B.33),

1

T

∫ φjT

φj−1T

X̃2
t dt

P−−−→
T→∞

(φj − φj−1)E

[∫ 1

0

X̃2
t dt

]
. (B.34)

We know that, for τj−1 < t ≤ τj,

E

[∫ 1

0

X̃2
t dt

]
= E

[∫ 1

0

(h̃j(t) + z̃j(t))
2dt

]
.

By the Proof of Proposition 3.3, we have E[z̃j(t)] = 0. Also, by (B.13), E[z̃2
j (t)] =

σ2

2aj
.

Then,

E

[∫ 1

0

X̃2
t dt

]
= E

[∫ 1

0

(h̃j(t))
2 + 2h̃j(t)z̃j(t) + (z̃j(t))

2dt

]

=

∫ 1

0

(h̃j(t))
2dt+

∫ 1

0

σ2

2aj
dt =

∫ 1

0

h̃2
j(t)dt+

σ2

2aj
.

Hence,

1

T

∫ φjT

φj−1T

X̃2
t dt

P−−−→
T→∞

(φj − φj−1)

(∫ 1

0

h̃2
j(t)dt+

σ2

2aj

)
.

Also, by (B.30), we know

1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

P−−−→
T→∞

0.

Combining these two results, we establish that

1

T

∫ φjT

φj−1T

X2
t dt

P−−−→
T→∞

(φj − φj−1)

(∫ 1

0

h̃2
j(t)dt+

σ2

2aj

)
,

this completes the proof.
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Proof of Proposition 3.5. To check the positive definiteness of Σj, by Schur Com-

plement Theorem, we need to show that ωj − Λ(j)T I−1
P Λj > 0. Then, we just need to

show ∫ 1

0

h̃2
j(t)dt+

σ2

2aj
−

p∑
k=1

(∫ 1

0

h̃j(t)ϕk(t)dt

)2

> 0.

By Bessel’s Inequality (see also Lemma A.1),

∫ 1

0

h̃2
j(t)dt ≥

p∑
k=1

(∫ 1

0

h̃j(t)ϕk(t)dt

)2

∫ 1

0

h̃2
j(t)dt−

p∑
k=1

(∫ 1

0

h̃j(t)ϕk(t)dt

)2

≥ 0,

then, ∫ 1

0

h̃2
j(t)dt+

σ2

2aj
−

p∑
k=1

(∫ 1

0

h̃j(t)ϕk(t)dt

)2

≥ σ2

2aj
> 0.

Therefore, Σj is positive definite. Further, since Σ is block diagonal matrix whose

block components matrices are positive definite, it is also positive definite matrix,

this completes the proof.

Proof of Proposition 3.6. By Proposition 3.2,

1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt
a.s.−−−→
T→∞

(φj − φj−1)Ip,

which implies

1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt
P−−−→

T→∞
(φj − φj−1)Ip,

and combining Proposition 3.3 and Proposition 3.4, we have

1

T
Q(τj−1,τj)

P−−−→
T→∞

(φj − φj−1)Σj.

By Proposition 2.4, we have, for T > 0 and j = 1, ...,m + 1, 1
T
Q(τj−1,τj) is positive

definite and, by Proposition 3.5, Σj is also positive definite. Then, by continuous
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mapping theorem,

TQ−1
(τj−1,τj)

P−−−→
T→∞

1

φj − φj−1

(Σj)
−1,

this completes the first part of proof. Further, by Proposition 2.4, we have, for

T > 0 and j = 1, ...,m + 1, Q(τj−1,τj) is positive definite and, by proposition 3.5,

Σj is also positive definite. Then, the block diagonal matrix Q(φ,m) and Σ are

positive definite so they are invertible. Hence, since TQ−1
(τj−1,τj)

P−−−→
T→∞

1
φj−φj−1

(Σj)
−1

for j = 1, 2, . . . ,m+ 1, we have

TQ−1(φ,m)
P−−−→

T→∞
Σ−1.

This completes the proof.

Proof of Proposition 3.7. By Proposition 1.21 in Kutoyants (2004), it is a special

case of Proposition 1.21 for which d1 = (m+ 1)(p+ 1) and d2 = 1. Then, we have,∫ T

0

1√
T
ϕ(t)I{τj−1<t≤τj}

1√
T
ϕ>(t)I{τj−1<t≤τj}dt =

1

T

∫ τj

τj−1

ϕ(t)ϕ>(t)dt, (B.35)

∫ T

0

( 1√
T
ϕ(t)I{τj−1<t≤τj}

)(
− 1√

T
XtI{τj−1<t≤τj}

)
dt = − 1

T

∫ τj

τj−1

ϕ(t)Xtdt, (B.36)

and ∫ T

0

(
− 1√

T
XtI{τj−1<t≤τj}

)(
− 1√

T
XtI{τj−1<t≤τj}

)
dt =

1

T

∫ τj

τj−1

X2
t dt. (B.37)

Then, we can see that (B.35),(B.36) and (B.37) are the elements of 1
T
Q(τj−1,τj).

By Proposition 3.6,

1

T
Q(τj−1,τj)

P−−−→
T→∞

(φj − φj−1)Σj.

Also, for i 6= j, ∫ T

0

1√
T
ϕ(t)I{τi−1<t≤τi}

1√
T
ϕ>(t)I{τj−1<t≤τj}dt = 0,
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∫ T

0

( 1√
T
ϕ(t)I{τi−1<t≤τi}

)(
− 1√

T
XtI{τj−1<t≤τj}

)
dt = 0,

and ∫ T

0

(
− 1√

T
XtI{τi−1<t≤τi}

)(
− 1√

T
XtI{τj−1<t≤τj}

)
dt = 0

since I{τi−1<t≤τi}I{τj−1<t≤τj} = 0 for i 6= j, 0 ≤ φi−1 < φi ≤ 1 and 0 ≤ φj−1 < φj ≤ 1.

Therefore,

Σ =



φ1Σ1 0 . . . 0

0 (φ2 − φ1)Σ2 . . . 0

...
...

. . .
...

0 0 . . . (1− φm)Σm+1


.

Further, one can prove that, for T > 0, j = 1, ...m+ 1,

P

(∫ T

0

( 1√
T
ϕ(t)I{τj−1<t≤τj}

)2

dt <∞

)
= 1,

and

P

(∫ T

0

(
− 1√

T
XtI{τj−1<t≤τj}

)2

dt <∞

)
= 1.

This completes the proof.

Proof of Proposition 3.8. From Proposition 3.1, we have

θ̂(φ,m) = θ + σQ−1(φ,m)R(φ,m). Then,

√
T (θ̂(φ,m)− θ) = σ

√
TQ−1(φ,m)R(φ,m) = σTQ−1(φ,m)

1√
T
R(φ,m).

By Proposition 3.6,

σTQ−1(φ,m)
P−−−→

T→∞
σΣ−1.

By Proposition 3.7,

1√
T
R(φ,m)

d−−−→
T→∞

r∗ ∼ N(m+1)(p+1)(0,Σ).
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Then, by Slutsky’s Theorem,

√
T (θ̂(φ,m)− θ) = σTQ−1(φ,m)

1√
T
R(φ,m)

d−−−→
T→∞

σΣ−1r∗ = ρ.

We see that Σ is non-random and symmetric. Hence, by Proposition A.2 in

Appendix A, we have ρ ∼ N(m+1)(p+1)(0, σ
2Σ−1), and then,

√
T (θ̂(φ,m)− θ) d−−−→

T→∞
ρ ∼ N(m+1)(p+1)(0, σ

2Σ−1).

This completes the proof.

Proof of Proposition 3.9. Let logL(θ,XT ) be the log-likelihood function of the

stochastic process XT = {Xt, 0 ≤ t ≤ T}, which satisfies the SDE (2.5).

By introducing the Lagrange Multiplier λ into the log-likelihood function

logL(θ,Xt) =
1

σ2
θ>R̃(φ,m)− 1

2σ2
θ>Q(φ,m)θ.

We have

logL(θ, λ,Xt) =
1

σ2
θ>R̃(φ,m)− 1

2σ2
θ>Q(φ,m)θ + λ>(Bθ − r).

First, taking the first derivative with respect to θ and λ respectively, we have

∂

∂θ
logL(θ, λ,Xt) =

1

σ2
R̃(φ,m)− 1

σ2
Q(φ,m)θ +B>λ

and

∂

∂λ
logL(θ, λ,Xt) = Bθ − r.

Then, setting
∂

∂θ
logL(θ, λ,Xt) and

∂

∂λ
logL(θ, λ,Xt) equal to 0,

1

σ2
R̃(φ,m)− 1

σ2
Q(φ,m)θ̃(φ,m) +B>λ̂ = 0 (B.38)

Bθ̃(φ,m)− r = 0. (B.39)
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By (B.38),

1

σ2
Q(φ,m)θ̃(φ,m) =

1

σ2
R̃(φ,m) +B>λ̂,

which shows that

θ̃(φ,m) = Q−1(φ,m)R̃(φ,m) + σ2Q−1(φ,m)B>λ̂. (B.40)

Taking (B.40) into (B.39),

BQ−1(φ,m)R̃(φ,m) +Bσ2Q−1(φ,m)B>λ̂ = r

σ2BQ−1(φ,m)B>λ̂ = r −BQ−1(φ,m)R̃(φ,m)

λ̂ =
1

σ2
(BQ−1(φ,m)B>)−1r − 1

σ2
(BQ−1(φ,m)B>)−1BQ−1(φ,m)R̃(φ,m).

Taking λ̂ into (B.40),

θ̃(φ,m) = Q−1(φ,m)R̃(φ,m) + σ2Q−1(φ,m)B>
1

σ2
(BQ−1(φ,m)B>)−1r

− σ2Q−1(φ,m)B>
1

σ2
(BQ−1(φ,m)B>)−1BQ−1(φ,m)R̃(φ,m).

Then,

θ̃(φ,m) = Q−1(φ,m)R̃(φ,m) +Q−1(φ,m)B>(BQ−1(φ,m)B>)−1r

−Q−1(φ,m)B>(BQ−1(φ,m)B>)−1BQ−1(φ,m)R̃(φ,m),

this gives

θ̃(φ,m) = θ̂(φ,m) +Gr −GBθ̂(φ,m)

where, θ̂(φ,m) = Q−1(φ,m)R̃(φ,m) and G = Q−1(φ,m)B>(BQ−1(φ,m)B>)−1.

Finally,

θ̃(φ,m) = θ̂(φ,m) +Gr −GBθ̂(φ,m) = θ̂(φ,m)−G(Bθ̂(φ,m)− r),

this completes the proof.
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Proof of Proposition 3.10. By (3.6),

√
T (θ̃(φ,m)− θ) = (I(m+1)(p+1) −GB)

√
T (θ̂(φ,m)− θ)−

√
TG(Bθ − r).

By Proposition 3.8, we have

√
T (θ̂(φ,m)− θ) d−−−→

T→∞
ρ ∼ N(m+1)(p+1)(0, σ

2Σ−1),

and by combining (3.7), (3.9), and Slutsky’s Theorem,

√
T (θ̃(φ,m)− θ) d−−−→

T→∞
(I(m+1)(p+1) −G∗B)ρ−G∗r0 = ζ.

Then, by Proposition A.2 in Appendix A,

ζT (φ,m)
d−−−→

T→∞
ζ ∼ N(m+1)(p+1)(−G∗r0, σ

2(I(m+1)(p+1)−G∗B)Σ−1(I(m+1)(p+1)−G∗B)>).

Note that

σ2(I(m+1)(p+1) −G∗B)Σ−1(I(m+1)(p+1) −G∗B)>

= σ2(Σ−1 − Σ−1B>G∗> −G∗BΣ−1 +G∗BΣ−1B>G∗>).

And, since G∗ = Σ−1B>(BΣ−1B>)−1, we get

G∗BΣ−1B>G∗> = Σ−1B>(BΣ−1B>)−1BΣ−1 = Σ−1B>G∗>.

Hence,

σ2(I(m+1)(p+1) −G∗B)Σ−1(I(m+1)(p+1) −G∗B)>

= σ2(Σ−1 − Σ−1B>G∗> −G∗BΣ−1 + Σ−1B>G∗>)

= σ2(Σ−1 −G∗BΣ−1).

Finally, we get

ζT (φ,m)
d−−−→

T→∞
ζ ∼ N(m+1)(p+1)(−G∗r0, σ

2(Σ−1 −G∗BΣ−1)).

This completes the proof.
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Proof of Lemma 4.1. We have

1

T

∫ φ̂jT

φ̂j−1T

Ytdt−
1

T

∫ φjT

φj−1T

Ytdt

=

(
1

T

∫ φ̂jT

0

Ytdt−
1

T

∫ φjT

0

Ytdt

)
−

(
1

T

∫ φ̂j−1T

0

Ytdt−
1

T

∫ φj−1T

0

Ytdt

)

By Lemma 3.1 in Nkurunziza and Zhang (2018), and since φ̂j and φ̂j−1 are consistent

estimators for φj and φj−1,

1

T

∫ φ̂jT

0

Ytdt−
1

T

∫ φjT

0

Ytdt
L1

−−−→
T→∞

0, (B.41)

and

1

T

∫ φ̂j−1T

0

Ytdt−
1

T

∫ φj−1T

0

Ytdt
L1

−−−→
T→∞

0. (B.42)

Therefore, by (B.41) and (B.42), we have

1

T

∫ φ̂jT

φ̂j−1T

Ytdt−
1

T

∫ φjT

φj−1T

Ytdt
L1

−−−→
T→∞

0.

This completes the proof.

Proof of Lemma 4.2. Let I1 =
1

T
E

∥∥∥∥∥
∫ φ̂jT

0

YtdWt −
∫ φjT

0

YtdWt

∥∥∥∥∥
2

I(φ̂j>φj)

 and

I2 =
1

T
E

∥∥∥∥∥
∫ φ̂jT

0

YtdWt −
∫ φjT

0

YtdWt

∥∥∥∥∥
2

I(φ̂j≤φj)

. Then, we have

1

T
E

∥∥∥∥∥
∫ φ̂jT

0

YtdWt −
∫ φjT

0

YtdWt

∥∥∥∥∥
2
 = I1 + I2. (B.43)

For I1, by Jensen’s Inequality and Itô’s Isometry,

I1 =
1

T
E

∥∥∥∥∥
∫ φ̂jT

φjT

YtdWt

∥∥∥∥∥
2

I(φ̂j>φj)

 =
1

T
E

E

∥∥∥∥∥
∫ φ̂jT

φjT

YtdWt

∥∥∥∥∥
2

I(φ̂j>φj)

∣∣∣∣∣φ̂j


=
1

T
E

[∥∥∥∥∥
∫ φ̂jT

φjT

YtY
>
t dt

∥∥∥∥∥ I(φ̂j>φj)

]
≤ 1

T
E

[∫ φ̂jT

φjT

∥∥YtY >t ∥∥ dt I(φ̂j>φj)

]
. (B.44)
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Let
∥∥YtY >t ∥∥ ≤ K3 for all t ≥ 0. From (B.44),

I1 ≤
1

T
E
[
(φ̂j − φj)TK3I(φ̂j>φj)

]
. (B.45)

Similarly, we have

I2 ≤
1

T
E
[
(φj − φ̂j)TK3I(φ̂j≤φj)

]
. (B.46)

By (B.43), (B.45) and (B.46), we establish that

1

T
E

∥∥∥∥∥
∫ φ̂jT

0

YtdWt −
∫ φjT

0

YtdWt

∥∥∥∥∥
2
 ≤ K3E

[
|φ̂j − φj|

]
. Then, by Lebesgue’s

dominated convergence theorem,
1√
T

∫ φ̂jT

0

YtdWt −
1√
T

∫ φjT

0

YtdWt
L2

−−−→
T→∞

0. Sim-

ilarly, we have
1√
T

∫ φ̂j−1T

0

YtdWt −
1√
T

∫ φj−1T

0

YtdWt
L2

−−−→
T→∞

0. By combining these

two conditions, this completes the proof.

Proof of Proposition 4.1. We have, for 0 ≤ φj−1 < φj ≤ 1, j = 1, ...,m+ 1,

1

T

∫ φ̂jT

φ̂j−1T

ϕ(t)ϕ>(t)dt =

(
1

T

∫ φ̂jT

φ̂j−1T

ϕ(t)ϕ>(t)dt− 1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt

)

+
1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt.

By Lemma 4.1,
1

T

∫ φ̂jT

φ̂j−1T

ϕ(t)ϕ>(t)dt − 1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt
P−−−→

T→∞
0. Further, by

Proposition 3.2,
1

T

∫ φjT

φj−1T

ϕ(t)ϕ>(t)dt
P−−−→

T→∞
(φj − φj−1)Ip. Then,

combining these two conditions, for 0 ≤ φj−1 < φj ≤ 1, j = 1, ...,m+ 1,

1

T

∫ φ̂jT

φ̂j−1T

ϕ(t)ϕ>(t)dt
P−−−→

T→∞
(φj − φj−1)Ip.

This completes the proof.

Proof of Proposition 4.2. For T > 0, 0 ≤ φj−1 < φj ≤ 1 where j = 1, ...,m + 1,
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we have

1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt

=

(
1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt

)

+

(
1

T

∫ φjT

φj−1T

Xtϕ(t)dt− 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt

)

+

(
1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt

)
. (B.47)

By Lemma 4.1, we have

1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt
L1

−−−→
T→∞

0,

and

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt
L1

−−−→
T→∞

0,

which implies that

1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φjT

φj−1T

Xtϕ(t)dt
P−−−→

T→∞
0, (B.48)

and

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt
P−−−→

T→∞
0. (B.49)

Also, by the Proof of Proposition 3.3,

1

T

∫ φjT

φj−1T

Xtϕ(t)dt− 1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
P−−−→

T→∞
0. (B.50)

Hence, combining (B.47), (B.48), (B.49) and (B.50),

1

T

∫ φ̂jT

φ̂j−1T

Xtϕ(t)dt− 1

T

∫ φ̂jT

φ̂j−1T

X̃tϕ(t)dt
P−−−→

T→∞
0.
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Similarly, we observe that

1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt =

(
1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

)

+

(
1

T

∫ φjT

φj−1T

X2
t dt−

1

T

∫ φjT

φj−1T

X̃2
t dt

)

+

(
1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt

)
. (B.51)

By Lemma 4.1, we have

1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

L1

−−−→
T→∞

0,

and

1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt

L1

−−−→
T→∞

0,

which implies that

1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φjT

φj−1T

X2
t dt

P−−−→
T→∞

0, (B.52)

and

1

T

∫ φjT

φj−1T

X̃2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt

P−−−→
T→∞

0. (B.53)

Also, by the Proof of Proposition 3.4,

1

T

∫ φjT

φj−1T

X2
t dt−

1

T

∫ φjT

φj−1T

X̃2
t dt

P−−−→
T→∞

0. (B.54)

Hence, combining (B.51), (B.52), (B.53) and (B.54),

1

T

∫ φ̂jT

φ̂j−1T

X2
t dt−

1

T

∫ φ̂jT

φ̂j−1T

X̃2
t dt

P−−−→
T→∞

0.

This completes the proof.
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Proof of Proposition 4.6. By Proposition 2.4, Q(τ̂j−1,τ̂j) is positive definite and,

by Proposition 3.5, Σj is also positive definite. Then, the block matrix 1
T
Q(φ̂,m) and

Σ are positive definite so they are invertible. We have

(
1

T
Q(φ̂,m))−1 = TQ−1(φ̂,m).

Hence, by Proposition 4.5,

TQ−1(φ̂,m)
P−−−→

T→∞
Σ−1

which completes the proof.

Proof of Lemma 4.3. We have

1√
T

(∫ φ̂jT

φ̂j−1T

YsdWs −
∫ φjT

φj−1T

YsdWs

)

=
1√
T

(∫ φ̂jT

0

YsdWs −
∫ φjT

0

YsdWs

)
− 1√

T

(∫ φ̂j−1T

0

YsdWs −
∫ φj−1T

0

YsdWs

)
.

Then, by Lemma 3.3 in Nkurunziza and Zhang (2018), we get

1√
T

∫ φ̂jT

φ̂j−1T

YsdWs −
1√
T

∫ φjT

φj−1T

YsdWs
P−−−→

T→∞
0,

this completes the proof.

Proof of Proposition 4.7. We know that φ̂j and φ̂j−1 are consistent estimators for

φj and φj−1 where j = 1, ...,m + 1. By Lemma 4.3, we have, for 0 ≤ φj−1 < φj ≤ 1,

j = 1, ...,m+1,
1√
T

∫ φ̂jT

φ̂j−1T

XtdWt−
1√
T

∫ φjT

φj−1T

XtdWt
P−−−→

T→∞
0. Then, by Lemma 4.2,

we also have
1√
T

∫ φ̂jT

φ̂j−1T

ϕ(t)dWt−
1√
T

∫ φjT

φj−1T

ϕ(t)dWt
P−−−→

T→∞
0. Combining these two

conditions completes the proof.

Proof of Corollary 4.1. From Proposition 3.1, we know

θ̂(φ,m) = θ + σQ−1(φ,m)R(φ,m).
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Similarly, we have

θ̂(φ̂,m) = θ + σQ−1(φ̂,m)R(φ̂,m).

Then,

√
T (θ̂(φ̂,m)− θ) = σ

√
TQ−1(φ̂,m)R(φ̂,m) = σTQ−1(φ̂,m)

1√
T
R(φ̂,m).

By Proposition 4.6,

σTQ−1(φ̂,m)
P−−−→

T→∞
σΣ−1.

By Proposition 4.8,

1√
T
R(φ̂,m)

d−−−→
T→∞

r∗ ∼ N(m+1)(p+1)(0,Σ).

Then, by Slutsky’s Theorem,

√
T (θ̂(φ̂,m)− θ) = σTQ−1(φ̂,m)

1√
T
R(φ̂,m)

d−−−→
T→∞

σΣ−1r∗ = ρ.

We see that Σ is non-random and symmetric. Hence, by Proposition A.2, we have

ρ ∼ N(m+1)(p+1)(0, σ
2Σ−1), then

√
T (θ̂(φ̂,m)− θ) d−−−→

T→∞
N(m+1)(p+1)(0, σ

2Σ−1),

this completes the proof.

Alternative Proof of Theorem 7.2. From (7.2) and Proposition 5.1, we have

ADR
(
θ̂(φ̂, m̂), θ,Ω

)
= E[ρ>Ωρ] = E[trace(ρ>Ωρ)] = E[trace(Ωρρ>)] = trace(ΩE[ρρ>])

= trace(Ω(var(ρ) + E(ρ)E(ρ)>)) = trace(Ωvar(ρ)) + E(ρ)>ΩE(ρ).

From Corollary 4.1, we have ADR
(
θ̂(φ̂, m̂), θ,Ω

)
= σ2trace(ΩΣ−1), this completes

the proof.
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Alternative Proof of Theorem 7.3. By Proposition 5.1, we have

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= E[ζ>Ωζ],

where ζ ∼ N(m+1)(p+1) (−G∗r0, σ
2(Σ−1 −G∗BΣ−1)). Following similar steps of the

proof of Proposition 7.2, we have

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= E[ζ>Ωζ] = trace(Ωvar(ζ)) + E(ζ)>ΩE(ζ).

This gives

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= trace(Ωσ2(Σ−1 −G∗BΣ−1)) + (−G∗r0)>Ω(−G∗r0).

Then, we have

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= σ2trace(ΩΣ−1)− σ2trace(ΩG∗BΣ−1) + r>0 G

∗>ΩG∗r0.

Therefore, by Theorem 7.2, we establish that

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
− σ2trace(ΩG∗BΣ−1) + r>0 G

∗>ΩG∗r0.

This completes the proof.
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