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ABSTRACT 

The concept of load distribution factors have been used in bridge design for many decades 

as a simplified method to estimate load effects on bridge members. It enables bridge 

engineers to consider the transverse and longitudinal effects of truck wheel loads as two 

separate phenomena and thus simplifying the analysis and design of new bridges as well 

as for the evaluation of the load carrying capacity of existing bridges. Existing bridge 

design codes do not provide sufficient guidance to bridge engineers regarding the accurate 

assessment of load distribution factors for skew composite bridges. Thus leads to an 

extremely conservative design in some cases and to unsafe design in others, since these 

factors do not represent the actual behavior of the bridge structure. 

The presence of skew angle makes the analysis and design of composite slab-on-girder 

bridges much more complex in comparison to straight bridges. Over the past decade, 

several authors have drawn attention toward the steel I-girder twisting placed over highly 

skewed supports. These rotations are larger at the obtuse corners and difficult to predict 

due to the uneven load distribution across the bridge superstructure. In addition to girder 

twisting, skewed bridges can also lead to increased lateral flange bending stresses as well 

as increased shear and end reactions at girder obtuse corners that subsequently results in 

the reduction of girder shear and end reactions, and even possibly undesirable uplift in 

girders at the acute corners of the bridge.  

Recently mandated North American bridge code specifications include provisions 

considering angle of skew for slab-on-girder bridges applicable within certain ranges of 

the design parameters. These ranges are often found too narrow and thus frequently 

exceeded in routine design check. When one of the design parameter exceeds its 

corresponding limit, refined analysis is suggested. Unfortunately many bridge design 

engineers are not fully aware or adequately skillful with these refined analysis techniques. 

In addition, the analysis equations in current design code specifications are developed using 

the regression of grillage analysis results that is not always recommended for skewed 

bridges. Further, these design guidelines are developed by ignoring the contribution of 

diaphragms in a skewed bridge structure, which may not be realistic and leads to inaccurate 

prediction of load distribution for a skewed bridge structure. 
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In order to address the shortcomings in the current code specifications, this research was 

initiated to address these concerns by better understanding the skew bridge behavior and 

developing design guidelines for rational and accurate assessment of load distribution 

factors for composite skewed slab-on steel I-girder bridges. For this purpose, a parametric 

study was conducted using three-dimensional finite element modeling of a composite 

bridge structure under dead and CHBDC live loads for ultimate, serviceability and fatigue 

limit states by considering different design parameters including: skew angles, girder 

stiffness and cross-frame layout, span length, girder spacing, number of girders, and 

number of design lanes. Based on the results obtained from a parametric study, a set of 

empirical expressions were developed for the girder moment and shear distribution factors 

for rational prediction of the girder load distribution. Further, the load distribution factors 

for girder moment and shear obtained by FEA for both straight and skewed bridge was 

correlated with the proposed empirical equations and the CHBDC design guidelines. The 

results showed that the proposed equations for girder moment and shear distribution factors 

were in good agreement with the FEA results for both straight and skewed bridge 

configuration. However for straight bridge, the CHBDC equations proved to be ineffective 

to capture the behavior of most of the straight slab-on-girder bridge geometries. For skewed 

bridges, the CHBDC equations gave conservative response for certain bridge 

configurations and for others it produced highly under estimated response, yielding to an 

unsafe design. Finally, the applicability of the proposed equations for moment and shear 

distribution factors developed for simply supported straight and skewed slab-on-girder 

bridge geometry under dead and live load conditions to the multi-span continuous bridge 

structures was also investigated. The results showed that both the proposed equations and 

the CHBDC simplified equations proved to be unsafe for some cases, and for other 

situations resulted in conservative estimates. Based on the limited set of data selected for 

this study, a new set of design equations for a skewed continuous bridge were proposed, 

adequately conforming the results obtained from finite element analysis. Design guidelines 

for bridge engineers were proposed to treat a skewed bridge as an equivalent straight 

bridge. The findings of this design-oriented dissertation would enable bridge engineers to 

design composite skewed slab-on steel I-girder bridges more reliably and economically. 
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LIST OF ABBREVIATIONS 

B  bridge width 

b length of the shorter side of a rectangular section as shown in Figure 5.7 of 

CHBDC (CSA 2014a) 

be reduced value of b as shown in Figure 5.7 of CHBDC (CSA 2014a) 

Ce  correction factor used to adjust the F value for longitudinal moment to 

account for the vehicle edge distance 

Cf  correction factor used to adjust the F value for longitudinal moment and 

longitudinal vertical shear 

DLA dynamic load allowance 

DT  truck load distribution width 

DVE vehicle edge distance for slab-on-girder bridges 

Dx longitudinal flexural stiffness of the bridge superstructure per unit width 

Dy  transverse flexural stiffness of the bridge superstructure per unit length  

E modulus of elasticity 

e eccentricity between centroids of girder and slab 
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CHAPTER 1 

Introduction 

1.1 Background 

Composite slab-on steel I-girder bridges are among the most common short-to-medium 

span bridges built in the North America (Cao 1996). This was mainly due to the reduction 

in the structure's dead weight, better load carrying capacity, and a considerable reduction 

in the bridge depth (Ebeido 1995). Moreover, the use of steel built-up girders which 

directly support the slab formwork avoids the expensive shoring needed to support the wet 

cast-in-place concrete slab, and this makes construction easy and rapid with minimum 

traffic disruptions (Khan 1996). 

The presence of skew angle makes the analysis and design of a composite bridge much 

more complex in comparison to a straight bridge. In modern transportation network, 

skewed bridges are indispensable where natural or existing man-made obstacles prevent a 

perpendicular crossing and consequently they are commonly found in mountainous areas. 

In many cases, the lack of space at complex intersections and in congested urban areas may 

also require bridges to be built on skew alignment (Huang et al. 2004, Menassa et al. 2007). 

In North America about 40% of the total bridge deck area is on skew alignment and about 

10% of the total area is on high skew angles (Helba and Kennedy 1994, Deng 1998). Over 

the past decade, several authors have drawn attention to the potential for steel I-girder 

twisting on highly skewed supports (AASHTO/NSBA 2003, Beckman et al. 2005, Coletti 

and Yadlosky 2005, 2007). These rotations are larger at the obtuse corners and they are 

difficult to predict due to the uneven distribution of loads across the superstructure that 

increase the skew effects (Choo et al. 2005). In addition to girder twisting, skewness can 

also lead to an increased flange lateral bending stresses in the girders as well as increased 

girder shears and end reactions at the obtuse corners of the bridge that subsequently results 

in a reduction of girder shear and end reactions, and even possibly undesirable uplift in 

girders at the acute corners of the bridge (Fisher 2006, Ozgur et al. 2011, Krupicka and 

Poellot 1993). Further as the aspect ratio (length to width ratio) of a bridge structure 

decreases, a skewed bridge behaves more as a plate than a beam. Depending on the 
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transverse stiffness of a skewed bridge, part of the load travels transversely to the obtuse 

corners choosing the shorter path, rather than travelling along the longitudinal girders, as 

shown in Figure 1.1. This shift in load transfer reduces the longitudinal bending moments 

and increases the shear at the girder obtuse corners (Menassa et al. 2007). 

 

Figure 1.1 Load path on a skewed bridge 

Alternate load paths and different load distributions are two complications that arises when 

designing a bridge with a skew angle (Coletti et al. 2011). Load distribution factors have 

been used in bridge design for many decades as a simple method to estimate load effects 

on bridge members. It allows bridge designers to predict structural responses by treating 

the longitudinal and transverse effects of dead and live loads as uncoupled phenomena 

without requiring special skills and analytical tools. With the specified formulas for 

distribution factors and simplified beam line analyses, the load effect on each girder can be 

evaluated for design and evaluation purposes. However, using inappropriate load 

distribution factors may lead to extremely conservative design forces or sometimes makes 

the design of the bridge unsafe. Therefore, an accurate assessment of load distribution 

throughout the bridge system is desired. 

1.2   Problem Statement 

The research work dedicated to the evaluation of load distribution factors has indicated that 

the behavior of a skewed bridge is quite different from their straight bridge counterparts 

(e.g., Bishara et. al. 1993, Menassa et al. 2007, Mergel and Almansour 2010). These efforts 

have shown that previous bridge code specifications (CSA 2000, 2006a; AASHTO 1996) 

were unable to adequately predict the skewed bridge behavior including maximum mid 

span moment and the shear force at the girder obtuse corner.  
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Recently, based on the parametric study analysis by Theoret and Massicotte (2011), 

CHBDC (CSA 2014a) has specified equations considering skew for slab-on-girder bridges 

applicable within certain ranges of design parameters, such as, skew angle, span length, 

girder spacing etc. These ranges are often found too narrow and thus frequently exceeded 

in routine design (Razzaq et al. 2015, 2016). When one of the design parameter exceeds its 

corresponding limit, refined analysis is suggested by the code specifications (CSA 2014a-

clause 5.9). Unfortunately many bridge design engineers are not familiar or adequately 

equipped with these refined analysis techniques. Further, the design equations in current 

design code specifications (CSA 2014a) are developed using the regression of grillage 

analysis results, however for skewed bridges it results inaccurate assessment of the bridge 

responses and is not always recommended (Coletti and Puckett 2012, Vayas et al. 2011). 

Also, these design guidelines are developed by considering simplifying assumptions that 

impose restrictions upon their applicability to the skewed slab-on-girder bridges under dead 

and live load conditions: (i) contribution of diaphragms should not be considered, and (ii) 

diaphragms and intermediate cross-frame should be placed parallel to the line of support 

(CSA, 2014b; clause 5.6.3). Previous studies revealed that the arrangement of internal 

diaphragms in skewed bridge has a significant effect on the load distribution pattern and 

should not be ignored (Khaloo and Mirzabozorg 2003, Nouri and Ahmadi 2012). Also 

under the application of loads, diaphragms resist girder lateral torsional buckling and 

stabilizes compression flange (Keating and Alan 1992, Helwig and Wang 2003). A recent 

study has demonstrated that parallel cross-frame layout can be employed for a skew angle 

up to 30o (Razzaq et al. 2015). It was also found in that study that beyond that skew limit 

and up to 60o, a perpendicular staggered cross-frame layout enhances the performance of 

the bridge structure due to three facts: (i) reduction of the cross-frame forces at the supports, 

(ii) limitation of the differential vertical displacement of cross-frame at obtuse corners, and 

(iii) reduction of girder longitudinal bending moment and vertical support reactions.  

With developments in computer technology, the finite element method proves to be the 

most powerful, versatile and flexible approach for the analysis of composite steel girder 

bridges (AASHTO/NSBA 2011). Further, literature survey conducted by Sotelino et al. 

(2004) indicated that more previous researchers adopted finite element method as an 

analysis tool over the grillage analysis or other simplified methods. This finding is in 
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agreement with other’s research work when analyzing new bridges or evaluating the load 

carrying capacity of existing skewed bridges (Bishara et. al. 1993, Mabsout et al. 1997b). 

The current research was initiated to address these concerns by better understanding skew 

bridge behavior and developing design guidelines for rational and accurate assessment of 

load distribution factors for skewed slab-on steel I-girder bridges by adopting three-

dimensional finite element analysis. 

1.3   Research Objectives 

Although CHBDC (CSA 2014a) has given relatively simple empirical equations for 

calculation of distribution factors for slab-on-girder bridges applicable within certain 

ranges of the design parameters, such as, skew angle, span length, girder spacing etc. These 

ranges are often found too narrow and thus frequently exceeds in routine design (Razzaq 

et al. 2016). When one of the design parameter exceeds its corresponding limit, refined 

analysis is suggested by the code specifications (CHBDC-clause 5.9.1). Unfortunately 

many bridge design engineers are not familiar or adequately proficient with these refined 

analysis techniques. In addition, the analysis equations in current design code 

specifications (CSA 2014a) are developed using the regression of grillage analysis results, 

however for skewed bridges it results inaccurate assessment of the bridge responses and is 

not always recommended (Coletti and Puckett 2012, Vayas et al. 2011). To address the 

shortcomings in the current bridge design code the objectives of this study were: 

1. Evaluate load distribution factors for simply supported straight and skewed composite 

slab-on-steel I-girder bridges for dead and live load conditions using 3-dimenisonal 

finite element analysis (FEA). The results were correlated with the available CHBDC 

equations to determine their level of accuracy. 

2. Based on the data generated from the parametric study analysis, reliable expressions 

for the moment and shear distribution factors were developed for the accurate 

prediction of skewed bridge behavior. 

3. Assessment of skew limitations for slab-on-girder bridges by treating skew bridge as 

an equivalent straight bridge in structural analysis and design. 
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4. To check the applicability of the proposed equations for moment and shear distribution 

factors for simply supported straight and skewed slab-on-girder bridge under dead and 

live load conditions to the multi-span continuous bridge structures. 

1.4   Dissertation Organization 

Following this introductory chapter, chapter 2 describes the main methods used in North 

American bridge design codes along with the previous research efforts used to determine 

the load distribution factors for composite slab-on steel I-girder bridge systems. Further the 

effect of various bridge design parameters on the girder load distribution factor is also 

discussed. Chapter 3 presents the structural model developed for the analysis of composite 

slab-on-girder bridge prototypes using the 3-dimensional finite element method. In this 

chapter, the calibration of finite element model with actual field test data results of existing 

bridges are also presented. The results of sensitivity studies to estimate the effect of bridge 

design parameters on the load distribution of skewed composite steel I-girder bridges are 

included herein. Chapter 4 presents the effect of sequence of construction in skewed slab-

on-girder bridges by conducting a three-dimensional finite element modeling under dead 

loads, and new empirical expressions for the evaluation of girder moment and shear 

distribution factors are proposed, and presented herein. Chapter 5 includes the proposed 

equations for the girder moment and shear distribution factors for straight and skewed slab-

on-girder bridges under CHBDC truck loading for ultimate, serviceability and fatigue limit 

states. The correlation of the proposed equations with the current and previous bridge 

design codes are evaluated along with the design equations presented in previous literature 

available. In chapter 6, the skew limitations of composite slab-on-girder bridges are 

investigated using 3-dimensional finite element modeling in-order to treat the skewed slab-

over steel I-girder bridge as an equivalent straight bridge for structural analysis and design 

purposes. Chapter 7 discusses the applicability of the proposed equations for moment and 

shear distribution factors for simply supported straight and skewed slab-on-girder 

composite bridge under the dead and live load conditions to the multi-span continuous 

bridge structure. Finally, Chapter 8 contains a brief summary, conclusions of this research 

study and suggestions for future research involving composite slab-on steel I-girder 

bridges. 
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CHAPTER 2 

Literature Review 

2.1 General 

The concept of live load distribution factors have been used in bridge design for many 

decades as a simplified method to estimate live load effects on bridge members. Live load 

distribution is important for the design of new bridges as well as for the evaluation of the 

load carrying capacity of existing bridges. With specified formulas for distribution factors, 

bridge engineers can conveniently determine the maximum response in the girders by 

multiplying the live load distribution factor by the maximum responses obtained from a 

single beam line (one-dimensional) analysis under live load, as illustrated in Figure 2.1. In 

other words, the live load distribution factor (LDF) is defined in equation 2.1 as: 

beamsimplerefined FLDFF ×=  (2.1) 

 

Figure 2.1 Distribution factor illustrations 

Frefined corresponds to the largest bending moment or shear force distributed to the girder 

for all of the load combinations from the refined analysis. Fsimple beam corresponds to the 

maximum bending moment or shear force determined from a simple beam-line analysis of 

one lane of traffic. The live load distribution factors allows bridge designers to predict 

structural responses by treating the longitudinal and transverse effects of vehicular live 

loads as uncoupled phenomena. Another advantage of live load distribution factors is that 

bridge engineers and researchers can predict the maximum responses without special skills 

and analytical tools.  
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Based on finite element analysis (FEA), the research work dedicated to the evaluation of 

load distribution factors has indicated that the behavior of a skewed bridge is quite different 

from their straight bridge counterparts (e.g., Bishara et. al. 1993, Menassa et al. 2007, 

Mergel and Almansour 2010). These efforts have shown that the previous bridge code 

specifications (CSA 2000, 2006a; AASHTO 1996) were unable to adequately predict the 

skewed bridge behavior including maximum mid span moment and the shear force at the 

girder obtuse corner.  

Recently mandated North American bridge code specifications (CSA 2014a, AASHTO-

LRFD 2014) include provisions considering skew for slab-on-girder bridges applicable 

within certain ranges of the design parameters, such as, skew angle, span length, girder 

spacing etc. These ranges are often found too narrow and thus frequently exceeded in 

routine design. When one of the design parameter exceeds its corresponding limit, refined 

analysis is suggested by the code specifications. Unfortunately many bridge design 

engineers are not familiar or adequately proficient with these refined analysis techniques. 

In addition, the analysis equations in current design code specifications are developed using 

the regression of grillage analysis results, which may not be realistic for some cases. This 

short coming has convinced many bridge engineers and designers to adopt three-

dimensional finite element modeling technique when analyzing new bridges or evaluating 

the load carrying capacity of existing bridges (Bishara et. al. 1993, Mabsout et al. 1997b). 

However few studies have recommended the usage of three-dimensional finite element 

analysis when the skew angle is greater than 20o (Menassa et al. 2007, Nouri and Ahmadi 

2012).  

The current research was initiated to address these concerns by better understanding skew 

bridge behavior and developing design guidelines and tools to facilitate design practice in 

North America, particularly in Canada. The literature review presented in this chapter 

covers the main methods used in North American codes to determine live load distribution 

factors and discuss previous research efforts particularly related to live load distribution in 

composite slab-on steel I-girder bridge systems.  
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2.2   Procedures for Evaluating Distribution Factors in North America 

The procedures to evaluate the load distribution factors specified in North American bridge 

design specifications, particularly Canadian Highway Bridge Design Specification (CSA 

2006a, 2014a), AASHTO Standard Specification (AASHTO 1996) and, AASHTO-LRFD 

(2014) Bridge Design Specification are briefly discussed herein. Moreover, the limitations 

involved for these bridge code specifications applicability are also discussed. 

2.2.1  Canadian Highway Bridge Design Code (CSA 2006a) 

The Canadian Highway Bridge Code (CSA 2006a) adopted the work of Bakht (1988), 

Bakht and Moses (1988), and Bakht and Jaeger (1990). The Canadian Highway Bridge 

Design Code (CHBDC) (CSA 2006a), describes a method for computing the live load 

distribution factors that is based on equal distribution of live loads to all girders as shown 

in Figure 2.2. A modification factor is applied to the value computed by the equal 

distribution, which is dependent on the bridge type, geometry, action, and limit state (ULS, 

SLS and FLS). 

 

 

Figure 2.2 Transverse moment distribution using simplified method of analysis for ULS 

and SLS 

Several conditions must be met in order to use the Canadian method for live load 

distribution calculations for slab-on-girder bridges (clause 5.6.1.1 for dead load analysis, 

and clause 5.7.1.1 for live load analysis). If these conditions are not fully met, the code 
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states that engineering judgment shall be used to determine whether the bridge satisfies 

these conditions to an extent sufficient for the appropriate simplified method to apply.  

The Simplified Method of Analysis specified in clause 5.7.1 of the Canadian Highway 

Bridge Design Code (CSA 2006a) allows a bridge to be treated as a beam for live load 

analysis. The total load applied to the bridge will be n lanes, reduced by the multiple 

presence factor, RL, as stipulated in Section 3. For girder-type bridges, the total moment 

MT on the cross-section at any point along the span can be averaged by sharing the total 

moment equally among all girders. Hence, average moment per girder due to live load 

(Mgavg) for ultimate and serviceability limit states (ULS and SLS) can be calculated from 

equation 2.2 as follows: 

N

RnM
M LT

gavg =     (2.2) 

The variation of maximum force intensity across the width of the bridge depends on the 

transverse position of the lane loads, the torsional stiffness of the cross-section, the span 

length, and the transverse and longitudinal stiffnesses. This transverse variation of force 

intensity can best be visualized by the introduction of an amplification factor, Fm, which 

represents the ratio of the true force intensity to the average force intensity, and expressed 

in equation 2.3 as follows: 

gavg

g

m
M

M
F =     (2.3) 

where, Mg is the longitudinal moment per girder, and, Mgavg is the average moment per 

girder due to live load determined by sharing equally the total moment on the bridge cross-

section among all girders in the cross-section. It is shown in equation 2.3 that Fm is a 

measure of how much the extreme load distribution deviates from the average distribution. 

Lower values of Fm indicate less deviation, thus greater ability of the bridge to transfer load 

across its width (CSA 2006b). 
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For slab-on-girder bridges at ULS and SLS, the amplification factor to account for the 

transverse variation in maximum longitudinal moment intensity, as compared to the 

average longitudinal moment intensity (clause 5.7.1.2.1.2-a) can be expressed as follow: 
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For fatigue limit states (FLS), the traffic load includes one CL-W truck, that causes 

maximum effects only, increased by the dynamic load allowance and placed at the center 

of one travelled lane (clause 3.8.4.1). Thus, for slab-on-girder bridges at FLS the 

amplification factors (clause 5.7.1.2.2.2-c) can be expressed as follows:  
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In equations 2.4 and 2.5, S is the center-to-center girder spacing, and N is the number of 

girders. Parameter F is a width dimension that characterizes the load distribution for a 

bridge (CSA 2006a clause 5.7.1.2.1.2-a for ULS and SLS, and clause 5.7.1.2.2.2-c for 

FLS). It depends on many factors, including bridge type, highway class, span length, 

number of design lanes, and girder position. Parameter We is width of design lane 

calculated in accordance with clause 3.8.2, Cf is the percentage correction factor obtained 

from Table 5.3 and 5.4 for ULS and SLS, and FLS respectively, and Ce is the percentage 

correction factor for vehicle edge distance obtained from Table 5.5 of CHBDC (CSA 

2006a).  

The longitudinal vertical shear per girder, Vg, at ultimate, serviceability and fatigue limit 

states (ULS, SLS and FLS) can be defined as:  

gavgvg VFV .=     (2.6) 
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where Vgavg is the average shear per girder and Fv is the amplification factor for the 

transverse variation in maximum longitudinal vertical shear intensity.  
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    (2.7) 

where VT is the maximum shear per design lane. 

Extensive comparative analyses of skew and equivalent right bridges conducted by Bakht 

(1988), and Jaeger and Bakht (1989) showed that the angle of skew of bridge is not the only 

measure of its skewness; the span length and girder spacing also affect the load distribution.  

In particular, it has been shown that a dimensionless parameter characterizing the skewness 

of a slab-on-girder bridge is, ε = S tan ψ/L.  To allow the analysis of a skew bridge as an 

equivalent right bridge, the 2006 version of CHBDC (CSA 2006a) has imposed the upper 

limits of 1/18 for ε. In the current version of the code that limit has been removed. 

2.2.1.1  Limitations of CHBDC (CSA 2006a) 

Previous studies noticed the following discrepancies in the CHBDC (CSA 2006a):  

i. Mergel and Almansour (2010), examined the accuracy of the load distribution method 

specified in CHBDC (CSA 2006a). For this purpose, the analytical results of the live 

load distribution factors obtained by three dimensional finite element model of a two 

lane single span bridge were compared by the simplified method of analysis specified 

in CHBDC (CSA 2006a). Results showed that the simplified method of analysis leads 

an over-estimation from 7% to 17% for the longitudinal moment and shear. 

ii. The Canadian Highway Bridge Design Code (CSA 2006a) follows the concept of equal 

distribution and applies modification factors of the bridge type, the geometry of the 

structure, and the limit state in order to improve the accuracy. Equivalent Orthotropic 

plate theory is the basis for the modification made to equal distribution, which may not 

be realistic for some cases. 

2.2.2 Canadian Highway Bridge Design Code (CSA 2014a) 
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To address the shortcoming in the previous bridge code (CSA 2006a), new provisions 

based on extensive analysis of simply supported single-span bridge was introduced to 

further simplify the procedure of distributing live load effects in slab, voided-slab, slab-on-

girder and multi-spine box girder bridges. The new provisions are based on a parametric 

study done by grillage analysis of more than 3000 slab-on-girder bridges that represents a 

wide variety of geometries and loading conditions (Theoret and Massicotte 2011). As per 

clause 5.6.4.1, the longitudinal moment and vertical shear shall be calculated as follows: 

TSTL

TSTL

VFFV

MFFM

=

=
    (2.8) 

where FT is the truck load fraction represents the load effects per girder due to highway 

traffic, and FS accounts for the effects of skew geometry. Therefore, equation 2.8 specifies 

that the maximum load effect (ML or VL) can be determined by multiplying the one-lane 

loading case load effects (MT or VT) by two factors i.e. FT and FS.  

The truck load fraction depends on the girder spacing, superstructure dimensions, highway 

class, vehicle edge distance and deck overhang length beyond the exterior girder. For Slab-

on-girder bridges, the truck load fraction, FT, shall be calculated from equation 2.9 and 

2.10 for ULS and SLS, and FLS respectively as follows: 

SLSULSfor
N

nR

D

S
F L

CT

T &05.1
)1(

≥
+

=
µλγ

 (2.9) 

FLSfor
ND

S
F

eCT

T

1
05.1

)1(
≥

++
=

γµλγ
  (2.10) 

where S is the centre-to-centre spacing of longitudinal girders of a deck-on-girder bridge, 

m; DT is the truck load distribution width, m; Cγ  is the truck load modification factor for 

slab-on-girder bridges; eγ  is the truck load modification factor for the exterior girder of 

slab-on-girder bridges, µ is lane width modification factor; and, λ  is the lane width 

parameter. 
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The refined analysis was conducted to obtain DT factors (F in previous edition of CSA 

2006a) to consider the critical number of loaded lanes out of all possible combinations 

(Theoret and Massicotte 2011). 

2.2.2.1  Limitations of CHBDC (CSA 2014a) 

CHBDC design guidelines (CSA 2006a, 2014a) are developed by considering specific 

assumptions that limit their applicability to skewed slab-on-girder bridges i.e. 

i. Both CHBDC specifications (CSA 2006a, 2014a) are based on the orthotropic plate 

theory and consider the equivalent stiffness of the bridge structure and thereby ignore 

the effect of transverse intermediate diaphragms when developing the equations for 

moment and shear. The presence of such diaphragms has a significant effect on the load 

distribution pattern and lead to better load distribution and hence significant reductions 

in both the span and support moments (Khaloo and Mirzabozorg 2003, Nouri and 

Ahmadi 2012).  

ii. In both versions of CHBDC (CSA 2006a, 2014a), the LDF equations do not 

differentiate between slab-on concrete girders or braced steel girders; the same set of 

equations are specified for both bridge structures resulting in erroneous design 

parameters.  

iii. CHBDC (CSA 2014b), clause 5.6.3 specifies the placement of diaphragms and 

intermediate cross-frame parallel to the line of support. A study by Razzaq et al. (2015) 

has demonstrated that the parallel cross-frame layout can be employed up to a 30o skew 

angle and when the skew angle increases from 30o to 60o, perpendicular staggered 

cross-frame layout enhances the performance of a skewed bridge. 

iv. CHBDC (CSA 2014a) clause 5.6.3 and clause 5.6.6.2 stipulate the use of the same skew 

factor to magnify the longitudinal vertical shear forces VL without any discrimination 

for the forces at acute and obtuse corners. However, finite element based results 

demonstrated that the obtuse corners are very much affected by the variation of skew 

angle in comparison to the acute corners (Razzaq et al. 2016).  

v. The simplified procedure for evaluating the moment in CHBDC (CSA 2014a) is silent 

on the effect of skew for the exterior and the interior girders. Whereas, a skew 
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correction factor is specified for the shear force at the girder obtuse corner (clause 5.6.3-

b for dead load analysis, and clause 5.6.6.2 for live load analysis). Previous research 

revealed that interior girders is substantially affected by the skew angle than exterior 

girders (Ebeido and Kennedy 1996a). For this reason, the moments predicted using the 

current CHBDC (CSA 2014a) could results in conservative results for the interior 

girder of a skew bridge. 

2.2.3  AASHTO Standard Specifications  

The current distribution factor in the AASHTO Standard Specifications (AASHTO 1996) 

for composite steel I-beam bridges with two or more traffic lanes was developed by 

Newmark and Seiss (1943). This distribution factor was derived by considering a portion 

of the slab to act as a beam on an elastic foundation, and then using moment distribution 

methods to determine the beam response. The wheel load distribution factor from the “S-

over” equation for concrete slab on steel girder bridges for straight bridges with two or 

more design lanes loaded is: 

D

S
LDF =     (2.11) 

where S is girder spacing (ft), and D is a constant based on the bridge type that depends on 

the superstructure type (e.g., D = 5.5 for concrete slab on steel girders). No other 

parameters are considered.  

2.2.3.1  Limitations of AASHTO Standard Specifications 

Based on research review, the following limitation in AASHTO Standard Specifications 

(1996) are observed:  

i. Equation 2.11 allows the designer to simply calculate the part of the live load to be 

transferred to the girders without any consideration for the bridge deck, girder stiffness 

and span length resulting in a substantial conservative design. Furthermore, some 

bridge designers extend the application of the above mentioned formula even to more 

complicated bridge structures such as skewed, curved, continuous and large span with 
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wide and different geometry compromising bridge service life and safety (Yousif 

2005).  

ii. Previous research shows that for long span bridges, S-over equations result in values 

that are over-conservative. However for short span bridges with small girder spacing, 

they lead to underestimated results in comparison with AASHTO-LRFD, as shown in 

Figure 2.3 (Reproduced from Sotelino et al. 2004.) and Figure 2.4 (Reproduced from 

Cross et al. 2006).  

iii. Nutt et al. (1988) summarized the weaknesses in the AASHTO standard specifications 

that have led to inconsistencies in the load distribution criteria, as follows: 

a) Inconsistent changes in distribution factors to reflect the changes in design lane 

width. For-example, at the time the “s-over” equation was developed, the standard 

design lane was 10 ft. (3.05 m) wide, while today according to AASHTO-geometric 

design of highways and streets, 12 ft. (3.66 m) design lanes are customary 

(AASHTO 2001). 

b) Inconsistent consideration of a reduction in load intensity for multiple lane loading 

(Zokaie and Imbsen 1992).  

iv. Zokaie (2000) reported that the S/D formulas were acceptable for bridges having girder 

spacing near 6 ft. (1.83 m) and span length close to 60 ft. (18.30 m), whereas the 

formulas were unable to predict the accurate response when the properties of a bridge 

vary. 

v. Kocsis (2004) also reported the inaccuracy of the AASHTO standard method by using 

a structural analysis program, SECAN, based on semi-continuum method (Mufti et al. 

1992). This study showed that the standard AASHTO formulas for live load in some 

cases underestimate the live load moments by as much as 40%. 
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Figure 2.3 AASHTO Standard vs. AASHTO-LRFD moment distribution factors 

(Reproduced from Sotelino et al. 2004) 

 

Figure 2.4 AASHTO Standard vs. AASHTO-LRFD shear distribution factors 

(Reproduced from Cross et al. 2006) 

2.2.4 AASHTO-LRFD Specifications  

In-order to address the weakness and limitations in the AASHTO Standard specifications, 

the National Cooperative Highway Research Program (NCHRP) Project 12-26 was 

initiated in the mid-1980s in order to develop comprehensive specification provisions for 

distribution of wheel loads in highway bridges. The study was performed in two phases: 
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Phase-I concentrated on beam-and-slab and box girder bridges; Phase-II concentrated on 

slab, multibox beam, and spread box beam bridges. Three levels of analysis were 

considered for each bridge type. Level-1 used simple formulas to predict lateral load 

distribution. Level-2 included either graphical methods, nomographs and influence 

surfaces, or simplified computer programs, such as, SALOD based on influence surface 

method. The most accurate level, level-3, involves detailed modeling of the bridge 

superstructure using computer analysis programs, such as, for the beam-and-slab bridges 

finite element analysis software GENDEK-S was found to be very accurate (Zokaie and 

Imbsen 1992). 

The first edition of AASHTO-LRFD (1994) specification was based on NCHRP Project 

12-26 (Zokaie and Imbsen 1992). The LRFD equations were developed based on a 

parametric study developed from a set of 364 existing bridges located in ten different states 

comprised of three different types of bridges i.e. prestressed T-beam, concrete I-girder, and 

steel I-girder. After analyzing the sensitivity of the distribution factors, the critical 

parameters used in the parametric study were girder spacing, span length, girder stiffness, 

and slab thickness. Based on the results of the sensitivity studies, two sets of equations 

were developed for moment and shear with one and bridges with two or more design lanes. 

For example, the wheel load distribution factor equation from AASHTO-LRFD (2014) for 

concrete slab on steel girder bridges with two or more design lanes loaded is: 
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     (2.12) 

where S is girder spacing (ft, mm), L is span length (ft, mm), Kg = n(I+Ae2) is the 

longitudinal stiffness (in4, mm4), tS is the slab thickness (in, mm), n is the modular ratio 

between steel and concrete, I is the girder stiffness (in4, mm4), A is the girder area (in2, 

mm2), and e is the eccentricity between centroids of girder and slab (in, mm). 

The equations recommended by AASHTO-LRFD are generally more complex than 

AASHTO standard specifications, but they also present a great degree of accuracy. The 
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formulas previously presented in the AASHTO standard specifications are although 

simpler but do not present the degree of accuracy demanded by today's bridge engineers. 

In many cases these formulas can result in highly unconservative results (more than 40%); 

and in other cases they may be highly conservative (more than 50%). However, AASHTO-

LRFD equations of wheel load distribution factors are within 5% of the results of an 

accurate analysis, used for its development (Zokaie and Imbsen 1992).  

2.2.4.1  Limitations of AASHTO-LRFD Specifications 

The most obvious advantage of the AASHTO-LRFD equations is their simplicity. They do 

not require any special tools other than a calculator. No special computers or computer 

programs are needed, and no special knowledge of finite element modeling techniques is 

required. If the simplified equations are applied within their applicable range and the bridge 

has a regular geometry, accurate results can be obtained with ease (Zokaie and Imbsen 

1992). However, simplified equations have limitations which should be understood. These 

limitations are briefly described below: 

i. The AASHTO-LRFD equations are assumed to be representative of the actual behavior 

of bridges (Zokaie 2000, Zokaie and Imbsen 1992). However, the FE model used in 

developing the AASHTO-LRFD LDF equation did not include some important features 

of bridges which may affect lateral load distribution. First, despite the presence of the 

secondary elements such as cross bracing, diaphragms, and parapets in bridges, these 

elements were not considered in the development of the LDF equation. Parametric 

studies, such as, Nouri and Ahmadi (2012), Chung et al. (2006) and, Khaloo and 

Mirzabozorg (2003) have showed that consideration of secondary elements has a 

significant effect on lateral load distribution. Consequently, the AASHTO-LRFD 

equation often provides overly conservative results.  

ii. Shahawy and Huang (2001), demonstrated that AASHTO-LRFD showed good 

agreement with test results for bridges with two or more loaded design lanes, provided 

that girder spacing and overhang deck did not exceed 2.4 m and 0.9 m, respectively. 

Outside these ranges, the error could be as much as 30%. For one loaded design lane, 
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the relative error was less than 10% for interior girders and could be as high as 100% 

for exterior girders.  

iii. AASHTO-LRFD equation requires an iterative procedure for the selection of certain 

parameters that are not known until girder selection. These parameters are the 

longitudinal stiffness, Kg, and the slab thickness, ts. Therefore, the third term in the 

AASHTO-LRFD equation (i.e. Kg/12Lts
3 for US customary units and Kg/Lts

3 for SI 

units) is assumed to be equal to unity as recommended for a first trial in design. For 

most bridges, this term ranges from 0.85 to 1.10 (Sotelino et al. 2004). 

iv. Since its inception, the new LDF design equations have faced a significant amount of 

skepticism regarding their adoption. Although, LDF equations takes into account 

additional bridge parameters than the AASHTO standard specifications (Zokaie 2000). 

Designers have found the equations more complex and difficult to use. As a result, the 

calculation of live-load distribution factors is still not settled (Barr and Amin 2006).  

v. Chen and Aswad (1996) found that the LRFD distribution factors results in 

conservative design for bridges with large span-to-depth ratios. Based on the results of 

finite element analysis, Chen and Aswad found that this conservatism could be as much 

as 23% for interior girders and 12% for exterior girders. 

vi. For slab-on-girder bridges, AASHTO-LRFD clause 4.6.2.2 specify the ranges of 

applicability of LDF equations include spacing not less than 3.5 ft. (1.07 m) while not 

greater than 16 ft. (4.88 m), slab thickness not less than 4.5 in. (11.43 cm) while not 

greater than 12 in. (30.48 cm), span length not less than 20 ft. (6.10 m) while not larger 

than 240 ft. (73.15 m) and so on. The equations are most accurate when applied to 

bridges within the range of applicability. Outside this range, a refined analysis such as 

grillage analysis and finite element analysis must be considered. In such case, engineers 

have to make certain assumption and work on a case-by-case basis. 

2.3  Literature Review on Methods for Evaluating Load Distribution Factors 

This section presents the state of the art and practice related to skewed bridge behavior and 

design practice, based on a literature review conducted in the present research project. It 

has been observed hereby that all research efforts identified and reviewed have employed 

numerical approaches assisted by limited physical testing in investigating skewed bridge 



20 

 

behavior. Research has been conducted by several investigators focused on examining the 

accuracy of the bridge code specifications for the evaluation of distribution factors. These 

efforts have included both analytical studies using finite element analysis and field studies 

of existing bridges. Regression analysis based on the data produced using the numerical 

and experimental approaches was also common to identify the trend of skew effect as a 

function of design parameters such as skew angle, girder spacing, span length, etc. 

Research efforts have also been focused on assessing the influence of various parameters 

on the load distribution behavior of bridge superstructures. Although this topic has been a 

point of interest of many researchers and engineers since the mid of last century, however 

this section will encompass and summarize the research efforts dedicated in the last three 

decade.  

2.3.1   Analytical Studies 

By adopting finite element analysis (FEA) method, many researchers have devoted efforts 

towards developing new and simplified equations for live load moment and shear 

distribution factors for skewed bridges (Zokaie 2000, Hue et al. 2004, 2005). Most of the 

proposed methods are applicable to one or two particular types of bridges (Tarhini and 

Fredrick 1992, Bishara et al. 1993, Barr et al. 2001, Barr and Amin 2006). Whereas, few 

studies proposed moderate changes to the bridge design code specifications by assessing 

the accuracy of these bridge code specifications with respect to variation of one or more 

specific parameters, such as sidewalk and railings, diaphragms and secondary bracing 

elements, skewed alignment, structural continuity, girder longitudinal stiffness and aspect 

ratio, load applications and nontraditional designs on the load distribution behavior of 

bridge superstructures (Mabsout et al. 1997a, Chung et al. 2006, Nouri and Ahmadi 2012, 

Bishara et al. 1993, Khaloo and Mirzabozorg 2003, Diab et al. 2011, Mabsout et al. 1998, 

Zokaie 2000, Yousif and Hindi 2006, Gheitasi and Harris 2015). A summary of selected 

studies are presented herein.  

Khaleel and Itani (1990) conducted finite element analyses to determine moments in 

continuous straight and skewed slab-on-girder bridge subjected to the AASHTO HS20-44 

truck live loads. This research considered bridge configurations with span lengths ranging 
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from 24.4 m (80 ft.) to 36.6 m (120 ft.) and girder spacing from 1.8 m (6 ft.) to 2.7 m (9 

ft.). Skew angles varying between 0o to 60o were considered. Results of this research were 

compared to distribution factors obtained from the AASHTO Standard equations. The 

results showed that the increase of skew angle resulted in a reduction of design moments. 

The reduction of maximum positive and negative moments in interior girders is less than 

6% for a skew angle less than 30° and as much as 29% when skew angle approached 60°. 

The reduction of the maximum positive or negative bending moments in the exterior 

girders is less than 10% for angles of skew less than 45° and as much as 20% when skew 

angle is 60°. 

Ebeido and Kennedy (1996a, b) performed laboratory tests on three continuous composite 

skewed bridges. Finite element analyses were conducted and had good agreement with the 

test results. A parametric study on more than 600 prototype bridges was conducted to 

investigate the influence of all major parameters affecting the moment, shear, and reaction 

distribution factors. Empirical formulas of load distribution factors for continuous, skewed 

composite bridges were developed, based on different girder types and loading cases. 

Results showed that both the span and the support girder moments decrease significantly 

with the increase in the skew angle. The effect of skew on design of interior girder is more 

significant than for exterior girders. Moreover, the increase in the skew angle reduces the 

shear distribution factor for the girder close to the obtuse corner, and increases the shear 

distribution factor for the girder close to the acute corner and for interior girders. 

Furthermore, the influence of skew on the shear and moment distribution factors becomes 

more significant for skew angles greater than 30o. 

Mabsout et al. (1997b) compared four finite element modeling techniques, available in the 

literature, to determine load distribution factors for a simply supported composite steel 

girder bridge. In the first method, the concrete slab was modeled with quadrilateral shell 

elements, and the steel girders were idealized as space frame members. In the second 

method, the concrete slab was modeled with quadrilateral shell elements and rigidly 

connected to girders represented by space frame members. In the third method, the concrete 

slab and steel girder web were modeled with quadrilateral shell elements and girder flanges 

as space frame elements. The connection between the girder flange and deck was modeled 
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by imposing a rigid link. In the fourth method, the concrete slab was modeled with 

isotropic, eight-node brick elements; the steel girder flanges and webs were modeled with 

quadrilateral shell elements. The results of these modeling techniques were compared with 

AASHTO-LRFD load distribution factors and published experimental results. The results 

showed that the four finite element models produced similar load distribution factors for 

the AASHTO-LRFD equations. 

Using three-dimensional finite element analysis method, Khaloo and Mirzabozorg (2003) 

analyzed simply supported skewed slab-on-girder bridges. The main parameters of his 

study were: girder spacing (1.8–2.7 m), span length (25–35 m), skew angle (0o–60°), and 

four different arrangements of internal transverse diaphragms. They showed that for a skew 

angle of 60°, the load distribution factor of exterior girders was reduced by 24% as 

compared with the right bridges. Moreover, the study concluded that decks with internal 

transverse diaphragms perpendicular to the longitudinal girders are the best arrangement 

for load distribution in skew bridges. Furthermore, it was concluded that the load 

distribution factors of the AASHTO standard specifications were highly conservative and 

resulted up to 43.1% higher results than those found by FEA. 

Yousif and Hindi (2007) performed a comparison between the distribution factors of 

simple span slab-on-girder bridge due to live load calculated in accordance with the 

AASHTO-LRFD equations and the finite element analysis. The range of applicability 

limits specified in the AASHTO-LRFD in terms of span length, slab thickness, girder 

spacing, and longitudinal stiffness were investigated. A total of 886 bridge superstructures 

were modeled by adopting several finite elements linear elastic models to accurately assess 

structures. The vehicular load plus the standard lane load as specified by AASHTO-LRFD 

was used to represent the live load in the analysis. The study concluded that for most of the 

cases, AASHTO-LRFD equations overestimated the live load distribution when compared 

to finite elements analysis results that reached a maximum of about 55%. However, in some 

cases it was also noticed that the AASHTO-LRFD underestimates live load distribution 

factors by 20% when compared to finite elements analysis.  

Jingjuan and Chen (2011) adopted the beam-on-elastic-spring-supports model proposed by 

Hu (1996) to calculate the live and dead load reaction at each supporting girder. A standard 
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live load including single and multilane loads and a permit truck with four wheel axle, was 

considered. The validity of the model was assessed by comparing the spring model results 

with LRFD equations, finite element analysis, and field tests data. The results demonstrated 

that in most cases, the model results were close to the results using the LRFD equations. 

However, the spring model analysis results were proved to be conservative than field-test 

data and finite element analysis results. Thus the study concluded that the spring model 

provides load-distribution factors that can be used in bridge design. 

Nouri and Ahmadi (2012) studied the effect of the skew angle and other design parameters 

on the bending moment, shear force, and distribution factor of two-span continuous 

composite steel-concrete bridges using three-dimensional finite element analysis (FEA) 

subjected to AASHTO HS20-44 loading. The results of the FEA for skewed bridges were 

compared with the straight bridges as well as the AASHTO standard specifications and 

AASHTO-LRFD specifications. The results showed that the AASHTO standard 

specifications overestimate the maximum bending moment and shear force by 50% and 

10% respectively for a skew angle of 45°. Moreover, the study concluded that AASHTO-

LRFD specifications overestimate the longitudinal bending moment and shear force for a 

skew angle larger than or equal to 20° and in some cases the overestimation reached the 

45% value. 

Bae and Oliva (2012) focused on modifying the current design specifications and 

proposing modification factors to better accommodate the effect of oversized, overweight 

trucks on the lateral load distribution behavior of slab-on-girder bridges. Three-

dimensional finite element analyses of 118 girder type bridges with 16 different loading 

configurations of overload vehicles were performed. Various configurations of the 

vehicles, number of bridge spans, girder spacing, deck depth, girder type, skew angles of 

the bridge and diaphragms were considered in developing the load distribution factor 

equations for the multi-girder bridges. The results showed that the load distribution factors 

decrease as the skew angle increases and this trend was more evident for the shear load 

distribution factor with dual-lane trailer loading case. Moreover, the study revealed that the 

positive moment distribution factors for two-span bridges were comparable to those of 

single-span bridges. Whereas, the negative moment distribution factors of two-span 



24 

 

bridges were found to follow a different pattern than the positive moment distribution 

factors for single-span bridges. Based on those findings, the study concluded that the 

modified empirical equations can be used for single and continuous span bridges and 

bridges with skew angles. 

Gheitasi and Harris (2015) studied two in-service composite steel girder bridge 

superstructures in the state of Michigan to investigate variations in lateral distribution 

behavior over the entire loading history up to failure. The first bridge (i.e. Stanley Bridge) 

selected for this study was a simply supported straight three-span bridge with a total length 

of 86.8 m operating on Stanley Road over I-75 in Flint, Michigan. However, simply 

supported skewed (i.e. 15o) single span bridge (i.e. Huron Bridge) with a total length of 

42.6 m operating on M-36 over the Huron River in Livingston County, Michigan was 

selected as a second bridge for this study. Both composite bridges had been previously 

subjected to a live-load testing. An extensive parametric study analysis using three-

dimensional finite element analysis (FEA) method was conducted to study the effect of 

boundary condition, loading position, and load configuration on the overall structural 

response and the girder distribution behavior of the selected bridges. Comparing the results 

obtained from nonlinear FEA with those proposed by the AASHTO-LRFD specifications 

demonstrated that the code-specified values for the distribution factors are overly 

conservative. 

2.3.2   Field Studies 

Great efforts have been conducted to assess the accuracy of the live load distribution 

equations stipulated in existing bridge code specifications by performing field testing. By 

adopting field testing, many researchers have devoted efforts to determine live load 

distribution among the girders of simple and continuous bridges at different stages of 

loading (Bakht and Jaeger 1992, Razaqpur and Esfandiari 2006). Few studies also focused 

to estimate the mechanical causes of the reinforced concrete deck cracking under heavy 

truck loadings, and service load stresses (Castaneda 1997). A summary of selected studies 

are presented herein. 
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Fu et al. (1996) conducted live load tests on four steel I-girder bridges of which three were 

straight bridges and one had a skewed configuration. Comparison of the field test results 

to the LRFD distribution factors showed that for three non-skewed bridges the LRFD 

equations were found to be conservative anywhere from 7% to 42%. However, for the 

skewed aligned bridge the LRFD equations underestimated the load effects by 13%. 

Kim and Nowak (1997) performed field tests on two simply supported steel I-girder 

bridges. One bridge, designated as M50/GR had a span length of 14.63 m and a girder 

spacing of 1.45 m. The second bridge, referred to as US23/HR, had a span length of 23.77 

m and a girder spacing of 1.91 m. The girders measured static strain data, after removing 

the dynamic components, was used to develop equations for girder distribution factors and 

compared with AASHTO Standard and LRFD Specifications. The study concluded that 

AASHTO Standard Specification was found to be more conservative as compared to LRFD 

Specification. It was shown that the LRFD distribution factors overestimated the actual 

distribution by 28% and 19% in the two bridges tested. Furthermore, the distribution factors 

obtained from the Standard Specifications were 16% and 24% greater than the load 

distribution factors that resulted from field-testing results.  

Eom and Nowak (2001) study involved the field-testing of seventeen steel I-girder bridges 

having span lengths ranging from 9.75 m to 42.67 m and girder spacing from 1.22 m to 

2.82 m. The majority of the bridges selected were not skewed, but some moderately skewed 

bridges (10o to 30o) were also included in this study. It was found that the actual distribution 

factors evaluated from field tests were lower than those given by the bridge code 

specifications in all cases. It was also noticed that the AASHTO Standard Specifications 

were very conservative for short spans with small girder spacing, and even more 

conservative for other situations. Moreover, the LRFD distribution factors were found to 

be more accurate than those from the AASHTO Standard Specifications, although were 

still considered to be conservative. 

Huang et al. (2004) study involved both a field test of a recently constructed two-span 

continuous slab-on-steel composite highway bridge with a skew angle of 60° located in 

Delaware, and a numerical analysis using finite element modeling. A field test was 

conducted to measure the strain in the girders at various locations under controlled load 
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conditions. For this purpose, two fully loaded three-axle dump trucks having a gross 

vehicle weights of 255 kN and 271 kN were used. A finite element model was developed 

and calibrated by the field test results. An extensive parametric study was conducted using 

finite element analyses to investigate the influence of model mesh, transverse stiffness, 

diaphragms, and modeling of the supports on the load distribution factors. The resulting 

field test and FEA analytical results were compared with LRFD load distribution equations 

to assess the accuracy of the current empirical formulas. The study concluded that the 

LRFD equations for transverse load distribution found to be conservative for positive 

bending.  

Cross et al. (2009) performed field testing on twelve interstate bridges that most typically 

represent the bridge inventory in Illinois to determine the validity of AASHTO-LRFD 

shear distribution factors used in bridge design. For this purpose, six bridges along 

Interstate I-55 and six along Interstate I-270/70 in Illinois were selected for monitoring. 

All the bridges were instrumented on their girder webs to measure shear stresses caused by 

static, slow-moving, and dynamic load tests. Finite element models were also generated to 

verify both the field test results and the validity of the LRFD shear distribution factors. The 

study showed that the LRFD distribution factors closely approximate the shear distribution 

factors determined by both the finite element modeling and field testing. 

Fu et al. (2011) investigated the behavior of skewed concrete bridge decks on steel 

superstructure subjected to truck wheel loads. For this purpose, full-scale bridge field 

testing of a steel highway bridge located in Michigan interstate I-94 highway in Washtenaw 

County that was scheduled for rehabilitation was selected. The tested bridge was skewed 

by an angle of 49.1°. The bridge superstructure consists of 10 plate girders spaced at 2.13 

m, with a composite concrete deck through studs of two rows at 0.203 m spacing. For 

understanding the behavior of the concrete deck under truck wheel loads, the deck was 

instrumented by strain transducers at four locations. After the deck concrete hardened, a 

loaded six-axle truck was slowly driven on the deck across the test bridge span. The strain 

gauges were read using a data acquisition system. The field testing results were further 

verified by performing a linear analysis using finite element method. It was noticed that 

because AASHTO-LRFD bridge design specifications provide skew factors for girders but 
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not for the deck, hence the current design approach can reasonably estimates the local effect 

but unable to capture the global effect of truck wheel load. Moreover, the study concluded 

that the total strain/stress effects due to truck load increase slightly because of skew angle. 

Razaqpur et al. (2013) study focused on experimentally investigating a 1/3 scale model of 

a hypothetical composite bridge to failure with the objective to understand the load 

distribution characteristics of concrete slab on steel girder composite bridges with the 

initiation of yielding and inelasticity. The bridge model was 6 m long and was constructed 

using three W250x39 steel sections spaced at 620 mm and a 70 mm thick reinforced 

concrete deck slab. The model was loaded with three point loads, representing the load due 

to the wheels of an idealized 1/3 scaled truck. Extensive measurements, including girder 

deflections and strains in steel and concrete were recorded during the test to allow better 

understanding of the structural response of slab-on-girder bridges as well as their live load 

distribution characteristics. The experimentally determined distribution factors for the 

tested bridge model were compared with the calculated values based on the Canadian 

Highway Bridge Design Code (CSA 2000). It was observed that the CHBDC (CSA 2000) 

gave conservative estimate, on average of 27%, of the moment carried by the loaded girder 

when compared with the recorded strain values during the test. 

Seo et al. (2014) studied the effect of agricultural vehicles on lateral load distribution 

characteristics of girder bridges on rural roadways in the United States. Five simply 

supported short-span steel girder bridges with zero skew, which are located on a rural 

roadway in Iowa, were selected for field tests with four agricultural vehicles and a 

highway-type truck. Strain sensors were mounted on the bottom flanges of girders at mid-

span of all five bridges. Strain data resulting from the test vehicles were measured and used 

to capture the field responses and to determine experimental distribution factors. Finite 

element models were calibrated with the field test data by considering agricultural vehicles 

as live loads. From FEA results analytical distribution factors were computed by 

performing vehicle-induced model simulations. The analytical distribution factors were 

compared with those of the field test results and the AASHTO standard and LRFD code 

equations. Findings revealed that the analytical and experimental distribution factors were 
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in most cases smaller than code-specified values. However, these factors exceeded code 

values in some of the cases also.  

2.4   Effects of Bridge Parameters on Live Load Distribution Factors 

Several previous researchers (Newmark and Siess 1942, Walker 1987, Nutt et al. 1988, 

Tarhini and Frederick 1992, Kim and Nowak 1997, Mabsout et al. 1997a, Eom and Nowak 

2001) have investigated the effect of numerous parameters on live load distribution in slab-

and-girder bridges. As a result of these research efforts, girder spacing, span length, and 

girder stiffness have been determined to be the most significant parameters affecting the 

distribution characteristics of bridges. The effect of skewed support on the wheel load 

distribution factor was studied by a number of investigators: (Khaleel and Itani 1990, 

Bishara et al. 1993, Barr et al. 2001, Menassa et al. 2007, Nouri and Ahmadi 2012, Diab et 

al. 2011). In-addition to parameters mentioned above, numerous other parameters have also 

been considered.  

2.4.1  Span Length 

Bishara et al. (1993) evaluated the distribution factor expressions for the interior and 

exterior girders of composite slab-on-girder bridges of medium span length. These 

expressions were derived from finite element analysis of 36 bridges. The results showed 

that for interior girders, the bridge span length had a slight effect on the distribution of 

wheel loads. The effect of span length on the load distribution was found more pronounced 

in bridge geometries with smaller deck widths and skew angles larger than 40o. However, 

for exterior girders the distribution factor increases with span length, especially for highly 

skewed bridges. For-example for skew angles of 20o, 40o and 60o resulted in 12%, 20% 

and 100% increase respectively, of distribution factors. 

Khaloo and Mirzabozorg (2003) showed that the load distribution factor of external girders 

increases with the increase in span length. However, the load distribution factors of internal 

girders are not very sensitive to span length. 
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2.4.2  Girder Spacing 

Since early work by Newmark (1938), girder spacing has been considered to be the most 

influential parameter affecting the live load distribution. Newmark and Siess (1942) 

originally developed simple, empirical equations expressing distribution factors as a 

function of transverse spacing of beams, span length, and beam stiffness relative to the 

stiffness of the slab. In a later research (Newmark 1949), the effects of span length and 

beam stiffness on live load distribution were neglected, and the distribution factors were 

expressed as a linear function of girder spacing only. These relationships are still 

incorporated in the AASHTO Standard Specifications with minimal changes since their 

adoption. 

Khaloo and Mirzabozorg (2003) utilized finite element method to analyze the conventional 

simply supported bridges and concluded that the load distribution factors of external girder 

increases with the girder spacing. In contrast to the behavior in external girders, the effects 

of skew angle and girder spacing on load distribution factors of internal girders do not have 

any co-relations. 

2.4.3  Girder Stiffness 

Nutt et al. (1988) found there was a significant relationship between girder stiffness and 

live load distribution. The study concluded that the effect of increase in girder stiffness 

resulted in increased distribution factor, whereas the increase in span length caused the 

distribution factor to decrease. The effects of varying torsional stiffness were also evaluated 

in this study and it was noticed that it had a marginal effect on girder distribution factors 

(3% difference). 

On the basis of FEA results, Yousif and Hindi (2006) demonstrated that the effect of bridge 

stiffness represented by girder type and slab thickness had a significant impact on bridge 

distribution factors using both the CHBDC and AASHTO-LRFD simplified methods, 

therefore it is useful for bridge engineers to understand the effect of selecting the optimum 

girder type and slab thickness for a specific bridge geometry.  
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2.4.4  Deck Thickness 

Conflicting information exists regarding the effect of the thickness of concrete decks on 

live load distribution. Newmark (1949) states that deck thickness will affect wheel load 

distribution as deck thickness will have a direct influence on the relative stiffness.  

Although, in the research done by Tarhini and Frederick (1992) bridges with varying slab 

thickness of 5.5 in. (13.97 cm) to 11.5 in. (29.21 cm) were analyzed and it was found that 

these changes had a negligible effect on live load distribution. 

Nutt et al. (1988) also found that bridge deck thickness had a minimal effect on the load 

distribution characteristics of the slab-on-girder bridges i.e. about 10% difference was 

observed in the load effect by changing the bridge slab thickness from 6 in. (15.24 cm) to 

9 in. (22.86 cm). This finding was in agreement with Tarhini and Frederick (1992), and 

among others.  

2.4.5  Skew Angle 

The skew angle of the deck is the most significant factor affecting the load distribution. 

Various research studies have demonstrated the influence of skew angle on girder moments 

and shear forces. For space limitations and brevity purposes, the summary of few previous 

studies will be presented herein.   

i. Nutt et al. (1988) observed that skew did affect live load distribution. Specifically, 

increasing skew tends to decrease the wheel load distribution for moment and increase 

the shear distributed to the obtuse corner of the bridge. 

ii. Bakht (1988) presented a simplified methods of analysis for skew slab-on-girder 

bridges. The study recommended to ignore the angle of skew and analyze the bridge as 

a right bridge for skew angle less than 20°. 

iii. Khaleel and Itani (1990) conducted finite element analyses to determine moments in 

continuous normal and skewed slab-on steel bridges under live loads. The analyses 

results showed that the maximum moment in the girder of a skewed bridge were found 

less than that of a normal bridge by approximately 20%. 
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iv. Khaloo and Mirzabozorg (2003) demonstrated that the load distribution factors of skew 

bridges were always less than those of right bridges. This finding is in agreement with 

the investigations of Bishara et al. (1993), Diab et al. (2011) among others.  

v. Menassa et al. (2007) performed FEA on a simply supported one-span multilane skew 

reinforced concrete slab bridge. They concluded that the ratio between the FEA 

longitudinal moments for skewed and straight bridges was almost one for bridges with 

a skew angle less than 20°. This ratio decreased to 0.75 for bridges with skew angles 

between 30° and 40°, and further decreased to 0.5 as the skew angle of the bridge 

increased to 50°.  

vi. Diab et al. (2011) conducted a FEA and the results indicated that the maximum 

longitudinal bending moment decrease with the increase in skew angle as compared to 

straight bridges regardless of the number of lanes, span length, and girder spacing. The 

decrease was trivial for skew angles less than 20o, and increases significantly with the 

skew angle beyond 30o. 

vii. Nouri and Ahmadi (2012) found that an increase in skew angle caused a reduction in 

both the exterior and interior support moment girders. The reduction was about 10% 

for skew angles less than to 20° and it reached 33% for a skew angle of 45°. 

2.4.6  Length-to-Width Ratio 

Diab et al. (2011) reported that the extent of reduction in moment due to skew angle in case 

of high aspect ratio (long span with fewer lanes) was found significant as compared to the 

lower aspect ratio (short span with more lanes) which resulted in higher reduction of 

moment. 

2.4.7  Cross-frame Layout and Spacing 

Nouri and Ahmadi (2012) found that bridges with transverse diaphragm perpendicular to 

the longitudinal girders were the best and most economical solution for the design of 

continuous composite skewed bridges and resulted in significant reduction in moment 

ratio. 
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Dilger et al. (1988) studied the effect of diaphragms on the support reactions and internal 

forces by considering three different arrangements of diaphragms. The study concluded 

that orthogonal diaphragms performed well for skew aligned bridges. Moreover, in the 

absence of diaphragms relatively high transverse moments were developed in the vicinity 

of the obtuse corners, which required an increase in slab thickness in the end zones. 

Khaloo and Mirzabozorg (2003) conducted a parametric study and noticed that for bridges 

with large skew angles, concrete deck with internal transverse diaphragms perpendicular 

to the longitudinal girders enhance load distribution.  

Razzaq et al. (2015) performed a sensitivity study by using three-dimensional finite 

element modeling for evaluating the most efficient cross-frame layout that provides better 

load distribution among girders by considering three commonly used cross-frame layouts. 

The results showed that for high skew angles perpendicular-discontinuous cross-frame 

layout provided better load distribution among girders by reducing girder displacement 

significantly. 

Kim and Nowak (1997) on the basis of field studies indicated that relatively widely spaced 

diaphragms lead to more uniform load distribution among girders. 

2.4.8  Deck Overhang  

For exterior girders, deck overhang showed a linear effect on load distribution (Nutt at al. 

1988). This finding has already been incorporated into the LRFD Specifications 

(AASHTO-LRFD 2014) in the form of a correction factor applied to exterior girders when 

two or more design lanes are considered. The effect deck overhang width on interior girder 

was considered negligible. 

Barr and Amin (2006) concluded that deck overhang length effected the exterior girder 

shear distribution factor significantly in comparison to the interior girder. 

2.4.9 Secondary Stiffening Elements  

Chung et al. (2006) modeled secondary elements such as lateral bracing and parapet using 

the finite element method, and the calculated load distribution factors were compared with 
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the LRFD equations. The study concluded that secondary elements enhance the distribution 

of transverse moment. It was found that the inclusion of secondary elements in the analysis 

can result in a reduction of LDF of about 39% compared to code specified values.  

Mabsout et al. (1997a) concluded that the presence of sidewalks and railings or parapets 

acting integrally with the bridge deck had the effect of stiffening the exterior girders by 

attracting more load while reducing the load effects in the interior girders. 

2.5 Conclusions 

The load distribution factor concept allows the bridge engineers and designers to consider 

the longitudinal and transverse effects of wheel loads as two separate phenomena and thus 

simplifying the analysis and design of the bridge. Current North American codes of 

practice follow simplified methods to determine the forces transferred to individual bridge 

girders by the use of load distribution factors. These specifications do not provide the 

design engineers with sufficient guidance regarding load distribution factors for skew 

composite bridges, resulting in an extremely conservative design in some cases and to 

unsafe design in other cases. Secondly, the simplified equations recommended in the code 

specifications are based on simplified model analysis that do not represent the actual 

behavior of the structure. Based on research efforts and results, many bridge engineers are 

convinced to adopt three-dimensional finite element modeling to adequately predict 

stresses at the exterior and interior girders of a skewed bridge. The current research 

addresses these concerns by better understanding skew bridge behavior and developing 

design guidelines to facilitate design practice in North America, particularly in Canada. 

The literature review presented in this chapter covers the main methods used in North 

American codes to determine load distribution factors in a skewed composite slab-on-

girder bridges, and discuss previous research efforts in this regards. 
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CHAPTER 3 

Development of Finite Element Models for Straight and Skew Bridges 

3.1 General 

The responses of a bridge under dead and live loads are important for both design and 

evaluation purposes, because they enable the bridge engineer to find the strength and 

serviceability of a given superstructure with sufficient accuracy. However, predicting the 

accurate maximum responses and girder load distributions is a difficult task because of the 

complexity of the bridge structures. The addition of skewness to the bridge geometry 

further complicates the behavior of slab-on steel I-girder bridges by introducing alternate 

load paths and causing complex interaction between the main girders and secondary 

framing members that can lead to significant construction and design problems (Coletti et 

al. 2011).  

Several methods are available for the analysis of bridge structures. In each method some 

assumptions usually exist in order to facilitate analysis. The accuracy of the analysis 

obtained by a given method depends on the accuracy of representation of the structure and 

the extent of the approximations involved in the method. Three most popular computer-

aided modelling method for the analysis of steel-concrete composite bridges, as reported 

in literature are: semi-continuum method, the grillage analogy method, and the finite 

element method (Jaeger and Bakht 1982, Jaeger and Bakht 1989, Hambly 1990, 

Zeinkiewicz and Taylor 1989). The semi-continuum method of load distribution analysis 

of bridges involves representation of wheel loads by harmonic series and the idealization 

of deck structure by discrete members with torsional stiffness in both longitudinal and 

transverse directions (Bakht and Jaeger 1985). However, this method proves to be 

incapable of modeling the diaphragms and orthotropic deck slab for a bridge structure (Bell 

1998). In grillage method of analysis, the structure is idealized by means of a series of 

beam elements. Each element is assigned an equivalent bending and torsion stiffness to 

represent the associated portion of the deck. The longitudinal composite girders are 

represented by beam elements with equivalent cross sectional properties that include the 

steel beam and the concrete flange, while the deck slab is idealized by a series of transverse 
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beams (Hambly 1990). Although this analysis technique is generally accepted as 

sufficiently accurate for the most common design situations as well as for the construction 

stages, however for skewed bridges it results inaccurate assessment of the bridge responses 

and is not always recommended (Coletti and Puckett 2012, Vayas et al. 2011). With recent 

developments in computer technology and modern finite element (FE) programs with user 

friendly graphical interfaces, the finite element method (FEM) proves to be most powerful, 

versatile and flexible approach for the analysis of composite steel girder bridges 

(AASHTO/NSBA 2011). Further, literature survey conducted by Sotelino et al. (2004) 

indicated that more previous researchers adopted finite element method as an analysis tool 

over the grillage analysis or other simplified methods. For this reason, finite element 

method was selected as the refined method of analysis to model the three dimensional 

bridge system using a generalized discretization scheme available in CSiBridge v17.2.0 

(CSI 2015) in this study.  

3.2   Finite Element Method 

The finite element method (FEM) for the analysis of bridge structures is one of the refined 

methods recognized by the CHBDC (CSA 2014a, 2006a) clause 5.9, for short and medium 

span bridges, and it is considered to be the most powerful and multipurpose technique. 

Finite element analyses (FEA) enables bridge engineers to determine the distribution of 

wheel loads more accurately than empirical formulas specified by bridge codes. Few 

studies focusing the importance of FEM while dealing with cumbersome and complicated 

bridge systems related to the evaluation of load distribution factors are presented below: 

i. Mabsout et al. (1997b) carried out an investigation to assess the accuracy and the 

performance of four different finite element modeling techniques of common use in 

evaluating the wheel load distribution factors of a straight steel girder bridges. The first 

model consisted of quadrilateral shell elements with five degrees of freedom per node 

for the deck slab and space frame elements with six degrees of freedom per node for 

the girders. The centroid of the concrete deck was coincided with the centroid of the 

girder cross section. In the second model, the concrete deck and girders were modeled 

by the same elements used for the first method, however rigid links were imposed to 
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account for the eccentricity of the girders with respect to the deck slab. For the third 

model, the concrete deck slab and steel girder web were idealized as quadrilateral shell 

elements, girder flanges were modeled as space frame elements, while girder flange to 

deck eccentricity was modeled by imposing a rigid link. The concrete slab was 

idealized using isotropic eight node brick elements with three degrees of freedom at 

each node for the fourth model, while the steel girders were modeled using quadrilateral 

shell elements. Results indicated that when dealing with straight bridges the use of 

quadrilateral shell elements for modeling the concrete deck and concentric space frame 

elements for modeling the girders is encouraged. The other FEA cases could be adopted 

to accurately idealize the more complex bridge geometries. 

ii. In order to analyze the bridge superstructure under working load conditions, Fu and Lu 

(2003) simulated the composite deck girder interaction by using a finite element model. 

The girders were discretized with traditional eight-node isoparametric quadrilateral 

elements adopted from Cook et al. (1989), while the flanges of the girder were modeled 

using plate elements and the web with plane stress elements. To simulate the shear 

studs, bar elements were used to provide a dimensionless link between the concrete 

deck and the top flange of the girders. With the help of the computer program RESIDU 

and with the results from previous experimental studies (Yam and Chapman 1972) the 

numerical model was evaluated. The deflections along a test bridge were compared to 

those obtained using classical transformed area method. The FEM results were found 

very close to the experimental study results but considerably far from those obtained 

with the transformed area method. 

iii. Huang et al. (2004) conducted research to estimate the transverse load distribution for 

highly skewed steel girder bridges by means of both experimental and numerical 

analysis. The field test was conducted to measure strains at different points along a 60o 

skewed bridge by passing two fully loaded trucks over it. The three dimensional 

analytical finite element model was implemented by using ANSYS software package. 

Four node three dimensional elastic shell elements with six degrees of freedom per 

node were used to model the concrete slab and the girders, while the crossframes were 

modeled with two node three dimensional elastic beam elements with six degrees of 

freedom per node. The boundary constraints at both the end supports were imposed to 
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restrict translational displacements except for the longitudinal direction. However, for 

the intermediate support all the displacements were restrained. No rotational constraint 

was considered. The overhangs and parapets were ignored. The FEA results were 

compared with AASHTO-LRFD design formulas for live load distribution to assess 

the accuracy of the current empirical formulas. The results showed that AASHTO-

LRFD formulation tends to be safely conservative for positive bending and for negative 

bending they are accurate but not conservative. 

3.3   Finite Element Program 

There are many commercial finite element software programs for structural engineering 

applications. The specialized FEA program, CSiBridge (CSI 2015), was used to generate 

the 3D finite element models. CSiBridge is an object-based interface that converts bridge 

objects to a finite element model to be analyzed using SAP2000 (CSI 2007). It is capable 

of analyzing structures in static and dynamic modes. The various element types available 

are: 

i. Frame element: The frame element is a two-node three-dimensional element, which 

includes the effect of biaxial bending, tension, axial deformation and biaxial shear 

deformation.  

ii. Shell element: The shell element is a four-node three-dimensional element, which 

combines both bending and membrane characteristics. The four-node shell element has 

six degrees of freedom at each node that are the three displacements (U1, U2, U3) and 

three rotations (ϕ1, ϕ2, ϕ3). A detailed diagram of the shell element is presented in Figure 

3.1. The membrane behaviour includes translational in-plane stiffness components and 

rotational stiffness component in the direction normal to plane of the element. The plate 

bending behaviour includes two-way, out of plane, plate rotational stiffness component 

in the direction normal to the plane of the element. The program allows using pure 

membrane, pure plate or full shell behaviour.  

iii. Solid element: The available solid element is an eight-node three-dimensional element 

which includes nine optional incompatible bending modes. The solid element 
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contributes stiffness in all three translational stiffness in all three translational degrees 

of freedom at each of its connected joints.  

iv. Nlink element: A NlLink element is one-dimensional element with structural 

nonlinearities. A NlLink element may be either a one-joint grounded spring or a two-

joint link and is assumed to be composed of six separate springs, one for each degree 

of deformational degrees of freedom including axial, shear, torsion and pure bending. 

Non-linear behaviour can be supported by N1Link during nonlinear time-history 

analyses or nonlinear static analyses. 

 

Figure 3.1 Four node shell element 

3.4  Finite Element Bridge Modeling 

The finite element technique was adopted to model composite skewed concrete over steel 

I-girder bridges. Three-dimensional finite element models were constructed in a way to 

represent the actual physical structural geometry, boundary conditions, load locations, and 

material properties of the bridge components, namely: reinforced concrete for the deck slab 

and steel for the webs, bottom flange, diaphragms and cross bracings. The following 

subsections explain the element type selected for each component, the material modeling, 

and the boundary conditions used in the developed finite element models (FEM) were 

described below. 
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3.4.1  Material Modeling 

The material properties are very important component in developing FEM to define in 

order to get accurate results. The bridge slab is made of reinforced concrete while the rest 

of the I-girder and angle section diaphragms is made of steel. The elastic material properties 

of these materials are defined and used throughout this study.  

The bridge structure was idealized using the following assumptions: (1) all materials were 

elastic and homogeneous; (2) the effects of road super-elevation and curbs were ignored; 

and (3) the reinforced-concrete deck slab and the supporting steel I-girders were in full 

composite action; (4) both the deck slab and the supporting I-girders were simply supported 

at the abutments; (5) intermediate cross-braces were moment-connected to the longitudinal 

girders. The typical cross-section of a two-lane and four-lane composite steel I-girder 

bridge is shown in Figure 3.2. 

 

(a) 

 

(b) 

Figure 3.2 Cross-section diagram of a concrete slab over steel I-girder bridge for: (a) two-

lane, and (b) four-lane 
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The concrete deck slab thickness was 225 mm. The over-hanged slab length was equal to 

half the girder spacing. The steel I-girders and X-type cross-frames at the support and 

between the span was provided in accordance with the specification stipulated in the 

manual of standard short-span steel bridges (Theodor and Al-Bazi 1997). Based on a 

sensitivity study discussed in section 3.6.1.2, cross-frame members were spaced at equal 

intervals between the support lines and were made of L102x102x11 steel angles. Moreover, 

cross-frames were oriented in a parallel layout for the skew angle less than 30o, however 

for higher skew angles (form 30o to 60o) perpendicular discontinuous layout was used 

(Razzaq et al. 2015).  

Cracking of concrete was not considered. The reason for assuming linear elastic properties 

of the concrete and steel was that the stresses due to temperature changes were not high as 

suggested by CHBDC (CSA 2014a). Thus, it was not necessary to consider the material 

nonlinearity. The modulus of elasticity of the concrete material was 25 GPa with a 

Poisson's ratio of 0.20, whereas these design values for the steel material were 200 GPa 

and 0.30, respectively. 

3.4.2  Geometric Modeling 

A three-dimensional finite element model was developed to simulate each of the bridges 

considered in this study. The concrete deck slab and web of steel girders were modeled 

using four-node three-dimensional elastic shell elements with six degrees of freedom at 

each node. The top and bottom flanges of longitudinal steel girders were modeled using 

two-node three-dimensional elastic beam elements with six degrees of freedom at each 

node. The transverse diaphragm cross-frames were simplified and modeled using the same 

beam elements. Rigid link elements were used to model the composite action between the 

deck slab and the girders by connecting the nodal degrees of freedom of the beam to those 

of the shell element. Thus the displacements in the beam element are dictated by those in 

the shell element. There is one incompatibility in the form of shear slip at the beam-slab 

interface in this model. Marx et al. (1986) claimed that this incompatibility is not important 

in a slab-on-girder bridges. Details of the finite element modeling of composite girder with 

cross-frame are shown in Figure 3.3. 
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(a) 

 

 

(b) 

Figure 3.3 Details of the three-dimensional finite element modeling for: (a) bridge 

structure, and (b) composite girder with cross-frame 
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3.4.3  Boundary Condition 

One of the crucial parameters for the success of structural analysis is the proper 

characterization of the boundary conditions of the system. Behavior of abutments at the 

support point must be examined and properly implemented into the structural analysis 

model. For the static analysis, it is common to use a simple representation of support (e.g., 

fixed, pinned, roller) without characterizations of the soil-structure interaction. Each 

bearing support was assumed to be located at the centroid of the beam element representing 

the bottom flange of the girder in such way to simulate temperature-free bridge 

superstructure (Lee 1994). For a single span bridge, one of the middle supports on the right 

end of the bridge was restrained against all possible translations (longitudinal, vertical and 

lateral), and on the left side, one of the middle supports was restrained against vertical and 

lateral translations. However, the rest of supports at both ends were restrained against 

vertical translations only. Figure 3.4 shows typical boundary conditions considered for 

two-lane and four-lane bridges respectively. 

 

Figure 3.4 Boundary condition for single-span bridge model for: (a) two-lane, and (b) 

four-lane 

3.4.4 Aspect Ratio 

The aspect ratio is defined as the ratio of the longest dimension to the shortest dimension 

of a quadrilateral element. In many cases, as the aspect ratio increases, the inaccuracy of 

the solution increases (Logan 2002). To improve the accuracy of the finite element 

modeling and to make the design more efficient and cost-effective, the aspect ratio of the 

shell elements was adjusted less than 4. Logan (2002) proved that as the aspect ratio rises 

above 4, the inaccuracy of the solution increases. 
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3.4.5 Live Load Modeling 

The live load, as specified in CHBDC (CSA 2014a), consists of CL-W truck and CL-W 

lane loading. The CL-W truck consists of idealized five axles with total load of 625 kN as 

shown in Figure 3.5. The CL-W lane loading consists of CL-W truck loading with each 

axle load reduced to 80% of its original value and superimposed within uniformly 

distributed load of 9 kN/m over 3 m width. The selection between two different CHBDC 

types of live loads i.e. CL-W truck and CL-W lane, depends on whichever gives the greatest 

design values. Both CL-W loadings were considered in an extensive sensitivity study, 

mentioned in the forthcoming section 3.6.3. The study revealed that the CL-W truck 

loading increased the girder response as compared to CL-W lane load, and accordingly 

considered in parametric study analysis thereafter. 

   

        (a)                                 (b) 

 

                                                                (c) 

Figure 3.5 CHBDC truck loading: (a) CL-W truck clearance, (b) CL-W truck load, and 

(c) CL-W lane load. (Reproduced from CHBDC (CSA 2014a)) 
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3.5 Validation of Finite Element Modeling 

To verify the validity of the finite element modeling technique presented in this chapter, 

physical load test data from the field testing was compared against the results of a finite 

element model of the traditional and integral abutment bridges using the described 

modeling technique. Contained herein is a brief description of this bridge and its field 

testing as well as the comparison of the finite element data and the field test data. 

3.5.1 Validation of Skewed Slab-on-Girder Bridge 

For validation purposes, the first high-performance steel (HPS) two-span skewed 

continuous bridge (Missouri Bridge A-6101) built in Missouri, constructed by Missouri 

Department of Transportation (MoDOT) in 2002 as part of the Federal Highway 

Administration’s (FHWA) innovative bridge research and construction program was 

considered. The bridge is located on Route 224 in Lafayette County, Missouri. On August 

20, 2002, field testing of Missouri Bridge A-6101 was conducted by the University of 

Missouri–Columbia and West Virginia University in cooperation with the Missouri 

Department of Transportation (MoDOT) (Wu 2003). 

 

Figure 3.6 Elevation view of Missouri A-6101 bridge (Reproduced from Wu 2003) 

Figure 3.6 shows an elevation view of this bridge. The design calculations and dimensions 

presented in the plans for Missouri Bridge A-6101 are in metric units. Figure 3.7 shows 
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the cross-sectional view of the Bridge A-6101 with information regarding bridge width, 

girder spacing, number of girders, deck slab thickness and deck overhang length. Also, the 

bridge’s framing plan can be seen in Figure 3.8. For brevity purposes only the details 

related to calibration of the finite element model is presented herein, however more details 

about the Missouri Bridge A-6101 can be found elsewhere (Davis 2003, Wu 2003). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Missouri bridge A-6101 cross-section (Reproduced from Wu 2003) 

 

 
 

Figure 3.8 Missouri bridge A-6101 framing plan (Reproduced from Wu 2003) 

3.5.1.1  Instrumntation 

For the purposes of verifying the finite element modeling technique presented in this 

Chapter, only instruments pertaining to measuring deflection values are discussed herein.  

Two different devices for measuring vertical displacements were employed during this 

field test. The first was a set of string potentiometers, or “string pots”, placed directly below 
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each girder at the 0.4L point of each girder or 16.8 m (55.1 ft.) from the east bearing. These 

were used in lieu of conventional linear variable differential transformers (or LVDTs) due 

to the height of the girder from the ground. However, after interpreting the data from the 

string pots after the field test, the team concluded that the string pots were malfunctioning 

during the field test and any data derived from these were not used.  

The second device was a laser deflection system developed by the Civil Engineering 

Department at the University of Missouri–Columbia. The live load deflection of girder 2 

was measured using a set of laser devices with a helium neon laser installed on a tripod and 

a deflection device installed on girder 2 of the second span. The laser was aimed at a 

deflection device attached to girder 2 at 0.4L of the respective girder, which acted as a 

reference point as the bridge deflected. Relative deflections were measured and recorded 

for girder 2 during the field test. After subsequent analysis by the field test team, it was 

determined that the laser deflection device performed very well. However, after the eighth 

truck run, the laser device stopped taking measurements. This was reasonable, as the laser 

needed to be precisely aimed at the deflection device on the girder. As can be seen from 

Figure 3.6, conditions on the ground on the day of field testing were quite muddy; this 

could have possibly caused the tripod to go out of a level position and, therefore, cause 

defective operation.  

3.5.1.2  Load Truck 

The vehicle used to load the bridge was a 1984 Freighliner block and brick truck owned by 

the Civil Engineering Department of the University of Missouri (Davis 2003). Steel blocks 

were used to load the test truck to increase its weight for the load testing. After the static 

deflection testing procedure was completed, weighing pads were used to determine the 

truck’s individual wheel weights. A photograph of the load truck is shown in Figure 3.9, 

along with pertinent truck dimensions and each wheel’s individual weights. 
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(a) 

 

 
(b) 

 

Figure 3.9 Missouri bridge A-6101: (a) Load truck, and (b) truck dimensions with wheel 

loads (Reproduced from Wu 2003) 

3.5.1.3  Truck Runs 

To obtain deflection values that were representative of static loading, the load truck was 

run across the bridge as slow as possible to reduce impact. For each run, the truck began 

on the east approach, traveled completely across the bridge, then made the same pass in 

reverse back to the east side. This process was completed twelve times. For each run, the 

truck maintained a constant distance transversely across the bridge. These distances are 

illustrated in Figure 3.10, and tabulated in Table 3.1. 
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Table 3.1 Missouri bridge A-6101 truck run positions 

Distance from center of driver’s side wheel 

to curb 

Truck Run Distance (m) 

1 2.13 

2 3.27 

3 4.78 

4 5.18 

5 6.00 

6 6.32 

7 7.51 

8 7.83 

9 8.65 

10 9.05 

11 10.56 

12 Face of South Parapet 

Figure 3.10 Missouri bridge A-6101 truck run scheme (Reproduced from Wu 2003) 

3.5.1.4  Comparison of Results 

Presented in Figure 3.11 is a comparison of both the physical data from the field test of 

Missouri Bridge A-6101 along with the data from the bridge’s finite element model. Out 

of the twelve different truck positions on the bridge span, the girder deflection values for 

eight truck positions were reported as they were determined by the test team to be the most 

accurate (Wu 2003). The comparison indicates that this finite element modeling technique 

is quite accurate in predicting bridge system behavior and girder response with the largest 

difference in values is only 0.4 mm, equivalent to a 5% difference. 
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Figure 3.11 Validation of live load field testing with finite element modeling results 

3.6  Evaluation of Skewed Bridge Parameters by Sensitivity Study 

The following section describes the effect of the various design parameters using finite 

element analysis to determine their sensitivity on the load distribution of steel I-girder 

bridges. A description of the procedures used to develop the parametric bridges is 

presented. Finally, the results of the sensitivity study are discussed, focusing the influence 

of the varied parameters. 

The following sensitivity studies are carried out to estimate the effect of the following 

parameters on the load distribution of skewed composite concrete over steel I-girder 

bridges. 

1. Cross-frame Design 

i. Cross-frame Layout 

ii. Cross-frame Spacing 

2. Sequence of Construction 

i. Un-shored Construction 

ii. Shored Construction. 

3. Effect of CHBDC vehicular load type 
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4. Estimation of Longitudinal Flexural Stiffness of Steel I-girder. 

5. Assessment of Multi-lane Truck Loading Condition. 

3.6.1 Cross-frame Design 

Behavior of skewed bridges is much more complicated than straight aligned bridges with 

normal supports due to the complex interaction between the steel girders and the cross-

frames. This interaction generate large forces in the cross-frames under the truck live loads, 

thereby augment fatigue cracks commonly found around locations of cross-frames during 

routine maintenance inspections (Yura et al. 1992, Helwig et al. 1993, Helwig and Wang 

2003). The severity of the fatigue problem is dependent on the layouts that are used for the 

cross-framing. In-addition, cross-frames provide stability to the girders as well as 

improving the lateral or torsional stiffness of the bridge system. Depending on the 

geometry of the bridge, in many situations the removal or inadequate cross-frame spacing 

can result in a partial or complete collapse of the structure. This module provides an 

overview of the design requirements of the braces so that engineers can properly size the 

members to ensure adequate strength and stiffness. 

3.6.1.1 Cross-frame Layout 

The CHBDC (CSA 2014a) and AASHTO-LRFD Bridge Design Specifications 

(AASHTO-LRFD 2014) allow cross-frames to be parallel to the support line when the 

skew angle is less than 20o. However, for skew angles greater than 20°, both design 

specifications require the cross-frames to be perpendicular to the longitudinal axis of the 

girders. Previous studies reported that the evaluation of the effect of cross-frames layout in 

skew composite concrete slab-over steel I-girder bridges on load distribution among girders 

is as yet to be assessed (Fraser et al. 2000, Barth and Bowman 2001, Hartman et al. 2010). 

In order to estimate the effectiveness of the cross-frame layout with the variation of the 

skew angle three cross-frame layouts, shown in Figure 3.12, commonly used in skewed 

bridges are considered, namely: parallel cross frames to the skew support lines (parallel 

layout), perpendicular cross-frames to the longitudinal girder axes (perpendicular-
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continuous layout), and perpendicular cross-frames to the longitudinal girder axes with 

staggered arrangement between girders (perpendicular-discontinuous layout). 

 

 

 (a)  Parallel                       (b)  Perpendicular-continuous 

 

 
(c)  Perpendicular-discontinuous 

 

Figure 3.12 Cross-frame layouts for bridges with skewed supports for (a) parallel 

configuration, (b) perpendicular-continuous configuration, and (c) perpendicular-

discontinuous configuration 

 

Table 3.2 Parameters considered for cross-frame layout 

 

Parameters considered Range of Parameters 

No. of Lanes 
1-Lane (6 m) & 

4-Lane (18 m) 

Cross-frame Layouts 

• Parallel 

• Perpendicular-continuous 

• Perpendicular-discontinuous 

Skew angle 0, 10, 20, 30, 40, 50 and 60o 

Girder spacing (m) 1.5 m & 3 m 
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Previous research attempts regarding cross-frames layout perpendicular to the girder line 

(continuous and discontinuous) is not conclusive as to which layout performs better with 

respect to effective load sharing among girders and curbing differential vertical 

displacement at the two ends of the cross-frame. The objective of the current study was to 

investigate the effectiveness of cross-frame layout in skew composite concrete deck-over 

steel I-girder bridges under a uniform distributed load of 10 kN/m2 by conducting three-

dimensional (3D) finite element modeling. For brevity purposes, the finite element results 

in terms of magnification factors for girder longitudinal bending moment and vertical 

support reactions are presented herein. Further details and parameters considered in this 

study can be seen elsewhere (Razzaq et al. 2015). Table 3.2 presents the basic cross-

sectional configurations considered. 

The longitudinal bending moments for the interior and exterior girders of multi-lane 

bridges were evaluated and the corresponding magnification factors (Mα/Mo) are presented 

in Figure 3.13 and 3.14, respectively. The FEA results of an interior girder of multi-lane 

bridges shows that for one-lane bridge, all cross-frame layouts resulted in about 12% 

decrease in longitudinal internal girder moment with a skew angle varying between 0o to 

60o. Whereas, for four-lane bridge, all cross-frame layouts experienced a similar trend of 

2% decrease of internal girder moment up to a skew angle of 30o. Subsequently for a skew 

angle between 30o to 60o, this reduction in the internal girder moment was found more 

prominent and resulted in a decrease of 23%, 29% and 25% for parallel, perpendicular-

continuous and perpendicular-discontinuous cross-frame layouts respectively. However 

for exterior girder moment, FEA results showed a marginal effect for different cross-frame 

layouts for skew angle between 0o to 60o. 
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(a) 

 

 
 

(b) 

 

Figure 3.13 Moment magnification factor for interior girders for: (a) one-lane, and (b) 

four-lane 
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(a) 

 

 
 

(b) 

 

Figure 3.14 Moment magnification factor for exterior girders for: (a) one-lane, and (b) 

four-lane 
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In skewed bridges the behavior of the structure near the bearings particularly at the obtuse 

corner requires special consideration. Figure 3.15 shows the support reaction at obtuse 

corners for one-lane and four-lane bridge system in term of magnification factor (Rα/Ro). 

The results showed that for one-lane bridge system, all cross-frame layouts resulted in a 

6% increase in exterior girder support reaction at obtuse corner for skew angle up to 30o. 

However, an increase of 22% is obtained beyond 30o up to 60o skew angles. For four-lane 

bridge system, a maximum of 7% increase in support reaction was observed at 30o skew 

angle for perpendicular-continuous cross-frame layout. However for skew angles in the 

interval of 30o to 60o, the support reactions resulted in an increase of 21%, 26% and 23% 

for parallel, perpendicular-continuous and perpendicular-discontinuous cross-frame 

layouts respectively. Figure 3.16 revealed that cross-frame layouts have insignificant effect 

on acute corner support reaction with the variation of skew angle for both bridge 

configurations. 

 

 
 

(a) 

 



56 

 

 
 

(b) 

 

Figure 3.15 Reaction magnification factor at obtuse corners for: (a) one-lane, and (b) 

four-lane 

 

 

 
 

(a) 
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(b) 

 

Figure 3.16 Reaction magnification factor at acute corners for: (a) one-lane, and (b) four-

lane 

Moreover, the FEA results revealed that the differential vertical displacement at the obtuse 

corners of the intermediate cross-frame members increased significantly in case of 

perpendicular-continuous cross-frame layout in comparison with parallel and 

perpendicular-discontinuous layouts for multi-lane bridges, as shown in Figure 3.17. 

Furthermore, the result showed that at high skew angle, perpendicular-discontinuous layout 

performed well in reducing the differential vertical displacement at the cross-frame ends 

significantly. 

By varying the parameters of bridge geometry i.e. number of lanes or bridge width, number 

of girders, girder spacing and skew angles, the responses of a skewed bridge were 

computed and compared to the reference three-dimensional FEA straight bridges. The FEA 

results showed that the computed responses have insignificant effect with the change of 

skew angle up to 30o. For that reason, parallel cross-frame layout can be employed for skew 

angles up to 30o. However, for high skew angles (between 30o to 60o) perpendicular-
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discontinuous cross-frame layout provides better load distribution among girders by 

significantly reducing the girder displacement. 

 
(a) 

 

 
(b) 

 

Figure 3.17 Differential displacement of cross-frame end members: (a) one-lane, and 

(b) four-lane 
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3.6.1.2 Cross-frame Spacing 

Cross-frames and diaphragms are relatively costly structural components in steel bridges 

from the perspective of both fabrication and erection. The braces can be difficult to install 

in bridges due to fit-up problems and may also attract significant live load forces, 

particularly in bridges with large support skews. Therefore, minimizing the number of 

cross frames in bridges can be an objective for better overall bridge behavior as well as for 

reduced cost effectiveness. The typical practice in steel bridge construction is to place 

cross-frames between each of the girders at a uniform spacing along the length (Helwig 

and Yura 2012). 

The CHBDC (CSA 2014a), clause 8.18.5 states: “Steel I-girder supporting deck slabs 

designed in accordance with the Empirical Design Method of clause 8.18.4 shall have 

intermediate cross-frames or diaphragms at a spacing not greater than 8.0 m center-to-

center”. Although cross-frames and diaphragms are critical elements for girder stability, 

the current AASHTO specifications do not provide guidelines for the basic bracing 

requirements. For several decades, the AASHTO specifications limited the maximum 

cross-frame spacing to 7.6 m (25 ft.). This spacing limit is still in effect in the AASHTO 

Standard Specification (AASHTO 1996); however the limit was removed from the 

AASHTO-LRFD specifications (AASHTO-LRFD 2014) due to fatigue concerns 

associated with the bracing details. The commentary in the LRFD code specifications 

(AASHTO-LRFD 2014) instead specifies that engineers need to design the braces by 

rational analysis, however no guidance is provided for the requirements of such an analysis. 

The objective of the current study aims at investigating the effectiveness of cross-frame 

spacing in skew composite concrete deck-over steel I-girder bridges under a uniform 

distributed load of 10 kN/m2 by conducting three-dimensional finite element modeling. 

The finite element results are presented in terms of magnification factors for girder 

longitudinal bending moment and vertical support reactions for skew angle ranging from 

0o to 60o. Table 3.3 presents the basic cross-sectional configurations considered in the 

analysis. 
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Table 3.3 Parameters considered for cross-frame spacing 

 

Parameters considered Range of Parameters 

Span length  20 m 

No. of Lanes 
1-Lane (6 m) & 

4-Lane (18 m) 

Cross-frame spacing 

3 equal spacing @ 6.667 m 

4 equal spacing @ 5.0 m 

5 equal spacing @ 4.0 m 

6 equal spacing @ 3.334 m 
 

Cross-frame Layouts 
• Parallel for skew angle < 30o 

• Perpendicular-discontinuous for skew angle > 30o 

Skew angle 0, 10, 20, 30, 40, 50 and 60o 

Girder spacing (m) 1.5 m & 3 m 

 

 
 

(a) 

 



61 

 

 
 

(b) 

 

Figure 3.18 Moment magnification factor for interior girders for: (a) one-lane, and (b) 

four-lane 

 

 
 

(a) 

 



62 

 

 
 

(b) 

 

Figure 3.19 Reaction magnification factor at obtuse corners for: (a) one-lane, and (b) 

four-lane 

The longitudinal bending moments for interior girders of multi-lane bridges were evaluated 

and the corresponding magnification factors (Mα/Mo) are presented in Figure 3.18. For 

exterior girders moment, the FEA results showed an insignificant effect of different cross-

frame spacing arrangements with the variation of skew angle from 0o to 60o. Only interior 

girder responses are discussed and presented herein. 

Figure 3.19 shows the support reaction at obtuse corners for one-lane and four-lane bridge 

system in term of magnification factor (Rα/Ro). The results showed that for one-lane bridge 

system, all cross-frame spacing arrangements resulted in similar increasing trend of 

exterior girder support reaction at obtuse corner with an increase of skew angle up to 60o. 

However, for four-lane bridge system a maximum difference of 10% is observed at 60o 

skew angle when cross-frames were arranged between the maximum and minimum 

permitted equal spacing limits i.e. 6.67 m and 3.34 m, respectively. 

From this study it was concluded that for highly skewed bridges, keeping the maximum 

cross-frame spacing within the prescribed code limitations (CSA 2014a), relatively widely 
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spaced diaphragms lead to a better load distribution among girders by reducing the support 

reactions at the obtuse corners. This finding is in agreement with the research work 

conducted by Kim and Nowak (1997). 

3.6.2 Sequence of Construction 

In skewed composite steel I-girder bridges, the sequence of loading during construction 

influences the magnitude of stresses developed in the girders and it is usually not 

considered in the design. Many designers and contractors have demonstrated their limited 

experience to comprehend the structural behaviour during different phases of skewed 

bridge construction. The Canadian Highway Bridge Design Code (CSA 2014a) and 

AASHTO-LRFD Bridge Design Specifications (AASHTO-LRFD 2014) permits shored 

composite construction. However, design guidelines to estimate the accumulation of girder 

flexural stresses due to different moment distribution among girders (i) before the concrete 

hardening, (ii) after placing the asphalt layer and the barrier wall, and (iii) when trucks 

move over the bridge are as yet unavailable. To assess load distribution at different stages 

of construction, as described earlier, the sequence of construction is categorized in two 

classes, i.e. (a) un-shored construction, and (b) shored construction. 

3.6.2.1 Un-shored Construction 

According to CHBDC (CSA 2014a) clause 10.11.4 for composite beams and girders in the 

positive moment regions, the normal stress in either flange of the steel section due to 

serviceability dead and live loads (to control permanent deformation) shall not exceed 0.90 

Fy. The following requirements shall also be satisfied: 

Y
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≤++                                       (3.1) 

where, Md is the bending moment in the beam or girder at serviceability limit state (SLS) 

due to dead load (N-mm); MSd is the bending moment in the beam or girder at SLS due to 

the superimposed dead load (N-mm); ML is the bending moment in the beam or girder at 

SLS due to live load (N-mm); S is the elastic section modulus of steel section (mm3), and 
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Sn, S3n are the elastic section modulus comprising the steel beam or girder and the concrete 

slab, calculated using a modular ratio of n or 3n, respectively (mm3). 

The CHBDC (CSA 2014a) simplified method of analysis has specified the modification 

factor to account total girder moment at SLS under live load condition as follows: 

TSTL MFFM ×= )(  (3.2) 

No moment magnification factor is considered under the dead load conditions. In order to 

check that whether separate moment magnification factors are required for the shored and 

un-shored construction a three-dimensional finite element modeling was conducted to 

determine the moment magnification factor in bridge girders by considering different 

parameters including: skew angles, girder stiffness and cross-frame layout, span length and 

number of design lanes under dead load conditions. Table 3.4 presents the basic cross-

sectional configurations considered.  

Table 3.4 Parameters considered for un-shored construction 

 

Parameters considered Range of Parameters 

Span length  15 m 40 m 

No. of Lanes 2-Lane (10 m), and 4-Lane (18 m) 

Cross-frame spacing 2 equal spacing @ 7.5 m 5 equal spacing @ 8 m 

Cross-frame Layouts 
• Parallel for skew angle < 30o 

• Perpendicular-discontinuous for skew angle > 30o 

Skew angle 0, 10, 20, 30, 40, 50 and 60o 

Girder spacing (m) 2.5 m 2.25 m 

 

The finite element analysis was conducted for the non-composite braced steel girder system 

under self-weight and weight of the concrete slab before hardening (Md). FEA results are 

shown in Figure 3.20. 



65 

 

 
 

(a) 

 

 

 
 

(b) 

 

Figure 3.20 Md - Moment magnification factor for exterior and interior girders for: (a) 

two-lane, and (b) four-lane 
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Finally the results showed that with the change of skew angle from 0o to 60o, the effect of 

un-shored sequence of construction (i.e. before concrete hardening) was found 

insignificant on the moment magnification factors. Therefore, it can be considered equal 

to 1 for Md calculation in equation 3.1. 

3.6.2.2 Shored Construction 

In the shored construction of a skewed steel I-girder bridge, the bridge girders are supported 

at intermediate points by temporary shores placed at close intervals. The temporary shores 

supposedly keep the girders in a state that closely approaches zero stress, termed herein as 

the no-load condition. When the deck concrete is poured, the beams support the dead load 

due to their own weight as well as the weight of the freshly poured deck concrete. Because 

the beams are supported at close intervals, it is assumed that they do not develop any 

stresses due either to their own dead weight or the fresh concrete. The temporary shores 

are removed after sufficient hardening of concrete occurs, following which the beam 

develops composite action, and all loads (self-weight, superimposed loads and the live 

load) are assumed to be resisted by the composite girder section. If the no-load condition 

is not achieved in the field, a skewed I-girder will deflect and rotate out of plane, due to its 

self-weight, as a direct result of its geometry. 

While shored construction is permitted according to bridge code specifications (CSA 

2014a, AASHTO-LRFD 2014), no design procedure to predict the moment magnification 

factors is specified under the dead load conditions. In order to check the adequacy of the 

moment magnification factors for the shored construction a three-dimensional finite 

element modeling was conducted to determine the moment magnification factor in bridge 

girders by considering different parameters including: skew angles, girder stiffness and 

cross-frame layout, span length and number of design lanes under dead load conditions. 

Table 3.5 presents the basic cross-sectional configurations considered. For shored 

construction, the following SLS condition need to be satisfied; 

( )
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   (3.3) 
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Table 3.5 Parameters considered for shored construction 

 

Parameters considered Range of Parameters 

Span length  15 m 40 m 

No. of Lanes 2-Lane (10 m), and 4-Lane (18 m) 

Cross-frame spacing 2 equal spacing @ 7.5 m 5 equal spacing @ 8 m 

Cross-frame Layouts 
• Parallel for skew angle < 30o 

• Perpendicular-discontinuous for skew angle > 30o 

Skew angle 0, 10, 20, 30, 40, 50 and 60o 

Girder spacing (m) 2.5 m 2.25 m 

 

In equation 3.3, the composite girder in shored construction supports the combined effect 

of : (i) dead load due to their own weight as well as the weight of the freshly poured deck 

concrete (Md), and (ii) superimposed loading coming over the structure in-terms of weight 

of asphalt layer and the weight of the barrier wall (Msd). The sensitivity study result shows 

that shored sequence of construction has substantial effect on the load distribution of girder, 

particularly on the interior girders, and needs to be considered to develop more realistic 

design guidelines. The FEA results of a composite braced steel girder (Md + Msd) subjected 

to self-weight of the structure in-addition to the super-imposed dead load (i.e. weight of 

asphalt layer and the weight of the barrier wall) are presented in Figure 3.21.  
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(a) 

 

 
 

(b) 

 

Figure 3.21 (Ms+Msd) - Moment magnification factor for exterior and interior girders for: 

(a) two-lane, and (b) four-lane 
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3.6.3 Effect of CHBDC Vehicular Load Type 

For normal traffic, the CHBDC (CSA 2014a) clause 3.8.4.1 states that for SLS 

combination-1 and for ULS, the traffic load shall be the CL-W truck load increased by the 

dynamic load allowance or CL-W lane load, whichever produces the maximum load effect. 

The objectives of this sensitivity study was to assess the critical loading conditions out of 

CL-W truck and lane load that can develop the dominating girder bending stresses for a 

bridge configurations considered in this study when the skew angle changes from 0o to 60o. 

Table 3.6 presents the bridge cross-sectional configurations considered for this study. 

Different live load cases considered to evaluate the extreme effect of girder bending stress 

using CL-W truck load and lane load for two- and four-lane bridge configurations are 

presented in Figure 3.22 and 3.23, respectively. Under linear elastic conditions, stresses are 

proportional to the bending moments in the girders. Hence, maximum stresses at the 

extreme fiber of the bottom flanges obtained from finite element results were used. The 

expressions used to evaluate the girder bending stress in case of the CL-W truck load and 

CL-W lane load are presented below: 

For CL-W Truck load: )1(@ DLAR flangebottomFEAL +××= σσ   (3.4) 

For CL-W Lane load: flangebottomFEALR @σσ ×=    (3.5) 

The exterior girder bending stress for two- and four-lane bridge system at 0o and 60o skew 

angle for the CL-W truck and lane load are presented in Figure 3.24 to 3.27, respectively. 

Similarly, the interior girder bending stress for two- and four-lane bridge configurations 

for the CL-W truck and lane load are presented in Figure 3.28 to 3.31, respectively for 0o 

and 60o skew angles. FEA results by using sensitivity study on a prototype bridge structure 

aims at evaluating the girder bending stresses due to the CL-W truck load and lane load to 

investigate the severity of CL-W loading that produces maximum load effect. Results 

showed that the stresses produced by truck load were found higher than those obtained 

from the lane load for all the load case for short span bridge configurations ranging from 

15 m to 40 m span length. Consequently, the parametric study for the evaluation of load 

distribution factors for composite slab-on steel I-girder bridges were initiated using the CL-

W five-axle truck load, shown in Figure 3.5(b). 
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Table 3.6 Parameters considered for effect of CHBDC vehicular load type 

 

Skew 

angle 

No. of 

Lanes (n) 

Span 

(L), m 

Width 

(B), m 

No. of 

Girders (N) 

Girder 

spacing (S), 

m 

Cross-frame spacing 

0o  

2 15 10 4 2.5 2 equal spacing @ 7.5m 

4 15 18 8 2.25 2 equal spacing @ 7.5m 

2 40 10 4 2.5 5 equal spacing @ 8m 

4 40 18 8 2.25 5 equal spacing @ 8m 

 

60o 

2 15 10 4 2.5 2 equal spacing @ 7.5m 

4 15 18 8 2.25 2 equal spacing @ 7.5m 

2 40 10 4 2.5 5 equal spacing @ 8m 

4 40 18 8 2.25 5 equal spacing @ 8m 

Cross-frame Layouts: Parallel for skew angle < 30o 

    Perpendicular-discontinuous for skew angle > 30o 

 

 
 

                           (a)                                                                       (b) 

 

 
 

(c) 

 

Figure 3.22 Live loading cases for two-lane bridge configuration for: (a) Exterior girder-

partial load (b) Exterior girder-full load, and (c) Interior girder-full load 

 



71 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 
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(e) 

 

Figure 3.23 Live loading cases for four-lane bridge configurations for:  (a) Exterior girder 

one-partial load (b) Exterior girder two-partial load (c) Exterior girder-full load (d) 

Interior girder two-partial load, and (e) Interior girder-full load 

 

 
(a) 

 

 
(b) 

 

Figure 3.24 Exterior girder bending stress for two-lane bridge configuration at skew 

angle=0o for: (a) Span =15 m, and (b) Span = 40 m 
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(a) 

 

 

 

 
(b) 

Figure 3.25 Exterior girder bending stress for two-lane bridge configuration at skew 

angle=60o for: (a) Span =15 m, and (b) Span = 40 m 
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(a) 

 

 

 

 
(b) 

Figure 3.26 Exterior girder bending stress for four-lane bridge configuration at skew 

angle=0o for: (a) Span =15 m, and (b) Span = 40 m 
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(a) 

 

 

 

 
(b) 

Figure 3.27 Exterior girder bending stress for four-lane bridge configuration at skew 

angle=60o for: (a) Span =15 m, and (b) Span = 40 m 
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(a) 

 

 

 

 
(b) 

Figure 3.28 Interior girder bending stress for two-lane bridge configuration at skew 

angle=0o for: (a) Span =15 m, and (b) Span = 40 m 
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(a) 

 

 

 

 
(b) 

Figure 3.29 Interior girder bending stress for two-lane bridge configuration at skew 

angle=60o for: (a) Span =15 m, and (b) Span = 40 m 
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(a) 

 

 

 

 
(b) 

Figure 3.30 Interior girder bending stress for four-lane bridge configuration at skew 

angle=0o for: (a) Span =15 m, and (b) Span = 40 m 

 



79 

 

 
(a) 

 

 

 
(b) 

Figure 3.31 Interior girder bending stress for four-lane bridge configuration at skew 

angle=60o for: (a) Span =15 m, and (b) Span = 40 m 

3.6.4 Estimation of Longitudinal Flexural Stiffness of Steel I-Girder 

The load causes the slab-girder system to displace. As one can expect, the girder near the 

location of the load application carries more load than those away from the applied load. 

If linear behavior is assumed, the load transferred to each girder is proportional to the 

displacement. Equilibrium requires that the summation of the load carried by all the girders 

equals the total applied load. The load carried by each girder is a function of the relative 
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stiffness of the components that comprise the slab-girder system (Barker and Puckett 

1997). 

To account for the relative stiffness of the bridge system, Bakht and Moses (1988) on the 

basis of detailed study of some 30 slab-on-girder highway bridges of different spans in 

North America presented a relationship for the upper and lower bound limit between the 

longitudinal flexural rigidity per unit width (Dx) and the span length (L). It was concluded 

that the upper-bound values of Dx can be represented as a function of the span length L, by 

the following equation: 

 2
257,2575,59 LLDx +=                                       (3.6) 

Similarly, the equation for the lower-bound values: 

2
790,1250,9 LLDx +=                                          

(3.7) 

In the above equations, L is in “meter” and Dx in “kN-m”. The two bounds of Dx, together 

with the values for specific bridges studied by Bakht and Moses (1988) are plotted in Figure 

3.32. Equation 3.6 and 3.7 shown above formed the basis for estimating the flexural 

stiffness of I-girders for the evaluation of load distribution formulas specified in Ontario 

Highway Bridge Design Code (OMTC 1992). 

In order to compute the longitudinal flexural rigidity per unit width, Dx, of the girder 

bridges adopted the semi-continuum idealization approach (Jaeger and Bakht 1989), where 

a bridge is conceptually divided into strips of equal widths represented by a longitudinal 

beam. The flexural rigidity EI of a longitudinal beam representing a strip of width S is 

given by: 

S

EI
D

DSEI

x

x

=

= .

    (3.8) 



81 

 

For slab-on-girder bridges, a database of steel girder sections adopted from the manual of 

short span steel bridge (Theodor and Al-bazi 1997) was generated for the evaluation of the 

longitudinal bending stiffness (Dx) by considering the composite deck-girder section, and 

represented in equations 3.9: 

S

IE
D

Composite

x

.
=   (3.9) 

Subsequently, for the detailed parametric study all the selected bridge geometries were 

plotted by considering the upper and lower bound limits as specified by Bakht and Moses 

(1988) and represented in Figure 3.33. The results indicated that the calculated bending 

stiffness of all the selected girders satisfied the prescribed limits as mentioned above in 

equations 3.6 and 3.7 respectively. 

 

 
 

Figure 3.32 Relationship between span and longitudinal flexural rigidity per unit width  

(Reproduced from Bakht and Moses 1988) 
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Figure 3.33 Relationship between span length and longitudinal flexural rigidity per unit 

width 

3.6.5 Assessment of Multi-lane Truck Loading Condition 

The current study involves the assessment of multi-lane truck loading condition on the load 

distribution among girders in skewed composite steel I-girder bridges. The analysis of the 

multi-lane loading involves the distribution of truck load to girders. Accurate knowledge 

of the load carrying capacity and load distribution among girders are vital for satisfactory 

performance of the bridge. Adding skew to a straight girder bridge complicates the 

behavior and the associated analysis required to capture it. For this purpose, a three-

dimensional finite element modeling was conducted to determine the magnification factor 

for moment and shear force in bridge girders by considering different parameters including: 

skew angles, girder stiffness and cross-frame layout, number of design lanes, span length 

and girder spacing under various truck positions. Three truck loading scenarios were 

considered for this study, namely: (i) side-by-side trucks entering the bridges 

simultaneously, (ii) multi trucks running over the bridge with time lag between them, and 

(iii) one truck in each lane at a time and with superposition of results. For all loading 

conditions, moving load technique available is CSiBridge (CSI 2015) software was utilized 

to obtain the maximum moment and shear in girders. Table 3.7 presents the bridge 

configurations considered for this study. The CHBDC (CSA 2014a) specified five-axle 
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CL-W truck load was used to get the extreme effect of girder bending and shear stresses 

for three loading conditions mentioned previously. 

Table 3.7 Parameters considered for assessment of multi-lane truck loading condition 

 

No. of 

Lanes (n) 

Span Length 

(L), m 

Bridge Description 

Two-lane 15 

• Bridge Width (B) = 7.6 m      

• Deck Width (Wc) = 6.6 m      

• Design Lane Width (We) = 3.3 m      

• No. of Girders (N) = 3      

• Girder Spacing (S) = 2.533 m 

• Skew Angle (α) = 0o, 10o, 20o, 30o, 40o, 50o and 

60o. 

Four-lane 30 

• Bridge Width (B) = 18.0 m      

• Deck Width (Wc) = 17.0 m      

• Design Lane Width (We) = 4.25 m      

• No. of Girders (N) = 6      

• Girder Spacing (S) = 3.0 m 

• Skew Angle (α) = 0o, 10o, 20o, 30o, 40o, 50o and 

60o. 

 

In case of straight or curved bridges, it is common practice to allow the truck to enter the 

bridge at the same time. However, in case of a skew bridge this approach will predict 

inaccurate assessment about the load effects due to the fact that the behavior of a skew 

plate is anti-symmetrical with obtuse angle facing the acute angle at the other side of the 

bridge on the same free edge. In order to capture the variation in the load effect under CL-

W truck load condition on a skew aligned bridge three different possibilities were 

considered. For this purpose, the location of the maximum stress values (bending and 

shear) for each bridge configuration was evaluated first under dead load condition. 

Subsequently, the stress values under truck live loads were determined for the three load 

scenarios (i.e. side-by-side, side-by-side with time lag, and by superposition) at the same 

location where previously assessed the maximum dead load stresses were determined. The 

three loading conditions considered are as follows: 
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i. Truck moves side-by-side in a multi-lane bridge with the front and rear bumper aligned, 

as shown in Figure 3.34(a). The number of trucks positioned transversely on bridge 

deck was the same as the number of lanes (Diab et al. 2011, Tian 1999). 

ii. Truck moves side-by-side in a multi-lane bridge with a time lag between them i.e. 

trucks placed parallel to support line, as shown in Figure 3.34(b) (Huo et al. 2005, Tian 

1999). 

iii. In a multi-lane skewed bridge, one truck was allowed to move in each lane at a time 

and final response was evaluated by superposition of results, as shown in Figure 3.34(c) 

(Turer 1997, 2000). 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

Figure 3.34 Truck loading conditions on a skew aligned bridge for (a) truck moves side-

by-side, (b) truck moves side-by-side with time lag, and (c) one truck in each lane at a 

time and by superposition of results 

The FEA results are presented in term of moment and shear magnification factors for the 

two- and four-lane bridge configurations considered in this study. The moment and shear 

magnification factors for a two-lane bridge are presented in Figure 3.35 and 3.36, 

respectively. Whereas, Figure 3.37 and 3.38 shows the moment and shear magnification 

factors for a four-lane bridge system. The result shows that for short span bridges all the 

three loading scenarios demonstrated an insignificant effect on girder bending and shear 

responses. For the detailed parametric study analysis presented in coming chapters, the 

girder responses were estimated by the superposition of results as presented in option-3 for 

the evaluation of load distribution factors. 
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(a) 

 

 
(b) 

 

Figure 3.35 Moment magnification factor for two-lane bridge for: (a) exterior girder, and 

(b) interior girder 
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(a) 

 

 
 

(b) 
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(c) 

 

Figure 3.36 Shear magnification factor for two-lane bridge for: (a) obtuse corner (b) acute 

corner, and (c) interior girder 

 

 

 
 

(a) 
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(b) 

 

Figure 3.37 Moment magnification factor for four-lane bridge for: (a) exterior girder, and 

(b) interior girder 

 

 
 

(a) 
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(b) 

 

 

 
 

(c) 

 

Figure 3.38 Shear magnification factor for four-lane bridge for: (a) obtuse corner (b) 

acute corner, and (c) interior girder 
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3.7 Conclusions 

This chapter presents a brief description of the finite element approach, modeling 

methodology, structural geometry, boundary conditions and loads acting on the structure. 

The available commercial finite element program, CSiBridge v17.2.0, was used to 

investigate the most probable responses of a modeled bridge structure. Calibration of the 

finite element modeling technique was done by correlating the available physical load test 

data from the field testing of a highway bridge against the results of a finite element model 

of the same bridge. Sensitivity studies were also carried out to estimate the effect of 

composite bridge design parameters on the load distribution of skewed composite concrete 

over steel I-girder bridges.  
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CHAPTER 4 

Dead Load Distribution in Straight and Skewed Bridges 

4.1 General 

In skewed bridges, the sequence of loading during construction influences the magnitude 

of stresses developed in the girders and is usually not considered in the design. Many 

designers and contractors have demonstrated their limited experience to comprehend the 

structural behavior during different phases of skewed bridge construction. The Canadian 

Highway Bridge Design Code and AASHTO-LRFD Bridge Design Specifications permits 

shored construction. However, design guidelines to estimate the accumulation of girder 

stresses due to different load conditions i.e. (i) before the concrete hardening, and (ii) after 

placing the asphalt layer and the barrier wall are as yet unavailable. Such discrepancies in 

design specifications results inappropriate load distribution factors that may lead to 

extremely conservative design forces or sometimes makes the design of the bridge unsafe. 

Thus an accurate assessment of load distribution throughout the bridge system is desired. 

Therefore there is a need for the generation of a database for both moment and shear 

distribution factors leading to the formation of empirical formulas for the rational design 

of a skewed composite slab-on I-girder bridges. 

In this chapter, the influence of various parameters on the moment and shear distribution 

factors in a simply supported skewed bridge are studied. For this purpose, a three-

dimensional finite element analysis were conducted to determine the moment and shear 

distribution factors by considering different parameters including: skew angles, girder 

stiffness, cross-frame layout, span length and number of design lanes under dead load 

conditions. The finite element modeling of the prototype bridges was calibrated by means 

of a physical load test data from the field testing of a two-span continuous skewed slab-on-

girder bridge described in chapter-3. Based on this study empirical formulas for the 

moment and shear distribution factors under dead loading were generated to develop more 

realistic design guidelines for shored and unshored sequence of construction.  
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4.2   Behavior of Skewed I-girder Bridge at Construction Stage 

In modern transportation system, skewed bridges are becoming increasingly common due 

to ever more restrictive site and geometric constraints. Skew greatly complicates the 

behavior of slab-on steel I-girder bridges by introducing alternate load paths and causing 

complex interaction between the main girders and secondary framing members that can 

lead to significant construction and design problems (Coletti et al. 2011). In skewed 

bridges, under the influence of live loads, longitudinal girders undergo torsional rotation at 

the supports (Surana and Humar 1984). These rotations are larger at the obtuse corners and 

difficult to predict during the construction stage due to the uneven distribution of wet 

concrete dead loads across the superstructure that increase the skew effects (Choo et al. 

2005). Over the past decade, several authors have drawn attention to the potential for steel 

I-girder twisting on highly skewed supports (AASHTO/NSBA 2003, Beckman et al. 2005, 

Coletti and Yadlosky (2005, 2007). In addition to girder twisting, skewed bridges can also 

lead to increased flange lateral bending stresses in the girders, as well as increased girder 

shears and end reactions for girders framing into the obtuse corners of the bridge and results 

in subsequent reductions in girder shears and end reactions, and even possibly undesirable 

uplift in girders, framing into the acute corners of the bridge (Fisher 2006, Ozgur et al. 

2011, Krupicka and Poellot 1993). 

Unlike in-service skewed bridges, there are limited studies that focus on the behavior of 

these structures during the construction stage (Norton et al. 2003, Linzell et al. 2010, 

Sharafbayani et al. 2011). Similar research dealing with the development of load 

distribution factors for girder moment and shear at construction stage is scarce. Recently, 

based on the parametric study analysis by Theoret and Massicotte (2011), CHBDC (CSA 

2014a) has specified equations to compute the shear magnification factor for skewed slab-

on-girder bridges due to dead loads for shored sequence of construction. These design 

guidelines are developed by considering some assumptions that impose restrictions upon 

its applicability to the skewed slab-on-girder bridges under shored sequence of 

construction: (i) contribution of diaphragms should not be considered, and (ii) diaphragms 

and intermediate cross-frame should be placed parallel to the line of support (CSA, 2014b; 

clause 5.6.3). Previous studies revealed that the arrangement of internal diaphragms in 
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skewed bridge has a significant effect on the load distribution pattern and should not be 

ignored (Khaloo and Mirzabozorg 2003, Nouri and Ahmadi 2012). Also, during the 

construction stage diaphragms resist girder lateral torsional buckling and stabilizes 

compression flange (Keating and Alan 1992, Helwig and Wang 2003). A recent study has 

demonstrated that parallel cross-frame layout can be employed for a skew angle up to 30o 

(Razzaq et al. 2015). It was also found that beyond that skew limit and up to 60o, a 

perpendicular staggered cross-frame layout enhances the performance of the bridge 

structure due to three facts: (i) reduction of the cross-frame forces at the supports, (ii) 

limitation of the differential vertical displacement of cross-frame at obtuse corners, and 

(iii) reduction of girder longitudinal bending moment and vertical support reactions. 

4.3   Non-composite I-girder Bridge at Construction Stage 

According to CHBDC (CSA 2014a) clause 10.11.4, for composite beams and girders in 

the positive moment regions, the normal stress in either flange of the steel section due to 

serviceability dead and live loads (to control permanent deflection) shall not exceed 0.90 

Fy. 
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≤++     (4.1) 

where, Md is the bending moment in beams or girders at SLS due to dead load, MSd is the 

bending moment in beams or girders at SLS due to superimposed dead load, ML is the 

bending moment in beams or girders at SLS due to live load, S is the elastic section modulus 

of the steel section, and Sn, S3n are the elastic section modulus comprising the steel beam 

or girder and the concrete slab, calculated using a modular ratio of n or 3n, respectively. 

In-order to evaluate the effect of sequence of construction on the load distribution of 

skewed steel I-girder bridge, a sensitivity study explained in chapter-3 was conducted to 

predict the influence of Md and MSd on the moment magnification factor. The results 

showed that the moment magnification factors have negligible effect on non-composite 

braced steel girder superstructure with different skew angles (i.e. before concrete 

hardening), so that it can be considered equal to 1 for Md calculation in equation 4.1.  



95 

 

4.4 Composite I-girder Bridge at Construction Stage 

The CHBDC (CSA 2014a) and AASHTO-LRFD (AASHTO 2014) bridge design 

specifications permits shored sequence of construction. This form of construction keeps 

the steel girders in a load free condition until the concrete has cured and allows the steel 

girders to work together with the bridge concrete deck above and form a composite section, 

which increases the girder strength as well as its stability. Based on the sensitivity study 

presented in chapter-3, it has been demonstrated that for modeling the composite braced 

steel girder system under dead load after hardening the moment magnification factor 

changes with the skew angle. So, it has to be calculated for the determination of MSd in 

equation 4.1. In case of shored construction, the composite section carries all dead load 

available in the structure so that equation 4.1 can be re-written as; 

y
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     (4.2) 

In equation 4.2, the composite girder in shored construction supports the combined effect 

of: (i) dead load due to their own weight as well as the weight of the freshly poured deck 

concrete (Md), and (ii) superimposed loading coming over the structure in-terms of weight 

of asphalt layer and the weight of the barrier wall (Msd). The sensitivity study results 

showed that shored sequence of construction has substantial effect on the load distribution 

of girder, particularly on the interior girders, and needs to be considered to develop more 

realistic slab-on-girder design guidelines. 

4.4.1  Parametric Study 

The objective of current research was to investigate the effect of shored sequence of 

construction on the girder response in a skewed slab-on-girder bridge by conducting three-

dimensional finite element modeling. The study examined: (i) flexural stresses in the 

interior and exterior girders, and (ii) shear stresses at the obtuse, acute and interior girder 

corners of the bridge to ascertain influences of various parameters including: span length, 

girder spacing, number of girders, number of design lanes and skew angle; on behavior and 

corresponding shear and moment distribution factors were computed. The parametric study 
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was based on the following assumptions: (1) all materials were elastic and homogeneous; 

(2) the effects of road super-elevation and curbs were ignored; and (3) the reinforced-

concrete deck slab and the supporting steel I-girders were in full composite action; (4) both 

the deck slab and the supporting I-girders were simply supported at the abutments; (5) 

transverse intermediate cross-braces were moment-connected to the longitudinal girders. 

Subsequently, based on the data generated from this parametric study, sets of empirical 

expressions were developed to accurately calculate the girder shear and moment 

distribution factors.  

4.4.2  Description of Bridge Prototypes  

To avoid repetition, Figure 3.2 shows typical details of a two-lane and a four-lane single 

span steel-concrete composite I-girder bridges as an examples of bridges considered in this 

study. The basic bridge cross-sectional configurations considered in this study are 

presented in Table 4.1. The modulus of elasticity of the concrete material was 25 GPa with 

a Poisson's ratio of 0.20, whereas these design values for the steel material were 200 GPa 

and 0.30, respectively. Six different span lengths ranging from 15 m to 40 m were 

considered with an increment of 5 m, and girder response was evaluated for nine different 

skew angles from 0o to 60o. The concrete deck slab thickness was 225 mm. The cantilever 

slab length was equal to half the girder spacing. The X-type cross-frames at the support 

and between the span was provided in accordance with the specification stipulated in the 

manual of standard short-span steel bridges (Theodor and Al-Bazi 1997). Cross-frame 

members were spaced at equal intervals between the support lines and were made of 

L102x102x11 steel angles. Based on a sensitivity study presented in chapter-3, parallel 

cross-frame layout was used for bridge configurations up to 30o skew angle, and 

perpendicular staggered cross-frame layout was adopted for skew angles between 30o and 

60o (Razzaq et al. 2015). In total, 594 bridge cases were analyzed and assessed using finite 

element analyses (FEA). 
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Table 4.1 Geometry of prototype bridges 

Span 

(L), 

m 

Design 

lanes 

(n) 

Bridge 

width 

(W), m 

Number 

of 

girders 

(N) 

Girder 

spacing 

(S), m 

Girder cross-sectional dimensions, mm 

Girder 

depth 

(d) 

Flange 

width 

(bf) 

Flange 

thickness 

(t1)  

Web 

thickness 

(t2) 

15 1 6 3 2.00 1000 300 20 14 

   4 1.50 1000 300 20 14 

 2 7.6 3 2.53 1000 300 20 14 

   4 1.90 1000 300 20 14 

   5 1.52 1000 300 20 14 

 3 11.2 4 2.80 1000 300 20 14 

   5 2.24 1000 300 20 14 

   6 1.87 1000 300 20 14 

 4 14.6 5 2.92 1000 300 20 14 

   6 2.43 1000 300 20 14 

   7 2.09 1000 300 20 14 

20 1 6 3 2.00 1100 300 25 14 

   4 1.50 1100 300 25 14 

 2 7.6 3 2.53 1100 300 25 14 

   4 1.90 1100 300 25 14 

   5 1.52 1100 300 25 14 

 3 11.2 4 2.80 1100 300 25 14 

   5 2.24 1100 300 25 14 

   6 1.87 1100 300 25 14 

 4 14.6 5 2.92 1100 300 25 14 

   6 2.43 1100 300 25 14 

   7 2.09 1100 300 25 14 

25 1 6 3 2.00 1200 400 25 16 

   4 1.50 1200 400 25 16 

 2 7.6 3 2.53 1200 400 25 16 

   4 1.90 1200 400 25 16 

   5 1.52 1200 400 25 16 

 3 11.2 4 2.80 1200 400 25 16 

   5 2.24 1200 400 25 16 

   6 1.87 1200 400 25 16 

 4 14.6 5 2.92 1200 400 25 16 

   6 2.43 1200 400 25 16 

   7 2.09 1200 400 25 16 

30 1 6 3 2.00 1200 550 40 16 

   4 1.50 1200 550 40 16 

 2 7.6 3 2.53 1200 550 40 16 

   4 1.90 1200 550 40 16 

   5 1.52 1200 550 40 16 

 3 11.2 4 2.80 1200 550 40 16 
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   5 2.24 1200 550 40 16 

   6 1.87 1200 550 40 16 

 4 14.6 5 2.92 1200 550 40 16 

   6 2.43 1200 550 40 16 

   7 2.09 1200 550 40 16 

35 1 6 3 2.00 1400 550 35 16 

   4 1.50 1400 550 35 16 

 2 7.6 3 2.53 1400 550 35 16 

   4 1.90 1400 550 35 16 

   5 1.52 1400 550 35 16 

 3 11.2 4 2.80 1400 550 35 16 

   5 2.24 1400 550 35 16 

   6 1.87 1400 550 35 16 

 4 14.6 5 2.92 1400 550 35 16 

   6 2.43 1400 550 35 16 

   7 2.09 1400 550 35 16 

40 1 6 3 2.00 1600 500 30 16 

   4 1.50 1600 500 30 16 

 2 7.6 3 2.53 1600 500 30 16 

   4 1.90 1600 500 30 16 

   5 1.52 1600 500 30 16 

 3 11.2 4 2.80 1600 500 30 16 

   5 2.24 1600 500 30 16 

   6 1.87 1600 500 30 16 

 4 14.6 5 2.92 1600 500 30 16 

   6 2.43 1600 500 30 16 

   7 2.09 1600 500 30 16 

4.4.3  Finite Element Modeling 

The concrete slab and web of steel girders were modeled using four-node 3D elastic shell 

elements with six degrees of freedom at each node. The top and bottom flanges of 

longitudinal steel girders were modeled using two-node 3D elastic beam elements with six 

degrees of freedom at each node. The transverse diaphragm cross-frames were simplified 

and modeled using the same beam elements. The shell and beam elements were connected 

by rigid link elements. These elements were used to model the composite action between 

the deck and the girders by connecting the nodes of the deck elements with the beam and 

shell elements. The connections between the girder and cross-frame elements were fixed. 

Further details about the finite element modeling of composite slab-on I-girder bridges can 

been found in chapter-3. 
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4.4.4  Loading Condition 

For the purpose of comparing the results of a skewed bridge with a straight configuration, 

in-addition to the self-weight of the structure, the superimposed loading was applied over 

the girders in the form of line loads assuming that each girder carried the equal weight of 

the two barrier walls and the asphalt layer. The thickness of the asphalt layer was taken as 

90 mm, and CHBDC performance level-3 bridge barriers (CSA 2014a) were considered 

on both sides of the bridge deck as applied loads without any contribution to bridge cross-

section flexural stiffness.  

4.4.5  Evaluation of Distribution Factors 

A practical design oriented parametric study was conducted on selected bridge 

configurations, shown in Table 4.1, to determine the longitudinal moment (Fm) and shear 

distribution factors (Fv). Since under the linear elastic conditions, stresses are proportional 

to the bending moments in the girders. Hence, instead of computing the girder moment, 

maximum stresses at the extreme fiber of the girder bottom flange was obtained from finite 

element analyses. For this purpose, the maximum flexural stress ( D3σ ) and the maximum 

shear force (V3D) of a three-dimensional simply supported structure under the effect of 

dead load were first calculated for each prototype bridge. Subsequently, the maximum 

flexural stress (
D2σ ) and the maximum shear force (V2D) from a simple two-dimensional 

beam-line model (Barker and Puckett 1997) were evaluated for each prototype bridge in 

the parametric study. The Fm and Fv, thus calculated is represented as; 

D
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To precisely determine the parameters affecting the previously mentioned distribution 

factors, a sensitivity study was undertaken. As a result, it was found that the key parameters 

that affect the structural response of a skewed bridge system are: (1) skew angle (ψ ), (2) 
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girder spacing (S), and (3) span length (L). The study revealed that the slab thickness has 

insignificant effects on the skewed girder behavior. This result is in agreement with the 

investigations of Huo et al. (2004) and Phuvoravan et al. (2004), among others. For this 

reason, slab thickness is taken constant i.e. 225 mm, for all bridge configurations 

considered in this study. To account for the relative stiffness of the bridge system, Bakht 

and Moses (1988) on the basis of detailed study of some 30 slab-on-girder bridges of 

different spans in North America presented a relationship for the upper and lower bound 

limit between the longitudinal flexural rigidity per unit width (Dx) and the span length (L). 

All girder geometries, mentioned in Table 4.1, selected from the manual of standard short-

span steel bridges (Theodor and Al-Bazi 1997) falls well within the practical upper and 

lower bound limits.  

Based on sensitivity study findings, the effect of above-mentioned superstructure variables 

on girder Fm and Fv were examined in the parametric study, and discussed in the following 

sub-section. Only the response of girders in a two-lane and four-lane bridge configuration 

are presented whereas the equations for Fm and Fv were developed for all the bridge design 

matrix. 

4.4.5.1 Effect of Skew Angle 

Skew angle of the deck is the most critical factor that influences the moment and shear 

distribution among girders. Figure 4.1 and 4.2, shows the FEA results of an exterior and 

interior girder of skewed bridges under shored sequence of construction quantified in terms 

of Fm as follows; 

1) It was observed that skew has no significant effect on the exterior and interior girder 

moment distribution factor for skew angles between 0o and 30o. 

2) For skew angle between 30o to 60o, exterior girder showed an increase of Fm value 

with the increase skew angle. As shown in Figure 4.1(a), this increase in Fm was more 

prominent in small span lengths for up to two-lane bridge configuration. However, with 

the increase in the number of lanes up to four, as can be seen in Figure 4.1(b), large 

span lengths resulted in greater increase of Fm value. 
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3) For one-lane and two-lane bridges at skew angle between 30o to 60o, interior girder 

showed a decrease of Fm value with the increase of skew angle. As illustrated in Figure 

4.2(a), this reduction was more significant at high skew angles (> 50o) for span length 

of 15 m and beyond 20 m span length, the effect of skew angle on the Fm value was 

found insignificant. Whereas three-lane and four-lane bridge configurations, as shown 

in Figure 4.2(b), resulted in considerable reduction of Fm value with the increase of 

skew angle up to 20 m span length and beyond 20 m span length up to 40 m, the increase 

of Fm value with the increase of skew angle between 30o to 60o was experienced. 

Figure 4.3, 4.4 and 4.5, shows the FEA results of Fv at obtuse corner, acute corner and 

interior girder respectively for shored skewed bridge under dead loading; 

1) For a multi-lane bridge configuration, it was observed that at the obtuse corner between 

0o and 30o skew angle, Fv value was increased to a maximum of about 12%. With 

further increase in skew angles from 30o to 60o, as presented in Figure 4.3, the obtuse 

corner showed a substantial raise in Fv value. This increase in the response of Fv value 

was more pronounced in bridge structures having small girder spacing and reached 

about 35% within that skew range. 

2) Figure 4.4 demonstrates the behavior of girder shear distribution factor at acute corners 

with the variation of skew angle. The results showed insignificant effect on the 

response of Fv value with the increase of skew angle between 0o to 60o. 

3) At the interior girders, the value of Fv remains unaffected with the variation of skew 

angle between 0o and 30o (Figure 4.5). However, when the skew angle is in the range 

of 30o to 60o, a reduction of Fv value at interior girders were noticed. This decrease in 

the response of Fv value was more pronounced in bridge structures having equal 

number of lanes with large girder spacing. 
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(a) 

 

(b) 

Figure 4.1 Effect of skew angle on Fm of exterior girders for: (a) two-lane, and (b) four-

lane 



103 

 

 

(a) 

 

(b) 

Figure 4.2 Effect of skew angle on Fm of interior girders for: (a) two-lane, and (b) four-

lane 
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 (a) 

 

 (b) 

Figure 4.3 Effect of skew angle on Fv at bridge obtuse corners for: (a) two-lane, and (b) 

four-lane 
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(a) 

 

(b) 

Figure 4.4 Effect of skew angle on Fv at bridge acute corners for: (a) two-lane, and (b) 

four-lane 
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(a) 

 

(b) 

Figure 4.5 Effect of skew angle on Fv of interior girders for: (a) two-lane, and (b) 

four-lane 
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4.4.5.2 Effect of Span Length 

The moment and shear distribution factors for the multi-lane skewed bridges were 

evaluated and their effects with the variation of span lengths are summarized below; 

1) For skew angle up to 30o, Fm values for both the exterior and interior girder remains 

unaffected with the increase of span length. 

2) Between 30o to 60o skew angles, the response of a one-lane and two-lane exterior 

girders showed a marginal increase in Fm value with the increase of span length up to 

30 m and subsequently a declining trend in the response of Fm experienced between 

30 m to 40 m span lengths, as can be seen in Figure 4.6(a). However, for the same skew 

angle range, the three-lane and four-lane bridge structure showed a considerable 

increase in Fm value up to 30 m span length, as shown in Figure 4.6(b). 

3) The effect of span length on the Fm value of interior girder is presented in Figure 4.7. 

The results showed that for up to two-lane bridge configuration, the interior girder 

response increases with the span length for skew angles between 30o to 60o. For a three-

lane and four-lane bridge a substantial increases of about 45% in Fm value was 

experienced when the span length varied from 15 m to 25 m, followed by an average 

of 12% reduction in Fm response for different girder spacing up to 40 m span length. 

Figure 4.8, 4.9 and 4.10, shows the FEA results of an obtuse corner, acute corner and 

interior girder respectively of skewed bridges under shored sequence of construction and 

their effect on span length are summarized below; 

1) For multi-lane bridge configurations up to 30o skew angle, Fv values at the bridge 

obtuse corners were not significantly affected with the increase of the span length. A 

variation of about 5% was observed within that skew range. However, when the skew 

angle changes from 30o to 60o, Fv value decreases with the increase of span length and 

a maximum reduction of about 20% was experienced in two-lane bridge configuration, 

as shown in Figure 4.8(a). However, this reduction in the response of Fv value between 

30o to 60o skew angles at the obtuse corners were found less prominent in case of one-

lane and three-lane bridge structures i.e. 9% and 8% decrease respectively. Whereas, 

four-lane bridge arrangement showed a maximum of 12% increase in the Fv value with 
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the increase of span length from 15 m to 25 m, and subsequently a reduction of about 

8% was noticed when the span length changes form 25 m to 40 m, as can be seen in 

Figure 4.8(b). 

2) The girder shear distribution factor at acute corners were found not sensitive with the 

variation of span length, as presented in Figure 4.9.  

3) Figure 4.10, shows the variation of the skewed bridge shear distribution factor for 

interior girders with the span length changes from 15 m to 40 m. For different number 

of lanes (n=1 to 4), the effect of shear distribution factor at interior girders resulted in 

the maximum of 5% increase with the variation of span length when the skew angle 

changes from 0o to 30o. However, between 30o to 60o skew angles, the interior girder 

reflected a significant increase in Fv value with the increase of span length from 15 m 

to 40 m for two-lane bridge geometry shown in Figure 4.10(a). Whereas, for bridge 

configuration having number of lanes greater than two, this increase in Fv value for 15 

m to 40 m span length was found marginal. 

 

 

(a) 
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(b) 

Figure 4.6 Effect of span length on Fm of exterior girders for: (a) two-lane, and (b) four-

lane 

 

 

(a) 
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(b) 

Figure 4.7 Effect of span length on Fm of interior girders for: (a) two-lane, and (b) four-

lane 

 

   

(a) 
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(b) 

Figure 4.8 Effect of span length on Fv at bridge obtuse corners for: (a) two-lane, and (b) 

four-lane 

 

 

(a) 
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(b) 

Figure 4.9 Effect of span length on Fv at bridge acute corners for: (a) two-lane, and (b) 

four-lane 

 

  

(a) 
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(b) 

Figure 4.10 Effect of span length on Fv of interior girders for: (a) two-lane, and (b) four-

lane 

4.4.5.3 Effect of Girder Spacing, Number of Girders and Number of Lanes 

The girder spacing is dependent on the bridge width and the number of longitudinal girders. 

The bridge width can be considered to be the number of lanes multiplied by the lane width, 

which can be assumed to be constant for a given bridge configuration. Therefore the girder 

spacing could be related to the number of girders and the number of lanes. The effect of 

girder spacing on the moment distribution factors of the exterior and the interior girder are 

presented in Figure 4.11 and 4.12, and summarized below; 

1) For the skew angle up to 30o, Fm values for both the exterior and interior girders were 

found insensitive to girder spacing. 

2) As demonstrated in Figure 4.11, the increase in girder spacing causes reduction in the 

exterior girder Fm value for 30o to 60o skew angles.  

3) Contrary to the behavior of external girders, the effect of girder spacing on the interior 

girder moment distribution factors did not present any clear pattern. For-example for 

the two-lane bridge, between 30o to 60o skew angle, increase in girder spacing resulted 
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in the reduction of Fm value. However, for the three-lane and four-lane bridge 

geometries for the span length less than 20 m, it resulted in the reduction of Fm value 

and beyond 20 m span length it caused the Fm value to increase, as can be seen in 

Figure 4.12. 

The effect of girder spacing on the shear distribution factors at bridge obtuse corner, acute 

corner and interior girder are presented in Figure 4.13, 4.14 and 4.15 respectively and 

discussed below; 

1) For skew angle up to 30o, Fv value for the obtuse girder supports was found not 

sensitive to girder spacing. A minimal increase of about 5% was noticed within that 

skew range. 

2) For higher skew angles (> 30o), increase in girder spacing resulted in the reduction of 

the obtuse corner Fv value. This reduction in the response of Fv at bridge obtuse corners 

with the increase of girder spacing is much more pronounced up to three-lane bridge 

configurations. However for four-lane bridge, the influence of different girder spacing 

at high skew angles (> 30o) found negligibly small, as shown in Figure 4.13(b). 

3) The influence of girder spacing on Fv for a multi-lane bridge configuration at acute 

edges, shown in Figure 4.14, were found marginal with the variation of skew angle 

from 0o to 60o.  

4) For skew angle between 30o to 60o, interior girder showed a reduction of Fv value with 

the increase of skew angle. This reduction is more pronounced in bridge configuration 

with larger girder spacing. 
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(a) 

 

(b) 

Figure 4.11 Effect of girder spacing on Fm of exterior girders for: (a) two-lane, and (b) 

four-lane 
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(a) 

 

(b) 

Figure 4.12 Effect of girder spacing on Fm of interior girders for: (a) two-lane, and (b) 

four-lane 
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(a) 

 

(b) 

Figure 4.13 Effect of girder spacing on Fv at bridge obtuse corners for: (a) two-lane, and 

(b) four-lane 
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(a) 

 

(b) 

Figure 4.14 Effect of girder spacing on Fv at bridge acute corners for: (a) two-lane, and 

(b) four-lane 
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(a) 

 

(b) 

Figure 4.15 Effect of girder spacing on Fv of interior girders for: (a) two-lane, and (b) 

four-lane 
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4.4.6 Empirical Formula for Distribution Factors 

Recently CHBDC (CSA 2014a) has specified equations to compute the shear distribution 

factor for the skewed slab-on-girder bridges due to dead loads for shored sequence of 

construction; 

)10(

0.2
2.1

+
−=

ε
Fs     (4.5) 

where,        ψε tan.







=

S

L
               (4.6) 

However, no such equation for the moment distribution factor is available in highway 

bridge codes (CSA 2014a). Such discrepancies in design specifications demands an 

accurate assessment of load distribution factors by developing modified equations based 

on a parametric study by considering three-dimensional finite element analysis. Using the 

data generated from the parametric study, it was found that moment and shear distribution 

factors were mainly influenced by few critical parameters, namely: skew angle, span 

length, girder spacing, number of girders and number of design lanes. So, in-order to keep 

uniformity and simplicity in understanding the distribution factors for bridge designers and 

engineers, it was decided to keep the format of equation 4.5 the same as proposed in the 

code (CSA 2014a), and develop a new equation for the “ε” factor that replaces equation 

4.6, based on the parametric study results. Hence, the general empirical equation for the 

moment and shear “ε” factor took the following form, respectively;  

ψε tan×××××= edcb
nNSLa    (4.7) 

ψε cos×××××= edcb
nNSLa    (4.8) 

where, a, b, c, d and e are equation variables, L is the bridge span length in meters; S is the 

girder spacing in meters; N is the number of girders, and n is the number of design lanes. 

Using regression analyses, the two sets of empirical equations for moment and shear 

distribution factor for the girders under dead loading of a skewed slab-on girder bridge 

were deduced and presented in Tables 4.2 and 4.3, respectively.  
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Table 4.2 Moment distribution factors for shored sequence of construction under dead 

loads 

Load 

effect 

Skew angle 

( )ψ , deg. 

Span (L), m Fm ε  

Moment

-exterior 

400 ≤≤ψ  4015 ≤≤ L

 )10(

0.2
2.1

+
−

ε
 ψtan75.0 5.175.03.12.1

nNSL
−

 

 6040 ≤<ψ

 

  ψtan30.0 85.45.26.425.1
nNSL

−−
 

Moment

-interior 

300 ≤≤ψ  4015 ≤≤ L

 )10(

0.2
2.1

+
−

ε
 ψtan50.3 25.175.025.19.0

nNSL
−−−

 

 4030 ≤<ψ

 

  ψtan0.2 0.27.10.44.1 −−− nNSL  

 5040 ≤<ψ

 

 

25≤L  

)10(

0.19
71.1

+
−

ε
 ψtan10.0 83.122.20.256.0 −

nNSL  

  40≤L  

)10(

60.13
10.1

+
−

ε
 ψtan23.0 75.148.295.17.0 −

nNSL  

 6050 ≤<ψ

 

 

15≤L  

)10(

90.14
40.1

+
−

ε
 ψtan12.0 97.127.242.154.0 −

nNSL  

  25≤L  

)10(

0.60
37.5

+
−

ε

 

ψtan15.0 82.016.104.128.0 −
nNSL  

  40≤L  

)10(

33.20
0.2

+
−

ε
 ψtan10.0 62.123.20.220.0 −

nNSL  
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Table 4.3 Shear distribution factors for shored sequence of construction under dead loads 

Load 

Effect 

Span (L), 

m 

Fv Skew angle 

( )ψ , deg. 

ε 

Shear - 

Obtuse 
 

)10(

0.2
2.1

+
−

ε

 

 ψε cos14.0
14.172.158.138.0 −−−= nNSL  

 
 

 ψε cos38.2
50.166.260.346.1 −−= nNSL  

  
 

 ψε cos0.10
20.050.350.158.1

nNSL
−=  

  

)52.6(

35.2
4.1

+
−

ε

 

 ψε cos77.6
61.148.20.10.1

nNSL
−−=  

Shear - 

Acute 
 

)10(

0.2
2.1

+
−

ε

 

 ψε cos14.0
14.172.158.138.0 −−−= nNSL  

  
 

 ψε cos5.6
74.092.005.235.0

nNSL
−−−=  

  
 

 ψε cos0.35
38.072.070.116.0

nNSL
−−−−=

 

Shear - 

Interior 
 

)10(

0.2
2.1

+
−

ε

 

 ψε cos57.0
85.219.167.041.0 −−= nNSL  

  
 

 ψε cos52.0
10.214.175.564.1 −−−= nNSL  

  
 

 ψε cos0.2
20.217.170.411.1 −−−= nNSL  

  

)5.2(

4.1
0.1

+
−

ε

 

 ψε cos25.0
35.095.10.115.1 −−= nNSL  

 

 

 

4015 ≤≤ L 200 ≤≤ψ

4020 ≤<ψ

5040 ≤<ψ

6050 ≤<ψ

4015 ≤≤ L 200 ≤≤ψ

4020 ≤<ψ

6040 ≤<ψ

4015 ≤≤ L 200 ≤≤ψ

4020 ≤<ψ

5040 ≤<ψ

6050 ≤<ψ



123 

 

4.4.7  Correlation of FEA Results and Proposed Equations with CHBDC 

The effect of sequence of construction in a skewed slab-on-girder bridge was investigated 

by conducting a three-dimensional finite element modeling under dead loads. Based on the 

results obtained from the parametric study, set of empirical expressions were developed 

for the girder moment and shear distribution factors for rational prediction of the girder 

load distribution. Finally, the correlation between the CHBDC (CSA 2014a) equations and 

the proposed equations based on the parametric study for the moment and shear distribution 

factors are obtained and compared with the Fm and Fv values from the finite element 

analysis due to dead loads, as presented in Figure 4.16 and 4.17 respectively. The figure 

shows good correlation between the values obtained from the proposed equations and those 

calculated from FEA, and all data points fall within 5% over and under-estimation  region, 

shown by dotted lines in Figure 4.16 and 4.17. 

 

Figure 4.16 Correlation between moment distribution factors obtained from FEA results 

with proposed equations 
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(a) 

 

 

(b) 
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(c) 

Figure 4.17 Correlation between shear magnification factors obtained from FEA results 

with CHBDC and proposed equations for; (a) obtuse corner, (b) acute corner, and (c) 

interior girder 

The illustrative example to calculate the moment and shear distribution factors using FEA, 

proposed equation and the CHBDC (CSA 2014a) for skewed slab-on steel I-girder bridges 

at dead loads are described in Appendix A. The comparison of results for the moment and 

shear distribution factors evaluated using FEA, proposed equation and the CHBDC (CSA 

2014a) equation are presented in Table 4.4 and 4.5, respectively.  

Table 4.4 Comparison of moment distribution factors for skewed slab-on steel I-girder 

bridges at dead load 

Location of girder FEA results Proposed equation 

Exterior 1.08 1.08 

Interior 1.17 1.15 

 

Table 4.5 Comparison of shear distribution factors for skewed slab-on steel I-girder 

bridges at dead load 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Obtuse corner 1.39 1.37 1.13 

Acute corner 0.96 0.97 1.13 

Interior girders 0.96 0.98 1.13 
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The result showed that the proposed equations were sufficiently accurate in predicting the 

response of a skewed bridge behavior. The CHBDC design equation was found 

conservative for shear at the acute corner and at the interior girders, whereas the code 

specifications resulted in an unsafe design for the girder shear at the obtuse corners. The 

main reasons for the inadequacy of the design equation to represent the actual behavior of 

a skewed bridge are highlighted below: 

1) Based on the parametric study using grillage method of analysis for slab-on-girder 

bridges, Theoret and Massicotte (2011) introduced a new parameter Fs to modify the 

values of FT to account for skew effects for shear at the obtuse corner. Although this 

analysis technique is generally accepted as sufficiently accurate for the most common 

design situations as well as for the construction stages, however for skewed bridges it 

results inaccurate assessment of the bridge responses and is not always recommended 

(Coletti and Puckett 2012, Vayas et al. 2011). 

2) These design guidelines (CSA 2014a) are developed by considering some assumptions 

that impose restrictions upon its applicability to the skewed slab-on-girder bridges 

under shored sequence of construction: (i) contribution of diaphragms should not be 

considered, and (ii) diaphragms and intermediate cross-frame should be placed parallel 

to the line of support (CSA, 2014b; clause 5.6.3). 

3) To represent skewed bridge behavior, the design equation is comprised of three design 

parameters i.e. span length (L), girder spacing (S) and skew angle (ψ). The parametric 

study results showed that behavior of skewed bridge is also affected by the width of 

the bridge represented by number of lanes (n) and number of girders (N).   

4) It has already been reported that the presence of skew angle greatly complicates the 

bridge behavior (AASHTO/NSBA 2003, Beckman et al. 2005, Fisher 2006). Whereas, 

a single equation (clause 5.6.3b) to represent the girder shear at the obtuse corner, acute 

corner and at the interior girder location is specified in CHBDC design code. Further, 

it is also noticed that the presence of skew reduces the longitudinal moment in the 

girders in comparison with straight bridges because the effective span is reduced 

(Ozgur et al. 2011), but no design equations to calculate the moment distribution factors 

are available yet, resulting in erroneous results.    



127 

 

4.5  Conclusions 

The effect of sequence of construction in skewed slab-on-girder bridges is investigated by 

conducting a three-dimensional finite element modeling under dead loads. Based on the 

results obtained from a parametric study, a set of two empirical expressions were developed 

for the girder moment and shear distribution factors for rational prediction of the girder 

load distribution. Finally, the Fm and Fv values obtained by FEA were correlated with the 

proposed empirical equations. The Fv values obtained from FEA were compared with 

CHBDC design guidelines. The results showed that the proposed equations for Fm and Fv 

showed good agreement with the FEA results. However, CHBDC equations given in clause 

5.6.3 for slab-on-girder bridges for estimating the shear distribution factors under the 

shored sequence of construction proved to be ineffective to capture the behavior of most 

of the skewed slab-on-girder bridge geometries. Furthermore, the comparison showed that 

CHBDC design equations gives conservative response for certain bridge configurations 

and for some other bridge cross-sections it produces highly under-estimated response, 

yielding unsafe design. Based on this study, the equations specified in CHBDC needs to 

be modified to comprehend the shear stresses developing at girder supports during 

construction under the influence of dead loads. Also, it is recommended to include moment 

distribution equations proposed in this study for accurate assessment of girder flexural 

stresses. The following conclusions can also be drawn from the current study: 

1) The FEA results showed that as the angle of skew increased, more reaction was 

transferred towards girder obtuse corners and less on the acute corners. The increase 

was marginal for skew angle less than 30o, and tends to be significant when the skew 

angle exceeded 30o. 

2) At high skew angles (>30o) with larger number of girders having smaller girder spacing 

resulted in significant increase of exterior girder Fm and obtuse corner Fv value, in 

comparison to bridge configuration with less number of girders and large spacing 

between them. 

3) Increase in the number of lanes resulted in the increase of exterior girder moment and 

shear distribution factors at the obtuse corners particularly in bridge geometries having; 
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(i) high skew angles (>30o) with long span length (L ≥ 25 m), and (ii) more number of 

girders with less girder spacing. 

4) The shear distribution factor at girder acute corner was practically found insensitive to 

the skew angle and girder spacing when the span length changes from 15 m to 40 m. 

5) Exterior girders are affected less than interior girders by the skew angle effect. This 

tendency is more obvious in bridges with large skew angles and long spans. 
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CHAPTER 5 

Live Load Distribution in Straight and Skewed Bridges 

5.1 General 

The main objective of this research is to provide the simplest, yet sufficiently accurate 

equation for calculation of load distribution for skewed bridges. North American bridge 

code specifications do not provide the design engineers with sufficient guidance regarding 

load distribution factors of simply supported skewed composite bridge. Despite being less 

conservative than the AASHTO Standard specifications, previous research suggests that 

the newly adopted AASHTO-LRFD equations are still too conservative when compared 

with field data and finite element analysis for slab-on-girder bridges (Chen and Aswad 

1996, Sotelino et al. 2004, Barr and Amin 2006, Cross et al. 2006). The AASHTO-LRFD 

live load distribution equations have more parameters as compared to AASHTO standard 

specifications and a different computation philosophy, which complicates the design 

process. Furthermore, the LRFD formulas do not reflect today’s bridges because they 

neglect important factors such as bridge continuity and the presence of the secondary 

elements such as cross bracing, diaphragms, and parapets in bridges that reduces the 

distribution factors. Recently, based on a parametric study analysis, the Canadian Highway 

Bridge Design Code (CSA 2014a) has specified equations to compute the shear 

magnification factor for the skewed slab-on-girder bridges due to live loads, and for the 

sake of simplicity the same equation is applied to all the girders (CSA 2014b clause 

5.6.6.2).  

In this chapter, the influence of several parameters on the shear and moment distribution 

factors in simply supported skewed composite steel-concrete bridges are presented. These 

parameters are:  span length, girder spacing, number of girders, number of design lanes and 

skew angle. A detailed parametric study was conducted on prototype composite steel-

concrete bridges subjected to CHBDC truck loading for ultimate, serviceability and fatigue 

limit states (ULS, SLS and FLS). Here in this thesis for the application of live loading as 

per CHBDC clause 3.8.4, the serviceability limit states means the limit state other than the 

superstructure vibrations (SLS-2). Whereas, fatigue limit state that comprise the formation 
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of cracks as a result of the repeated application of loads also includes the serviceability 

limit state due to superstructure vibrations (SLS-2). The ULS and SLS (combination 1) 

correspond to the most critical loading pattern that can occur during a bridge design life 

cycle. Accordingly, CL-W truck load increased by the dynamic load allowance or the CL-

W lane load, whichever produces the maximum load effect needs to be positioned 

longitudinally and transversely within a design lane at a location and in the direction that 

produces maximum load effect. However for the FLS and for the superstructure vibration 

serviceability limit state (combination 2), the traffic load that includes one CL-W truck that 

causes maximum effects only, increased by the dynamic load allowance and placed at the 

center of one travelled lane needs to be considered, and lane load are not considered. The 

parametric study included more than 3200 load cases. The finite element modeling of the 

prototype bridges was verified and substantiated by means of a field test data results on a 

simply supported two-span skewed composite steel-concrete bridge described in chapter 3. 

Based on this study empirical equations for shear and moment distribution factors under 

CHBDC truck loading were generated to develop new equations that are more realistic and 

effective for designing skewed simply supported bridges.  

5.2 Composite Steel I-girder Bridge 

Composite steel I-girder bridges are among the most common short-to-medium span 

bridges built in the North America (Cao 1996). For designing these bridges under truck 

live load, a bridge engineer must account for safety, serviceability, and economy. 

Therefore, an accurate assessment of the load distribution throughout the bridge system is 

desired. However, in skewed bridges, due to the complex structural behavior certain 

simplifications are generally used in the design procedure which result in a conservative 

design. 

The concept of live-load distribution factor simplifies the analysis and design of bridges 

and has been used by several design codes for many years (e.g., CSA 2014a, AASHTO-

LRFD 2014). The CHBDC (CSA 2014a) specifies equations for the simplified method of 

analysis to define the longitudinal bending moments and vertical shear in slab-on-girder 

bridges due to live load for ULS, SLS and FLS using load distribution factors. The CHBDC 
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(CSA 2014a) simplified method of analysis is based on the beam analogy method in which 

the bridge is considered as a beam for determining the longitudinal distribution of load 

effects. The transverse distribution of the load effects across the bridge width is obtained 

by multiplying the one-lane longitudinal load effect by the truck load fraction, FT, to be 

determined with the formulas provided in CHBDC (CSA 2014a) clause 5.6. In the current 

CHBDC (CSA 2014a), the main improvement by using simplified method of analysis is 

the consideration of skewed slab-on-girder bridge geometries for dead and live load 

conditions. Skewed bridges up to 45o can now be analyzed using the simplified method.  

Generally, the presence of skew reduces the longitudinal moment in the girders in 

comparison with straight bridges because the effective span is reduced. However, it also 

causes high concentration of shear in the girder closest to the obtuse corner and it reduces 

it in the girder closest to the acute corner as well in the interior girders. Such complex 

behavior of a skewed bridge demands an accurate assessment of load distribution factors 

by developing modified equations based on a parametric study by considering three-

dimensional finite element analysis. Therefore there was a need for the generation of a 

database for both the shear and moment distribution factors leading to the formation of 

empirical equations for the design of skewed composite steel I-girder bridges. For this 

reason, a detailed parametric study was conducted described below in the following sub-

section. 

5.2.1  Parametric Study 

The objectives of the parametric study were: (i) to investigate the influence of all major 

parameters affecting the moment and shear distribution among composite girder; (ii) to 

generate a database for moment and shear distribution factors including more than 1600 

bridge cases; and (iii) to develop empirical equations for moment and shear distribution 

factors corresponding to CHBDC truck loading for three limit states i.e. ULS and SLS, and 

FLS as specified in CHBDC (CSA 2014a). The parameters chosen for this study were: 

angle of skew, span length, girder stiffness, girder spacing, number of lanes and number of 

girders. The parametric study was based on the following assumptions: (i) all materials 

were elastic and homogeneous; (ii) the effects of road super-elevation and curbs were 
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ignored; and (iii) the reinforced-concrete deck slab and the supporting steel I-girders were 

in full composite action; (iv) both the deck slab and the supporting I-girders were simply 

supported at the abutments; (v) transverse intermediate cross-braces were moment-

connected to the longitudinal girders. Subsequently, based on the data generated from this 

parametric study, sets of empirical expressions were developed to accurately calculate the 

girder shear and moment distribution factors. 

5.2.2  Evaluation of Load Distribution Factors 

In order to calculate the live load carried by each girder, lateral load distribution factor is a 

vital element in analyzing existing bridges and designing new ones. To simplify the design 

process, North American bridge codes, such as CHBDC (CSA 2014a) and AASHTO-

LRFD (2014) bridge design specifications, treat the longitudinal and transverse effects of 

wheel loads as uncoupled phenomena. 

The formulas for the calculation of distribution factors for longitudinal bending stress 

(FT_m) and shear (FT_v) were evaluated for the bridge configurations presented in Table 5.1 

and Table 5.2 for ULS and SLS, and FLS respectively. Since under the linear elastic 

conditions, stresses are proportional to the bending moments in the girders. Hence, instead 

of computing the girder moment, maximum stresses at the extreme fiber of the girder 

bottom flange was obtained from finite element analyses. For this purpose, the maximum 

flexural stress ( D3σ ) and the maximum shear force (V3D) of a three-dimensional simply 

supported structure under the effect of truck live load at ULS and SLS, and FLS were first 

calculated for each prototype bridge. Subsequently, the maximum flexural stress ( D2σ ) 

and the maximum shear force (V2D) from a simple two-dimensional beam-line model 

(Barker and Puckett 1997) were evaluated for each prototype bridge in the parametric 

study. The distribution factor for moment and shear, thus calculated is represented as; 

D
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Table 5.1 Geometry of prototype bridges for ULS and SLS analysis 

Design 

lanes 

(n) 

Bridge 

width 

(W), m 

Deck 

width 

(Wc), m 

Design lane 

width (We), 

m 

Number 

of girders 

(N) 

Girder 

spacing 

(S), m 

1 4.5 3.5 3.5 3 1.5 

1 6.0 5.0 5.0 3 2.00 

    4 1.50 

2 7.6 6.6 3.3 3 2.53 

    4 1.90 

    5 1.52 

2 8.8 7.8 3.9 3 2.93 

    4 2.20 

    5 1.76 

2 10.0 9.0 4.5 3 3.33 

    4 2.50 

    5 2.00 

2 11.2 10.2 5.1 4 2.80 

    5 2.24 

    6 1.87 

2 12.4 11.4 5.7 4 3.10 

    5 2.48 

    6 2.07 

2 13.6 12.6 6.3 4 3.40 

    5 2.72 

    6 2.27 

3 11.2 10.2 3.4 4 2.80 

    5 2.24 

    6 1.87 

3 12.4 11.4 3.8 4 3.10 

    5 2.48 

    6 2.07 

3 13.6 12.6 4.2 4 3.40 

    5 2.72 

    6 2.27 

4 14.6 13.6 3.4 5 2.92 

    6 2.43 

    7 2.09 

4 16.2 15.2 3.8 6 2.70 

    7 2.31 

    8 2.025 

4 18.0 17.0 4.25 6 3.00 

    7 2.57 

    8 2.25 

 



134 

 

Table 5.2 Geometry of prototype bridges for FLS analysis 

Design 

lanes 

(n) 

Bridge 

width 

(W), m 

Deck 

width 

(Wc), m 

Design lane 

width (We), 

m 

Shoulder 

width, m 

Number 

of girders 

(N) 

Girder 

spacing 

(S), m 

1 4.5 3.5 3.5 0.0 3 1.5 

1 6.0 5.0 3.3 0.85 3 2.00 

     4 1.50 

2 7.6 6.6 3.3 0.0 3 2.53 

     4 1.90 

     5 1.52 

2 8.8 7.8 3.3 0.6 3 2.93 

     4 2.20 

     5 1.76 

2 10.0 9.0 3.3 1.2 3 3.33 

     4 2.50 

     5 2.00 

2 11.2 10.2 3.3 1.8 4 2.80 

     5 2.24 

     6 1.87 

2 12.4 11.4 3.3 2.4 4 3.10 

     5 2.48 

     6 2.07 

2 13.6 12.6 3.3 3.0 4 3.40 

     5 2.72 

     6 2.27 

3 11.2 10.2 3.4 0.0 4 2.80 

     5 2.24 

     6 1.87 

3 12.4 11.4 3.3 0.75 4 3.10 

     5 2.48 

     6 2.07 

3 13.6 12.6 3.3 1.35 4 3.40 

     5 2.72 

     6 2.27 

4 14.6 13.6 3.4 0.0 5 2.92 

     6 2.43 

     7 2.09 

4 16.2 15.2 3.3 3.3 6 2.70 

     7 2.31 

     8 2.025 

4 18.0 17.0 3.3 3.3 6 3.00 

     7 2.57 

     8 2.25 
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To calculate the moment of inertia of the idealized girder, the effective concrete slab width 

(be) was calculated based on the following two equations specified in the CHBDC (CSA 

2014a) clause 5.8.1; 
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where, be and b are the dimensions shown in Figure 5.7 of CHBDC (CSA 2014a) clause 

5.8.1 for the applicable type of bridge cross-section, and L is the span length (m). 

5.2.2.1  Load Distribution Factors for Longitudinal Bending Moment 

To determine the load distribution factor for the longitudinal bending moment for exterior 

and interior girders, longitudinal stresses in girder at the extreme fiber at bottom surface of 

the flange resulting from the 3D finite element analysis due to truck loading were 

identified. The maximum stress at the bottom surface of the bottom flange was identified 

from average stress results for elements adjacent to the chosen section. Thus, the girder 

stress can be calculated from the obtained stresses using the following equation: 

For ULS and SLS: 
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For FLS: 
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where, 

FT_m  = Moment distribution factor from finite element analysis as per CHBDC (CSA 

2014a). 

Fm_2006  = Moment distribution factor from finite element analysis as per CHBDC (CSA 

2006a). 

n = number of design lanes on a bridge. 

RL = modification factor based on actual number of design lanes as per clause 3.8.4.2 

(CSA 2014a). 

R’L = modification factor based on actual number of loaded lanes as per clause 3.8.4.2 

(CSA 2014a). 

N = number of girders. 

FEAσ  = maximum flexural stress obtained from a three-dimensional simply supported 

structure under the effect of truck live load at ULS and SLS, and FLS. 

Tσ  = maximum flexural stress from a simple two-dimensional beam-line model 

under the effect of truck live load at ULS and SLS, and FLS. 

5.2.2.2  Load Distribution Factors for Shear 

The maximum shear forces were determined from the finite element modeling for straight 

and skewed bridge due to truck loading for ULS and SLS, and FLS, respectively. 

Consequently, the shear distribution factor was calculated as follows: 

For ULS and SLS: 
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For FLS: 
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where, 

FT_v  = Shear distribution factor from finite element analysis as per CHBDC (CSA 

2014a). 

Fv_2006  = Shear distribution factor from finite element analysis as per CHBDC (CSA 

2006a). 

n = number of design lanes on a bridge. 

RL = modification factor based on actual number of design lanes as per clause 3.8.4.2 

(CSA 2014a). 

R’L = modification factor based on actual number of loaded lanes as per clause 3.8.4.2 

(CSA 2014a). 

N = number of girders. 

FEAV  = maximum shear stress obtained from a three-dimensional simply supported 

structure under the effect of truck live load at ULS and SLS, and FLS. 

TV  = maximum shear stress from a simple two-dimensional beam-line model under 

the effect of truck live load at ULS and SLS, and FLS. 

5.2.3  Description of Bridge Prototypes 

Figure 3.2 shows typical details of two-lane and four-lane single span steel-concrete 

composite I-girder bridges as examples of bridges considered in this study. The basic 

bridge cross-sectional configurations considered in this study, based on CHBDC (CSA 

2014a) clause 3.8.2, are presented in Table 5.1 and Table 5.2 for ULS and SLS-1; and, FLS 

and SLS-2 respectively. The modulus of elasticity of the concrete material was 25 GPa 

with a Poisson's ratio of 0.20, whereas these design values for the steel material were 200 
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GPa and 0.30, respectively. Six different span lengths ranging from 15 m to 40 m were 

considered with an increment of 5 m, and girder response was evaluated for seven different 

skew angles from 0o to 60o with an increment of 10o skew angle. The concrete deck slab 

thickness was 225 mm. The cantilever slab length was equal to half the girder spacing. The 

X-type cross-frames at the support and between the span was provided in accordance with 

the specification stipulated in the manual of standard short-span steel bridges (Theodor and 

Al-Bazi 1997). Cross-frame members were spaced at equal intervals between the support 

lines and were made of L102x102x11 steel angles. The arrangement of the cross-frames at 

the support and between the span is shown in Figure 5.1. Based on a sensitivity study 

presented in chapter-3, parallel cross-frame layout was used for bridge configurations up 

to 30o skew angle and for skew angles in the interval 30o and 60o skew angle perpendicular 

staggered cross-frame layout was adopted for this study (Razzaq et al. 2015). In total, 3276 

bridge cases (i.e. 1638 cases each for ULS and SLS, and for FLS) were analyzed and 

assessed using finite element analyses (FEA). 

 

 

 

 

 

 

                             (a)                                                                             (b) 

Figure 5.1 Cross-frame arrangements at (a) support level, and (b) between span lengths 

5.2.4  Finite Element Modeling 

The general FEA program, CSiBridge (CSI 2015), was used to generate the 3D finite 

element models. 

The concrete slab and web of steel girders were modeled using four-node 3D elastic shell 

elements with six degrees of freedom at each node. The top and bottom flanges of 

longitudinal steel girders were modeled using two-node 3D elastic beam elements with six 

degrees of freedom at each node. The transverse diaphragm cross-frames were simplified 
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and modeled using the same beam elements. The shell and beam elements were connected 

by rigid link elements. These elements were used to model the composite action between 

the deck and the girders by connecting the nodes of the deck elements with the beam and 

shell elements. The connections between the girder and cross-frame elements were fixed. 

Further details about the finite element modeling of composite slab-on I-girder bridge can 

been seen in chapter-3. 

5.2.5  Loading Condition 

The live load, specified in the CHBDC, consists of CL-W truck and CL-W lane loading. 

The CL-W truck consists of idealized five axles with total load of 625 kN. The CL-W lane 

loading consists of CL-W truck loading with each axle load reduced to 80% of its original 

value and superimposed within uniformly distributed load of 9 kN/m over 3 m width. The 

selection between two different CHBDC types of live loads (CL-W truck and CL-W lane) 

depends on whichever gives the maximum design values. A sensitivity study which was 

carried out, presented in chapter-3, showed that the CL-W truck loading governs the 

extreme design values. Consequently, the CL-W truck loading was utilized as a live loading 

in finite element modeling.  

The CSiBridge software has the ability to run a moving load along a bridge. For moving 

load analysis, the number of lanes, vehicle and vehicle class were modeled and defined. 

The lane width was specified in the program as well as the distance between the vehicles, 

and the distance of the vehicle from the curb or barrier wall was also identified. CL-W 

truck loading was represented in the program by number of concentrated forces. Each truck 

axle was represented by single or double loads with defined axle width. The minimum or 

the maximum distances between each CL-W truck axle was specified in the program.  

Truck loading conditions for the three limit states (ULS, SLS and FLS), as specified in 

CHBDC were defined. For ULS and SLS, two different loading cases i.e. full and partial 

CL-W truck loadings, were considered for each bridge prototype. In each loading cases, 

the wheel loads close to the curbs were applied at a distance of 0.6 m from the inside edge 

of the curb. Additionally for the FLS, only one CL-W truck was placed at the center of one 

travelling lane. For fatigue limit state and superstructure vibration, the vehicle edge 
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distance (the distance from the center of the outer wheel load to the edge of the bridge) of 

3 m was maintained, as specified in clause 5.6.6 of CHBDC. For one-lane to four-lane 

bridge configurations, Figure 5.2 to 5.5 and Figure 5.6 to 5.9 schematically indicate all 

possible CL-W truck positions considered for the ultimate and fatigue limit states, 

respectively. The exterior girder was the one closest to bridge curb or barrier wall while 

the interior girder was any girder between the exterior girders. The modification factors for 

multi-lane loading as specified in CHBDC clause 3.8.4.2 was also considered while 

applying the truck live loads using FEA modelling. 

 

Figure 5.2 Live loading case for one-lane bridge for ULS and SLS for exterior and 

interior girder-partial load 

 

 

    (a) 

 

      (b) 
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(c) 

Figure 5.3 Live loading cases for two-lane bridge for ULS and SLS for; (a) exterior 

girder-partial load, (b) exterior girder-full load, and (c) Interior girder-full load 

 

 

      (a) 

 

      (b) 

 

        (c) 
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  (d) 

 

  (e) 

Figure 5.4 Live loading cases for three-lane bridge for ULS and SLS for; (a) exterior 

girder-partial load, (b) exterior girder-partial load, (c) exterior girder-full load, (d) Interior 

girder-partial load, and (e) Interior girder-full load 

 

 
   (a) 

 

 
   (b) 
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     (c) 

 

 
   (d) 

 

 
                                                                     (e) 

 

 
(f) 

 

 
(g) 
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 (h) 

 

(i) 

 

(j) 

Figure 5.5 Live loading cases for four-lane bridge for ULS and SLS for; (a) exterior 

girder-partial load, (b) exterior girder-partial load, (c) exterior girder-partial load, (d) 

exterior girder-full load, (e) interior girder-partial load, (f) interior girder-partial load, (g) 

interior girder-partial load, (h) interior girder-full load, (i) interior girder-full load, and (j) 

interior girder-full load 

 

 
 

Figure 5.6 Live loading case for one-lane bridge for FLS 
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Figure 5.7 Live loading case for two-lane bridge for FLS 

 

 
(a) 

 

 
(b) 

 

Figure 5.8 Live loading case for three-lane bridge for FLS for; (a) exterior girder-fatigue 

load, and (b) interior girder-fatigue load 

 

 

 
(a) 
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(b) 

 

Figure 5.9 Live loading case for four-lane bridge for FLS for; (a) exterior girder-fatigue 

load, and (b) interior girder-fatigue load 

5.2.6  Results from the Parametric Study 

This section presents an extensive parametric study in which more than 3200 composite 

straight and skewed slab-on-girder bridge prototypes were considered for three limit states 

(ULS, SLS and FLS) using three-dimensional finite element analysis. In order to precisely 

determine the parameters affecting the load distribution factors, a sensitivity study was first 

undertaken to determine the influence of the different parameters that may affect these 

distribution factors. As a result, it was found that the key parameters that affect the 

structural response of a skewed bridge system were: (1) skew angle (ψ ), (2) span length 

(L), (3) girder spacing (S), (4) number of girders (N), and (5) number of lanes (n). Based 

on the guidelines stipulated in the manual of standard short-span steel bridges (Theodor 

and Al-Bazi 1997), slab thickness was taken constant i.e. 225 mm, for all bridge 

configurations considered in this study. To account for the relative stiffness of the bridge 

system, a relationship for the upper and lower bound limits specified by Bakht and Moses 

(1988) in terms of the longitudinal flexural rigidity per unit width (Dx) and the span length 

(L) was adopted. For each span length considered in this study, steel I-girder geometries 

were selected from the manual of standard short-span steel bridges (Theodor and Al-Bazi 

1997) falls well within the practical upper and lower bound limits.  

Based on sensitivity study findings, the effect of above-mentioned superstructure variables 

on girder FT_m and FT_v were examined in the parametric study, and discussed in the 

following sub-section. Only response of girders in a two-lane and four-lane bridge 

configuration are presented and discussed herein. 
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5.2.6.1  Effect of Skew Angle 

Skew angle of the deck is the most critical factor that influences the moment and shear 

distribution among girders. The present study showed that the exterior and interior girder 

moment distribution factors of skew bridges were always less than those of right bridges. 

This finding is in agreement with the investigations of Khaloo and Mirzabozorg (2003) and 

Nouri and Ahmadi (2012), among others. Also, the increase in skew resulted in high 

concentration of shear in the girder closest to the obtuse corner and reduced shear 

concentration in the closest girder to the acute corner as well as in the interior girders (Nutt 

et al. 1988, Ebeido and Kennedy 1995).  

Figure 5.10 and 5.11, shows the FEA results of an exterior and interior girder moment 

distribution factors of a skewed bridge under live load conditions for ULS and SLS in terms 

of FT_m as follows: 

1) The value of the moment distribution factor for a right bridge, ψ = 0°, was higher in 

exterior girder in comparison to interior girder.    

2) For two and four-lane bridge configuration, the effect of exterior girder moment 

distribution factor with the increase of skew angle was found insignificant. The load 

distribution factor of external girder reduces by 5% for a skew angle of 60o, as 

compared with the straight aligned bridge. 

3) For two and four-lane bridge geometry, for a span length less than 20 m the sensitivity 

of load distribution factors of internal girders with respect to skew angle was high, such 

that, for bridge with a skew angle of 60o, these factors decrease by 25% and 27% 

respectively as compared with right bridges. However for a span length of 40 m, the 

effect of interior girder moment distribution factor with the increase of skew angle was 

found less sensitive, such that, for bridge with a skew angle of 60o, these factors 

decrease by 9% and 11% respectively as compared with right bridges.  

4) For both external and internal girders, the effect of skew angle on the moment 

distribution factor decreases when span length increases. This structural behavior in a 

skew bridge was more pronounced when span length was less than 20 m, and became 

less sensitive as the span length increases up to 40 m. 
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(a) 

 

 
 

(b) 

 

Figure 5.10 Effect of skew angle on FT_m of an exterior girder at ULS & SLS for: (a) two-

lane, and (b) four-lane 
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(a) 

 

 
 

(b) 

 

Figure 5.11 Effect of skew angle on FT_m of an interior girder at ULS & SLS for: (a) two-

lane, and (b) four-lane 
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(a) 

 

 
 

(b) 

 

Figure 5.12 Effect of skew angle on FT_m of an exterior girder at FLS for: (a) two-lane, 

and (b) four-lane 
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(a) 

 

(b) 

Figure 5.13 Effect of skew angle on FT_m of an interior girder at FLS for: (a) two-lane, 

and (b) four-lane 
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(a) 

 

(b) 

Figure 5.14 Effect of skew angle on FT_v of the girder at obtuse corner at ULS & SLS for: 

(a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.15 Effect of skew angle on FT_v of the girder at acute corner at ULS & SLS for: 

(a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.16 Effect of skew angle on FT_v of the interior girder at ULS & SLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.17 Effect of skew angle on FT_v of the girder at obtuse corner at FLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(a) 

Figure 5.18 Effect of skew angle on FT_v of the girder at acute corner at FLS for: (a) two-

lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.19 Effect of skew angle on FT_v of the interior girder at FLS for: (a) two-

lane, and (b) four-lane 
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Figure 5.12 and 5.13, shows the FEA results of an exterior and interior girder moment 

distribution factors of a skewed bridge under live load conditions for FLS quantified in 

terms of FT_m. The main conclusions derived from these results are: 

1) The effect of skew angle on the moment distribution factor of external and internal 

girder was insignificant up to 30o skew angle for both two and four-lane bridge 

geometry. 

2) For high skew angle (>30o), the sensitivity of load distribution factors of external and 

internal girders with respect to skew angle was predominantly high when span length 

was less than 20 m. For-example for bridge decks with a skew angle of 60o, exterior 

girder showed a decrease of about 27% and 33% for two and four-lane bridge system, 

respectively. Like-wise a reduction of about 18% and 20% was noticed in the moment 

distribution factor of interior girder for the two and four-lane bridge, respectively. 

3) For high skew angle (>30o), the effect of exterior and interior girder moment 

distribution factor with the increase of skew angle was found less sensitive when span 

length exceeds 20 m. For-example, for a 40 m span bridge with a skew angle of 60o, 

these factors for the exterior girder decreases by 12% and 14% for two and four-lane 

bridge respectively, and like-wise a 3% reduction was noticed in the interior girder 

distribution factor as compared with right bridge. 

Figure 5.14, 5.15 and 5.16, shows the FEA results of a girder shear distribution factor of a 

skewed bridge at obtuse, acute and interior girder corner under live load conditions for 

ULS and SLS presented in terms of FT_v as follows: 

1) For skewed bridges up to 60o, two-lane bridge geometry resulted in high value of the 

shear distribution factors at the obtuse, acute and interior girder as compared with four-

lane bridge configuration.  

2) It was observed that the shear distribution factor at the girder obtuse corner increases 

with increase in the angle of skew. The rate of this increase for skew angle between 30o 

and 60o was greater than for skew angle between 0o and 30o. 

The shear distribution factor at the acute girder location decreases with the increase of 

the angle of skew, such that, for bridge decks with a skew angle of 60o, the shear 
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distribution factor of acute girder corner reduced by 22% and 21% for two and four-

lane bridge respectively, as compared with right bridge. 

Figure 5.16 shows that the effect of shear distribution factor of interior girders with 

respect to skew angle was insignificant. For high skew angle, such as, 30o to 60o 

interval, a marginal increase in these factors were noticed for span length greater than 

20 m for two and four-lane bridge configuration.   

3) It was noticed that the effect of skew angle on the shear distribution factor at the obtuse 

girder corner was more sensitive to the width of the bridge. For-example, for a bridge 

with a skew angle of 60o, these factors increased by 14%, 23% and 31% for a four-lane 

bridge when a span length of 15 m, 25 m and 40 m, respectively was considered. On 

the contrary, a two-lane bridge resulted in 6%, 15% and 24% increase in the obtuse 

girder shear distribution factor for 15 m, 25 m and 40 m, respectively span lengths. 

From the aforesaid finding also, we concluded that the effect of skew angle on the shear 

distribution factor at the obtuse girder corner increases when the span length increases. 

It was worth noting that the shear distribution factor at the girder obtuse corner was 

sensitive to the aspect ratio i.e. length/width ratio, of the bridge. 

Figure 5.17, 5.18 and 5.19, shows the FEA results of a girder shear distribution factor of a 

skewed bridge at obtuse, acute and interior girder corner under live load conditions for FLS 

described in terms of FT_v as follows: 

1) High value of the shear distribution factors at the obtuse, acute and interior girder were 

observed for two-lane bridge geometry as compared with four-lane bridge 

configuration for a skewed bridges up to 60o. 

2) It was observed that the shear distribution factor at the girder obtuse corner increases 

with the increase in the angle of skew. The rate of this increase for skew angle between 

30o and 60o was greater than for skew angle between 0o and 30o. For example, for a 

skew angle up to 30o a maximum increase of 12% was observed, and further increase 

in skew angle from 30o to 60o resulted in 31% increase of shear distribution factor at 

the girder obtuse corner for two-lane bridge configuration. Likewise, for a four-lane 

bridge geometry 13% increase in these factors was observed for a skew angle up to 30o 

that further augmented to 45% when skew angle increases from 30o to 60o.  
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The shear distribution factor at the acute girder location decreases with the increase of 

the angle of skew, such that, for bridge decks with a skew angle of 60o, the shear 

distribution factor of acute girder corner reduced by 31% and 47% for two and four-

lane bridge respectively, as compared with right bridge for three different span lengths 

as shown in Figure 5.18. 

Figure 5.19 shows that the effect of shear distribution factor of interior girders with 

respect to skew angle was insignificant. For high skew angle (> 30o) up to 60o, a 

marginal increase in these factors were noticed for two and four-lane bridge 

configuration. 

5.2.6.2 Effect of Span Length 

The moment distribution factors for the multi-lane skewed bridges were evaluated and their 

effects with the variation of span lengths are presented in Figure 5.20 and 5.21 for ULS 

and SLS, and in Figure 5.22 and 5.23 for FLS, and briefly summarized in terms of FT_m as 

follows: 

1) For both exterior and interior girders, the effect of span length on the moment 

distribution factors decreases when skew angle increases from 0o to 60o. 

2) For span length up to 25 m, the sensitivity of moment distribution factors for the 

exterior and interior girders with respect to span length was high. For example, for 

exterior girder at ULS and SLS these factor decreased by 25% in two and four-lane 

bridges, whereas 31% and 34% decrease was noticed in the interior girders of a two 

and four lane bridge configuration respectively. Similarly for FLS, these factors for an 

exterior girder decreased by 19% and 6% for two and four-lane bridges respectively, 

and a decrease of about 38% and 41% in the moment distribution factor of interior 

girder was noticed for the two and four-lane bridges respectively. Hence it can be 

inferred from the above finding that the moment distribution factor of an interior girder 

was more sensitive with the increase of span length up to 25 m for all three limit states.  

3) For span length greater than 25 m up to 40 m, the effect of span length on the moment 

distribution factors of exterior and interior girders was insignificant. 
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The effect of shear distribution factors of a skewed bridge at obtuse, acute and interior 

girder corners with the variation of span length are presented in Figure 5.24, 5.25 and 5.26 

for ULS and SLS, and in Figure 5.27, 5.28 and 5.29 for FLS, and discussed in terms of FT_v 

as follows: 

1) For right bridges (i.e. skew angle=0o) at ULS and SLS, the shear distribution factors at 

the obtuse girder corner were found not very sensitive to span length. A marginal 

decrease in these factors were noticed with the increase of span length from 15 m to 40 

m. However, Figure 5.24 shows that the sensitivity of shear distribution factor of obtuse 

girder corner with respect to span length was high, such that, for a skew angle of 60o, 

these factors increased by 12% as the span length increases from 15 m to 40 m for two 

and four-lane bridge. 

Figure 5.27 shows that for FLS the increase of span length resulted in the increase of 

shear distribution factors at the obtuse girder corner. This effect was more pronounced 

in skewed bridges as compared to right bridges. 

2) Figure 5.25 shows that for ULS and SLS, the shear distribution factors at the acute 

girder corner were found not sensitive to the span length. A marginal decrease in these 

factors were noticed with the increase of span length between 15 m to 40 m. 

For FLS, the increase of the span length resulted in the increase of shear distribution 

factors at the acute girder corner. Figure 5.28 shows that this effect was more 

pronounced in skewed bridges as compared to right bridges. 

3) As shown in Figure 5.26 and 5.29, the shear distribution factor of an interior girder 

decreases with the increase of span length up to 25 m for ULS and SLS, and FLS. 

However, as the span length increases from 25 m to 40 m, a marginal increase of these 

factors were noticed in a two-lane skewed bridge behavior, whereas for a four-lane 

bridge this effect was insignificant when the span length increases from 25 m to 40 m. 
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(a) 

 

(b) 

Figure 5.20 Effect of span length on FT_m of the exterior girder at ULS & SLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.21 Effect of span length on FT_m of the interior girder at ULS & SLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.22 Effect of span length on FT_m of the exterior girder at FLS for: (a) two-lane, 

and (b) four-lane 
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(a) 

 

(b) 

Figure 5.23 Effect of span length on FT_m of the interior girder at FLS for: (a) two-lane, 

and (b) four-lane 
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(a) 

 

(b) 

Figure 5.24 Effect of skew angle on FT_v of the girder at obtuse corner at ULS and SLS 

for: (a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.25 Effect of skew angle on FT_v of the girder at acute corner at ULS and SLS 

for: (a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.26 Effect of skew angle on FT_v of the interior girder corner at ULS and SLS for: 

(a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.27 Effect of skew angle on FT_v of the girder at obtuse corner at FLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.28 Effect of skew angle on FT_v of the girder at acute corner at FLS for: (a) two-

lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.29 Effect of skew angle on FT_v of the interior girder corner at FLS for: (a) 

two-lane, and (b) four-lane 
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5.2.6.3 Effect of Girder Spacing, Number of Girders and Number of Lanes 

The effect of girder spacing on the moment distribution factors of the exterior and the 

interior girder are presented in Figure 5.30 and 5.31 for ULS and SLS, and in Figure 5.35 

and 5.36 for FLS, and summarized in terms of FT_m as follows: 

1) The bridge configuration having less number of girders arranged at greater spacing 

results in higher value of moment distribution factor for both exterior and interior girder 

at both ULS and SLS, and FLS, as compared to the bridge geometry comprised of more 

number of girders positioned at less spacing among them. 

2) For ULS and SLS, the effect of girder spacing on the moment distribution factor of 

exterior girder with the increase of skew angle was less sensitive, such that, a marginal 

decrease of about 6% was noticed. However for FLS, a maximum decrease of about 

17% was observed for two and four-lane bridge structures having more number of 

girders arranged at less spacing between them. 

3) For ULS and SLS, and FLS, the sensitivity of load distribution factor of interior girder 

with respect to girder spacing was high when the skew angle increases from 30o to 60o. 

Also it was noticed that within that skew angle range, the bridge structure having less 

number of girders with wide girder spacing resulted in greater reduction of moment 

distribution factor. For-example for decks with a skew angle of 60o, these factors 

decreased by 17% and 22% when a two and four-lane bridge geometry was considered 

for ULS and SLS. Also the effect of girder spacing on the load distribution factor of 

interior girder resulted in the reduction of about 17% in case of FLS for a highly skewed 

bridge (i.e. skew angle=60o) as compared to the right bridge. However, for decks with 

a skew angle up to 30o, this effect was insignificant for both ULS and SLS, and FLS. 
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(a) 

 

(b) 

Figure 5.30 Effect of girder spacing on FT_m of the exterior girder at ULS and SLS for: 

(a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.31 Effect of girder spacing on FT_m of the interior girder at ULS and SLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.32 Effect of girder spacing on FT_v of the girder at obtuse corner at ULS & SLS 

for: (a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.33 Effect of girder spacing on FT_v of the girder at acute corner at ULS & SLS 

for: (a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.34 Effect of girder spacing on FT_v of the interior girder corner at ULS & SLS 

for: (a) two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.35 Effect of girder spacing on FT_m of the exterior girder at FLS for: (a) two-

lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.36 Effect of girder spacing on FT_m of the interior girder at FLS for: (a) two-

lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.37 Effect of girder spacing on FT_v of the girder at obtuse corner at FLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.38 Effect of girder spacing on FT_v of the girder at acute corner at FLS for: (a) 

two-lane, and (b) four-lane 
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(a) 

 

(b) 

Figure 5.39 Effect of girder spacing on FT_v of the interior girder corner at FLS for: (a) 

two-lane, and (b) four-lane 
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The effect of girder spacing on the shear distribution factors at bridge obtuse corner, acute 

corner and interior girder are presented in Figure 5.32, 5.33 and 5.34 for ULS and SLS, 

and in Figure 5.37, 5.38 and 5.39 for FLS respectively, and discussed below: 

1) Less number of girders with greater girder spacing results in higher value of shear 

distribution factor for the obtuse, acute and interior girder location at both ULS and 

SLS, and FLS, as compared with the bridge geometry having smaller spacing between 

girders. 

2) For ULS and SLS, and FLS at obtuse girder corner, the effect of girder spacing resulted 

an increase of shear distribution factor with the increase of skew angle for two and 

four-lane bridges. This effect was more pronounced in bridge configurations having 

more number of girders with less spacing between them. For example, decks with a 

skew angle of 60o, these factors increased by 28% and 24% for ULS and SLS, and 

resulted in 50% and 55% increase for FLS, when two and four-lanes bridge geometry 

was considered, respectively. 

3) For ULS and SLS, and FLS, the effect of girder spacing resulted in the decrease of 

shear distribution factor at acute girder corner with the increase of skew angle for two 

and four-lanes bridge. For example, decks with a skew angle of 60o, these factors 

decreased by 23% and 19% for ULS and SLS, and resulted in 37% and 46% decrease 

for FLS, when two and four-lanes bridge geometry was considered, respectively. 

4) The effect of girder spacing on the shear distribution factors of interior girders at ULS 

and SLS, and at FLS for both two and four-lanes bridge structure was considered 

insignificant. 

5.2.7 Load Distribution Factors for Straight Bridges at ULS and SLS 

Recently CHBDC (CSA 2014a) has specified simplified method of analysis to define the 

longitudinal bending moments and vertical shear in slab-on-girder bridges due to live load 

for ULS and SLS, and FLS using load distribution factors. The Simplified Method of 

Analysis specified in clause 5.6.4 of the current CHBDC allows a bridge to be treated as a 

beam for live load analysis. The CHBDC distribution factor equations for slab-on-girder 

bridges have already been explained in chapter-2. 
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From the results of the parametric study it became evident that the moment and shear 

distribution factor was governed by the following parameters: (i) skew angle, (ii) span 

length, (iii) girder spacing, (iv) number of girders, and (v) number of lanes. However, for 

straight bridge the effect of skew angle on the moment and shear distribution factors was 

considered irrelevant. In-order to estimate the correlation between the distribution factors 

calculated from the current CHBDC code in comparison with the factors from FEA 

analysis, a sensitivity study was performed with the purpose to evaluate a factor R to 

compare the CHBDC design equations with FEA results. The factor R is defined as follow: 

FEAT

CHBDCT

F

F
R

_

_
=     (5.8) 

For ULS and SLS, and FLS the results of factor R with respect to span and girder spacing 

for two and four-lanes bridge structures were evaluated. Only results of ULS and SLS are 

presented and discussed herein. Figure 5.40 and 5.41 represents the effect of the span length 

and girder spacing for an exterior girder moment, and the effect of these parameters in the 

case of interior girder’s moment is shown in Figure 5.42 and 5.43. Similarly, for exterior 

and interior girder shear results are presented in Figure 5.44 and 5.45, and in Figure 5.46 

and 5.47 respectively. The findings are briefly summarized as follows: 

1) For exterior and interior girder moment in a two and four-lanes bridge configurations, 

CHBDC equations under-estimate the response when the span was 15 m. However for 

span greater than 15 m, the CHBDC resulted highly conservative response in 

comparison to the FEA. Further, it was noticed in Figure 5.41 and 5.43, that with the 

increase of girder spacing for two-lane and four-lane bridge configurations, it resulted 

in the increase of the distribution factor. The result showed that with the increase of 

girder numbers from 3 to 5 in case of two-lane, and 6 to 8 girders in case of 4-lane 

resulted in a reduction of the distribution factor. 

2) For exterior and interior girder shear in a two and four-lane bridge configurations, the 

results of the CHBDC equations were conservative estimate of distribution factors in 

comparison to the FEA. Further, it was noticed from Figure 5.45 and 5.47, interior 

girder shear distribution factor were found to be sensitive with the bridge width i.e. 
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girder spacing (S) x number of girders (N). For two-lane bridge geometry, we observed 

a decrease of the distribution factor with the increase of the girder spacing. However 

for four-lane bridge geometry, the distribution factor increases with the increase of 

girder spacing. 

                                        

(a)                                                                  (b)                                                                                

Figure 5.40 Effect of span length on “R” for an exterior girder moment at ULS and SLS 

for: (a) two-lane, and (b) four-lane 

 

 (a)                                                                 (b) 

Figure 5.41 Effect of girder spacing on “R” for an exterior girder moment at ULS and 

SLS for: (a) two-lane, and (b) four-lane 
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        (a)                                                                (b) 

Figure 5.42 Effect of span length on “R” for an interior girder moment at ULS and SLS 

for: (a) two-lane, and (b) four-lane 

 
        (a)                                                                  (b) 

Figure 5.43 Effect of girder spacing on “R” for an interior girder moment at ULS and 

SLS for: (a) two-lane, and (b) four-lane 

 
        (a)                                                                 (b) 

Figure 5.44 Effect of span length on “R” for an exterior girder shear at ULS and SLS for: 

(a) two-lane, and (b) four-lane 
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        (a)                                                                  (b) 

Figure 5.45 Effect of girder spacing on “R” for an exterior girder shear at ULS and SLS 

for: (a) two-lane, and (b) four-lane 

 
       (a)                                                                  (b) 

Figure 5.46 Effect of span length on “R” for an interior girder shear at ULS and SLS for: 

(a) two-lane, and (b) four-lane 

 
        (a)                                                                  (b) 

Figure 5.47 Effect of girder spacing on “R” for an interior girder shear at ULS and SLS 

for: (a) two-lane, and (b) four-lane 
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From the sensitivity study, it was evident that the CHBDC equations results were 

conservative estimates of the load effect. It was found that moment and shear distribution 

factors for a straight slab-on-girder bridge were mainly influenced by few critical 

parameters, namely: span length, girder spacing, number of girders and number of design 

lanes. In-order to keep uniformity and simplicity in understanding the distribution factors, 

it was decided to keep the format of equation same as proposed in the CHBDC code (CSA 

2014a), and develop a new equations that replaces CHBDC equations, based on the 

parametric study results.  

To develop new equations for the moment in the exterior and interior girder, three 

parameters TD , cγ and λ as mentioned in Table 5.3 of CHBDC (CSA 2014a) were 

modified. The general empirical equation of these parameters are written in following 

form: 

( )









+=

=

×+=

L

g
f

S

NbLaD

e

c

dc

T

λ

γ     (5.9) 

However, for the shear at the exterior and interior girder location, only two parameters 

were modified and their empirical expressions are presented below: 

( )
f

c

dc

T

e

S

NbLaD









=

×+=

γ
    (5.10) 

where, a, b, c, d, e and f are correlation constants, L is the bridge span length in meters; S 

is the girder spacing in meters; and, N is the number of girders. Using regression analyses, 

sets of empirical equations for moment and shear distribution factor for the girders under 

live loading of a straight slab-on girder bridge were deduced and presented in Tables 5.3 

to 5.6, respectively. 
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Table 5.3 Exterior girder moment distribution factors for straight bridge at ULS & SLS 

under live loading 

n Span (L), m DT λ cγ  

1 4015 ≤≤ L  ( ) 21.089.1
30076.5

−− ×− NL  







−

L

10.0
05.0  10.0−

S  

2  ( ) 27.063.2
79521.2 NL ×− −

 







−

L

65.0
04.0  39.0

S  

3  ( ) 13.048.2
48066.2 NL ×− −

 







−

L

25.0
10.0  19.0

S  

4  ( ) 27.10.2
1014.0 NL ×− −

 







+−

L

55.1
24.0  31.1

S  

eγ  same as given in Table 5.3 of CHBDC (CSA 2014a) 

 

 

 

 

 

 

Table 5.4 Interior girder moment distribution factors for straight bridge at ULS & SLS 

ULS & SLS under live loading 

n Span (L), m DT λ cγ  

1 4015 ≤≤ L  ( ) 14.00.2
19894.2 NL ×− −

 







−

L

10.0
05.0  90.0

S  

2 25≤L  ( ) 28.042.1
47.6989.2 NL ×− −

 







−

L

31.0
04.0  48.0

S  

 4025 ≤< L  ( ) 56.050.2
11018.1 NL ×+ −

 







−

L

76.2
07.0  76.0

S  

3 & 4 25≤L  ( ) 25.036.0
77.378.4

−×+− NL  







−

L

14.1
18.0  10.0−

S  

 4025 ≤< L  ( ) 10.011.0
21.148.5

−− ×− NL  







−

L

50.1
22.0  10.0

S  

eγ  same as given in Table 5.3 of CHBDC (CSA 2014a) 
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Table 5.5 Exterior girder shear distribution factors for straight bridge at ULS & SLS 

under live loading 

n Span (L), 

m 

DT 
cγ  

1 
4015 ≤≤ L

 
( ) 11.018.0

68.168.3
−− ×+ NL  

21.0

38.1

−








 S
 

2  ( ) 10.004.0
08.307.0 NL ×+−  

10.0

15.2







 S
 

3 & 4  ( ) 03.008.0
13.360.1

−− ×+ NL  

05.0

77.2

−








 S
 

eγλ &  same as given in Table 5.3 of CHBDC (CSA 2014a) 

 

 

 

 

Table 5.6 Interior girder shear distribution factors for straight bridge at ULS & SLS under 

live loading 

n Span (L), m DT cγ  

1 4015 ≤≤ L  ( ) 18.017.0
23.0337.0 NL ×+  

85.0

28.0







 S
 

2 20≤L  ( ) 27.038.0
29.0285.0 NL ×+  

36.0

28.0







 S
 

 4020 ≤< L  ( ) 30.009.0
47.054.0 NL ×+  

42.0

39.0







 S
 

3 & 4 25≤L  ( ) 05.011.0
28.5274.3

−×+− NL  

02.0

06.1

−








 S
 

 4025 ≤< L  ( ) 02.002.0
29.1047.1 NL ×+  

10.0

04.0







 S
 

eγλ &  same as given in Table 5.3 of CHBDC (CSA 2014a) 
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5.2.7.1  Correlation of FEA Results and Proposed Equations with CHBDC 

Based on the results obtained from the parametric study, a series of empirical expressions 

were developed for the girder moment and shear distribution factors for the prediction of 

the girder load distribution. Finally, the correlation between the CHBDC (CSA 2014a) 

equations and the proposed equations based on the parametric study for the moment and 

shear distribution factors were obtained and compared with the FT_m and FT_v values from 

the finite element analysis due to live loads, as presented in Figure 5.48 and 5.49, 

respectively. The result presented good correlation between the values obtained from 

proposed equations and those calculated results from FEA, and all data points fall within 

5% over and under-estimation  region, shown by dotted lines in Figure 5.48 and 5.49. 

The illustrative example to calculate the moment and shear distribution factors using FEA, 

proposed equation and the CHBDC (CSA 2014a) for a straight slab-on steel I-girder 

bridges at ULS and SLS are described in Appendix B. The comparison of results for the 

moment and shear distribution factors evaluated using FEA, proposed equation and the 

CHBDC (CSA 2014a) equation are presented in Table 5.7 and 5.8, respectively. The result 

showed that the proposed equations were sufficiently accurate in predicting the response 

of a straight bridge behavior. The CHBDC design equations were found conservative for 

both moment and shear at the exterior and interior girder location. The main reasons for 

the inadequacy of the design equation to represent the actual behavior of a straight bridge 

at ULS and SLS are more likely the same as described earlier in section 4.4.7. 

Table 5.7 Comparison of moment distribution factors for straight slab-on steel I-girder 

bridges at ULS and SLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Exterior 0.60 0.59 0.68 

Interior 0.50 0.51 0.62 

 

Table 5.8 Comparison of shear distribution factors for straight slab-on steel I-girder 

bridges at ULS and SLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Exterior 0.67 0.69 0.76 

Interior 0.66 0.67 0.76 
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(a) 

 

 
 

(b) 

 

Figure 5.48 Correlation between moment distribution factors at ULS & SLS obtained 

from FEA results with proposed equations and CHBDC for straight slab-on-girder 

bridges for; (a) exterior girder, and (b) interior girder 
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(a) 

 

 
 

(b) 

 

Figure 5.49 Correlation between shear distribution factors at ULS & SLS obtained from 

FEA results with proposed equations and CHBDC for straight slab-on-girder bridges for; 

(a) exterior girder, and (b) interior girder 
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5.2.8 Load Distribution Factors for Straight Bridges at FLS 

For FLS, the traffic load includes one CL-W truck that causes maximum effects increased 

by the dynamic load allowance and placed at the center of one travelled lane, and lane loads 

are not considered. The parametric study showed that moment and shear distribution 

factors for a straight slab-on-girder bridge were mainly influenced by few critical 

parameters, namely: span length, girder spacing, number of girders and number of design 

lanes. Also, the results of a sensitivity study demonstrates that the CHBDC equations 

resulted in conservative estimates. So, in-order to keep uniformity and simplicity in 

developing distribution factors for bridge designers and engineers, it was decided to keep 

the format of equation same as proposed in the CHBDC code (CSA 2014a), and develop a 

new equation that replaces CHBDC equations, based on the parametric study results.  

To develop new equations for the moment in the exterior and interior girder, three 

parameters TD , cγ and λ mentioned in Table 5.3 of CHBDC (CSA 2014a) were modified 

for exterior girder, whereas only two parameters, TD and cγ were reformed to represent the 

behavior of interior girder moment. Hence, the general empirical equation of these 

parameters took the following form, respectively: 

For exterior girder: 

( )









+=

=

×+=

L

g
f

S

NbLaD

e

c

dc

T

λ

γ     (5.11) 

For interior girder: 

    

( )









+×=

×+=

L

g
fS

NbLaD

e

c

dc

T

γ
    (5.12) 

Also, for the shear at the exterior and interior girder location at FLS, only two parameters 

were modified and their empirical expressions are presented below: 
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( )
f

c

dc

T

Se

NbLaD

×=

×+=

γ
    (5.13) 

where, a, b, c, d, e and f are equation variables, L is the bridge span length in meters; S is 

the girder spacing in meters; and, N is the number of girders. Using regression analyses, 

sets of empirical equations for moment and shear distribution factor for the girders under 

live loading of a straight slab-on girder bridge were deduced and presented in Tables 5.9 

to 5.12, respectively. 

Table 5.9 Exterior girder moment distribution factors for straight bridge at FLS under live 

loading 

n Bridge 

width (W), 

m 

Span 

(L), m 

DT λ 
Cγ  

+∗

eγ  

1 All 
40

15

≤

≤ L
 ( ) 18.163.225083.0 NL ×− −

 ∗05.0  

10.1
S  Table 

5.7  of 

CHBDC 
2 10≤W   ( ) 12.071.122.19262.5 −− ×− NL  ∗05.0  

05.0−
S  

 10>W   ( ) 06.208.015.0144.0 NL ×− −
 ∗05.0  

88.1
S  

3 All  ( ) 80.030.150042.37 −− ×− NL  








+−

L

22.4
56.0

 

74.0−S  

4 All  
( ) 40.013.0

44.2608.29
−×+− NL

 








+

L

59.9
27.0  

38.0−S  

∗    Same as given in Table-5.3 of CHBDC (CSA 2014a)  

+  When the value of Dve > 3.0 m, it shall be taken as 3.0 m for the purpose of this clause to calculate

eγ  
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Table 5.10 Interior girder moment distribution factors for straight bridge at FLS under 

live loading 

n 
Bridge width 

(W), m 

Span (L), 

m 
DT Cγ  

1 All 
4015 ≤≤ L

 
( ) 73.026.14.8240.5 NL ×− −

 







+×

L
S

01.2
26.096.0

 

2 10≤W   ( ) 05.025.098.116.0 NL ×+− −
 








−×

L
S

85.68
39.780.0

 

2 10>W   
( ) 66.028.0

06.4302.0 NL ×+− −

 








−×

L
S

13.16
56.190.0

 

3 All  ( ) 06.007.056.772.4 NL ×+− −
 








−×

L
S

80.37
0.480.0

 

4 All  ( ) 12.023.016.3393.0 NL ×+ −
 








−×

L
S

54.23
68.261.0

 

eγλ &  same as given in Table 5.3 of CHBDC (CSA 2014a) 

 

 

Table 5.11 Exterior girder shear distribution factors for straight bridge at FLS under live 

loading 

n Bridge 

width (W), 

m 

Span (L), 

m 

DT  +
cγ  

 

1 All 4015 ≤≤ L

 
( ) 99.106.095.040.0 NL ×+− −   44.1

827.0 S   

2 10≤W  ( ) 33.233.014.0152.0 NL ×+ −   05.2
227.0 S   

 10>W  ( ) 63.204.094.0746.0 NL ×+− −   22.2
334.0 S   

3 All ( ) 14.301.030.0152.0 NL ×+− −   90.2
02.0 S   

4 2.16≤W  ( ) 60.201.010.0046.0 NL ×+−   43.2
085.0 S   

 2.16>W  ( ) 73.228.182.108.0 NL ×+ −   02.2
074.0 S   

eγλ &  same as given in Table 5.3 of CHBDC (CSA 2014a) 

+ cγ  is applicable to all girder spacing i.e. mSmS 0.2&0.2 ≥<
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Table 5.12 Interior girder shear distribution factors for straight bridge at FLS under live 

loading 

n Bridge width 

(W), m 

Span (L), 

m 

DT  +

cγ  
 

1 All 4015 ≤≤ L

 
( ) 49.011.070.133.0 NL ×+−   45.084.0 S   

2 10≤W  ( ) 74.076.175.16837.0 −− ×− NL   26.0
325.14 S   

 10>W  ( ) 37.050.272.4029.0 NL ×− −   
47.0565.69 S

 
 

3 All 
( ) 70.068.162.16831.0 −− ×− NL

 
 

30.0
456.16 S

 
 

4 All ( ) 48.073.195.35656.1 −− ×− NL   01.0
527.8 S   

eγλ &  same as given in Table 5.3 of CHBDC (CSA 2014a) 

+ cγ  is applicable to all girder spacing i.e. mSmS 0.2&0.2 ≥<  

 

5.2.8.1  Correlation of FEA Results and Proposed Equations with CHBDC 

The correlation between the CHBDC (CSA 2014a) equations and the proposed equations 

based on the parametric study for the moment and shear distribution factors at FLS were 

obtained and compared with the FT_m and FT_v values from the finite element analysis due 

to live loads, and presented in Figure 5.50 and 5.51, respectively. The correlation presents 

good correlation between the values obtained from proposed equations and those calculated 

results from FEA, and all data points fall within 5% over and under-estimation  region, 

shown by dotted lines in Figure 5.50 and 5.51. 

The illustrative example to calculate the moment and shear distribution factors using FEA, 

proposed equation and the CHBDC (CSA 2014a) for a straight slab-on steel I-girder 

bridges at FLS are described in Appendix C. The comparison of results for the moment 

and shear distribution factors evaluated using FEA, proposed equation and the CHBDC 

(CSA 2014a) equation are presented in Table 5.13 and 5.14, respectively. The result 

showed that the proposed equations were sufficiently accurate in predicting the response 

of a straight bridge behavior at FLS. The CHBDC design equations were found highly 

conservative for both moment and shear at the exterior and interior girder location. The 
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main reasons for the inadequacy of the design equation to represent the actual behavior of 

a straight bridge at FLS are more likely the same as described earlier in section 4.4.7. 

Table 5.13 Comparison of moment distribution factors for straight slab-on steel I-girder 

bridges at FLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Exterior 0.32 0.33 0.37 

Interior 0.30 0.31 0.43 

 

Table 5.14 Comparison of shear distribution factors for straight slab-on steel I-girder 

bridges at FLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Exterior 0.27 0.26 0.71 

Interior 0.47 0.47 0.71 

 

 
 

(a) 
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(b) 

 

Figure 5.50 Correlation between moment distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC for straight slab-on-girder bridges for; (a) 

exterior girder, and (b) interior girder 

 

 
 

(a) 
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(b) 

 

Figure 5.51 Correlation between shear distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC for straight slab-on-girder bridges for; (a) 

exterior girder, and (b) interior girder 

5.2.9 Load Distribution Factors for Skewed Bridges at ULS and SLS 

Skew greatly complicates the behavior of straight slab-on steel I-girder bridges by 

introducing alternate load paths and causing complex interaction between the main girders 

and secondary framing members that can lead to significant construction and design 

problems (Coletti et al. 2011). In skewed bridges, under the influence of live loads 

longitudinal girders undergo torsional rotation at the supports (Surana and Humar 1984). 

These rotations are larger at the obtuse corners and they are difficult to predict due to the 

uneven distribution of loads across the superstructure that increase the skew effects (Choo 

et al. 2005). As the skew angle increases, the shear and reaction at the obtuse girder corner 

increases, however for the acute angle a reduction in the shear and reaction can be observed 

(Fisher 2006, Ozgur et al. 2011, Krupicka and Poellot 1993).  

According to clause 5.6.1 of CHBDC (CSA 2014b), in order to take in to account the 

limitations used in the previous editions of the CHBDC (CSA 2006a) to determine if the 
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skew effects can be ignored in the analysis or not is inappropriate. Recently, in the current 

CHBDC (CSA 2014a), the main improvement to the simplified method of bridge analysis 

is the consideration of skewed slab-on-girder bridge geometries for live load. Based on the 

parametric study analysis of more than 13,000 skewed slab-on-girder bridges, Theoret and 

Massicotte (2011) introduced a new parameter Fs to modify the values of FT to account for 

skew effects for shear at the obtuse corner. Bridges with skewed geometries up to 45o can 

now be analyzed with the simplified method. These studies indicates that for slab-on-girder 

bridges, the main governing parameters to characterize skew effects are: (1) skew angle, 

(2) span length, and (3) girder spacing. According to clause 5.6.6.2 of CHBDC (CSA 

2014a), the shear forces at the girder obtuse corner may be magnified by the skew factor 

Fs calculated as follows: 

( )10

0.2
2.1

+
−=

ε
Fs       (5.14) 

where, 

ofor
S

L
45;tan ≤








= ψψε    (5.15) 

It is stated in the commentary of clause 5.6.6.2 (CSA 2014b) that for the sake of simplicity, 

the same equation as for dead load (clause 5.6.3) is retained for live load (clause 5.6.6.2). 

Further, it is stated that the factor Fs is to be applied to all the girders considering that it is 

a general practice to have the same girder dimensions for the interior and exterior girders. 

Based on the current parametric study analysis, it was concluded that it was not only the 

shear at the obtuse girder corner that was affected with the increase of skew angle but it 

resulted in the reduction of the shear force at the acute corner and also an increases of shear 

force at the interior girder was noticed between 30o to 60o skew angle. Further, a reduction 

in the exterior and interior girder moment distribution factors were noticed with the 

increase of skew angle. However, no such equation for the moment distribution factor is 

yet to be proposed in North American highway bridge codes (CSA 2014a, AASHTO-

LRFD 2014). Based on the data generated from the parametric study, it was found that 
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moment and shear distribution factors were mainly influenced by few critical parameters, 

namely: skew angle, span length, girder spacing, number of girders and number of design 

lanes. In-order to keep uniformity and simplicity in understanding the distribution factors 

for bridge designers and engineers, it was decided to preserve the format of equation (5.14) 

and developed a new equation for the factor “ε” that replaces equation (5.15), based on the 

parametric study results. Hence, the general empirical equation for the moment and shear, 

the “ε” factor is represented as follows: 

ψε tan×××××= edcb
nNSLa    (5.16) 

where, a, b, c, d and e are correlation constants, L is the bridge span length in meters; S is 

the girder spacing in meters; N is the number of girders, and n is the number of design 

lanes. Using regression analyses, a set of empirical equations for the moment and shear 

distribution factors for the girders under live loading of a skewed slab-on girder bridge 

were deduced and presented in Table 5.15 and 5.16 for exterior and interior girder moment 

distribution factor, and Table 5.17, 5.18 and 5.19 for shear distribution factors at girder 

obtuse, acute and interior corners, respectively.  

Table 5.15 Exterior girder moment distribution factors for skewed bridge at ULS & SLS 

under live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 

to 

4 

4015 ≤≤ L  300 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan06.3 46.031.009.185.0 ××××× −− nNSL  

  4030 ≤<ψ   ψtan0.11 30.124.119.102.0 ×××××− −−− nNSL  

  5040 ≤<ψ   ψtan0.29 64.146.138.204.0 ×××××− −−− nNSL  

 2515 ≤≤ L  6050 ≤<ψ   ψtan66.39 66.013.119.136.0 ×××××− −−− nNSL  

 4025 ≤< L    ψtan97.1 70.042.034.003.0 ×××××− −− nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  
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Table 5.16 Interior girder moment distribution factors for skewed bridge at ULS & SLS 

under live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 

to 

4 

4015 ≤≤ L  300 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan40.0 60.145.275.052.0 ×××××− −−− nNSL  

  4030 ≤<ψ   ψtan90.13 28.034.031.003.1 ×××××− − nNSL  

  5040 ≤<ψ   ψtan0.30 37.025.029.029.1 ×××××− − nNSL  

 2015 ≤≤ L  6050 ≤<ψ   ψtan94.1 19.040.050.018.0 ×××××− −− nNSL  

 4020 ≤< L    ψtan54.1 13.066.025.151.0 ×××××− −− nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  

 

 

 

 

Table 5.17 Shear distribution factors at girder obtuse corner for skewed bridge at ULS 

and SLS under live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 

to 

4 
4015 ≤≤ L  200 ≤<ψ  

( )

∗

+
−

10

0.2
2.1

ε
 ψtan78.0 02.023.018.395.0 ××××× − nNSL  

  3020 ≤<ψ  
( )35.0

20.0
115.1

+
−

ε
 ψtan72.2 13.018.026.284.0 ××××× −− nNSL  

  4030 ≤<ψ  
( )31.1

80.0
412.1

+
−

ε
 ψtan12.1 39.002.056.137.0 ××××× −− nNSL  

 2015 ≤≤ L  6040 ≤<ψ  
( )0.3

68.1
323.1

+
−

ε
 ψtan50.0 35.005.066.228.1 ××××× − nNSL  

 4020 ≤< L   ( )69.0

66.0
928.1

+
−

ε
 ψtan02.0 17.053.075.171.0 ××××× − nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  
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Table 5.18 Shear distribution factors at girder acute corner for skewed bridge at ULS and 

SLS under live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 

to 

4 

4015 ≤≤ L  200 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan98.18 10.008.022.025.0 ×××××− −−− nNSL  

  3020 ≤<ψ   ψtan28.9 04.005.003.017.0 ×××××− −− nNSL  

  4030 ≤<ψ   ψtan0.5 03.004.0035.003.0 ×××××− −− nNSL  

  5040 ≤<ψ   ψtan65.3 04.008.004.0044.0 ×××××− −− nNSL  

  6050 ≤<ψ   ψtan15.2 09.013.012.001.0 ×××××− − nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  

 

Table 5.19 Shear distribution factors at interior girder for skewed bridge at ULS and SLS 

under live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 

to 

4 

4015 ≤≤ L  200 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan10.0 0.341.209.013.2 ××××× −−− nNSL  

  3020 ≤<ψ   ψtan20.0 0.568.074.193.1 ××××× −−− nNSL  

  4030 ≤<ψ   ψtan45.0 66.317.498.073.2 ××××× −− nNSL  

  5040 ≤<ψ   ψtan10.0 43.490.614.029.4 ××××× −−− nNSL  

  6050 ≤<ψ   ψtan10.0 42.1084.412.050.3 ××××× −−− nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  

5.2.9.1  Correlation of FEA Results and Proposed Equations with CHBDC 

The correlation between the CHBDC (CSA 2014a) equations and the proposed equations 

based on the parametric study for the moment and shear distribution factors for skewed 

slab-on-girder bridges at ULS and SLS were obtained and compared with the load 

distribution factors (LDF) from the finite element analysis due to live loads, and presented 

in Figure 5.52 and 5.53, respectively. First of all the moment and the shear distribution 

factor for a straight bridge was calculated, and subsequently in order to account the skew 



205 

 

effects a parameter Fs was evaluated and multiplied with the respective moment and shear 

distribution factors of a straight bridge (FT). Finally the results showed good correlation 

between the values obtained from proposed equations and those calculated results from 

FEA, and all data points fall within 5% over and under-estimation  region, shown by dotted 

lines in Figure 5.52 and 5.53. 

The illustrative example to calculate the moment and shear distribution factors using FEA, 

proposed equation and the CHBDC (CSA 2014a) for a skewed slab-on steel I-girder 

bridges at ULS and SLS are described in Appendix D. The comparison of results for the 

moment and shear distribution factors evaluated using FEA, proposed equation and the 

CHBDC (CSA 2014a) equation are presented in Table 5.20 and 5.21, respectively. The 

result showed that the proposed equations were sufficiently accurate in predicting the 

response of a skewed bridge behavior at ULS and SLS. The CHBDC design equations were 

found highly conservative for both moment and shear at the exterior and interior girder 

location. The main reasons for the inadequacy of the design equation to represent the actual 

behavior of a skewed bridge at ULS and SLS are more likely the same as described earlier 

in section 4.4.7. 

Table 5.20 Comparison of moment distribution factors for skewed slab-on steel I-girder 

bridges at ULS and SLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Exterior 0.58 0.57 0.75 

Interior 0.48 0.49 0.68 

Table 5.21 Comparison of shear distribution factors for skewed slab-on steel I-girder 

bridges at ULS and SLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Obtuse corner 0.73 0.76 0.84 

Acute corner 0.59 0.59 0.84 

Interior girder 0.67 0.67 0.84 
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(a) 

 

 
 

(b) 

 

Figure 5.52 Correlation between moment distribution factors at ULS & SLS obtained 

from FEA results with proposed equations and CHBDC for skewed slab-on-girder 

bridges for; (a) exterior girder, and (b) interior girder 
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(a) 

 

 
 

(b) 
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(c) 

Figure 5.53 Correlation between shear distribution factors at ULS & SLS obtained from 

FEA results with proposed equations and CHBDC for skewed slab-on-girder bridges for 

girders at; (a) obtuse corner, (b) acute corner, and (c) interior 

5.2.10 Load Distribution Factors for Skewed Bridges at FLS 

Simplified method of analysis at the FLS was treated in a similar fashion to that of ULS 

and SLS with the exception that only one vehicle was placed on the bridge for the 

computation of the force effects. Consequently, load distribution factors calculated at FLS 

were found larger than at ULS and SLS due to lack of uniformity in moment and shear 

distribution transversely across the bridge. (CSA 2006b, clause 5.7.1.2.2). 

Based on the data generated from the parametric study, it was found that moment and shear 

distribution factors were mainly influenced by few critical parameters, namely: skew angle, 

span length, girder spacing, number of girders and number of design lanes. In-order to keep 

uniformity and simplicity in understanding the distribution factors for bridge designers and 

engineers, it was decided to preserve the format of equation (5.14) and develop a new 

equation for the factor “ε” that replaces equation (5.15), based on the parametric study 
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results. Hence, the empirical equation for the moment and shear at FLS was kept the same 

as presented in equation (5.16) for ULS and SLS. Subsequently, by using regression 

analyses a set of empirical equations for the moment and shear distribution factor for the 

skewed slab-on-girder bridge at FLS were developed and presented in Table 5.22 and 5.23 

for exterior and interior girder moment distribution factor, and Table 5.24, 5.25 and 5.26 

for shear distribution factors at girder obtuse, acute and interior corners, respectively.  

Table 5.22 Exterior girder moment distribution factors for skewed bridge at FLS under 

live load 

N 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 to 4 4015 ≤≤ L  300 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan10.0 52.191.183.107.0 ×××××− −− nNSL  

  5030 ≤<ψ   ψtan28.0 58.139.205.264.0 ×××××− −− nNSL  

 2015 ≤≤ L  6050 ≤<ψ   ψtan22.0 91.160.255.293.0 ×××××− −− nNSL  

 4020 ≤< L  6050 ≤<ψ   ψtan286.0 16.110.248.152.0 ×××××− −− nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  

 

Table 5.23 Interior girder moment distribution factors for skewed bridge at FLS under 

live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 to 4 4015 ≤≤ L  300 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan046.0 67.082.121.116.0 ×××××− −nNSL  

  4030 ≤<ψ   ψtan08.0 96.048.161.036.0 ×××××− −nNSL  

  5040 ≤<ψ   ψtan12.0 18.040.075.041.0 ×××××− nNSL  

 2015 ≤≤ L  6050 ≤<ψ   ψtan19.1 29.025.017.024.0 ×××××− − nNSL  

 4020 ≤< L  6050 ≤<ψ   ψtan11.1 22.060.074.157.0 ×××××− −− nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  
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Table 5.24 Shear distribution factors at girder obtuse corner for skewed bridge at FLS 

under live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 to 4 4015 ≤≤ L  200 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan43.36 26.023.071.031.0 ××××× −−− nNSL  

  3020 ≤<ψ   ψtan36.0 83.131.308.002.0 ××××× −− nNSL  

  4030 ≤<ψ   ψtan30.0 66.264.459.060.0 ××××× −− nNSL  

  5040 ≤<ψ   ψtan20.5 34.142.146.004.1 ××××× −nNSL  

  6050 ≤<ψ   ψtan10.0 16.754.825.001.0 ××××× −nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  

Table 5.25 Shear distribution factors at girder acute corner for skewed bridge at FLS 

under live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 to 4 4015 ≤≤ L  200 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan62.6 06.008.035.010.0 ×××××− −− nNSL  

  3020 ≤<ψ   ψtan22.5 13.009.057.011.0 ×××××− −− nNSL  

  4030 ≤<ψ   ψtan80.2 18.029.083.014.0 ×××××− −− nNSL  

  5040 ≤<ψ   ψtan0.2 10.029.061.008.0 ×××××− −− nNSL  

  6050 ≤<ψ   ψtan49.1 35.038.079.010.0 ×××××− −− nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  

Table 5.26 Shear distribution factors at interior girder for skewed bridge at FLS under 

live load 

n 
Span (L), 

m 

Skew angle 

(ψ), deg. 
Fs ε 

1 to 4 4015 ≤≤ L  200 ≤<ψ  
( )

∗

+
−

10

0.2
2.1

ε
 ψtan52.15 71.412.859.237.2 ××××× −− nNSL  

  3020 ≤<ψ   ψtan40.65 94.557.826.320.2 ××××× −− nNSL  

  4030 ≤<ψ   ψtan50.93 63.1017.1491.475.3 ××××× −− nNSL  

  5040 ≤<ψ   ψtan66.97 00.1150.1494.469.3 ××××× −− nNSL  

  6050 ≤<ψ   ψtan20.79 94.1300.1700.1000.6 ××××× −− nNSL  

2014a).(2.6.6.5 CSAclauseCHBDCingivenasSame∗  
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5.2.10.1  Correlation of FEA Results and Proposed Equations with CHBDC 

The correlation between the CHBDC (CSA 2014a) equations and the proposed equations 

based on the parametric study for the moment and shear distribution factors for skewed 

slab-on-girder bridges at FLS were obtained and compared with the load distribution 

factors (LDF) from the finite element analysis results due to live loads, and presented in 

Figure 5.54 and 5.55, respectively. For this purpose, first of all the moment and the shear 

distribution factors for a straight bridge at FLS were calculated, and subsequently in order 

to account the skew effects a parameter Fs was evaluated and multiplied with the respective 

moment and shear distribution factors of a straight bridge (FT). Finally the results showed 

good correlation between the values obtained from proposed equations and those calculated 

results from FEA, and all data points fall within 5% over and under-estimation  region, 

shown by dotted lines in Figure 5.54 and 5.55. 

Table 5.27 Comparison of moment distribution factors for skewed slab-on steel I-girder 

bridges at FLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Exterior 0.31 0.32 0.41 

Interior 0.28 0.29 0.48 

Table 5.28 Comparison of shear distribution factors for skewed slab-on steel I-girder 

bridges at FLS 

Location of girder FEA results Proposed equation CHBDC (CSA 2014a) 

Obtuse corner 0.33 0.31 0.79 

Acute corner 0.22 0.22 0.79 

Interior girder 0.49 0.48 0.79 

The illustrative example to calculate the moment and shear distribution factors using FEA, 

proposed equation and the CHBDC (CSA 2014a) for a skewed slab-on steel I-girder 

bridges at FLS are described in Appendix E. The comparison of results for the moment and 

shear distribution factors evaluated using FEA, proposed equation and the CHBDC (CSA 

2014a) equation are presented in Table 5.27 and 5.28, respectively. The result showed that 

the proposed equations were sufficiently accurate in predicting the response of a skewed 

bridge behavior at FLS. The CHBDC design equations were found highly conservative for 

both moment and shear at the exterior and interior girder location. The main reasons for 
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the inadequacy of the design equation are more likely the same as described earlier in 

section 4.4.7. 

 
(a) 

 

 
(b) 

 

Figure 5.54 Correlation between moment distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC for skewed slab-on-girder bridges for; (a) 

exterior girder, and (b) interior girder 
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(a) 

 

 
 

(b) 
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(c) 

Figure 5.55 Correlation between shear distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC for skewed slab-on-girder bridges for 

girders at; (a) obtuse corner, (b) acute corner, and (c) interior 

5.3 Correlation of Data with Bridge Code Specifications in North America 

In this section a comparison of the developed proposed equation, for the skewed slab-on-

girder bridge, for the moment and shear distribution factors were made with the existing 

codes available in North America. For this purpose, AASHTO-LRFD (2014) and the 

method proposed by Jaeger and Smith (1997) specified in the commentary of CHBDC 

(CSA 2006b) design specifications were considered. The details about the moment and 

shear distribution factor equations available in these codes and their comparison with the 

equations proposed in this study will be presented in the following sub-sections. 

5.3.1 AASHTO-LRFD (2014) for Straight Slab-on-Girder Bridges 

The AASHTO-LRFD (2014) specification is used throughout the United States as the 

national standard that engineers are required to follow for bridge design and detailing. 

Many states include their own amendments and guidelines to this specification, based on 
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this standard. The specifications have also been adopted by other bridge-owning authorities 

and agencies in the United States and abroad. 

In Section 4-Structural Analysis and Evaluation of the current LRFD bridge design 

specifications (2014), equations are provided to adjust the live load distribution factors for 

moment and shears using approximate methods of analysis. The approximate method of 

analysis involves line girder or one-dimensional analysis of the bridge structure within a 

set range of applicability for girder design. For two or more design lanes, the moment and 

shear distribution factor equations specified in AASHTO-LRFD (2014) for the straight 

slab-on-girder are presented in Table 5.29. 

The comparison of LRFD equations for the moment and shear distribution factors for a 

straight composite slab-on steel I-girder bridge with the FEA results and proposed 

equations were presented in Figure 5.56 and 5.57 respectively. The comparison revealed 

that the moments and shear distribution factors predicted using the proposed formulas were 

close to those from the finite element analysis results that verifies the proposed formulas. 

However, the following observations were noticed while comparing the finite element 

analysis results with ASSHTO LRFD (2014) design equations. 

1) The LRFD equations overestimated the shear live load distribution by 30% when 

compared with the finite element analysis results for a significant number of cases. 

2) The LRFD equations overestimated the moment live load distribution to a maximum 

of 35% when compared with the finite element analysis results for a significant number 

of cases. However in some cases, the LRFD equations under-estimated the response by 

20% when compared to finite elements analysis results. This finding is in agreement 

with Yousif and Hindi (2007).  
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Table 5.29 LRFD load distribution factors for straight slab-on-girder bridges (Customary 

U.S. Units) 

Bridge 

type 

Load effect Load distribution equations 

(two- or more design lanes) 

Applicability 

Slab-

on-

girder 

Moment-

Interior 

(clause 

4.6.2.2.2b) 

1.0

3

2.06.0

int

0.125.9
075.0 
























+=

S

erior

Lt

Kg

L

SS

g

 

000,000,7

000,10

4

0.125.4

24020

0.165.3

≤

≤

≥

≤≤

≤≤

≤≤

g

b

S

K

N

t

L

S

 

 Moment-

Exterior 

(clause 

4.6.2.2.2d) 
1.9

77.0

int

e

eriorexterior

d
e

geg

+=

×=

 

5.50.1 ≤≤− ed  

 Shear-Interior 

(clause 

4.6.2.2.3a) 

0.2

int
3512

2.0 







−+=

SS
g erior

 

4

0.125.4

24020

0.165.3

≥

≤≤

≤≤

≤≤

b

S

N

t

L

S

 

 Shear-Exterior 

(clause 

4.6.2.2.3b) 10
6.0

int

e

eriorexterior

d
e

geg

+=

×=

 

5.50.1 ≤≤− ed  

Note: ginterior = load-distribution factor for interior girder; gexterior = load-distribution 

factor for exterior girder; S = girder spacing; L = span length; ts = deck thickness; Kg = 

longitudinal stiffness parameter; Nb = number of girders; e = correction factor; and de = 

distance from the exterior web of exterior girder to interior edge of curb or traffic 

barrier. 
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(a) 

 

 
(b) 

 

Figure 5.56 Correlation between moment distribution factors obtained from FEA results 

with proposed equations and AASHTO-LRFD for straight slab-on-girder bridges for; (a) 

interior girder, and (b) exterior girder 
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(a) 

 

 
(b) 

 

Figure 5.57 Correlation between shear distribution factors obtained from FEA results 

with proposed equations and AASHTO-LRFD for straight slab-on-girder bridges for; (a) 

interior girder, and (b) exterior girder 
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5.3.2 AASHTO-LRFD (2014) for Skewed Slab-on-Girder Bridges 

As the national standard, the LRFD specifications are lacking in providing guidelines for 

designing highly skewed bridges. In the commentary of Section 6-Steel Structures, 

includes the effects that skewed alignment have on girder and cross-frame deflections, 

rotations, and potential additional stresses. However, in many cases, it is recommended to 

perform a more refined analysis to accurately capture the effects of girder skewness and 

leaves a fair amount to engineering judgment to decide when a refined analysis is 

necessary. 

Correction factors are specified in the LRFD design code for longitudinal moment and 

shear distribution factors at the obtuse corner to take in to account the variation of skew 

angle. However, the LRFD code further states that in determining the end shear in deck 

system bridges, the skew correction at the obtuse corner shall be applied to all the beams. 

Table 5.30 shows the moment and shear distribution factor equations specified in 

AASHTO-LRFD (2014) for the skewed slab-on-girder. The comparison of LRFD 

correction factor equations for the calculation of interior and exterior girder moment 

distribution factors for a skewed composite slab-on steel I-girder bridge at a skew angle of 

40o and 60o with the FEA results and proposed equations are presented in Figure 5.58 and 

5.59, respectively. Likewise, the comparison of shear distribution factor at the girder obtuse 

corner for a skewed bridge at 40o and 60o skew angle are presented in Figure 5.60. The 

comparison revealed that the moments and shear distribution factors predicted using the 

proposed formulas were close to those from the finite element analysis results that verifies 

the proposed formulas. However, the following observations were noticed while 

comparing the finite element analysis results with ASSHTO LRFD (2014) design 

equations. 

1. Although, AASHTO-LRFD bridge design specifications consider the effect of skew. 

However, the LRFD method do not consider the effect of secondary elements such as 

cross bracing and diaphragms. The presence of such structural elements, moment-

connected to the longitudinal girders, lead to better load distribution and hence 

significant reductions in the span moment and support end reactions (Eom and Nowak 
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2001). Furthermore, the LRFD method recommends the same skew-reduction factors 

for both the exterior and the interior girder moment. As mentioned earlier, the interior 

girder is much more significantly affected by skew than the exterior girder. For this 

reason, the span moments predicted using the LRFD method was found extremely 

conservative for the interior girder. Another shortcoming noticed for both the exterior 

and interior girders when span was less than 20 m, where it resulted in underestimating 

the girder response. 

2. It was found that the presence of skew always increased the obtuse corner shear 

distribution factor. In contrast, skew always reduced the acute corner girder shear 

distribution factor. However, LRFD method recommends the same correction factors 

for both the exterior and the interior girders. 

Table 5.30 LRFD Correction factors for skewed slab-on-girder bridges (Customary U.S. 

Units) 

Bridge 

type 

Load 

effect 

Correction factors 

(Any number of design lanes) 

Applicability 

Slab-

on-

girder 

Moment 
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Note: C1 = parameter for skewed supports; S = girder spacing; L = span length; ts = deck 

thickness; Kg = longitudinal stiffness parameter; Nb = number of girders; and θ = skew 

angle (degrees). 
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         (a) 

 

 
         (b) 

 

Figure 5.58 Correlation between interior girder moment distribution factors obtained 

from FEA results with proposed equations and AASHTO-LRFD for skewed slab-on-

girder bridges at skew angle of; (a) 40o, and (b) 60o 
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         (a) 

 

 
         (b) 

 

Figure 5.59 Correlation between exterior girder moment distribution factors obtained 

from FEA results with proposed equations and AASHTO-LRFD for skewed slab-on-

girder bridges at skew angle of; (a) 40o, and (b) 60o 
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         (a) 

 

 
   (b) 

 

Figure 5.60 Correlation between shear distribution factors at obtuse corners obtained 

from FEA results with proposed equations and AASHTO-LRFD for skewed slab-on-

girder bridges at skew angle of; (a) 40o, and (b) 60o 
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5.3.3 CHBDC (CSA 2006b) – Jaeger and Smith (1997) 

In the commentary of CHBDC (CSA 2006b), Annex CA5.1.3.1-Shallow superstructures 

on skew spans, the design code has specified a procedure proposed by Jaeger and Smith 

(1997) for the calculation of longitudinal vertical shear in slab-on-girder bridges with skew 

geometry. In Jaeger and Smith (1997) method the corresponding bridge without skew, 

using the skewed span length, needs to be analyzed first for the longitudinal vertical shear 

in accordance with CHBDC clauses. The shear force thus found in the skewless straight 

bridge shall be multiplied by a dimensionless parameter Cv, obtained from clause CA-

5.1.3.1 (CSA 2006b) for the values of ε and η, which are given by: 

4

5.0

tan

















=

=

S

L

D

D

L

S

x

y
η

ψ
ε

    (5.17) 

where, Dy = transverse bending stiffness of the bridge superstructure per unit length, Dx = 

longitudinal bending stiffness per unit width, L = span length, S = girder spacing, and ψ = 

skew angle. 

The comparison of Jaeger and Smith (1997) method for the evaluation of shear distribution 

factors for a skewed composite slab-on steel I-girder bridge with the FEA results and 

proposed equations are presented in Figure 5.61 to 5.63 respectively, for three different 

skew angle (i.e. 20o, 40o, and 60o) at the girder obtuse and acute corners and at the interior 

girder for ULS and SLS. Figure 5.64 to 5.66 represents the correlation of the shear 

distribution factors at the obtuse, acute and at the interior girders for FLS, respectively. The 

comparison revealed that the shear distribution factors predicted using the proposed 

formulas were close to those from the finite element analysis results that verifies the 

proposed formulas. However, the following observations were noticed while comparing 

the finite element analysis results with Jaeger and Smith (1997) design equations. 

1) Jaeger and Smith (1997) equations showed reasonably comparable results for the 

girders at the obtuse corners with slight conservative response of girder shear 
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distribution was noticed beyond 40o skew angle for ultimate and serviceability, and 

fatigue limit states. 

2) It was found that the presence of skew angle always reduced the girder shear response 

at the acute corner. However, Jaeger and Smith (1997) method recommends the same 

factors for both the obtuse and acute girders. Consequently, resulted in substantial 

conservative results at the acute corners, that enhances further with the increase of skew 

angle up to 60o. 

 

 

 

 

 

 

 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure 5.61 Correlation between shear distribution factors at obtuse corners obtained 

from FEA results with proposed equations and Jaeger and Smith (1997) at ULS & SLS 

for skewed slab-on-girder bridges at skew angle of; (a) 20o ,(b) 40o, and (c) 60o 
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(a) 

 

 
(b) 
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(c) 

 

Figure 5.62 Correlation between shear distribution factors at acute corners obtained from 

FEA results with proposed equations and Jaeger and Smith (1997) at ULS & SLS for 

skewed slab-on-girder bridges at skew angle of; (a) 20o ,(b) 40o, and (c) 60o 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure 5.63 Correlation between shear distribution factors at interior girder obtained from 

FEA results with proposed equations and Jaeger and Smith (1997) at ULS & SLS for 

skewed slab-on-girder bridges at skew angle of; (a) 20o ,(b) 40o, and (c) 60o 
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(b) 
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(c) 

 

Figure 5.64 Correlation between shear distribution factors at obtuse corners obtained 

from FEA results with proposed equations and Jaeger and Smith (1997) at FLS for 

skewed slab-on-girder bridges at skew angle of; (a) 20o ,(b) 40o, and (c) 60o 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure 5.65 Correlation between shear distribution factors at acute corners obtained from 

FEA results with proposed equations and Jaeger and Smith (1997) at FLS for skewed 

slab-on-girder bridges at skew angle of; (a) 20o ,(b) 40o, and (c) 60o 
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(a) 

 

 
(b) 
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(c) 

 

Figure 5.66 Correlation between shear distribution factors at interior girder obtained from 

FEA results with proposed equations and Jaeger and Smith (1997) at FLS for skewed 

slab-on-girder bridges at skew angle of; (a) 20o ,(b) 40o, and (c) 60o 

Table 5.31 Geometry of prototype bridges considered by Al-Hashimy (2005) 

Design 

lanes 

(n) 

Bridge 

width 

(W), m 

Deck 

width 

(Wc), m 

Number 

of girders 

(N) 

Girder 

spacing 

(S), m 

Deck slab 

(ts), mm 

1 6.0 5.0 3 2.0 225 

2 7.5 6.5 3 2.5 225 

2 9.0 8.0 3 3.0 225 

2 8.0 7.0 4 2.0 225 

2 10.0 9.0 4 2.5 225 

2 & 3 12.0 11.0 4 3.0 225 

2 10.0 9.0 5 2.0 225 

2 & 3 12.5 11.5 5 2.5 225 

4 15.0 14.0 5 3.0 225 

2 & 3 12.0 11.0 6 2.0 225 

4 15.0 14.0 6 2.5 225 

2 & 3 14.0 13.0 7 2.0 225 
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5.4 Correlation of Data with Previous Research 

Based on a parametric study analysis, Al-Hashimy (2005) developed empirical equations 

for the shear and moment distribution factors for straight and curved steel I-girder bridges 

when subjected to the CHBDC (CSA 2000) truck loading. The parametric study included 

256 simply supported straight and curved concrete slab-on-steel I-girder bridge prototypes 

to investigate the shear distribution factors. In addition to that; another parametric study 

was conducted on 64 composite bridge prototypes to investigate the moment distribution 

factors. Details about design parameters considered for this study are presented in Table 

5.31, for four different span lengths i.e. 10 m, 15 m, 25 m and 35 m. All the above-

mentioned bridge prototypes were analyzed to evaluate their structural response against a 

total of 48 different combinations of load cases. Further details about the selected bridge 

prototypes, truck loading and the developed empirical equations for shear and moment 

distribution factors can be seen elsewhere (Al-Hashimy 2005). 

For comparison purposes, Al-Hashimy (2005) shear and moment distribution factor 

equations developed for straight composite steel-I-girder bridges were considered for all 

three limit states. Since, the developed equations were based on CHBDC (CSA 2000), that 

follows the concept of equal distribution of loads among all girder. So, in order to make 

comparison with the empirical equations proposed in this study that are based on the 

current CHBDC (CSA 2014a), the shear and moment distribution factors computed from 

Al-Hashimy’s equations were modified. 

The comparison of Al-Hashimy (2005) equations for the evaluation of moment distribution 

factors for a straight composite slab-on steel I-girder bridge with the FEA results and 

proposed equations are presented in Figure 5.67 to 5.68 respectively, for three limit states. 

However, Figure 5.69 to 5.70 represents the correlation of the shear distribution factors at 

the exterior and interior girders respectively for straight slab-on-girder bridge for ULS, 

SLS and FLS. The comparison revealed that the moment and shear distribution factors 

predicted using the proposed formulas were close to those from the finite element analysis 

results that verifies the proposed formulas. However, for some cases Al-Hashimy (2005) 

design equations presented conservative estimates for the shear and moment distribution 
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factors, while for other situations the design equations demonstrated under-estimated 

response. The main cause of disagreement was the limited selection of the parameters used 

for the formation of design equation for load distribution factors. For-example for all the 

bridge configurations only three girder spacing were considered (i.e. 2.0 m, 2.5 m and 3.0 

m), so it was noticed that most of the bridge geometry outside this girder spacing limit 

resulted in erroneous results. 

It is worth mentioning that the current study was based upon the recent CHBDC code 

specifications (CSA 2014a). For comparison purposes, no other previous study was 

identified that devoted toward the estimation of load distribution factors using the current 

CHBDC design code for the composite slab-on-girder bridges. A substantial amount of 

work related to the evaluation of shear and moment distribution factors that has been 

reported in literature is based on the AASHTO standard vehicle and code specifications 

(Nouri and Ahmadi 2012, Sotelino et al. 2004, Khaloo and Mirzabozorg 2003, Eom and 

Nowak 2001). In Canada, few studies related to the evaluation of load distribution factors 

for slab-on-girder bridges were observed in literature, however they are based on different 

bridge geometry (Wassef 2004, Khalafalla 2009). 

 
(a) 
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(b) 

 

Figure 5.67 Correlation between moment distribution factors obtained from FEA results 

with proposed equations and Al-Hashimy (2005) equations for ULS & SLS for straight 

slab-on-girder bridges for; (a) exterior girder, and (b) interior girder 

 

 
(a) 
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(b) 

 

Figure 5.68 Correlation between moment distribution factors obtained from FEA results 

with proposed equations and Al-Hashimy (2005) equations for FLS for straight slab-on-

girder bridges for; (a) exterior girder, and (b) interior girder 

 

 
(a) 
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(b) 

 

Figure 5.69 Correlation between shear distribution factors obtained from FEA results 

with proposed equations and Al-Hashimy (2005) equations for ULS & SLS for straight 

slab-on-girder bridges for; (a) exterior girder, and (b) interior girder 

 

 
(a) 
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(b) 

Figure 5.70 Correlation between shear distrbution factors obtained from FEA results with 

proposed equations and Al-Hashimy (2005) equations for FLS for straight slab-on-girder 

bridges for; (a) exterior girder, and (b) interior girder 

5.5 Conclusions 

The effect of load distribution in straight and skewed slab-on-girder bridges was 

investigated by conducting a three-dimensional finite element modeling under CHBDC 

truck loading for ultimate, serviceability and fatigue limit states (ULS, SLS and FLS). 

Based on the results obtained from a parametric study, a set of empirical expressions were 

developed for the girder moment and shear distribution factors for rational prediction of 

the girder load distribution for ultimate and serviceability limit states, and fatigue limit 

state, respectively. Further, the load distribution factors for girder moment and shear 

obtained by FEA for both straight and skewed bridge was correlated with the proposed 

empirical equations and the CHBDC design guidelines. The results showed that the 

proposed equations for girder moment and shear distribution factors were in good 

agreement with the FEA results for both straight and skewed bridge configuration. 

However for straight bridge, the CHBDC equations given in clause 5.6.4.3 for estimating 

the load distribution factors under the live loads proved to be ineffective to capture the 
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behavior of most of the straight slab-on-girder bridge geometries. Also for skewed bridges, 

the CHBDC equations given in clause 5.6.6.2 for estimating skew effect gave conservative 

response for certain bridge configurations and for some other bridge geometries it produced 

highly under-estimated response, yielding to an unsafe design. Finally, to validate the 

accuracy of the proposed equations, a comparison of the developed proposed equations for 

the straight and skewed slab-on-girder bridge for the moment and shear distribution factors 

were made with the existing codes available in North America and also with the previous 

research work. Result showed the adequacy of the proposed equations in capturing the 

accurate response of the girders under the truck live loads. Furthermore, the reason of 

disagreement of the existing bridge code specifications with the proposed equations results 

were also highlighted. Based on this study, the equations specified in CHBDC needs to be 

modified to comprehend the shear stresses developing at girder supports under the 

influence of live loads. Also, it was recommended to include moment distribution 

equations proposed in this study for accurate assessment of girder flexural stresses. To 

facilitate bridge engineers and designers, comprehensive design example about the 

procedure to solve the proposed equations for distribution factors for different limits states 

were presented herein. The design examples were evaluated for both the straight and 

skewed bridge geometries. In these illustrative examples the moment distribution factors 

at the exterior and interior girders were computed and compared with the FEA and the 

bridge code specified equations. Similarly, the shear distribution factors at the girder 

obtuse, acute and at the interior girders were calculated by using the proposed equations 

for the straight and the skewed bridge configurations and the results were correlated with 

the FEA and the bridge design formulas for comparison purposes. The comparison of 

results suggested that the bridge design code equations were conservative for a straight 

bridge geometry. Further, for a bridge geometry at 40o skew angle produced highly 

conservative results for the moment and shear distribution factors. For-example for skewed 

bridges at ULS and SLS, the CHBDC design equations were found 30% conservative for 

both moment and shear distribution factors, and for FLS the code equations produced 42% 

and 72% conservative results for moment and shear distribution factors, respectively. The 

results of shear at the acute girders were found significantly affected with the increase of 

skew angle and the CHBDC equation was found unable to predict shear behavior at this 
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location. The main reason of difference was that since the design code equation was 

developed to represent the shear behavior at the girder obtuse corners (clause 5.6.6.2 of 

CSA 2014a) and according to the commentary of clause 5.6.6.2 (CSA 2014b), the same 

equation was applied to represent the behavior of the girders at the acute and interior girder 

locations. 
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CHAPTER 6 

Skew Limitations for Composite Slab-on-Girder Bridges 

6.1 General 

In the past, highway bridges were placed by determining the most suitable crossing site 

and little attention was given to the general alignment of the roadway. In recent years, this 

situation has reversed and now bridges are planned in such a way that they must fit the 

highway alignment constrains. The growing demands of bridge structures on skewed 

alignment is presenting real challenges to  bridge engineers, especially in the design of 

cross roadways, waterways, or railways that are not perpendicular to the bridge at the 

intersection. In North America, about 40% of the total bridge deck area is on skew 

alignment and about 10% of the total area is on heavy skews, ranging between 40o and 70o 

(Helba and Kennedy 1994). 

Skew greatly complicates the behavior of slab-on steel I-girder bridges by introducing 

alternate load paths and causing complex interaction between the main girders and 

secondary framing members that can lead to significant construction and design problems 

(Coletti et al. 2011). In skewed bridges, under the influence of live loads, longitudinal 

girders undergo torsional rotation at the supports (Surana and Humar 1984). These 

rotations are the largest at the obtuse corners and difficult to predict (Choo et al. 2005). 

Over the past decade, several authors have drawn attention to the potential for steel I-girder 

twisting on highly skewed supports (AASHTO/NSBA 2003, Beckman et al. 2005, Coletti 

and Yadlosky (2005, 2007). In addition to girder twisting, skewed bridges can also lead to 

increased flange lateral bending stresses in the girders, as well as increased girder shears 

and end reactions for girders framing into the obtuse corners of the bridge and results in 

subsequent reductions in girder shears and end reactions, and even possibly undesirable 

uplift in girders, framing into the acute corners of the bridge (Fisher 2006, Ozgur et al. 

2011). Furthermore, the presence of skew significantly reduces the longitudinal moment in 

the girders in comparison to straight bridges, and this effect is more pronounced in interior 

girders as compared to exterior girders. (Ebeido 1995, Diab et al. 2011). 
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It is frequently considered safe to ignore the skew angle, if it is less than 20o and analyze 

the bridge as a straight bridge with a span equal to the skew span, since this approach leads 

to a conservative estimate of forces in the skew bridge (OHBDC 1979; 1983, Khaloo and 

Mirzabozorg 2003, Menassa et al. 2007). The implication of this practice is that the angle 

of skew is considered to be the only necessary measure of the “skewness” of the bridge 

with respect to its load distribution characteristics. The use of this approximate procedure 

may lead to significant differences between the skew bridge responses and those of the 

equivalent straight bridge with larger skew angles. Based on the finite element analysis, 

numerous research work has been published (e.g., Marx et al. 1986, Khaleel and Itani 1990, 

Bishara et. al. 1993, Menassa et al. 2007, Mergel and Almansour 2010) indicating the 

mechanical behavior of skewed bridges being quite different from their straight 

counterparts. 

Treating skewed bridge as straight bridge is one of the recommended method to simplify 

their analyses and design procedures, given certain limitations of applicability. The North 

American Bridge Code Specifications (CSA 2006a; 2014a, AASHTO 1996, AASHTO-

LRFD 2014), have specified certain limitations to treat skewed bridges as straight ones. 

Based on the extensive comparative analyses of skew and equivalent right bridges, 

CHBDC (CSA 2006a) adopted the work of Bakht (1988) and Jaeger and Bakht (1989).  

This study shows that the angle of skew of the bridge is not the only necessary measure of 

its skewness but it is also dependent on span length, bridge width and girder spacing (CSA 

2006b clause 5.7.1.1). In-order to characterize the skewness of a slab-on-girder bridges, 

clause 5.6.1.1-c of CHBDC (CSA 2006a) defines a dimensionless parameter as follow: 

18

1tan
≤=

L

S ψ
ε     (6.1) 

where S, L, and ψ are the girder spacing, bridge span, and angle of skew, respectively. To 

allow the analysis of a skew bridge as an equivalent right bridge, the 2006 version of 

CHBDC (CSA 2006a) has imposed the upper limits of 1/18 for ε. This limit ensures that 

the shear values, in particular, are not in unsafe margin by more than 5%. 
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The current CHBDC (CSA 2014a) specification has removed these limits as specified in 

the previous version of CHBDC (CSA 2006a) of treating skew bridges as an equivalent 

straight bridge. However, CHBDC (CSA 2014a) clause 5.6.2-h(ix) requires that for steel-

girder bridges, with skew angle not exceeding 20°, can now be analyzed for the 

longitudinal load effects using the simplified beam analogy method in accordance with 

clauses 5.6.3 to 5.6.9, unless some conditions are met as specified in clause 5.6.2. Also, 

based on the parametric study analysis of skewed slab-on-girder bridges by Theoret and 

Massicotte (2011), the CHBDC has now introduced a skew magnification factor Fs to 

modify the values of FT (clause 5.6.4.1) to account for skew effects for shear at girder 

obtuse corners up to 45o skew angle (clause 5.6.6.2). Further in the commentary of the 

clause 5.6.6.2, it is stated that for simplicity, the same equation of shear magnification 

factor Fs as for dead load was retained for live load. However, based on the three-

dimensional finite element modeling of skewed slab-on-girder bridges under dead loads, 

Razzaq et al. (2016) showed that the CHBDC equation to estimate the shear magnification 

factor at the obtuse corner results in conservative response for certain bridge configurations 

and for other bridge geometries it produces highly under-estimated response.    

The other North American bridge design guidelines i.e. AASHTO Standard specifications 

(AASHTO 1996) have limited recommendations for designing skewed bridges. For 

skewed bridges up to 30o, the AASHTO recommends that the bridge be treated as straight 

with no modifications. However if the skew angle is greater than 30o, AASHTO suggests 

the use of an alternative superstructure configuration or to perform a refined analysis, such 

as, three-dimensional finite element analysis (Menassa et al. 2007, Diab et al. 2011). The 

limitations in the AASHTO standard specification are adequately addressed in the current 

LRFD bridge code (AASHTO-LRFD 2014) by including provisions considering skew for 

slab-on-girder bridges, such as, clause 4.6.2.2.2e and clause 4.6.2.2.3c specifies correction 

factors to adjust the longitudinal bending moment and shear force at the girder obtuse 

corner of a skewed bridge, respectively. These clauses are applicable within certain ranges 

of the design parameters (i.e. skew angle, span length, girder spacing etc.), that are often 

found too narrow and thus frequently exceeded in a routine design (Bishara et. al. 1993, 

Barr and Amin 2006, Nouri and Ahmadi 2012, Gheitasi and Harris 2015).  
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Given the discrepancies in skew limitations in different North American bridge codes, a 

practical design oriented parametric study was conducted to refine such limitations so that 

bridge engineers can design such complex structures more accurately and reliably. The 

following section describes in depth the research methodology we propose for better 

estimation of bridge skew limitations for the composite slab-on-I-girder bridges. 

6.2  Parametric Study 

The literature review presented earlier has demonstrated that the presence of skewness in 

bridge geometry substantially affects girder longitudinal bending moment and shear forces. 

For this reasons, the North American bridge codes (CSA 2014a, AASHTO-LRFD 2014) 

have addressed the behavior of a skewed bridge by developing equations for these load 

effects. In contrast to the AASHTO specifications, the CHBDC (CSA 2006a, 2014a) clause 

3.4.4 specifies the deflection limit for serviceability limit state design of girders as a 

function of the fundamental flexural frequency of the bridge. As such, changes in girder 

bending moments, shear, and fundamental frequency of a skewed bridge are considered in 

this study in terms of a magnification factors when the skew angle changes from 0o to 60o.  

The objectives of the current research were: (1) to evaluate the magnification factors for a 

skewed composite slab-on-girder bridge for different load effects (i.e. moment, shear and 

fundamental frequency), by conducting three-dimensional finite element analysis, and (2) 

for different load effects, magnification factor values were plotted for different skew angle 

ranging from 0o to 60o in order to estimate the most critical load case for which the 

magnification factors values exceed the permissible tolerance limit of ±5%, and (3) finally, 

develop an empirical expression to represent the skew limitations for slab-on-girder 

bridges. To avoid repetition, the material and geometric properties including the selection 

of different finite elements and boundary conditions adopted to generate the three 

dimensional FE model of the bridge prototype have already been explained in chapter 4 

and chapter 5 of this dissertation. Further the loading conditions adopted to develop finite 

element model for the evaluation of magnification factors under dead and live loads have 

already been explained in section 4.4.4 and section 5.2.5 of this dissertation, respectively. 
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6.2.1 Evaluation of Magnification Factors 

A practical design oriented parametric study was conducted on selected skewed bridge 

systems to determine (1) the moment magnification factor, (2) the shear magnification 

factor, and (3) the fundamental flexural frequency magnification factor. These design 

parameters are explained as follows: 

  Moment magnification factor = 
Straight

Skew

σ

σ
   (6.2) 

where, Skewσ  and 
Straightσ are the maximum bending stresses obtained from the finite 

element modeling for a skewed bridge and a straight bridge of similar geometry and 

material characteristics, respectively. Since the literature review reveals that the presence 

of skew significantly reduces the longitudinal moment in the girders in comparison with 

straight bridges, and this effect is more pronounced in interior girders as compared to 

exterior girders. (Ebeido and Kennedy 1996c, Diab et al. 2011). Accordingly, the moment 

magnification factors for both the exterior and interior girders are evaluated using equation 

6.2.  

Shear magnification factor = 
Straight

Skew

V

V
   (6.3) 

where, SkewV  and 
StraightV are the maximum shear force obtained from the finite element 

modeling for a skewed bridge and a straight bridge of similar geometry and material 

characteristics, respectively. It is concluded from the literature review that the increase of 

skew angle causes substantial increase of shear force at the girder obtuse corner, and 

consequently results in the reduction of shear force at the girder acute corners as well as at 

the interior girders (Ebeido 1995, Ozgur et al. 2011). For this purpose the shear 

magnification factors at the girder obtuse, acute, and at interior girders are calculated using 

equation 6.3. 

Frequency magnification factor = 
Straight

Skew

f

f
   (6.4) 
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where, Skewf  and 
Straightf are the maximum fundamental flexural frequencies obtained from 

the finite element modeling for a skewed bridge and a straight bridge of similar geometry 

and material characteristics, respectively. As per clause 3.4.4 of CHBDC (CSA 2014a), 

bridge structure shall satisfy the requirements for the serviceability limit states, so that the 

maximum deflection due to the factored traffic load, including the dynamic load allowance, 

does not exceed the limit specified in Figure 3.1 of CHBDC (CSA 2014a) for the 

anticipated degree of pedestrian use. The CHBDC has presented this deflection limit 

criteria for the bridge structure in terms of first flexural frequency. For this reason, it was 

required to compute the magnification factors of a skewed slab-on-girder bridges by 

considering the flexural frequency of the structure.  

All bridge configurations considered earlier in chapter 4 and chapter 5 of this dissertation 

were utilized for the evaluation of magnification factors using equation 6.2, 6.3 and 6.4 for 

moment, shear and flexural frequency respectively. 

6.2.2  Results from the Parametric Study 

In order to achieve the second objective of the parametric study, the magnification factor 

values were plotted against the skew angle ranging from 0o to 60o at an interval of 10o for 

different span lengths varying from 15 m to 40 m. To identify the limiting skew angle, the 

critical load cases were selected for which the magnification factor values for a skewed 

bridge were more susceptible to exceed ±5% tolerance limits when compared to a straight 

bridge. For load cases where the magnification factor values exceeds the ±5% tolerance 

limit between two skew angle range, located at 10o skew angle interval, the former skew 

angle was considered as a limiting skew angle for such load effect as can be seen in Figure 

6.1, 6.2 and 6.3 for dead load, ULS and SLS, and FLS respectively. From Figure 6.1, it is 

clear that the shear force at obtuse corner resulted in limited skew angle of 20o out of all 

other load effects considered for this study under dead load conditions. Similarly, Figure 

6.2 and 6.3 presents a limited skew angle of 10o while considering the shear at the obtuse, 

acute and interior girder location at ULS and SLS, and FLS respectively. For practical 

design purposes of treating skewed slab-on-girder bridge as an equivalent straight bridge 

with different bridge geometries, it was decided to proceed with the magnification factors 
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values of shear at obtuse, acute corners and interior girder locations at ULS and SLS as 

critical load condition for the development of skew limitation equation, since it represents 

the worst loading scenario that the bridge designers consider while designing a new bridge 

structure or evaluating the existing one (Soliman 1992, Ebeido 1995).  

In order to precisely determine the parameters affecting the magnification factors, a 

sensitivity study was first undertaken to determine the influence of the different bridge 

parameters that may affect them. It was found that the key parameters that affect the 

structural response of a skewed bridge system are: (1) skew angle (ψ ), (2) span length (L), 

(3) girder spacing (S), (4) number of girders (N), and (5) number of lanes (n). To avoid 

repetition, the effect of aforesaid superstructure variables on girder moment and shear 

distribution factors have already been discussed in section 4.4.5 and section 5.2.6 of this 

dissertation for dead and live load conditions, respectively. However, for brevity and space 

limitations the influence of critical parameters on the skewed bridge flexural frequency are 

presented and discussed in the following sub-section. 

6.2.2.1 Effect of Skew Angle 

Skew angle is the most critical factor that influences the flexural frequency of the bridge 

structure. Bapat (2009), based on the finite element modeling of skewed slab-on-girder 

bridges concluded that in case of a skewed bridge, the first three frequencies of vibration 

were found lower as compared to a straight aligned bridge. This effect will be more 

predominant in case of a bridge with higher skew. Figure 6.4, shows the FEA results of a 

frequency magnification factors for a skewed bridge at dead load, ULS and SLS, and FLS. 

The result shows that the increase in skew angle resulted in the reduction of the 

magnification factor. For dead load and at ULS and SLS up to 30o skew angle, the effect 

of skew angle on the flexural frequency of a bridge structure was found insignificant. 

Further, between 30o to 60o skew angle the frequency of the bridge shows substantial 

influence with the change of skew angle, and results in a maximum reduction of 35% and 

38% in the response of a four-lane bridge for dead, and ULS and SLS load conditions 

respectively. However, in FLS this reduction in the response of frequency was more 

prominent when the skew angle changes from 50o to 60o.  
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                         (a)                                                                (b) 

  
            (c)                                                                (d) 

  
            (e)                                                                 (f) 

Figure 6.1 Magnification factor with limiting skew angle at dead load condition for: (a) 

moment for exterior girder, (b) moment for interior girder, (c) shear at obtuse corner, (d) 

shear at acute corner, (e) shear at interior girder, and (f) flexural frequency 
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            (a)                                                               (b) 

  
             (c)                                                                (d) 

  
            (e)                                                                 (f) 

Figure 6.2 Magnification factor with limiting skew angle at ULS and SLS for: (a) 

moment for exterior girder, (b) moment for interior girder, (c) shear at obtuse corner, (d) 

shear at acute corner, (e) shear at interior girder, and (f) flexural frequency 
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           (a)                                                                (b) 

  
           (c)                                                                  (d) 

  
             (e)                                                                 (f) 

Figure 6.3 Magnification factor with limiting skew angle at FLS for: (a) moment for 

exterior girder, (b) moment for interior girder, (c) shear at obtuse corner, (d) shear at 

acute corner, (e) shear at interior girder, and (f) flexural frequency 
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           (a)                                                                   (b) 

 

 

        (c) 

 

Figure 6.4 Effect of skew angle and bridge width on the flexural frequency of slab-on-

girder bridge at: (a) dead load, (b) ULS and SLS, and (c) FLS 
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            (a)                                                                   (b) 

 

 

          (c) 

Figure 6.5 Effect of span length on the flexural frequency of slab-on-girder bridge at: (a) 

dead load, (b) ULS and SLS, and (c) FLS 
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6.2.2.2 Effect of Span Length 

The effect of span length on the flexural frequency of a skewed bridge is shown in Figure 

6.5. Six different span lengths ranging from 15 m to 40 m at a regular interval of 5 m were 

compared to evaluate the influence of flexural frequency with the variation of span length. 

The results showed that the effect is more noticeably in small span length and as the span 

length increases the effect of change of flexural frequency diminishes. 

6.2.2.3 Effect of Bridge Width and Number of Lanes 

The girder spacing is related to the bridge width and the number of longitudinal girders. 

Whereas, bridge width can be considered equal to the number of lanes multiplied by the 

lane width, which can be assumed to be constant for a given bridge configuration. 

Therefore the girder spacing could be dependent to the number of girders and the number 

of lanes. The effect of girder spacing on the frequency magnification factors are presented 

in Figure 6.4 for dead load, ULS and SLS, and FLS. The result shows that with the increase 

of number of lanes that is a function of bridge width, results in the reduction of frequency 

more drastically as compared to the bridge structure having less number of lanes and less 

bridge width.   

6.2.3   Empirical Expression for Magnification Factors 

In order to develop empirical expression, the critical data of magnification factors 

quantified previously in section 6.2.2 from the parametric study under ULS and SLS were 

used to develop empirical expressions for the magnification factors for shear at obtuse, 

acute and interior girder locations. Using regression analysis, a set of empirical equations 

was developed for single-span skewed bridges considered in this study.  

Recently, the CHBDC (CSA 2014a) clause 5.6.3(b) has specified equations to compute the 

shear distribution factor for the skewed slab-on-girder bridges due to dead loads for shored 

sequence of construction, and for the sake of simplicity the same equation is retained for 

live load (clause 5.6.6.2). Further, it is stated in the commentary of clause 5.6.6.2 (CSA 

2014b) that the factor Fs is to be applied to all the girders considering that it is a general 
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practice to have the same girder dimensions for the interior and exterior girders. The 

equation specified in CHBDC codes of practice is as follow: 

)10(

0.2
2.1

+
−=

ε
Fs     (6.5) 

where,        ψε tan.







=

S

L
           (6.6) 

For uniformity and simplicity in understanding the distribution factors for bridge designers 

and engineers, it was decided to keep the format of equation 6.5 the same as proposed in 

the code (CSA 2014a), and develop a modification for the “ε” factor that replaces equation 

6.6, based on the parametric study results. Hence, the general empirical equation for the 

moment and shear “ε” factor took the following form, respectively;  

ψε tan×××××= edcb
nNSLa    (6.7) 

where, a, b, c, d and e are equation variables, L is the bridge span length in meters; S is the 

girder spacing in meters; N is the number of girders, and n is the number of design lanes. 

Using regression analyses sets of empirical equations for shear magnification factor for the 

girders at obtuse, acute corners and interior location at ULS and SLS of a skewed slab-on 

girder bridge were deduced and presented in Table 6.1. 

Table 6.1 Magnification factor equation for live load at ULS & SLS 

Load Effects Magnification 

factor 

ε  

Shear - Obtuse 

)10(

0.2
2.1

+
−

ε
 

ψtan78.0
02.023.018.395.0 ××××× −

nNSL  

Shear - Interior girder  ψtan10.0
0.341.209.013.2 ××××× −−−

nNSL  

Shear - Acute  ψtan98.18 10.008.022.025.0 ×××××− −−−
nNSL  

6.2.4   Empirical Expression for Skew Limitation 

The developed empirical expressions for magnification factors were then extended to 

establish expressions for skew limitations to treat a skewed bridge as an equivalent straight 

bridge by setting the magnification factors to ±5% tolerance (i.e., magnification factor 
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equations were set equal to 1.05 if these factors increases with the increase of skew angle, 

otherwise it was set equal to 0.95 if these factors decreases with the increase of skew angle 

to produce skew limitations). The 5% tolerance was used as the basis to develop the skew 

limitations as specified in clause 5.7.1 of CHBDC (CSA 2006b). In the recent version of 

CHBDC (CSA 2014a), the skew limitations defined earlier in CHBDC (CSA 2006a) are 

removed for slab-on-girder bridges. However, the equations in terms of correction factors 

are introduced to accommodate the skewness in bridge geometry in both North American 

code specifications (CSA 2014a, AASHTO-LRFD 2014). Table 6.2 summarize the 

developed expressions for the skew limitations for concrete slab over steel I-girder bridges 

based on ±5% tolerance in the design parameters, respectively. The developed equations 

were a function of the span length (L), girder spacing (S), number of girder (N), number of 

lanes (n), and skew angle (ψ).  

Table 6.2 Proposed skew limitations based on ±5% tolerance in design parameters 

Magnification 

factor type 

Span (L), m Proposed Skew Limitation Equation 

Shear - Obtuse 4015 ≤≤ L  27.4tan
02.023.018.395.0 ≤×××× − ψnNSL  

Shear – Interior 

girder 

 33.33tan
0.341.209.013.2 ≤×××× −−− ψnNSL  

Shear - Acute  105.0tan10.008.022.025.0 ≥×××× −−− ψnNSL  

6.2.5  Correlation of Proposed Equation with CHBDC (CSA 2006a) 

In order to make the design of a skewed bridge more practical and understandable to bridge 

designers and engineers, a single decisive equation out of the three skew limitation 

equations presented in Table 6.2 was proposed by considering the shear force at the girder 

obtuse corners to be the most critical loading that significantly affect the behavior of a 

skewed bridge. Based on this finding it can be concluded that the proposed equation results 

in an accurate assessment of skew limitation for all the slab-on steel I-girder bridge 

configurations, since the developed limitation include additional parameters based on the 

parametric study analysis, such as, number of girders (N), and number of lanes (n) that do 

not exist in the 2006 CHBDC equation. Further, the concept of equivalent orthotropic plate 

theory used to evolve the skew limitation equation specified in CHBDC (CSA 2006a) has 
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limitation as discussed previously in chapter 2 of this dissertation, which may not be 

realistic for accurate assessment of skewed bridge behavior. Finally, Table 6.3 shows the 

correlation of the proposed equation with the CHBDC equations for limiting skew angle, 

and schematically presented in Figure 6.6. In Figure 6.6 all the bridge configurations were 

plotted and a comparison of limiting skew angle using the code design equation and the 

proposed equation was presented. The result shows that a limiting skew of 18o was obtained 

when considering the proposed equation, while CHBDC design equations resulted in a 

limiting skew angle of 14o.    

 
 

Figure 6.6 Correlation of proposed equation with CHBDC equation for skew limitation 

Table 6.3 Correlation of proposed equation with CHBDC equation for skew limitation 

Skew Limitation Criteria for Slab-on-girder bridge 

Proposed equation Limiting skew 

angle using 

proposed 

equation, ψ,  

(deg.) 

CHBDC 

(CSA 2006a) 

equation 

Limiting skew 

angle using 

CHBDC 

equation, ψ,  

(deg.) 

27.4

tan02.023.018.395.0

≤

×××× − ψnNSL
 18 

18

1tan
≤

L

S ψ
 14 
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6.3 Conclusions 

To treat the skewed slab-over steel I-girder bridge as an equivalent straight bridge, the skew 

limitations were evaluated using three-dimensional finite element modeling to investigate 

the behavior under dead and live load conditions. The major internal forces developed in 

the members were determined during the parametric study, namely, girder longitudinal 

bending stresses, vertical shear forces and bridge fundamental flexural frequencies for 

different degrees of skewness, span length, bridge width, and number of lanes. Based on 

the results from the parametric study on slab-on-girder bridges, the magnification factors 

were evaluated for dead loads, ULS and SLS, and FLS respectively. The effect of 

magnification factor with the change of skew angle was found more predominant for the 

shear at the obtuse, acute corners and interior girder location at ULS and SLS. For these 

critical load cases, the magnification factor equations were developed and were set equal 

to ±5% tolerance error to generate the skew limitation equations for such load effects. 

Finally based on the most critical loading that significantly affect the behavior of a skewed 

bridge, the skew limitation equation for the shear force at the girder obtuse corner was 

proposed to represent the skew limitation criteria for a slab-on steel I-girder bridges.  
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CHAPTER 7 

Load Distribution in Continuous Skewed Bridges 

7.1 General 

Simply supported structures are effectively utilized for highway bridges up to a certain 

span lengths, beyond which using continuous structures become inevitable and proved to 

be cost effective (Amiri 1988). The effect of span continuity results in the development of 

negative moments at the intermediate supports and consequently causes significant 

reduction in span moments. Thus for the design of a new continuous skewed slab-on-girder 

bridges and the evaluation of existing structures require an accurate assessment of girder 

forces at the span and support locations. The use of load distribution factors specified by 

codes of practice does simplify the analysis and design of bridges. However, inaccurate 

prediction of these distribution factors may lead to erroneous design forces especially in 

case of continuous skewed composite bridges.  

The load distribution factors given by North American bridge code specifications 

(AASHTO-LRFD 2014, CSA 2014a) is limited to simply supported bridges when the skew 

parameters are less than certain limit specified in the code. The lack of adequate 

information regarding the load distribution factors for continuous skewed bridges leads to 

extremely conservative design moments for skewed bridges since the equations given in 

these bridge codes does not effectively represents the reduction in girder moment due to 

skewness (Khaleel and Itani 1990, Ebeido and Kennedy 1996a). Furthermore, these codes 

of practice lead to unsafe support reactions and girder shear forces since the equations does 

not adequately capture the distribution of such forces with the increase of skew angle 

(Ebeido and Kennedy 1996b, Modjeski and Masters 2002, Huo and Zhang 2008). In 

addition, these design specifications does not account for the effect of bridge continuity, 

nor the presence of intermediate transverse diaphragms are considered during the 

development of these codes of practice. For this purpose, a better understanding of the 

behavior of skewed continuous bridge is needed in order to develop an adequate method 

that proves to be accurate and easy to use for bridge designers. 
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It is also worth mentioning here that clause 5.6 of the CHBDC has specified equations to 

calculate the load distribution factors for a simply supported single span slab-on-girder 

bridges. Further, clause 5.6.4.6 states to use the same set of design equations for the multi-

span bridges by considering the effective span length in accordance with Figure 5.1(a) of 

CHBDC. To address these concerns, the objective of the current study was to check the 

applicability of the proposed equations developed for moment and shear distribution 

factors for simply supported straight and skewed bridge geometry under the dead and 

CHBDC live load conditions to the continuous multi-span bridge structures.  

In this chapter, the effect of critical parameters on the shear and moment distribution factors 

in continuous skewed composite slab-on-girder bridge are presented. The parameters 

considered for this study were:  span length, girder spacing, number of girders, girder 

stiffness, number of design lanes and skew angle. A detailed parametric study was 

conducted on prototype continuous composite steel-concrete bridges subjected to CHBDC 

truck and lane loads, which ever produces the maximum effort, for the three limit states 

(ULS, SLS and FLS) and under dead load conditions.  

7.2  Parametric Study 

The basic bridge cross-sectional configurations considered herein are presented in Table 

7.1. The number of lanes considered were 1, 2, 3 and 4 lanes with bridge width of 4.5 m 

for one-lane bridges, 7.6 m for two-lane bridges, 11.2 m for three-lane bridges, and 14.6 m 

for four-lane bridges. The span length was 15 m and 30 m, with a total bridge length of 30 

m and 60 m. The number of girders considered was 3 for one-lane bridges, 4 for two-lane 

bridges, 5 for three-lane bridges, and 7 for four-lane bridges. For the above bridge widths 

and number of girders, the girder spacing ranged from 1.5 m to 2.24 m. The angle of skew 

were taken as 0o and 45o.  

To avoid repetition, the material and geometric properties including the selection of 

different finite elements adopted to generate the three dimensional model of the bridge 

prototype have already been explained in chapter 4 and chapter 5. Further, section 4.4.5 

and section 5.2.2 explicitly explains the procedure adopted to evaluate the moment and 

shear distribution factors under the dead and live load condition, respectively.   
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Table 7.1 Geometry of prototype bridges 

Span 

length 

(L), m 

Design 

lanes 

(n) 

Bridge 

width 

(W), m 

Number 

of 

girders 

(N) 

Girder 

spacing 

(S), m 

Girder cross-sectional dimensions, mm 

Girder 

depth 

(d) 

Flange 

width 

(bf) 

Flange 

thickness 

(t1)  

Web 

thickness 

(t2) 

15 1 4.5 3 1.50 1000 300 20 14 

 2 7.6 4 1.90 1000 300 20 14 

 3 11.2 5 2.24 1000 300 20 14 

 4 14.6 7 2.09 1000 300 20 14 

30 1 4.5 3 1.50 1200 550 40 16 

 2 7.6 4 1.90 1200 550 40 16 

 3 11.2 5 2.24 1200 550 40 16 

 4 14.6 7 2.09 1200 550 40 16 

The purpose of this parametric study were: (1) to check the applicability of the previously 

developed equations for moment and shear distribution factors, in chapter 4 and chapter 5, 

for simply supported straight and skewed slab-on-girder composite bridge under the dead 

and live load conditions to the continuous bridge structure, and (2) if the proposed 

equations for simply supported bridge configuration show disagreement for continuous 

bridge geometries then based on the prototype bridges selected for this study generate a 

database for both moment and shear distribution factors leading to the formation of 

empirical equations for the design of continuous skewed composite bridges. The main 

assumption made in the idealization of the continuous skewed bridge structure suggested 

that both the reinforced concrete deck slab and the longitudinal steel girders were simply 

supported at the abutments and continuous over the intermediate piers. This assumption is 

endorsed by number of researchers (Amiri 1988, Ebeido and Kennedy 1996b, Nouri and 

Ahmadi 2012). However, other assumptions made for this study remains the same as 

explained earlier in section 5.2.1 of this dissertation.   

7.2.1  Loading Condition 

For the evaluation of load distribution factors under live load conditions for continuous 

bridge structure, Amiri (1988) and Mabsout et al. (1998) found that the AASHTO HS20 

truck loading governed when determining the maximum positive bending moments in the 

girders, while the lane loading (or train of trucks) governed when determining the 
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maximum negative bending moments. In order to justify the critical loading conditions to 

generate the maximum load effects at the span and support locations using CHBDC truck 

and lane loading, a sensitivity study was carried out by considering a one-lane continuous 

bridge having two equal spans. For the first bridge configuration two equal spans of 15 m 

was considered, and two equal spans of 30 m were selected for the second bridge geometry. 

The width of the two span continuous bridge was kept constant (4.5 m) for all prototype 

bridge selected for this sensitivity study along with the number of girders (3) and girder 

spacing (1.5 m). The results showed that CL-W truck loading generated the maximum 

moments both at the span and intermediate support locations when considering first bridge 

configurations (i.e. two equal spans of 15 m each). However for the second bridge 

configuration (i.e. two equal spans of 30 m each), the loading arrangements suggested by 

Amiri (1988) and Mabsout et al. (1998) to generate the maximum load effects at the span 

and support hold valid. Since no clear indication about the critical loading arrangement 

was observed during the sensitivity study thus it was decided to proceed with both CL-W 

truck and lane load, whichever produces the maximum load effect, as per clause 3.8.4.1 of 

CHBDC (CSA 2014a). However, the application of dead load for the evaluation of 

distribution factors has already been explained in section 4.4.4 of this dissertation.  

7.2.2  Boundary Condition 

Appropriate selection of boundary conditions to suit the nature of the problem and type of 

structure is sometimes a complicated task. In modeling the continuous bridge structure 

supports, the lower nodes of the girder were restrained against translation in such way to 

simulate temperature-free bridge superstructure (Lee 1994). For this purpose in case of a 

two span bridge geometry, at both right and left ends one of the middle supports was 

restrained against vertical and lateral translations, and at the inner intermediate support one 

of the middle supports was restrained against all possible translations (vertical, lateral, and 

longitudinal). The rest of the continuous bridge supports were restrained only against 

vertical translations. Figure 7.1 shows the typical boundary conditions for two-span bridge 

configuration considered in this study. 
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Figure 7.1 Boundary condition for two-span bridge model 

7.2.3  Results from the Parametric Study 

CHBDC (CSA 2014b) clause 5.6.4.6 states that all the equations for the simplified method 

were developed for simply supported span bridges, and by considering the equivalent span 

length (Le) as shown in Figure 5.1(a) of CHBDC (CSA 2014a) all those equations can be 

applied to multi-span geometries and support conditions to determine their respective load 

distribution factors.  

In order to achieve the first objective of the parametric study, the proposed load distribution 

factor equations developed earlier and the CHBDC (CSA 2014a) equations for single span 

bridges for span moment and shear under the dead load and live load conditions were tested 

against the load distribution factor data obtained for the two-span skewed bridge geometry. 

For this purpose, the equivalent span length (Le) as specified for the use of the beam 

analogy method in clause 5.6 of CHBDC (CSA 2014a) was considered i.e. 

For span load effects (i.e. moment and shear) 

         175.0 LLe =            (7.1) 

For intermediate support load effects (i.e. moment and shear) 

    ( )2125.0 LLLe +=     (7.2) 



265 

 

where, Le is the equivalent span length (m), and 1L and 2L  are the clear span lengths (m) 

for the first and second spans respectively.  

It was noticed that for straight single span bridge, the proposed equations developed earlier 

for dead load conditions showed reasonable correlation with the straight multi-span bridge 

data. Hence it was retained in this study for the evaluation of load distribution factors of a 

multi-span bridge at the span and support locations. However for other load conditions at 

different skew angle, it was observed that for some situations the previous developed 

proposed equations and the CHBDC simplified equations proved to be unsafe and for other 

conditions these equations produced conservative results. For comparison purposes, the 

span moment for the interior girder and the shear at the obtuse girder corners for a straight 

(ψ=0o) and skewed (ψ=45o) bridge under the dead and live load conditions are presented 

in Figure 7.2 to 7.7, respectively. 

 

 

 

 

 

 

 

 

 

 

  

 

 

(a)                                                                  (b) 

Figure 7.2 Correlation between load distribution factors at dead load obtained from FEA 

results with proposed equations and CHBDC equations for straight bridges for; (a) 

interior girder span moment, and (b) obtuse girder span shear 
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                                     (a)                                                                   (b) 

Figure 7.3 Correlation between load distribution factors at dead load obtained from FEA 

results with proposed equations and CHBDC equations for skewed bridges for; (a) 

interior girder span moment, and (b) obtuse girder span shear 

 

 
                                     (a)                                                                   (b) 

Figure 7.4 Correlation between load distribution factors at ULS and SLS obtained from 

FEA results with proposed equations and CHBDC equations for straight bridges for; (a) 

interior girder span moment, and (b) obtuse girder span shear 
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                                     (a)                                                                   (b) 

 

Figure 7.5 Correlation between load distribution factors at ULS and SLS obtained from 

FEA results with proposed equations and CHBDC equations for skewed bridges for; (a) 

interior girder span moment, and (b) obtuse girder span shear 

 

 

                                     (a)                                                                   (b) 

 

Figure 7.6 Correlation between load distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC equations for straight bridges for; (a) 

interior girder span moment, and (b) obtuse girder span shear 
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                                    (a)                                                                  (b) 

Figure 7.7 Correlation between load distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC equations for skewed bridges for; (a) 

interior girder span moment, and (b) obtuse girder span shear 

Based on this finding, it was decided to proceed with the second objective of this study and 

develop new equations for the span and support load effects in case of two-span skewed 

bridge geometry. For the development of the new design equations, the effect of different 

bridge parameters was investigated against the data generated from the parametric study. 

The study revealed that at span and support locations the moment and shear distribution 

factors for a two-span straight and skewed slab-on-girder bridge were mainly influenced 

by few critical parameters, namely: span length, girder spacing, number of girders and 

number of design lanes. In-order to keep uniformity and simplicity in understanding the 

distribution factors for bridge designers and engineers, it was decided to keep the format 

of the equations the same as proposed previously in chapter 4 and chapter 5 for dead and 

live load conditions, respectively. By using regression analyses a set of empirical equations 

for moment and shear distribution factor for the straight continuous bridge at dead and live 

load conditions were developed. In order to take into account the skewness in bridge 

geometry a parameter Fs was evaluated and subsequently multiplied with the moment and 

the shear distribution factors for a straight bridge. The equations for a straight continuous 

bridge at span and support locations for dead load, ULS and SLS, and FLS are presented 
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in Table 7.2 to 7.7 respectively. Whereas, Table 7.8 to 7.13 represents the skewed 

continuous bridge at span and support locations for dead load, ULS and SLS, and FLS 

respectively. 

 

Table 7.2 Span distribution factors under dead loads for straight continuous two-span 

bridge 

 

Load effect n Fs ε 

Ext. Girder-

Moment 
1 to 4 

( )

∗

+
−

10

0.2
2.1

ε
 ψTannNSLe ×××××

− 5.175.03.12.1
75.0  

Int. Girder-

Moment 
  ψTannNSLe ×××××− −− 25.175.025.19.0

50.3  

Obtuse 

Girder-Shear 
  ψCosnNSLe ×××××− −− 14.172.158.138.0

14.0  

Acute Girder-

Shear 
  ψCosnNSLe ×××××− −− 14.172.158.138.0

14.0  

Interior 

Girder-Shear 
  ψCosnNSLe ××××× −− 85.219.167.041.0

57.0  

 

 

 

Table 7.3 Support distribution factors under dead loads for straight continuous two-span 

bridge 

Load effect n Fs ε 

Ext. Girder-

Moment 
1 to 4 

( )

∗

+
−

10

0.2
2.1

ε
 ψTannNSLe ×××××

− 5.175.03.12.1
75.0  

Int. Girder-

Moment 
  ψTannNSLe ×××××− −− 25.175.025.19.0

50.3  

Obtuse Girder-

Shear 
  ψCosnNSLe ×××××− −− 14.172.158.138.0

14.0  

Acute Girder-

Shear 
  ψCosnNSLe ×××××− −− 14.172.158.138.0

14.0  

Interior Girder-

Shear 
  ψCosnNSLe ××××× −− 85.219.167.041.0

57.0  
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Table 7.4 Span distribution factors at ULS and SLS for straight continuous two-span 

bridge 

Load 

effect 
n DT λ Cγ  

eγ  

Ext. 

Girder-

Moment 

1 

to 

4 

( ) 01.033.0
92.278.2 −−

×+ NLe
 








−

eL

04.0
19.0  11.0−

S  
Not 

Applicable 

Int. 

Girder-

Moment 

 ( ) 01.031.0
80.1 −×+ NLe

 







+−

eL

75.12
45.0  13.0−

S  
Not 

Applicable 

Ext. 

Girder-

Shear 

 ( ) 07.072.1
93.1472.1 NLe ×+

−  0.0 
44.0

30.8

−








 S  Not 

Applicable 

Int. 

Girder-

Shear 

 ( ) 06.006.0
95.1897.1 NLe ×+  0.0 

46.0

11.1

−








 S  Not 

Applicable 

 

 

 

Table 7.5 Support distribution factors at ULS and SLS for straight continuous two-span 

bridge 

Load 

effect 
n DT λ Cγ  

eγ  

Ext. 

Girder-

Moment 

1 

to 

4 

( ) 11.047.0
13.642.1 NLe ×+

−  







+−

eL

33.16
19.1  41.0−

S  
Not 

Applicable 

Int. 

Girder-

Moment 

 
( ) 12.010.0

20.440.0 NLe ×+
−

 








+−

eL

97.13
87.0  50.0−

S  
Not 

Applicable 

Ext. 

Girder-

Shear 

 
( ) 03.011.0

79.538.6 NLe ×+
−

 
0.0 

354.0

09.0

−








 S  Not 

Applicable 

Int. 

Girder-

Shear 

 
( ) 10.002.0

12.065.4 NLe ×+
−

 
0.0 

60.0

92.0

−








 S  Not 

Applicable 
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Table 7.6 Span distribution factors at FLS for straight continuous two-span bridge 

Load effect n DT λ Cγ  
eγ  

Ext. 

Girder-

Moment 

1 

to 

4 

( ) 02.005.0
71.40.1 NLe ×+−  








+

eL

20.7
09.0  30.0−S  

Table 

5.7 of 

CHBDC 

Int. Girder-

Moment 
 ( ) 10.011.0

09.109.1 NLe ×+  0.05 







+×

eL
S

98.0
13.159.0  0.0 

Ext. 

Girder-

Shear 

 ( ) 19.083.0
77.176.1 NLe ×+

−  0.0 89.012.3 −× S  0.0 

Int. Girder-

Shear 
 ( ) 04.007.0

92.156.1 NLe ×+  0.0 29.083.0 S×  0.0 

 

 

 

Table 7.7 Support distribution factors at FLS for straight continuous two-span bridge 

Load 

effect 
n DT λ Cγ  

eγ  

Ext. 

Girder-

Moment 

1 

to 

4 

( ) 08.017.0
02.825.1 NLe ×+−

−

 









+−

eL

90.20
15.1

 

61.0−
S  

Table 5.7 

of 

CHBDC 

Int. 

Girder-

Moment 

 ( ) 08.049.0
94.268.1 NLe ×+

−
 0.05 








+×

eL
S

63.1
13.1

35.0

 

0.0 

Ext. 

Girder-

Shear 

 ( ) 18.060.1
13.166.1 NLe ×−

−
 0.0 67.018.3 −× S  0.0 

Int. 

Girder-

Shear 

 
( ) 06.013.0

28.040.23 NLe ×−
−

 
0.0 40.013.0 S×  0.0 
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Table 7.8 Span distribution factors under dead loads for skewed continuous two-span 

bridge 

Load effect n Fs ε 

Ext. Girder-

Moment 

1 

to 

4 
( )

∗

+
−

10

0.2
2.1

ε
 ψtan02.0 08.076.113.066.0

××××× −
nNSLe

 

Int. Girder-

Moment 
  ψtan545.1 64.025.020.360.0

×××××− −−
nNSLe

 

Obtuse Girder-

Shear 
  ψtan13.3 10.218.028.310.0

××××× −−
nNSLe

 

Acute Girder-

Shear 
  ψtan75.331 53.105.248.922.0

×××××− −−−
nNSLe

 

Interior Girder-

Shear 
  ψtan31.0 17.165.006.096.0

××××× −−−
nNSLe

 

 

 

 

 

 

 

 

 

Table 7.9 Support distribution factors under dead loads for skewed continuous two-span 

bridge 

Load effect n Fs ε 

Ext. Girder-

Moment 

1 to 

4 ( )

∗

+
−

10

0.2
2.1

ε
 ψtan66.423 0.524.200.1072.4

×××××− −
nNSLe

 

Int. Girder-

Moment 
  ψtan51.60 2.102.270.058.0

×××××− −−
nNSLe

 

Obtuse 

Girder-Shear 
  ψtan28.0 77.212.034.034.0

×××××− −
nNSLe

 

Acute 

Girder-Shear 
  ψtan75.331 53.105.248.922.0

×××××− −−−
nNSLe

 

Interior 

Girder-Shear 
  ψtan31.0 17.165.006.096.0

××××× −−−
nNSLe
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Table 7.10 Span distribution factors at ULS and SLS for skewed continuous two-span 

bridge 

Load effect n Fs ε 

Ext. Girder-

Moment 

1 

to 

4 
( )

∗

+
−

10

0.2
2.1

ε
 ψtan0.29 64.146.138.204.0

×××××− −−−
nNSLe

 

Int. Girder-

Moment 
  ψtan0.30 33.0985.035.048.0

×××××− −−
nNSLe

 

Obtuse Girder-

Shear 
  ψtan0.100 05.220.110.702.1

××××× −−
nNSLe

 

Acute Girder-

Shear 
  ψtan70.2 24.002.092.001.0

×××××− −
nNSLe

 

Interior Girder-

Shear 
  ψtan11.0 75.241.514.011.3

××××× −−−
nNSLe

 

 

 

 

 

Table 7.11 Support distribution factors at ULS and SLS for skewed continuous two-span 

bridge 

Load effect n Fs ε 

Ext. Girder-

Moment 

1 

to 

4 
( )

∗

+
−

10

0.2
2.1

ε
 ψtan02.0 04.095.209.1113.7

××××× −−
nNSLe

 

Int. Girder-

Moment 
  ψtan02.0 41.250.045.124.0

××××× nNSLe
 

Exterior Girder-

Shear 
  ψtan0.500 13.447.545.738.2

××××× −−
nNSLe

 

Interior Girder-

Shear 
  ψtan02.0 43.567.767.117.7

××××× −−
nNSLe
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Table 7.12 Span distribution factors at FLS for skewed continuous two-span bridge 

Load effect n Fs ε 

Ext. Girder-

Moment 

1 

to 

4 
( )

∗

+
−

10

0.2
2.1

ε
 ψtan62.2 51.042.079.159.0

×××××− −−
nNSLe

 

Int. Girder-

Moment 
  ψtan33.0 76.127.059.764.0

×××××− −−−
nNSLe

 

Obtuse Girder-

Shear 
  ψtan13.92 72.357.00.1206.1

××××× −
nNSLe

 

Acute Girder-Shear   ψtan01.0 56.329.321.605.0
×××××− −−

nNSLe
 

Interior Girder-

Shear 
  ψtan39.8 07.285.119.123.0

××××× −−
nNSLe

 

 

 

Table 7.13 Support distribution factors at FLS for skewed continuous two-span bridge 

Load effect n Fs ε 

Ext. Girder-

Moment 

1 

to 

4 
( )

∗

+
−

10

0.2
2.1

ε
 ψtan20.0 10.533.927.1071.7

××××× −−
nNSLe

 

Int. Girder-

Moment 
  ψtan14.95 22.385.093.209.0

××××× −−−
nNSLe

 

Exterior Girder-

Shear 
  ψtan95.106 74.218.392.654.2

××××× −−
nNSLe

 

Interior Girder-

Shear 
  ψtan20.0 60.199.173.036.2

××××× −−
nNSLe

 

7.2.4  Correlation of FEA Results and Proposed Equations with CHBDC 

The correlation between the CHBDC (CSA 2014a) equations and the proposed equations 

based on the parametric study for the moment and shear distribution factors for straight 

and skewed two span continuous bridge at dead and live load conditions were evaluated 

and compared with the load distribution factors (LDF) from the finite element analysis 

results, and presented in Figure 7.8 to 7.13 for a straight continuous bridge at span and 

support locations for dead load, ULS and SLS, and FLS respectively. Whereas, Figure 7.14 

to 7.19 represents the correlation of a skewed continuous bridge at span and support 

locations for dead load, ULS and SLS, and FLS respectively. The results shows good 

correlation between the values obtained from proposed equations and those calculated 
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results from FEA, and all the data points fall within ±5% perfect correlation line, shown 

by dotted lines in Figure 7.8 to 7.19. 

 

 

                                     (a)                                                                    (b) 

 

 

 

 

 

 

 

 

 

 

 

                                     (c)                                                                    (d) 
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                                                                           (e) 

Figure 7.8 Correlation between span load distribution factors at dead load obtained from 

FEA results with proposed equations and CHBDC equations for straight bridges for; (a) 

exterior girder moment, (b) interior girder moment, (c) obtuse girder shear, (d) acute 

girder shear, and (e) interior girder shear 

 

 
 

                                     (a)                                                                   (b)    

 

 

 



277 

 

                                                                                                                               

                                                                                              

                   

   

 

 

 

 

                                      

 

 

 

 

 

 

 

 

         

    (c)                                                                    (d) 

 

 

      (e) 

Figure 7.9 Correlation between support load distribution factors at dead load obtained 

from FEA results with proposed equations and CHBDC equations for straight bridges for; 

(a) exterior girder moment, (b) interior girder moment, (c) obtuse girder shear, (d) acute 

girder shear, and (e) interior girder shear 
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(a)                                                              (b) 

  

(c)                                                                  (d) 

Figure 7.10 Correlation between span load distribution factors at ULS and SLS obtained 

from FEA results with proposed equations and CHBDC equations for straight bridges for; 

(a) exterior girder moment, (b) interior girder moment, (c) exterior girder shear, and (d) 

interior girder shear 
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(a)                                                            (b) 

 

                              

                                     (c)                                                                   (d) 

Figure 7.11 Correlation between support load distribution factors at ULS and SLS 

obtained from FEA results with proposed equations and CHBDC equations for straight 

bridges for; (a) exterior girder moment, (b) interior girder moment, (c) exterior girder 

shear, and (d) interior girder shear 
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                                      (a)                                                                  (b) 

  

           (c)                                                                  (d) 

Figure 7.12 Correlation between span load distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC equations for straight bridges for; (a) 

exterior girder moment, (b) interior girder moment, (c) exterior girder shear, and (d) 

interior girder shear 
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          (a)                                                                  (b) 

  

           (c)                                                                  (d) 

Figure 7.13 Correlation between support load distribution factors at FLS obtained from 

FEA results with proposed equations and CHBDC equations for straight bridges for; (a) 

exterior girder moment, (b) interior girder moment, (c) exterior girder shear, and (d) 

interior girder shear 
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          (a)                                                                  (b) 

 

 

 

  

        (c)                                                                     (d) 
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        (e) 

Figure 7.14 Correlation between span load distribution factors at dead load obtained from 

FEA results with proposed equations and CHBDC equations for skewed bridges for; (a) 

exterior girder moment, (b) interior girder moment, (c) obtuse girder shear, (d) acute 

girder shear, and (e) interior girder shear 

 

  

           (a)                                                                 (b) 
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         (c)                                                                   (d) 

 

 

 

      (e) 

Figure 7.15 Correlation between support load distribution factors at dead load obtained 

from FEA results with proposed equations and CHBDC equations for skewed bridges for; 

(a) exterior girder moment, (b) interior girder moment, (c) obtuse girder shear, (d) acute 

girder shear, and (e) interior girder shear 
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                       (a)                                                                  (b) 

 

 

 

  

           (c)                                                                 (d) 
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        (e) 

Figure 7.16 Correlation between span load distribution factors at ULS and SLS obtained 

from FEA results with proposed equations and CHBDC equations for skewed bridges for; 

(a) exterior girder moment, (b) interior girder moment, (c) obtuse girder shear, (d) acute 

girder shear, and (e) interior girder shear 

 

  

         (a)                                                                   (b) 
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         (c)                                                                     (d) 

Figure 7.17 Correlation between support load distribution factors at ULS and SLS 

obtained from FEA results with proposed equations and CHBDC equations for skewed 

bridges for; (a) exterior girder moment, (b) interior girder moment, (c) exterior girder 

shear, and (d) interior girder shear 

 

 

  

          (a)                                                                  (b) 
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           (c)                                                                 (d) 

 

 

        (e) 

Figure 7.18 Correlation between span load distribution factors at FLS obtained from FEA 

results with proposed equations and CHBDC equations for skewed bridges for; (a) 

exterior girder moment, (b) interior girder moment, (c) obtuse girder shear, (d) acute 

girder shear, and (e) interior girder shear 
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          (a)                                                                  (b) 

  

          (c)                                                                   (d) 

Figure 7.19 Correlation between support load distribution factors at FLS obtained from 

FEA results with proposed equations and CHBDC equations for skewed bridges for; (a) 

exterior girder moment, (b) interior girder moment, (c) exterior girder shear, and (d) 

interior girder shear 

The illustrative example to calculate the span and support moment and shear distribution 

factors using FEA, proposed equation and the CHBDC (CSA 2014a) for a straight slab-on 

steel I-girder bridges at dead loads, ULS and SLS, and FLS are described in Appendix F, 

G and H, respectively. Similarly for the skewed bridge configurations, the illustrative 
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example to calculate the span and support moment and shear distribution factors using 

FEA, proposed equation and the CHBDC (CSA 2014a) at dead loads, ULS and SLS, and 

FLS are presented in Appendix I, J and K, respectively. The result showed that the proposed 

equations were sufficiently accurate in predicting the response of a straight and skewed 

bridge behavior at dead and live load conditions. The CHBDC design equations were found 

highly conservative for both moment and shear at the exterior and interior girder location. 

The main reasons for the inadequacy of the design equation to represent the actual behavior 

of a bridge structure are more likely the same as described earlier in section 4.4.7.  

7.3 Conclusions  

Clause 5.6 of the CHBDC has specified equations to calculate the load distribution factors 

for a simply supported single span slab-on-girder bridges. Further, it is stated in clause 

5.6.4.6 to use the same set of equations for the multi-span bridges by considering the 

effective span length in accordance with Figure 5.1(a) of CHBDC. The objective of this 

study was to check the applicability of the proposed equations for moment and shear 

distribution factors for simply supported straight and skewed bridge geometry under the 

dead and CHBDC live load conditions to the continuous multi-span bridge structures. The 

results showed reasonable correlation with the straight multi-span bridge data for the dead 

load conditions. However for other load conditions at different skew angle the previous 

developed proposed equations and the CHBDC simplified equations proved to be unsafe, 

and for other situations resulted in conservative estimates. Based on this finding, new set 

of equations for the span and support load effects in case of two-span skewed bridge 

geometry were developed, adequately conforming the results obtained from finite element 

analysis. Further for better understanding of these proposed equations to the bridge 

engineers and designers, examples to calculate the load distribution factors at span and 

support locations of a continuous bridge were quantified and addressed herein. It was 

noticed that in case of straight continuous bridge, the CHBDC provisions for wheel loads 

significantly overestimating the design span moments by 33% and 29% for exterior and 

interior girders respectively. The similar trend of overestimation was also observed for the 

span shear at the exterior and interior girder location. However, for support design 

moments, the CHBDC equations resulted in underestimating the response by 23% and 18% 
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for exterior and interior girders respectively. Whereas, the code design provisions for 

support design shear resulted in overestimation by 43% and 23% for exterior and interior 

girders respectively. The addition of skew angle to the bridge geometry further magnified 

the amount the conservatism that the CHBDC design equations reflected for straight 

bridges. It is worth mentioning here that since the proposed equations for the continuous 

straight and skewed bridges at span and support locations were developed based on a 

limited set of bridge data, hence it would be wise to further investigate the applicability of 

these equations by considering broad range of bridge parameters for practical design 

purposes.   
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CHAPTER 8 

Summary and Conclusions 

8.1 Dissertation Summary 

The presence of skew angle in a composite bridge structure makes the analysis and design 

much more complex in comparison to a straight bridge. In skewed bridges, the longitudinal 

girders undergo torsional rotation at the supports under the influence of loads. These 

rotations are more significant at the obtuse corners and they are difficult to predict. In 

addition to girder twisting, skewed bridges can also lead to increased girder shears and end 

reactions for girders framing into the obtuse corners of the bridge and results subsequently 

in reductions of girder shears and end reactions framing into the acute corners of the bridge. 

Furthermore, the presence of skew angle causes significantly reduction in the longitudinal 

bending moment in the girders when compared to straight bridges, and this effect is more 

noticeable in interior girders as compared to exterior girders. 

The concept of load distribution factors enables bridge engineers to consider the 

longitudinal and transverse wheel load effects as two separate phenomena and thus 

simplifying the analysis and design of new bridges as well as for the evaluation of the load 

carrying capacity of existing bridges. Existing bridge design codes do not provide sufficient 

guidance to bridge engineers for assessment of load distribution factors for skew composite 

bridges. Recently, the CHBDC has specified equations considering skew for slab-on-girder 

bridges applicable within certain ranges of design parameters. These limits lead to an 

extremely conservative design in some cases and to unsafe design in others, since these 

factors do not represent the actual behavior of the composite bridge structure. Further, the 

equations in the current design code specifications are developed using the regression of 

grillage analysis results, which is not always recommended for accurate assessment of 

skewed bridge behavior. Also, these design guidelines are developed by considering 

limiting assumptions, such as, as per clause 5.6.2(h)(ix) of CHBDC only bridges with 

diaphragms and cross-frames parallel to the lines of support or without intermediate 

diaphragms can be considered. Previous studies revealed that the presence of internal 
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diaphragms in skewed bridge has a significant effect on the load distribution 

characteristics.  

In order to address the limitations in the CHBDC specifications, the current research was 

initiated to address these concerns by investigating skew bridges behavior and developing 

new design guidelines for accurate prediction of load distribution factors for composite 

skewed bridges. For this purpose, a parametric study was conducted using three-

dimensional finite element modeling under dead and CL-W live loads for ultimate, 

serviceability and fatigue limit states. Based on the results obtained from a parametric 

study, a set of empirical equations were developed for the girder moment and shear 

distribution factors. The results showed that the proposed equations for girder moment and 

shear distribution factors were found in good agreement with the FEA results for both 

straight and skewed bridge geometries. However, the CHBDC equations proved to be 

ineffective to capture the accurate behavior of slab-on-girder bridge configurations, thus 

produced conservative results for certain bridge configurations and for some other bridge 

geometries predicted highly under-estimated response, yielding to an unsafe design. 

Finally, an investigation was carried out to check the applicability of the proposed 

equations developed for simply supported straight and skewed slab-on-girder bridge 

configurations under dead and live load conditions to the multi-span continuous bridge 

structure. It was noticed that both the proposed equations and the CHBDC design equations 

proved to be unsafe for some cases, whereas for other situations resulted in conservative 

estimates. Based on the limited set of bridge prototypes selected for this study, a new set 

of design equations for the span and support load effects were proposed, effectively 

conforming the results obtained from finite element analysis. Further, design guideline to 

simplify the analysis of a skewed bridge geometry was proposed by treating the skewed 

bridge as an equivalent straight bridge.  

8.2   Principal Contributions 

Based on the findings from the sensitivity and parametric studies conducted on selected 

composite straight and skewed bridge configurations subjected to dead loads and CHBDC 

live loads, the following conclusions can be drawn: 
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1) For skew angle less than 30o, moment and shear magnification factors have trivial 

effect with the change of skew angle up to 30o. For that reason, parallel cross-frame 

layout can be used for skew angles up to 30o. However for skew angles greater than 

30o up to 60o perpendicular-discontinuous cross-frame layout provides better load 

distribution among girders by reducing the girder displacement considerably.  

2) For highly skewed bridges, equally spaced cross-frame members along the length of 

the bridge structures and placing them within the prescribed code limitations results in 

a better load distribution among girders by reducing the support reactions at the obtuse 

corners. 

3) The moment magnification factors have insignificant effect on the un-shored sequence 

of construction for the bridge structure when the skew angle changes from 0o to 60o. 

Hence it was concluded to set the moment magnification factors equal to 1 for Md 

calculation in the design equation. 

4) For shored sequence of construction, the moment magnification factors resulted in a 

substantial effect on the girder load distribution characteristics and needs to be 

considered to develop more realistic design guidelines. 

5) For short span bridges ranging from 15 m to 40 m span lengths, the CL-W truck load 

produced dominating girder flexural stresses for a selected bridge configurations when 

compared with CL-W lane loads. 

6) To assess the accuracy about modeling the multi-lane truck loading condition on the 

load distribution among girders in skewed composite steel I-girder bridges, three 

different truck loading conditions were considered, namely: (i) side-by-side trucks 

entering the bridges simultaneously, (ii) multi trucks running over the bridge with time 

lag between them, and (iii) one truck in each lane at a time and with superposition of 

results. The results showed that for short span bridges, considered in this study, all the 

three loading arrangements produced an insignificant effect on girder bending and 

shear stresses.  

7) It was observed that skew has marginal effect on the exterior and interior girder 

moment distribution factor (Fm) for skew angles between 0o and 30o under the 

application of dead loads. However, for skew angle between 30o to 60o, exterior girder 
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showed an increase of Fm value with the increase skew angle. This increase in Fm was 

more noticeable up to two-lane bridge configurations having small span lengths. 

8) A marginal increase of shear distribution factors (Fv) at the girder obtuse corners were 

observed under dead loads between 0o and 30o skew angle. With further increase in 

skew angles from 30o to 60o, the obtuse corners showed a substantial increase in Fv 

value. This increase in the response of Fv value was more pronounced in bridge 

structures having small girder spacing. 

9) No substantial change in the response of Fm was noticed for both the exterior and 

interior girders with the increase of span length up to 30o skew angle. However, 

between 30o to 60o skew angles, a considerable increase in Fm value up to 30 m span 

length was noticed under dead loads. 

10) The girder shear distribution factor at acute corners were found not sensitive to the 

variation of span length up to 60o skew angle under dead loads. However, a marginal 

increase of Fv at the bridge obtuse corners was observed; and it increases with span 

length up to 30o skew angle. However, for skew angle between 30o to 60o, Fv value 

decreases with the increase of span length. This reduction in the response of Fv value 

between 30o to 60o skew angles at the obtuse corners were found less significant in case 

of one-lane and three-lane bridge structures as compared to other bridge configurations. 

11) For the skew angle up to 30o, Fm values for both the exterior and interior girders were 

found unaffected with the change of girder spacing under dead loads. Further increase 

of skew angle between 30o to 60o causes reduction in the exterior girder Fm value. 

However, the effect of girder spacing on the interior girder moment distribution factors 

did not present any clear pattern. 

12) For skew angle up to 30o, Fv value showed a marginal change at the obtuse girder 

supports with the increase of girder spacing. For higher skew angles, increase in girder 

spacing resulted in the reduction of the obtuse corner Fv value.  

13) Based on the results obtained from the parametric study under dead loads, a set of 

empirical equations were developed for girder moment and shear distribution factors. 

The correlation between the CHBDC design equations, proposed equations based on 

the parametric study, and the FEA results was developed. The results showed good 

correlation between the values obtained from the proposed equations and those 
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calculated from FEA, However, CHBDC design equation was found conservative for 

some cases, and for other it resulted in an unsafe design. 

14) Skew angle was found the most critical factor that influences the moment and shear 

distribution among girders under live loads. The study showed that the exterior and 

interior girder moment distribution factors for a composite skewed bridges were always 

less than those of right bridges. Further, it was noticed that the increase in skew angle 

resulted in high concentration of shear force in the obtuse girder corners and causes 

reduction of shear concentration in the girder at the acute corners as well as in the 

interior girders. 

15) For both exterior and interior girders under live loads, the effect of span length resulted 

in the reduction of moment distribution factors when skew angle increases from 0o to 

60o. For span length up to 25 m, the sensitivity of span length on the moment 

distribution factors for the exterior and interior girders was found significant. However, 

for span length between 25 m to 40 m, the effect of span length on the moment 

distribution factors was found marginal. 

16) For straight bridges at ULS and SLS, a marginal decrease in the shear distribution 

factors were noticed with the increase of span length from 15 m to 40 m. the shear 

distribution factors at the obtuse girder corner were found not very sensitive to span 

length. However, the effect of span length on the shear distribution factors were more 

predominantly evident in skewed bridges. Further, for FLS the increase of span length 

resulted in the increase of shear distribution factors at the obtuse girder corner. This 

effect was more significant in skewed bridges as compared to straight bridges. 

17) Bridge structures having less number of girders at large spacing resulted in higher value 

of moment distribution factor for both exterior and interior girder at ULS, SLS and 

FLS, as compared to the bridge geometry comprised of more number of girders 

arranged at less spacing among them.  

18) The decrease of number of girders with greater girder spacing between them resulted 

in higher shear distribution factors for the obtuse, acute and interior girders at ULS, 

SLS, and FLS. 

19) For ULS, SLS and FLS, the effect of girder spacing resulted in an increase of shear 

distribution factor with the increase of skew angle at obtuse girder corner. This effect 
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was more significant in bridge configurations having more number of girders with less 

spacing between them. However, the effect of girder spacing resulted in the decrease 

of shear distribution factor at acute girder corner with the increase of skew angle. 

Further, it was noticed that the effect of girder spacing on the shear distribution factors 

of interior girders at ULS, SLS, and FLS was found to be insignificant. 

20) For straight bridge configuration under live loads, the CHBDC design equations under-

estimate the exterior and interior girder moment when a span length of 15 m was 

considered. However for spans greater than 15 m, the CHBDC equations resulted 

highly conservative estimates in comparison to the FEA. Further, it was noticed that 

for exterior and interior girder shear in a two and four-lane bridge configurations, the 

CHBDC equations produced conservative estimate of distribution factors in 

comparison to the FEA. Also, it was observed that the interior girder shear distribution 

factors were found sensitive to the bridge width, that is a function of girder spacing (S) 

and number of girders (N). 

21) Based on a parametric study a set of empirical expressions were developed for the 

girder moment and shear distribution factors for the accurate assessment of the girder 

load distribution for straight bridges at ULS, SLS and FLS. The correlation between 

the CHBDC equations, proposed equations, and the FEA results for the moment and 

shear distribution factors were developed. The result showed that the proposed 

equations were found sufficiently more accurate in predicting the response of a straight 

bridge behavior. Whereas, the CHBDC equations for both moment and shear 

distribution factors were found conservative for the exterior and interior girders. 

22) The correlation of moment and shear distribution factors evaluated using CHBDC 

design equations, proposed equations, and the FEA results were developed for skewed 

bridges at ULS, SLS and FLS. The result showed that the proposed equations 

predictions were accurate for skewed bridge at ULS, SLS and FLS. The CHBDC design 

equations for both moment and shear at the exterior and interior girder were found 

highly conservative. 

23) With limited set of bridge design parameters, the applicability of the load distribution 

factor equations proposed for simply supported straight and skewed bridge geometry 

under the dead and CHBDC live load conditions were investigated by applying them 
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to the continuous multi-span bridge structures. For a straight bridge configuration under 

dead load conditions, the results showed reasonable correlation between the single span 

and multi-span bridge structures. However for skewed bridges at other load conditions 

the proposed equations and the CHBDC simplified equations proved to be unsafe for 

some situations, and for others it resulted in conservative estimates. Based on this 

finding, it is recommended to further investigate the applicability of the proposed 

equations by considering broader range of bridge parameters for accurate assessment 

of skewed bridges behavior. 

8.3   Future Directions 

It is recommended that future research efforts be directed towards the following items: 

1) The study of the load distribution characteristics of composite skewed multi-span 

bridges by considering the broader range of bridge design parameters for practical 

design purposes. 

2) The study to investigate the load distribution characteristics of a simply supported 

composite straight and skewed bridge configurations supported by prestressed concrete 

girders. 

3) The effect of different slab thickness in a composite skewed bridge on the load 

distribution factors under CHBDC truck loading need to be investigated.  

4) The study of the load distribution characteristics for skewed simply supported and 

continuous multi-span bridges supported by non-parallel support lines. 

5) The study of the dynamic characteristics for skewed simply supported and continuous 

multi-span bridges supported by parallel and non-parallel support lines. 

6) Seismic behavior of the skewed bridges need to be investigated. 
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APPENDIX A 

Illustrative Example for Moment and Shear Distribution Factors for Skewed Slab-on 

Steel I-girder Bridges at Dead Load 

 

For illustrative example, the bridge configuration details are as follows: 

Span length (L) = 25 m; Bridge width (W) = 14.6 m; Girder spacing (S) = 2.09 m; Number 

of girders (N) = 7; Number of lanes (n) = 4, and Skew angle (ψ ) = 60o. 

1) Moment distribution factor calculation (Fm) 

Using FEA: Fm value for exterior girder = 1.08 

   Fm value for interior girder = 1.17 

 Using proposed equation: (reference Table 4.2) 

i. Exterior girder: ( ) ( ) ( ) ( ) ( ) 28.660tan4709.22530.0
85.45.26.425.1

=×××××=
−−

ε  

( )
08.1

1028.6

0.2
2.1 =

+
−=Fm  

ii. Interior girder:  ( ) ( ) ( ) ( ) ( ) 22.460tan4709.22515.0
82.016.104.128.0

=×××××=
−

ε  

( )
15.1

1022.4

0.60
37.5 =

+
−=Fm  

2) Shear distribution factor calculation (Fv) 

Using FEA: Fv value at obtuse corner = 1.39 

   Fv value at acute corner = 0.96 

   Fv value for interior girder = 0.96 

Using proposed equation: (reference Table 4.3) 

i. Obtuse corner: ( ) ( ) ( ) ( ) ( ) 27.7560cos4709.22577.6
61.148.20.10.1

=×××××=
−−

ε  

( )
37.1

52.627.75

35.2
4.1 =

+
−=Fv  
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ii. Acute corner:

 ( ) ( ) ( ) ( ) ( ) 24.160cos4709.22535
38.072.07.116.0

−=×××××−=
−−−

ε  

( )
97.0

1024.1

0.2
2.1 =

+−
−=Fv  

iii. Interior girder: ( ) ( ) ( ) ( ) ( ) 32.6660cos4709.22525.0
35.095.10.115.1

=×××××=
−−

ε  

( )
98.0

5.232.66

4.1
0.1 =

+
−=Fv  

For comparison purposes, shear distribution factor using CHBDC (CSA 2014a, clause 

5.6.3(b)): 

   ( ) 72.2060tan
09.2

25
=×








=ε  

    
( )

13.1
1072.20

0.2
2.1 =

+
−=Fs   

Comment: CHBDC equation underestimates the girder shear at obtuse corners by 19%, whereas 

the design equation overestimates the girder shear at acute corners and at interior girder by 15% 

when compared with FEA. 
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APPENDIX B 

Illustrative Example for Moment and Shear Distribution Factors for Straight Slab-

on Steel I-girder Bridges at ULS and SLS 

 

For illustrative example, the straight bridge configuration details are as follows: 

Span length (L) = 40 m; Bridge width (W) = 18.0 m; Girder spacing (S) = 2.57 m; Number 

of girders (N) = 7; Number of lanes (n) = 4, and Design lane width (We) = 4.25 m. 

B-1: Moment Distribution Factors 

1) Exterior Girder 

i. Using FEA:   

FT_m value for exterior girder = 0.60 

ii. Using proposed equation (reference Table 5.3): 

( )

0.10.158.1
6.0

3.325.4
0.1

6.0

3.3

44.357.2

20.0
40

55.1
24.0

55.1
24.0

58.17)401014.0(1014.0

31.131.1

27.10.227.10.2

=⇒>=
−

⇒≤
−

=

===

−=+−=+−=

=××−=×−= −−

µµ

γ

λ

Take
W

S

L

NLD

e

C

T

 

( )

( )
59.0

)20.0()1(144.358.1

57.2

&05.1
1

)3.4.6.5(

=
−×+×

=∴

≥
+

=

T

L

CT

T

F

SLSULSfor
N

nR

D

S
F

clauseCHBDC

µλγ  

N

nR
F

Check

L
T 05.1)59.0(

:

≥
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)(42.0)59.0(

7

70.04
05.1)59.0(

OKF

F

T

T

≥∴

×
×≥

 

iii. Using CHBDC (CSA 2014a): 

09.0
40

25.0
10.0

25.0
10.0

48.3)
500

40
40.3(

500
40.3

:3.5

=−=−=

=+=







+=

−

e

e
T

L

L
D

TableFrom

λ

 

0.10.158.1
6.0

3.325.4
0.1

6.0

3.3

)5.0(0.1

:5.5

=⇒>=
−

⇒≤
−

=

==

−

µµ

γ

Take
W

SS

TableFrom

e

CC Q  

( )

( )
68.0

)09.0()1(10.148.3

57.2

&05.1
1

)3.4.6.5(

=
×+×

=∴

≥
+

=

T

L

CT

T

F

SLSULSfor
N

nR

D

S
F

clauseCHBDC

µλγ  

)(42.0)68.0(

7

70.04
05.1)68.0(

05.1)68.0(

:

OKF

F

N

nR
F

Check

T

T

L

T

≥∴

×
×≥

≥

 

Comment: CHBDC equations result in conservative estimate (12%) when compared with FEA. 

2) Interior girder 

i. Using FEA:   

FT_m value for interior girder = 0.50 
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ii. Using proposed equation (reference Table 5.4): 

 

( )

0.10.158.1
6.0

3.325.4
0.1

6.0

3.3

10.157.2

18.0
40

50.1
22.0

50.1
22.0

85.37)4021.148.5(21.148.5

10.010.0

10.011.010.011.0

=⇒>=
−
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−

=

===

=−=−=
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µµ

γ

λ
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W

S

L

NLD

e

C

T

 ( )

( )
51.0

)18.0()1(110.185.3

57.2

&05.1
1

)3.4.6.5(
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×+×
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≥
+

=
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L
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T
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SLSULSfor
N

nR

D

S
F
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µλγ  

  

)(42.0)51.0(

7
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05.1)51.0(

05.1)51.0(
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F

Check

T

T
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iii. Using CHBDC (CSA 2014a): 

81.3
540

30.5
60.4

5

30.5
60.4

:3.5

=
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
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
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( )

( )
62.0

)09.0()1(10.181.3

57.2

&05.1
1
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=∴

≥
+

=

T

L

CT

T

F

SLSULSfor
N

nR

D

S
F

clauseCHBDC

µλγ  

)(42.0)62.0(

7

70.04
05.1)62.0(

05.1)62.0(

:

OKF

F

N

nR
F
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T

T

L

T

≥∴

×
×≥

≥

 

Comment: CHBDC equations result in conservative estimate (20%) when compared with FEA. 

B-2: Shear Distribution Factors 

1) Exterior Girder 

i. Using FEA:   

FT_v value for exterior girder = 0.67 

ii. Using proposed equation (reference Table 5.5): 

( )
0.0
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λ
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=
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=∴ TF  
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OKF
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T
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×≥
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iii. Using CHBDC (CSA 2014a): 

00.0
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=
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−

λ
TD

TableFrom

 

0.10.158.1
6.0

3.325.4
0.1

6.0

3.3

)0.2(0.1

:6.5

=⇒>=
−

⇒≤
−

=

≥=

−

µµ

γ

Take
W

S

TableFrom

e

C Q  

( )
SLSULSfor

N

nR

D

S
F

clauseCHBDC

L

CT

T &05.1
1

)3.4.6.5(

≥
+

=
µλγ

 

( )
76.0

)00.0()1(10.140.3

57.2
=

×+×
=∴ TF  

)(42.0)76.0(

7

70.04
05.1)76.0(

05.1)76.0(

:

OKF

F

N

nR
F

Check

T

T

L
T

≥∴

×
×≥

≥

 



315 

 

Comment: CHBDC equations result in conservative estimate (12%) when compared with FEA.  

2) Interior girder 

 

i. Using FEA:   

FT_v value for interior girder = 0.66 

ii. Using proposed equation (reference Table 5.6): 

( )
0.0

53.27)4029.1047.1(29.1047.1 02.002.002.002.0
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λ
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iii. Using CHBDC (CSA 2014a): 
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=⇒>=
−
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Comment: CHBDC equations result in conservative estimate (13%) when compared with FEA. 
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APPENDIX C 

Illustrative Example for Moment and Shear Distribution Factors for Straight Slab-

on Steel I-girder Bridges at FLS 

 

For illustrative example, the straight bridge configuration details are as follows: 

Span length (L) = 40 m; Bridge width (W) = 18.0 m; Girder spacing (S) = 2.57 m; Number 

of girders (N) = 7; Number of lanes (n) = 4, and Design lane width (We) = 3.30 m. 

C-1: Moment Distribution Factors 

1) Exterior Girder 

i. Using FEA:   

FT_m value for exterior girder = 0.32 

ii. Using proposed equation (reference Table 5.9): 

( )
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40
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equations result in conservative estimate (14%) when compared with FEA.  

2) Interior girder 

 

i. Using FEA:   

FT_m value for interior girder = 0.30 

ii. Using proposed equation (reference Table 5.10): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equations result in conservative estimate (30%) when compared with FEA. 

C-2: Shear Distribution Factors 

1) Exterior Girder 

i. Using FEA:   

FT_v value for exterior girder = 0.27 

ii. Using proposed equation (reference Table 5.11): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equations presents highly conservative results (62%) when compared with 

FEA. 

2) Interior girder 

 

i. Using FEA:   

FT_v value for interior girder = 0.47 

ii. Using proposed equation (reference Table 5.12): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equations presents highly conservative results (34%) when compared with 

FEA. 
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APPENDIX D 

Illustrative Example for Moment and Shear Distribution Factors for Skewed Slab-on 

Steel I-girder Bridges at ULS and SLS 

 

For illustrative example, the skewed bridge configuration details are as follows: 

Span length (L) = 40 m; Bridge width (W) = 18.0 m; Girder spacing (S) = 2.57 m; Number 

of girders (N) = 7; Number of lanes (n) = 4; Design lane width (We) = 4.25 m; and Skew 

angle (ψ) = 40o. 

D-1: Moment Distribution Factors 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.58 

ii. Using proposed equation (reference Table 5.15): 

For straight bridge: FT = 0.59 (Appendix B) 

Now for skewed bridge: 

( ) 51.140tan4757.2400.11

tan0.11

30.124.119.102.0

30.124.119.102.0

−=×××××−=

×××××−=
−−−

−−−

ε

ψε nNSL
 

( ) ( )
96.0

1051.1

0.2
2.1

10

0.2
2.1 =

+−
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.59 x 0.96 = 0.57 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.68 (Appendix B) 

Now for skewed bridge: 
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
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
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LDF for a skewed bridge= FT x FS = 0.68 x 1.11 = 0.75 

Comment: CHBDC equations present conservative results (23%) when compared with 

FEA  

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.48 

ii. Using proposed equation (reference Table 5.16): 

For straight bridge: FT = 0.51 (Appendix B) 

Now for skewed bridge: 

 
0.1)40tan(4757.24090.13

tan90.13

28.034.031.003.1

28.034.031.003.1

−=×××××−=

×××××−=
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ψε nNSL
 

( ) ( )
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0.2
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10

0.2
2.1 =

+−
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.51 x 0.97 = 0.49 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.62 (Appendix B) 

Now for skewed bridge: 
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( ) ( )
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LDF for a skewed bridge= FT x FS = 0.62 x 1.11 = 0.68 

Comment: CHBDC equations present conservative results (30%) when compared with 

FEA 

D-2: Shear Distribution Factors 

1) Obtuse Corner 

i. Using FEA:   

LDF value for obtuse corner = 0.73 

ii. Using proposed equation (reference Table 5.17): 

For straight bridge: FT = 0.69 (Appendix B) 

Now for skewed bridge: 

  
39.1)40tan(4757.24012.1

tan12.1

39.002.056.137.0

39.002.056.137.0

=×××××=

×××××=
−−

−−

ε

ψε nNSL
 

  
( ) ( )

11.1
31.139.1

80.0
412.1

31.1

80.0
412.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.69 x 1.11 = 0.76 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.76 (Appendix B) 

Now for skewed bridge: 
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  06.13)40tan(
57.2

40
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( ) ( )
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+
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ε
Fs  

  LDF for a skewed bridge= FT x FS = 0.76 x 1.11 = 0.84 

Comment: CHBDC equations present conservative results (13%) when compared with 

FEA 

2) Acute Corner 

i. Using FEA:   

LDF value for acute corner = 0.59 

ii. Using proposed equation (reference Table 5.18): 

For straight bridge: FT = 0.69 (Appendix B) 

Now for skewed bridge: 

  
09.4)40tan(4757.2400.5

tan0.5

03.004.0035.003.0
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ε
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LDF for a skewed bridge= FT x FS = 0.69 x 0.86 = 0.59 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.76 (Appendix B) 

Now for skewed bridge: 
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  LDF for a skewed bridge= FT x FS = 0.76 x 1.11 = 0.84 
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Comment: CHBDC equations present conservative results (30%) when compared with 

FEA 

3) Interior girder 

 

i. Using FEA:   

LDF value for interior girder = 0.67 

 

ii. Using proposed equation (reference Table 5.19): 

For straight bridge: FT = 0.67 (Appendix B) 

Now for skewed bridge: 

04.0)40tan(4757.24045.0

tan45.0

66.317.498.073.2
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=×××××=
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+
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ε
Fs  

LDF for a skewed bridge= FT x FS = 0.67 x 1.00 = 0.67 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.76 (Appendix B) 

Now for skewed bridge: 
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  LDF for a skewed bridge= FT x FS = 0.76 x 1.11 = 0.84 

Comment: CHBDC equations present conservative results (20%) when compared with 

FEA 
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APPENDIX E 

Illustrative Example for Moment and Shear Distribution Factors for Skewed Slab-on 

Steel I-girder Bridges at FLS 

 

For illustrative example, the skewed bridge configuration details are as follows: 

Span length (L) = 40 m; Bridge width (W) = 18.0 m; Girder spacing (S) = 2.57 m; Number 

of girders (N) = 7; Number of lanes (n) = 4; Design lane width (We) = 3.3 m; and Skew 

angle (ψ) = 40o. 

E-1: Moment Distribution Factors 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.31 

ii. Using proposed equation (reference Table 5.22): 

For straight bridge: FT = 0.33 (Appendix C) 

Now for skewed bridge: 

 
80.1)40tan(4757.24028.0

tan28.0

58.139.205.264.0
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+
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ε
Fs  

LDF for a skewed bridge= FT x FS = 0.33 x 0.96 = 0.32 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.37 (Appendix C) 

Now for skewed bridge: 
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LDF for a skewed bridge= FT x FS = 0.37 x 1.11 = 0.41 

Comment: CHBDC equations present conservative results (25%) when compared with 

FEA 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.28 

ii. Using proposed equation (reference Table 5.23): 

For straight bridge: FT = 0.31 (Appendix C) 

Now for skewed bridge: 

 
59.2)40tan(4757.24012.0

tan12.0
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ε
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LDF for a skewed bridge= FT x FS = 0.31 x 0.93 = 0.29 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.43 (Appendix C) 

Now for skewed bridge: 
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( ) ( )
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1006.13
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ε
Fs  

LDF for a skewed bridge= FT x FS = 0.43 x 1.11 = 0.48 

Comment: CHBDC equations present conservative results (42%) when compared with 

FEA 

E-2: Shear Distribution Factors 

1) Obtuse Corner 

i. Using FEA:   

LDF value for obtuse corner = 0.33 

ii. Using proposed equation (reference Table 5.24): 

For straight bridge: FT = 0.26 (Appendix C) 

Now for skewed bridge: 

  
48.275)40tan(4757.24030.0

tan30.0
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ε
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  LDF for a skewed bridge= FT x FS = 0.26 x 1.19 = 0.31 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.71 (Appendix C) 

Now for skewed bridge: 
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  LDF for a skewed bridge= FT x FS = 0.71 x 1.11 = 0.79 

Comment: CHBDC equations present highly conservative results (58%) when compared 

with FEA. 

2) Acute Corner 

i. Using FEA:   

LDF value for acute corner = 0.22 

ii. Using proposed equation (reference Table 5.25): 

For straight bridge: FT = 0.26 (Appendix C) 

Now for skewed bridge: 

  
20.4)40tan(4757.24080.2
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LDF for a skewed bridge= FT x FS = 0.26 x 0.86 = 0.22 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.71 (Appendix C) 

Now for skewed bridge: 
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  LDF for a skewed bridge= FT x FS = 0.71 x 1.11 = 0.79 

Comment: CHBDC equations present highly conservative results (72%) when compared 

with FEA 

3) Interior girder 

 

i. Using FEA:   

LDF value for interior girder = 0.49 

ii. Using proposed equation (reference Table 5.26): 

For straight bridge: FT = 0.47 (Appendix C) 

Now for skewed bridge: 

06.2)40tan(4757.24050.93

tan50.93

63.1017.1491.475.3
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LDF for a skewed bridge= FT x FS = 0.47 x 1.03 = 0.48 

iii. Using CHBDC (CSA 2014a): 

For straight bridge: FT = 0.71 (Appendix C) 

Now for skewed bridge: 
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  LDF for a skewed bridge= FT x FS = 0.71 x 1.11 = 0.79 

Comment: CHBDC equations present highly conservative results (38%) when compared 

with FEA. 
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APPENDIX F 

Illustrative Example for Moment and Shear Distribution Factors for Straight Two-

span Continuous Slab-on Steel I-girder Bridges at Dead Load 

 

For the evaluation of distribution factors under dead load conditions, the illustrative 

example of a straight two-span continuous bridge configuration details are as follows: 

Two equal spans having clear span length (L1 & L2) = 30 m; Bridge width (W) = 4.5 m; 

Girder spacing (S) = 1.50 m; Number of girders (N) = 3; Number of lanes (n) = 1, and 

Design lane width (We) = 3.5 m. 

Span Moment Distribution Factors at Exterior and Interior Girder 

For span moment: Le = 0.75L1 = 0.75x30 = 22.5 m 

 

Using FEA: Fm value for exterior girder = 1.0 

   Fm value for interior girder = 0.98 

 Using proposed equation (reference Table 7.2): 

i. Exterior girder: ( )o00 == ψε Q  

( )
0.1

100

0.2
2.1 =

+
−=Fm  

ii. Interior girder: 0=ε  

( )
0.1

100

0.2
2.1 =

+
−=Fm  

Support Moment Distribution Factors at Exterior and Interior Girder 

For intermediate support moment: Le = 0.25 (L1 + L2) = 0.25 (30 + 30) = 15.0 m 

 

Using FEA: Fm value for exterior girder = 1.0 
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   Fm value for interior girder = 0.98 

 Using proposed equation (reference Table 7.3): 

i. Exterior girder: 0=ε  

( )
0.1

100

0.2
2.1 =

+
−=Fm  

ii. Interior girder: 0=ε  

( )
0.1

100

0.2
2.1 =

+
−=Fm  

Span Shear Distribution Factors at Exterior and Interior Girder 

For span shear: Le = 0.75L1 = 0.75x30 = 22.5 m 

 

Using FEA: Fv value for exterior girder = 0.97 

   Fv value for interior girder = 1.06 

 Using proposed equation (reference Table 7.2): 

i. Exterior girder:   

 ( ) ( ) ( ) ( ) ( ) 59.10cos1350.15.2214.0
14.172.158.138.0

−=×××××−=
−−

ε  

( )
96.0

1059.1

0.2
2.1 =

+−
−=Fv  

ii. Interior girder:  

( ) ( ) ( ) ( ) ( ) 76.50cos1350.15.2257.0
85.219.167.041.0

=×××××=
−−

ε  

 
( )

07.1
1076.5

0.2
2.1 =

+
−=Fv  

For comparison purposes, shear distribution factor using CHBDC (CSA 2014a, clause 

5.6.3(b)): 
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 ( ) 00tan
50.1

5.22
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0.1
100

0.2
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+
−=Fs  

Comment: CHBDC equation underestimates the interior girder shear by 6% when compared with 

FEA. 

Support Shear Distribution Factors at Exterior and Interior Girder 

For intermediate support shear: Le = 0.25 (L1 + L2) = 0.25 (30 + 30) = 15.0 m 

 

Using FEA: Fv value for exterior girder = 0.97 

   Fv value for interior girder = 1.05 

 Using proposed equation (reference Table 7.3): 

i. Exterior girder:

 ( ) ( ) ( ) ( ) ( ) 37.10cos1350.10.1514.0
14.172.158.138.0

−=×××××−=
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ii. Interior girder:  
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85.219.167.041.0

=×××××=
−−

ε  

 
( )
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2.1 =

+
−=Fv  

For comparison purposes, shear distribution factor using CHBDC (CSA 2014a, clause 

5.6.3(b)): 

   ( ) 00tan
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



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
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100
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+
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Comment: CHBDC equation underestimates the interior girder shear by 5% when compared with 

FEA. 
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APPENDIX G 

Illustrative Example for Moment and Shear Distribution Factors for Straight Two-

span Continuous Slab-on Steel I-girder Bridges at ULS and SLS 

 

For the evaluation of distribution factors, the illustrative example of a straight two-span 

continuous bridge configuration details are as follows: 

Two equal spans having clear span length (L1 & L2) = 15 m; Bridge width (W) = 14.6 m; 

Girder spacing (S) = 2.09 m; Number of girders (N) = 7; Number of lanes (n) = 4, and 

Design lane width (We) = 3.4 m. 

Span Moment Distribution Factors at Exterior and Interior Girder 

For span moment at ULS and SLS: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

FT_m value for exterior girder = 0.55 

ii. Using proposed equation (reference Table 7.4):  
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation overestimates the exterior girder moment by 8%, when compared 

with FEA. 

2) Interior girder 

i. Using FEA:   

FT_m value for interior girder = 0.55 

ii. Using proposed equation (reference Table 7.4): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation overestimates the exterior girder moment by 13%, when compared 

with FEA. 

Support Moment Distribution Factors at Exterior and Interior Girder 

For intermediate support moment at ULS and SLS: Le = 0.25(L1 + L2) = 0.25(15 +15) = 

7.5 m 

1) Exterior Girder 

i. Using FEA:   
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FT_m value for exterior girder = 0.52 

ii. Using proposed equation (reference Table 7.5): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation overestimates the exterior girder support moment by 16%, when 

compared with FEA. 

2) Interior girder 

i. Using FEA:   

FT_m value for interior girder = 0.54 

ii. Using proposed equation (reference Table 7.5): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation overestimates the interior girder support moment by 20%, when 

compared with FEA. 

Span Shear Distribution Factors at Exterior and Interior Girder 

For span shear at ULS and SLS: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

FT_v value for exterior girder = 0.53 

ii. Using proposed equation (reference Table 7.4): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation overestimates the exterior girder span shear by 13%, when 

compared with FEA. 



347 

 

2) Interior girder 

i. Using FEA:   

FT_v value for interior girder = 0.62 

 

ii. Using proposed equation (reference Table 7.4): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows good correlation with FEA. 

Support Shear Distribution Factors at Exterior and Interior Girder 

For intermediate support shear at ULS and SLS:   Le = 0.25 (L1 + L2) = 0.25 (15 +15) = 7.5 

m 

1) Exterior Girder 

i. Using FEA:   

FT_v value for exterior girder = 0.56 

ii. Using proposed equation (reference Table 7.5): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation overestimates the exterior girder support shear by 8%, when 

compared with FEA. 

 

2) Interior girder 

i. Using FEA:   

FT_v value for interior girder = 0.61 

ii. Using proposed equation (reference Table 7.5): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows good correlation with FEA. 
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APPENDIX H 

Illustrative Example for Moment and Shear Distribution Factors for Straight Two-

span Continuous Slab-on Steel I-girder Bridges at FLS 

 

For the evaluation of distribution factors, the illustrative example of a straight two-span 

continuous bridge configuration details are as follows: 

Two equal spans having clear span length (L1 & L2) = 15 m; Bridge width (W) = 14.6 m; 

Girder spacing (S) = 2.09 m; Number of girders (N) = 7; Number of lanes (n) = 4, and 

Design lane width (We) = 3.4 m. 

Span Moment Distribution Factors at Exterior and Interior Girder 

For span moment at FLS: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

FT_m value for exterior girder = 0.50 

ii. Using proposed equation (reference Table 7.6): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows good correlation with FEA. 

2) Interior girder 

i. Using FEA:   

FT_m value for interior girder = 0.38 

ii. Using proposed equation (reference Table 7.6): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows overestimates the interior girder span moment by 27% when 

compared with FEA. 

Support Moment Distribution Factors at Exterior and Interior Girder 

For intermediate support moment at FLS: Le = 0.25 (L1 + L2) = 0.25 (15 +15) = 7.5 m 

1) Exterior Girder 

i. Using FEA:   

FT_m value for exterior girder = 0.47 

ii. Using proposed equation (reference Table 7.7): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows overestimates the exterior girder support moment by 10% 

when compared with FEA. 

2) Interior girder 

i. Using FEA:   

FT_m value for interior girder = 0.38 

ii. Using proposed equation (reference Table 7.7): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows overestimates the interior girder support moment by 32% 

when compared with FEA. 

Span Shear Distribution Factors at Exterior and Interior Girder 

For span shear at FLS: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

FT_v value for exterior girder = 0.47 

ii. Using proposed equation (reference Table 7.6): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows overestimates the exterior girder shear by 19% when 

compared with FEA. 

2) Interior girder 

i. Using FEA:   

FT_v value for interior girder = 0.51 
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ii. Using proposed equation (reference Table 7.6): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows overestimates the interior girder shear by 12% when 

compared with FEA. 

Support Shear Distribution Factors at Exterior and Interior Girder 

For intermediate support shear at FLS: Le = 0.25 (L1 + L2) = 0.25 (15 +15) = 7.5 m 

1) Exterior Girder 

i. Using FEA:   

FT_v value for exterior girder = 0.49 

ii. Using proposed equation (reference Table 7.7): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows overestimates the exterior girder support shear by 16% when 

compared with FEA. 

2) Interior girder 

 

i. Using FEA:   

FT_v value for interior girder = 0.47 

ii. Using proposed equation (reference Table 7.7): 
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iii. Using CHBDC (CSA 2014a): 
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Comment: CHBDC equation shows overestimates the interior girder support shear by 19% when 

compared with FEA. 
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APPENDIX I 

Illustrative Example for Moment and Shear Distribution Factors for Skewed Two-

span Continuous Slab-on Steel I-girder Bridges at Dead Load 

 

For the evaluation of distribution factors at dead load conditions, the illustrative example 

of a skewed two-span continuous bridge configuration details are as follows: 

Two equal spans having clear span length (L1 & L2) = 30 m; Bridge width (W) = 4.5 m; 

Girder spacing (S) = 1.50 m; Number of girders (N) = 3; Number of lanes (n) = 1; Design 

lane width (We) = 3.5 m, and Skew angle (ψ) = 45o. 

Span Moment Distribution Factors at Exterior and Interior Girder 

For span moment: Le = 0.75L1 = 0.75x30 = 22.5 m 

 

Using FEA: Fm value for exterior girder = 1.02 

   Fm value for interior girder = 0.94 

 Using proposed equation (reference Table 7.8): 

i. Exterior girder: 14.1)45tan(135.15.2202.0 08.076.113.066.0 =×××××= −ε  

( )
02.1

1014.1

0.2
2.1 =

+
−=Fm  

ii. Interior girder: 15.1)45tan(135.15.22545.1 64.025.02.360.0 −=×××××−= −−ε  

 
( )

97.0
1015.1

0.2
2.1 =

+−
−=Fm  

Support Moment Distribution Factors at Exterior and Interior Girder 

For intermediate support moment: Le = 0.25 (L1 + L2) = 0.25 (30 + 30) = 15.0 m 

 

Using FEA: Fm value for exterior girder = 0.98 
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   Fm value for interior girder = 0.97 

 Using proposed equation (reference Table 7.9): 

i. Exterior girder: 91.1)45tan(135.10.1566.423 0.524.200.1072.4 −=×××××−= −ε  

( )
95.0

1091.1

0.2
2.1 =

+−
−=Fm  

ii. Interior girder: 82.1)45tan(135.10.1551.60 2.102.270.058.0 −=×××××−= −−ε  

 
( )

96.0
1082.1

0.2
2.1 =

+−
−=Fm  

Span Shear Distribution Factors at Exterior and Interior Girder 

For span shear: Le = 0.75L1 = 0.75x30 = 22.5 m 

 

Using FEA: Fv value for exterior girder = 0.99 

   Fv value for interior girder = 1.04 

 Using proposed equation (reference Table 7.8): 

i. Exterior girder:  

( ) ( ) ( ) ( ) ( ) 74.045tan1350.15.2213.3
10.218.028.310.0

=×××××=
−−

ε

 

( )
01.1

1074.0

0.2
2.1 =

+
−=Fv  

ii. Interior girder:         

( ) ( ) ( ) ( ) ( ) 94.245tan1350.15.2231.0
17.165.006.096.0

=×××××=
−−−

ε   

  
( )

05.1
1094.2

0.2
2.1 =

+
−=Fv  

For comparison purposes, shear distribution factor using CHBDC (CSA 2014a, clause 

5.6.3(b)): 
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   ( ) 0.1545tan
50.1

5.22
=×








=ε     

  
( )

12.1
1015

0.2
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+
−=Fs  

Comment: CHBDC equation overestimates the exterior and interior girder span shear by 12% and 

7%, respectively when compared with FEA. 

Support Shear Distribution Factors at Exterior and Interior Girder 

For intermediate support shear: Le = 0.25 (L1 + L2) = 0.25 (30 + 30) = 15.0 m 

 

Using FEA: Fv value for exterior girder = 0.98 

   Fv value for interior girder = 1.03 

 Using proposed equation (proposed Table 7.9): 

i. Exterior girder:

 ( ) ( ) ( ) ( ) ( ) 92.045tan1350.10.1528.0
77.212.034.034.0

−=×××××−=
−

ε  

( )
98.0

1092.0

0.2
2.1 =

+−
−=Fv  

ii. Interior girder:  

( ) ( ) ( ) ( ) ( ) 0.245tan1350.10.1531.0
17.165.006.096.0

=×××××=
−−−

ε  

 
( )

03.1
100.2

0.2
2.1 =

+
−=Fv  

For comparison purposes, shear distribution factor using CHBDC (CSA 2014a, clause 

5.6.3(b)): 

   ( ) 0.1045tan
50.1

0.15
=×








=ε  

   
( )

10.1
1010

0.2
2.1 =

+
−=Fs  

Comment: CHBDC equation overestimates the exterior and interior girder shear by 11% and 7%, 

respectively when compared with FEA. 

 

 



370 

 

APPENDIX J 

Illustrative Example for Moment and Shear Distribution Factors for Skewed Two-

span Continuous Slab-on Steel I-girder Bridges at ULS and SLS 

 

For the evaluation of distribution factors, the illustrative example of a skewed two-span 

continuous bridge configuration details are as follows: 

Two equal spans having clear span length (L1 & L2) = 15 m; Bridge width (W) = 14.6 m; 

Girder spacing (S) = 2.09 m; Number of girders (N) = 7; Number of lanes (n) = 4; Design 

lane width (We) = 3.4 m, and Skew angle (ψ) = 45o. 

Span Moment Distribution Factors at Exterior and Interior Girder 

For span moment: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.52 

ii. Using proposed equation (reference Table 7.10): 

For the same bridge configuration with skew angle = 0o; FT = 0.55 

Now for skewed bridge: 

( ) 58.245tan4709.225.110.29

tan0.29

64.146.138.204.0

64.146.138.204.0

−=×××××−=

×××××−=

−−−

−−−

ε

ψε nNSLe
 

( ) ( )
93.0

1058.2

0.2
2.1

10

0.2
2.1 =

+−
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.55 x 0.93 = 0.51 

iii. Using CHBDC (CSA 2014a): 
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For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.60 

Now for skewed bridge: 

( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45tan(
09.2

25.11
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.60 x 1.07 = 0.64 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.50 

ii. Using proposed equation (reference Table 7.10): 

For the same bridge configuration with skew angle = 0o; FT = 0.54 

Now for skewed bridge: 

 
82.2)45tan(4709.225.110.30

tan0.30

33.0985.035.048.0

33.0985.035.048.0

−=×××××−=

×××××−=
−−

−−

ε

ψε nNSL
 

( ) ( )
92.0

1082.2

0.2
2.1

10

0.2
2.1 =

+−
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.54 x 0.92 = 0.50 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.63 

Now for skewed bridge: 
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( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45tan(
09.2

25.11
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.63 x 1.07 = 0.67 

Comment: CHBDC equation overestimates the exterior and interior girder moment by 18% and 

25%, respectively when compared with FEA. 

Support Moment Distribution Factors at Exterior and Interior Girder 

For intermediate support moment: Le = 0.25 (L1 + L2) = 0.25 (15 +15) = 7.5 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.51 

ii. Using proposed equation (reference Table 7.11): 

For the same bridge configuration with skew angle = 0o; FT = 0.52 

Now for skewed bridge: 

( ) 03.045tan4709.25.702.0

tan02.0

04.095.209.1113.7

04.095.209.1113.7

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
00.1

1003.0

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.52 x1.00 = 0.52 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.61 
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Now for skewed bridge: 

( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45tan(
09.2

5.7
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.61 x 1.05 = 0.64 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.55 

ii. Using proposed equation (reference Table 7.11): 

For the same bridge configuration with skew angle = 0o; FT = 0.54 

Now for skewed bridge: 

 
06.7)45tan(4709.25.702.0

tan02.0

41.250.045.124.0

41.250.045.124.0

=×××××=

×××××=

ε

ψε nNSLe
 

( ) ( )
08.1

1006.7

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.54 x 1.08 = 0.58 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.67 

Now for skewed bridge: 

( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45tan(
09.2

5.7
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le
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LDF for a skewed bridge= FT x FS = 0.67 x 1.05 = 0.70 

Comment: CHBDC equation overestimates the support exterior and interior girder moment by 

20% and 21%, respectively when compared with FEA. 

Span Shear Distribution Factors at Exterior and Interior Girder 

For span shear: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.57 

ii. Using proposed equation (reference Table 7.10): 

For the same bridge configuration with skew angle = 0o; FT = 0.51 

Now for skewed bridge: 

( ) 45.1045tan4709.225.110.100

tan0.100

05.22.11.702.1

05.22.11.702.1

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
10.1

1045.10

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.51 x 1.10 = 0.56 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.61 

Now for skewed bridge: 
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( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45tan(
09.2

25.11
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.61 x 1.07 = 0.65 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.63 

ii. Using proposed equation: 

For the same bridge configuration with skew angle = 0o; FT = 0.60 

Now for skewed bridge: 

 
0001.0)45tan(4709.225.1111.0

tan11.0

75.241.514.011.3

75.241.514.011.3

=×××××=

×××××=

−−−

−−−

ε

ψε nNSLe
 

( ) ( )
0.1

100001.0

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.60 x 1.0 = 0.60 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.61 

Now for skewed bridge: 

( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45tan(
09.2

25.11
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.61 x 1.07 = 0.65 
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Comment: CHBDC equation overestimates the span exterior and interior girder shear by 12% and 

3%, respectively when compared with FEA.  

Support Shear Distribution Factors at Exterior and Interior Girder 

For intermediate support shear: Le = 0.25 (L1 + L2) = 0.25 (15 +15) = 7.5 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.58 

ii. Using proposed equation (reference Table 7.11): 

For the same bridge configuration with skew angle = 0o; FT = 0.54 

Now for skewed bridge: 

( ) 82.145tan4709.25.70.500

tan0.500

13.447.545.738.2

13.447.545.738.2

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
03.1

1082.1

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.54 x 1.03 = 0.56 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.61 

Now for skewed bridge: 

( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45tan(
09.2

5.7
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.61 x 1.05 = 0.64 

2) Interior girder 
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i. Using FEA:   

LDF value for interior girder = 0.67 

ii. Using proposed equation: 

For the same bridge configuration with skew angle = 0o; FT = 0.59 

Now for skewed bridge: 

 
73.6)45tan(4709.25.702.0

tan02.0

43.567.767.117.7

43.567.767.117.7

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
08.1

1073.6

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.59 x 1.08 = 0.64 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.61 

Now for skewed bridge: 

( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45(
09.2

5.7

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

TanTan
S

Le

 

LDF for a skewed bridge= FT x FS = 0.61 x 1.05 = 0.64 

Comment: CHBDC equation overestimates the exterior girder support shear by 10%, and 

underestimates the interior girder support shear by 5%, respectively when compared with FEA. 
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APPENDIX K 

Illustrative Example for Moment and Shear Distribution Factors for Skewed Two-

span Continuous Slab-on Steel I-girder Bridges at FLS 

 

For the evaluation of distribution factors, the illustrative example of a skewed two-span 

continuous bridge configuration details are as follows: 

Two equal spans having clear span length (L1 & L2) = 15 m; Bridge width (W) = 14.6 m; 

Girder spacing (S) = 2.09 m; Number of girders (N) = 7; Number of lanes (n) = 4; Design 

lane width (We) = 3.4 m, and Skew angle (ψ) = 45o. 

Span Moment Distribution Factors at Exterior and Interior Girder 

For span moment: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.47 

ii. Using proposed equation (reference Table 7.12): 

For the same bridge configuration with skew angle = 0o; FT = 0.48 

Now for skewed bridge: 

( ) 62.245tan4709.225.1162.2

tan62.2

51.042.079.159.0

51.042.079.159.0

−=×××××−=

×××××−=

−−

−−

ε

ψε nNSLe
 

( ) ( )
93.0

1062.2

0.2
2.1

10

0.2
2.1 =

+−
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.48 x 0.93 = 0.45 

iii. Using CHBDC (CSA 2014a): 
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For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.52 

Now for skewed bridge: 

( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45tan(
09.2

25.11
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.52 x 1.07 = 0.56 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.37 

ii. Using proposed equation (reference Table 7.12): 

For the same bridge configuration with skew angle = 0o; FT = 0.36 

Now for skewed bridge: 

 
97.0)45tan(4709.225.1133.0

tan33.0

76.127.059.764.0

76.127.059.764.0

−=×××××−=

×××××−=

−−−

−−−

ε

ψε nNSLe
 

( ) ( )
98.0

1097.0

0.2
2.1

10

0.2
2.1 =

+−
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.36 x 0.98 = 0.35 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.52 

Now for skewed bridge: 
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( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45(
09.2

25.11

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

TanTan
S

Le

 

LDF for a skewed bridge= FT x FS = 0.52 x 1.07 = 0.56 

Comment: CHBDC equation overestimates the exterior and interior girder span moment by 16% 

and 34%, respectively when compared with FEA. 

Support Moment Distribution Factors at Exterior and Interior Girder 

For, intermediate support moment: Le = 0.25 (L1 + L2) = 0.25 (15 +15) = 7.5 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.46 

ii. Using proposed equation (reference Table 7.13): 

For the same bridge configuration with skew angle = 0o; FT = 0.46 

Now for skewed bridge: 

( ) 009.045tan4709.25.720.0

tan20.0

10.533.927.1071.7

10.533.927.1071.7

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
00.1

10009.0

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.46 x1.00 = 0.46 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.52 

Now for skewed bridge: 
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( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45tan(
09.2

5.7
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.52 x 1.05 = 0.55 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.37 

ii. Using proposed equation (reference Table 7.13): 

For the same bridge configuration with skew angle = 0o; FT = 0.37 

Now for skewed bridge: 

 
55.0)45tan(4709.25.714.95

tan14.95

22.385.093.209.0

22.385.093.209.0

=×××××=

×××××=

−−−

−−−

ε

ψε nNSLe
 

( ) ( )
01.1

1055.0

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.37 x 1.01 = 0.37 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.56 

Now for skewed bridge: 

( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45tan(
09.2

5.7
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.56 x 1.05 = 0.59 

Comment: CHBDC equation overestimates the exterior and interior girder support moment by 

16% and 37%, respectively when compared with FEA. 
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Span Shear Distribution Factors at Exterior and Interior Girder 

For span shear: Le = 0.75L1 = 0.75x15 = 11.25 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.52 

ii. Using proposed equation (reference Table 7.12): 

For the same bridge configuration with skew angle = 0o; FT = 0.45 

Now for skewed bridge: 

( ) 83.9045tan4709.225.1113.92

tan13.92

72.357.00.1206.1

72.357.00.1206.1

=×××××=

×××××=

−

−

ε

ψε nNSLe
 

( ) ( )
18.1

1083.90

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.45 x 1.18 = 0.53 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.58 

Now for skewed bridge: 

( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45tan(
09.2

25.11
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.58 x 1.07 = 0.62 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.53 

ii. Using proposed equation: 
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For the same bridge configuration with skew angle = 0o; FT = 0.49 

Now for skewed bridge: 

 
93.2)45tan(4709.225.1139.8

tan39.8

07.285.119.123.0

07.285.119.123.0

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
05.1

1093.2

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.49 x 1.05 = 0.51 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.58 

Now for skewed bridge: 

( ) ( )
07.1

1038.5

0.2
2.1

10

0.2
2.1

38.5)45tan(
09.2

25.11
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

  LDF for a skewed bridge= FT x FS = 0.58 x 1.07 = 0.62 

Comment: CHBDC equation overestimates the exterior and interior girder shear by 16% and 

15%, respectively when compared with FEA. 

Support Shear Distribution Factors at Exterior and Interior Girder 

For intermediate support shear: Le = 0.25 (L1 + L2) = 0.25 (15 +15) = 7.5 m 

1) Exterior Girder 

i. Using FEA:   

LDF value for exterior girder = 0.51 
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ii. Using proposed equation (reference Table 7.13): 

For the same bridge configuration with skew angle = 0o; FT = 0.47 

Now for skewed bridge: 

( ) 97.945tan4709.25.795.106

tan95.106

74.218.392.654.2

74.218.392.654.2

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
10.1

1097.9

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.47 x 1.10 = 0.52 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.58 

Now for skewed bridge: 

( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45tan(
09.2

5.7
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.58 x 1.05 = 0.61 

2) Interior girder 

i. Using FEA:   

LDF value for interior girder = 0.50 

ii. Using proposed equation (reference Table 7.13): 

For the same bridge configuration with skew angle = 0o; FT = 0.46 

Now for skewed bridge: 
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60.2)45tan(4709.25.720.0

tan20.0

60.199.173.036.2

60.199.173.036.2

=×××××=

×××××=

−−

−−

ε

ψε nNSLe
 

( ) ( )
04.1

1060.2

0.2
2.1

10

0.2
2.1 =

+
−=

+
−=

ε
Fs  

LDF for a skewed bridge= FT x FS = 0.46 x 1.04 = 0.48 

iii. Using CHBDC (CSA 2014a): 

For non-skewed bridge using clause 5.6.6.1 of CHBDC (CSA 2014a); FT = 

0.58 

Now for skewed bridge: 

( ) ( )
05.1

1059.3

0.2
2.1

10

0.2
2.1

59.3)45tan(
09.2

5.7
tan

=
+

−=
+

−=

=×







=×








=

ε

ψε

Fs

S

Le

 

LDF for a skewed bridge= FT x FS = 0.58 x 1.05 = 0.61 

Comment: CHBDC equation overestimates the exterior and interior girder shear by 16% and 

18%, respectively when compared with FEA. 

 

 

 

 

 

 

 



386 

 

VITA AUCTORIS 

Name:    Muhammad Kashif Razzaq 

Place of Birth:   Lahore, Pakistan 

Education:   University of Engineering and Technology 

    Lahore, Pakistan  1995-2000 

    B.Sc. Civil Engineering 

    Saitama University  

    Saitama, Japan  2008-2010 

    MS Civil Engineering 

    University of Windsor 

    Windsor, Canada  2012-2017 

    Ph.D. Civil Engineering 

 

 

 

 

 

 

 

 

 

 

 


	Load Distribution Factors for Skewed Composite Steel I-Girder Bridges
	Recommended Citation

	Microsoft Word - PhD Dissertation_Final

