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Abstract

Breast cancer makes up 25 percent of all new cancer diagnoses globally accord-

ing to the American Cancer Society(ACS). Developing a highly effective drug can

be a time consuming and an expensive ordeal. Drug repurposing is a tremendous

approach which takes away some disadvantages of traditional drug development pro-

cedures making it both time and cost effective. In this thesis, we are interested in

finding good drugs for each of the ten subtypes of breast cancer. Repurposing in-

corporates identifying unique indications of pre-approved drugs and utilizing them to

observe the anti-correlation between the perturbation data and disease data. If anti-

correlation, whether it is up-regulation or down-regulation, is detected, it indicates

that those drugs cause an effect making them a suitable candidate for drug repur-

posing. The gene expression data and the discrete copy number variation data will

be used to compute z-scores and normalize the data for ten sets of disease subtypes.

Gene expression data for ten subtypes was extracted from the METABRIC dataset.

We have extracted values corresponding to MCF7 cell line from the pharmacoge-

nomics perturbation data which is the National Institute of Health’s (NIH) Library

of Integrated Network-Based Cellular Signatures (LINCS) dataset. We have used

our proposed clustering methods to select the best suited drug candidates per sub-

type. We have obtained a ranked list of suitable drug repurposing and repositioning

candidates for each of the 10 breast cancer subtypes.
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Chapter 1

Introduction

1.1 Drug Repurposing

1.1.1 What is a drug?

A drug is any chemical substance which is administered to living organisms to gener-

ate a biological effect. The structure of these chemical substances is known. There are

a wide variety of drugs, each capable of causing different physiological and sometimes

psychological effect to living beings induced with the drug [31].

Figure 1.1: 3D molecular structure of Aspirin
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In other words, a drug is used to cure a disease and alleviate any symptoms of

illnesses. Figure 1.1 shows the 3D molecular structure of a drug known and sold as

Aspirin [12], the most common drug in the world. There are some drugs which are

not used to specifically treat a particular disease but act as a psychoactive chemical

substance influencing a better mood by impacting the central nervous system.

1.1.2 Traditional drug discovery and development process

Traditional drug discovery and development procedures can be highly time consuming

and come at exorbitant development costs. For instance, it would take 15 years on

average and billions of dollars usually put into the various steps needed to successfully

discover and develop an effective drug [17].

Figure 1.2 shows the steps involved in traditional drug discovery and development

procedure. Step 1, disease related genomics, involves studying those genes or set of

genes which are responsible for causing a particular disease. Step 2, target identifi-

cation and validation, deals with identifying the target. A target is a pathogen on

which the drug is meant to cause an effect on. Step 3, lead discovery and optimiza-

tion, is one of the initial stages of drug discovery process where the small molecules

(drugs) are carefully vetted to observe traces of lead compound, a pharmacological

chemical. Furthermore, these undergo thorough optimization before making it to

the pre-clinical trials. Step 4, pre-clinical trials, comprises of scrutinizing the dosage

level of drugs thereby ensuring that the drug is safe. This phase is essential before

proceeding to clinical trials. Since a drug cannot be used on humans without having

the knowledge of whether it is safe to consume or not, these trials are conducted on

other species that have genetics resembling human genetics. Step 5, clinical trials are

where drugs are tested on humans to study their effect before making it available for

purchase.
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Figure 1.2: Traditional drug development process

To minimize the time and costs associated with traditional drug discovery process

drug repurposing is a preferred alternative.
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1.1.3 What is drug repurposing?

Drug repurposing, is a technique that makes use of unapproved drugs which have

passed the initial phases of drug discovery process and are categorized as approved,

experimental, investigational, withdrawn, unknown, illicit, vet approved, or nutraceu-

tical and perform clinical trials in them only if they have been observed to share

similarities with approved drugs intended to treat a specific disease [23].

Drug repositioning, is a technique in which approved drugs currently being used

to treat another disease could be used to treat a different target disease [32].

The drugs used in our research fall under five of these categories as listed below.

• Approved

• Experimental

• Investigational

• Withdrawn

• Unknown

Approved drugs are those that have passed clinical trials. Experimental drugs are

those that have shown to bind proteins in mammals or bacteria. Investigational drugs

are at one of the phases of drug design process in one jurisdiction or more. Withdrawn

drugs are those that were once approved but have lost their approval status for any

reason. There is not enough data on unknown drugs as these are in the preliminary

stages of drug discovery. When referring to drugs from various drug categories such

as experimental, investigational, withdrawn, unknown etc., we shall collectively call

these ’unapproved drugs’.

Upon performing experiments using various methods, we observe which unap-

proved drugs display similar properties to those of the approved ones. The unap-
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proved drugs which closely resemble the properties of approved drugs intended to

treat breast cancer shall be selected as suitable candidates for drug repurposing.

1.1.4 What is a gene?

Figure 1.3 shows a gene [22] which is a unit of DNA responsible for relaying genetic

traits. Every data point generated by a DNA microarray experiment denotes the

ratio of expression levels. The results from one experiment with n number of genes

on one test subject denotes a series of expression levels. In each of these ratios, the

numerator represents expression level of the gene in a varying condition and the de-

nominator denotes the expression level of the gene in a reference condition. Data

compiled together to form m such experiments presents a gene expression matrix.

The gene expression value will be positive if the production of that gene is increased

in that particular test case and will be negative if the generation of that gene is de-

creased instead. [2]

Figure 1.3: Gene
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1.2 Breast Cancer

1.2.1 What is breast cancer?

Breast Cancer occurs when the cells in the breast begin to grow out of control and

form a tumour that can be seen on an x-ray or be observable as a lump by touch. The

tumour is malignant (cancer) if the cells can grow into and invade the surrounding

tissues or spread (metastasize to distant areas of the body. Breast cancer occurs

almost entirely in women, but men can get it too. Overall, there are ten subtypes of

breast cancer. In this thesis, we obtain suitable drug candidates for each of these ten

subtypes. [29]

1.2.2 How is breast cancer affecting women globally?

Breast Cancer makes up 25% of all new cancer diagnoses in women across the globe

according to the American Cancer Society (ACS). [1]

In Canada:-

• 26,300 women were diagnosed with breast cancer, which represents 25% of all

new cancer cases in women in 2017 [FIG 1 INSERT from PPT]

• 5000 women died from breast cancer. This represents 13% of all cancer deaths

in women in 2017 [FIG 2 INSERT from PPT]

• On average, 72 Canadian women were diagnosed with breast cancer everyday

• On average, 14 Canadian women died from breast cancer everyday
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1.3 Problem Definition

Given drug perturbation data and gene expression data for all ten subtypes of breast

cancer, we aim to obtain a ranked list of drugs which would make suitable candidates

for drug repurposing and drug repositioning for all ten breast cancer subtypes. We

achieve this by performing preprocessing steps such as calculation of z-scores in the

METABRIC dataset and calculation of p-value and q-value in the LINCS dataset to

filter the differentially expressed genes and the drugs respectively. We then make use

of two machine learning methods such as a centroid based clustering model, K-means

clustering and a connectivity based clustering model, agglomerative clustering. Then

using Euclidean distance we are able to provide a ranked list of good drug repurposing

and repositioning candidates for each of the ten subtypes.

1.4 Thesis Motivation

Researching the repurposing of unapproved drugs sharing similarities with approved

drugs intended to treat breast cancer would help speed up the drug design process

involving drug discovery and development phases. As a result, years of time and

billions of dollars will have been conserved in an effort to help cure breast cancer

disease. Most importantly, this thesis does its part in helping us move one step closer

to acquiring suitable drugs to tackle breast cancer.

1.5 Contribution

In this thesis, we have proposed application of existing preprocessing and clustering

methods on all ten breast cancer subtypes to obtain a ranked list of suitable drug

repurposing and repositioning candidates for each of the 10 subtypes.
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1.6 Thesis Organization

The rest of the thesis/ research work is organized in the following manner.

• In Chapter 2, we discuss literature review in the area of drug repurposing using

computational approaches

• In Chapter 3, we introduce our proposed approach and explain all the techniques

used to obtain suitable drug repurposing candidates for each of the ten subtypes

of breast cancer

• In Chapter 4, we present the experimental results and perform an analysis of

those results.

• Chapter 5 concludes the research by explaining insights received during the

work and setting up the field of opportunities for possible future work



Chapter 2

Literature Review

This chapter consists of some literature regarding computational drug repurposing

using cancer data.

2.1 Existing approaches on drug repurposing

There have been several researchers whose contribution to drug repurposing is worth

noting. We discuss some of those works below.

2.1.1 Drug repositioning for cancer therapy based on large-

scale drug-induced transcriptional signatures

The authors of this paper, Lee et al. [20] have developed a series of seven classifiers

using logistic regression to predict drug repurposing candidates for the treating of

glioblastoma, lung cancer, and breast cancer. Their method makes use of three types

of signatures obtained from the chemical structure (S), drug-target relation (T), and

gene expression data (E). Suitable drug repurposing candidates were predicted on

the basis of similarity of the aforementioned signatures between the compounds and

disease or known its drugs. The authors have carefully observed the prediction perfor-
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mance in a completely unbiased way. The observations were conducted in three ways,

(i) using a cross-validation scheme using known drugs as a benchmark, (ii) 29 anti-

cancer HTS datasets for 11,000 to 40,000 compounds, and (iii) assays of glioblastoma

cancer cell lines and patient-derived primary cells.

2.1.2 Integrative cancer pharmacogenomics to infer large-

scale drug taxonomy

In this paper, the authors, Haibe-Kains et al. [15] have developed an integrative tax-

onomy inference approach, Drug Network Fusion (DNF), making use of pharmacolog-

ical phenotypes and transcriptional perturbation profiles. The authors of this paper

used DNF to perform a comparison between their integrative taxonomy, single-layer

drug taxonomies and other published methods used to predict drug targets. Their

results showcase that DNF is superior towards drug classification while highlighting

singular data types pivotal for predicting drug groups in terms of anatomical classi-

fication as well as drug-target interactions. The results produced by DNF indicate

that drug-drug relationships serve as a good way to predict new drug mechanism of

actions (MoA) which are uncharacterized compounds representing a challenge in drug

development.

2.1.3 A novel computational approach for drug repurposing

using systems biology

The authors of this paper, Draghici et al. [24] built a global network (GN) which is

the union of all KEGG human signaling pathways. They have extracted a subgraph of

GN for each drug-disease pair and termed it drug-disease network (DDN) comprising

of the shortest paths between two sets of disease related genes and drug targets. The

authors have applied a system level analysis on the gene expression signatures of drug-
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disease pairs to generate gene perturbation signatures in the drug-disease network.

They have further assigned a repurposing score on each drug-disease pair then finally

obtained a ranked drug list with potential therapeutic effects for the given disease on

the basis of the aforementioned repurposing scores.

2.1.4 Breaking the paradigm: Dr Insight empowers signa-

ture free, enhanced drug repurposing

The authors of this paper, Gu et al. [7], have worked to overcome the limitations of

existing computational frameworks by developing Dr. Insight, which offers signature-

free, optimal drug repurposing based on gene expression data. It takes into account

the dysregulation of gene expression from both disease and drug-perturbed data si-

multaneously, which renders the CEG’s as optimal features to investigate the con-

nections among diseases, drugs and genes. Dr. Insight has broken the computational

bottleneck for transcriptome-based drug discovery, which provides an unbiased first

look from novel redirections of existing drugs towards a systematic understanding of

disease-specific drug mode of actions at a molecular level.

2.1.5 A new computational drug repurposing method using

established disease-drug pair knowledge

In this paper, the authors, Draghici et al. [28] have worked towards obtaining drug

repurposing candidates for three diseases. They have used GEO disease data for

breast cancer, CMAP data for rheumatoid arthritis, and LINCS for idiopathic pul-

monary fibrosis. Their workflow consists of transforming the input matrix into a

lower dimensionality matrix by incorporating dimensionality methods such as princi-

pal component analysis (PCA) or Locally Linear Embedding (LLE). Then the authors

have used leveraged the known relationship between disease and its FDA approved
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drugs into a transformed space using distance metric learning. In this space, the

clinically relevant drugs get close to the disease so their euclidean distance can be

computed and ranked from the closest to farthest drugs from the disease. The au-

thors have used five algorithms on each of these datasets per disease and performed

a comparative analysis of their results.



Chapter 3

Proposed Methods

In this chapter, we discuss the datasets, preprocessing steps taken, and machine

learning techniques used in this thesis.

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E. This is a modern definition of machine learning

[33]. There are two different types of commonly known learning algorithms as listed

below.

• Supervised Learning

- Classification

- Regression

• Unsupervised Learning

- Clustering

Supervised learning mainly is subdivided into classification and regression whereas

unsupervised learning comprises of cluster analysis also known as clustering.
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Classification algorithms have a simple task of classifying objects and assigning

them into one of the categories. Perfect classification is nearly impossible to achieve

and there are almost always some objects that are misclassified. Classification takes

place based on the features provided in the dataset after performing feature extrac-

tion. [14] Figure 3.1 displays an example of classification using support vector machine

(SVM) classifier.

Figure 3.1: Classification example

Regression analysis is a procedure in which a set of statistical processes provide an

estimate of the given variables. Generally speaking, in a set of many variables, we may

predict the dependent variables’ future value by changing the independent variables.

The dependent variable is the output variable whose value is being predicted based

on the changes in independent variables. [11] Figure 3.2 showcases an example of

simple linear regression output.
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Figure 3.2: Regression example

Clustering is a procedure in which a sizeable group of objects are distinguished and

brought together to be categorized in multiple clusters of data. Each of those clusters

or categories of data would comprise of objects of the same group that are similar

in terms of their properties.[18] Figure 3.3 displays an example of a simple clustering

outcome where objects have been grouped into three separate clusters showing that

the objects belonging to each one of those clusters share similarities with the rest of

them within the same cluster or group.

We will see more about clustering and two of the clustering algorithms used in

this thesis later in this chapter. The two clustering algorithms used are as follows:-

• K-Means clustering

• Agglomerative clustering
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Figure 3.3: Clustering example

3.1 Datasets

3.1.1 METABRIC

METABRIC is an abbreviation for Molecular Taxonomy of Breast Cancer Interna-

tional Consortium. This dataset consists of gene expression data for a large pool

of breast cancer genes. These expression values are arranged for each test subject

column wise. It has 1904 test subjects as columns and 24,368 genes as its rows.

Studies conducted on a large cis-associated gene pool of breast cancer genes show

that biological subtypes were found using joint clustering of copy number abberations

(CNAs) and gene expression data. 10 groups were suggested based on Dunn’s index.

[3] Breast cancer is essentially 10 different diseases where each of them contains a

different molecular fingerprint. [10] Cis-regulatory elements (CREs) are those regions
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in DNA which are responsible for regulation of transcription of neighbouring genes.

[34]

List of 10 Subtypes of Breast Cancer

Integrative subtypes have shown to occur at various frequencies and so in concentrat-

ing sequencing efforts on these subtypes could prove to benefit those working on a

resolving it at a sequence-level [10].

Knowing that there are 10 subtypes of breast cancer means that patients can get

treatment based on the specific genetic fingerprints of their tumors.

The 10 subtypes are listed as follows:- [10]

• Subtype 1: ER+, luminal B tumours

• Subtype 2: ER+, luminal tumours

• Subtype 3: Luminal A tumours

• Subtype 4: CNA-devoid (mixed subgroups, both ER+ and ER-)

• Subtype 5: ER-, HER2-enriched and ER+, luminal tumours

• Subtype 6: ER+, luminal tumours

• Subtype 7: Luminal A 16p gain/16q loss

• Subtype 8: Luminal A 1q gain/16q loss

• Subtype 9: ER+, mixed subgroup

• Subtype 10: Basal-like tumours
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Network Biomarkers

Network biomarkers provide us with an interaction value indicating the protein-

protein interaction level within the genes belonging to each subtype. In this thesis,

we have extracted all gene pairs whose interaction level was between 50 to 100 (both

inclusive). We have conducted this process for each of the 10 subtypes. Interaction

level indicates that the presence of one gene in a gene pair is dependent on the other

within its pair. The higher the interaction level value, the greater the dependency.

Interaction networks usually are comprised of gene regulatory network, protein-

protein interaction network, RNA network, etc.[35] They can give information about

the models of cellular networks on the basis of large and heterogeneous dataset inte-

gration [16].

Table 3.1: Gene count per subtype

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

73 50 129 147 61 155 96 94 95 76

Table 3.1 shows the number of differentially expressed genes used in each of the

ten subtypes labelled as S1, S2, ..., S10.

CNA

Copy number aberrations (CNAs) are changes in copy number that have occurred in

somatic tissue, for instance, in a tumor. [25] In other words, copy number aberration

(CNA) means that a chromosome has a duplicated section of DNA instead of having

one section.
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Figure 3.4: Gene duplication

The gene duplication occurring in this process is a mechanism in molecular evolu-

tion wherein a new genetic material is created as shown in figure 3.4. The CNA file is

comprised of 0’s and 1’s where 0 indicates that the gene is diploid. These expression

values are the only ones which we use while normalizing the expression data. We will

look into normalization in the preprocessing section.

3.1.2 LINCS

The drug data was extracted from the pharmacogenomics perturbation data which is

the National Institute of Healths (NIH) Library of Integrated Network-Based Cellular

Signatures (LINCS) dataset. This dataset consists of 21,567 breast cancer drugs in

the columns and 12,328 genes in the rows. This dataset consists of normalized z-score

values as it is a level 5 LINCS dataset. Level 4 LINCS data consists of two sets of

data, before administration of drugs and after administration of drugs onto the genes

in the dataset. These expression values from both the level 4 datasets are normalized
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to form the level 5 LINCS dataset. Here is a list of the 5 levels of LINCS data.

• Level 1: Raw data

• Level 2: Processed raw data

• Level 3: Normalized per sample data

• Level 4: Signatures (used for connecting perturbation data)

• Level 5: Perturbation data

We go through the preprocessing steps showing how we generated the drug disease

combination matrices and the anti-correlation matrices in the next section.

3.2 Preprocessing of datasets to be used in ma-

chine learning techniques

The preprocessing pipeline used on the datasets to be used in the methods in this

thesis is explained in the following subsections.

3.2.1 METABRIC dataset

We have extracted differentially expressed genes for each of the 10 subtypes from

the METABRIC disease dataset based on whether the interaction level between gene

pairs was 50 or greater on a scale of 1 to 100. We have removed all other gene pairs

whose interaction level was known to be below 50.

Z-score normalization indicates that the data is linearly transformed and allows

for comparison of two scores which originate from different normal distributions. In

statistics, this score is regarded as a common standard.
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Using the copy number aberration (CNA) data, we are able to identify all diploid

cases in the disease gene expression data for a given set of samples. We generate z

score normalized expression values for each gene. The mean and standard deviation

of the gene expression values for all the patient samples are calculated in which the

gene is diploid. A gene is considered to be diploid if its copy number aberration

value is 0. If any of the genes have no diploids in the entire sample set, then the

normalized value is denoted by NA. On the other hand, the formula used to compute

the normalized expression value is:

(r −mu)/sigma (3.1)

where,

r is the expression value

mu is the mean of all diploid values in the dataset

sigma is the standard deviation of all diploid values in the dataset

The following is the algorithm to calculate z-score normalized values per gene for

each of the 10 subtypes [6].

Algorithm 1: Z-score calculation

for each gene {

detect diploid cases using CNA

compute mean and standard deviation of expression values of diploid cases

for each case {

z-score ← (expressionvalue−mean)/standarddeviation

}

}

The average of all the z-scores per gene are computed and one vector with a z-score
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per gene in each of the 10 subtypes is obtained as shown in figure 3.5.

Figure 3.5: METABRIC

3.2.2 LINCS drug perturbation data

We compute p-values for each gene per drug profile to select the statistically significant

values. [27] The cut off set here is 0.05 which means that there is a 5% chance that we

are choosing a false positive among the list of DE genes. Having the possibility of there

being a large number of false positives is not statistically good and so we calculate

the q-values using the false discovery rate (FDR) approach. The older approaches

reduced the number of false positives while also reducing the number of true positives

which is not optimal. This newer FDR approach gives us adjusted p-values in every

test case. In simpler terms, p-value predicts that there could be 5% false positives

in the entire list of DE genes whereas q-value (FDR-adjusted p-value) predicts that

there could be 5% false positives in the significant tests. Significant tests are those

values that are deemed to be true positives based on the p-value.

Figure 3.6 shows the LINCS dataset before computing the p-values. We compute

the p-value per gene based on the z-score as shown in figure 3.7. As shown in figure

3.8, we proceed to calculating the q-value per gene and discard those drug profiles

which contain less than 1% DE (differentially expressed) genes. Here, a DE gene is

defined by a gene that has a q-value that is less than 0.05. So in our dataset, out of

12,328 genes, we checked if there are less than 123 DE genes in a drug profile or not.

If a drug profile meets this criterion, we discard it. However, if it has 123 or more DE
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genes, we extracted those drugs to include in our drug disease combination matrix

which we will see in the next subsection.

Figure 3.6: LINCS

Figure 3.7: LINCS: P-value

Figure 3.8: LINCS: q-value

Out of 7 cell lines, we have extracted drugs belonging to the cell line ”MCF7”.

This way we have multiple entries of most drugs so we have filtered them based on the

dosage and time under administration. Within this cell line, we have filtered drugs

whose dosage was 1.11 um and whose time under administration was 24 h. This step
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has enabled us to select unique instances of all drugs fitting our criteria. We have

extracted a total of 177 drugs based on these filters.

3.2.3 Drug Disease Combination Matrix

As shown in figure 3.9, the resulting matrix from the previous steps contains the

reversed z-score vector of all the DE genes from the disease subtype as the first row

and all other rows comprise of z-scores of those very DE genes from each of the drug

profiles. In this thesis, we call this matrix, drug disease combination matrix (DDCM).

We generate 10 such drug disease combination matrices, one for each subtype. Upon

applying anti-correlation on all 10 DDCMs, we arrive at a reduced list of potential

drug repurposing candidates per disease subtype.

Figure 3.9: DDCM

3.2.4 Anti-correlation Matrix

After generating the drug disease combination matrices, we proceed to making the

anti-correlation matrices in an effort to detect potential drugs which can be used in

the experiments after this. In figure 3.10, ’A’ value here can be ’0’, ’+1’, or ’-1’. For

instance, if the disease subtype’s z-score value is negative for a DE gene, and if drug

m’s z-score value for the same DE gene is moving in the opposite direction then we

assign it a ’+1’. This is because, a negative z-score indicates that a particular gene is

being down-regulated and a reverse change means the application of this drug would
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cause up-regulation. Similarly, if the disease subtype’s z-score value is positive, and if

drug1’s z-score value is moving in the opposite direction then we assign it a ’-1’. This

is because, a positive z-score indicates that a particular gene is being up-regulated

and a reverse change means the application of this drug would cause down-regulation.

If this moves in the same direction, we assign a ’0’.

Down-regulation indicates a decrease in the production of that gene as an effect

of the disease. Up-regulation indicates a increase in the production of that particular

gene as an effect of the disease.

Figure 3.10: Anti-correlation Matrix

If there are 50% or less number of 0’s in any drug profile, then we keep the drug

otherwise we discard this drug as it does not show much potential in reversing the

up-regulation or down-regulation caused by the disease genes.

This method allows us to filter out drugs for each subtype which leaves us with a

different set of drugs from the 177 in each of the 10 subtypes.

FDA Status

Now that we have the processed, filtered list of drugs, we have used online drug

databases such as DrugBank [13], Kegg [19] etc.[26][8][30][21][4][5] to obtain each

drugs’ FDA status. All of the drug databases used to search for FDA status are

listed in bibliography.
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3.3 Machine learning techniques

In this thesis, we have used clustering methods followed by a distance measure to rank

the drugs in order of drugs that appeared closest to farthest from the disease subtype.

Upon performing clustering on the DDCMs, we select the cluster which grouped a set

of drugs along with the disease subtype. All drugs within this cluster are chosen and

we compute Euclidean distance for all of those from the disease subtype. We now

have a list of drugs ranked from potentially best suited drug repurposing candidates

for this subtype to potentially less effective drug repurposing candidates.

3.3.1 Cluster analysis

Cluster analysis or, simply put, clustering is a task in which objects are grouped

together in clusters wherein all objects present in a particular cluster are deemed to

share similar properties with each other and all objects in one cluster are considered

to have different properties to those belonging to another cluster. Clustering by

itself is a procedure of grouping and dividing objects of similarities and dissimilarities

respectively. There are several types of algorithms used for clustering, two of which

we have implemented in our thesis.

• K-Means clustering

• Agglomerative clustering

3.3.2 K-Means clustering

This is a centroid-based clustering algorithm where the number of clusters are prede-

fined before running the program. We have taken four different k=(2,3,4,5) values

in this algorithm where k signifies the number of clusters. The algorithm finds the

k cluster centers so that it can assign the drugs to their nearest cluster center while
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making sure that the squared distances from the cluster are diminished. This is an

NP-hard optimization problem indicating that it should search for approximate so-

lutions only. K-means algorithm finds a local optimum. We set the initialization

parameter to 10 so k-means algorithm will run 10 times with different centroids each

time randomly picked and the final result will be the best outcome of these 10 ini-

tializations.

We chose these k values because our filtered drug data consisted of 5 categories

of drugs (approved, experimental, investigational, unknown, withdrawn). One of the

biggest drawbacks of this algorithm is that the number of clusters need to be defined

in advance. In this algorithm, each observation (drug) belongs to at least one cluster.

At the same time, no observation belongs to more than one cluster. [9]

Some of the advantages of this algorithm are that it functions very efficiently when

presented with large datasets as the input and it usually produces tighter clusters.
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Figure 3.11: Proposed K-Means Working
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Figure 3.12: K-Means Process Workflow

We now take the DDCM obtained towards the end of our preprocessing as the
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input for this algorithm. Once the algorithm generates the clusters based on the four

k values used, we select the cluster containing the disease subtype. Then all drug

data points within this cluster are chosen to compute the Euclidean distance between

a drug and the subtype. We then rank all of these drugs from the closest to farthest

from the disease subtype. All drugs grouped together in the same cluster as the disease

subtype indicate that they share similar properties. Thus, only those drugs within

the same cluster as the disease subtype were chosen for computing the Euclidean

distance. The drugs that are found to be closest to the subtype are considered bet-

ter drug repurposing candidates when compared to drugs that are found farther away.

Algorithm 2: K-Means Clustering

Input: DDCM for subtype Sn(n = 1 to 10) with k = (2, 3, 4, 5) n init = 10

Output: A set of k clusters

Method: Randomly pick k objects from DDCM as cluster centers

Repeat:

1. Assign every object to the cluster with which it shares most similarities on

the basis of its mean value of objects within the cluster

2. Calculate new updated mean for each cluster

Until:

Convergence is met

The minimization formula (3.2) shows that we aim to partition the observations

into k clusters while making sure the total within-cluster variation (WCV) summed

up over all clusters is as low as possible. [36]

Minimize C1 to Ck

{
K∑
k=1

WCV (Ck)

}
(3.2)
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where,

C is a cluster

k is the cluster number

WCV is within-cluster variance

In order to define within-cluster variance, we use the following formula.

WCV =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(Xij −Xi′j)
2 (3.3)

Combining equation 3.2 and 3.3 gives us the optimization problem defining k-means

clustering.

Minimize C1 to Ck

{
K∑
k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(Xij −Xi′j)
2

}
(3.4)

3.3.3 Agglomerative clustering

This is a bottom up hierarchical clustering algorithm where we start by assuming all

data points given as input to be clusters. This algorithm merges clusters based on

their proximity to each other. The clusters which are closest to each other would

be the ones that will have been merged. Then we repeat this process until all data

points are merged into one single cluster.

Before the clustering is performed, determining the proximity of each clusters is

usually computed. There are a few methods to use such as ’single linkage’, ’complete

linkage’, ’average linkage’, ’ward linkage’ and more.

In single linkage, the distance between each cluster is noted as the closest distance

between two points, one from each cluster. In complete linkage, the distance between

each cluster is noted as the farthest distance between two points, one from each
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cluster. In average linkage, it is defined as the average distance between each point

in one cluster to every other point to the other cluster. In ward linkage, it minimizes

the variance of the clusters being merged by finding the error function which is the

average RMS distance of each data point in a cluster.

Figure 3.13: Proposed Agglomerative Working
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Figure 3.14: Agglomerative Process Workflow
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The DDCM obtained towards the end of our preprocessing is taken as the input

for this algorithm. After generating the output clusters, we then choose the cluster

that contains the disease subtype. Then each drug data point within this cluster are

picked to calculate the Euclidean distance between a drug and the disease subtype.

Next step is to rank all of these drugs from the closest to farthest from the disease

subtype. Each and every drug grouped together in the same cluster as the disease

subtype indicate that they have similar properties. Hence, only the drugs within

the same cluster as the disease subtype were chosen for calculating the Euclidean

distance. Those drugs that are found to be closest to the subtype are considered bet-

ter drug repurposing candidates when compared to drugs that are found farther away.

Algorithm 3: Agglomerative Clustering

Input: DDCM for subtype Sn(n = 1 to 10)

Output: A set of k clusters

Method: Start by assuming all data points to be clusters

Repeat:

Merge the two closest clusters

Until:

All data points are in a single cluster

3.3.4 Euclidean distance

Euclidean distance is defined as the ordinary straight line distance between two points

’X’ and ’Y’. Here, we compute pairwise Euclidean distance matrix using equation 3.6.

(x1− y1)2 + (x2− y2)2 + + (xn− yn)2 (3.5)
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For efficiency, the Euclidean distance between a row vector X and Y is computed

as follows.

dist(x, y) = sqrt(dot(x, x)− 2 ∗ dot(x, y) + dot(y, y)) (3.6)

This formula is advantageous as it is computationally more efficient when sparse

data is considered.



Chapter 4

Results

In this chapter, we shall go through the results of clustering algorithms per for each

subtype and compare the results obtained using both k-means clustering and agglom-

erative clustering. The results showcase several unapproved drugs alongside approved

drugs closest to the subtype indicating that the unapproved drugs share similarities

with the approved drugs which means that they are worth pursuing for repurposing.

All the following tables showing top ten drugs per subtype show us that since these

drugs appear to be the closest to their particular disease subtype, the generated lists

contain best suited drug repurposing candidates.

4.1 SubType 1

In this section, we observe the results obtained for disease subtype 1. Here, we notice

that both algorithms have produced a decent set of results showing the top drugs

best suited for potential drug repurposing candidates for this subtype.
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4.1.1 K-Means clustering

Using this algorithm, we obtained the same drugs as in the top ten closest to the

disease subtype for each of the four k values. We observe no difference in this result

list for each of the four k values as shown in table 4.1. The list comprises of three

approved drugs, three experimental drugs, three unknown drugs and one investiga-

tional drug. The optimal k value was found to be 5.

Table 4.1: SubType 1 ranked list of drugs: K-Means Clustering (k=2, k=3, k=4,
k=5)

Rank Drug Name FDA Status

1 Trimethobenzamide Approved
2 KIN001-266 Unknown
3 Agomelatine Approved
4 Clinofibrate Experimental
5 Dopamine Approved
6 AS-601245 Experimental
7 YM-976 Experimental
8 ZK-200775 Investigational
9 JTE-907 Unknown
10 Dacinostat Unknown

4.1.2 Agglomerative clustering

When we obtained the results for this subtype using agglomerative clustering, we

observe that the 7 out of the top ten drugs are the same as what we observed in the

k-means result for this subtype. Although only the top four drugs on these lists retain

the same position in both sets of results as shown in table 4.2. The list is comprised

of four approved drugs, one unknown drug and five experimental drugs. The optimal

k value was found to be 2.
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Table 4.2: SubType 1 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 Trimethobenzamide Approved
2 KIN001-266 Unknown
3 Agomelatine Approved
4 Clinofibrate Experimental
5 CHIR-99021 Experimental
6 Tozasertib Experimental
7 Dopamine Approved
8 AS-601245 Experimental
9 Amfepramone Approved
10 YM-976 Experimental

4.2 SubType 2

In this section, we look at the results obtained for disease subtype 2. We notice that

both algorithms have produced a decent set of results showing the top drugs best

suited for potential drug repurposing candidates for this subtype.

4.2.1 K-Means clustering

The results obtained using this algorithm show that we have some differences in the

top ten drug list in each of the four k values. For k=2, we see that there are three ap-

proved drugs, three unknown drugs, two experimental drugs and two investigational

drugs as shown in table 4.3. The optimal k value was found to be 5.

For k=3, we observe that the top ten best suited drugs include three approved

drugs, three unknown drugs, two experimental drugs and two investigational drugs

as shown in table 4.4.

For k=4, we observe that the top ten best suited drugs include three approved

drugs, two unknown drugs, two experimental drugs and three investigational drugs
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Table 4.3: SubType 2 ranked list of drugs: K-Means Clustering (k=2)

Rank Drug Name FDA Status

1 CEP-37440 Investigational
2 tioconazole Approved
3 KIN001-266 Unknown
4 agomelatine Approved
5 HC-030031 Unknown
6 clinofibrate Experimental
7 climbazole Unknown
8 tozasertib Experimental
9 BMS-777607 Investigational
10 quetiapine Approved

Table 4.4: SubType 2 ranked list of drugs: K-Means Clustering (k=3)

Rank Drug Name FDA Status

1 CEP-37440 Investigational
2 tioconazole Approved
3 KIN001-266 Unknown
4 agomelatine Approved
5 HC-030031 Unknown
6 clinofibrate Experimental
7 climbazole Unknown
8 tozasertib Experimental
9 quetiapine Approved
10 indibulin Investigational

as shown in table 4.5.

For k=5, we observe that the top ten best suited drugs include four approved

drugs, two unknown drugs, two experimental drugs and two investigational drugs as

shown in table 4.6.
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Table 4.5: SubType 2 ranked list of drugs: K-Means Clustering (k=4)

Rank Drug Name FDA Status

1 CEP-37440 Investigational
2 tioconazole Approved
3 agomelatine Approved
4 HC-030031 Unknown
5 clinofibrate Experimental
6 climbazole Unknown
7 tozasertib Experimental
8 BMS-777607 Investigational
9 quetiapine Approved
10 indibulin Investigational

Table 4.6: SubType 2 ranked list of drugs: K-Means Clustering (k=5)

Rank Drug Name FDA Status

1 CEP-37440 Investigational
2 tioconazole Approved
3 KIN001-266 Unknown
4 agomelatine Approved
5 HC-030031 Unknown
6 clinofibrate Experimental
7 tozasertib Experimental
8 quetiapine Approved
9 olaparib Approved
10 gatifloxacin Approved

4.2.2 Agglomerative clustering

Using this method, we observe that the results obtained show three approved, three

unknown, two experimental and two investigational drugs in the top ten best suited

drugs for repurposing in this subtype as shown in table 4.7. We observe that the list

obtained with this algorithm is the same set of results as that of drug list generated

by k=2. The optimal k value was found to be 2.
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Table 4.7: SubType 2 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 CEP-37440 Investigational
2 tioconazole Approved
3 KIN001-266 Unknown
4 agomelatine Approved
5 HC-030031 Unknown
6 clinofibrate Experimental
7 climbazole Unknown
8 tozasertib Experimental
9 BMS-777607 Investigational
10 quetiapine Approved

4.3 SubType 3

Here in subtype 3, we observe good results obtained by both algorithms.

4.3.1 K-Means clustering

We can infer from the following tables that k=(2,3,5) have produced the same list of

top ten drugs. From table 4.8, we can observe that the list comprises of six approved

drugs, two experimental and two unknown drugs. The optimal k value was found to

be 5.

For k=4, we infer from table 4.9 that there are seven approved drugs along with

two unknown and one experimental drug. There are three different drugs from this

list and table 4.8.

4.3.2 Agglomerative clustering

Using this method, we infer from table 4.10 that these results match the results

obtained using k-means (k=2,3,5) in this subtype indicating the top ten drugs to
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Table 4.8: SubType 3 ranked list of drugs: K-Means Clustering (k=2, k=3, k=5)

Rank Drug Name FDA Status

1 climbazole Unknown
2 CHIR-99021 Experimental
3 Agomelatine Approved
4 folic-acid Approved
5 amfepramone Approved
6 YM-976 Experimental
7 desvenlafaxine Approved
8 felbamate Approved
9 KIN001-266 Unknown
10 fluspirilene Approved

Table 4.9: SubType 3 ranked list of drugs: K-Means Clustering (k=4)

Rank Drug Name FDA Status

1 climbazole Unknown
2 CHIR-99021 Experimental
3 Agomelatine Approved
4 folic-acid Approved
5 desvenlafaxine Approved
6 KIN001-266 Unknown
7 fluspirilene Approved
8 sacubitril Approved
9 fluticasone-propionate Approved
10 trimethobenzamide Approved

comprise of six approved, two unknown and two experimental drugs. The optimal k

value was found to be 3.

4.4 SubType 4

In subtype 4, we observe that the results obtained by both algorithms fare well. The

top ten drug lists contain majority approved drugs and the unapproved drugs that

share similarities with them.



43

Table 4.10: SubType 3 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 climbazole Unknown
2 CHIR-99021 Experimental
3 Agomelatine Approved
4 folic-acid Approved
5 amfepramone Approved
6 YM-976 Experimental
7 desvenlafaxine Approved
8 felbamate Approved
9 KIN001-266 Unknown
10 fluspirilene Approved

4.4.1 K-Means clustering

In this algorithm, we notice from table 4.11 that one experimental, two unknown and

seven approved drugs appear to be the best suited drugs. The optimal k value was

found to be 4

Table 4.11: SubType 4 ranked list of drugs: K-Means Clustering (k=2, k=3, k=4)

Rank Drug Name FDA Status

1 Trimethobenzamide Approved
2 Dopamine Approved
3 KIN001-266 Unknown
4 Clinofibrate Experimental
5 Agomelatine Approved
6 dacinostat Unknown
7 folic-acid Approved
8 aurora-a-inhibitor-I Approved
9 sacubitril Approved
10 gatifloxacin Approved

From table 4.12, we observe that using k-means (k=5), we obtain six approved,

one investigational, one experimental and two unknown drugs are present in the top

ten drugs.
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Table 4.12: SubType 4 ranked list of drugs: K-Means Clustering (k=5)

Rank Drug Name FDA Status

1 Trimethobenzamide Approved
2 Dopamine Approved
3 KIN001-266 Unknown
4 Clinofibrate Experimental
5 dacinostat Unknown
6 aurora-a-inhibitor-I Approved
7 sacubitril Approved
8 gatifloxacin Approved
9 piribedil Investigational
10 fluticasone-propionate Approved

4.4.2 Agglomerative clustering

From table 4.13 we infer that using this method the top ten drugs appear to consist

of seven approved drugs, two unknown and one experimental drug. These results

appear to be the same as the ones obtained by k-means (k=2,3,4) in this subtype.

The optimal k value was found to be 2.

Table 4.13: SubType 4 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 Trimethobenzamide Approved
2 Dopamine Approved
3 KIN001-266 Unknown
4 Clinofibrate Experimental
5 Agomelatine Approved
6 dacinostat Unknown
7 folic-acid Approved
8 aurora-a-inhibitor-I Approved
9 sacubitril Approved
10 gatifloxacin Approved
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4.5 SubType 5

In subtype 5, we observe the results obtained by using two algorithms on our dataset.

We notice that both algorithms generated a good set of results.

4.5.1 K-Means clustering

This algorithm shows for k values 2,3, and 4, seven approved, one experimental and

two unknown drugs as the top ten best suited drug candidates for repurposing for

this subtype as shown in table 4.14. The optimal k value was found to be 3.

Table 4.14: SubType 5 ranked list of drugs: K-Means Clustering (k=2, k=3, k=4)

Rank Drug Name FDA Status

1 lisinopril Approved
2 felbamate Approved
3 aurora-a-inhibitor-I Approved
4 agomelatine Approved
5 clinofibrate Experimental
6 dacinostat Unknown
7 cinaciguat Unknown
8 trifluoperazine Approved
9 desvenlafaxine Approved
10 gatifloxacin Approved

This algorithm shows for k values 5, six approved, one experimental, one inves-

tigational, and two unknown drugs as the top ten best suited drug candidates for

repurposing for this subtype as shown in table 4.15.

4.5.2 Agglomerative clustering

This method produced the same results as that of (k=2,3,4) in this subtype as shown

in table 4.16. It contains seven approved, one experimental and two unknown drugs
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Table 4.15: SubType 5 ranked list of drugs: K-Means Clustering (k=5)

Rank Drug Name FDA Status

1 lisinopril Approved
2 aurora-a-inhibitor-I Approved
3 agomelatine Approved
4 clinofibrate Experimental
5 dacinostat Unknown
6 desvenlafaxine Approved
7 gatifloxacin Approved
8 piribedil Investigational
9 benazepril Approved
10 JTE-907 Unknown

ranked as the best suited drug candidates for repurposing in this subtype. The opti-

mal k value was found to be 3.

Table 4.16: SubType 5 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 lisinopril Approved
2 felbamate Approved
3 aurora-a-inhibitor-I Approved
4 agomelatine Approved
5 clinofibrate Experimental
6 dacinostat Unknown
7 cinaciguat Unknown
8 trifluoperazine Approved
9 desvenlafaxine Approved
10 gatifloxacin Approved

4.6 SubType 6

In this section, we look at the results obtained for disease subtype 6. We observe

that both algorithms have produced a good set of results showing the top drugs best
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suited for potential drug repurposing candidates for this subtype.

4.6.1 K-Means clustering

Using this algorithm we can infer from table 4.17 that the ranked drug list obtained

using k-means (k=2,3,4) comprises of two unknown, one experimental and seven

approved drugs. The optimal k value was found to be 4.

Table 4.17: SubType 6 ranked list of drugs: K-Means Clustering (k=2, k=3, k=4)

Rank Drug Name FDA Status

1 agomelatine Approved
2 KIN001-266 Unknown
3 CHIR-99021 Experimental
4 JTE-907 Unknown
5 fluticasone-propionate Approved
6 olaparib Approved
7 dopamine Approved
8 lisinopril Approved
9 trimethobenzamide Approved
10 tioconazole Approved

We can infer from table 4.18 that for k=5, we obtain a slightly different set of

ranked drugs in which the number of approved, experimental and unknown drugs

remain the same as the previous list in this subtype but with one different approved

drug made the list in place of another.

4.6.2 Agglomerative clustering

In this method we can observe that the ranked list of drugs are the same as table

4.17. From table 4.19 we infer that there are two unknown, one experimental and

seven approved drugs ranked in the top ten. The optimal k value was found to be 4.
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Table 4.18: SubType 6 ranked list of drugs: K-Means Clustering (k=5)

Rank Drug Name FDA Status

1 agomelatine Approved
2 KIN001-266 Unknown
3 CHIR-99021 Experimental
4 JTE-907 Unknown
5 olaparib Approved
6 dopamine Approved
7 lisinopril Approved
8 trimethobenzamide Approved
9 tioconazole Approved
10 desvenlafaxine Approved

Table 4.19: SubType 6 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 agomelatine Approved
2 KIN001-266 Unknown
3 CHIR-99021 Experimental
4 JTE-907 Unknown
5 fluticasone-propionate Approved
6 olaparib Approved
7 dopamine Approved
8 lisinopril Approved
9 trimethobenzamide Approved
10 tioconazole Approved

4.7 SubType 7

In this section, we observe the results obtained by using both clustering methods.

The tables below indicate the best suited drug candidates for repurposing for this

subtype.

4.7.1 K-Means clustering

Using this method, for the three k values (2,3,4), we notice that two investigational,

one unknown and seven approved drugs made the list as shown in table 4.20. The
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optimal k value was found to be 4.

Table 4.20: SubType 7 ranked list of drugs: K-Means Clustering (k=2, k=3, k=4)

Rank Drug Name FDA Status

1 tioconazole Approved
2 gatifloxacin Approved
3 trimethobenzamide Approved
4 agomelatine Approved
5 cinaciguat Unknown
6 ambroxol Investigational
7 fluticasone-propionate Approved
8 calcitriol Approved
9 felbamate Approved
10 ebselen Investigational

From table 4.21 we can infer that when the k value was set to 5, we obtained an

almost same list of drugs except that one experimental drug made the list in place of

an approved drug.

Table 4.21: SubType 7 ranked list of drugs: K-Means Clustering (k=5)

Rank Drug Name FDA Status

1 tioconazole Approved
2 gatifloxacin Approved
3 trimethobenzamide Approved
4 agomelatine Approved
5 cinaciguat Unknown
6 ambroxol Investigational
7 fluticasone-propionate Approved
8 calcitriol Approved
9 ebselen Investigational
10 AS-601245 Experimental
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4.7.2 Agglomerative clustering

Using this method, we interpret that the ranked list of drugs obtained are the same

as they appear in table 4.20. We notice this in the list provided in table 4.22. The

optimal k value was found to be 3.

Table 4.22: SubType 7 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 tioconazole Approved
2 gatifloxacin Approved
3 trimethobenzamide Approved
4 agomelatine Approved
5 cinaciguat Unknown
6 ambroxol Investigational
7 fluticasone-propionate Approved
8 calcitriol Approved
9 felbamate Approved
10 ebselen Investigational

4.8 SubType 8

In this section, we look at the results obtained for disease subtype 8. We notice that

both algorithms have produced a decent set of results showing the top drugs best

suited for potential drug repurposing candidates for this subtype.

4.8.1 K-Means clustering

Using this method, the ranked list of drugs for k values 2,3, and 4, appear to contain

one experimental drug, four unknown drugs and five approved drugs as shown in table

4.23. The optimal k value was found to be 5.
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Table 4.23: SubType 8 ranked list of drugs: K-Means Clustering (k=2, k=3, k=4)

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 agomelatine Approved
3 dopamine Approved
4 trimethobenzamide Approved
5 tioconazole Approved
6 climbazole Unknown
7 gatifloxacin Approved
8 dacinostat Unknown
9 YM-976 Experimental
10 JTE-907 Unknown

For k value of 5, we observe that it contains one experimental drug, four unknown

drugs and five approved drugs as shown in table 4.24. Although one of the approved

drug from the previous table has been replaced by another approved drug as shown

in this table.

Table 4.24: SubType 8 ranked list of drugs: K-Means Clustering (k=5)

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 agomelatine Approved
3 dopamine Approved
4 trimethobenzamide Approved
5 climbazole Unknown
6 gatifloxacin Approved
7 dacinostat Unknown
8 YM-976 Experimental
9 JTE-907 Unknown
10 desvenlafaxine Approved
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4.8.2 Agglomerative clustering

In this method, we notice that the ranked list of drugs is the same as the one gener-

ated by k-means with k values of 2,3, and 4 as shown in table 4.25. The optimal k

value was found to be 2.

Table 4.25: SubType 8 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 agomelatine Approved
3 dopamine Approved
4 trimethobenzamide Approved
5 tioconazole Approved
6 climbazole Unknown
7 gatifloxacin Approved
8 dacinostat Unknown
9 YM-976 Experimental
10 JTE-907 Unknown

4.9 SubType 9

Subtype 9’s results show differences in the drugs list for both methods. The top two

drugs remain the same in every instance in this subtype.

4.9.1 K-Means clustering

In this method, for a k value of 2, we obtain a drug list comprising of five approved

drugs, three unknown drugs, one investigational and one experimental drug as we can

see in table 4.26. The optimal k value was found to be 5.

From table 4.27, we can infer that six approved, one investigational and three
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Table 4.26: SubType 9 ranked list of drugs: K-Means Clustering (k=2)

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 JTE-907 Unknown
3 CHIR-99021 Experimental
4 dopamine Approved
5 gatifloxacin Approved
6 benazepril Approved
7 folic-acid Approved
8 agomelatine Approved
9 piribedil Investigational
10 climbazole Unknown

unknown drugs appear to be the closest to this subtype.

Table 4.27: SubType 9 ranked list of drugs: K-Means Clustering (k=3)

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 JTE-907 Unknown
3 dopamine Approved
4 gatifloxacin Approved
5 agomelatine Approved
6 piribedil Investigational
7 aurora-a-inhibitor-I Approved
8 donitriptan Unknown
9 trimethobenzamide Approved
10 desvenlafaxine Approved

In table 4.28 where the k value is 4, we can see that there are five approved, three

unknown, and two investigational drugs which are closest to this subtype.

From table 4.29, we can notice that taking a k value of 5 placed one experimental,

one investigational, three unknown and five approved drugs.
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Table 4.28: SubType 9 ranked list of drugs: K-Means Clustering (k=4)

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 JTE-907 Unknown
3 dopamine Approved
4 gatifloxacin Approved
5 agomelatine Approved
6 piribedil Investigational
7 aurora-a-inhibitor-I Approved
8 donitriptan Unknown
9 desvenlafaxine Approved
10 tacedinaline Investigational

Table 4.29: SubType 9 ranked list of drugs: K-Means Clustering (k=5)

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 JTE-907 Unknown
3 CHIR-99021 Experimental
4 dopamine Approved
5 gatifloxacin Approved
6 agomelatine Approved
7 piribedil Investigational
8 aurora-a-inhibitor-I Approved
9 donitriptan Unknown
10 trimethobenzamide Approved

4.9.2 Agglomerative clustering

Using this method, we observe that the results produced are the same as the ones

generated by k-means with a k value of 2. As we notice in table 4.30, we obtain five

approved, one investigational, one experimental and three unknown drugs closest to

this subtype. The optimal k value was found to be 2.
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Table 4.30: SubType 9 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 KIN001-266 Unknown
2 JTE-907 Unknown
3 CHIR-99021 Experimental
4 dopamine Approved
5 gatifloxacin Approved
6 benazepril Approved
7 folic-acid Approved
8 agomelatine Approved
9 piribedil Investigational
10 climbazole Unknown

4.10 SubType 10

In this section we look into the results obtained for subtype 10 using both our methods.

The three tables show us the best suited drug candidates for repurposing for this

subtype.

4.10.1 K-Means clustering

For k values of 2 and 3, we obtain six approved, one experimental, one investigational

and two unknown drugs to be considered as good drug repurposing candidates as

shown in table 4.31. The optimal k value was found to be 5.

For k values of 4 and 5, we obtain five approved, two experimental, one investiga-

tional and two unknown drugs to be considered as good drug repurposing candidates

as shown in table 4.32. We observe that except fofr one experimental drug in this

table, the first nine drugs remian the same as the list in table 4.31.



56

Table 4.31: SubType 10 ranked list of drugs: K-Means Clustering (k=2, k=3)

Rank Drug Name FDA Status

1 dopamine Approved
2 KIN001-266 Unknown
3 felbamate Approved
4 donitriptan Unknown
5 desvenlafaxine Approved
6 CHIR-99021 Experimental
7 CEP-37440 Investigational
8 quetiapine Approved
9 olmesartan-medoxomil Approved
10 trimethobenzamide Approved

Table 4.32: SubType 10 ranked list of drugs: K-Means Clustering (k=4, k=5)

Rank Drug Name FDA Status

1 dopamine Approved
2 KIN001-266 Unknown
3 felbamate Approved
4 donitriptan Unknown
5 desvenlafaxine Approved
6 CHIR-99021 Experimental
7 CEP-37440 Investigational
8 quetiapine Approved
9 olmesartan-medoxomil Approved
10 clinofibrate Experimental

4.10.2 Agglomerative clustering

In this method, we notice that with the exception of one drug, every other drug dis-

played in table 4.33 also appears to be in table 4.31. The optimal k value was found

to be 3.

Overall, we have displayed the best suited potential drug repurposing candidates

for each of the ten subtypes using the aforementioned methods.
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Table 4.33: SubType 10 ranked list of drugs: Agglomerative Clustering

Rank Drug Name FDA Status

1 dopamine Approved
2 KIN001-266 Unknown
3 donitriptan Unknown
4 desvenlafaxine Approved
5 CHIR-99021 Experimental
6 CEP-37440 Investigational
7 quetiapine Approved
8 olmesartan-medoxomil Approved
9 trimethobenzamide Approved
10 clinofibrate Experimental



Chapter 5

Conclusion and Future Work

In this thesis, we aimed to find suitable drug repurposing candidates for each of the

ten breast cancer subtypes. We were given METABRIC and LINCS datasets. We

performed a series of preprocessing steps on both of these datasets to create a DDCM

(Drug Disease Combination Matrix) for each of the ten disease subtypes. Then using

anti-correlation matrix which we generated, we have obtained a filtered DDCM per

subtype. Then we applied k-mean clustering along with agglomerative clustering

method. Then we computed the euclidean distances of all the drugs found in the

same cluster as the disease subtype, and ranked them closest to farthest from the

subtype. We then picked the top ten drugs for each subtype using the aforementioned

methods.

5.1 Possible Future Work

Future work that can be conducted includes the following:-

• Using the DDCM we generated, dimensionality reduction and distance metric

learning methods can be implemented

• Using side-effect similarity of unapproved drugs with that of approved drugs,
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drug repurposing candidates can be obtained

• Our preprocessing steps and methods can be applied on a different cancer

dataset such as prostate cancer

These ideas can be an open problem that can be explored in the future.
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Appendix A: Clustering Results

Figure 1: SubType 1 ranked list of drugs: K-Means (K=2)

Figure 2: SubType 1 ranked list of drugs: K-Means (K=3)



66

Figure 3: SubType 1 ranked list of drugs: K-Means (K=4)

Figure 4: SubType 1 ranked list of drugs: K-Means (K=5)
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Figure 5: SubType 2 ranked list of drugs: K-Means (K=2)

Figure 6: SubType 2 ranked list of drugs: K-Means (K=3)
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Figure 7: SubType 2 ranked list of drugs: K-Means (K=4)

Figure 8: SubType 2 ranked list of drugs: K-Means (K=5)
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Figure 9: SubType 3 ranked list of drugs: K-Means (K=2)

Figure 10: SubType 3 ranked list of drugs: K-Means (K=3)
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Figure 11: SubType 3 ranked list of drugs: K-Means (K=4)

Figure 12: SubType 3 ranked list of drugs: K-Means (K=5)
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Figure 13: SubType 4 ranked list of drugs: K-Means (K=2)

Figure 14: SubType 4 ranked list of drugs: K-Means (K=3)
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Figure 15: SubType 4 ranked list of drugs: K-Means (K=4)

Figure 16: SubType 4 ranked list of drugs: K-Means (K=5)
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Figure 17: SubType 5 ranked list of drugs: K-Means (K=2)

Figure 18: SubType 5 ranked list of drugs: K-Means (K=3)
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Figure 19: SubType 5 ranked list of drugs: K-Means (K=4)

Figure 20: SubType 5 ranked list of drugs: K-Means (K=5)
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Figure 21: SubType 6 ranked list of drugs: K-Means (K=2)

Figure 22: SubType 6 ranked list of drugs: K-Means (K=3)
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Figure 23: SubType 6 ranked list of drugs: K-Means (K=4)

Figure 24: SubType 6 ranked list of drugs: K-Means (K=5)
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Figure 25: SubType 7 ranked list of drugs: K-Means (K=2)

Figure 26: SubType 7 ranked list of drugs: K-Means (K=3)
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Figure 27: SubType 7 ranked list of drugs: K-Means (K=4)

Figure 28: SubType 7 ranked list of drugs: K-Means (K=5)
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Figure 29: SubType 8 ranked list of drugs: K-Means (K=2)

Figure 30: SubType 8 ranked list of drugs: K-Means (K=3)
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Figure 31: SubType 8 ranked list of drugs: K-Means (K=4)

Figure 32: SubType 8 ranked list of drugs: K-Means (K=5)
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Figure 33: SubType 9 ranked list of drugs: K-Means (K=2)

Figure 34: SubType 9 ranked list of drugs: K-Means (K=3)
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Figure 35: SubType 9 ranked list of drugs: K-Means (K=4)

Figure 36: SubType 9 ranked list of drugs: K-Means (K=5)
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Figure 37: SubType 10 ranked list of drugs: K-Means (K=2)

Figure 38: SubType 10 ranked list of drugs: K-Means (K=3)
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Figure 39: SubType 10 ranked list of drugs: K-Means (K=4)

Figure 40: SubType 10 ranked list of drugs: K-Means (K=5)
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Figure 41: SubType 1 ranked list of drugs: Agglomerative

Figure 42: SubType 2 ranked list of drugs: Agglomerative
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Figure 43: SubType 3 ranked list of drugs: Agglomerative

Figure 44: SubType 4 ranked list of drugs: Agglomerative
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Figure 45: SubType 5 ranked list of drugs: Agglomerative

Figure 46: SubType 6 ranked list of drugs: Agglomerative
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Figure 47: SubType 7 ranked list of drugs: Agglomerative

Figure 48: SubType 8 ranked list of drugs: Agglomerative
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Figure 49: SubType 9 ranked list of drugs: Agglomerative

Figure 50: SubType 10 ranked list of drugs: Agglomerative
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