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ABSTRACT 

Research conducted previously has shown that a battery electric vehicle (BEV) 

motor design incorporating drive-cycle optimization can lead to achievement of a higher 

torque density motor that consumes less energy over the drive-cycle in comparison to a 

conventionally designed motor. Such a motor indirectly extends the driving range of the 

BEV. Firstly, in this thesis, a vehicle dynamics model for a direct-drive machine and its 

associated vehicle parameters is implemented for the urban dynamometer driving 

schedule (UDDS) to derive loading data in terms of torque, speed, power, and energy. K-

means clustering and Gaussian mixture modeling (GMM) are two clustering techniques 

used to reduce the number of machine operating points of the drive-cycle while 

preserving the characteristics of the entire cycle. These methods offer high computational 

efficiency and low computational time cost while optimizing an electric machine. 

Differential evolution (DE) is employed to optimize the baseline fractional slot 

concentrated winding (FSCW) surface permanent magnet synchronous machine 

(SPMSM). A computationally efficient finite element analysis (CEFEA) technique is 

developed to evaluate the machine at the representative drive-cycle points elicited from 

the clustering approaches.  In addition, a steady-state thermal model is established to 

assess the electric motor temperature variation between optimization design candidates.  

In an alternative application, the drive-cycle cluster points are utilized for a 

computationally efficient drive-cycle system simulation that examines the effects of 

inverter time harmonics on motor performance. The motor is parameterized and modeled 

in a PSIM motor-inverter simulation that determines the current excitation harmonics that 

are injected into the machine during drive-cycle operation. These current excitations are 

inserted into the finite element analysis motor simulation for accurate analysis of the 

harmonic effects. The analysis summarizes the benefits of high-frequency devices such as 

gallium nitride (GaN) in comparison to insulated gate bipolar transistors (IGBT) in terms 

of torque ripple and motor efficiency on a drive-cycle.  
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CHAPTER 1 

Introduction 
Electric vehicles have captured a vast amount of attention in the past decade due 

to environmental concerns from fossil fuel emissions and the public’s desire for 

innovation. Furthermore, auto manufacturers must meet government regulations to meet 

strict fuel efficiencies targets in next-generation vehicles [1], [2]. Permanent magnet 

synchronous machines (PMSMs) are currently leading the competition amongst other 

types of electric motors to replace the standard internal combustion engine due to their 

high power density and efficiency [3]. However, even as the most suitable electric 

machine, there is still opportunity to improve in areas of reliability, losses, temperature, 

size, cost, and active weight [4]. This is evident by the electric vehicle’s requirements to 

be efficient over a wide speed operating range to obtain increased driving distance on a 

single battery charge and for the vehicle to be affordable for the mass population [5].  

A PMSM uses permanent magnets in the rotor to create the field flux, which 

increases efficiency and reliability since contact brushes are not needed to supply an 

excitation to the rotor of the electric machine [6]. Figure 1.1 shows the torque and power 

characteristics of a typical PMSM. The constant torque region is obtainable until the rated 

speed of the machine where the maximum voltage is reached. In this region, the 

maximum torque is attainable by supplying rated current to the machine [7]. This torque 

characteristic is desirable for traction applications since maximum torque is most 

frequently required at low speeds for acceleration. Beyond rated speed, the air gap flux 

density is weakened to decrease the induced back electromotive force (BEMF), which in 

turns reduces the terminal voltage below the rated value. In this flux-weakening (FW) 

region, the power remains constant and the torque decreases as speed increases until 

maximum speed [8]. 
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Fig. 1.1. Torque-speed and power-speed characteristics of a typical PMSM. 

Although electric motors have been around for over a century, their use in traction 

applications for electric vehicles remains a modern and developing application that still 

requires a significant amount of research and development in terms of weight, cost, size, 

efficiency, reliability, and power density of the electric motor.  This requires careful 

analysis of the electric vehicle to optimally design the electric motor for the specific 

application. 

1.1 Objectives and Contributions of This Study 
In electric motor design optimization procedures, the objective has commonly been to 

maximize the motor efficiency at rated conditions due to the computational demand of 

finite element analysis as in [9]. However, in a practical vehicle application, the motor 

performs at various torque and speed operating conditions while driving [10]. A PMSM 

is not able to deliver the peak efficiency across the entire operating range. Therefore, a 

new motor design procedure is required to evaluate machine performance across a wide 

range of operating conditions. This will ensure that an electric motor will perform with 

optimal efficiency in a practical vehicle application where it is subject to various torque 

and speed loading conditions.   

Furthermore, many standard machine design procedures and simulations consider a pure 

sinusoidal current input as the motor excitation. In an actual implementation, an inverter 

that generates the three-phase power supply of the motor induces harmonics that affect 

the performance of the machine. These inverter-induced harmonics, named time 
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harmonics, cause an increase in torque ripple and vibrations as well as additional 

harmonic losses [11]. Therefore, it is essential to model the inverter excitations that 

include harmonics to assess the negative effects that they have on the motor. Moreover, 

drive-cycle analysis is required to accurately evaluate the overall machine performance in 

a system that is prevalent in real driving conditions.  

This thesis proposes modeling for torque, speed, and power characterization of the 

electric motor in a vehicle application. The vast amount of derived drive-cycle load 

points requires quantization by means of clustering or mixture modeling to make drive-

cycle analysis computationally feasible by representing the entire cycle with a minimal 

number of load points.  

Further, the thesis proposes a method to optimize an electric machine for this set of 

torque-speed load points that are most crucial for a given vehicle when executing a 

selected drive-cycle. This ensures that optimal motor energy efficiency will be obtained 

in a practical vehicle application. Additionally, a thermal analysis is included into the 

optimization to consider temperature variations in different motor topologies. Thereafter, 

to analyze the electric motor on a system level drive-cycle analysis, a performance 

comparison is introduced to rival the effects that different inverters have on an electric 

motor in terms of torque ripple and drive-cycle energy efficiency.  

1.2 Organization of Thesis 
Chapter 2 utilizes vehicle dynamic equations to analyze the forces experienced by a 

particular vehicle whilst performing a drive-cycle to derive torque, speed, and energy 

distribution experienced by the electric machine.  

Chapter 3 focuses to reduce the computational burden that this vast amount of loading 

data contains by implementing machine learning algorithms such as K-means clustering 

and Gaussian mixture modeling to cluster and quantize the data. This will in turn produce 

a reduced number of representative points that retain the loading characteristics 

experienced by the machine across the drive-cycle.  

Chapter 4 introduces an evaluation procedure to calculate the efficiency of the motor 

using an enhanced finite element analysis (FEA) technique to derive computationally 
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efficient and accurate performance characteristics. This technique enables the continuous 

torque, back EMF, and flux density waveforms to be derived that contain nonlinearities 

such as harmonics and saturation by combining a limited number of FEA solutions with 

Fourier analysis to reconstruct the continuous waveforms. These characteristics are used 

in a loss model developed to determine the machine efficiency at a given operating 

condition.  

Chapter 5 outlines the procedure for constructing a lumped parameter thermal network 

(LPTN) to analyze the temperatures of the machine at different locations in the motor 

structure. The model uses the losses calculated in Chapter 4 to determine the steady-state 

operating temperatures of the machine in different load conditions.  

Chapter 6 introduces a multi-objective differential evolution optimization program that 

creates machine design candidates and evaluates the designs based on their performance 

across the drive-cycle representative load points. The evolutionary algorithm modifies the 

geometrical structure of the machine and converges to uncover models that are optimal in 

terms of cost, weight, torque ripple, and efficiency across the drive-cycle points. This 

ensures that the vehicle will operate with the lowest amount of energy consumption 

possible while satisfying stringent constraints on weight and torque ripple production.  

Chapter 7 extends the research work to the system level by analyzing the effects of 

inverter-generated harmonics on an electric motor. Gallium nitride (GaN) and insulated-

gate bipolar (IGBT) two-level inverter system simulations are created to obtain the 

current excitations with harmonic content at drive-cycle representative load points. FEA 

is used to analyze the inverter harmonic effects on the torque ripple and losses of the 

machine. A drive-cycle comparison of the GaN and IGBT inverter topologies with 

analytically calculated pure sinusoidal waveforms is conducted. 

Chapter 8 summarizes the results and provides potential future work in this field of 

research.  
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CHAPTER 2 
Vehicle Dynamics for Drive-Cycle Operating Characteristics 

Vehicle dynamic simulations provide essential information to understand the torque and 

speed requirements of a motor while subject to different driving conditions [12]. The 

vehicle dynamic equations listed in (2.1) – (2.4) analyze the forces that act on a vehicle in 

motion. The main forces can be analytically represented by the drag force associated with 

the aerodynamics of the vehicle and the extent of wind resistance the vehicle is 

experiencing, the static and dynamic tire friction force, the force of acceleration that is 

associated with the vehicle’s inertia, and the gravitational force that the vehicle 

experiences when there is a road grade present. The sum of these four forces describes 

the overall resultant force acting on the vehicle, expressed in (2.5) [13].  

 21
2D d vF    C  A  v= ρ  (2.1) 

       cosR rr vF f M g α=  (2.2) 

 
 A v

dvF M
dt

=  (2.3) 

     sinG vF M g α=  (2.4) 

 v D R A GF F F F F= + + +  (2.5) 

where ρ is the density of air, Cd is the drag coefficient, Av is the frontal vehicle surface 

area, v is the vehicle speed, frr is the coefficient of rolling resistance, Mv is the vehicle 

mass, g is gravitational acceleration, and α is the road grade. 

2.1 Drive-Cycles 
Drive cycles are a series of data points that contain vehicle speed versus time. They are 

created to simulate real-life driving conditions and are most often used for performance 

assessment of an automobile in terms of vehicle mileage and emissions. Electric vehicles 

(EVs) do not generate emissions, but vehicle mileage is one of the principle design 

considerations since they are often restricted in energy storage capability because of the 

high battery cost, weight, and size.  
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The Environmental Protection Agency (EPA) developed the Urban Dynamometer 

Driving Schedule (UDDS) to simulate city driving and the Highway Fuel Economy 

Driving Schedule (HWFET) for highway driving [14]. Many other corporations and 

countries have various drive-cycles to represent common driving conditions as well as 

aggressive driving styles present in high traffic situations. They are used as a baseline for 

vehicle performance during prototype development to predict product functionality and 

lifespan once the vehicle enters the market. It is therefore essential that vehicle 

components be designed to withstand and perform most efficiently on suitable drive-

cycles for specific vehicle applications. For this reason, the aforementioned vehicle 

dynamics are applied to a drive-cycle to analyze the forces acting on the vehicle and 

predict design targets, such as torque and speed requirements, to develop optimally 

efficient products for specific vehicle applications. 

The UDDS and HWFET obtained from [14] are the standard tests conducted in Canada 

for city and highway evaluation of cars and light trucks. This thesis will focus 

specifically on the UDDS cycle to have a practical design target for vehicles in 

production in this area. The urban cycle displayed in Fig. 2.1 experiences a lower average 

speed of 34.1 km/h and 23 full stops. The cycle covers a total distance of 17.77 km over a 

duration of 1,874 seconds. The highway drive-cycle displayed in Fig. 2.2 has a higher 

average speed of 77.7 km/h, covering a total distance of 16.45 km, with a duration of 765 

seconds [15].  

2.2 Vehicle Parameters 
In order to acquire machine design targets and analyze the loading conditions that the 

electric motor is subject to, vehicle parameters are required for which the electric motor 

will be integrated into. These vehicle parameters include the drag coefficient, frontal 

vehicle surface area, rolling resistance coefficient, vehicle mass, and wheel radius rw. 

Other parameters required include the density of air, gravitational acceleration, and road 

grade, which are independent of the vehicle model selected. For this thesis, the 2014 Ford 

Fiesta is considered as the vehicle application for the electric motor design. All the 

corresponding vehicle parameters are listed in Table 2.1 [16].  
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Fig. 2.1. Urban Dynamometer Driving Schedule (UDDS). 

 
Fig. 2.2. Highway Fuel Economy Driving Schedule (HWFET). 

2.3 Deriving Motor Load Characteristics with Vehicle Dynamics Model 
The resultant vehicle force in (2.5) is obtained by calculating the individual forces at each 

discrete sample of the UDDS drive-cycle. The result can be seen in Fig. 2.3, which 

displays the change in vehicle force over the duration of the cycle. 
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TABLE 2.1 
2014 Ford Fiesta Specifications 

Symbol Description Value 

ρ Density of air 1.202 kg/m3 

Cd Drag coefficient 0.33 

Av Frontal vehicle surface area 2.536 m2 

v Vehicle speed varying 

frr 
Rolling resistance 

coefficient 0.013 

Mv Vehicle mass 1,570 kg 

g Gravitational acceleration 9.81 m/s2 

α Road grade 0° 

rw Wheel Radius (195/50R16) 0.3007 m 

ig Gear Ratio 1 

 

 
Fig. 2.3. UDDS resultant vehicle force for 2014 Ford Fiesta. 
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2.3.1 Motor Output Torque for UDDS Drive-Cycle 
The vehicle force is applied at the wheel of the vehicle to drive the vehicle. However, the 

focus of this thesis is the motor, and thus, the resultant vehicle force must be translated 

back and converted into the output speed and torque of the electric motor. Equation (2.6) 

uses the resultant vehicle force and the moment arm of the wheel, shown in Fig. 2.4, to 

derive the torque Tw at the shaft of the vehicle [12].  

  w v wT F r=  (2.6) 

 
Fig. 2.4. Relationship between vehicle force and output torque. 

The transmission system of an electric vehicle often includes a fixed gear ratio between 

the motor and the output shaft. This gear ratio is used to scale-down the amount of torque 

production and increase the speed required of the electric motor. The motor torque Tp is 

related to the torque at the wheel Tw as in (2.7) where ig is the gear ratio and η is the 

driveline efficiency [12]. The driveline efficiency includes all losses associated with the 

gears and the differential. A transmission system contributes losses that account for 2 – 

20% of the total output power in the vehicle depending on the operating speed and torque 

[17], [18]. Figure 2.5 illustrates the configuration of driveline components in a typical 

electric vehicle. 

 w
p

g

TT
i

=
η

 (2.7) 
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Fig. 2.5. Driveline components of a typical electric vehicle. 

This thesis considers a direct-drive vehicle that has no gear ratio in the driveline. The 

direct-drive motor configuration requires a high-torque, low-speed machine since the 

motor torque and speed is directly transferred from the motor to the wheels of the vehicle. 

The direct-drive configuration is beneficial since it contains a lower component count, 

reduces the losses and noise, and has less maintenance and lubrication cost [19]. 

Consequently, this thesis considers a driveline efficiency of 98% since the gear ratio is 

removed from the driveline in a direct-drive machine, therefore reducing the losses. 

Figure 2.6 displays the output torque of the electric motor with the applied driveline 

efficiency and a gear ratio of one. Positive torque indicates that the vehicle is motoring to 

accelerate or drive at a consistent speed. Negative torque occurs when the vehicle is 

decelerating. In this scenario, the motor acts as a generator and is capable of capturing 

some of the energy to charge the battery through a process called regenerative braking.  



 

11 
 

 
Fig. 2.6. UDDS torque profile for a direct-drive machine. 

2.3.2 Motor Speed for UDDS Drive-Cycle 
In addition, the output motor speed, Np, is a function of the gear ratio and the wheel 

speed, Nw, as seen in (2.8). The wheel speed is converted from kilometers per hour to 

revolutions per minute using (2.9). Figure 2.7 displays the speed of the motor’s rotor in 

revolutions per minute (rpm) [12]. 

 p g wN i N=  (2.8) 

 30
w

wr
vN =

π
 (2.9) 

2.3.3 Motor Output Power for UDDS Drive-Cycle 
The product of torque and speed in radians per second, ω, defines the instantaneous 

output power, Pout, of the electric motor as seen in (2.10) [13]. Figure 2.8 displays this 

characteristic across the urban drive-cycle. Similar to the torque profile, positive power 

flow denotes motoring and the negative regions display the magnitude of power that is 

available for regenerative braking. In this thesis, the electric machine is being analyzed 

for the motoring condition and only considers the positive torque and power regions.  

 outP T= ω  (2.10) 



 

12 
 

 
Fig. 2.7. UDDS motor speed in rpm for a direct-drive machine. 

5  
Fig. 2.8. UDDS output power profile. 

2.3.4 Motor Energy Distribution on the Torque-Speed plane  
An effective way to view the drive-cycle loading characteristic is on a torque-speed plane 

as seen in Fig. 2.9. This plot removes the loading condition’s dependency on time and 

instead displays the instantaneous output torque and speed that the electric motor is 

subject to at each discrete sample point of the drive-cycle. This plot is also an effective 

way to determine motor design targets in terms of maximum torque and speed capability 

of an electric machine to satisfy real-life driving conditions [20].  
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Fig. 2.9. UDDS torque-speed load characteristics for direct-drive machine. 

Another significant characteristic of the loading conditions is their associated energy 

consumption. This is an important characteristic because the motor design must be 

optimally efficient in regions with high energy consumption to reduce the amount of 

battery consumption in driving scenarios [13]. 

Energy is defined as the integral of power over time and can be represented as (2.11) 

where the motor energy, Emotor, is equal to the summation of the discrete samples of 

power. Similarly, the energy associated with each load point on the torque-speed plane 

can be calculated using the number of occurrences of that condition in the drive-cycle 

multiplied by its associated power [13]. The overall energy distribution across the torque-

speed plane is shown in Fig. 2.10. 

 
( )

0
 

t
motor out

t
E P t

=
= ∑  (2.11) 

2.4 Conclusions 
This chapter presented a vehicle dynamics model to derive a direct-drive motor’s torque, 

speed, and energy characteristic for a 2014 Ford Fiesta completing the UDDS drive-

cycle. The motor loading distribution is illustrated in Fig. 2.10 on a torque-speed plane to 

visualize the scattered location of load points and their associated magnitude of energy  
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Fig. 2.10. UDDS energy distribution across the torque-speed plane for a direct-drive machine. 

consumption. This torque-speed distribution can be used to assist in selecting a machine’s 

operating envelope when designing a machine by identifying maximum torque and speed 

requirements of the motor. Furthermore, regions with a high density of points and points 

with large magnitudes of energy consumption can be identified and targeted in the 

machine design process to ensure maximum drive-cycle operating efficiency. The regions 

with a high density of load points are produced when the vehicle is operating frequently 

around a target speed limit such as 50 km/h for city and 100 km/h for highway. Load 

points that have a large magnitude of energy consumption are caused by a number of 

repetitive occurrences and large value of instantaneous power.  

It was found that regions of acceleration experience a high torque, but low speed for a 

short duration of time, therefore the magnitude of energy consumption during 

acceleration is not as significant as the regions of steady speed operation. The speeds 

associated with city driving have a larger value of occurrences, but the highway speeds 

have larger magnitudes of energy consumption due the higher value of instantaneous 

power. This trade-off makes it difficult to determine which of these regions contains 

more energy consumption and is more significant in terms of the machine’s operating 

efficiency. Due to this ambiguity of identifying key regions of operation, statistical data-

mining techniques must be introduced to represent the cycle and identify the target 

regions that have high energy consumption.   



 

15 
 

CHAPTER 3 
Clustering Techniques for Drive-Cycle Data Representation 

To properly assess a machine’s performance across a drive-cycle, the motor’s efficiency 

must be determined at each load point on the torque-speed plane. However, this is 

computationally intensive due to the vast amount of individual sample points. Thus, 

statistical data-mining algorithms are introduced to quantize the load data into a minimal 

number of points that preserve and represent the characteristics of the full dataset. This 

creates a computationally efficient method of evaluating a machine’s performance across 

an entire drive-cycle and makes it feasible to implement this type of machine evaluation 

into an optimization algorithm [21].  

3.1 K-Means Clustering  
K-means clustering is a statistical algorithm proposed in [22] for drive-cycle data 

representation. The algorithm separates the data points into K clusters where each data 

point belongs to the cluster with the nearest mean. In an iterative process, the data points 

get assigned to the nearest mean and the new mean for each cluster is recalculated once 

all the assignments are complete.   

The user defines the number of desired clusters by assigning random points in the torque-

speed plane that act as the center of each cluster, known as centroids. The algorithm 

separates the data by assigning each point to the cluster with the nearest mean given by 

(3.1) [22]. 

 ( ) ( ) ( ){ }2 2 ,1t t t
p p pi i jS x x m x m j j k= − ≤ − ∀ ≤ ≤  (3.1) 

where, Si is a set of points that are assigned to the ith cluster. The variable xp represents a 

point in the dataset that belongs to subset Si if its distance to that cluster’s mean, mi, is 

shorter than the distance to all the other clusters’ means, mj. The number of clusters is 

represented by k and the iteration of the calculation is represented by t. In an iterative 

process, the algorithm reassigns the centroid’s position in each cluster by calculating the 

average torque and speed in that corresponding sub region using (3.2) [22]. 
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The data points are then reassigned and the centroids are recalculated until none of the 

data points change clusters. This algorithm provides a superior assignment of clusters and 

distribution of representative points among the dataset as seen in Fig. 3.1, where the 

various colors represent different clusters and the circular blue points signify the 

centroids. The torque-speed points are obtained from the vehicle dynamic results outlined 

in Chapter 2. 

 
Fig. 3.1. K-means clustering result for torque-speed load data. 

3.2 Selecting Number of Clusters in K-Means  
In a machine-learning scenario, there is a possibility of over predicting the dataset by 

assigning too many clusters. This occurs when outliers in the dataset affect the clusters 

and consequently, having more clusters will inevitably decrease the accuracy of 

predicting new values. However, since this machine-learning algorithm is being 

implemented for a fixed dataset, increasing the number of clusters in K-means always 

increases the accuracy of representation. Therefore, selecting an appropriate number of 

clusters to use to represent the data becomes an ambiguous trade-off between accuracy of 

representation and computational efficiency. 

Centroid 
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3.2.1 Sum of Squared Error Analysis  
Calculating the sum of squared error (SSE) for K-means clustering is a method used to 

assist in selecting an optimal amount of clusters. The equation quantifies the amount of 

variation between the data points and its group’s mean [23].  

 
( )2

1
  ,

i

k
i

i x m
SSE dist x m

=
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ε
 (3.3) 

The SSE equation is evaluated using the K-means clustering results for different 

possibilities of k.  As the number of clusters increases, the value of SSE exponentially 

decays to zero at which point, the number of clusters is equal to the number of data 

points. This creates an “elbow effect” in the SSE plot as seen in Fig. 3.2. The selection 

for the number of clusters is thus justified by the law of diminishing returns, where the 

increase in representational accuracy does not justify the increase in computational 

burden. From the plot, it is observed that six clusters are sufficient to represent the data 

while maintaining a small number of representative points for computational efficiency.  

 
Fig. 3.2. Sum of squared error results for cluster selection. 

3.3 Addressing Energy Significance in Clustering Algorithms  
The K-means clustering method however, exclusively uses the torque and speed 

information to cluster the data and therefore, it fails to properly address the energy 

Optimal 
Number of 

Clusters 
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significance of the points within a given cluster. For this reason, it should be known that 

improvements can be made by proposing a new approach in order to achieve both 

optimal distribution and weighted significance of the representative data points. 

3.3.1 Hybrid Clustering Technique   
A proposed solution is to hybridize the K-means clustering algorithm with an “Energy 

Center of Gravity” (ECG) technique to get the best possible representation for any 

number of clusters on any drive-cycle. The ECG method is used in [24] – [26] to perform 

a weighted mean on each cluster once the algorithm converges. Each point’s associated 

energy Eij is normalized to the total energy in that given cluster Ei as in (3.4) and is used 

as the weight within the ECG method. The weighted means in terms of torque and speed 

of each cluster are used as the representative data points.  These calculated representative 

data point positions, ωmci and Tmci, that factor in each point’s energy significance are 

given by (3.4) and (3.5) [24]. 
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This method is significant as it considers the data’s associated weight by positioning the 

representative point closer to regions with higher energy consumption, which is more 

valuable when attempting to obtain vehicle energy loss minimization. The K-means 

clustering algorithm is used to optimally cluster the data in the torque-speed plane and 

rather than using the centroids, the ECG method is applied to each of the segmented 

clusters to calculate the location of the representative point. The energy consumed in each 

cluster is normalized to the total energy consumed to assign weights to the representative 

points.  
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3.3.2 Results for Hybrid Clustering Technique   
Figure 3.3 displays the result of both the K-means clustering algorithm and the hybrid 

method as a comparison. The blue points signify the K-means clustering result that uses 

the centroids as the placement of the representative points and the white points are the 

result of the hybrid method that have a different position but carry the same weighted 

significance as the K-means method. The results show that there is a significant change 

of torque-speed location for all the representative points which proves that the energy 

significance is an essential characteristic to consider while clustering. Table 3.1 presents 

the final results of speed and torque values for each cluster, along with their normalized 

energy.  

 
Fig. 3.3. Results for hybrid clustering approach. 

 

 

 

 

Centroid 
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TABLE 3.1 
Hybrid Clustering Result 

Speed 
(rpm) 

Torque 
(Nm) 

Normalized 
Energy (%) 

233.85 934.91 7.89% 
283.49 689.70 8.77% 
305.39 210.68 4.23% 
386.15 498.09 22.76% 
419.95 323.66 26.28% 
738.85 416.48 30.07% 

3.3.3 Data Resampling Technique   
Another method to accurately address the energy significance of the representative points 

is to utilize a method called “resampling” to modify the dataset. The resampling method 

finds the smallest magnitude of energy consumption in the dataset and uses it to increase 

the number of points at all other data point locations as in (3.7). This makes the dataset 

much larger but ensures that all points have an equal weight in terms of energy 

consumption.  

 

( ),
i

points i
E

n
min E

=  (3.7) 

This method allows K-means to consider the energy significance when determining the 

location and size of the clusters on the torque-speed plane. This increases the accuracy of 

representation in comparison to the previous method since the energy significance is also 

considered in the grouping stage. The final representative point that is considered for 

machine evaluation is the centroid or mean since it is already a weighted average of the 

points in the cluster due to the applied resampling method.   

3.3.4 Results for Data Resampling Technique   
Employing the resampling technique and performing K-means clustering for an optimal 

value of clusters equal to six, gives the result displayed in Fig. 3.4. The representative 

load points with their corresponding energy significance are outlined in Table 3.2. 
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TABLE 3.2 
K-Means Clustering Result for Resampled Data 

Speed 
(rpm) 

Torque 
(Nm) 

Normalized 
Energy (%) 

179.88 730.96 12.29% 
293.08 393.57 17.79% 
378.37 674.08 8.26% 
396.18 150.21 28.62% 
510.37 387.39 7.50% 
743.61 197.81 25.54% 

 

 
Fig. 3.4. Results for K-means clustering using the resampled dataset. 

3.4 Gaussian Mixture Modeling 
Gaussian Mixture modelling (GMM) is another technique used to characterize and group 

random variables based on continuous probability distributions. The probability 

distribution is called a Gaussian or normal distribution and is defined by (3.8) where µ is 

the mean and σ2 is the covariance, which is a measure of the expected squared deviation 

of a data point from the mean [27]. These parameters determine the location and shape of 

the distribution as seen in Fig. 3.5.  

Centroid 
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Mixture Modelling is a probabilistic model for representing subpopulations within a 

dataset. Figure 3.6 displays how several Gaussian distributions are used to increase the 

accuracy in characterizing the overall probability distribution of the data set. 

 
Fig. 3.5. Normal distributions with varying means and covariance. 

 
Fig. 3.6. Mixture model of normal distributions. 
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Gaussian mixture modelling is an unsupervised learning algorithm that contains K 

components (or Gaussians). It is different from K-means clustering since it is a soft 

clustering algorithm and it is less prone to outliers. Soft clustering indicates that a single 

data point can belong to more than one cluster. In Gaussian mixture-modelling, each 

point is assigned a probability of belonging to each component in the model. This 

eliminates the need for strict cluster assignments when points are located in a region that 

is equally spaced between two or more clusters. The algorithm is also less prone to 

outliers since points located far from regions with a high density of points are assigned a 

low probability and contribute less to the calculation of the Gaussian’s mean. This is an 

important attribute since it ensures that the Gaussian will remain located in high-density 

regions without being affected by random outliers.  

A multi-dimensional probability density function is given as (3.9), where y is a data point 

with d dimensions and C is the covariance matrix [27].  
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3.4.1 Expectation Maximization Algorithm   
The Gaussian mixture model aims to maximize the log-likelihood function given in 

equation (3.10) where θm = (µm,Cm) is the parameter vector of a given component, Θ(K) is 

the parameter set defining a given mixture specified in (3.11), N is the number of 

observations in the dataset, and αm is the mixing probability or component distribution. 

The maximum likelihood cannot be directly calculated since it requires differentiating the 

log-likelihood function which is analytically unfeasible, thus the expectation 

maximization (EM) algorithm is implemented. EM is an iterative algorithm that is 

guaranteed to increase the likelihood on each iteration and approach a local maximum 

[28].  
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The initialization step is used to assign arbitrary model parameters in terms of the mean, 

covariance matrices, and component distribution for all Gaussians in the mixture model. 

The component means are set to randomly selected points within the dataset. Each 

covariance is set to the sample covariance as in (3.13) and a uniform component 

distribution is set as in (3.14) [27].  
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The Expectation (E) step calculates the expectation of the component assignments for 

each data point using the updated model parameters as in (3.15) [27].  
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The Maximization (M) step maximizes the expectations determined in the E step by 

updating the model parameters [27]: 
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The algorithm iterates over the expectation and maximization steps until the parameters 

converge to a user-defined tolerance.  
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3.4.2 MMDL for Component Selection in GMM 
Mixture minimum description length (MMDL) is reported to have outperformed existing 

criteria of component selection with comparable computational cost. MMDL is 

implemented with the EM approach to select the number of components to be used for 

the model. The MMDL cost function is displayed in equation (3.19) where H(K) is the 

number of parameters required to specify a K-component mixture. Given the number of 

dimensions and the number of components, H(K) is calculated using (3.20) [29]. 
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 ( ) ( ) ( )( )1 1 / 2H K K K d d d= − + + +  (3.20) 

To implement the MMDL criterion, a maximum and minimum number of components 

are selected. The EM algorithm is executed for each number of components and the cost 

function defined in (3.19) is evaluated and stored. The component number with the 

lowest MMDL criterion KMMDL seen in (3.21) is selected and determines the parameter 

set, Θ(KMMDL) defining a given mixture [29]. 

 
( )( ){ }arg min Θ ,ˆ , , 1 .,ˆMMDL MMDL obs min min maxKK

K C y K K K K= = + …  (3.21) 

3.4.3Results for GMM using Resampling Technique 
The EM algorithm is stopped if the conditions in (3.22) are true given that δµ and δC are 

the tolerances that are set to 0.001 and t is the iteration of the EM algorithm [29]. This 

approach is applied to the resampled dataset to achieve the MMDL results plotted in Fig. 

3.7. The results prove that a component number of six is the best number of Gaussians to 

model the dataset. The final mixture model is seen in Fig. 3.8 with the given 

representative loading points derived from GMM are summarized in Table 3.3. The mean 

of each component is assigned as the location of the corresponding representative load 

point and the normalized energy significance is equivalent to the component distribution.  
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Fig. 3.7. Mixture minimum description length for component selection. 

 

 

Fig. 3.8. Gaussian mixture modeling result for resampled dataset. 
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TABLE 3.3 
Gaussian Mixture Modeling Result for Resampled Data 

Speed 
(rpm) 

Torque 
(Nm) 

Normalized 
Energy (%) 

207.52 760.03 10.35% 
326.79 393.43 20.73% 
344.37 471.29 15.26% 
395.15 151.86 25.14% 
593.46 451.22 4.91% 
749.05 193.14 23.60% 

3.5 Conclusions 
K-means clustering and Gaussian mixture modeling are introduced as two different 

methods for performing drive-cycle data representation. The aim of these algorithms is to 

portray the characteristics of the entire drive-cycle with a reduced number of sample 

points. This identifies target areas of torque and speed motor operation that consume a 

large amount of energy consumption during the drive-cycle. In addition, these 

representative points are imperative for performing drive-cycle analysis in scenarios 

where maximum computational efficiency is required since evaluation can be performed 

by only considering a minimal number of samples.  

The clustering techniques demonstrated that the regions of acceleration account for 

approximately 10 – 13 percent of the total energy consumption in the drive-cycle. 

Furthermore, the loading points corresponding to high-speed operating regions account 

for about 23 – 25 percent of the energy consumption. The most significant portion is 

characterised by multiple representative points in the mid-speed operating range around 

300 – 400 rpm with 50 – 60 percent of the total energy consumption. This high value of 

energy consumption is caused by the large number of occurrences of operating points in 

the mid-speed range throughout the cycle.  

This thesis focuses on the integration of these drive-cycle data representation techniques 

into two separate applications. This includes a multi-objective motor optimization for a 

drive-cycle and a system level motor-inverter simulation for drive-cycle assessment. The 

optimization scheme requires the execution of drive-cycle analysis for hundreds of 
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machine topologies. Therefore, using a reduced number of drive-cycle representative 

points significantly increases the computational efficiency of the algorithm and makes 

drive-cycle optimization possible without the need for high performance computing. 

Similarly, a system level analysis that includes the FEA motor simulation with different 

inverter excitations is another distinct application that is computationally intensive. 

Therefore, the K-means clustering technique is used to make drive-cycle performance 

assessment feasible for the analysis of the effects of different inverter devices on motor 

performance.   
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CHAPTER 4 
Computationally Efficient FEA Machine Evaluation Procedure 

Chapter 3 introduced a method to determine a minimal number of representative load 

points to make it computationally feasible to evaluate a close approximation of a 

machine’s drive-cycle energy efficiency. The first aim of this thesis is to optimize a 

direct-drive machine using the energy efficiency across the drive-cycle as one of the 

objectives. Therefore, a computationally efficient finite element analysis (CEFEA) 

technique introduced in [30] is described in this chapter to evaluate the efficiency of the 

motor at different load conditions. The technique is required to make it computationally 

feasible to utilize finite element analysis results in an optimization program for machine 

evaluation. FEA is utilized because it is superior to analytical models for performing 

machine evaluation since it considers non-linear effects of materials such as saturation 

[31], [32]. The baseline machine and the CEFEA method employed for calculating torque 

ripple, drive-cycle energy efficiency, weight, and active material cost is presented.  

4.1 Baseline Machine for Analysis 
A baseline fractional slot concentrated winding (FSCW) surface permanent magnet 

synchronous machine (SPMSM) with 36 slots and 30 poles designed for a direct-drive 

battery electric vehicle (BEV) is considered in this thesis with the design targets listed in 

Table 4.1 [33], [34]. A direct-drive vehicle eliminates the fixed gear ratio that is 

commonly placed in electric vehicles between the motor and the output shaft connected 

to the wheels. Therefore, motor is required to deliver high torque for low speed operation. 

Using the procedure outlined in [33], the machine was designed to meet a continuous 

torque of 875 Nm and a peak torque of 1,750 Nm until a rated speed near 575 rpm. A 

rated motor speed of 575 rpm corresponds to a vehicle speed of nearly 55 km/h [35]. 

Maximum capability of the machine in terms of its torque, speed and output power was 

elicited using the electromagnetic model of the designed FSCW SPMSM machine in 

conjunction with FEA and maximum torque per ampere (MTPA) flux-weakening (FW) 

control algorithm both in the constant torque and power regions. Figure 4.1 shows the 

cross-section of the SPMSM motor and the flux density distribution while operating at 
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875 Nm under 165 A rms/phase. Figure 4.2 shows the torque and power characteristics 

over the entire speed range of the motor obtained using the electromagnetic model of the 

machine in conjunction with MTPA controls with voltage and current constraints of 450 

V and 165 A rms/phase and maximum current of 400 A rms/phase. This motor will be 

used as a reference for benchmarking any improvements in the optimized motors that will 

be designed in this paper. Tables 4.2 – 4.4 present details and dimensions for the stator, 

rotor, and slot respectively. A direct-drive machine has several design challenges 

including [36], [37]:  

1. Size, weight, and cost since there is a high torque requirement. 

2. Torque ripple that can no longer be dampened by the mechanical components of 

the transmission system. 

3. Efficiency due to the high ampere loading required to get the large magnitude of 

average torque. 

Optimization is employed in an attempt to address these design challenges in conjunction 

with drive-cycle energy efficiency.  

TABLE 4.1 
Design Targets for Direct-Drive FSCW SPMSM 

Peak Power 91.6 kW 

Peak Torque 1,750 Nm 

Continuous Torque 875 Nm 

Continuous Power 45.8 kW 

Maximum CPSR Speed (16 inch tire) 2,000 rpm 

Motor Weight < 65 kg 

Inverter Weight (existing EV inverter) 12 kg 

Rated Current (A rms/phase) < 180 A 

Maximum Current (A rms/phase) <= 400 A 

Torque Ripple (% of peak torque) < 5% 

Rated Efficiency  > 94% 
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Fig. 4.1. Cross-section of 36/30 direct-drive baseline machine. 

 

 
Fig. 4.2. Torque-speed and power-speed characteristics of the baseline direct-drive FSCW SPMSM. 
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TABLE 4.2 
Stator Design Details of the Direct-Drive Machine 

Stator Slots 36 

Poles 30 

Stator Outer Diameter 400 mm 

Stator Inner Diameter 320 mm 

Length of Stator Core 105 mm 

Coils/phase 12 

Current Density 7.5 A/mm2 

Winding Factor 0.933 

Stator Teeth Flux Density 1.7 T 

Turns/phase 84 

Number of Parallel Paths 1 

Rated Continuous Current (rms/phase) 165 A 

Slot Fill Factor  75% 

 
TABLE 4.3 

Rotor Design Details of the Direct-Drive Machine 
Thickness of Magnet 20 mm 

Width of Magnet 27.1 mm 

Type of Magnet NdFeB 35 

Air-gap with Banding Thickness 2 mm 

Rotor Inner Diameter 240 mm 

Length of Rotor 105 mm 

Type of Steel M19 29G 

Mechanical Pole Embrace 0.82 

Polar Arc Radius 158 mm 

Residual Flux Density 1 T 

Coercive Force (kA/m) 710.32 
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TABLE 4.4 

Slot Design Details of the Direct-Drive Machine 
Slot Opening (bs0) 5 mm 

Slot width at top of slot 18.5 mm 

Slot width at bottom of slot 14.0 mm 

Average slot width at center of slot 16.5 mm 

Slot height (hs) 22.0 mm 

h2 2.0 mm 

h3 2.0 mm 

h4 2.0 mm 

4.2 Computationally Efficient Finite Element Analysis 
Finite element method (FEM) is a numerical method for solving complex problems in 

engineering. FEM involves generating a mesh to divide complex geometries into small 

pieces for analysis. While solving, FEM uses material definitions to address nonlinear 

characteristics of different materials such as the magnetic saturation of steel. These 

nonlinear characteristics are difficult to consider in analytical models and thus, FEM is a 

highly effective and accurate method for performing electromagnetic modelling of an 

electric machine.   

CEFEA is a technique used to exploit the electric symmetry of PMSMs with sinusoidal 

current excitation to save on computation time. In addition, the technique merges a 

minimal number of 2-D magnetostatic finite-element simulations with analytical 

calculations to reduce simulation time and reduce computational burden. CEFEA can 

therefore, be implemented into optimization programs to analyze hundreds of machine 

models without the need for high performance computing [30].  

4.2.1 Electric Symmetry of PMSMs 
Figures 4.3 and 4.4 show how the 60-degree symmetry of the baseline machine converts 

5 magnetostatic FEM solutions into 30 usable samples. Each magnetostatic FEM 

simulation provides three equally spaced samples because of the symmetry of the 
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electromagnetic circuit. Therefore, phase a can be determined by applying a phase shift 

to the corresponding values of the other two phases as in (4.1) and (4.2) where A is the 

magnetic vector potential and θ is the phase angle. Furthermore, half-wave symmetry is 

applied to double the number of points and recreate the full 360-degree waveform [30].  

 ( ) ( )A 60 Aa c+ +θ + ° = − θ  (4.1) 

 ( ) ( )A 120 Aa b+ +θ + ° = θ  (4.2) 

 
Fig. 4.3. Three phase flux-linkage waveform results obtained from five magnetostatic solutions.  

 
Fig. 4.4. 30 samples of the phase A flux-linkage waveform obtained from five magnetostatic solutions. 
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Magnetic vector potentials in the coil sides of the machine are the principal results of 

FEA that enable post-processing. From these results, analytical equations are used to 

derive important motor characteristics. Figure 4.5 shows how coils are placed around the 

teeth to obtain the required magnetic vector potentials with harmonic content for 

performing CEFEA.  

 
Fig. 4.5. Coil around tooth and virtual coil around stator back iron used in FEA. 

 

Fig. 4.6. Radial flux per unit axial length for one turn of a coil placed around a stator tooth. 
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4.2.2 Flux-Linkage, Back EMF, and Torque Derivation 
The radial flux per unit axial length Φ for one turn of a coil placed around a stator tooth 

seen in Fig. 4.6 is determined from the average magnetic vector potential in both coil 

sides as in (4.3) [30]. 

  Φ A Aa a a a+ − + −= −  (4.3) 

Multiplication with the number of series turns per phase derives the flux linkage per unit 

of axial length of the machine. Applying the axial length of the machine then generates 

the flux linkage waveform of the motor seen in Fig. 4.7. All three phases can be 

reconstructed by applying a 120-degree phase shift to the waveform. A fast Fourier 

transformation (FFT) is performed to obtain the fundamental and harmonic content in the 

waveform. The waveform can therefore be modelled as a Fourier series of the 

fundamental and harmonic components as seen in (4.4) where v is the harmonic order, λ 

is the flux linkage, and ϕv is the phase angle for the vth harmonic. The maximum 

harmonic order is a function of the number of magnetostatic solutions, s, as in (4.5). 

Using five solutions produces 30 useable samples, which provides results that account for 

harmonics up to the 14th order [30].  

 
( ) ( )

1
  cos

Mv

a v v
v

v
=

λ θ = λ θ + φ∑  (4.4) 

 3 1Mv s= −  (4.5) 

The back EMF ea waveform is obtained using (4.6) and is displayed in Fig. 4.8. 

Similarly, the electromagnetic torque Tem is derived using (4.7) where i is the current and 

P is the number of poles in the machine [38]. The electromagnetic torque waveform 

illustrated in Fig. 4.9 contains the average torque component and the torque ripple caused 

by the space harmonics in the machine. Torque ripple is calculated using the difference 

between the maximum and minimum value over the magnitude of average torque. Torque 

ripple causes oscillations, noise and can lead to early degradation of mechanical 

components within the machine. The desired value of average torque is determined in the 

early stages of machine 



 

37 
 

 
Fig. 4.7. Flux-linkage waveform derived from FEA. 

design to ensure that the motor will satisfy all driving conditions in a specific vehicle 

application. In an optimization scheme, the machine geometry gets manipulated and 

performance characteristics such as the average torque capability vary. Therefore, it is 

essential to develop a technique to maintain the capability of delivering the desired 

amount of torque for each motor model being generated by the optimization program 

[22].  

 
( ) ( )

1
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λ θ
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Fig. 4.8. Back EMF waveform derived from FEA. 

 
Fig. 4.9. Continuous torque waveform derived from FEA. 

4.3 Scaling Stack Length for Desired Torque Production 
To ensure that each machine created by the optimization has the same rated value of 

average torque, a single CE-FEA solution is performed at rated conditions to scale the 

stack length of the machine to produce the desired torque [22]. The electromagnetic 

torque produced by a PMSM is expressed as 
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 ( )3
4e d q q d
PT I I= λ − λ  (4.8) 

where λd and λq are the d- and q-axis flux-linkages and Id and Iq are the d- and q-axis 

current excitations. The flux-linkages can be re-written in terms of d- and q-axis 

inductances and permanent magnet (PM) flux-linkage λPM  as in (4.9) [39]. 

 d PM d d

q q q

L I
L I

λ = λ +
 λ =

 (4.9) 

Using (4.9), the electromagnetic torque (4.8) can be re-written as (4.10), which expresses 

the torque in two components: magnetic torque and reluctance torque [39]. 

 ( )( )3
4e PM q d q d q
PT L L L I I= λ + −  (4.10) 

In an SPMSM, the reluctance torque component is negligible since the d- and q-axis 

inductances are approximately equal in magnitude. Therefore, it can be assumed that the 

torque of the machine is entirely dependent on the value of PM flux-linkage and number 

of poles. Since the number of poles is fixed in the machine, the PM flux-linkage needs to 

be determined and scaled in order to produce the same amount of torque as the baseline 

machine [8]. To determine the PM flux-linkage, rated current is delivered in the q-axis 

and Id is set to zero. Thus, the d-axis component of flux-linkage is equivalent to the PM 

flux-linkage and can be justified by simply substituting Id = 0 into (4.9). A Park’s 

transformation is applied to the three phase waveforms of flux-linkage obtained from 

CEFEA [6] as seen in (4.11) and (4.12) to evaluate the PM flux-linkage [8]. Finally, the 

length of the motor L is determined as in (4.13) to obtain the same magnitude of PM flux-

linkage. This ensures that every motor model has an equal magnitude of average torque at 

rated condition and guarantees that all vehicle driving performance requirements are met 

[39].  
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Fig. 4.10. d- and q-axis flux-linkages determined from the 3-phase flux-linkage waveforms. 

 

 
( )2 2 4cos cos cos

3 3 3PM d a b c
 π π    λ = λ = θ λ + θ − λ + θ − λ        

 (4.11) 

 
( )2 2 4sin sin sin

3 3 3q a b c
 π π    λ = − θ λ − θ − λ − θ − λ        

 (4.12) 

 
,

,

PM Baseline
Trial Baseline

PM Trial
L L

 λ
=   λ 

 (4.13) 

4.4 Current Selection for Accurate Load Analysis 
Evaluating the machine at a desired torque and speed point requires accurate selection of 

current excitation to get the required output torque. Since FEA requires excitation inputs 

to derive the torque output, MTPA and flux-weakening control strategies must be 

implemented to determine the excitation that will result in the desired machine output 

characteristics. For this reason, a current sweep is conducted across the d- and q-axis of 

current values to determine the flux-linkage variation in the machine. To do this CEFEA 

is performed at each of the current excitation values to obtain the winding three phase 

flux-linkages as previously described in section 4.2.2, and then a Park’s transform is 

performed using (4.14) and (4.15) to get the d- and q-axis flux-linkage values [40].  
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( )2 2 4cos cos cos

3 3 3d a b c
 π π    λ = θ λ + θ − λ + θ − λ        

 (4.14) 

 
( )2 2 4sin sin sin

3 3 3q a b c
 π π    λ = − θ λ − θ − λ − θ − λ        

 (4.15) 

To perform the d- and q-axis current excitation sweep, the desired values of excitation are 

converted into the abc reference frame as:   

 2 2( )m d qI I I= +  (4.16) 

 ( )1tan /d qI I−γ =  (4.17) 

The current in ANSYS is provided as pure sinusoidal excitation based on: 

 ( )cosa mI I t= + γ  (4.18) 

 2cos
3b mI I t π = + γ + 

 
 (4.19) 

 2cos
3c mI I t π = + γ − 

 
 (4.20) 

To estimate the overall variation of the machine parameters, four equidistantly placed 

samples are obtained in the q-axis and three samples are evaluated in the d-axis to 

provide a total of 12 samples. From these samples, the variation of d- and q-axis flux-

linkages is obtained with respect to d- and q-axis current excitations. Figures 4.10 and 

4.11 display the look-up tables created for flux-linkage variation by curve fitting between 

the given sample points.  



 

42 
 

 
Fig. 4.11. d-axis flux-linkage map for varying d- and q-axis excitations. 

 
Fig. 4.12. q-axis flux-linkage map for varying d- and q-axis excitations. 

 

From (4.8) and (4.21), the flux-linkages are used to obtain the torque and voltage V as a 

function of d- and q-axis current [40]. 

 2 2( )
2 d q
PV = ω λ + λ  (4.21) 

Further, curve fitting is implemented to create lookup tables for torque and voltage as a 

function of d- and q-axis current as seen in Figs. 4.12 and 4.13. MTPA is implemented by 



 

43 
 

searching the torque lookup table for all possible combinations of d- and q-axis currents 

that will provide the desired value of torque and selecting the combination that 

experiences the lowest magnitude of current. In case of FW operation, the currents that 

have the lowest magnitude but also satisfy the inverter voltage limit are selected [40]. 

 
Fig. 4.13. Torque map for varying d- and q-axis excitations. 

 

 
Fig. 4.14. Voltage map for varying d- and q-axis excitations. 
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Using the torque and voltage look up tables, the desired current excitations can be 

selected and the 2D FEA model can be evaluated at each specific loading condition. This 

guarantees that the desired output torque and speed targets will be met when evaluating 

the machine at the representative load points and ensures that a fair comparison of 

performance will be conducted for every generated motor model in the optimization 

program.  

4.5 Loss Analysis 

4.5.1 Copper Loss 
Copper losses occur due to the electrical resistance associated with the stator windings. 

Copper losses PCu are calculated using (4.22), where v is the volume of copper including 

the end winding, J is the current density, and ρ is the resistivity of copper at the reference 

temperature of 22°C calculated using (4.23) [41].  

 2
Cu CuP v J= ρ  (4.22) 

 ( )81  .724x10 1 0.00393 20Temp−ρ = + −    (4.23) 

4.5.2 Core Loss 
Core or iron loss can be classified into two components known as eddy current loss and 

hysteresis loss. Both losses are a result of non-ideal properties of the magnetic materials 

in a magnetic circuit. Eddy currents are closed path circulating currents that are induced 

in the stator core because of the rotating magnetic field. These circulating currents oppose 

the magnetic field producing them. Furthermore, the existing resistance produces eddy 

current losses that are dissipated in the form of heat.  Hysteresis losses occur due to the 

changing magnetic field in the stator core. Ferromagnetic materials become magnetized 

when excited; however when the excitation is removed, a portion of the magnetization 

remains in the material. Therefore, extra work has to be performed to alter the direction 

of magnetization. This is the cause of hysteresis losses that are generated in the 

ferromagnetic core of the machine.  
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For core loss determination in the stator core, it is essential to derive the magnitude of 

flux density. From the magnetostatic solutions, the magnetic vector potentials are used to 

estimate the predominantly radial flux density in the stator teeth Bth and the tangential 

flux density in the stator yoke Byk as in (4.24) and (4.25). The yoke flux density is 

determined from the virtual coil around the back iron of the stator that assumes that there 

is zero magnetic field outside of the motor [30].  

 
th

w

A AB
t

+ −−
=  (4.24) 

 0
yk

w

AB
y
+ −

=  (4.25) 

where tw is the tooth width and yw is the yoke width. The resulting waveforms are 

illustrated in Figs. 4.14 and 4.15. The fundamental components of flux densities are 

implemented in (4.26) to calculate the specific core loss ω in (W/kg) [42]. 

 2

2( )
h h

e e

k fB

k fB

 ω =

ω =  

(4.26) 

where kh and ke are the hysteresis and eddy-current loss coefficients, f is the frequency, 

and B is the peak flux density. The total core loss, PFe can be expressed as (4.27), where 

mT and mY are the masses of the stator teeth and yoke. 

 ( ) ( )Fe hT eT T hY eY YP m m= ω + ω + ω + ω  (4.27) 

4.5.3 Mechanical Loss 
In an electric motor, the mechanical losses Pmech are predominantly caused by friction and 

are proportional to ω2 as in (4.28), where kf is the viscous friction coefficient [43].  

 2
mech fP k= ω  (4.28) 
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Fig. 4.15. Stator tooth flux density. 

 
Fig. 4.16. Stator yoke flux density. 

4.5.4 Efficiency Calculation 
The output power of the machine is calculated using (4.29). The input power is obtained 

through the summation of the output power with the individual losses as in (4.30).  

 outP T= ω  (4.29) 

  in Cu Fe mechP T P P P= ω + + +  (4.30) 

Therefore, the machine’s efficiency at a given load condition is calculated as: 
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 out

in

P
P

η =  (4.31) 

To determine the machine’s energy efficiency across the drive-cycle, a weighted 

efficiency is calculated as in (4.32), using the percentage of normalized energy 

consumption for each representative cycle point as the weighted significance. This 

provides a single value to represent the machine’s overall energy efficiency performance 

across the drive-cycle to be used in the optimization program as an objective [22].  

 

,

i i
w i

in ii

T E
P

ω
η = ∑  (4.32) 

4.6 Weight and Component Cost Calculation 
The weight of a machine is determined by analytically calculating the total volume of 

permanent magnets, copper, and steel, and multiplying by the density of the 

corresponding material. The densities of the three materials are listed in Table 4.5 [44] – 

[46]. The volume is determined using the machine geometry selected in the optimization 

algorithm in conjunction with the calculated stack length of the machine.  

TABLE 4.5 
Density of Materials used in the Direct-Drive Machine 

Material Density (kg/m3) 

Magnet - NdFeB 35 7,500 

Steel - M19 29G 7,330 

Copper  8,616 
 

The cost is calculated as an index based on the mass of material used in the machine. The 

mass of the permanent magnets mPM, copper mCu, and steel mFe are multiplied by a factor 

dictating the relative cost of the material with respect to M-19 silicon steel used in the 

core. The manufacturing cost is assumed to be equal for every generated motor model. 

Therefore, the material cost index cm calculated in (4.33) is used as a measure to 

determine whether a given motor topology will have a higher or lower production cost 

[22].  
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  24  3 m PM Cu Fec m m m= + +  (4.33) 

4.7 Conclusions 
The overall machine evaluation procedure is summarized in Fig. 4.16 and the results for 

the baseline machine using the outlined method is presented in Table 4.6. The CEFEA 

technique is implemented to make it computationally feasible to consider FEA evaluation 

results in an optimization program. FEA results provide accurate determination of 

average torque production and torque ripple generated by the space harmonics in the 

machine. Furthermore, the stator tooth and yoke flux densities are obtained from the 

CEFEA technique for core loss calculation.  

TABLE 4.6 
Baseline Machine Drive-Cycle Efficiency for Resampled K-means Cluster Points 

Cluster 
Point 

Speed 
(rpm) Torque (Nm) 

Energy 
Consumption 

(%) 

Efficiency 
(%) 

Weighted 
Efficiency 

(%) 

1 179.88 730.96 12.29 87.72 10.78 

2 293.08 393.57 17.79 94.79 16.86 

3 378.37 674.08 8.26 93.60 7.73 

4 396.18 150.21 28.62 96.75 27.69 

5 510.37 387.39 7.50 96.34 7.23 

6 743.61 197.81 25.54 97.18 24.82 

Drive-cycle motor energy efficiency: 95.10 
 

A d- and q-axis current sweep procedure that utilizes CEFEA is employed to accurately 

select current excitations that will provide the desired speed and output torque for the 

machine at various load conditions. The overall drive-cycle energy efficiency is 

determined by performing CEFEA at the various representative drive-cycle load points 

and calculating the copper, core, and mechanical losses in the machine. The drive-cycle 

energy efficiency, torque ripple, weight, and component cost are evaluated using the 

outlined procedure and are used as objectives in an optimization program. 
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Fig. 4.17. Machine evaluation procedure. 
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CHAPTER 5 
Steady-State Thermal Analysis of Electric Machines 

Accurate temperature determination is a crucial aspect in the machine design procedure 

to ensure safe operating temperatures and to avoid potential motor failure. Temperature 

must be considered to prevent possible demagnetization of the rare-earth magnets, 

saturation of the stator and rotor core, and insulation failure in the stator windings [47]. 

Furthermore, high temperatures are undesirable since they increase the electrical 

resistance of copper as seen in (4.23). This decreases the overall efficiency of the motor 

due to the rise in copper loss and in turn, contributes more heat flow into the system.  

In an electric motor the various losses detailed in chapter 4, act as a heat flow source and 

contribute to the temperature rise of the machine during operation. In most modern 

applications where high power density machines are being designed, a liquid cooling 

system is incorporated by placing water jackets into the casing of the machine to assist in 

removing heat from the system.   

5.1 Modes of Heat Transfer 
When two objects at different temperatures, θ, come into contact, heat flow occurs until 

an equilibrium point is reached where both objects settle at the same temperature. The 

quantity of heat transferred is represented by H and q defines the amount of heat flow, 

where q=dH/dt. Conduction, convection, and radiation are the three possible modes of 

heat transfer that occur in any thermal system. 

5.1.1 Thermal Conduction 
Thermal conduction is the transfer of heat through a medium caused by the collision of 

particles and molecular motion whenever a temperature gradient is present. Fourier’s law 

states that conductive heat flow is oriented in the direction of largest temperature 

difference and is proportional to the rate of decrease. Fourier’s law is given in (5.1), 

where A is the isothermal surface area perpendicular to the direction of heat flow, k is the 

thermal conductivity of the medium, and x is the direction of heat flow [48]. 
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q kA

x
∂θ

= −
∂

 (5.1) 

5.1.2 Thermal Convection 
Convection occurs when a surface and a circulating fluid at different temperatures come 

into contact. Convection is present when heat is flowing to a liquid or a gas where heat 

transfer occurs through diffusion and bulk fluid flow. Newton’s law gives the equation 

for convective heat transfer as (5.2) where θs is the surface temperature, θ∞ is the fluid 

temperature, h is the convective heat transfer coefficient. The convective heat transfer 

coefficient is characterized by the type of fluid motion, surface geometry, fluid 

thermodynamics and transport properties [48]. 

 ( )sq hA ∞= θ − θ  (5.2) 

5.1.3 Thermal Radiation 
Finally, thermal radiation occurs in every object by releasing energy in the form of 

electromagnetic waves. Stefan Boltzmann law characterizes the energy transfer from a 

heated object to its surroundings through radiation as in (5.3), where θsur is the absolute 

temperature of surrounding, σ is the Stefan-Boltzmann, and ε is the emissivity of the 

body. In an electric motor the effects of radiation can be neglected since the magnitude of 

the Boltzmann constant is very small and the temperature differences are not large 

enough to contribute significant heat transfer through radiation [48].  

 ( )4 4
s surq A= σ θ −θε  (5.3) 

5.2 Lumped Parameter Thermal Network 
Thermal systems are in many ways analogous to electric circuits where temperature θ is 

the equivalent on voltage V, heat flow q is equivalent to current I, and heat H is 

equivalent to charge Q. In this manner, a thermal circuit that models a system in terms of 

thermal sources, resistances, and capacitances can be constructed. This thermal system 

can be analyzed using Kirchoff’s circuit laws to calculate temperature at different nodes 

in the system and the magnitude of heat flow between components in the system. This 
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methodology of constructing a thermal circuit is known as a lumped parameter thermal 

network. This model is an effective way of representing a thermal system for analytical 

calculation of temperatures and heat flows in a thermal system.  

5.2.1 Thermal Resistance 
In any medium, thermal impedance exists that restricts heat flow between two locations 

of different temperatures. This thermal resistance Rth is the ratio between a temperature 

difference and heat flow as shown in (5.4). Thermal resistance exists for all three modes 

of heat transfer.  

 ij thR qθ =  (5.4) 

The thermal resistances for conduction and convection are shown in (5.5) and (5.6) 

respectively [49]. 

 
 th
xR

Ak
=  (5.5) 

 1
 thR

Ah
=  (5.6) 

For conduction through a cylindrical wall, common in an electric motor, the thermal 

resistance is calculated as [50]: 

 ( )2 1ln /
2th
r r

R
Lk

=
π

 (5.7) 

5.2.2 Thermal Capacitance 
A material’s ability to store heat is specified by its specific heat capacity, cp. Considering 

a body with a temperature of θi and mass m, the heat transferred into the object can be 

expressed as [50]: 

 ˙
p iq mc= θ  (5.8) 

Using (5.9) the thermal capacitance Cth can be represented as a thermal impedance as in 

(5.10) where s is the Laplace operator, and θio is a constant reference temperature.  
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 th pC mc=  (5.9) 

 ( )1/io thsC qθ =  (5.10) 

5.2.3 Thermal Sources 
An ideal temperature source maintains a constant temperature difference between its 

terminals. One terminal is allocated to be a reference node. Outdoor or room temperature 

is often modelled by an ideal temperature source since a thermal system will not cause a 

temperature change regardless of how much heat it transfers into the atmosphere. A 

temperature source is analogous to a voltage source in an electrical circuit. 

An ideal heat flow source maintains a constant flow of heat q into a node of the thermal 

system. In an electric vehicle, the losses being generated by the machine are ideal heat 

flow sources that are injected into the system at the location where they are produced. A 

heat flow source is analogous to a current source in an electrical circuit. 

5.3 Steady-State Temperature Analysis of Electric Machines 
To develop a LPTN model for an electric motor, it is essential to understand the machine 

geometry and the location of the sources of heat flow. Figure 5.1 shows the heat flow 

path of winding losses through a simplified cross section of a motor. It is important to 

understand the potential paths of heat flow when creating the network and the different 

modes of heat transfer the path consists of. In this simple scenario, the heat flow travels 

through the winding, the core, and the casing through conduction. There is a thermal 

resistance and capacitance associated with each one of these components on the heat flow 

path. The thermal resistance dictates the temperature drop between the various materials 

and the capacitance models the materials ability to heat up or cool down over a duration 

of time. Finally, from the casing the motor is cooled by convection with the ambient air. 

As previously stated, the ambient air is an ideal temperature source that does not get 

affected by the magnitude of heat flow exiting the motor casing. Figure 5.2 shows the full 

Simulink thermal circuit of the machine that includes the winding heat flow path with the 

addition of a heat flow source connected at the stator core to represent the core losses. It 

also contains the rotor loss path that flows through the front and rear bearings to the end 
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caps and finally to the motor casing. It also includes a convection path through the air 

found in the air gap and around the windings at the end caps of the machine.  

 
Fig. 5.1. Heat flow path for copper losses in an electric machine. 

 

 
Fig. 5.2. LPTN Simulink model of an electric motor. 

Another variation of the thermal can be seen in Fig. 5.3. The thermal capacitances make 

analytically solving the thermal circuit difficult because of its transient behaviour. 

Therefore, the steady-state solution is used to evaluate the final value for the temperatures 

at each node within the machine. This type of solution is sufficient for being 

implemented into an optimization algorithm since it is computationally efficient and the 

steady-state value is the most severe and significant point to consider in an operational 

machine.  
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Fig. 5.3. Thermal circuit of an electric machine. 

Figure 5.4 displays the steady-state thermal circuit, where the capacitors become fully 

charge and can be replaced with an open circuit. Using superposition theorem, the steady-

state temperatures can be derived at various nodes in the machine as in (5.11) – (5.14). 

These equations are implemented into the optimization algorithm and are considered as 

another design criteria when selecting the optimized machine.  

 ( )( )4case winding core rotor airQ Q Q Rθ = + + + θ  (5.11) 

 ( ) rotor rotor eq caseQ Rθ = + θ  (5.12) 

 ( )( )5 6 7 8 9where :     eqR R R R R R = + +    

 ( )( )3core winding core caseQ Q Rθ = + + θ  (5.13) 

 ( )2 winding winding coreQ Rθ = + θ  (5.14) 
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Fig. 5.4. Steady-state thermal circuit of an electric machine. 

To calculate the thermal resistances the thermal conductivities listed in Table 5.1 are used 

for the materials used in the baseline SPMSM [46], [51]. The convective heat transfer 

coefficient of 40 W/m2K is assumed for natural convection and 120 W/m2K is used for 

forced air cooling at 20 m/s [51]. The steady-state temperature results for the winding, 

rotor, core and motor casing with forced air cooling are summarized in Table 5.2. The 

table shows results for numerous drive-cycle load conditions to indicate temperature 

variations within the machine with respect to the output torque and speed of the machine.  

TABLE 5.1 
Thermal Conductivity of Components in the Direct-Drive Machine 

Material Thermal Conductivity 
(W/m·K) 

Copper 403 

Steel - M19 29G 22.8 

Aluminum 167 

Bearings 44.5 

Shaft 49.8 
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TABLE 5.2 
Steady-State Temperature Results of the Direct-Drive Machine at  

Various Load Conditions 
Operating 
Condition 

Speed 
(rpm) 

Torque 
(Nm) 

θwinding	 
(˚C) 

θrotor 
(˚C) 

θcase  
(˚C) 

θcore  
(˚C) 

Rated Conditions 575 857 101.66 106.65 84.88 87.14 

Cluster Point 1 179.88 730.96 74.69 68.52 62.70 64.26 

Cluster Point 2 293.08 393.57 42.37 44.08 39.04 39.51 

Cluster Point 3 378.37 674.08 70.96 72.08 60.81 62.17 

Cluster Point 4 396.18 150.21 31.17 33.20 30.64 30.77 

Cluster Point 5 510.37 387.39 44.58 49.95 41.31 41.81 

Cluster Point 6 743.61 197.81 35.91 41.32 34.96 35.21 
 

5.4 Conclusions 
This chapter proposed a steady-state thermal analysis for a computationally efficient 

method of determining temperatures in different regions of the machine at different 

operating conditions. The proposed method calculates the thermal resistances for 

different paths in the machine by considering the motor geometry and the material 

properties. Further, the losses determined in the machine evaluation procedure outlined in 

chapter 4 are injected into the thermal circuit as heat sources. Superposition theorem is 

applied to calculate the steady-state operating temperatures in the machine for a given 

load condition.  

The results displayed in Table 5.2 illustrate the temperature variation at the different 

cluster points for the baseline direct-drive machine. The temperatures are generally 

proportional to the magnitude of output torque since there is a large value of current in 

these conditions that generate copper losses in the machine. The geometry of the machine 

will have an effect on the values of temperature by modifying the thermal resistances in 

the thermal circuit. A large machine will reduce the temperatures since there will be a 

larger cooling surface for heat to dissipate.  
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CHAPTER 6 
Multi-Objective Drive-Cycle Based Optimization 

6.1 Multi-Objective Differential Evolution 
Chapters 4 and 5 introduced design evaluation techniques for drive-cycle energy 

efficiency, torque ripple, weight, component cost, and temperature determination that will 

be implemented into an optimization algorithm to evaluate and select optimal machine 

design candidates in terms of those objectives. Optimization algorithms are employed to 

find a globally optimal design based on set of optimization parameters, constraints, and 

objectives. Differential evolution is an evolutionary algorithm that optimizes by 

iteratively creating new design candidates that compete against a parent population to 

determine the offspring. Differential evolution optimization is selected based on an 

improved convergence rate compared to other optimization schemes such as genetic 

algorithm [52]. 

6.1.1 Initial Population 
To initialize the optimization, a population, P that contains Np individuals is generated 

with randomly selected design parameters, x. For electric motor optimization, the 

individuals of this population are various motor topologies and the design parameters are 

the various geometrical attributes of the machine that are being manipulated. The 

geometrical parameters are confined within an upper and lower limit to ensure that 

feasible design candidates are being generated. The process for randomly selecting a 

design parameter within the set boundaries is shown in (6.1) where αj ∈ [0, 1] is a random 

number and bj
U and bj

L are the upper and lower bounds of the jth design parameter. This is 

repeated for each design parameter of a machine and for each motor in the population. 

 ( )L U L
j j j j jx b b b= + α −  (6.1) 

The initial population is evaluated using the procedure outlined in chapter 4 to measure 

the effectiveness of the individual motor models in terms of the objectives. This 

population is used to create the next group of trial designs with which they will compete 

to form the offspring population.  



 

59 
 

6.1.2 Creation of Trial Design Candidates 
The generation of a mutant vector, xv is the first step to creating a trial design. This 

requires taking three randomly selected members of the population such as x0,  x1, and x2 

to create the design parameters of the mutant vector using (6.2).   

 ( )0 1 2vx x F x x= + −  (6.2) 

 0 1 2x x x≠ ≠   

where F ∈ [0, 1] is the mutation intensity. The design parameters of the base vector x0 are 

altered by the difference between the two individuals x1 and x2. This initially produces a 

large variation of design parameters in the early stages of the optimization algorithm by 

mixing the design parameters to search the entire design space. However, it also allows 

for convergence in the later stages of the optimization when there is little variation 

between the population members. 

A crossover operation is performed between the parent P and the mutant vector expressed 

in (6.3) to generate the child c where Cr ∈ [0, 1] is the crossover probability.  

    

 

v
j j r

j
j

x if C
c

P otherwise

 α ≤= 


 (6.3) 

Finally, a regularization of infeasible mutants is performed to ensure that all generated 

design parameters are fixed within the corresponding upper and lower boundaries. The 

design parameter in the mutant vector is randomly assigned a feasible value if it violates 

an upper or lower limit as in (6.4). The child must compete with the parent from the 

present population to join the next generation. Each of these machines is evaluated for the 

set constraint and objectives using the evaluation method outlined in chapter 4.  

 ( )
( )

   

   

L U L L
j j j j j j j

j L U L U
j j j j j j j

x b b b if c b
c

x b b b if c b

 = + α − <= 
 = + α − >


 (6.4) 
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6.1.3 Logical Dominance Function 
A logical dominance function is utilized to determine whether child is dominant over the 

parent. This determines whether the parent will be replaced by the child that was created 

by the optimization in the following generation. The main focus of the logical dominance 

function is the constraints and objectives. Constraints allow the optimization to exclude 

certain design candidates that are of no interest to the optimizer. For example, having an 

electric motor that produces less than 5% torque ripple for industry standards is a 

constraint. Objectives are the main targets of optimization such as maximizing efficiency 

and minimizing cost. Thus, the logical dominance function replaces the parent with the 

child in the following conditions [52]: 

1. If both c and P are infeasible, but c violates fewer constraints. 

2. If c is feasible while P is infeasible. 

3. Both c and P are feasible, but c is better than P in terms of objective function 

values. 

6.1.4 Termination Condition 
The termination condition allows the iterative optimization algorithm to break its loop. 

For this electric machine optimization, it is set to exit when there is no longer any 

variation in the population or until a maximum number of generations is met. The overall 

flowchart of the optimization procedure is shown in Fig. 6.1.  

6.2 Optimization Parameters, Constraints, and Objectives 
The 2D cross section of the machine in Fig. 6.2 displays the parameters selected to be 

manipulated during the optimization. The program utilizes five parameters to optimize 

the machine, which include: turns per coil (Tcoil), rotor outer diameter (Dro), tooth width 

(Wt), slot opening (Wso), and magnet angle (αPM). As a consequence of these variations, 

variables including the stator and rotor inner diameter, slot widths and height, and stator 

yoke width are indirectly affected. These changes are made to maintain a constant slot fill 

factor of 60% and a constant air gap length, magnet height, and rotor yoke width.  
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Fig. 6.1. Multi-objective differential evolution flowchart. 
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The torque capability of the machine is affected by the turns per phase and the rotor outer 

diameter. These parameters are selected in an attempt to reduce the volume, weight, and 

cost of the machine [53]. A FSCW winding configuration is also known to produce a 

large amount of space harmonics that cause torque ripple and are a large contributor to 

magnet loss. The tooth width, slot opening, and magnet angle are selected as optimization 

parameters in an attempt to reduce the amount of space harmonics present in the machine 

[54].  

The parameters and their constraints are summarized in Table 6.1. These constraints are 

created to keep the design variables within allowable limits and ensure that every 

machine design created in the optimization program has a viable configuration with no 

overlapping components. The upper limit of the tooth width is calculated to have a 

minimum of 5 mm for the stator yoke depth after the slot depth is calculated to satisfy the 

area requirement necessary to get a 60% slot fill factor. 

 
Fig. 6.2. Optimization parameters selected for baseline machine. 
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TABLE 6.1 
Optimization Parameters and Limits 

Parameter Minimum Maximum 

Tcoil 5 9 

Dro 286 mm 346 mm 

Wt 8 mm Variable 

Wso 5 mm 11 mm 

αPM 6˚ 12˚ 
 

The machine is constrained to a torque ripple that is less than 5% at rated conditions and 

a weight that is less than 65 kg. The overall objectives of the optimization are to: 

• Maximize drive-cycle energy efficiency 

• Minimize torque ripple at rated conditions 

• Minimize weight 

• Minimize component cost 

• Minimize average steady state drive-cycle winding temperature 

 These objectives are evaluated based on the FEA procedure outlined in Chapter 4. 

6.3 Optimization Results 
The optimization program uses an initial population size of 25 candidates and executes 

for 25 generations to evaluate a total of 625 machine models. The optimization is 

performed for the two drive-cycle representation methods summarized in chapter 3 in 

order to perform a comparative analysis of the effectiveness of drive-cycle representation 

based off the optimization results.  

A Pareto front of optimal solutions using the resampled K-means clustering method is 

created and displayed in Fig. 6.3. A design candidate is excluded from the Pareto set if it 

is lower for every objective compared to other designs. A Pareto front is utilized to 
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observe the trade-offs that exist between the multiple objectives. It assists in selecting 

optimal solutions. Figure 6.3(a) shows how efficiency increases almost proportionally 

with weight and cost.  Figure 6.3(b) displays the variation in torque ripple is mainly 

caused by the changes in slot opening width and overall slot dimensions.  Finally, Figure 

6.3(c) shows how the average steady-state winding temperature across the drive-cycle 

points decreases with an increase in efficiency and size of the machine. This is explained 

by the decrease of heat production with increasing efficiency and the increase in surface 

area for cooling in larger machines.  

Tables 6.2 and 6.3 contain the optimization results for the two drive-cycle representation 

methods that maximize each objective. The trade-off between the objectives is evident by 

the large variation in objective evaluations between each of the maximized results. Figure 

6.4 shows the continuous torque waveforms obtained using FEA to compare the baseline 

machine to the optimized motor in terms of torque ripple. The reduced torque ripple will 

also increase the efficiency by reducing the harmonic losses that are not considered in the 

proposed loss model. 

 
(a) Weight vs. drive-cycle energy efficiency with colour coded cost. 
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(b) Torque ripple vs. drive-cycle energy efficiency with colour coded weight. 

 
(c) Average steady-state winding temperature vs. drive-cycle energy efficiency with colour coded weight. 

Fig. 6.3. Optimization results using the resampled K-means clustering drive-cycle points. 
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TABLE 6.2 
K-means Results for Maximized Objectives 

Weighted Eff. (%) 95.24 95.22 94.76 94.92 95.13 

Torque Ripple (%) 3.97 2.09 4.98 3.43 4.22 

Weight (kg) 64.87 64.82 48.34 50.67 64.83 

Cost 431.95 421.92 337.04 324.35 487.17 

Avg. Winding Temp. (C) 42.62 42.41 44.67 44.36 40.96 
 

TABLE 6.3 
GMM Results for Maximized Objectives 

Weighted Eff. (%) 95.47 95.34 95.01 95.19 95.35 

Torque Ripple (%) 3.71 2.07 4.28 4.18 4.92 

Weight (kg) 64.31 63.19 48.19 54.44 64.42 

Cost 424.62 368.99 336.18 319.39 508.06 

Avg. Winding Temp. (C) 41.94 43.12 43.93 43.44 40.51 
 

 
Fig. 6.4. FEA waveforms displaying torque ripple of baseline and optimized machine. 
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Table 6.4 displays the increase in motor drive-cycle energy efficiency between the 

baseline machine and the maximized efficiency results of each drive-cycle representation 

method. The columns display the performance evaluation based on the weighted 

efficiency for both the baseline and optimized machine for each representation method. 

TABLE 6.4 
Drive-Cycle Energy Efficiency Derived from Representative Load Points 

Method Baseline Efficiency (%) Optimized Efficiency (%) 

Resampled 
K-means 95.10 95.24 

Resampled 
GMM 95.34 95.47 

 

From Table 6.4, it can be seen that the baseline machine experiences a different value of 

efficiency for each method. Therefore, for an accurate comparison of the results, the 

machines must be tested in the same manner to properly assess the overall effectiveness 

of each approach. For this reason, each machine is evaluated at all points of the drive-

cycle rather than the representative points using the evaluation method explained in 

chapter 4. This type of analysis is computationally intensive, however it possible since 

there are only three optimal machine topologies that need to be evaluated. The results for 

both the dimensions and weighted energy efficiencies are summarized in Table 6.5. 

TABLE 6.5 
Optimized Motor Parameters for Drive-Cycle Efficiency 

Parameter Baseline Machine Resampled K-means  Resampled GMM 

Tcoil 7 6 6 

Dro 316 mm 319 mm 319 mm 

Wt 13.6 mm 14.9 mm 15.6 mm 

Wso 8.9 mm 7.7 mm 7.0 mm 

αPM 8.59˚ 9.83˚ 9.87˚ 

Eff. (%) 94.64 95.55 95.62 
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6.4 Conclusions 
The optimization was performed twice to optimize drive-cycle energy efficiency using 

the resampled dataset for both K-means clustering and Gaussian mixture modelling. The 

GMM method provided the optimal results for drive-cycle motor energy efficiency by 

increasing from 94.64% to 95.62% across the entire cycle. The plots of optimized 

solutions in Fig. 6.3 contain all the trade-offs that exist to enhance the machine in terms 

of drive-cycle energy efficiency, torque ripple, weight, cost, and average winding 

temperature. It can be seen from the results in Tables 6.2 and 6.3 that a more drastic 

improvement can be obtained in terms of the weight and cost of the machine or with the 

torque ripple and average winding temperature in comparison to the efficiency 

improvement. Machines with a lower weight will require less power across the drive-

cycle by reducing the tire friction force, force of acceleration, and gravitational force in 

the vehicle dynamics equation. A reduced torque ripple will decrease the noise and 

vibrations of the machine, but will also lessen the amount of harmonic losses in the 

machine. Therefore, these objectives may lead to further improvements in the overall 

drive-cycle motor energy efficiency.    

The optimization results prove the effectiveness of the drive-cycle representation 

methods for evaluating drive-cycle motor efficiency. In addition, the multi-objective 

optimization program that utilizes CEFEA is found to provide accurate performance 

evaluations for the most suitable machines in the design space. It is an essential 

component of a machine design procedure to eliminate any assumptions in the design 

process and ensure that optimal motors are being designed for a certain set of objectives.  
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CHAPTER 7 
Drive-Cycle Analysis of Inverter Fed Machines 

An inverter that employs pulse-width modulation (PWM) to produce a three-phase 

voltage excitation to the motor is used to supply power to modern PMSMs in an electric 

vehicle. This PWM excitation seen in Fig. 7.1 is a series of varying width square-wave 

pulses that gets applied to the terminals of the electric machine. Switches that control the 

polarity of the DC excitation supplied at the motor terminals generate the PWM signal. 

The switches are toggled on and off by gate pulses that are determined by comparing a 

triangular carrier waveform to the desired sinusoidal voltage waveform as seen in Fig. 

7.2. The motor leakage inductance acts as an inductive low-pass filter operating on the 

stator winding excitation to produce a relatively sinusoidal waveform. Existing 

harmonics in the current waveform being supplied to the motor from the inverter are 

classified as time harmonics [55].  

 
Fig. 7.1. PWM gate pulses generated by comparing a triangular carrier wave with the desired waveform. 



 

70 
 

 
Fig. 7.2. Typical configuration of a two-level inverter. 

 

Research is being conducted on gallium-nitride high electron mobility transistors 

(HEMT) to replace the commonly implemented insulated-gate bipolar transistor switches 

in automotive inverters [56]. GaN is an appealing candidate for automotive inverter 

implementation due to its reduced switching losses, weight, and volume [57], [58]. 

Furthermore, GaN’s fast switching characteristics enable for high frequency operation 

that is beneficial for the reduction of time harmonics in the current excitation supplied to 

the electric motor. This implies that GaN inverters will improve motor operation by 

minimizing torque ripple and losses produced by the time harmonics being injected from 

the inverter [59].  

This chapter introduces a method of using simulation tools to quantify the benefit of GaN 

inverters in comparison to IGBT inverters with respect to motor performance. Figure 7.3 

outlines the procedure to conduct this comparative analysis. Initially, the vehicle loading 

analysis and K-means clustering technique outlined in chapter 3 is applied to obtain 

drive-cycle representative points and predict the efficiency improvement that will be 

obtained from employing GaN devices in a real vehicle drive-cycle application. This will 

A B C 
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significantly reduce the drive-cycle evaluation time since the simulations are realistically 

too computationally intensive to evaluate for the entire cycle. ANSYS is used to 

determine machine parameters at the representative load points to properly model the 

current excitations and motor load in PSIM considering the machine non-linearities. 

Further, a current controlled inverter fed motor simulation is developed in PSIM to obtain 

motor-fed current excitations that include the time harmonics produced by the PWM 

voltage excitation. Finally, the harmonic rich current excitations are fed into ANSYS to 

assess the torque ripple and loss variation in the machine. This procedure is conducted for 

an IGBT and GaN two level inverter and the results are compared with analytically 

determined pure sinusoidal current excitation.  

 

Fig. 7.3. Flowchart for IGBT and GaN comparison on motor performance. 
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Analysis  

ANSYS Motor Parameter 
Determination 

PSIM Inverter Simulation with 
Current Control  

ANSYS Motor Performance Analysis 
using PSIM Current Excitations 

Representative Load Points 

Motor inductances and 
magnitude of excitation  

Current excitations including 
inverter time harmonics 



 

72 
 

7.1 UDDS Drive-Cycle Vehicle Loading Analysis 
For the analysis of the effects of inverter generated on an electric motor, a 12-slot 14-pole 

FSCW SPM machine is used. The motor ratings are listed in Table 7.1 and a cross-

sectional view of the machine is shown in Fig. 7.4.  

TABLE 7.1 
Motor Specifications for Inverter Simulation 

Slots 12 

Poles 14 

Peak Power 92 kW 

Peak Torque 293 Nm 

Base Speed  3000 rpm 

Max. Speed 9000 rpm 
 

 
Fig. 7.4. Cross-section of 12/14 SPM used for the system level investigation. 

 

For a drive-cycle evaluation the loading analysis procedure outlined in chapter 2 is 

repeated for the vehicle parameters listed in Table 7.2. 
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TABLE 7.2 
Vehicle Specifications 

Symbol Description Value 

ρ Density of air 1.202 kg/m3 

Cd Drag coefficient 0.33 

Av 
Frontal vehicle surface 

area 2.77 m2 

v Vehicle speed varying 

frr 
Rolling resistance 

coefficient 0.013 

Mv Vehicle mass 1700 kg 

g Gravitational acceleration 9.81 m/s2 

α Road grade 3° 

r Wheel Radius 0.3284 m 

ig Gear Ratio 7.25 

 

The results for shaft speed, torque, mechanical output power, and energy distribution are 

shown in Figs. 7.5 – 7.8. The motor has a fixed gear ratio between the motor shaft and the 

wheel of the vehicle. Therefore the electric motor operates at higher speed and lower 

torques in comparison to the direct-drive machine described in chapter 4.  
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Fig. 7.5. UDDS motor speed obtained for 12/14 SPM. 

 
Fig. 7.6. UDDS motor torque obtained for 12/14 SPM  
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Fig. 7.7. UDDS output power obtained for 12/14 SPM. 

 
Fig. 7.8. UDDS energy distribution obtained for 12/14 SPM. 
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The resampling technique is applied to the dataset to ensure that each point has an equal 

magnitude of energy significance when being clustered. K-means clustering is applied to 

derive representative load points of the drive-cycle dataset. Gaussian mixture modelling 

is not used due to its increased computational burden in comparison to K-means 

clustering. Using the sum of squared error elbow method, six clusters prove to be 

sufficient for clustering the dataset. The clusters are visible in Fig. 7.9 and the location 

and energy significance of each centroid are listed in Table 7.3. 

 
Fig. 7.9. K-means clustering result on the resampled dataset of the 12/14 SPM torque-speed load 
distribution. 

TABLE 7.3 
K-Means Clustering Result for Resampled Data 

Speed 
(rpm) 

Torque 
(Nm) 

Normalized 
Energy (%) 

1528.27 156.61 11.21% 
2086.27 99.99 14.72% 
2294.77 53.17 22.14% 
3066.36 62.87 19.31% 
3520.01 122.53 4.36% 
4926.42 68.11 28.26% 
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7.2 Motor Current Selection and Inductance Parameter Determination 
For an accurate inverter-motor system simulation, proper motor parameters need to be 

identified and modeled including all nonlinearities such as saturation of motor 

inductances. Further, d- and q-axis current excitations must be determined in order to get 

the desired output torque and speed from the machine to analyze at the desired 

representative load points. To perform this type of machine parameter determination, an 

efficiency map toolkit is used in the ANSYS FEA software. This toolkit incorporated 

MTPA and FW control strategies to select d- and q-axis current excitations and evaluate 

the machine at various load points across the torque-speed plane as seen in Fig. 7.10. 

During the loss FEA evaluation process, the toolkit derives the d- and q-axis inductances 

including all the accompanied nonlinear characteristics of saturation. 

 
Fig. 7.10. Efficiency map of the 12/14 SPM. 

Figures 7.11 and 7.12 display the variation of d- and q-axis current excitations across the 

torque speed plane. The results correspond to the theory of SPM control where Iq is 

proportional to the magnitude of torque production and Id = 0 for all operating regions 

below the rated speed of 3000 rpm. The current excitation maps are created by curve-

fitting the evenly distributed, discrete samples across the torque-speed plane that are 

evaluated by the toolkit. The maps are used as a lookup tables to determine the d- and q-
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axis current excitations by using the speed and torque corresponding to each individual 

representative load point in the analysis. 

 
Fig. 7.11. Variation of Id in the torque-speed plane. 

 
Fig. 7.12. Variation of Iq in the torque-speed plane. 
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Similarly, lookup tables are generated by curve fitting the d- and q-axis inductances 

across the torque-speed plane as seen in Figs. 7.13 and 7.14, respectively. Similarly, the 

corresponding values of inductance are determined for the individual clustered drive-

cycle points. All motor determined motor parameters for the representative load points 

are summarized in Table 7.4. 

TABLE 7.4 
K-Means Clustering Result and Associated Motor Parameters 

Cluster Point 1 2 3 4 5 6 
Speed (rpm) 1,528.27 2,086.27 2,294.77 3,066.36 3,520.01 4,926.42 
Torque (Nm) 156.61 99.99 53.17 62.87 122.53 68.11 
Energy 11.21% 14.72% 22.14% 19.31% 4.36% 28.26% 
Id (A) 0 0 0 -0.61 -40.33 -92.94 
Iq (A) 251.1 159.35 85.97 102.12 200.06 113.05 
Im (A) 251.1 159.35 85.97 102.12 204.09 146.35 
Current 
Angle (deg) 0 0 0 0.34 11.4 39.42 

Ld (uH) 207.85 207.87 207.62 207.73 212.48 218.29 
Lq (uH) 196.1 192.86 189.77 190.37 195.41 192.36 

 

 
Fig. 7.13. Variation of Ld in the torque-speed plane. 
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Fig. 7.14. Variation of Lq in the torque-speed plane. 

7.3 PSIM Motor Drive Simulation  
PSIM is an electronic circuit simulation software used mainly for modeling and analysis 

of power electronics and motor drive systems. It is employed to model the IGBT and 

GaN inverter to drive the parameterized motor model. The inverter device specifications 

used in the simulation are listed in Table 7.5. For the IGBT inverter, a two-level inverter 

module is used with a switching frequency of 10 kHz. For the GaN simulation, a two-

level is constructed using individual switches. Twelve switches are used in parallel to 

match the power rating of the IGBT inverter.  

The component overview of the simulation is displayed in Fig. 7.15. The simulation 

contains a current control loop to drive the inverter gate pulses through sine pulse width 

modulation (SPWM) and control the 12-14 SPM motor. The current control loop is 

necessary to obtain the proper magnitude of output current with PWM induced current 

ripple. The motor is connected to a dynamometer that maintains a constant speed and 

matches the torque output of the SPM that is generated from the applied current 

excitation.   
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TABLE 7.5 
IGBT and GaN Specifications 

 IGBT GaN 

Model Number Infineon 
FS800R07A2E3 

GaN Systems 
GS66516B 

Voltage 650 V 650 V 
ICE/IDS 800 A 720 A 
RCE(on)/RDS(on) 630 mΩ 25 mΩ per switch 
Bus Link 
Capacitor 1,000 μF 700 μF 

Number of 
Parallel Devices 1 12 @ 60 A 

Switching 
Frequency 10 kHz 30 kHz 

 

 
Fig. 7.15. Current control diagram for inverter-motor simulation. 

Figures 7.16 and 7.17 show the PSIM simulation schematics developed for the system 

simulations that contain the current control loop, PWM generator, inverter, motor, and 

dynamometer. 
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Fig. 7.16. PSIM schematic of two-level IGBT inverter. 
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Fig. 7.17. PSIM schematic of two-level GaN inverter. 
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For each cluster point, the simulations are modified to the corresponding values of Id, Iq, 

Ld, Lq, and the dynamometer speed as obtained in Table 7.4. In addition, the PI 

parameters of the control loop are dynamically updated, as in (7.1) – (7.4), based on the 

value of d- and q-axis inductances to obtain better responses during the simulation of 

each representative load point [60]. 

 ( )2 /10d sw dP f L= π  (7.1) 

 ( ) ( )10 / 2d d sw s qT L f R L= π  (7.2) 

 ( )2 /10q sw qP f L= π  (7.3) 

 ( ) ( )10 / 2q sw sT f R= π  (7.4) 

where fsw is the switching frequency and Rs is the phase resistance. Figure 7.18 shows the 

PSIM result of the IGBT simulation for the first representative load point of the drive 

cycle. The figure shows that the current was properly controlled to the desired values of 

d- and q-axis excitations and that the motor is properly modeled since the output torque 

corresponds to the 156 Nm desired for the load condition. One period of the three phase 

current excitations is captured during the motor’s steady-state operation and exported as 

seen in Fig. 7.19. This current excitation contains all the inverter induced time harmonics 

that are injected into the machine while operating in this load condition. This time series 

of current excitation is imported into ANSYS to analyze the FEA derived effects of the 

time harmonics on the machine. This process is repeated for each of the representative 

load points and the entire procedure is also repeated for the GaN inverter and ideal 

sinusoidal excitations.   
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Fig. 7.18. PSIM results for the first cluster point of the IGBT simulation. 
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Fig. 7.19. Three-phase current excitation exported from PSIM. 

 

7.4 FEA Motor Analysis of Time Harmonic Effects  
Figure 7.20 displays the injected current excitations for each representative drive-cycle 

load condition, which were obtained from the PSIM simulations. It is evident from these 

plots that there is an increase in current ripple for all IGBT waveforms in comparison 

GaN. This has a direct effect on the torque ripple as indicated by the torque equation’s 

dependency on the instantaneous value current excitation as seen in (7.5) [38]. The 

variation of torque ripple in the motor for the three excitations at each load condition is 

shown in Fig. 7.21. 
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Fig. 7.20. Current excitation comparison for the first cluster point of ideal, IGBT, and GaN simulations. 

 
Fig. 7.21. Torque comparison for the first cluster point of ideal, IGBT, and GaN simulations. 

Table 7.6 summarizes the substantial increase of torque ripple at each cluster point for 

IGBT and GaN with respect to a pure sinusoidal excitation. However, there is a 
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significant reduction of torque ripple when comparing the GaN inverter with respect to 

IGBT. 

TABLE 7.6 
IGBT and GaN Torque Ripple Comparison 

Cluster 
Point 

Speed 
(rpm) 

Avg. 
Torque 
(Nm) 

Torque Ripple (%) 

Ideal IGBT % Rise IGBT 
from Ideal GaN % Rise GaN 

from Ideal 
1 1,528.27 156.61 7.82 10.63 35.93% 9.3 18.93% 
2 2,086.27 99.99 9.91 16.16 63.07% 12.08 21.90% 
3 2,294.77 53.17 15.27 23.32 52.72% 17.97 17.68% 
4 3,066.36 62.87 13.61 22.24 63.41% 17.26 26.82% 
5 3,520.01 122.53 9.28 15.21 63.90% 11.84 27.59% 
6 4,926.42 68.11 12.94 25.36 95.98% 17.9 38.33% 

 

The stranded (copper), core, and solid (magnet) losses for the first load condition 

obtained from the FEA simulation is displayed in Figs. 7.22 – 7.24. The stranded loss is 

essentially the same for each load condition since the magnitude of current is equal in 

each case. However, the ferromagnetic core and magnets in the machine experience a 

harmonic loss component. Therefore, when more harmonics are present as in the IGBT 

excitation, there is a significant increase in core and magnet losses.  

 
Fig. 7.22. Stranded loss comparison for the first cluster point of ideal, IGBT, and GaN simulations. 
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Fig. 7.23. Core loss comparison for the first cluster point of ideal, IGBT, and GaN simulations. 

 

 
Fig. 7.24. Solid loss comparison for the first cluster point of ideal, IGBT, and GaN simulations. 

Tables 7.7 – 7.9 summarize the percentage increase of the three losses for IGBT and GaN 

with respect to a pure sinusoidal excitation. There is an evident decrease in loss for GaN 

driven motors in terms of core loss and a substantial decrease in solid or magnet losses.  
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TABLE 7.7 
IGBT and GaN Stranded Loss Comparison 

Cluster 
Point 

Speed 
(rpm) 

Avg. 
Torque 
(Nm) 

Stranded Loss (W) 

Ideal IGBT % Rise IGBT 
from Ideal GaN % Rise GaN 

from Ideal 
1 1,528.27 156.61 416.34 417.07 0.18% 416.8 0.11% 
2 2,086.27 99.99 167.67 167.95 0.17% 167.54 -0.08% 
3 2,294.77 53.17 48.8 49.37 1.17% 48.83 0.06% 
4 3,066.36 62.87 68.87 67.48 -2.02% 69.17 0.44% 
5 3,520.01 122.53 275.02 273.28 -0.63% 275.25 0.08% 
6 4,926.42 68.11 141.43 135.41 -4.26% 141.86 0.30% 

 

TABLE 7.8 
IGBT and GaN Core Loss Comparison 

Cluster 
Point 

Speed 
(rpm) 

Avg. 
Torque 
(Nm) 

Core Loss (W) 

Ideal IGBT % Rise IGBT 
from Ideal GaN % Rise GaN 

from Ideal 
1 1,528.27 156.61 96.58 124.44 28.85% 121.08 25.37% 
2 2,086.27 99.99 141.74 169.58 19.64% 163.5 15.35% 
3 2,294.77 53.17 157.48 188.08 19.43% 179.5 13.98% 
4 3,066.36 62.87 253.99 285.29 12.32% 278.92 9.82% 
5 3,520.01 122.53 310.81 373.12 20.05% 340.07 9.41% 
6 4,926.42 68.11 420.46 483.14 14.91% 445.85 6.04% 

 

TABLE 7.9 
IGBT and GaN Solid Loss Comparison 

Cluster 
Point 

Speed 
(rpm) 

Avg. 
Torque 
(Nm) 

Solid Loss (W) 

Ideal IGBT % Rise IGBT 
from Ideal GaN % Rise GaN 

from Ideal 
1 1,528.27 156.61 442.94 523.83 18.26% 459.64 3.77% 
2 2,086.27 99.99 510.52 595.04 16.56% 532.72 4.35% 
3 2,294.77 53.17 447.08 550.64 23.16% 468.72 4.84% 
4 3,066.36 62.87 838.96 931.27 11.00% 865.9 3.21% 
5 3,520.01 122.53 1502.96 1720.35 14.46% 1548.01 3.00% 
6 4,926.42 68.11 1127.6 1314.06 16.54% 1143.81 1.44% 
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Table 7.10 shows the total loss experienced by the motor for the three types of excitation. 

Using (7.6) – (7.8) the efficiency of the motor at each representative drive-cycle point is 

determined.  

  outP T= ω  (7.6) 

  in Cu Fe mechP T P P P= ω+ + +  (7.7) 

 out

in

P
P

η =  (7.8) 

 

Finally, a weighted efficiency is calculated to determine the overall drive-cycle energy 

efficiency of the motor using (7.9). The results are summarized in Table 7.11.  

 

,

i i
w i

in ii

T E
P

ω
η = ∑  (7.9) 

 

TABLE 7.10 
IGBT and GaN Total Loss and Efficiency Comparison 

Cluster 
Point 

Speed 
(rpm) 

Avg. 
Torque 
(Nm) 

Total Loss (W) Efficiency (%) 

Ideal IGBT GaN Ideal IGBT GaN 

1 1,528.27 156.61 955.86 1,065.34 997.52 96.33 95.92 96.17 
2 2,086.27 99.99 819.93 932.57 863.76 96.38 95.91 96.20 
3 2,294.77 53.17 653.36 788.09 697.05 95.14 94.19 94.83 
4 3,066.36 62.87 1,161.82 1,284.04 1,213.99 94.56 94.02 94.33 
5 3,520.01 122.53 2,088.79 2,366.75 2,163.33 95.58 95.02 95.43 
6 4,926.42 68.11 1,689.49 1,932.61 1,731.52 95.41 94.79 95.30 
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TABLE 7.11 
IGBT and GaN Weighted Efficiency and UDDS Drive-Cycle Motor Energy Efficiency 

Comparison 

Cluster 
Point 

Speed 
(rpm) 

Avg. 
Torque 
(Nm) 

Energy 
Significance 

(%) 

Weighted Efficiency (%) 

Ideal IGBT GaN 

1 1,528.27 156.61 11.21% 10.80% 10.75% 10.78% 
2 2,086.27 99.99 14.72% 14.19% 14.12% 14.16% 
3 2,294.77 53.17 22.14% 21.06% 20.85% 20.99% 
4 3,066.36 62.87 19.31% 18.26% 18.16% 18.21% 
5 3,520.01 122.53 4.36% 4.17% 4.14% 4.16% 
6 4,926.42 68.11 28.26% 26.96% 26.79% 26.93% 

Motor Energy Efficiency for UDDS Drive-Cycle: 95.44% 94.81% 95.24% 
 

7.5 Conclusions 
The overall analysis concludes that the motor energy efficiency when executing the 

UDDS drive-cycle will increase from 94.81% to 95.24% when replacing an IGBT 

inverter with a GaN inverter. The motor will also experience an average of 22.44% 

reduction in torque ripple across the various drive-cycle points in comparison to IGBT.  

There is a 5.68% reduction in core loss and an 11.49% reduction in solid losses for GaN 

inverters. This significantly improves efficiency at high speeds and low torque regions 

where core and magnet losses are dominant. In addition, the increased efficiency reduces 

the magnitude of heat production in the rotor of the machine where cooling is difficult to 

implement. Further improvement of overall system efficiency is tangible with GaN based 

inverters because of their higher inverter efficiencies due to low switching and 

conduction loss. This study’s focus is on motor performance, therefore inverter efficiency 

is not considered in this analysis.  
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CHAPTER 8 
Conclusions 

This thesis proposed a vehicle dynamics model in chapter 2 to derive the motor output 

torque, speed, power, and energy to analyze the various load conditions the electric motor 

experiences during a drive-cycle. For computational efficiency when performing drive-

cycle analysis, K-means clustering and Gaussian mixture modeling algorithms are 

implemented in chapter 3 to reduce the large amount of load points to a minimal number 

of representative points. These cluster points represent the cycle with a few torque-speed 

points that focus on areas with high energy consumption that are most significant for 

performance evaluation.    

Chapter 4 introduces an enhanced finite element analysis technique to evaluate the 

machine performance across the clustered drive-cycle points in a computationally 

efficient manner. Employing FEA provides higher accuracy of machine evaluation by 

considering non-linear material properties such as saturation. Chapter 5 summarizes a 

procedure to create a lumped parameter thermal network of an electric machine and 

calculate steady-state temperatures for different operating conditions using the losses 

determined in the machine evaluation process. The evaluation procedure in chapter 4 and 

the thermal model in chapter 5 are implemented into a multi-objective differential 

evolution optimization algorithm in chapter 6. The baseline direct-drive machine 

geometry is optimized for drive-cycle energy efficiency, torque ripple, weight, cost, and 

average winding temperature. The optimization results show the trade-off between the 

various objectives and proved that the GMM clustering technique was superior for 

obtaining a machine with the highest drive-cycle energy efficiency.  

Finally, the vehicle loading analysis in chapter 1 and the K-means clustering technique in 

chapter 2 are implemented into an inverter-motor simulation to analyze the effects of 

inverter generated time harmonics on motor performance. The study showed that the 

high-frequency operation of GaN is beneficial for reducing torque ripple and harmonic 

losses present in the core and magnets of the machine. The analysis quantified the 
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increase of drive-cycle motor energy efficiency of GaN in comparison to the commonly 

used IGBT.  

8.1 Future Work  
Suggested future work includes: 

1. Constructing a more comprehensive vehicle dynamics model that includes tire 

slip and other effects present in real driving conditions.   

2. Considering regenerative capabilities in the evaluation procedure. This requires 

analysis of the power electronics and battery’s capability of capturing the storing 

the instantaneous power generated during deceleration. 

3. Considering inverter time harmonics and incorporating a harmonic loss model 

into the machine optimization procedure.  

4. Derive thermal time constants to model and compare the transient behavior of the 

motor temperature. 

5. Apply the machine optimization procedure to custom applications such as 

transport trucks or vehicles in high-traffic regions that consider various types of 

drive-cycles. 

6. Performing drive-cycle analysis on various slot-pole combinations and rotor 

topologies.  

7. Considering the effects of different gear ratios on drive-cycle efficiency and 

design a machine to locate the high efficiency regions below rated speed near 

areas of high-energy consumption for maximized drive-cycle energy efficiency.  
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