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ABSTRACT 

Inter-element acoustic crosstalk is one of the major concerns which restricts 

the potential deployment of Capacitive Micromachined Ultrasonic Transducers 

(CMUTs) in Nondestructive Evaluation (NDE) despite its superior transduction 

capabilities. This thesis investigates the causes of acoustic crosstalk in CMUTs 

and develops a novel method of CMUT crosstalk reduction by passivating the 

CMUT top surface by a thin layer of Di-isocyanate enhanced crosslinked silica 

aerogel. This powerful technique derives its inspiration from the Scholte waves 

attenuation techniques as used in boreholes at the permeable formations. 

Analytical and 3D finite element analysis in MATLAB and COMSOL 

Multiphysics, respectively, show that the developed technique can minimize the 

crosstalk due to Scholte waves at the fluid-solid interfaces by at least 5 dB more 

at the nearest neighbor as compared to other published techniques. An added 

advantage of the developed technique is that the level of Scholte wave attenuation 

can be controlled by altering the porosity of the aerogel layer. A simple and cost-

effective fabrication process employing sol-gel and ambient pressure drying 

processes for the aerogel layer deposition has been developed that doesn’t 

interfere with the basic CMUT operation or fabrication techniques. 
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CHAPTER 1  

INTRODUCTION 

This chapter presents the objectives of this thesis, explaining the 

significance of the present work and its outcome. The problem statement is 

outlined. An overview of state-of-the-art solutions and their limitations are 

presented, followed by the principal results of the research work. Finally, the thesis 

outline is listed. 

1.1 Goals 

According to the latest market research report, the global ultrasonic 

equipment market for Nondestructive Evaluation (NDE) is expected to reach $3.93 

Billion by 2022, at a compound annual growth rate (CAGR) of 8.3% between 2016 

and 2022 [1]. Among the test /evaluation equipment, the ultrasonic flaw detectors 

accounted for a major share of the overall ultrasonic testing market during the 

forecast period. With the aging infrastructure and the growing need for periodic 

inspections to monitor the structures, the demand for test equipment with the ability 

to detect flaws with a high degree of accuracy and reliability without causing 

damage to the structures or components is the driving force for this tremendous 

market growth [1]. 

Most of the commercially available ultrasonic transducers used in ultrasonic 

test equipment today are piezoelectric. Such transducers rely on the contraction 

and expansion of a piezoelectric crystal for generation and reception of ultrasound. 

The emerging capacitive micromachined ultrasonic transducer (CMUT) technology 
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has the potential to offer many benefits over the traditional piezoelectric 

transducers as summarized in Table 1.1 [2]. Although a lot of research has been 

focused towards CMUTs for medical imaging applications, the use of CMUTs for 

NDE [3] has not yet been extensively explored. This is demanding because 

ultrasonic NDE can also take advantage of these wide bandwidth MEMS 

transducers. As technologies advance and the requirement of ultrasonic NDE 

become more demanding, CMUTs fabricated using micromachining techniques 

will allow realizing high performance wider fractional bandwidth ultrasonic arrays 

with higher image resolution. 

Table 1-1. Comparison between piezoelectric ultrasonic transducers and CMUTs.  

Parameter Piezoelectric Transducer CMUT 

Fabrication method Ceramic technology MEMS technology 

Array fabrication 
Difficult and high cost, very 
difficult for 2D array, ring 

array 

Easy and low cost, 
arrays with through-
wafer interconnects 

Frequency range Relatively narrow Broad 

Bandwidth 
Moderate, matching layers 

required 
Wide 

Array uniformity Moderate High 

Thermal stability Low High 

IC integration No Yes 

Output Pressure High 
Relatively low but 

improving 

 

While employing ultrasonic testing for solids, a couplant is used to ensure 

better coupling of the sound waves through the medium on to the test material with 
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limited attenuation. The most commonly used couplant for material NDE is water. 

CMUTs when used in immersion have very large bandwidth which can lead to 

improved resolution [3]. Investigation into the state-of-the-art in CMUT technology 

suggests that there is a scope for improvement in the CMUT inter-element 

mechanical cross coupling which is relatively higher than their piezoelectric 

counterparts due to lack of isolation cuts between the elements.  

In this thesis work, a 7.5 MHz linear CMUT array with 64 elements is 

designed with a thin lossy layer of highly porous, low Young’s modulus silica 

aerogel for a possible application in fluid coupled inspection of pipelines using NDE 

methods. The novelty of the proposed design is that it exploits the sound speed 

modulating property of silica aerogel for the first time to minimize the acoustic 

crosstalk between neighboring elements in a conventional immersion CMUT array 

while preserving the transducer’s performance. 

The specific research goals of this research work are: 

1. Develop a MEMS based ultrasonic transducer array suitable for NDE using 

CMUT technology. The developed array would be a highly miniaturized 

system with reduced crosstalk, improved frequency response, wider 

bandwidth and higher sensitivity while facilitating easy integration with 

microelectronic drive and control circuitry. 

2. Investigate and validate the CMUT operation for the designed behavior 

through finite element analysis and analytical models. 
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3. Study the various cross-coupling mechanisms of acoustic energy among 

the CMUT cells and arrays by accurate 3D modeling using COMSOL 

Multiphysics design tools to identify the methods of mitigation of such cross-

coupled acoustic energy to improve the transducer performance. 

4.  Develop a fabrication technique to manufacture the designed CMUT 

arrays. 

1.2 Background 

1.2.1 Problem Statement 

CMUTs are usually fabricated as large element arrays, each consisting of 

thousands of CMUT membranes for ultrasound generation and reception. For fluid 

coupled applications such as in the water medium, the presence of neighboring 

CMUTs must be taken into account due to an effect known as acoustic crosstalk . 

When CMUT diaphragms which are close to one another are excited in the water 

medium, the output acoustic pressure that propagates from each diaphragm has 

a considerable forcing effect on the neighboring diaphragms as shown in Figure 1-

1. This modifies the deflection characteristic of every CMUT diaphragm in the 

array, and has a significant effect on the overall transducer’s performance, both 

during the transmit and receive operations [4]. This results in inaccuracies and 

missed defects during image reconstruction in NDE applications. 
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Figure 1-1. Representation of interelement crosstalk. 

1.2.2 Notable State-of-the-Art Solutions 

In recent years, different approaches have been studied to reduce cross 

coupling in CMUTs in immersion applications. In [5], a method has been proposed 

to operate the CMUTs in a pull-in mode that effectively increasing the center 

frequency as a way to tweak the energy spectrums for crosstalk reduction. Another 

method of fabricating acoustic bandgaps consisting of an additional passive cavity 

between the adjacent CMUT elements as shown in Figure 1-2 has been proposed 

in [6]. This approach resulted in crosstalk reduction of about 10 dB in conventional 

operation mode (not the pull-in mode) without any detrimental effect on generated 

acoustic pressure. 

Adding a protective sealant layer of PDMS or Parylene on top of the CMUT 

membranes has been proposed in [7] and [8]. However, the presented 

experimental results reveal no significant improvement. In another approach as 

presented in [9], a 150 µm thick PDMS encapsulation layer has been used that 

showed about -4 dB reduction in crosstalk levels. 
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Figure 1-2. CMUT elements with acoustic bandgap between them (the cross-section shows the 
separation region between the closest cells of neighboring array elements [6]). 

Authors in [10] proposed a second periodicity of the CMUT cell spatial 

configuration to minimize acoustic crosstalk due to substrate reflection. Another 

numerical study showed a transfer-function-matrix approach to derive modified 

transmit waveforms on adjacent elements to reduce the acoustic crosstalk [11]. 

However, this technique relied on programmable waveforms, which introduced 

circuitry complexity. 

1.2.3 Need for Improvement 

The aforementioned studies involve the modification of CMUT standard 

design rule or insist upon additional fabrication steps. Also, some of them call for 

the CMUT to operate in pull-in mode. It is beneficial to employ a simple crosstalk 

minimization technique in the conventional mode of operation not involving major 

design modifications. This thesis work proposes the design of a lossy top 

passivation layer with optimized thickness to effectively suppress the interface 

crosstalk wave. Crosslinked silica aerogel is proposed as the passivation layer 

material to suppress the crosstalk while providing electrical and thermal insulation 

at the same time. The film vibrates with the diaphragm as a compound laminar 

plate with very limited attenuation of the transmit/receive energy normal to the 
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transducer surface, preserving the transducer’s performance. Simulation results 

involving CMUT array elements show a crosstalk level reduction of at least 5 dB 

as compared to [8]. 

1.3 Contributions 

The contributions of this research work are the following: 

1. A thin film of highly porous (90%), low Young’s modulus (40 MPa) silica 

aerogel with large surface area (600 N/m2) is proposed as a solution to 

reduce CMUT inter-element acoustic crosstalk. A crosstalk level reduction 

of approximately 5 dB more is observed in the CMUT conventional 

operation mode. This simple design alteration to the CMUT structure greatly 

improves the CMUT frequency response while preserving the transducer’s 

static and dynamic performance. 

2. To ensure long term durability of the protective layer, silica-x-aerogel which 

exhibits excellent hydrophobic surface properties and improved mechanical 

strength has been proposed by introducing di-isocyanates crosslinking 

agents to enhance the properties of the conventional hydrophilic and 

delicate silica aerogels. A simple and cost-effective fabrication process 

employing sol-gel and ambient pressure drying processes for the 

passivation layer deposition has been developed.  

3. A finite element analysis (FEA) with coupled physics to model the CMUT- 

fluid interaction was performed using COMSOL Multiphysics for a CMUT 

cell in immersion. The analysis was later extended to large arrays to study 

the effects of mutual acoustic cross coupling between the array elements. 
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The model was able to accurately show the peaks and distortions in the 

frequency response due to acoustic crosstalk. 

4. The effect of various design parameters such as CMUT cell sidelength, 

thickness, sidewall width, diaphragm material, fluid medium and number of 

cells in an element on the CMUT crosstalk were explored using FEA which 

served invaluable for understanding the crosstalk patterns and aided further 

optimizations. 

1.4 Thesis Organization  

The thesis has been organized in the following manner. Chapter Two begins 

with a brief introduction to NDE and highlights a few techniques for which 

ultrasound transducers are generally employed. The transducer specifications for 

NDE are discussed. An overview of the CMUT technology for NDE is presented 

and the phenomena of acoustic crosstalk in CMUT arrays is discussed with its 

causes and side-effects. Finally, the main design specifications of the 7.5 MHz 

center frequency 64 channel CMUT array for NDE is presented. 

Chapter Three presents the mathematical modeling for the CMUT cell. The 

cell dimensions of the CMUT used in the array are calculated based on the center 

frequency requirements for the target application. Static and dynamic response of 

the designed CMUT cell are validated using a cross verification platform comprised 

of MATLAB based analytical and COMSOL based 3D finite element analysis.  

Chapter Four investigates the causes of acoustic crosstalk in CMUT arrays 

using finite element methods. FEA simulations are performed on several test 
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CMUT element geometries in varied design scenarios that hold potential for 

minimizing these undesirable cross-coupling effects. 

Chapter Five starts with a brief introduction to the aerogels and explores the 

feasibility of using silica aerogels as passivation layers on CMUTs for fluid-coupled 

applications for crosstalk suppression. The crosstalk levels with and without the 

aerogel layer on the neighboring elements are calculated. Further, the simulated 

results are compared with the published experimental results of other state-of-the-

art PZT and CMUT array designs to evaluate the effectiveness of the designed 

array.  

Chapter Six presents a tentative fabrication process to realize the proposed 

one-dimensional CMUT linear array. A step by step description of the major 

process steps involved are presented with the corresponding cross-sectional view.  

Conclusions are discussed in Chapter Seven. Chapter Seven also suggests 

some of the future directions for the research work that include fabrication and 

experimental characterization of the proposed array and provides final comments 

on the promising abilities of the aerogels that are yet to be fully exploited.  
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CHAPTER 2  

FLUID COUPLED CMUTs 

This chapter highlights the potential of CMUTs for usage in NDE and gives 

an in-depth review of effects of acoustic inter-element cross-coupling effects in 

fluid-coupled CMUTs. The key specifications of the designed CMUT array with 

reduced crosstalk levels for NDE is presented. 

2.1 Ultrasonic NDE 

Scientist have developed many technologies that take inspiration from 

nature to solve problems facing mankind. Ultrasound is a perfect example 

showcasing the trend. Over time, various creative ways to use ultrasound has been 

explored. Among them, a few common applications include underwater navigation, 

medical imaging and NDE. 

NDE is a group of techniques to inspect material properties and reveal flaws 

in objects or structures without damaging the unit under test [3] [12]. Common 

techniques for NDE include ultrasonic, magnetic-particle, eddy current and 

radiographic. The choice of a suitable technique depends mainly on the type of 

material, the size of the structure, the type of defect, and the inspection speed [3]. 

For example, ultrasonic NDE is cost-effective and the most commonly employed 

technique for weld-joints and inline inspections in pipelines. 
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Figure 2-1. Wall thickness measurement using ultrasonic transducers [13] . 

Figure 2-1 shows the principle used for pipeline wall thickness 

measurement. Normal beam testing in pulse-echo mode is used for the detection 

and measurement of metal loss in pipelines, for instance, corrosion. In such cases, 

the transducers are aligned perpendicular to the pipe wall that is under inspection. 

Ultrasound can also be employed for the detection and sizing of cracks in 

pipelines. Figure 2-2 depicts the crack inspection principle used in NDE. The 

orientation of the probe depends on the feature of interest. The transducer is 

aligned so as to direct the acoustic energy into the pipewall at a selected angle as 

shown in Fig 2-2. 

 

Figure 2-2. Crack detection using ultrasonic transducers [13]. 
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2.1.1 Transducer Specifications for NDE 

Stainless steel and carbon steel are mainly used in the manufacture of 

pipelines as they satisfy two main criteria i.e. strength and lost cost. Ultrasound 

testing is ideally suited for the inspection of pipeline wall thicknesses up to 50 mm.  

The transducer center frequency, dynamic range, bandwidth, sensitivity, 

focal point, pulse repetition frequency etc. have major impact on the detection 

accuracy, depth and length resolution [13]. 

The thresholds for depth measurement of metal loss or cracks are set at 1 

mm. The reporting accuracy with respect to the depth measurement for the current 

piezoelectric transducers is approximately ± 0.4 to 0.5 mm. The maximum 

resolution that can be achieved is about 0.06 mm [13].  

2.2 Capacitive Micromachined Ultrasonic Transducers (CMUTs) 

The CMUT is a miniaturized ultrasound transmitter and receiver that is 

fabricated using integrated circuit (IC) technology. It relies on electrostatic 

principles for ultrasound transmission and reception. The flexural mode of the 

CMUT diaphragms account for their low mechanical impedance and results in 

improved energy coupling with the coupling medium. These transducers consume 

less power, offer excellent electrical and thermal stability, have low noise feature, 

and are easy to integrate with the underlying CMOS circuitry [2][14][15][16]. Due 

to these benefits, CMUTs are gradually entering main stream and are considered 

a potential alternatives to traditional piezoelectric transducers for biomedical 
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applications, NDE, high intensity focused ultrasound (HIFU), and automotive 

collision avoidance systems [17][3][18]. 

2.2.1 CMUT Operation Principle 

 

 

Figure 2-3. (a) Cross section of a CMUT cell  (b) Working principle of CMUT. 

Figure 2-3(a) shows the cross-sectional schematic view of a CMUT cell. A 

typical CMUT geometry is built with a square or circular diaphragm separated from 

a fixed backplate by a small airgap or vacuum allowing the membrane to vibrate. 

In normal operation, a bias voltage of typically several tens of volts, is applied 

across the electrodes. The developed electrostatic force pulls the top electrode 

down and reduces the gap height. 

To generate ultrasound, an AC voltage pulse of desired ultrasound 

frequency is applied across the DC biased CMUT geometry. The resulting time 

varying electrostatic force of attraction between the diaphragm and the bottom 
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electrode causes the diaphragm to vibrate at the resonant frequency of the 

structure, resulting in emission of acoustic waves in the surrounding medium. The 

same CMUT can also be used to detect ultrasonic waves as shown in Figure 2-

3(b). Incoming ultrasound waves cause the top electrode and the diaphragm to 

deform, producing a change in capacitance between the electrodes [3]. With the 

bias voltage fixed, a current change corresponding to the incoming acoustic 

pressure can then be measured with the aid of suitable microelectronic read-out 

circuitry [19]. Generally, for an ultrasonic transducer, many CMUT cells are 

connected in parallel to generate enough power. For imaging applications, an array 

of transducer elements is usually necessary.  

2.3 Fluid Coupled CMUTs 

As mentioned previously, CMUTs when compared with traditional 

piezoelectric transducers, are more effective for air-coupled applications. 

Furthermore, when operated in immersion, CMUTs have a wide bandwidth that 

could result in an enhanced axial resolution. For ultrasonic testing of solids which 

requires a coupling medium such as water, immersion coupled CMUTs can 

provide great benefits.  

Investigation into the state-of-the-art in CMUT technology suggests that 

there is a scope for improvement with respect to dielectric charging [17] and 

acoustic crosstalk [5] in CMUT arrays. Dielectric charging refers to the trapping of 

charges within the dielectric layer of a CMUT, causing frequency drift at high bias 

voltages and affecting the transduction efficiency of the transducer. Acoustic 

crosstalk means the coupling of energy to neighboring CMUT elements when a 
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CMUT element is transmitting or receiving, causing unwanted signals to be 

generated due to the vibration of inactive elements. Significant efforts have been 

focused towards the reduction of dielectric charging by the usage of a structural 

material such as BCB (Bisbenzocyclobutene) [17]. In this research work, efforts 

have been made to investigate the effects of cross coupling in fluid coupled 

CMUTs and mitigate their effects. 

2.3.1 Wave Theory Description of the Problem 

Over the years, crosstalk effects have been analyzed extensively using 

experiments and measurements. It is hypothesized that the acoustic crosstalk is 

caused by Scholte wave traveling at the fluid-solid interface and also due to the 

propagating waves in the silicon substrate. In this study, we investigate only the 

first crosstalk mechanism occurring at the fluid-solid interface. For a better analysis 

of the surface waves, an understanding of acoustic wavefront propagation at the 

fluid-solid interface will be very useful [20]. As the wavefront traverses into the 

solid, it exerts a uniform force around the interface as shown in Figure 2-4. In 

consequence, compression and shear waves are excited, and body-waves travel 

in the solid. head-waves are generated in the fluid medium. After the compression 

and shear waves, the next waves that arrive are the surface waves at the interface. 

The surface waves that are formed at the interface between solid and liquid are 

described as Scholte waves. 
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Figure 2-4.Sound wavefront propagation between fluid and a solid. Compressional wave in fluid 
(black), and in solid(red). Shear waves in solid (green). Reprinted with permission from [20]. 

The existence of surface waves was first predicted mathematically by Lord 

Rayleigh in 1885. He calculated the response of an elastic solid in contact with 

vacuum and found that a wave propagated along the surface whose amplitude 

decreases with depth [20]. Rayleigh’s findings explained the phenomenon of 

earthquakes as a consequence of waves propagating along the earth’s surface. In 

1924, Stoneley studied the waves at the interface between two solids and found a 

similar type of surface wave. The interface wave between a solid and a liquid 

medium was discovered by Scholte in 1947. However, the terms Stoneley and 

Scholte waves are used interchangeably to describe the waves at the fluid-solid 

interface.  

The field distribution curve as a function of depth for the Scholte wave at the solid-

water interface is as shown in Figure 2-5 [21]. It can be seen that the displacement 

fields in the solid and the water medium decay rapidly. However, an undamped, 

non-dispersive wave is observed along the solid-liquid interface that can give rise 

to significant crosstalk. 
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Figure 2-5. Field Distribution curve of Scholte waves. Reprinted with permission from [21] 

The velocity dispersion curve as a function of frequency for a 500 μm thick silicon 

plate loaded with water is plotted in Figure 2-6 [22]. It is seen that the velocity of 

the wave is nearly non-dispersive after 4 MHz, where it reaches the speed of sound 

in water. Thus, this large lateral deflection induced at the edge of the vibrating 

CMUT membrane causes any diaphragm along its acoustic pathway to deflect 

giving rise to mutual acoustic interactions. 

2.3.2 Undesirable Side-effects of Crosstalk  

The main objective of transducer arrays used in most ultrasound 

applications is to radiate acoustic beams with a desired pressure and frequency. 

At frequencies near the center frequency, crosstalk hinders the uniform deflection 

of the CMUT diaphragms, leading to variation in amplitude and phase of vibrating 

diaphragms based on their position in the array. At times, eigen frequencies other 

than first vibrational mode is also observed. Such a behavior is undesirable as it 

can alter the sound beam pattern of the individual elements in the array and  
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Figure 2-6. Velocity of Scholte waves. 

decrease the transducer’s capability to accurately resolve features in the 

surrounding environment [4]. 

In the receive mode, fluid coupling could cause inactive elements to vibrate. 

This results in an increase of the effective element aperture and could lead to 

inaccuracies and missed cracks during image reconstruction [4]. Imaging 

experiments using CMUTs showed degradation in the axial resolution and bright 

patterns in the near field due to crosstalk [23]. 

In all, mutual acoustic interactions bring with them severe effects which 

manifest themselves in the operational bandwidth of the transducer causing 

distortions in the frequency response, acoustic power radiation, sound beam 

patterns and imaging resolutions. Thus, in order to accurately design and optimize 

CMUT arrays for immersion applications, acoustic crosstalk must be taken into 

account. 
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2.4 CMUT Array Design Methodology 

For the target NDE application, 7.5 MHz center frequency CMUT with 64- 

channel has been designed. Each array element is 6 mm long and 100 µm wide. 

The array elements are comprised of square diaphragms.  

Table 2-1. Designed Array Specification. 

Symbol Parameter Unit Value 

f  Center frequency MHz 7.5 

mc  Sound speed in the medium m/s 1500 

m  Medium Density kg/m3 1000 

  Wavelength µm 200 

N  Number of elements  64 

A  Aperture size mm 6.39 

D  Element pitch µm 100 

W  Element width (azimuth) µm 90 

L  Element length (elevation) mm 6 

K  Kerf width µm 10 

avgCTL  Average Crosstalk Level dB -27 

FBW  -6 dB fractional Bandwidth  114% 

Each array element consists of 5 cells along the width and the element pitch 

is maintained to be 100 µm in order to satisfy the Nyquist criteria and avoid grating 

lobes at large steering angles. Table 2-1 provides the important specifications of 

the designed array. 
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2.4.1 Lateral and Axial Resolution 

The lateral resolution ( y )  is defined as the minimal distance between two 

objects on the axis perpendicular to the wave propagation that can be resolved 

[24]. It depends on the width of the beam and the depth of imaging. The lateral 

resolution can be expressed as: 

1.22
y S

A

 
 =  

 
    (2.1) 

where A  is the aperture size of the CMUT array and S  is the distance between 

the focus and the CMUT. 

The lateral resolution at a particular focus can be maximized by increasing 

the operating frequency and the aperture size of the CMUT array. The lateral 

resolution is approximately 162 µm for the designed CMUT. 

The axial resolution ( x ) is defined as the minimum distance that can be 

distinguished between two echo sources in the direction of propagation [25]. The 

axial resolution can be expressed as: 

2

n
x


 =      (2.2) 

where n  is the number of scanning pulses,   is the wavelength and n  is the 

pulse width. 

Decreasing the operating wavelength and reducing the number of scanning 

pulses can improve the axial resolution of the transducer. For the CMUT designed, 



 

21 
 

the axial resolution is approximately 0.2 mm when the number of scanning pulses 

is two. 

2.4.2 Axial Pressure Profile 

The generated axial pressure profile of the 7.5 MHz CMUT array as a 

function of distance from the center of the array is shown in Figure 2-7. It is seen 

that the acoustic pressure close to the array has fluctuations in pressure amplitude 

in the near field region. Just further from the near field region, the sound pressure 

is relatively uniform (between 15-20 mm), after which the pressure decreases 

asymptotically with increasing distance from the array in the far field region. 

 

Figure 2-7. Axial pressure profile of 64 element 7.5 MHz CMUT array. 
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2.4.3 Directivity Pattern  

The beam directivity of the CMUT array depends on the transducer aperture 

size, the operating frequency and the speed of sound in the given medium. It gives 

the measure of how directional the transmitted sound wave is. The directivity 

function of the designed CMUT one dimensional linear array with 64 identical 

elements can be calculated using (2.3) [26]. 
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( 1)A N W N K=  + −             (2.4) 

where aD  is the directivity function of the array ,  is the off-axis angle 

(directional angle) , W  is the element width, N  is the number of elements and D  

is the element pitch . The directivity pattern of the 64 element CMUT array is 

simulated in Figure 2-8. It can be seen that the beam pattern of the 64-element 

array is highly directional and has relatively higher concentrated power in the main 

lobe than the 16-element array beam. 
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Figure 2-8. Directivity pattern of 16 (green) and 64 (blue) element CMUT array.  

Therefore, a highly directional CMUT array with significant acoustic pressure field is 

designed. The CMUT array geometry, specifically the length and width of the element, 

are calculated based on the target center frequency of operation. 
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CHAPTER 3  

MODELING OF CMUTs 

This chapter presents the analytical and finite element modeling of the 

CMUT device to calculate some of the primary design parameters. The static and 

dynamic behavior of the CMUT cells are investigated using COMSOL Multiphysics 

electro-mechanical simulations. 

3.1 Cell Design Methodology 

The basic operating principle of the CMUT is that the capacitance between 

the membrane and the bottom electrode changes dynamically with the incident 

sound pressure. Thus, the precise calculation of the capacitance between the 

bottom electrode and the membrane is essential to determine the CMUT transmit 

and receive sensitivity. 

To determine the capacitance change, it is first necessary to calculate the 

center displacement of the membrane. The diaphragm’s center displacement is 

then used to calculate the deflection profile of the square diaphragm. The 

capacitance is then obtained by integrating an infinitesimal area of the deformed 

membrane where the parallel plate approximation holds. 

The load-deflection model of a rigidly clamped square diaphragm is used 

initially to design the approximate behaviour of the CMUT considering geometry 

and materials. The developed geometry is then modeled using 3-D 

electromechanical FEA and is later used to study the behaviour of the membrane  
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in the presence of its neighbors in the design space.  

3.2 Center Displacement of the Square Diaphragm  

The center displacement of the diaphragm gives the maximum capacitance 

change of the membrane. For this analysis, a homogenous and isotropic 

diaphragm with fixed edges as shown in Figure 3-1 is assumed. 

 

Figure 3-1. CMUT deformation under external pressure 

The combined load deflection model of a clamped square multi-layered plate 

subject to large deflection takes into account the diaphragm stiffness due to 

nonlinear spring hardening, residual stress, bending, electrostatic spring softening 

due to the bias voltage, and the external pressure [27] [18]. It is given by: 
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where 0w  is the diaphragm center deflection, 0
 
is the residual stress, 0  is the 

permittivity of free space, V  is the bias voltage, ExtP  is the external mechanical 
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pressure, and v  is the Poisson ratio of the diaphragm material. The real root of the 

equation (3.1) gives the center displacement of the diaphragm. 

The values of constants ,rC ,bC  and sC  for thin diaphragms are 3.45, 4.06 and 

1.9 respectively. The Poisson ratio dependent function ( )sf in (3.1) is given by 

[28]: 

( )
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−
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effD  is the effective flexural rigidity for a multilayered plate: 
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where the constants A, B and C are expressed as: 
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where kE  is the Young’s modulus and kv  is the Poisson’s ratio of the 
thk  layer of 

a laminar plate. The laminar plate constitutes of the top electrode and the 

diaphragm. In (3.1), the effective Young’s modulus E
~

 is the plate modulus and is 

expressed as: 
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where E  is the Young’s modulus of the diaphragm material. The effective airgap 

effd  is defined as: 

m t
eff o
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d d
d d

 
= + +  

(3.9) 

where, md  is the membrane thickness, td  is top electrode thickness, rm  is 

dielectric constant of the membrane, rt  is dielectric constant of the top electrode 

and od  is air gap between diaphragm and backplate. 

The deflection profile of a multilayered diaphragm ( )yxw ,  is given by: 
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Where 0w  is the diaphragm center deflection determined using (3.1)) and the 

parameters 1w , 2w , and 3w are determined as: 
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The material properties and the specifications of the CMUT cell (Figure 3-

2) used in the design are given in Table 3-1 and Table 3-2 respectively. From 

equations (3.1) and (3.10), the deflection profile of the CMUT membrane at  
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Figure 3-2. Cross-section of a CMUT cell [17]. 

 

Table 3-1. Material properties of CMUT cell. 

Parameter Unit 
BCB 

(Diaphragm) 

Gold 

(Top 

electrode) 

Silicon 

<100> 

(Substrate) 

Density,    kg/m3 1050 19300 2329 

Young’s modulus, E   GPa 2.9 70 165 

Poisson’s ratio, v    0.34 0.44 0.26 

Residual stress,    MPa 28 106 55 

Relative permittivity,    2.6 6.9 11.8 

 

Table 3-2. Design specifications of a CMUT cell. 

Parameter Unit Value 

Cell sidelength, 2L a=   µm 16 

Diaphragm thickness, md  µm 1.3 

Airgap height, od  nm 650 

Insulating layer thickness, id  nm 100 

Top electrode thickness, t  nm 100 

Contact pad thickness, ct  µm 0.4 

Dielectric post thickness, cL  µm 2 
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atmospheric pressure is calculated analytically using MATLAB and is shown in 

Figure 3-3 (a). The analytical model result is compared with 3D structural analysis 

is carried out with the solid mechanics interface of COMSOL in Figure 3-3 (b). The 

parameters like stress, strains and displacements are results of solving Navier -

Stoke equation. The center deflection of 5.8 nm is obtained from analytical model 

which is in good agreement with the FEA center deflection of 5.5 nm with a 

deviation of about 5.1%. 

          

Figure 3-3. Center deflection of the CMUT diaphragm (a) MATLAB analytical Model (b) COMSOL 
3D FEA model. 

3.3 Capacitance 

The total capacitance of an undeformed CMUT membrane can be expressed in 

terms of a parallel plate capacitor as [27]: 

)1( ff0 CCC +=
 (3.3) 

where 0C  is the parallel plate capacitance and is given by: 
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and ffC  is the capacitance due to the fringing fields: 
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After deformation, the total capacitance is the sum of the parallel plate capacitance 

DeformC  between the deflecting membrane and the bottom electrode, and the 

fringing field capacitance ffC  and is given by: 

)1( ffDeform CCC +=
 

( ) −
=

A eff yxwd

dxdy
C

,
0Deform 

 

(3.4) 

As the diaphragm sidewalls are fixed, the fringing field capacitance ffC  at the fixed 

edges can be assumed to be unchanged as it is caused mainly by the charges 

concentrated at the fixed edges.  

The capacitance of an undeformed CMUT cell is found to be 1.06 fF in the 

analytical model. Figure 3-4 shows that plot of capacitance with respect to the DC 

bias as seen in FEA. The FEA and the analytical model show good agreement with 

a slight deviation of 6.6% 
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Figure 3-4. Plot of capacitance change as a function of DC bias voltage. 

3.4 Resonant Frequency 

Resonant frequency in air can be calculated using equation (3.16) 
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 T t=  and 2L a= , where T is the tensile strength and L is the diaphragm 

sidelength.  

3.5 Pull-in Voltage 

The pull-in voltage is a significant design parameter that decides the 

transmit-receive sensitivity and the dynamic range of the transducer. If the applied 

DC bias applied to the CMUT is increased beyond a certain value, the electrostatic 

force of attraction between the top and the bottom electrodes overcomes the 

restoring spring force of the membrane and the membrane collapses on the bottom 

electrode which could cause mechanical breakdown of the device. This voltage is 

called the pull-in voltage. For a given membrane thickness, the pull in voltage can 
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be optimized using the diaphragm’s sidelength and the air cavity height. The pull-

in voltage for a square diaphragm is given by [27]: 
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(3.6) 

 

Figure 3-5 (a) and (b). Pull-in voltage of the CMUT diaphragm. 

The pull-in voltage of the CMUT cell is calculated to be 452 V using the 

analytical model. In the FEA, the pull-in occurs at 482 V as shown in Figure 3.5 (a) 

and (b). The designed FEA accurately predicts the pull-in voltage with a deviation 

of about 6.1%.  

3.6 Dynamic Analysis 

Figure 3-6 shows the CMUT cell modelled using the electro-mechanics module in 

COMSOL. The diaphragm is set to be a linear elastic material and suitable 

boundary conditions are applied at the edges. Pressure acoustics frequency 

domain physics module is used for the fluidic medium, and an absorbing layer is 
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used to eliminate the reflection of radiated wave. The maximum element size of 

meshes is set to be a one-sixth of the smallest wavelength in a frequency domain 

sweep. The interface between electromechanical and pressure acoustic domains 

is the fluid–solid coupled boundary, which corresponds to a pressure load on 

electromechanical domain and a normal acceleration on pressure acoustic 

domain, respectively. An AC perturbation signal superimposed on a DC voltage 

are applied to the top electrode.  

 

 

Figure 3-6. CMUT model used in simulation. 

The frequency response of the CMUT diaphragm both in air and water medium 

and shown in Figure 3-7. From the Figure 3-7 (b), it is seen that the maximum 

displacement 54 nm of the diaphragm in air medium occurs at the designed 

resonant frequency of 15 MHz whereas the maximum displacement in water 

medium occurs at 7.5 MHz. The corresponding phase responses are shown in 

Figures 3-8 (a) and (b). 
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Figure 3-7 Steady state response of the CMUT in (a) water (b) air 

 

 

Figure 3-8. Phase Variation with frequency (a) water and (b) air. 

Transient response of a CMUT membrane excited with 1 V pulse for 0.1 µs 

duration, biased at 40 V DC is shown in Figure 3-9. 
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Figure 3-9. Dynamic response of the CMUT cell.  

In the preceding studies, the primary design parameters of the CMUT cell 

are calculated. The static and dynamic performances are analyzed. Further 

analysis can be directed towards understanding the behavior of CMUT elements 

and cells in the presence of a neighbor in a fluidic medium.   
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CHAPTER 4  

INVESTIGATION OF ACOUSTIC CROSSTALK IN CMUTs 

In this chapter, the fundamental causes of acoustic crosstalk in CMUT 

arrays are investigated using both analytical and finite element methods. FEA 

simulations using COMSOL are performed on several hypothetical CMUT 

elements with a small number of CMUT cells in water medium to investigate the 

fundamental physics of crosstalk in CMUTs and explore possible ways of crosstalk 

minimization. 

4.1 Potential Contributors for Acoustic Crosstalk in CMUT Cells 

Various design parameters such as inter-cell spacing, physical properties of 

different sidewall materials, acoustic coupling medium and number of cells in the 

element are investigated to analyze the acoustic cross-coupling among the 

CMUTs cells and across the elements. Two different test geometries: 1. CMUT 

Type A and 2. CMUT Type B, with specifications as listed in Table 4-1 are explored 

in this analysis. The material properties of these two test geometries are listed in 

Table 4-2. 
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Table 4-1. Design specifications of CMUT Type A and Type B. 

Parameters Unit CMUT Type A CMUT Type B 

Membrane Sidelength, 
2L a=   

µm 46 16 

Diaphragm thickness, md   µm 2.5 1.3 

Cavity height, od   nm 400 650 

Insulator thickness, id   nm 100 100 

Top electrode Thickness, t    nm 200 100 

Resonant frequency in 
immersion, f    

MHz 7.5 7.5 

 

Table 4-2. Material properties of the CMUT Type A and Type B. 

Parameter Unit 
BCB 

(Diaphragm) 

Gold 

(Top 

electrode) 

Silicon 

<100> 

(Substrate) 

Density,    kg/m3 1050 19300 2329 

Young’s modulus, E   GPa 2.9 70 165 

Poisson’s ratio, v    0.34 0.44 0.26 

Residual stress,     MPa 28 106 55 

Relative permittivity,     2.6 6.9 11.8 

 

4.1.1 Effects of Inter-cell Spacing in Acoustic Crosstalk in CMUTs 

Typically, the CMUT diaphragms are supported by dielectric posts (spacers) 

that also separate the individual CMUT cells. Increasing the spacer width would 

increase the inter-cell spacing resulting in a lower fill factor. The effects of this inter-
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cell spacing on CMUT crosstalk were studied for the Type A and Type B CMUT 

test geometries. The cross-section of a 3D FEA simulation model developed in 

COMSOL acoustic module for this analysis is shown in Figure 4-1.  

From Figure 4-2, it can be seen that as the spacing between the cells 

increases, the irregularities due to the crosstalk in the frequency response diminish 

and eventually disappear in both types of test geometries.  

  

Figure 4-1. 3-cell CMUT element (water medium not shown). 

Thus, cross coupling between the cells can be reduced by increasing the 

spacing between the cells. However, for a fixed sidelength, an increased spacing, 

decreases the fill factor (active area) of the array and results in a negative impact 

on the array’s acoustic performance. Moreover, a fairly large inter-cell spacing 

(equal to or greater than twice the cell sidelength) is necessary before any 

reduction in the cross-coupling effects can be observed. Although this design 

strategy holds promise, a more detailed investigation on the full array design would 

be necessary to truly optimize the CMUT array geometry. 



 

39 
 

 

Figure 4-2. Frequency Response with the variation in inter-cell spacing. 

4.1.2 Effects of Dielectric Spacer Material on CMUT Crosstalk 

The dielectric spacers separating an individual CMUT cell from its neighbors 

also serve as an efficient pathway for the propagation of the acoustic interface 

waves to result in crosstalk. An analysis was carried out by switching the spacer 

material to silicon nitride, silicon dioxide, and BCB (Table 4-3) for the test 

geometries A and B. Thicknesses of these common spacer materials were varied 

as well to identify the effects of a respective material’s Young’s modulus, Poisson’s 

ratio, residual stress, etc. on the amount of crosstalk. From the observations 

(Figure 4-3), it can be concluded that though the magnitude of the crosstalk varies 

with the bulk modulus, in general, the amount of crosstalk that manifests as a 

distorted or split resonance like condition in the frequency response remains 

unaffected. It is to be noted that as the change of sidewall material (BCB or Silicon 

nitride) did not make a significant difference to the crosstalk effects, this may be 

attributed to the high post-cure hardness of BCB of 0.3-0.4 MPa/m1/2 which is 

almost the same as silicon nitride and silicon dioxide. Similar distorted or split 

resonance effects were observed in the frequency response curves of CMUT Type 
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A and Type B. Further, the CMUT structural material was also switched to BCB 

and silicon nitride. Nonetheless, the crosstalk effects persisted. 

Table 4-3. Physical Properties of the sidewall material. 

 

 

 

 

 

 

Figure 4-3. Frequency response with different sidewall materials. 

 

4.1.3 Effects of Coupling Medium on Acoustic Crosstalk in CMUTs 

The impact of the coupling medium on the crosstalk across the elements of 

a CMUT array were studied using a 3-cell CMUT configuration as shown in Figure 

4-1. Five different coupling media, namely, air, oil, water, glycerin, and sonotrace 

with physical properties as listed in Table 4-5 has been used in the investigation.  

Parameter Unit 

 

BCB 

 

 

SiO2 

 

Si3N4 

Density,    kg/m3 1050 2170 2500 

Young’s modulus, E   GPa 2.9 66.3 160 

Poisson’s ratio, v    0.34 0.15 0.25 

Relative permittivity,     2.6 3.6 7 
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Table 4-4. Physical properties of various ultrasonic testing couplants. 

The 3 CMUT cell configuration as shown in Figure 4-1 were simulated in 

COMSOL Multiphysics. When all the three cell membranes were excited 

simultaneously in a simulated air medium, all the membrane (#1, #2, and #3) 

exhibit identical deflections and the amount of crosstalk is negligibly small as 

evident from Figures 4-4(a) and (b). However, when the same simulation was 

performed in immersion in water, the deflections of the outer membranes (#1 and 

#3) remained the same whereas the membrane #2 exhibited a different deflection 

profile as seen in Figure 4-4(b). The response of the cells in oil and glycerin has 

been seen to be very similar to that of in water. As the medium became denser, 

membranes showed increased non-uniformity in displacements.  

Couplant 

Density 

(kg/m3) 

Sound 

velocity 

(m/s) 

Acoustic 

Impedance 

(MRayl) 

Viscosity 

at 25oC 

(cP) 

Air 1.225 343 0.00042 0.017 

Water 1000 1500 1.5 0.89 

Oil 900 1420 1.28 450 

Glycerin 1280 1920 2.49 620 

General purpose couplant 

(Sonotrace) 
1120 1550 1.73 400 
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Figure 4-4. Displacement plots of 3-cell configuration in (a) air and (b) water. 

In essence, the level of cross coupling among the cells is a function of the 

density of the fluidic medium. However, as from Table 4-4, cross coupling also 

depends on the velocity of sound in that medium. And, as the acoustic impedance 

depends on the sound velocity in the medium ( z c= ), it can be concluded that 

the crosstalk is strongly dependent on the acoustic impedance of the medium. A 

lower sound velocity will result in a lower acoustic impedance to minimize 

crosstalk. However, it is not always feasible to use lower acoustic impedance 
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medium for ultrasonic evaluation of materials. Consequently, a good strategy to 

minimize the crosstalk while optimizing the CMUT geometry for a specific target 

application needs to be explored. 

4.1.4 Number of Cells in an Element  

In Typical CMUT arrays, individual elements are fabricated to have a number of 

CMUT cells arranged in a desired pattern to achieve a certain fill factor while 

satisfying the fabrication constraints and the requirements for array operation. 

Once the element geometry, specifically length and width, are determined based 

on the target center frequency of operation, the dimensions and spacing of the 

CMUT cells can be optimized. In a pre-defined element geometry, smaller CMUT 

cells require large number of inter-cell spacing that contribute in a lower fill factor 

(lower active area per element). On the other hand, larger CMUT cells result in 

smaller number of inter-cell spacing in a pre-specified element geometry to 

increase the fill factor (higher active area). As the large cells have large 

diaphragms or membranes, the fluid solid coupling area (active area) is high, that 

consequently increases the intensity of the Scholte wave. To investigate this 

phenomenon, 3D FEA simulations were carried out on four CMUT elements with  
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Figure 4-5. Schematic topview of (a) Single cell element (b) 3-cell element (c) 5-cell element (d) 
9-cell element. 

same lateral dimensions but with different cell configurations as shown in Figures 

4-5 (a), (b), (c) and (d). Figure 4-5 (a) shows a single cell element with a large 

diaphragm whereas Figures 4-5 (b), (c) and (d) show multi cell elements with 

smaller diaphragms. The frequency response of the single cell element (large 

diaphragm) and the multi-cell elements are shown in Figures 4-6(a), (b), (c) and  
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(d) respectively. From Figures 4-6 (a), (b), (c) and (d), it can be seen that as the 

number of cells per element increases, resonant behavior of the element starts to 

distort that causes a downshift of the element’s resonance peak and introduces 

uncommon artifacts. 

Figure 4-6. Frequency response of (a) Single cell CMUT element (b) 3-cell CMUT element (c) 5-
CMUT cell element (d) 9-cell CMUT element. 

The cause of such a phenomenon can be understood by examining the 

deflection plots of 3-cell, 5-cell and 9-cell element shown in Figs. 4-7 and 4-8 and 

is explained below.  

The interface waves which are generated at the fluid-solid interface couple 

to the adjacent membrane through the dielectric spacers. Although identical 

dimensions are assumed for the membranes and spacers in an element, the  
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Figure 4-7. Membrane displacements of (a) 3-cell CMUT element (b) 5-cell CMUT element.  

amount of their exposure to Scholte wave intensities depend on the reflection and 

propagation of the Scholte waves at the cell boundaries and their respective 

phases. Consequently, there is a probability that at a certain location in an element, 

the Scholte waves are in phase and undergo constructive interference whereas in 

some other locations, the Scholte waves suffer destructive interference when they 

are out of phase. This will cause a change of the intensity of the Scholte waves 

affecting any particular diaphragm. A CMUT cell at a higher Scholte wave intensity  
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Figure 4-8.(a), (b) and (c) Membrane displacements of 9-cell CMUT element. 

 



 

48 
 

location, will experience the effect more whereas a CMUT cell at a lower Scholte 

wave intensity location, will experience the effect less. CMUT cells which are at 

different geometrical locations in an element or array but suffer identical Scholte 

wave intensities, will have the same frequency response. COMSOL 3D FEA 

simulation results as shown in Figures 4-7 and 4-8 support this argument.  

The displacement plots of the 3-cell element as shown in Figure 4-7(a) 

shows that membrane #1 and membrane #3 (the outer membranes) show identical 

deflection curves. However, the middle membrane #2 deflects differently from their 

counterparts. Similar effects were also observed in higher multi-cell elements (5-

cell and 9 cell elements).  

Thus, it can be concluded that the interface waves (Scholte waves) 

generated at the neighboring CMUT cells is a major source of crosstalk in CMUT 

elements that distorts the frequency response of the element by shifting the 

resonant frequency and effects the displacement. The higher the number of cells 

in an element, the more distortion and resonance frequency shift occurs. Another 

interesting pattern that has been noticed is that the distortion intensity depends on 

the symmetrical location of the CMUT cells in an element. The centrally symmetric 

cells (#2, #4, #6, and #8 in a 9 cell CMUT element) show the worst case scenario 

as compared to the central cell. In essence, crosstalk due to the Scholte waves is 

a serious issue that can significantly degrade the resonance characteristics of a 

CMUT and compromise the NDE quality. 
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4.2 Scientific Approach to Mitigate CMUT Crosstalk 

It can be inferred from the foregoing analysis that in a given fluidic medium, 

the dimensions of a CMUT cell and its position in a CMUT element can have a 

significant impact on the frequency response of the CMUT array. Consequently, it 

can affect the accuracy of the target ultrasound based NDE. Increasing the spacing 

between the membranes decreases the sharpness of the crosstalk peaks but 

degrades the bandwidth of the devices.  

In order to come up with an optimal design with these design parameters, 

a more focused investigation involving several permutations through the various 

design parameters such as membrane sidelength, their arrangement within the 

element, inter-cell spacing, and element pitch would be necessary. Also, care must 

be taken so that the important CMUT array performance specifications such as 

acoustic output pressure, sensitivity and bandwidth are not compromised during 

the process. 

Further thought is put into developing a strategy to mitigate the intensity of 

the Scholte wave that would not involve any major design modifications of the 

CMUT structures. The study of borehole acoustic waves suggests that the Scholte 

waves, especially the low frequency ones, are sensitive to formation permeability 

at the fluid-solid interface as shown in Figure 4-9 [20]. When the waves propagates 

through permeable formations, the fluid vibrates relative to solid, which attenuates 

the wave and slows it down. Based on this principle, the possibility of introducing 

a thin highly porous nano-structural protective layer on top of CMUT surface which 
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would attenuate the Scholte wave propagation and minimize crosstalk effects is 

explored.  

 

Figure 4-9. Scholte waves propagation through a borehole. Reprinted with permission from [20]. 

Silica aerogel is a highly porous material with pores sizes in the range of 

20nm. They have a very high surface area due to their extremely small particle 

size. The small granules tend to be compact and have a higher silica content for 

the same volume resulting in high packing density. The high silica content presents 

a highly tortuous path for the Scholte waves to propagate through the nano-pores 

of the silica granules. The wave particles undergo numerous internal reflections 

within the aerogel’s network, bouncing back and forth between the nano pores of 

the silica framework, and most of the energy is contained close the surface of the 

gels. It is also an excellent electrical and thermal insulator even with a few 

micrometer thicknesses which makes it ideal for usage as a passivation layer on 

the CMUT surface. Additionally, it will not interfere with the CMUT’s transduction 

properties when used as passivation layer on the CMUT, it acts as a laminar thin 
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film (compound plate) with the top electrode and the diaphragm, while efficiently 

deflecting with the top electrode to radiate or receive acoustic energy.   
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CHAPTER 5  

CROSSTALK REDUCTION WITH SILICA AEROGEL 

PASSIVATION LAYER 

This chapter explores the feasibility of using silica aerogel as a passivating 

layer on CMUTs for fluid-coupled applications for crosstalk suppression. 3D FEA 

simulations were carried out in COMSOL Multiphysics to calculate the reduction in 

the level of crosstalk with the aerogel passivation. The simulated results have been 

validated by comparison with other published results of state-of-the-art CMUT 

transducer arrays. 

5.1 Aerogels 

Aerogels are low-density, highly porous (~98%) solid networks of a gel that 

are commonly fabricated using sol-gel chemistry [31][32]. These mesoporous (2-

50 nm pores) interconnected nanostructures filled with air exhibit many 

dramatically enhanced material properties over their non-aerogel counterparts of 

the same substance (for instance, very large surface area) with reduced 

mechanical strength [33]. 

Due to their several unique properties, aerogels are garnering interest from 

both academic and industrial sectors. Numerous commercial applications of the 

polymer aerogels are found such as in architectural field [34] and thermal insulation 

[35], as catalysts [36], filters, and nanoparticle detectors [37]. 
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5.1.1  Comparative Study of Different Types of Aerogels  

Following [38], aerogels can be broadly classified into organic and inorganic 

types based on their composition. Among the aerogels, silica aerogel is the most 

widely used due to its extraordinary properties such as high specific surface area 

(500–1200 m2/g), high porosity (80–99.8%), low density (∼0.003 g/cm3), low 

thermal conductivity (0.01Wm-1K-1), low dielectric constant (k= 1.0–2.0), low speed 

of sound (100-500m/s) and low refractive index (∼1.05) [32][39]. These unique 

properties make them extremely favorable for a wide variety of industrial 

applications. 

Metal Oxide aerogels are colorful electrically conductive aerogels which act 

as catalysts for chemical transformations [39]. They are also employed in the 

manufacture of explosives.  

In [38], it has also been mentioned that a metal chalcogenide is a compound 

made from a metal and a chalcogenide element such as sulfur, selenium, and 

tellurium. Most common metal chalcogenide aerogels are cadmium sulfide (CdS), 

cadmium selenide (CdSe), cadmium telluride (CdTe), zinc sulfide (ZnS), and lead 

telluride (PbTe) [39]. Metal chalcogenides are slowly gaining popularity as they 

can be easily transformed into quantum dots which find their application in the 

advanced LED flat-panel displays. Additionally, they are used as photovoltaic 

materials (converts sunlight into electrical energy) in affordable solar panels as 

they can be easily produced at ambient conditions.  
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Table 5-1. Comparison of different aerogel types [28-39]. 

Organic Carbon aerogels are extremely high surface area materials and 

hold great potential for supercapacitors and fuel cells for energy-efficient 

automobiles [36] [39]. By altering the density, carbon aerogels can be made 

electrically conductive. Carbon aerogels reflect only a very small percentage of 

incident radiation and are used as solar energy collectors.  

 

Inorganic Aerogels Organic Aerogels 

Aerogel Type 
Silica 
(SiO2) 

Metal Oxide 
(MxOy) 

Chalcogenide 
(MxSy, MxSey, 

MxTey) 

Carbon 
(CNT, 

Graphene) 

Polymer 
(RF, MF) 

Density (g/cm3) 0.0011-0.650 0.03-0.2 0.02-0.1 0.02-0.5 0.02-0.6 

Surface Area 
(m2/g) 

500-1200 150-700 100-600 600-800 350-1025 

Avg. Pore Size 
(nm) 

20 5-20 2-20 3-20 3-20 

Gel Synthesis 

Hydrolysis of 
silicon 

alkoxide/ 
acid-driven 

condensation 
of waterglass 

Epoxide-
assisted 

gelation of 
aluminum 

salts or 
hydolysis of 

aluminum tri-
sec-butoxide 

Oxidative 
removal of 

thiolate from 
preformed 

nanoparticles 

Polymerization of 
1,3-

dihydroxybenzene 
with methanal 

Polymerizatio
n of 1,3-

dihydroxyben
zene with 
methanal 

Drying Method 

Supercritical 
CO2 or high-
temperature 
drying from 

organic 
solvent 

Supercritical 
CO2 or high-
temperature 
drying from 

organic 
solvent 

Supercritical 
CO2 

Supercritical CO2 
followed by 
pyrolysis at 

400°C-1050°C 
under inert gas 

Supercritical 
CO2 

Thermal 
Conductivity 
(W/mK) 

0.016-0.03 29 110-20 120-320 0.20-0.1 

Electrical 
Conductivity 
(S/cm) 

10-18 1-25 1-20 1-14.7 10-6 to 10-20 

Acoustic Speed 
(m/s) 

100-800 400-900 400-1000 300-900 300-900 

Young’s Modulus 
(MPa) 

0.05-400 0.55 0.4-200 0.5-500 0.5-500 

Transparency 
Clear to 
foggy 

Clear to foggy opaque Opaque 
Partially 

translucent to 
opaque 

Application 

• Mars Rovers 
Comet dust 
catchers 
Windows 

Electrodes 
fuel cells 

explosives 
dyes 

glazes 

Chemical 
sensors 

Energy Storage 
applications, 
Photovoltaic 

materials  

Supercapacitors 
fuel cells 

desalination 
groups 

 

Precursors 
for CNT 
NASA 

Research 
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Polymer aerogels such as resorcinol-formaldehyde (RF) and melamine-

formaldehyde (MF) [40] aerogels comprise an important class of organic aerogels, 

and they are studied for their potential uses in thermal insulation and as precursors 

of electrically conducting carbon aerogels. 

Silica aerogel exhibits the lowest speed of sound. Silica aerogel also is a 

good thermal and electrical insulator and can be deposited using relatively easier 

and low cost sol-gel deposition techniques. Due to the lowest speed of sound in 

silica aerogel and its ease of microfabrication, this thesis introduces the use of 

silica aerogel to mitigate the propagation of Scholte waves at the fluid-solid 

interface of a CMUT array to minimize acoustic inter-element crosstalk as reviewed 

in Chapter 4. 

5.2 Silica Aerogel 

Figure 5-1 shows the structure of a typical silica aerogel, which is highly 

porous.  

 

Figure 5-1.Structural network of an aerogel. 

The longitudinal acoustic velocity is typically of the order of 100 m/s [31], 

due to which silica aerogels are suitable for applications requiring acoustic 
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attenuation. The acoustic propagation in aerogels depends on the interstitial gas 

nature and pressure [41], the aerogel density, and the texture [42] . The 

propagation of an acoustic wave is attenuated both in amplitude and velocity 

because the wave energy is progressively transferred from the gas to the aerogel 

solid network, over the entire aerogel workpiece thickness [43] [36]. The 

longitudinal sound velocity also follows a scaling behavior with density (Figure 5-2 

(a)) as shown: 

1.3

lc            (5.1) 

where lc  is the longitudinal velocity. These scaling laws can be explained in terms 

of percolation theory [44] or due to fractural network structure [45]. 

 

Figure 5-2. (a) Speed of sound in different density aerogel (b) Attenuation coefficient of the sound 
waves with frequency. 

 The longitudinal wave attenuation coefficient ( l ) and the transverse wave 

attenuation coefficient ( t ) follow frequency law as given in [60] 

1( )l lf f =       (5.2) 
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0.5 0.15

1( )t tf f  =       (5.3) 

where 4

1 1.2 10 / ( )l Np mHz −=   and 0.5

1 0.226 / /t Np m Hz = .The corresponding 

curves for frequency range 2.5 MHz to 10 MHz is as shown in Figure 5-2 (b).  

 

Figure 5-3. (a) Young's Modulus and (b) Poisson's ratio variation with density. 

The compressive strength, tensile strength, and elastic modulus of silica aerogels 

are very low and largely depend on the network connectivity and aerogel density 

[46]. Assuming bulk silica aerogel to be a homogenous material, the mechanical 

properties of silica aerogels can be described by the elastic modulus and the 

Poisson’s ratio. The Young’s modulus and the Poisson’s ratio of these nano-

porous aerogels follow a power law relation [47] with density as shown: 

3.11 0.21E  
    (5.4) 

0.1070.3236v −=     (5.5) 

where E  is the Young’s modulus, v  is the Poisson’s ratio and   is the density. 

Corresponding curves for different densities are shown in Figures 5-3 (a) and (b). 
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Also, the shear and rupture moduli display scaling with density. One of the major 

characteristics of silica aerogels is their very high thermal insulation, typically of 

the order of 0.015W/m K at ambient temperature [39] and pressure. These values 

are relatively lower than the thermal conductivity of air under the similar conditions. 

Thus, silica aerogel is one of the best thermal insulating materials. 

5.2.1 Preparation of Silica Aerogel 

Silica gels are prepared through the sol-gel chemistry, in which 

nanoparticles suspended in a liquid solution (i.e., a sol) are invoked to interconnect 

and form a continuous, porous, nanostructured network of particles across the 

volume of the liquid medium (i.e., a gel). Two gel preparation techniques: silica 

alkoxide gelation and waterglass method are discussed in the following section. 

5.2.1.1 Silica Alkaoxide Gelation with Supercritical Drying 

The most common technique of silica aerogel preparation involves sol preparation 

using silicon alkoxide precursors (usually either tetramethoxysilane or 

tetraethoxysilane) followed by supercritical drying (SCD) to form the aerogel [46]. 

The main sol-gel reactions are as shown in Figure 5-4.  

Although the alkoxide gelation and SCD are the standard methods for 

synthesizing aerogels in industrial settings, the process happens to be very energy 

intensive and expensive for our use. Recent progress has shown ambient pressure 

drying using inorganic sodium silicate precursors (waterglass) could be employed 

to produce low cost silica aerogel with properties very close to those fabricated 
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using traditional processes [39]. However, the resultant product from waterglass 

method may sometimes be less porous and might need additional purification 

steps, it is still very efficient technology for our usage.  

 

Figure 5-4. Sol-gel reactions with silicon alkoxide. 

5.2.1.2 Waterglass Method  

In this method, silica gels are synthesized from an aqueous solution of sodium 

silicate. Sodium silicates are soluble in water, and when dissolved the resulting 

solution is referred to as waterglass. The gelation of the waterglass solution is 

initiated by passing the aqueous solution through a column filled with an ion 

exchange resin where the sodium ions Na+ are replaced by H+ ions forming silicic 

acid H2SiO3 as shown in Figure 5-5 by adding Lewis base (F-) or Bronsted base 

(OH-) [54]. Once silanol groups form, the silicate molecules form siloxane bonds 
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with other silicate molecules and bridge together to form nanoparticles, resulting 

in a sol. 

 

Figure 5-5. Waterglass method of sol preparation using ion-exchange resin. Reprinted with 
permission from [54]. 

5.2.2 Purifying, Aging and Ambient Drying of Silica Gels 

Once a silica gel has been formed, a number of steps involving washing 

and solvent exchange is carried out to exchange the pore fluid from water to 
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alcohol and to diffuse out any impurities. The gel’s structural framework is then 

strengthened during the ageing process. 

It should be noted that conventionally prepared aerogels are hydrophilic in 

nature as they usually contain a lot of unreacted silanol (Si-OH) groups on their 

surface. If they are used directly in the ambient drying process, the capillary forces 

exerted by the environment causes structural collapse of the aerogel (xerogel). 

Thus, the gel must be modified with hydrophobization agents prior to ambient 

pressure drying to make the surface hydrophobic. 

5.2.3 Hydrophobic Silica Aerogel 

The degree of hydrophilicity of the surface can be measured by the contact 

angle that a droplet makes with a surface. Relation between the surface topology 

of hydrophobic and hydrophilic surfaces is illustrated in Figure 5-6. 

 

 

Figure 5-6. Representation of contact angles on hydrophilic and hydrophobic surfaces. 

Surface hydrophobization of silanol groups in the silica gels is done by introducing 

agents such as TMCS (Trimethylchlorosilane) or HMDS (Hexamethyldisilazane)  

[54] to the gel  to react once the impurities such as water and alcohol are 

completely removed by treating them linear hydrocarbon such as heptane or 
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pentane so that they are not used up by undesired side reactions. The process 

reaction is as shown in Figure 5-7.  

Hydrophobic surface is an added advantage as the aerogels will no longer 

be sensitive to moisture content in the environment. The gel can now be dried 

through ambient drying process (25°C to 50°C) 

 

 

 

Figure 5-7. Hydrophobization of surface silanol group in silica gel with trimethylchlorosilane 
(TMCS). Reprinted with permission from [54] . 

5.2.4 Crosslinked Aerogels 

A typical silica aerogel has a very high compression strength. However, the 

force has to be applied softly [39]. With the developments in research, the aerogels 

can now be made strong and flexible while still retaining its hydrophobic properties. 

The gel used for making silica aerogels is soaked in solutions containing di-

isocyanates crosslinking agents. It is then heated so that the di-isocyanates agent 

starts to react and undergo bonding with the silanol group. The gel is then slowly 

evaporatively dry. Because of the polymer linking, the end product is a silica 
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aerogel with increased mechanical strength [39]. It can resist the capillary stress 

caused by evaporating that an ordinary gel would not sustain. An added advantage 

is that it is hydrophobic and does not require supercritical drying. However, there 

is a slight increase in its density. 

 

Figure 5-8. Reaction for amine modified aerogel crosslinking with di-isocyanates [39]. 

5.3 Acoustic Crosstalk Reduction Methodology Using Silica Aerogel 

5.3.1 Design Specifications of Silica Aerogel Thin Film Layer 

Based on the requirement for a hydrophobic silica aerogel with improved 

mechanical strength, silica-x-aerogel is chosen for the target application of CMUT 

crosstalk reduction. The physical properties of the aerogel used in simulations are 

shown in Table 5-2.)  
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Table 5-2. Design Specifications of silica aerogel thin film layer. 

 

 

 

 

 

 

 

 

5.3.2 Static Behavior Analysis 

The displacement versus the DC bias voltage of a CMUT with the 

specifications (as shown in Table 5-3 and 5-4) is plotted in Figure 5-9 with a 2-μm 

thick aerogel coating on the top of the diaphragm metal layer to verify the prediction 

of static operating point. The pull-in voltage of the aerogel coated CMUT was found 

to be 482 V which is equal to the pull-in voltage of the CMUT without the aerogel 

coating as seen in Figure 5-9. This indicates that the aerogel coating is significantly 

less stiff than the diaphragm at DC bias and does not affect the pull-in voltage. 

Parameter Value Value 

Density,    g/cm3 0.4 

Young’s Modulus, E   MPa 50 

Poisson’s ratio, v    0.34 

Speed of sound, c   m/s 300 
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Figure 5-9. The pull-in voltage of the device with aerogel. 

5.3.3 Aerogel Passivation Layer Thickness Determination  

The investigation was initially started with an arbitrary thickness of aerogel 

layer. Once it was found that silica aerogel had the potential to minimize crosstalk 

effects in CMUT arrays, different analyses were carried out to optimize the 

thickness of the aerogel protection layer to provide the sufficient acoustic 

suppression for the target application. 

The aerogel coating thickness as a function of frequency is plotted for sound 

velocity 1500 m/s in water. Figure 5-10 indicates the coating thickness for various  
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Figure 5-10. Coating thickness for various CMUT designs and frequency of interest. 

CMUT designs and frequency of interest. For example, the curve shows a 

1.8 μm coating of aerogel can effectively attenuate the interface wave at frequency 

8 MHz. For the designed CMUT with center frequency 7.5 MHz, calculated aerogel 

thickness is 2.1μm. It can also be inferred from the plot that the lower thicknesses 

of the aerogel layer are necessary at higher frequencies. This frequency 

dependence can be related to attenuation of the Scholte wave. At frequencies 

below 12 MHz, the Scholte wave is nearly non-dispersive and travels without much 

reduction in wave energy. Thus, higher thicknesses (greater than 1 µm) of 

passivation layer are needed at frequencies below 12 MHz. 
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5.3.4 CMUT Arrays without Silica Aerogel Passivation Layer 

In order to study the acoustic crosstalk effects in CMUT arrays, a 1D CMUT 

array consisting of five CMUT elements, each with five cells of sidelength 16 µm 

and thickness 1.3 µm along its width are modeled using FEA.  The modeled array 

element and cells are shown in Figure 5-11.  Due to the presence of symmetry in 

the CMUT array around the transmitter, only half of the array was modeled. A 

coupled acoustic-structure analysis is set up. 

 

Figure 5-11. Simulation model for the CMUT array. 

The physical dimensions and the material properties of the CMUT cell used in the 

FEA are as described in Table 5-3 and Table 5-4. The frequency response of the 

excited CMUT element is plotted in Figure 5-12 and spurious effects are observed 
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at around 7.5 MHz. Further analysis is carried out to calculate the level of crosstalk. 

This is done by exciting the center element in the water domain at a step frequency 

of 1 MHz throughout the -6 dB bandwidth i.e. 4 to 16 MHz. The normalized 

displacement frequency response of the nearest-neighbor and next-nearest 

elements are obtained to determine the relative level of crosstalk signal with 

respect to the excited element. The peak and the average crosstalk levels can be 

calculated through the analysis of the displacement frequency spectra of the 

neighboring inactive elements. 

Table 5-3. Design specifications of the CMUT cell. 

Parameter Unit Value 

Cell sidelength, 2L a=   µm 16 

Diaphragm thickness, md  µm 1.3 

Airgap height, od  nm 650 

Insulating layer thickness, id  nm 100 

Top electrode thickness, t  nm 100 

Contact pad thickness, ct  µm 0.4 

Dielectric post thickness, cL  µm 2 
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Table 5-4. Material properties of the CMUT cell. 

Parameter Unit 
BCB 

(Diaphragm) 

Gold 

(Top 

electrode) 

Silicon 

<100> 

(Substrate) 

Density,    kg/m3 1050 19300 2329 

Young’s modulus, E    GPa 2.9 70 165 

Poisson’s ratio, v    0.34 0.44 0.26 

Residual stress,     MPa 28 106 55 

Relative permittivity,     2.6 6.9 11.8 

 

 

Figure 5-12. Frequency Response of CMUT array element without aerogel coating. 

As seen in Figure 5-13 and Table 5-5, the peak crosstalk level is -17.18 dB across 

the first neighbor. And, the average crosstalk level over the –6 dB bandwidth was 

calculated to be -22.44 dB with a standard deviation of 1.88 dB. The crosstalk level 

across the second neighbor was also calculated for comparison purposes. 
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Figure 5-13. Crosstalk level at the nearest and the next neighbor without aerogel coating. 

The peak crosstalk level was -21.07 dB as shown in Figure 5-13. The average 

crosstalk was calculated to be -27.46 dB. The level of crosstalk decreased linearly 

with the distance from the excited element. The simulated average CMUT element 

crosstalk levels were found to be consistent with the other published CMUT 

crosstalk level results elsewhere [8] which validated the correctness of the 

executed finite element methods. 

Table 5-5. Peak and average crosstalk levels of the designed CMUT array without aerogel 
coating. 

Element number Peak Crosstalk Level 
(dB) 

Average Crosstalk 
Level (dB) 

1st neighbor -17.18 -22.44 

2nd neighbor -21.07 -27.46 

5.3.5 CMUT Arrays with Silica Aerogel Passivation Layer 

A 2 µm thick aerogel layer is deposited on the CMUT array and the 

frequency response of the excited CMUT element was investigated. Although the 

frequency response still shows some crosstalk effects, the crosstalk effects in the 
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frequency region of interest i.e. between 6 to 10 MHz has fairly reduced. The 

corresponding frequency response for the excited element had a center frequency 

of 7.5 MHz with 114% fractional bandwidth as shown in Figure 5-14. The 

normalized displacement as a function of frequency for the nearest and the next 

nearest element are plotted. Compared to the case without the passivation layer, 

it was found that the crosstalk levels with the aerogel coating was slightly reduced. 

The crosstalk level curve for the first neighboring element showed a peak value of 

approximately -22.6 dB (Figure 5-15). The average level over the -6 dB fractional 

bandwidth was -27.4 dB compared to -22.44 dB for CMUT element without aerogel 

passivation layer coating. 

 

Figure 5-14 . Frequency Response of CMUT array element without aerogel coating. 
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Figure 5-15. Crosstalk level at the nearest and the next neighbor with aerogel coating. 

An average crosstalk level reduction of approximately 5 dB was achieved using 

the developed technique. Across the next nearest neighbor, the peak crosstalk 

level was -28.6 dB as shown in Figure 5-15 and Table 5-6. The average crosstalk 

was calculated to be -33.8 dB which was 6.34 dB lower than that without the 

aerogel layer.  

Table 5-6. Peak and average crosstalk levels of the designed CMUT array with aerogel coating. 

Element number Peak Crosstalk Level 
(dB) 

Average Crosstalk 
Level (dB) 

1st neighbor -22.6 -27.4 

2nd neighbor -28.6 -33.8 

 

Thus, a reduction of about 5 dB in the average crosstalk level across the nearest 

neighboring element is observed with the addition of 2 µm silica aerogel coating 

for a 7.5 MHz CMUT array. 
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5.4 Discussions 

Crosslinked silica-x-aerogels exhibit good thermal, electrical insulating 

properties, have the lowest sound speeds and preserve the static and the dynamic 

behavior of the CMUT that make them ideal passivation materials for CMUT 

arrays.  

A FEM was developed to study the behavior of silica-aerogel protected 

CMUTs. The model was able to accurately simulate the correct static and dynamic 

responses of the CMUT element which validated the developed FEA. The acoustic 

crosstalk behavior between the CMUT elements was simulated and it was 

demonstrated that the aerogel passivation layer was able to effectively suppress 

the acoustic crosstalk level by at least 5 dB or more in comparison to CMUTs 

without the aerogel coating. 

It was further seen that that the protective aerogel layer could be employed 

as crosstalk suppressants at other frequencies as well. Three CMUT array designs 

with center frequencies 3 MHz, 5 MHz and 30 MHz respectively were designed 

and the thickness of the coating was chosen based on Figure 5-10. Average 

crosstalk level reductions of approximately 4 dB to 5 dB were observed in each of 

the cases confirming the effectiveness of the aerogel layer at most frequencies. 

Table 5-7 presents a comparison of the crosstalk levels of the proposed CMUT 

array with the experimental results of a comparable CMUT array with PDMS 

coating, reported in [8]. 
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Table 5-7. Validation of the design effectiveness. 

Parameter Presented design Bayram et al. [8] 

Type 
Conventional 

CMUT 
(simulated) 

CMUT with 
aerogel 

passivation 
layer 

(simulated) 

Conventional 
CMUT 

(experimental) 

CMUT with 
PDMS 

passivation 
layer 

(experimental) 

Diaphragm 
material 

BCB BCB Silicon Nitride Silicon Nitride 

Center 
frequency 

(MHz) 
7.5 7.5 5.8 5.8 

Pitch (µm) 200 200 250 250 

Number of 
elements 

64 64 64 64 

-6 dB 
Fractional 
bandwidth 

133 114 130 100 

Peak 
crosstalk 
level (dB) 

-17.18 -22.6 -17 -17 

Average 
crosstalk 
level (dB) 

-22.44 -27.4 -23.2 -23.3 

 

The comparison establishes that the presented design with the aerogel passivation 

layer is capable of providing approximately 5 dB reduction in the average crosstalk 

level in comparison with the 5 µm PDMS layer coating which showed no significant 

improvement.  

Further, the average crosstalk levels of the designed CMUT array is 

compared with the crosstalk levels for the piezoelectric transducers [48][49][50]. 

For piezoelectrical transducers with center frequencies between 1 MHz to 10 MHz,  
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Table 5-8. Comparison of crosstalk levels between piezoelectric transducers and the designed 
CMUT. 

the average crosstalk level over the −6 dB array bandwidth is about −30 dB across 

the nearest element [48] and −38 dB across the next-nearest element [48]. 

Although the crosstalk levels of the designed CMUT array is still higher than that 

of the piezoelectric transducer, the developed technique with aerogel passivation 

layer shows considerable reduction and can be regarded as a technique that holds 

potential for the minimization of mutual acoustic crosstalk in CMUT arrays. 

  

Element No. 

 

Average Crosstalk Level 

 (dB) 

Transducer Type 

Designed CMUT 

without aerogel 

(7.5 MHz) 

Designed CMUT 

with aerogel 

(7.5 MHz) 

PZT 

(1-10 MHz) 

[47] 

1st neighbor -22.44 -27.4 -30 

2nd neighbor -27.46 -33.8 -38  
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CHAPTER 6  

FABRICATION OF THE PROPOSED CMUT ARRAY 

This chapter presents the process flow sequence to fabricate the proposed 

CMUT array with top thin film lossy aerogel passivation layer. The details of each 

fabrication step are provided with operating conditions, materials used, process 

type and a conceptual cross-sectional view. Initial fabrication techniques involving 

the development of the BCB diaphragms have been used previously in our lab and 

detailed description of the process steps can be found in [17]. 

6.1 Fabrication Steps 

STEP 1: Wafer Cleaning and Oxide Layer Deposition  

A 500 µm thick <100> oriented silicon wafer (Wafer A) is selected as the 

substrate and is cleaned using standard RCA cleaning processes. Then,1 µm thick 

oxide passivation layer is grown on the wafer using thermal oxidation process as 

shown in Fig. 6.1. 

 

Figure 6-1. Thermal oxide passivation on wafer A. 

STEP 2: Deposition of Top Metal Electrode  

The second step includes deposition of the Gold layer, which forms the top 

electrode of the CMUT array, as shown in Figure 6.2. Since, gold doesn’t adhere 



 

77 
 

well to oxide, a 30nm layer of titanium is deposited as a promoter. Following this 

step, a 200 nm thick Au layer is evaporated on the top of the titanium layer using 

electron beam evaporation process. 

 

 

Figure 6-2. Top metal electrode deposition. 

STEP 3: Formation of BCB Membrane 

Plasma cleaning is done on the wafer using highly reactive oxygen radicals to 

remove any organic contaminants and it is then vacuum baked at 150°C. A BCB 

adhesion promoter AP3000 [51] is then spin coated on top of the gold layer and 

the wafer is soft baked at 170°C for 2 minutes. This is followed by spin coating of 

1.3 µm thick BCB (Cyclotene 3022-35) at a spin speed of 2300 rpm for 45 seconds 

and spread speed of 500 rpm for 5 seconds and partially curing of the BCB layer 

to achieve required stability [51]. 

 

 

Figure 6-3. BCB layer deposition for CMUT membrane.  

 

 



 

78 
 

STEP 4: Deposition of BCB as an insulation layer and dielectric post 

Another <100> oriented n-doped low resistivity silicon wafer (Wafer B) is RCA 

cleaned and a 1 µm thick oxide passivation layer is deposited on the wafer using 

thermal oxidation process. An 800 nm thick layer of BCB is then spin deposited 

and partially cured using techniques presented in step 3. The BCB layer is carefully 

RIE etched using a Bosch process for 4 minutes using 22.5 sccm of CF4, 90 sccm 

of O2 at 200 W RF power and 50 mTorr chamber pressure to form 650 nm CMUT 

cavities and the residual BCB thickness serves as an insulation layer. (Fig.6.4) 

 

Figure 6-4. RIE etch of BCB layer to form CMUT air cavities. 

 

STEP 5: Adhesive Bonding of Wafer A and Wafer B 

Both wafers A and B are spin rinsed in di-ionized water and dried. Wafer A 

is then flipped and bonded with wafer B in vacuum (~10mTorr) using a thermal and 

pressure cycling processes. During bonding, the temperature is gradually 

increased to 150°C and the maximum bonding pressure is brought to 850 psi over 

a span of thirty minutes [17]. The wafers are then cured at 230°C for an hour. 
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Figure 6-5. Adhesive wafer bonding of wafer A and wafer B. 

STEP 6: Wet Etching of Silicon Layer 

After bonding, the top silicon wafer in the stack is dissolved using a 25% hot 

KOH wet etch recipe at 100°C. The etching process is halted when it reaches the 

oxide layer and is cooled and cleaned. The oxide layer acts as a capping layer for 

aerogel layer deposition.  

 

Figure 6-6. Dissolution of top wafer A. 

 
The substrate is treated prior to thin film deposition. The CMUT sample is oxidized 

by UV Ozonation for 10 minutes, treated in 2 vol % cleaning solution for 30 

minutes, rinsed with de-ionized (DI) water, blown dry with air, and treated again 

with UV Ozonation for 8 minutes. The UV-ozone-cleaning procedure is a highly 
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effective method to remove a variety of contaminants from surfaces. It is a simple-

to use dry process which is inexpensive to set up and operate [33].  

STEP 7: Silica Aerogel Sol Preparation 

The silica sols are prepared from a sodium silicate (water glass) solution. 

Sodium silicate is mixed with distilled water in right proportions based on the 

porosity and pH requirements for the derived sol (For example, to prepare a sol of 

pH 2.4 with silica content 5.4 weight percent, 144ml of sodium silicate is mixed 

with 525ml of Di-ionized water in [52] ). The diluted solution of sodium silicate is 

then passed through a column filled with an ion exchange resin (Amberlite). During 

this process, the trapping of Na+ occurs along with simultaneous release of H+ 

ions (ion exchange) by passing through an insoluble polymer matrix and silicic acid 

solution is formed [52]. A base catalyst (NH4OH) can be added to create silica sols 

with higher pH values of 3.5 or 4.0 and initiate gelation. And, the mixture then 

begins to partially neutralize and condenses to form a sol. 

 

Figure 6-7. Formation of hydrogel [54].  

 

 

 



 

81 
 

STEP 8: Aging, Solvent Exchange and Surface Modification of the Gel 

The formed hydrogel is aged at 50°C for 48 hours, followed by pore fluid-

exchange of 100% ethanol, ethanol/hexane (3:1 v/v), ethanol/hexane (1:1 v/v), 

ethanol/hexane (1:3 v/v), and 100% hexane, respectively. These gels are then 

surface modified with APTES (aminopropyltriethoxysilane) (~25% v/v ) in hexane 

at 60°C for 12 hours [53]. Surface functionalization of the alcogels facilitates 

ambient pressure drying process by reducing the capillary tension through the 

chemical modification of the hydrophilic gel surface [33]. It improves the 

mechanical strength of the aerogel and makes its surface, hydrophobic. 

 

Figure 6-8. illustration of synthesis processes for silica aerogel production. Adapted with 
permission from [54]. 

 
STEP 9: Deposition of Top Thin Film Aerogel Layer  

The aerogel is sonicated with ultrasound for about an hour until it becomes 

resoluble. An indirect synthesis methodology is employed where the aerogels are 

initially prepared indirectly prior to thin film deposition and during the time of sol-

gel deposition, the functionalized gels are partially re-liquified using sonification by 

ultrasound and then spin coated onto wafers [33]. This type of indirect synthesis 

reduces solvent waste than the direct synthesis of films on the sample [33]. 
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Additionally, it prevents the CMUT sample from unnecessary exposure. Since the 

aerogel have been subject to solvent exchange and surface modification 

processes, the drying process becomes revertible allowing the porosity of the film 

to expand, or spring back to its wet size.  

Once the surface modified gels are re-liquified using ultrasound, they are 

then spin-coated onto oxide layer of the CMUT wafer at a speed of 2000 rpm for 

15 seconds. The coated films are then ambient pressure dried in hexane at room 

temperature for 12 hours.  

 

Figure 6-9.Thin film silica aerogel deposition. 

 

STEP 10: Deposition of Gold Contact Pads 

This step involves patterning the aerogel layer and then selectively etching 

of aerogel and oxide layer to expose the gold contact pad region using lift-off 

process. The lift off process begins with soft baking at 150°C, followed by spin 

coating of 3 µm of lift off resist LOR 30B. The photoresist AZ 9260 is then spin 

coated with spread speed of 500 rpm for 5 minutes and spin speed 3000 rpm for 

45 minutes [51] and baking at 110°C for 3 minutes. The sample is then exposed 

to UV light at an exposure dose of 1100mJ/cm2 [17]. The 2.1 µm thick aerogel 
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layer and oxide layer are carefully etched using plasma etching for 2 minutes. A 

10 nm titanium is evaporated for better adhesion, followed by 500 nm of gold using 

electron-beam evaporation. AZ-400K developer is used to complete the lift off 

process. Any trapped photoresist in the nanopores of the aerogel thin films during 

photoresist coating is removed through O2 Plasma cleaning.  

 

Figure 6-10. Deposition of gold contact pads. 

Thus, a hydrophobic thin film silica aerogel with improved strength can be 

fabricated on BCB based CMUT diaphragms using these cost-efficient waterglass 

sol-gel and ambient pressure drying processes. Solvent to solute ratios determine 

the aerogel’s porosity and the reaction time and acid–base catalysts largely impact 

to the pore size. This simple yet effective modification to the CMUT design, makes 

aerogels suitable as top passivation layers for CMUTs with reduced mutual 

crosstalk.  
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CHAPTER 7  

 CONCLUSIONS 

7.1 Conclusions 

In this research work, a novel technique involving Di-isocyanate enhanced 

crosslinked silica aerogel as passivation layer on the CMUT top surface for 

crosstalk reduction due to Scholte waves is adopted. 3D finite element analysis 

carried out using COMSOL Multiphysics showed that the developed technique can 

reduce the crosstalk by at least 5 dB more at the nearest neighbor as compared 

to other techniques published elsewhere [8]. An added advantage of the developed 

technique is that the level of Scholte wave attenuation can be controlled by altering 

the porosity of the aerogel layer. 

 Investigations were carried out on several CMUT test geometries to identify 

the causes of crosstalk before the optimization process. The crosstalk due to 

Scholte waves is identified as the major issue which affects the frequency 

response of the CMUT leading to inaccuracies during image reconstruction. The 

magnitude of crosstalk in the frequency response is found to dependent on the 

intensity of Scholte waves at any particular cell diaphragm, which is influenced by 

diaphragm sidelength, fill factor, the fluid coupling medium and the number of cells 

in the CMUT element.  

A fabrication process involving typical MEMS sol-gel is proposed for the 

aerogel passivation layer deposition. The waterglass method involving aqueous 

solution of sodium silicate in ion-exchange resin is used for the sol preparation. 
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During the ageing and the purifying process of the aerogel, its surface is modified 

by crosslinking with Di-isocyanate agent to make it hydrophobic and improve its 

mechanical strength. The hydrophobic silica aerogel is insensitive to moisture 

content in the atmosphere and can resist the capillary forces exerted by the 

environment. As a result, ambient drying techniques can be employed to fabricate 

the aerogel instead of super-critical drying processes. This accounts for a relatively 

easy and cost-effective method of aerogel passivation layer deposition, which does 

not interfere with the conventional CMUT’s fabrication process flow. 

The developed technique involving crosslinked silica aerogel shows 

promise of mitigating acoustic crosstalk in CMUT array elements due to Scholte 

waves. This technique will serve to be beneficial in improving the signal to noise 

ratio and the imaging quality of the CMUT array and will aid the potential 

deployment of CMUT for NDE application. 

7.2 Future Directions 

The developed technique is validated using analytical model designed in 

MATLAB and through comparison with the experimental results of comparable 

CMUT arrays published elsewhere [8]. Fabrication and experimental 

characterization of the CMUT array with crosslinked silica aerogel passivation 

layer is in progress and will further add value to the proposed technique. 

Improvements can be made to pursue further understanding of the crosstalk 

patterns for optimization by investigating the effect of residual stress of the 

diaphragm material and the dielectric spacers on the CMUT’s frequency response. 
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Additionally, a design strategy based on the removal of a few center membranes, 

followed by average and interpolation to compensate for any loss of acoustic 

output can also be explored as a possible technique to mitigate the distortions in 

the frequency response of a CMUT element in an array and minimize the crosstalk 

effects further. 

This research work is focused towards reduction of acoustic crosstalk 

effects due to Scholte waves at the fluid-CMUT interface. Investigation is also 

necessary to explore techniques to reduce the acoustic crosstalk effects in the 

CMUT array due to propagation and mode conversion of the Lamb waves in the 

thin silicon substrate and the crosstalk effects due to capacitive coupling between 

the individual CMUT array elements.  

Acoustic lens formed on the CMUT to mechanically focus ultrasound is 

usually made of silicone rubber for acoustic impedance matching and 

encapsulation. It is interesting to investigate the possible use of flexible and 

mechanically strong silica aerogels in place silicone rubber in the ultrasound probe 

as lenses for beam focusing in air coupled CMUT lens. The aerogel materials hold 

promises of improving the CMUT’s overall performance and future research work 

focused in this direction is needed to fully exploit their capabilities. 
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