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Sulfate Reduction in Sediments 
Produces High Levels of 
Chromophoric Dissolved Organic 
Matter
Jenna L. Luek1, Kaitlyn E. Thompson1,2, Randolph K. Larsen   2, Andrew Heyes1 &  
Michael Gonsior   1

Sulfate reduction plays an important role in altering dissolved organic matter (DOM) in estuarine and 
coastal sediments, although its role in the production of optically active chromophoric DOM (CDOM) 
and a subset of fluorescent DOM (FDOM) has not been previously investigated in detail. Freshwater 
sediment slurries were incubated anaerobically with added sulfate and acetate to promote sulfate-
reducing bacteria. Ultraviolet visible (UV-Vis) absorbance and 3-dimensional excitation emission matrix 
(EEM) fluorescence spectra were measured over a five weeks anaerobic dark incubation period. Parallel 
Factor Analysis (PARAFAC) of FDOM determined components that increased significantly during dark 
and anaerobic incubation matching three components previously considered of terrestrially-derived 
or humic-like origin published in the OpenFluor database. The observed FDOM increase was strongly 
correlated (R2 = 0.96) with the reduction of sulfate. These results show a direct experimental link 
between sulfate reduction and FDOM production, which impacts our understanding of coastal FDOM 
sources and early sediment diagenesis. As 3D fluorescence techniques are commonly applied to diverse 
systems, these results provide increasing support that FDOM can have many diverse sources not 
consistently captured by common classifications such as “humic-like” fluorescence.

Aquatic sediments process and store large quantities of organic matter with preservation determined by the bal-
ance of loss and accumulation rates1, 2. DOM is extremely complex and individual molecules are degraded at 
highly variable rates3–5. Degradation of DOM in terrestrial and marine ecosystems can be described along a con-
tinuum where simple molecules such as acetate, carbohydrates and proteins are preferentially utilized followed 
by other more stable molecules such as lignin and melanoidins, while some DOM remains recalcitrant3, 6. DOM 
in aquatic sediments has a wide range of reactivities and may be modified both biotically and abiotically, result-
ing in up to 99.5% remineralization2, 6–9. DOM that is not subjected to fast degradation or remineralization may 
be flocculated, preserved and buried as sedimentation continues2, 3, 10. Anoxia, physical protection, and specific 
chemical reactions such as condensation and aggregation play key roles in organic matter burial efficiency in 
coastal sediments1.

Sediment and porewater DOM can be utilized by terminal respiratory processes such as iron and manganese 
reduction, sulfur reduction, or methanogenesis under anaerobic conditions11, 12. Organic carbon mineralization 
in anaerobic sediments by dissimilatory sulfate reducing bacteria (SRB) is thought to be the main terminal res-
piratory process in continental margin sediments13, and the rate of sulfate reduction depends on temperature and 
the quality and quantity of labile DOM5. SRB have the ability to reduce dissolved sulfate into inorganic sulfur spe-
cies such as hydrogen sulfide and polysulfides and utilize labile DOM in pore waters14. Because of the dependence 
of SRB on the supply of sulfate, bioavailable carbon, and nutrients, the incorporation of sulfur in organic matter 
is linked to processes in near surface sediments with high rates of bacterial sulfur reduction and the concomitant 
formation of iron sulfides15–17. However, SRBs are also in competition with other microbes for energy resources, 
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such as with methanogens, and often co-exist in the environment. As such, sulfate availability often controls the 
transition from sulfate reduction to fermentation in anoxic estuarine sediments18.

Fluorescent dissolved organic matter (FDOM), the component of DOM that can absorb and fluoresce, has been 
shown to increase with depth in sediment pore waters19, 20. Excitation-emission matrix (EEM) fluorescence paired 
with parallel factor analysis (PARAFAC) provides a powerful tool used to quantitatively describe FDOM21, 22.  
Despite the extremely high diversity of organic compounds found in the environment, a handful of dominant 
fluorescence regions are consistently observed in EEM-PARAFAC components in both natural and engineered 
aquatic environments23, 24. The fluorescence peak frequently described as “humic-like” fluorescence is rel-
atively stable in the environment24, 25, but may be photolabile over longer time periods26, 27. Additionally, this 
“humic-like” fluorescence shows different biolability after photodegradation28. Humic substances are thought to 
be preferentially preserved in anoxic sediments, as are sulfur containing humic substances that show humic-like 
fluorescence9, 16, 19, 20.

Field studies and incubation experiments with open ocean waters have indicated a link between increasing 
microbial metabolism and increasing FDOM, such as in water column oxygen minimum zones29–32. The addition 
of labile carbon (e.g., glucose, acetate) can alter the FDOM increase during incubations30, 32, and may indicate that 
microbial metabolism of less-labile carbon sources results in high levels of “humic-like” fluorescence32, 33. Variable 
FDOM changes have been observed in laboratory studies investigating FDOM during the growth and/or decay 
of specific phytoplankton28, 34–36 and seagrasses37, 38. In coastal ocean sediments, a negative correlation between 
FDOM intensity and sulfate concentrations has also been observed39, 40.

In this study, we investigated the production pathways of FDOM utilizing labile acetate and hypothesized 
an increase in FDOM through optimal growth conditions for sulfate-reducing bacteria in coastal sediments. 
Using PARAFAC modeling of EEM fluorescence, we evaluated the production of FDOM directly related to 
sulfate-reducing bacteria and fermenting bacteria in anaerobic sediment pore waters.

Results
Sulfate Depletion.  Dissolved organic carbon (DOC) and sulfate decreased over the five-week incubation for 
all treatments (Fig. 1, Supplementary Figs S2, S3). In the control containing no additional sulfate or acetate, a 78% 
reduction in DOC was observed over five weeks. DOC removal was likely due to the anaerobic remineralization 
of labile carbon present in the sediment porewaters, although it cannot be ruled out that some may have been 
removed from the dissolved phase by sorption to particles. Variability in initial DOC and sulfate concentrations 

Figure 1.  Changes in sulfate (a) and DOC (b) concentrations relative to initial concentration over a 5 week 
dark and anaerobic incubation period. Initial sulfate concentrations were equivalent to salinity* 0–15 and DOC 
concentrations are a combination of background DOC and acetate added in stoichiometric proportions to 
sulfate. Error bars represent standard error.
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indicated that samples collected on Day 0 were not well mixed prior to the first sampling. The rate of sulfate 
depletion was the highest within the first week, and was completely removed in one week in the sulfate equivalent 
salinity of 0.5 and 1 treatments. At salinity* 5, 10, and 15 treatment levels, the rates of depletion were indicative 
of an active growing SRB community, although cells were not counted. A clear first order decay rate was observed 
for the removal of sulfate in the salinity* 10 and 15 treatments (k = 0.0624 d−1, k = 0.0535 d−1); similar decay rates 
were calculated for DOC for these two treatments (k = 0.0579 d−1, k = 0.0544 d−1). In repeated experiments with 
added Suwannee River Natural Organic Matter (SRNOM) IHSS standard and iron addition, DOC removal rates 
remained consistent (Supplementary Table S2). Sulfate removal rates were the same when SRNOM was added, 
but increased when iron was added (k = 0.1277 d−1, k = 0.0895 d−1 at the salinity* 10 and 15 treatments, respec-
tively). Dissolved sulfide measured during SRNOM and SRNOM/iron addition experiments revealed sulfide was 
present at low levels. Sulfide concentrations were near the detection limit (0.3 μM HS−) with the highest sulfide 
concentrations measured on day 21 (3.7 μM). This confirms that sulfate was indeed being reduced to sulfide, 
however the produced sulfide was likely rapidly lost to inorganic precipitates (e.g., FeS), evasion and possibly 
conversion to organic sulfur species15, 16.

Increase in fluorescence.  A clear increase in CDOM was observed over the duration of the experiment, 
with darker coloration in the higher sulfate treatments. Initial fluorescence was low and the four-component 
EEM-PARAFAC model (Fig. 2) revealed increases in three of the four components (Fmax1, Fmax2, Fmax3) 
in the salinity* 5, 10, and 15 treatments. No change in component 4 (Fmax4) was observed over time. The low 
salinity* treatments (0.5, 1) had no clear increase in fluorescence, similar to the no sulfate added control. The 
largest increases were observed in Fmax1 and Fmax2, where the initial fluorescence increased as much as five fold 
over the initial fluorescence in the 15 ppt treatment. UV-Vis absorbance increased over the incubation, and the 
absorbance at 254 nm was linearly related to Fmax1, Fmax2, and Fmax3. The relationship between fluorescence 
and absorbance indicated that the CDOM material produced contained humic-like fluorophores.

The addition of SRNOM resulted in an increase in initial fluorescence for components Fmax1, Fmax2, and 
Fmax3, but then closely traced the original experimental results for the duration of the experiment. Interestingly, 
a clear increase in fluorescence was not seen on day 1 when iron was also added. Dissolved iron may have resulted 
in a quenching of fluorescence41. Fmax4 had consistently low intensities but varied across experiments, with the 
highest fluorescence observed when iron and SRNOM were added and second highest when only SRNOM was 
added.

Components Fmax1, Fmax2, and Fmax3 are among the most frequently identified fluorescence patterns 
observed in natural water samples24; Fmax2 and Fmax3 are generally considered more stable than Fmax1, 
although all are traditionally considered “humic-like” fluorescence24. Fmax4 is characteristic of a “protein-like” 
fluorescent peak, often associated with the two fluorescent amino acids tyrosine and tryptophan in porewater 
samples23 and heterotrophic bacteria42, although other sources for this fluorescence signal cannot be ruled out. 

Figure 2.  EEM-PARAFAC statistical components Fmax1–4 of fluorescence observed in all samples.
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The PARAFAC model was compared to published PARAFAC models from the database OpenFluor43 and a large 
number of models from aquatic systems matched individual components within the minimum similarity score of 
0.95 (Fmax1-25, Fmax2- 17, Fmax3- 2, and Fmax4- 9 models) (Supplementary Figs S4, S5). An analysis of Arctic 
river FDOM44 matched all four components, and their components matching Fmax1, Fmax2, and Fmax3 were 
correlated with lignin phenol content and mosses and peat44. Although the fluorescence components described 
in our PARAFAC model are ubiquitous in DOM, they have never been associated specifically with SRB processes 
and SRB metabolites in sediment porewaters prior to this research.

Discussion
A strong correlation was observed between sulfate depletion and EEM-PARAFAC components (Fig. 3, 
Supplementary Figs S6, S7). Two prior studies have shown observational evidence relating an increase in flu-
orescence to decreasing sulfate concentrations at depth in coastal ocean sediments39, 40. The source of FDOM 
formed during sulfate reduction may be related to a number of different reactions: 1) the conversion of particu-
late organic matter (POM) to DOM1, 7, 45 2) formation of thiophenes under reducing conditions46, 47 3) direct or 
secondary metabolite release from the SRB community 4) a microbial degradation product directly linked to SRB 
source material. A prior study identifying “humic-like” FDOM production using only a glucose carbon source 
in artificial seawater and a microbial inoculate support this assertion that FDOM production may be associated 
with compounds released from the microbial community30. A possible metabolite arising from the degradation 
of porphyrins such as siroheme, which is a highly carboxylated, water-soluble tetrapyrrole and intense chromo-
phore48 might explain the observed fluorescence, but siroheme would need to be severely degraded to be able 
to show absorbance and fluorescence in the “humic-like” range. The result for such a degradation would likely 
yield pyrrolic acid-type compounds that potentially would show the observed humic-like signals (Fmax1–3). The 
pyrrolic sub-structure may be able to produce fluorescence with a large Stokes shift, similar to that of polyphenols 
in “humic-like” FDOM. Prior work has also suggested that the degradation of amino-acid fluorophores may also 
lead to the production of “humic-like” fluorescence49.

Under anaerobic conditions, a number of other terminal electron acceptors play a role in the reworking 
of DOM. To test if these non-sulfate pathways resulted in the production of FDOM, two controls were tested. 
Controls containing no sulfate or acetate did not result in an increase in fluorescence as discussed previously 
(Fig. 3). Fermentation was compared to SRB-related degradation by adding only labile carbon as acetate, and 
did result in the production of FDOM. However, FDOM was produced to a much lesser degree than the sulfate 
treatment containing the same quantity of acetate (Fig. 4), although DOC was removed at a faster rate during the 
fermentation experiment (k = 0.084 d−1 [fermentation] vs k = 0.057 d−1 [sulfate]). FDOM production during 
fermentation occurred in the same four dominant regions characterized by the PARAFAC model (Supplementary 
Fig. S8), but had a different overall absorbance spectra (Supplementary Fig. S9). Fermentation by Saccharomyces 
cerevisiae has been shown to produce FDOM that closely resembled the spectra of tryptophan, nicotinamide ade-
nine dinucleotide (NADH), and riboflavin50. The Fmax3 fluorescent component closely resembled the fluorescent 
peak of S. cerevisiae component presumed to be related to NADH by the authors50. Although fermentation may 
play a role in FDOM production, SRB activity was much more strongly correlated with FDOM.

This study provides direct experimental evidence of the production of optically active FDOM material during 
sulfate reduction and fermentation. Prior field studies have identified an inverse correlation between sulfate con-
centrations and FDOM intensity39, 40. In this study, we simulated the movement of freshwater sediment organic 
matter through estuarine sediments by altering sulfate availability under anaerobic conditions. Samples were 
allowed 1–2 weeks to oxygenate following the anaerobic experiment, and fluorescence decreased across all exper-
iments and treatments. However, final fluorescence remained elevated up to five-fold above initial conditions 
in the Fmax1 component. These results indicate that when anoxic sediments get resuspended or oxygenated 

Figure 3.  Sulfate depletion versus the intensity of individual PARAFAC components (Fmax1, Fmax2, Fmax3, 
Fmax4) in quinine sulfate equivalents (QSU) within each sample. A linear regression for each component 
is shown, error bars represent standard error of the mean. Standard error of slope: C1: 0.023 ± 0.001, C2: 
0.0083 ± 0.00034, C3: 0.004 ± 0.00023, C4: 0.0013 ± 0.0001.

http://S4
http://S5
http://S6
http://S7
http://S8
http://S9


www.nature.com/scientificreports/

5Scientific REPOrTS | 7: 8829  | DOI:10.1038/s41598-017-09223-z

from overlying waters, a portion of the newly created FDOM is also likely to be relatively stable under these new 
conditions.

FDOM distributions have played a key role in advancing our understanding of biogeochemical processing of 
organic matter in aquatic systems51–53. This study indicates that sulfate reduction plays a clear role in the forma-
tion of “humic-like”23 fluorescence although these compounds are not known to be of humic origin. It is becom-
ing increasingly apparent that the spectral regions originally designated as “humic-like” likely have non-humic 
sources29, 54. Indeed, coastal phytoplankton have also recently been described as potential sources of the FDOM 
signature previously described as “humic-like” and terrestrially derived28, 34–36, as have bacterial degradation of 
simple carbon sources30, fermenting bacteria50, and simple cellular compounds including NADH50. The results 
of this study warrant further research into the role sulfate reducing bacteria play in the production of FDOM, 
including varying carbon sources30, 32, identifying fluorescent microbial products and metabolites, and investigat-
ing this relationship in natural systems39, 40.

Methods
Experimental Design.  Anaerobic sediment slurries were used to investigate the relationship between sul-
fate addition and FDOM production under anaerobic conditions in sediment pore waters. Freshwater sediments 
were collected upstream of the Conowingo Dam on the Susquehanna River and mixed with varying concentra-
tions of sulfate and acetate to provide optimal conditions for SRB growth. The experiment was carried out under 
anaerobic conditions using a Coy® Glove Bag, and experimental vials were sampled following the addition of 
amendments (day 1) and on days 7, 21, and 35. This experiment was repeated using 1) a standard natural organic 
material (Suwannee River Natural Organic Matter-SRNOM, IHSS standard) amendment and 2) SRNOM and 
iron (III) oxide amendments (Supplementary Table S1).

All samples were transferred and incubated in clean 250 mL Schott glass bottles (baked 500 °C 5 h) and kept 
at 20 °C in the dark. Each sample contained a slurry of 150 g freshwater anaerobic Susquehanna River sediment 
and 200 mL of degassed Milli-Q water. Milli-Q water was degassed by boiling, purging with nitrogen gas for 1 hr 
prior, and cooling, then combined with sediment samples and rested for one week under anaerobic conditions 
prior to adding amendments.

Sediment slurries were amended with sodium sulfate in six triplicate vials corresponding to a sulfate salin-
ity equivalence gradient of 0, 0.5, 1, 5, 10 and 15 ppt (77 μM, 155 μM, 786 μM, 1.58 mM, and 2.37 mM), herein 
referred to simply as salinity*. Sodium acetate was added in stoichiometric proportions (1.7:1 sodium sulfate 

Figure 4.  Increase in fluorescence over a 5 week dark and anaerobic incubation of freshwater sediments with 
sulfate/acetate treatment (a) and acetate only treatment (fermentation) (b).
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to sodium acetate) to promote sulfate reduction under anaerobic conditions. Sediment slurries containing high 
acetate (194 mg) and no sulfate were mixed to investigate the role of fermentation alone on FDOM production.

On days 1, 7, 21, and 35, 20 mL water samples were vacuum filtered through 0.7 μm GF/F filters. Following 
the 5-week anaerobic incubation, sediment slurries were exposed to ambient oxic conditions for an additional 
1 or 2 weeks and subsequently sampled in the same manner. Filtered samples were analyzed for sulfate, sulfide, 
DOC, absorbance and EEM fluorescence. Sulfide analyses were run within 24 hours of collection, absorbance 
and fluorescence samples were run within 5 days. Sulfate samples were immediately acidified to a pH of 2 with 
hydrochloric acid. DOC and acidified sulfate samples were stored in amber glass vials and stored at −18 °C until 
analysis was performed.

Analytical Approaches.  Sulfide concentrations were measured with a sulfide and reference electrode 
described previously55. A sulfide anti-oxidant buffer (SAOB) containing sodium hydroxide, sodium EDTA, and 
ascorbic acid in deoxygenated water and was added to each samples in a volumetric ratio of 1:1 prior to analysis. 
Sulfate analysis was performed on thawed, diluted (1:10) using a Dionex Ion Chromatograph56. Thawed samples 
were analyzed for dissolved organic carbon (DOC) as non-purgeable organic carbon with an automatic total 
organic carbon analyzer (Shimadzu TOC-V) by oxidation at 680 °C with a platinum catalyst column. Samples 
were internally acidified with HCl to pH 2, sparged for 2.5 min to remove inorganic carbon, and quantified using 
potassium hydrogen phthalate standards.

UV-Vis absorbance and EEM fluorescence measurements were obtained using a temperature-controlled Jobin 
Yvon Horiba Aqualog fluorescence spectrometer. Inner filter correction was then carried out using the simulta-
neously measured UV-Vis absorbance and the algorithm available within the Horiba Aqualog software. Samples 
were diluted with Milli-Q water (volumetric ratio 1:5) to not exceed 0.4 raw absorbance at 300 nm and to be 
able to perform adequate inner filtering correction. The fixed emission was recorded using the Aqualog CCD 
detector over the range from 200–600 nm at excitation wavelengths ranging from 230–600 nm at 3 nm intervals. 
Fluorescent intensities were Rayleigh scatter corrected and normalized to a STARNA quinine sulfate fluorescence 
standard of 1 ppm concentration. Statistical PARAFAC analysis22, 57 was applied to the EEM dataset by using the 
drEEM toolbox, developed in Matlab and utilizing the N-way toolbox21. A 4-component model was most suitable 
to explain the fluorescence data, split-half validation was performed and the 4-component model was validated 
(Supplementary Fig. S1).

The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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