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ABSTRACT

Finding a group of experts is a natural way to perform a collection of tasks that need a

set of diversified skills. This can be done by assigning skills to different experts with

complementary expertise. This allows organizations and big institutes to efficiently hire a

group of experts with different skill sets to deliver a series of required tasks to finish a set

of projects. We are given a collection of projects, in which each of them needs a set of

required skills. Performing each project brings a profit to the organization. We are also

given a set of experts, each of them is equipped with a set of skills. To hire an expert,

the organization should provide her with monetary cost (i.e., salary). Furthermore, we are

given a certain amount of budget to hire experts. The goal is to hire a group of experts

within the given budget to perform a subset of projects that maximize the total profit. This

problem is called Cluster Hire and was introduced recently. We extend this problem by

making the realistic assumption that there exists an underlying network among experts.

This network is built based on past collaboration among experts. If two experts have past

collaboration, they form a more collaborative and efficient team in the future. In addition

to maximizing the total profit, we are also interested to find the most collaborative group

of experts by minimizing the communication cost between them. We propose two greedy

algorithms with different strategies to solve this problem. Extensive experiments on a real

dataset show our proposed algorithms can find a group of experts that cover projects with

high profit while experts can communicate with each other efficiently.
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Chapter 1

INTRODUCTION

1.1 Overview

Forming a team of experts during a recruitment process, the recruiter aims to seek the

most cost-effective team that can accomplish the tasks within the deadline. The process

includes allocating the basic salary for each of the experts from the candidate’s list, to form

a team that has all the required expertise to perform many profitable tasks. This problem is a

CLUSTER HIRE problem in Network Science introduced by Golshan et al. [1]. The problem

came into accountability from the domains of online labour markets such as Freelancer and

Guru. However, the area is growing worldwide. People develop agencies for more profit

margin and, in industries also, Network Science is more prevalent.

Generally, team formation is a well-known natural way to obtain a group of experts with

complementary skills which came out to be an effective solution for the organizations and

big institutes. This can be achieved by assigning skills to various experts with varying

skills. In other words, given a set of experts, each with specific skills, the goal is to select

the team of experts that can collectively cover the required skills of the project, while

ensuring the efficient communication between the selected team members. On successful

completion of the project, the organization makes a profit. For a set of experts, each of them

possesses a set of diversified skills and each project requires a subset of specified skills in

the expert. To recruit an expert for the project, the organization should provide an economic

cost (i.e., the salary of the expert). Also, the organization is assigned a certain amount of

budget for every project to hire experts. To maximize the profit of the organization, they

need to hire experts within the given budget to perform the projects.
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Also, communication among the expert allocated for the project plays a vital role for

better results and faster completion of the projects. Assuming that there exists a commu-

nication channel among the experts. The communication cost among the experts can be

calculated based on the previous collaboration between them. If any of the two experts

have worked previously on the past projects, have a good frequency of communication, it

would result in the quality of work and effectively meeting the deadlines of the projects.

However, if the team of experts never worked simultaneously before, there will be a higher

communication cost, increasing the expense of the project. How to determine the commu-

nication cost between the experts depends on the projects needs. The communication cost

is not limited to the previous collaboration of the experts, although the geometric distance

among the experts can be calculated if in-person meetings are necessary for projects. Even-

tually, effective communication results in improved performance of the organization and a

series of profitable projects.

Moreover, for reaching an effective and efficient team, a capacity of each expert becomes

a major aspect. Employee satisfaction goes in parallel with the profits and the reputation

earned by an organization. Each expert has a maximum capacity to participate in several

tasks simultaneously. Hence, hiring an expert with a higher capacity for work turns out to

be a profit for the organization as we can use the same expert for various projects, whereas

it’s pretty useless to hire experts with low capacity. Ultimately, communication cost be-

tween the experts and capacity of each expert results in a bunch of realistic teams.

Collectively, we are addressing to the CLUSTER HIRE problem in a network of experts,

for maximizing the profit, and we are minimizing the communication cost of the experts.

The problem turns out to be a bi-objective optimization problem.

2



1.2 Motivation

In the real world, forming communities in a network based on the requirements of the

tasks to be performed as a community is a fundamental problem in Network Science. Many

researchers are working in this area to find an optimum solution for a team formation by

extending it in multiple dimensions. For instance, there exists a work that focuses on

different ways of defining the communication costs between the experts. Others take into

account the capacity of the expert. For the online version of the problem, the goal is to

create multiple teams that can work on multiple projects [1].

In the immersing world of technology, the startup companies are growing worldwide

where the owner needs to select a team of experts with the collective expertise required to

benefit from on the various opportunities that have been identified within the market that

the company targets at [1].

Another relevant motivation is from the online labour markets, such as FreeLancer (www.

freelancer.com), and Guru (www.guru.com). In the online portals, they receive ample

projects to work remotely in various areas. In the early stages, the freelancers registered on

the portals and worked independently. However, with the gradual increase in competition,

experts started developing a consulting company. The consulting company receives the

projects with the specific set of required skills [1]. On every successful completion of the

project, the consulting company receives the profit. For each required task on the project,

the company needs to hire an expert to fulfill the set of demanded tasks. A certain amount of

budget is defined by the financial department to hire the experts. The goal of the consulting

company is to recruit a team of experts in which the sum of the salary of each of the expert

falls within the budget. The target of the company is to maximize the total profit that it

gains by completing the projects.

To overcome this problem, in this thesis, we are proposing an approach to form a re-

alistic team for the assigned projects with required skills by maximizing the profit of the
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organization.

1.3 Problem & Solution Outline

The team formation problem is being researched nearly a decade to come with a realistic

team considering the communication cost between the experts and capacity of each expert,

to make a maximum profit. In our approach, we are making the realistic assumption that

there exists an underlying network among the experts. Suppose each expert possesses a set

of skills, and each expert demands a salary for participating in performing different tasks.

Furthermore, in the list of given projects, each project is composed of a set of required

skills that need to be covered by some experts to complete the project. Assume that, each

expert offers their expertise with a capacity. This is a realistic assumption as we do not

want to overload any expert by assigning them more tasks than affordable. Therefore, each

expert can participate in some tasks.

The experts are connected to a network which is modelled as an undirected graph. Each

expert is associated with a node in it. We use the terms node and expert interchangeably

in this work. Two experts are connected by an edge in the graph if they have prior collab-

oration in the past (e.g., participating in the same project). The graph might be weighted.

In this case, the weight on edge represents the strength of the collaboration between them

(the smaller the weight, the stronger the prior collaboration). For example, if two experts

participated in ten projects in the past, the edge weight between them is smaller than two

experts that collaborated in only two projects in the past. When two experts are not directly

connected, we use the weight of the shortest path between them in the graph to determine

the communication cost between them. Again, the smaller the weight of the shortest path,

the closer the two experts to each other. This is a reasonable assumption since two experts

might be introduced to each other via a middle expert where the two experts worked with

the middle expert in the past. This is certainly preferred over another case in which the

4



two experts have no relationship via another expert in common. The communication cost

between two experts is the weight of the shortest path between two experts in the graph.

Our objective is to choose a group of experts where the communication cost among them

is minimized. We model the communication cost among a group of experts as the sum of

distances between each pair of the experts in the group.

For completing a given set of projects, we are given a predetermined budget. This budget

is spent on hiring experts. Our goal is to hire as many experts as possible while the sum of

their hiring costs (i.e., salary) is within the predetermined budget. Since we are interested

in maximizing the profit and minimizing the communication cost, our problem is a bi-

objective optimization problem.

1.4 Scope of thesis

In the Network Science group, Golshan et al. [1] proposed a detailed analysis of the

computational complexity and approximation of the problem, as well as heuristic solu-

tions. Moreover, they demonstrated the efficacy of the approaches through experiments on

real datasets of experts and demonstrated their advantage over intuitive baselines. Also,

they explored additional variants of the fundamental problem formulation, to account for

constraints and considerations that emerge in realistic cluster-hiring scenarios [1]. In our

thesis, we proposed a network formation based on past collaboration among experts. If

two experts have past collaboration, they form a more collaborative and efficient team in

the future. Maximizing the total profit, we are also interested in finding the most collabo-

rative group of experts by minimizing the communication cost among them. Furthermore,

we propose two greedy algorithms with different strategies to solve the problem. Extensive

experiments on a real dataset show our proposed algorithms can find a group of experts that

cover projects with high profit while experts can communicate with each other efficiently.

5



1.5 Structure of thesis

The remaining thesis is organized as follows. In Chapter 2, we review the basic concepts

of Data Mining, Team Formation, and CLUSTER HIRE. This section also includes the de-

tailed explanation of the problem statement of the thesis and review to the greedy approach

used for the solution. The CLUSTER HIRE problem was introduced by Golshan et al. [1].

We present our proposed approach in Chapter 3. To make this thesis self-contained, a

detailed explanation of the algorithm is also given in Chapter 3. Chapter 4 contains the pri-

mary contribution of this thesis and describes the implementation details of our approach,

and the simulation results with the comparison of the approaches. Chapter 5 provides the

summary concluding the thesis along with the directions for possible future work.
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Chapter 2

PROBLEM BACKGROUND

2.1 Overview of the Research

2.1.1 Data Mining

Data Mining is a concept of discovering patterns in large data sets. This process of ex-

tracting important data from a large dataset is also known as knowledge discovery from

the database. A process of extracting interesting patterns has been going on for ages, but

in todays era, every industry is moving to a paperless system resulting in a huge amount

of digital data. To keep up with the pace of data generation, one must have a good data

mining technique to discover interesting patterns to analyze the trend. Depending on these

trends a company may decide its future techniques to attract a larger amount of business. It

sounds very easy, but such good facilities come at a huge cost. They are not affordable for

all types of business. People choose different techniques based on their capacity, and that

is what determines the fate of these companies.

Knowledge Discovery in Database is done in step by step procedure: [2]

• Data Cleaning: In this step, the noise, and inconsistent data are removed.

• Data Integration: In this step, multiple data sources are combined.

• Data Selection: In this step, the data relevant to the analysis task are retrieved

from the database.

• Data Transformation: In this step, data is transformed or consolidated into

7



forms appropriate for mining by performing summary or aggregation opera-

tions.

• Data Mining: In this step, intelligent methods are applied to extract data pat-

terns.

• Pattern Evaluation: In this step, data patterns are evaluated.

• Knowledge Presentation: In this step, knowledge is represented.

The following figure shows the process of knowledge discovery: [2]

Figure 2.1: Process of Knowledge Discovery

2.1.2 Team Formation

Team Formation is a concept of hiring a set of individuals who possess some skills that

are used to complete a project that will benefit an institution upon its completion. This

helps an institution to complete projects undertaken, and it also helps experts to strengthen

their position in the institute by performing well. The sole reason for this concept is to bring

certain individuals together to get the best out of them. This can be achieved only when we

have a group of individuals who are willing to work together. Selection of such individuals
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can be done in various forms using different constraints and factors. Such factors will

determine how good a team can perform.

For example, we need a team for the three-leg race, so we look for individuals who can

run fast. We have statistics of a 100 m race. We would like to go for 1st and 2nd candidate

as they are the quickest, but it may be possible that the 3rd and 4th candidate from the

100m race performs better in 3 leg race because they run at a similar speed whereas the 1st

and the 2nd candidate from that race performs lower than usual because of the difference

in their speeds. So, depending on the type of task, we need to vary the factors to get the

best results.

2.1.3 Cluster Hire

CLUSTER HIRE means hiring a group of individuals to accomplish a group of tasks in

an institution within a given budget. For example, say we have five projects that need to

be completed. These projects need a fixed set of skills, so we go to hire some experts

that possess all the skills required to complete the five projects. This concept is termed as

CLUSTER HIRE.

The selection process will be carried out by certain factors such as Budget, Profit, Com-

munication Cost, Capacity, etc. This concept is growing its importance in the market as

it covers various projects using the same set of individuals instead of hiring a fixed set of

individuals for each project which is ultimately cutting down the Budget factor.

2.1.4 Difference between Team Formation and Cluster Hire

Given a set of n available experts, each associated with some skills, and given a set of

m projects of an organization that requires some people with specific skills. Figure 2.2

demonstrates the CLUSTER HIRE problem and the team formation. Hiring an expert for a

project by considering the factors such as required skills, the budget of the project, profit of

9



Figure 2.2: Multiple Team Formation problem Scheme

the project, communication cost between the experts, the capacity of the experts and many

more aspects; collectively fall under the CLUSTER HIRE problem. A realistic and efficient

team formed for a project regardless of the budget and the profit of the project is commonly

known as team formation.

As per figure 2.2, an expert with Skill 1 is allocated to Project 1 while is another expert

with similar skill works for Project 1 and Project 2 simultaneously which is considered to

be a profit factor for the organization. Hence, hiring cost for m projects of the organization

10



is reduced. This is a good example of Cluster Hire. However, forming a team for Project 1

to satisfy the required skills for the project shows team formation.

The figure 2.2 shows the main components of the problem and illustrates an example to

the feasible solution to the problem.

2.2 Fundamental Concepts

2.2.1 Exact Algorithm

The exact algorithm guarantees an optimal solution to the problem if it exists but at

the cost of high computational time. This approach should not be used when your search

space is huge as it will take a huge amount of time to provide an exact solution. To search

the solution in a huge search space, much of the computer power is needed which comes

at a great price. Depending on the criticality of the solution, we should decide which

approach should be taken to find the solution to the problem. If we need the optimal

solution, we should follow this approach. Otherwise, we can get nearly optimal or optimal

solution using heuristic approach. In figure 2.3, an exact algorithm calculates the solution

for each possible combination and then it selects the optimal solution. It can be seen that

the number of combinations and the computational time is very high. It does provide an

optimal solution but it compromises with processing time.

2.2.2 Heuristic Algorithm

Heuristic algorithm comes into play when other methods take too long to find a solu-

tion. This approach finds a near to optimal solution or an optimal solution in some case.

Depending on the heuristic function, it decides which branch should be followed. The

decision is made depending upon the available information at each step. This method com-
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Figure 2.3: Exact Algorithm

promises with optimality, accuracy, completeness but provides quick results. In figure 2.4,

the heuristic algorithm (Dijkstra Algorithm to find a shortest path between given nodes)

randomly selects a vertex to start looking for a solution and from there on, it selects the

next step depending on the information it has then. It provides us with a solution in a short

period but it compromises with optimality. It may provide us with an optimal solution in

some cases, but optimality cannot be guaranteed in this approach.

Figure 2.4: Heuristic Algorithm
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2.2.3 Greedy Algorithm

A greedy algorithm is an algorithmic paradigm that follows the problem-solving heuris-

tic of making the locally optimal choice at each stage with the intent of finding a global

optimum. In many problems, a greedy strategy does not usually produce an optimal solu-

tion, but a greedy heuristic may yield locally optimal solutions that approximate a globally

optimal solution in a reasonable amount of time.

Figure 2.5: Greedy Algorithm

A greedy algorithm can be used to determine the minimum number of coins to give while

making a change. These are the steps a human would take to emulate a greedy algorithm

to represent 36 cents using only coins with values 1, 5, 10, 20 as shown in Figure 2.5.

The coin of the highest value less than the remaining change owed is the local optimum.

(In general, the change-making problem requires dynamic programming to find an optimal

solution; however, most currency systems, including the Euro and US Dollar, are special

cases where the greedy strategy does find an optimal solution.)

In general, greedy algorithms have five components:
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• A candidate set, from which a solution is created

• A selection function, which chooses the best candidate to be added to the solu-

tion

• A feasibility function, that is used to determine if a candidate can be used to

contribute to a solution

• An objective function, which assigns a value to a solution, or a partial solution,

and

• A solution function, which will indicate when we have discovered a complete

solution

2.2.4 Bi-objective Function

This concept is used when we need to optimize more than one function simultaneously.

We use such functions when we need to take an optimal decision, and we have more than

one deciding factors. This concept has been implemented in various fields like engineering,

science, economics, etc. These type of functions are controlled by a trade-off parameter.

The value of the trade-off parameter decides the ratio of deciding factors in the final result.

For instance, Score = A * (Factor 1) + (1-A) * (Factor 2) where A is in a range between

0 and 1.

Impact of Factor 1 and Factor 2 will depend on the value of A. More the value of A;

higher will be the impact of Factor 1 on the score and vice versa.

2.3 Literature Review and Related Work

Finding a team of experts from a social network was introduced by Lappas et al.in
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2009, [3]. Given a set of required skills to build a single team of experts, the authors

considered the past collaboration among experts and proposed an algorithm to find the

most collaborative team. The collaboration was computed using two functions, the diam-

eter of the team (i.e., selected sub-graph) and the weight of the Steiner tree among team

members. Li and Shan generalized this problem and associated each required skill with a

specific number of experts [4]. Kargar and An proposed a new function to compute the

collaboration cost among experts (i.e., the sum of the distance between every pair of ex-

pert holders) [5]. They argued that the new function is fairer towards all team members

and is not biased towards only some of the team members. Authors of [6] proposed a new

communication cost function based on the density of the induced sub-graph.

Kargar et al. proposed an approximation algorithm to find a team of experts that opti-

mizes two objectives: the communication cost among team members and the personal cost

of a team [7]. They assumed that every expert has a salary to be hired as a team mem-

ber. Authors of [8] solved this problem using a different approach. They found a set of

Pareto teams. They also proposed an approximation algorithm that receives a budget on

the personnel cost and minimizes the communication cost under the given budget. Li et

al. proposed an algorithm to find a replacement when a team member is not available any-

more [9]. Authors of [10] studied team formation problem and optimized the authority of

skill holders. Authors of [11] optimized three objectives to find the best team of experts

and to find a set of Pareto teams. All of the above work assume that we are looking to

find a single team of experts to perform a single project. The problem that we tackle in

this thesis assumes that we want to cover a set of projects while optimizing the profit and

communication cost.

The team discovery problem is well investigated by the operations research commu-

nity [12, 13]. Different papers use genetic algorithms, branch and bound, and simulated

annealing with the goal of finding a team for performing the given task [13–16]. None of
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these work considered the underlying social network among experts and ignored the com-

munication cost of the selected team. Awal et al. proposed an algorithm to find a team of

experts in social networks based on a collective intelligence index [17]. The genetic-based

algorithm uses the expertise score and trust score of experts as the fitness function. Again,

this work assumes that the user is only interested in finding a single team of experts to

perform a single project.

In [18], the author Xinyu et al. have considered various approaches to solve Team For-

mation problem. They were categorized based on communication cost functions:

• R-TF algorithms

• Steiner-TF algorithms

• SD-TF algorithms

• LD-TF algorithms

The first approach suggests that we can hire a team of well-known experts to review

a paper. According to the second approach, the team of reviewers found can discover

diversified results, as the reviewers are from a wide range of background. Their third

approach suggests that they can hire experts that are seeking a rise in their position and are

new to the industry. The final category concentrates on balancing work amongst the expert

in a team and makes sure no one is overloaded. In spite of the above various approaches to

solving this problem, they could not come to a solution that is realistic and feasible. Each

approach considers only one factor at a time which makes it unrealistic.

The author Tang et al. [19] have studied profit aware team formation problem. They have

proposed an LP-based approximation to solve this problem, but this solution is not feasible

in the real world as it has not considered many factors such as the capacity of the expert,

communication cost amongst team members, etc. which are very important while working

on a real-world problem. Hence, this approach has its drawbacks, and an extension of this
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problem would resolve them.

The problem of CLUSTER HIRE was introduced by Golshan et al., [1]. As we discussed

earlier, given a set of projects and a set of available experts, the authors found a subset

of projects along with a subset of experts to perform the projects while maximizing the

profit of projects and not violating the given budget constraint. The work of [20] is close

to the CLUSTER HIRE problem as the authors assumed that we are interested in selecting

a set of projects while minimizing the maximum load of participating experts. However,

in their setting, projects do not come with a profit, and there is no salary for the experts.

The communication cost among experts is also ignored. Minimizing both load balance and

communication cost was studied in [21] and [22]. In this work, we extended the original

CLUSTER HIRE problem by taking into account the underlying social network and graph

structure among experts, and on top of maximizing the profit of the projects, we also min-

imized the communication cost among team members. We have made further refinement

to the original problem by specifically assigning the expertise of each expert to specific

projects.

In paper [23], provides a new approach for Team Formation in social networks, they

focus on experts and projects. In a social network of experts, they need to find a group of

experts who can perform the required task to complete a project. To find a cluster, they

perform SCAN on the pool of experts that possesses the required skills. Then they select

experts that are well connected which is determined by communication cost. This commu-

nication cost is decided based on their experience. They have implemented an advanced

version of SCAN known as WSCAN (Weighted SCAN) to solve TFP with minimum com-

munication cost. They claim to have a better run time than Generic, Cultural and Exact

algorithms whereas their results are approximately the same as the Greedy algorithm and

are marginally below than Generic and Cultural algorithm.
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2.4 Problem Statement

Let E = {e1,e2, . . . ,en} denote a set of n experts, and S = {s1,s2, . . . ,sm} denote a set

of m skills (all symbols used in this thesis are summarized in Table 2.1). Each expert e

posses a set of skills, which is denoted as ES(e). Clearly, ∀ e∈ E,ES(e)⊆ S. Each expert e

demands a monetary cost (i.e., salary), to participate in performing different tasks. This is

shown by C(e) and is measured by dollar value. We also have a set of given projects which

is denoted by P = {p1, p2, . . . , pk}. Each project is also composed of a set of required skills

that need to be covered by experts for the project to be completed. This set is shown by

PS(p) for project p. Again, ∀ p ∈ P,PS(p) ⊆ S. We assume each expert e can offer her

expertise at most Cap(e) times. This is a reasonable assumption since we do not want

to overload an expert by assigning her too many projects. Therefore, each expert has a

maximum capacity to participate in some tasks. We take this constraint into consideration

when designing the algorithms.

Definition 1 Group of Experts: Given a set of n experts E, a set of m skills S, and a set of

k projects P, a group of experts E ⊆ E is able to complete a subset of projects P ⊆ P if the

following holds:

Coverage: ∀ p∈P and ∀ s∈PS(p), an expert e in E is assigned to perform the required

skill s for p.

Capacity: ∀ e ∈ E , e is not covering more that Cap(e) skills.

When two projects require a same skill, for example Artificial Intelligence, then two

different experts are allocated different projects. Therefore, we requir two experts with

expertise in Artificial Intelligence. In the following, without loss of generality, we assume

that there is no overlap between the required skill sets of any two projects. That is,

PS: P→ 2S is a f unction, where PS(Pi) ∩ PS(Pj) = /0, ∀ Pi, Pj ∈ P, Pi 6= Pj

In this way, the assignment will be simply between the experts and skills. The experts

are connected to a network which is modelled as an undirected graph G. Each expert ei
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Table 2.1: Symbols used in the Thesis

E set of n experts {e1,e2, . . . ,en}
S set of m skills {s1,s2, . . . ,sm}
G input graph G that models the social network

P set of k project {p1, p2, . . . , pk}
ES(e) set of skills possessed by expert e

C(e) cost of hiring expert e

PS(p) set of required skills by project p

PF(p) profit of completing project p

Cap(e) capacity of expert e to offer her expertise

Dist(ei,e j) distance between experts ei and e j in G

CC(E ) communication cost among a group of experts E

Pro f it(P) profit of performing a group of projects P

B total budget for hiring experts

Pro f itCC(P,E ) combined objective of profit and communication

is associated with a node in G. We use the terms node and expert interchangeably in this

work. Two experts are connected by an edge in G if they have previous collaboration in the

past (e.g., participating in the same project). Graph G may be weighted. In this case, the

edge weight represents the strength of the collaboration between them (the smaller the edge

weight, the stronger the prior collaboration). For example, if two experts participated in ten

projects in the past, the edge weight between them is smaller than two experts who have

collaborated in only two projects in the past. When two experts are not directly connected,

we use the weight of the shortest path between them in G to determine the communication

cost between them. If an expert has no connection with any of the other expert in the

network, then we consider the cost value between this expert and any other expert to be

infinity. Again, the smaller the weight of the shortest path, the closer the two experts to

each other. This is a reasonable assumption since two experts ei and e j might be introduced
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to each other via a middle expert ek where ei and e j worked with ek in the past. This is

certainly preferred over another case where the two experts ei and e j have not worked with

any other expert in common. The communication cost between two experts ei and e j is

shown as Dist(ei,e j), i.e., the weight of the shortest path between ei and e j in G. We are

interested in choosing a group of experts in which the communication cost between them

is minimized. We model the communication cost between a group of experts as the sum of

distances between each pair of the experts in the group.

For instance, suppose the communication cost is given in the following graph.

Figure 2.6: Example of Communication Cost

Here, expert A has a previous collaboration with experts B and E. Hence, the communi-

cation cost between experts A and B is 4, between A and E is 7. However, there is no direct

edge between experts A and C, A and D.

Therefore, Dist(A,C) = Dist(A,B) + Dist(B,C) = 4+1 = 5 and Dist(A,D) = Dist(A,B) +
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Dist(B,D) = 4+2 = 6.

In resultant, the communication cost between experts A and C is less compared to com-

munication cost between A and D. So, the expert C will be appropriate for the team instead

of D to minimize the communication cost.

Definition 2 Communication Cost: Given a group of experts E and the weighted and con-

nected graph G that determines the past collaboration among experts, the communication

cost among the experts in E is defined as follows:

CC(E ) =
|E |

∑
i=1

|E |

∑
j=i+1

Dist(ei,e j)

Finishing each project brings a profit in dollar value which is shown by PF(p) for project

p. We are interested in choosing a set of projects so that the sum of their profit is maxi-

mized.

Definition 3 Profit of Projects: Given a set of projects P , the profit of completing these

projects is defined as follows:

Pro f it(P) = ∑
p∈P

PF(p)

where Profit Function PF maps each project to an integer number denoting its profit.

PF : P → N

For performing a subset of given projects, we are given a predetermined budget (also

in dollar value) denoted by B. This budget is spent on hiring experts. Our goal is to

hire as many experts as possible while the sum of the hiring costs (i.e., salary) is under

the given budget B. Since we are interested in maximizing the profit and minimizing the

communication cost, our problem is a bi-objective optimization problem.
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A common approach to solving a bi-objective optimization problem is to convert it into

a single objective problem. This can be done by introducing a tradeoff parameter λ that

varies between 0 and 1 and determines whether we want to put more weight towards profit

or communication cost. Furthermore, since one of the objectives is a maximization prob-

lem (maximizing the profit) and the other one is a minimization problem (minimizing the

communication cost), we have to modify one of them and make both of them be of the

same type. Therefore, we maximize the reverse of the communication cost. Now we are

ready to define the problem we tackle in this work formally.

Problem 1 Given a set of n experts E, a set of m skills S, a set of k projects P, a trade-off λ

between the profit and communication cost, and an underling graph G that determines the

past collaboration among experts, we are interested in choosing a group of experts E ⊆ E

(according to Definition 1) and a set of projects P ⊆ S so that the following objective is

maximized:

Pro f itCC(P,E ) = (λ ).Pro f it(P)+(1−λ ).
a

CC(E )

Furthermore, the following budget constraint must be satisfied:

∑
e∈E

C(e)≤ B

Cost function: The cost function maps the set of experts E into set of Natural number N.

C : E → N

Note that since the dollar values of the project’s profit and the distance between experts

may have different scales, both of these values should be normalized by constant a so that

they both fall into the same range (e.g., all of them fall between 0 and 1).

Theorem 1 Problem 1 is NP-hard.
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Proof 1 Finding a group of experts to cover a set of projects P ⊆ P and maximizing

Pro f it(P) under the given budget B is proved to an NP-hard problem in [1]. Since the

objective of the present problem 1 is linearly related to Pro f it(P), the present optimization

problem 1 is also NP-hard.
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Chapter 3

PROPOSED ALGORITHMS

In this chapter, we propose two different algorithms based on different strategies to find

a group of experts while maximizing the profit and minimizing the communication cost.

The first strategy picks an expert in each iteration and assigns this expert to some of the

projects. The second strategy picks a project in each iteration and finds the best group of

experts to finish that specific project.

3.1 Expert Pick Strategy

Since finding the best group of experts to cover a subset of projects while maximizing

the profit and minimizing the communication cost is an NP-hard problem, here we propose

the first greedy algorithm to find a group of experts while covering a subset of projects

with high profit. In the first algorithm, in each iteration, we greedily pick one expert to add

to the pool of existing experts. We also check to see if this addition will cover any of the

remaining projects. One important challenge is to make sure adding a new expert (with

the corresponding salary) does not exceed the given budget B. In each iteration, we assign

a score to each (Expert,Pro ject) pair and choose the expert with the highest score. The

score is designed based on the following intuitions:

• We want to choose a more affordable expert so that we do not overspend the

budget on a single expensive expert.

• We want to choose an expert that covers many required skills for a high prof-

itable project.
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As one might notice, these intuitions are not necessarily compatible. A less expensive

expert may not be able to cover many skills from a profitable project. To take into account

all these objectives, we design the following score function for each pair of projects and

experts.

sce← ∑
p∈P

PF(p).Skill(e, p)
C(e)

(3.1)

Note that Skill(e, p) determines the number of skills in p that could be covered by expert

e. Our equation chooses an expert who covers high-profit project and as many skills as

possible in P. This number is divided by the cost of expert e to ensure we take into account

the salary of expert e.

Algorithm 1 is our solution to Problem 1 to find a group of experts while maximizing the

profit of the covered projects. This algorithm receives the set of n experts, set of m skills,

set of k projects, a network of experts G, and the available budget B as input. The output of

this algorithm is a subset of projects P and a group of experts E that covers all required

skills in P while maximizing the objective of Problem 1. Furthermore, the sum of the

salary of the experts in E is not more than the given budget B. Our work is motivated from

the paper by Golshan et al. [1]. We are proposing two different algorithms (Algorithm 1 -

without communication cost and expert capacity, and Algorithm 2 - with communication

cost and expert capacity) as an extension and improvement of previous work.

In line 1, E and P are initialized to /0. Also, b is set to 0. We store the amount of

money that we have spent so far in b. We can keep adding experts to E as long as b < B.

Line 2 starts the iteration of the greedy algorithm. As long as we have experts in E that

have not been added to E and we have not overspent the budget, we can consider adding

more experts to E . This is the condition of the while loop in line 2. In line 3, we store

all unassigned experts in E whose salary is within the remaining budget to R. The for

loop in line 4 checks to see if each expert in R possesses at least one required skill in an
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Algorithm 1 Cluster Hire with Expert Pick Strategy

Input: set of n experts E = {e1,e2, . . . ,en}, set of m skills S = {s1,s2, . . . ,sm}, set of k
projects P = {p1, p2, . . . , pk}, and budget B.
Output: subset of projects P ⊆ P and a group of experts E ⊆ E that maximize
Pro f it(P) under the given budget B.

1: E ← /0, P ← /0, b← 0
2: while b < B and E/E 6= /0 do
3: R←{e | e ∈ E and e /∈ E and C(e)+b≤ B}
4: for all e ∈R do
5: if e does not cover any required skills in P/P then
6: remove e from R
7: if R = /0 then
8: return E and P
9: for all p ∈ P/P do

10: for all e ∈R do
11: if e covers at least one skill in P then
12: if E = /0 then
13: sce← ∑p∈P

PF(p).Skill(e,p)
C(e)

14: else
15: sce← 0
16: (e,P)← arg maxe∈R sce
17: add e to E
18: for all p ∈ P/P do
19: assign skills of e to p
20: update PS(p)
21: b← b+C(e)
22: if |PS(p)|= 0 then
23: add p to P
24: return E and P

uncovered project. If this is not the case, those experts are removed from R as these experts

are useless for the remaining projects. In line 7, we check to see if R is empty or not. If it

is empty, we return the current E and P and terminate the algorithm. The reason is that, if

R is empty, we have no other experts to add to E . In lines 9 to 17, we calculate a score for

each expert in R for uncovered project p (projects in P/P). Later, we choose the highest

score and add the associated expert to E . If e does not cover any of the required skills in

p (line 11), the score is set to 0 (line 15) as expert e is useless for project p. If e covers at
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least one of the required skills in p, then we calculate the score of e according to Equation

3.1. In line 18, we choose an expert (e,P) in which the score sce is maximized among all

experts. e is added to E in line 17. Then, the skills of e are assigned to p in line 20. We

then update the required skills in p (i.e., PS(p)), and the value of b. If all of the required

skills in p are covered (line 22), p is added to P (line 23). One advantage of our proposed

algorithm is that if an expert e is added to the group of experts, we try to use her maximum

capacity as she will get paid the same amount of salary regardless of the number of skills

she covers in different projects. The worst-case running time of each iteration of Expert

Pick Strategy is O(kmn).

Table 3.1: Expert Details

Experts Cost Skills

A 40 AI, Java, DB

B 30 C, ML

C 20 C, AI, DB

D 40 Java, ML, DB

Table 3.2: Project Details

Projects Profit Skills

P1 200 AI, DB, C

P2 250 Java, DB, ML

P3 300 Java, AI, ML

Illustration 1: In the given set of projects with respective required skills and profit as

represented in table 3.2, determine a group of experts to satisfy all skills required by those

selected projects from table 3.1, within the given Budget of 100 by the Expert Pick Strategy.
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Solution:

Iteration 1: First we calculate the scores for all pairs of experts and projects.

Figure 3.1: Illustration 1: Iteration 1

Here, Expert C achieved the highest score. Therefore, in the first iteration Expert C is

selected (Figure 3.1).

The situation after the first iteration 1 (Figure 3.2):

Figure 3.2: Illustration 1: Team after Iteration 1

Remaining Budget = 100 - Cost of Expert C = 100 - 20 = 80

Iteration 2: We again calculate the scores for the remaining pairs of experts and projects.

Figure 3.3: Illustration 1: Iteration 2
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Here, Expert D achieved the highest score. Therefore, in the second iteration, expert D

is selected (Figure 3.3).

Team after first iteration 2 (Figure 3.4):

Figure 3.4: Illustration 1: Team after Iteration 2

Remaining Budget = 80 - Cost of Expert D = 80 - 40 = 40

After iteration 2, all the project requirements are satisfied. Hence, the team after the

second iteration will be the final team for this group of projects.

Final Team = {C, D}

3.1.1 Expert Pick Strategy with Communication Cost and Expert Capacity

In this section, we introduce a new version of our Algorithm 1 with the inclusion of

Communication Cost and Expert Capacity with another institution. In each iteration, we

assign a score to each pair of expert/projects and choose the expert with the highest score.

The score is designed based on the following intuitions:

• We want to choose a less expensive expert so that we do not overspend the

budget on a single expensive expert.

• We want to choose an expert that covers many required skills for a high prof-

itable project.

• We want to choose an expert that can communicate effectively with other ex-

perts that are already selected.

As one might notice, these intuitions are not necessarily compatible. A cheap expert may

not be able to cover many skills from a profitable project, or she may not have much past
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collaboration with other experts. To take into account all these objectives, we design the

following score function for each pair of projects and experts.

scp
e ← λ .

PF(p).min{Skill(e, p), Cap(e)}
C(e)

+

(1−λ ).
a

∑e′∈E Dist(e,e′)
(3.2)

Recall that λ is the trade-off parameter between profit and communication cost (see

Definition 2). Note that a is normalization constant, Skill(e, p) determines the number of

skills in p that could be covered by expert e. The first part of the above equation chooses

a pair of an expert/project in which the project p has high profit and the expert e covers as

many skills as possible in p. This number is divided by the cost of expert e to ensure we

take into account the salary of an expert e. Between the number of skills that expert e can

cover in p and the capacity of e, we choose the minimum value. This is because we do not

want to violate the capacity of expert e and overload her with many tasks. For example, if

an expert can cover 5 skills in a project, but her capacity is only 3, we use 3 in the above

equation to make sure if she is the selected expert with that project, she is only assigned to

3 skills and not 5. The next part of this equation maximizes the reverse of communication

cost between expert e and other experts already in the group. Note that in the first iteration,

we do not take into account the communication cost between experts since the group is

empty.

Algorithm 2 is a similar approach to Algorithm 1 to find a group of collaborative experts

while maximizing the profit of covered projects. This algorithm receives similar inputs as

Algorithm 1 such as the set of n experts, set of m skills, set of k projects, network of experts

G with the inclusion of Communication Cost and Expert Capacity, and the available budget

B as input with the addition of the trade-off parameter λ . The output of this algorithm is

a subset of projects P and a group of experts E that covers all required skills in P while

maximizing the objective of Problem 1. Furthermore, the sum of the salary of the experts

in E is not more than the given budget B.
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Algorithm 2 Cluster Hire with Expert Pick Strategy with Communication Cost and Expert
Capacity

Input: set of n experts E = {e1,e2, . . . ,en}, set of m skills S = {s1,s2, . . . ,sm}, set of k
projects P = {p1, p2, . . . , pk}, graph G that models the network of experts, trade-off
parameter λ , capacity of each expert Cap(e), normalization constant a, and budget B.
Output: subset of projects P ⊆ P and a group of experts E ⊆ E that maximize
Pro f itCC(P,E ) under the given budget B.

1: E ← /0, P ← /0, b← 0
2: while b < B and E/E 6= /0 do
3: R←{e | e ∈ E and e /∈ E and C(e)+b≤ B}
4: for all e ∈R do
5: if e does not cover any required skills in P/P then
6: remove e from R
7: if R = /0 then
8: return E and P
9: for all p ∈ P/P do

10: for all e ∈R do
11: if e covers at least one skill in p then
12: if E = /0 then
13: scp

e ← PF(p).min{Skill(e,p), Cap(e)}
C(e)

14: else
15: scp

e ← λ .PF(p).min{Skill(e,p), Cap(e)}
C(e) +

(1−λ ). a
∑e′∈E Dist(e,e′)

16: else
17: scp

e ← 0
18: (e, p)← arg maxe∈R, p∈P/P scp

e
19: add e to E
20: assign skills of e to p based on rarest skill strategy
21: update Cap(e)
22: update PS(p)
23: b← b+C(e)
24: if |PS(p)|= 0 then
25: add p to P
26: while Cap(e)> 0 do
27: p′← arg maxp∈P/P scorep

e
28: assign skills of e to p′ based on rarest skill strategy
29: update PS(p′) according to ES(e)
30: update Cap(e)
31: if |PS(p′)|= 0 then
32: add p′ to P
33: return E and P
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In line 1, E and P are initialized to /0. Also, b is set to 0. We store the amount of

money that we have spent so far in b. We can keep adding experts to E as long as b < B.

Line 2 starts the iteration of the greedy algorithm. As long as we have experts in E that

have not been added to E and we have not overspent the budget, we can consider adding

more experts to E . This is the condition of the while loop in line 2. In line 3, we store

all unassigned experts in E whose salary is within the remaining budget to R. The for

loop in line 4 checks to see if each expert in R possesses at least one required skill in

an uncovered project. If this is not the case, those experts are removed from R as these

experts are useless for the remaining projects. In line 7, we check to see if R is empty or

not. If it is empty, we return the current E and P and terminate the algorithm. The reason

is that, if R is empty, we have no other experts to add to E . In lines 9 to 17, we assign

a score to each pair of uncovered project p (projects in P/P) and expert e in R. Later,

we choose the highest score and add the associated expert to E . If e does not cover any

of the required skills in p (line 11), the score is set to 0 (line 17) as expert e is useless for

project p. If e covers at least one of the required skills in p, then we calculate the score of

e and p according to Equation 3.2. Note that in the first iteration (line 12, E = /0), we do

not consider the communication cost as set E is empty. In line 18, we choose pair (e, p)

in which their score scp
e is maximized among all pairs. e is added to E in line 19. Then,

the skills of e are assigned to p in line 20. Note that if the capacity of e is smaller than

the required number of skills in p, we assign the rarest skills in e first. We then update the

capacity of e, the required skills in p (i.e., PS(p)), and the value of b. If all of the required

skills in p are covered (line 24), p is added to P (line 25).

One advantage of our proposed algorithm is that if an expert e is added to the group of

experts, we try to use her maximum capacity as she will get paid the same amount of salary

regardless of the number of skills she covers in different projects. Based on this strategy,

after expert e is selected to be added to E in the current iteration, we assign her remaining
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capacity to other projects in lines 26 to 32. As long as her capacity is larger than zero (line

26), we find a project p′ that maximizes the expert/project score when the expert e is fixed

(line 27). We then assign the skills of e to p′ and update PS(p′) and the capacity of e. If all

required skills of p′ are covered, it will be added to P .

Table 3.3: Expert Details with Capacity

Experts Cost Skills Capacity

A 40 AI, Java, DB 3

B 30 C, ML 4

C 20 C, AI, DB 2

D 40 Java, ML, DB 5

Figure 3.5: Network of Experts

Illustration 2: In the given set of projects with respective required skills and profit as

represented in table 3.2, determine a group of experts to satisfy all skills required by the

selected projects from table 3.3 within given Budget B of 100 by the Expert Pick Strategy

with Communication Cost and Expert Capacity. (Note: Figure 3.5 indicates the communi-
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cation cost between the experts by weighted edges. Consider Lambda = 0.5 and Constant

a = 50.)

Solution:

Iteration 1: As there is no expert in the team, communication cost will not be consid-

ered. First, we calculate scores for all pairs of experts and projects.

Figure 3.6: Illustration 2: Iteration 1

Here, Expert C achieved the highest score for P1. Therefore, in the first iteration, Expert

C is selected (Figure 3.6). The capacity of expert C is 2 which is less than the possessed

skills in P1. In that case, Expert C is assigned to rare skills first.

Team after iteration 1 (Figure 3.7):

Figure 3.7: Illustration 2: Team after Iteration 1

Remaining Budget = 100 - Cost of Expert C = 100 - 20 = 80

Remaining Capacity of Experts after Iteration 1:

• Expert A = 3

• Expert B = 4
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• Expert D = 5

Iteration 2: We again calculate scores for remaining pairs of experts and projects.

Figure 3.8: Illustration 2: Iteration 2

Here, Expert D achieved the highest score for P1. Therefore, in the second iteration,

Expert D is selected (Figure 3.8). The capacity of expert D is 5; so expert D is utilized in

other projects too after the ones in P1.

Team after iteration 2 (Figure 3.9):

Figure 3.9: Illustration 2: Team after Iteration 2

Remaining Budget = 80 - Cost of Expert D = 80 - 40 = 40

Remaining Capacity of Experts after Iteration 2:

• Expert A = 3

• Expert B = 4

Iteration 3: We again calculate scores for remaining pairs of experts and projects.
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Figure 3.10: Illustration 2: Iteration 3

Here, Expert A achieved the highest score for P3. Therefore, in the third iteration, Expert

A is selected (Figure 3.10).

Team after iteration 3 (Figure 3.11):

Figure 3.11: Illustration 2: Team after Iteration 3

Remaining Budget = 40 - Cost of Expert A = 40 - 40 = 0

After iteration 3, all the project requirements are satisfied. Hence, the team after the third

iteration will be the final team for this group of projects.

Final Team = {A, C, D}

3.2 Project Pick Strategy

The second approach to find a group of collaborative experts by covering the most prof-

itable set of projects is designed based on the idea of selecting a project in each iteration.

In each iteration, we assign a score to each uncovered project and choose the one with the
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highest score to be added to the pool of projects. The score of each project is designed

based on the following intuitions:

• We want to choose a project with high profit.

• The set of experts responsible for covering the required skills in the project

should be less expensive.

Same as in the first strategy, these intuitions are not necessarily compatible. A high

profitable project might need an expensive set of experts and/or non-collaborative set. We

design the scoring function that takes into account a combination of all these objectives.

In each iteration and for each uncovered project p, we find a set of experts Ep to cover the

required skills of p. To do that, we use a modified version of the greedy weighted set cover

algorithm. Recall that in the weighted set covering problem, we are given a collection of

sets (corresponding to the set of skills of each expert) in which each set is associated with

a cost (corresponding to the salary of the expert in our problem). The goal is to choose a

subset of sets to cover a given set (corresponding to the set of skills required for a given

project in our problem). In the greedy weighted set cover algorithm, in each iteration, a set

that maximizes the number of covered elements divided by the cost of the set is selected.

In other words, the algorithm selects a set, in which the price of covering a single element

is minimized. In each iteration, and for any remaining project, we find a set of experts that

can cover that project. To find this set for project p, we start with an empty set Ep. Then,

we select an expert to be added to Ep that maximizes the following formula:

sce←
Skill(e, p)

C(e)
(3.3)

Here, Skill(e, p) indicates the set of skills possessed by an expert e in project p and C(e)

indicates cost of an expert e. After finding the set of experts Ep for all uncovered projects,

we select one of the projects as the winner and add it to the pool of already selected projects.

To do that, we select a project that maximizes the following equation.
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PF(p)
∑e∈Ep C(e)

(3.4)

Algorithm 3 Cluster Hire with Project Pick Strategy

Input: set of n experts E = {e1,e2, . . . ,en}, set of m skills S = {s1,s2, . . . ,sm}, set of k
projects P = {p1, p2, . . . , pk}, and budget B.
Output: subset of projects P ⊆ P and a group of experts E ⊆ E that maximize
Pro f it(P) under the given budget B.

1: E ← /0, P ← /0, b← 0
2: while b < B and P/P 6= /0 do
3: P′← P/P , R←{e | e ∈ E and e /∈ E and C(e)+b≤ B}
4: if R = /0 then
5: return E and P
6: for all p ∈ P′ do
7: Ep← /0, Sp← PS(p), R ′←R
8: while Sp 6= /0 do
9: for all e ∈R ′ do

10: if e covers at least one skill in p then
11: sce← Skill(e,p)

C(e)
12: else
13: sce← 0
14: e← arg maxe∈R′ sce
15: add e to Ep, update Sp
16: for all p ∈ P′ do
17: if (∑e∈Ep C(e))+b > B then
18: remove p from P′

19: if P′ = /0 then
20: return E and P
21: (p,Ep)← arg maxp∈P′

PF(p)
∑e∈Ep C(e)

22: add p to P , assign skills of experts in Ep to p
23: for all e ∈ Ep do
24: add e to E , b← b+C(e)
25: assign skills of e to p in P/P
26: return E and P

The intuition is the same. We are interested in choosing the project that has a high profit,

needs experts with a low salary. Now, we are ready to present Algorithm 3 that returns a

group of experts for performing a set of profitable projects with project pick strategy. The

input and output of this algorithm are similar to Algorithm 1.
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In the first line, we initialize three variables E , P , and b, which are responsible for

storing the final group of experts, the selected projects, and amount of budget spent so far,

respectively. The while loop of line 2 iterates until we run out of budget or no project is

left to be covered. In line 3, we first assign all uncovered projects to set P′. We then put

all of the experts in which adding them to E will not violate the budget to set R. If R

is empty, we terminate the algorithm in line 5 as we cannot proceed further and cover any

more projects. The for loop of line 6 starts the process of assigning a score to each project p

in P′. Sets Ep, Sp, and R ′ are initialized in line 7. Ep stores the set of experts to perform p.

Sp is a duplicate of the set of required skills in p, in which we try to cover them by adding

experts to Ep. R ′ is a duplicate of R. The while loop of line 8 is executed until no more

skill is required by p (i.e., Sp becomes /0). Line 9 iterates over all experts in R ′ and each

iteration chooses the one that maximizes the modified weighted greedy set cover score. In

lines 9 to 14, we assign a score to each pair of uncovered project p (projects in P/P) and

expert e in R. Later, we choose the highest score and add the associated expert to Ep. If

e does not cover any of the required skills in p (line 12), the score is set to 0 (line 13) as

expert e is useless for project p. If e covers at least one of the required skills in p, then we

calculate the score of e and p according to Equation 3.4. In line 14, we choose pair (e, p) in

which their score sce is maximized among all other pairs. This expert is selected in line 17

and is added to Ep in line 15. We also update Sp in line 15. After finding the set of experts

for all projects, in lines 16 to 18, we remove the projects in which adding their associated

expert set to E violate the budget constraint. If set P′ becomes empty after this operation,

we terminate the algorithm in line 20. If P′ is not empty, we select the best project p in P′

in line 21 according to equation 3.4. In line 22, we add the best project to P and cover

the skills of p. The for loop of line 23 iterates through all experts in Ep. These are the set

of experts that are responsible for covering the best-selected project in line 21. In line 24,

each expert in Ep is added to E . We utilize all selected experts for all remaining projects in
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line 25. The worst-case running time of each iteration of Project Pick Strategy is O(kmn).

Illustration 3: In the given set of projects with respective required skills and profit as

represented in table 3.2, determine the group of experts to satisfy all skills required by

the selected projects from table 3.1 within the given Budget B of 100 by the Project Pick

Strategy.

Solution: In this method, we make temporary teams for all remaining projects in each

iteration and proceed with the team who achieves the highest score.

Iteration 1:
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As P1 achieved the highest score in Iteration 1, Expert C is selected for the team and will

be utilized for the other projects.

Team after iteration 1 (Figure 3.12):

Figure 3.12: Illustration 3: Team after Iteration 1

Remaining Budget = 100 - Cost of an Expert C = 100 - 20 = 80

Iteration 2:
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As P3 achieved the highest score in Iteration 2, Expert D is selected for the team and will

be utilized for the other projects.

Team after iteration 2 (Figure 3.13):

Figure 3.13: Illustration 3: Team after Iteration 2

Remaining Budget = 80 - Cost of an Expert D = 80 - 40 = 40

After iteration 2, all the project requirements are satisfied. Hence, the team after the

second iteration will be the final team for this group of projects.

42



Final Team = {C, D}

3.2.1 Project Pick Strategy with Communication Cost and Expert Capacity

In this section, we introduce an improved version of our Algorithm 3 with the inclusion

of Communication Cost and Expert Capacity with the additional institution. In each itera-

tion, we define new teams for all remaining projects based on existing teams and remaining

skills and choose the set of experts with the highest score. The score is designed based on

the following intuitions:

• We want to choose a project with high profit.

• The set of experts responsible for covering the required skills in the project

should be cheap.

• The set of experts that cover the skills of the project should be able to commu-

nicate effectively with each other and with an existing group of experts.

Same as in the first strategy, these intuitions are not necessarily compatible. A high prof-

itable project might need an expensive set of experts and/or non-collaborative set. We

design the scoring function that takes into account a combination of all these objectives.

In each iteration and for each uncovered project p, we find a set of experts Ep to cover the

required skills of p. To do that, we use a modified version of the weighted set covering

problem. Recall that in the weighted set covering problem, we are given a collection of

sets (corresponding to the set of skills of each expert) in which each set is associated with

a cost (corresponding to the salary of the expert in our problem). The goal is to choose a

subset of sets to cover a given set (corresponding to the set of skills required for a given

project in our problem). In the greedy weighted set cover algorithm, in each iteration, a set

that maximizes the number of covered elements divided by the cost of the set is selected.

In other words, the algorithm selects a set, in which the price of covering a single element
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is minimized. We also add the communication cost to the price per skill when selecting

the next expert to cover a given project. Formally, in each iteration, and for any remaining

project, we find a set of experts that can cover that project. To find this set for project p, we

start with an empty set Ep. Then, we select an expert to be added to Ep that maximizes the

following equation:

sce← λ .
min{Skill(e, p), Cap(e)}

C(e)
+

(1−λ ).
a

∑e′∈Ep Dist(e,e′)
(3.5)

Here, Skill(e, p) indicates the set of skills possessed by an expert e in project p. C(e)

indicates cost of an expert e, λ is the trade-off parameter, and a & b (formula 3.6) are

normalization constants. The first part of this equation is taken from the greedy set cover

algorithm with a slight modification that takes the capacity of the expert into account. The

second part of it evaluates the communication cost of adding a new expert to Ep. If this

is the first expert to be chosen (i.e., Ep = /0), we do not consider the communication cost.

After finding the set of experts Ep for all uncovered projects, we select one of the projects

as the winner and add it to the pool of already selected projects. To do that, we select a

project that maximizes the following formula.

λ .
PF(p)

∑e∈Ep C(e)
+ (1−λ ).

b
∑e∈Ep ∑e′∈E Dist(e,e′)

(3.6)

The intuition is the same. We are interested in choosing the project that has a high profit,

needs experts with low salary, and the set of experts responsible for performing the project’s

tasks has small communication cost with existing experts. Now, we are ready to present

Algorithm 4 which returns a group of experts for performing a set of profitable projects

with project pick strategy with the inclusion of communication cost and expert capacity.

The input and output of this algorithm are similar to Algorithm 2.
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Algorithm 4 Cluster Hire with Project Pick Strategy with Communication Cost and Expert
Capacity

Input: set of n experts E = {e1,e2, . . . ,en}, set of m skills S = {s1,s2, . . . ,sm}, set of k
projects P = {p1, p2, . . . , pk}, graph G that models the network of experts, trade-off
parameter λ , capacity of each expert Cap(e), normalization constants a & b, and budget B.
Output: subset of projects P ⊆ P and a group of experts E ⊆ E that maximize
Pro f itCC(P,E ) under the given budget B.

1: E ← /0, P ← /0, b← 0
2: while b < B and P/P 6= /0 do
3: P′← P/P , R←{e | e ∈ E and e /∈ E and C(e)+b≤ B}
4: if R = /0 then
5: return E and P
6: for all p ∈ P′ do
7: Ep← /0, Sp← PS(p), R ′←R
8: while Sp 6= /0 do
9: for all e ∈R ′ do

10: if e covers at least one skill in p then
11: if Ep = /0 then
12: sce← min{Skill(e,p), Cap(e)}

C(e)
13: else
14: sce← λ .min{Skill(e,p), Cap(e)}

C(e) +

(1−λ ). a
∑e′∈Ep Dist(e,e′)

15: else
16: sce← 0
17: e← arg maxe∈R′ sce
18: add e to Ep, update Sp
19: for all p ∈ P′ do
20: if (∑e∈Ep C(e))+b > B then
21: remove p from P′

22: if P′ = /0 then
23: return E and P
24: (p,Ep)← arg maxp∈P′ λ . PF(p)

∑e∈Ep C(e) +

(1−λ ). b
∑e∈Ep ∑e′∈E Dist(e,e′)

25: add p to P , assign skills of experts in Ep to p
26: for all e ∈ Ep do
27: add e to E , update Cap(e), b← b+C(e)
28: while Cap(e)> 0 do
29: s← rarest skill in e which is required by a p in P/P
30: assign skill s to the most expensive p in P/P
31: update Cap(e)
32: return E and P
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In the first line, we initialize three variables E , P , and b, which are responsible for

storing the final group of experts, the selected projects, and amount of budget spent so far,

respectively. The while loop of line 2 iterates until we run out of budget or no project is

left to be covered. In line 3, we first assign all uncovered projects to set P′. We then put

all of the experts in which adding them to E will not violate the budget to set R. If R is

empty, we terminate the algorithm in line 5 as we cannot proceed further and cover any

more projects. The for loop of line 6 starts the process of assigns a score to each project p

in P′. As we discussed before, the score function is a modification of the weighted greedy

set cover algorithm that also takes into account the capacity of experts and communication

cost. Sets Ep, Sp, and R ′ are initialized in line 7. Ep stores the set of experts to perform p.

Sp is a duplicate of the set of required skills in p, in which we try to cover them by adding

experts to Ep. R ′ is a duplicate of R. The while loop of line 8 is executed until no more

skill is required by p (i.e., Sp becomes /0). Line 9 iterates over all experts in R ′ and each

iteration chooses the one that maximizes the modified weighted greedy set cover score. In

lines 9 to 14, we assign a score to each pair of uncovered project p (projects in P/P) and

expert e in R. Later, we choose the highest score and add the associated expert to Ep. If

e does not cover any of the required skills in p (line 12), the score is set to 0 (line 13) as

expert e is useless for project p. If e covers at least one of the required skills in p, then

we calculate the score of e and p according to Equation 3.4. In line 14, we choose pair

(e, p) in which their score sce is maximized among all other pairs. This expert is selected

in line 17 and is added to Ep in line 18. We also update Sp in line 18. After finding the

set of experts for all projects, in lines 19 to 21, we remove the projects in which adding

their associated expert set to E violate the budget constraint. If set P′ becomes empty after

this operation, we terminate the algorithm in line 23. If P′ is not empty, we selects the best

project p in P′ in line 24 according to equation 3.4. In line 25, we add the best project to P

and cover the skills of p. The for loop of line 26 iterates through all experts in Ep. These
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are the set of experts that are responsible for covering the best-selected project in line 24.

In line 27, each expert in Ep is added to E and its capacity is updated. If the expert has

some unassigned capacity, we assign her rarest skill to the most profitable project in lines

28 to 31 until her capacity is full. The motivation of doing so is the same as the last part of

Algorithm 2: once we hired an expert, we prefer to use her maximum capacity.

Illustration 4: In the given set of projects with respective required skills and profit as

represented in table 3.2, determine a group of experts to satisfy all skills required by se-

lected projects from table 3.3 within given Budget B of 100 by the Project Pick Strategy

with Communication Cost and Expert Capacity. (Note: Figure 3.5 indicates the communi-

cation cost between the experts by weighted edges. Lambda = 0.5, and Constant a = 50 &

b = 10.)

Solution:In this method, we make temporary teams for all remaining projects in each

iteration and proceed with the team who achieves the highest score.

Iteration 1: As there is no expert in the team, communication cost will not be consid-

ered. First we calculate scores for all pairs of experts and projects.
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As P3 achieved the highest score in Iteration 1, Experts A & D are selected for the team

and will be utilized for the other projects.

Team after iteration 1 (Figure 3.14):

Figure 3.14: Illustration 4: Team after Iteration 1
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Remaining Budget = 100 - Cost of an Expert A - Cost of an Expert D = 100 - 40 - 40 =

20

Remaining Capacity of Experts after Iteration 1:

• Expert B = 4

• Expert C = 2

Here, the cost of an Expert B is higher than the remaining budget. Therefore Expert B

will not be considered in the further iterations.

Iteration 2:

As Expert C satisfies the requirements of P1, Expert C is selected.

Team after iteration 2 (Figure 3.14):

Figure 3.15: Illustration 4: Team after Iteration 2

Remaining Budget = 20 - 20 = 0

After iteration 2, all the project requirements are satisfied. Hence, the team after the

second iteration will be the final team for this group of projects.
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Final Team = {A, C, D}
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Chapter 4

EXPERIMENTS

In this chapter, we evaluate the performance of our proposed algorithms to find the best

group of experts for the problem of a cluster hire in a network of experts. We create the

input graph (i.e., network of experts) from the DBLP1, XML dataset in the same way

as [3, 7]. The dataset contains information about a set of papers and their authors. Same

as in [3, 7], we only consider papers that are published in major conferences in databases

and data mining: {SIGMOD, VLDB, ICDE, ICDT, EDBT, PODS, KDD, WWW , SDM, PKDD,

CIKM, ICDM}. The dataset contains information about 44K experts. All edges have the

same weight. Note that edge weights, experts’ costs, and projects’ profits are all normalized

to have the same scale. If two authors publish at least two papers together, there will be an

edge between them in the graph. If two experts are not directly connected, we use the value

of the shortest path between them as the communication cost value. The experts are authors

of the papers. The expertise (i.e., skill) of an expert (i.e., author) is extracted from the titles

of her papers. We randomly create a collection of projects in which each of them requires 4

to 9 skills for completion. Each collection contains 10 to 60 projects. For each collection,

we run the experiments 100 times and report the average of the values. Same as in [8], the

cost of an expert is set based on the number of publications of the expert, assuming that the

more publications an expert has, the more expensive she is. The capacity of an expert is

randomly set between 5 to 15. The profit of each project is set randomly between 50 to 100.

In our experiments, we use different values for the budget to see the total profit returned by

each algorithm. The value of λ is set to 0.5 by default unless otherwise stated.

1http://dblp.uni-trier.de/xml/
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4.1 Comparison with Previous Approach

We compare the results with the previous approach, which selects the group among the

various random groups that tend to complete the given set of projects within the required

budget. We compare our results with previous approach implemented in Java and executed

on an Intel Core i7 2.8GHz computer with 16GB of RAM.

4.1.1 Total Profit vs. Budget

In this section, we are evaluating the effect of the budget on the total profit of projects.

Figure 4.1 shows the values of total profit for increasing values of the budget for the dif-

ferent number of projects. Here, for comparison with previous approach we will consider

k projects, where k = {10,25}. We then calculate the total profit for different values of

the budget. The results suggest that our Expert Pick approach achieves a higher total profit

than previous approach when we have a limited budget. For the higher values of the bud-

get, Expert Pick, Project Pick and previous Project-Greedy approach return the same profit.

Moreover, as observed in figure 4.1 and 4.2, by increasing the budget, total profit increases

too. This is because we have more money to hire more experts, and therefore more prof-

itable projects are covered.
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Figure 4.1: Total Profit vs Budget (No. of Projects = 10)

Figure 4.2: Total Profit vs Budget (No. of Projects = 25)

4.1.2 Number of Completed Projects vs. Budget

Figure 4.3 and 4.4 shows the number of completed projects for increasing value of the

budget for a different number of projects. The results suggest that our Expert Pick approach

completes more projects than our Project Pick and previous Project-Greedy approach when
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we have a limited budget. For higher values of the budget, they complete the same number

of projects (almost all the projects are completed).

Figure 4.3: Number of Completed Projects vs Budget (No. of Projects = 10)

Figure 4.4: Number of Completed Projects vs Budget (No. of Projects = 25)
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4.1.3 Discussion

As observed in the above figure 4.1, 4.2, 4.3 and 4.4, previous project-greedy approach

completes the projects with higher total profit. To do so, the approach allocates the experts

with a higher salary to the project, resulting in only a few projects covered in the approved

budget. In contrast, our approach concentrates on picking less expensive experts, so that

we can cover some projects in less budget.

4.2 Experiments with our Improvement

As a baseline for the comparisons, we compare the results with the random algorithm,

which selects the best group among 10,000 random groups that maximize the objective

within the given budget. Since we are the first one to study the problem of CLUSTER HIRE

in a network of experts, there does not exist a prior work to compare our results with. Our

algorithms are implemented in Java and executed on an Intel Core i7 2.8 GHz computer

with 16 GB of RAM.

4.2.1 Total Profit vs. Budget

We start by evaluating the effect of the budget on the total profit of the projects. Figure

4.5, 4.6, 4.7 and 4.8 shows the values of total profit for increasing values of the budget

for different number of projects. In each experiment, we initially create k projects, in

which k = {10,25,40,60}. We then report the total profit for different values of the budget.

Recall that λ is set to 0.5. The results suggest that Project-Pick achieves a higher total

profit than Expert-Pick when we have the limited budget. For higher values of the budget,

they return the same profit. As expected, both Project-Pick and Expert-Pick outperform

the Random algorithm. Furthermore, and as expected, by increasing the budget, total profit
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increases too. This is because we have more money to hire more experts, and therefore

more profitable projects are covered.

Figure 4.5: Total Profit vs Budget (No. of Projects = 10)

Figure 4.6: Total Profit vs Budget (No. of Projects = 25)
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Figure 4.7: Total Profit vs Budget (No. of Projects = 40)

Figure 4.8: Total Profit vs Budget (No. of Projects = 60)

4.2.2 Communication Cost vs. Budget

Now, we study the effect of the budget on communication cost. Figure 4.9, 4.10, 4.11
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and 4.12 shows the values of communication cost for increasing values of the budget for

different number of projects (λ = 0.5). Note that we want to minimize the communication

cost, so the smaller the value, the more collaborative the group of experts are. The results

suggest that Expert-Pick has significant better communication cost. Note that the com-

munication cost of the Random is lower than others due to very small number of selected

experts.

Figure 4.9: Communication Cost vs Budget (No. of Projects = 10)
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Figure 4.10: Communication Cost vs Budget (No. of Projects = 25)

Figure 4.11: Communication Cost vs Budget (No. of Projects = 40)
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Figure 4.12: Communication Cost vs Budget (No. of Projects = 60)

4.2.3 Number of Completed Projects vs. Budget

Figure 4.13, 4.14, 4.15 and 4.16 shows the number of completed projects for increasing

values of the budget for different number of projects (λ = 0.5). The results suggest that

Project-Pick completes more projects than Expert-Pick when we have the limited budget.

For higher values of the budget, they complete the same number of projects (almost all

projects are completed). As expected, both Project-Pick and Expert-Pick outperform the

Random algorithm. Even with the higher budget, Random is not able to complete many

projects. This is because Random does not hire appropriate experts to be assigned to un-

completed projects. Furthermore, and as expected, by increasing the budget, more projects

are completed.
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Figure 4.13: Number of Completed Projects vs Budget (No. of Projects = 10)

Figure 4.14: Number of Completed Projects vs Budget (No. of Projects = 25)
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Figure 4.15: Number of Completed Projects vs Budget (No. of Projects = 40)

Figure 4.16: Number of Completed Projects vs Budget (No. of Projects = 60)

4.2.4 Sensitivity of the Trade-off Parameter λ

Figures 4.17 and 4.18 show the total profit for different values of trade-off parameter
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λ . As expected, by increasing the value of λ , total profit increases as we put more weight

on profit compared to communication cost. Figures 4.19 and 4.20 show the number of

completed projects for different values of trade-off parameter λ . The results suggest that

Project-Pick completes more projects than Expert-Pick when we have smaller λ . Figures

4.21 and 4.22 show communication cost for different values of trade-off parameter λ . By

increasing the value of λ , communication cost increases too. Note that the smaller the com-

munication cost, the more collaborative group of experts we have. Thus, smaller values of

λ put more weights on the communication cost and therefore produces a more collaborative

group of experts rather than generating high profit.

Figure 4.17: Total Profit vs Lambda (λ ) (No. of Projects = 25)
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Figure 4.18: Total Profit vs Lambda (λ ) (No. of Projects = 40)

Figure 4.19: Number of Completed Projects vs Lambda (λ ) (No. of Projects = 25)
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Figure 4.20: Number of Completed Projects vs Lambda (λ ) (No. of Projects = 40)

Figure 4.21: Communication Cost vs Lambda (λ ) (No. of Projects = 25)
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Figure 4.22: Communication Cost vs Lambda (λ ) (No. of Projects = 40)

4.2.5 Exact Algorithm

The problem is NP-Hard problem therefore to optimize the problem using Exact Algo-

rithm generates an infinite combination of teams which leads into infinite time. Hence,

we are considering a limited combination for comparison purpose with our approach. For

this experiment, we consider k projects where each of them requires s skills, so unique set

of required skills varies from s . . .k ∗ s. The number of experts e, let k = 4, s = 4, so the

unique set of required skills varies from 4 . . . 16. Let e = 100. Therefore, the number of

possible combinations will be ek∗s which is 10016 in our example. The results in figure

4.23 and 4.24 suggests that the Exact Algorithm achieves higher total profit than Expert-

Pick and Greedy-Pick algorithm. There is an increase in total profit with increasing the

budget where we achieve an almost optimal solution with our approach compared to the

exact algorithm.
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Figure 4.23: Exact Algorithm vs Expert Pick

Figure 4.24: Exact Algorithm vs Project Pick

4.2.6 Discussion

Both Expert-Pick and Project-Pick have the polynomial runtime. The results suggest that

Project-Pick requires a higher running time than Expert-Pick (4.25). Both our approaches

take a bit higher running time than previous project greedy approach due to inclusion of
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capacity and communication cost which causes high number of iterations. Regarding the

results, when we have enough budget, they both generate the groups of experts with high

profit and low communication cost. However, when the budget is limited, Project-Pick

produces better results, whereas Expert-pick generates a little better results for the higher

budget and the higher Lambda (λ ) values.

Figure 4.25: Running Time Comparison
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we extended the problem of CLUSTER HIRE to the context of a network of

experts. Given a set of projects and a set of experts, the goal is to find the most collabora-

tive group of experts that maximizes the total profit under the given budget to hire experts.

We are the first to study this problem in the context of networks with communication cost

among experts and capacity of each expert. Optimizing the communication cost as well as

the total profit turns the problem into a bi-objective optimization problem. We first com-

bine the two objectives using a trade-off parameter λ that determines which optimization

objective is more important. We then propose two greedy algorithms to find the best group:

• Expert-Pick selects an expert in each iteration as long as we don’t exceed the

budget.

• Project-Pick selects a project to be covered in each iteration.

For each of these algorithms, we design proper scoring functions to rank the experts and

projects to be selected. Our experiments on DBLP shows that both of these algorithms are

mostly able to select a group of experts to optimize both of the objectives.

5.2 Future work

In our work, we introduced parameter such as communication cost among the experts

which is an undirected edge associated between the two experts in a network. In the future,
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we can incorporate a directed edge among the experts by considering a communication cost

from Expert A to Expert B and vice-a-versa which improves the quality of work.

Moreover, we have used a graph with the network of experts in our work, and possible

improvements for the future include the levels of the expert (i.e., manager of the team who

coordinates a group of individual) by using a tree structure. For instance, the manager is

considered as a parent node and a group of individuals as child nodes in a tree. This feature

leads to the hiring of the appropriate experts at each level of the project.
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