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ABSTRACT 

ULTRASONIC VOCALIZATIONS AND STRESS RESILIENCE: BEHAVIORAL AND 

NEUROBIOLOGICAL CORRELATES 

by 

Nathaniel P. Stafford 

University of New Hampshire, May, 2018 

 

When we are exposed to a traumatic or stressful life event, some individuals may develop 

symptoms of anxiety or depression while others may appear unaffected.  In humans and 

nonhuman organisms, the ability to cope plays a large role in how an organism responds to a 

stressor, and this coping may be influenced by innate mechanisms.  We have identified the use of 

ultrasonic vocalizations during intermittent swim stress (ISS) to forecast innate behavioral 

differences in stress reactivity.  Vocalizing rats are resilient as they exhibit less cognitive 

impairment, motivational changes, and fewer anxiety-like behaviors typically observed post-ISS.  

Resilience should be associated with an active, stress buffering coping strategy during ISS, 

whereas non-vocalizing should exhibit more passive behaviors.  These active or passive 

behaviors are driven by a corticolimbic serotonergic circuit originating in the dorsal raphe 

nucleus.  Active coping is associated with reduced dorsal raphe serotonin activity, which leads to 

reduced post-stress impairment.  We hypothesized vocalizing rats would engage in active coping 

responses, display fewer anxiety-like behaviors, and exhibit decreased serotonergic activation in 

the dorsal raphe nucleus compared with non-vocalizing rats.  We found vocalizing rats exhibited 

reduced post-stress social anxiety, but engaged in passive coping during stress.  Vocalizing rats 
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further exhibited increased serotonergic activity in stress-responsive subregions of the dorsal 

raphe nucleus compared to non-vocalizing and unstressed controls.  These data are the first to 

verify the coping strategy and associated serotonergic activity of vocalizing rats as a novel model 

of stress resilience.
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I. INTRODUCTION 

Exposure to traumatic psychological stress is a significant risk factor in the etiology of 

depression, anxiety, and trauma-related disorders, such as posttraumatic stress disorder (PTSD) 

(Kessler et al., 2009).  No one individual is “stress-free,” and most will experience a significantly 

stressful situation at some point in their lifetime (Bonanno, Westphal, & Mancini, 2011).  

Furthermore, nearly 40 million in the U.S. will suffer from a major depressive episode or 

symptoms of anxiety as a result of acute distress (Kessler et al., 2009).  Unfortunately, nearly 

50% of these stress vulnerable individuals will also fail to respond to many of the currently 

available pharmacological therapeutic agents (Barlow, Allen, & Choate, 2016; Berton & Nestler, 

2006).  It is therefore critical that novel treatment options are considered.  One of these options is 

a shift toward promoting proactive coping strategies to build resilience and buffer against the 

negative consequences of stress (Waugh & Koster, 2015).  Some persons espouse a clear innate 

resilience or resistance to stress (Bonanno, 2008) and understanding the innate neurobiological 

mechanisms that afford stress resilience may direct toward novel treatment paradigms for those 

non-responsive to current therapeutic strategies.   

Animal models of stress provide invaluable insight into the neurobiology of stress 

vulnerability and resilience, and the recent increase of the study of resilience is considered by 

some as a needed paradigm shift (Drugan, Christianson, Warner, & Kent, 2013; Ebner & 

Singewald, 2017; Koolhaas, de Boer, Buwalda, & Meerlo, 2017; Pfau & Russo, 2015).  

Understanding resilience requires a behavioral reference, or performance metric, such as a 

change from pre-stress to post-stress functioning.  However, behavioral reactivity during stress, 

such as adopting or learning a behavioral strategy to alleviate the stressor, is critical to 

interpreting post-stress functioning.  These behavioral changes during stress are considered to 
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model coping strategies (Commons, Cholanians, Babb, & Ehlinger, 2017; Puglisi-Allegra & 

Andolina, 2015).  The inability/ability to cope with a stressful experience is critical to the 

development of, or resistance to developing, depressive-like, anxiety-like or PTSD-like 

symptoms (Baker & Berenbaum, 2007; Waugh & Koster, 2015).   

Coping 

Clinical research has identified two forms of coping that are critical with respect to 

adaptation and reaction to challenge; problem-focused or emotion-focused coping (Lazarus, 

2000; Taylor & Stanton, 2007).  Resilient individuals tend to adopt problem focused strategies to 

attenuate and control the stressor, while vulnerable individuals tend to employ emotion focused 

strategies to suppress negative emotions or distract from the situation when they perceive the 

situation is uncontrollable (Bonanno et al., 2011).  Preclinical stress paradigms model coping by 

assessing the ability of an organism to learn a stress control response (i.e., terminate the stressor) 

or by assessing struggling/escape attempts and dominant behaviors.  The inability to learn or 

escape results in a passive behavioral strategy that is considered analogous to “giving in” to the 

stressor (Baker & Berenbaum, 2007; Staiger, Melville, Hides, Kambouropoulos, & Lubman, 

2009).   

Behavioral Models 

The way in which an individual or organism responds to a stressor is influenced both by 

prior experience and innate traits.  Learning from prior experience is adaptive to adopt 

behavioral strategies and mitigate negative consequences when faced with subsequent stressful 

situations (Maier, 2015).  However, in order to survive that initial stressor exposure, an organism 

must engage in an innate adaptive strategy (Koolhaas et al., 2017).  Adaptive behavioral 

strategies in nonhuman animals, particularly in rodents, can be revealed during an initial stressful 
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experience (Drugan, Basile, Ha, Healy, & Ferland, 1997; Minor, Dess, Ben-David, & Chang, 

1994; Paul et al., 2011; Warden et al., 2012), which is stable across non-stress periods (Castro et 

al., 2012; Drugan, Skolnick, Paul, & Crawley, 1989), but may also shift in response to repeated 

challenges (Nishimura, Tsuda, Oguchi, Ida, & Tanaka, 1988; Paul et al., 2011; Roche, 

Commons, Peoples, & Valentino, 2003). 

Learned Resilience 

Stressor controllability is one rodent model of active coping that provides an ability to 

learn an instrumental response to terminate a shock or swim stressor (see Drugan et al., 2013 or 

Maier and Seligman, 2016 for review).  If an escape response is provided, learning the escape 

responses protects against development of behavioral depression (cognitive/motivational deficits; 

(Christianson, Paul, et al., 2008; Drugan et al., 2005, 1997; Maier, Albin, & Testa, 1973; Weiss, 

1968)), inhibits fear responses (Maier, 2001), and reduces post-stress anxiety-like behavior such 

as neophobia (Jackson, Alexander, & Maier, 1980; Paré, 1994) or social avoidance 

(Christianson, Paul, et al., 2008; Christianson, Drugan, Flyer, Watkins, & Maier, 2013; 

Christianson, Thompson, Watkins, & Maier, 2009; Short & Maier, 1993) and prevents the 

activation of endogenous opioid-mediated stress-induced analgesia (Drugan, Ader, & Maier, 

1985).  The ability to control the initial stressor is considered analogous to resilience as 

controllability “immunizes” against developing depressive-like or anxiety-like behaviors when 

the organism is faced with subsequent inescapable stress (Amat, Aleksejev, Paul, Watkins, & 

Maier, 2010; Christianson et al., 2013; Williams & Maier, 1977) and may last for several weeks 

(Lucas et al., 2014; Maier, 2001; Moye, Hyson, Grau, & Maier, 1983).  
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Innate Resilience 

Although controllability clearly promotes stress resilience, the opportunity to actively 

control a stressful situation is not always present.  Exposure to an inescapable stressor can result 

in a bimodal distribution of approximately 50/50 resilient/vulnerable to developing post-stress 

depressive-like or anxiety-like behaviors post-stress (Drugan, 2000; Drugan et al., 1989; Levay 

et al., 2006).  Rats develop innate preferential active or passive behavioral strategies during 

stress exposure.  During an acute (single, short duration) forced swim, resilient rats engage in 

active escape attempts (struggling against cylinder wall, swimming and diving) (De Kloet & 

Molendijk, 2016).  During social stress (intraspecific agonistic encounters), resilient rats exhibit 

dominant or aggressive behaviors.  Vulnerable rats are considered to adopt more passive 

behaviors indicated by floating during swim stress or exhibit subordinate behaviors during social 

stress (Commons et al., 2017; De Kloet & Molendijk, 2016; Koolhaas et al., 2017; Wood & 

Bhatnagar, 2015).  Defensive burying is considered an active coping strategy to defend against 

the painful stimulus, while immobility and avoidance are passive strategies (Cohen et al., 2017).  

An initial active behavioral strategy is associated with resilience, because these organisms 

continue to “resist” developing depressive-like behaviors in subsequent posttests (Drugan et al., 

1989; Wood, Walker, Valentino, & Bhatnagar, 2010).   

Neurobiology 

Coping Circuits  

One of the primary neurobiological circuits associated with coping involves a reciprocal 

cortico-limbic serotonergic pathway originating in the pontine dorsal raphe nucleus.  Active 

behaviors are generally considered a product of reduced serotonergic activity while passive 

behaviors are produced by enhanced serotonin activity (Puglisi-Allegra & Andolina, 2015). 
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Active behavioral output is a product of initial corticotropin releasing factor (CRF) binding to 

CRF type-I receptors.  CRF-I receptors are highly selective to CRF during periods of acute 

release as part of an initial fight or flight response, and have inhibitory properties on dorsal raphe 

serotonin neurons (Donner et al., 2016) via binding to and causing release of GABA from local 

GABAergic interneurons colocalized with serotonin neurons (Homberg & Contet, 2009).  The 

experience of learning an adaptive escape response that terminates the stressor inhibits further 

serotonergic output.  Under these learning conditions, or as arousal decreases, prelimbic 

glutamatergic projections to dorsal raphe reduce activity of serotonin neurons through tonic 

inhibition via inhibitory 𝛾-amino-butyric acid (GABA) interneurons (Weissbourd et al., 2014; 

Zhou et al., 2017).  This prelimbic glutamatergic input on dorsal raphe GABAergic interneurons 

inhibits serotonin activity (Amat, Paul, Watkins, & Maier, 2008; Baratta et al., 2009), thereby 

inhibiting release in forebrain projection areas, such as basolateral amygdala (Cabib & Puglisi-

Allegra, 2012; Puglisi-Allegra & Andolina, 2015).   

The inability to adapt to the stressor by learning or resisting results in continued CRF 

release, and a shift of CRF binding to type-II receptors.  CRF-II receptors are excitatory on 

serotonin neurons, and as such continued CRF-II binding results in increased extracellular 

serotonin within dorsal raphe (Amat, Matus-Amat, Watkins, & Maier, 1998; Hammack et al., 

2003; Waselus, Nazzaro, Valentino, & Van Bockstaele, 2009).  Stress-induced serotonin release 

binds to serotonin type -1A receptors on prelimbic glutamatergic cell bodies inhibiting them, 

which removes prefrontal inhibition of dorsal raphe serotonin cell bodies.  Continued serotonin 

release ultimately leads to desensitization of inhibitory serotonin type -1A and 1B autoreceptors 

on serotonin cell bodies and excitatory serotonin type-1A and type-2C on GABA neurons, which 
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disrupts the local negative feedback and leads to over activation of serotonergic output from 

dorsal raphe (Hassell et al., 2017; Liu, Jolas, & Aghajanian, 2000; Rozeske et al., 2011). 

Dorsal Raphe Neurobiology 

The circuitry of active or passive behaviors is generally considered in a holistic context of 

the dorsal raphe nucleus.  Reduced serotonin activity is associated with active behaviors, while 

passive behaviors are associated with increased serotonin activity.  These effects are noted in 

specific areas of dorsal raphe, and it is well established that dorsal raphe is uniquely functionally 

topographically organized into distinct subregions (Hale & Lowry, 2011).  These regions are 

functionally organized based upon afferent input and efferent projections via tracing and 

stimulation studies (McDevitt et al., 2014; Warden et al., 2012), as well as via functional 

activation measured using cFos (an immediate early gene widely regarded as an index of 

neuronal activity) protein product expression in the serotonin cell nucleus (Kelly, Donner, Hale, 

& Lowry, 2011; Kovács, 2008), and mRNA expression of the serotonin synthesis rate limiting 

enzyme, tryptophan hydroxylase (Donner et al., 2018).   

Dorsal raphe serotonergic populations can be subdivided into 5 subregions (dorsal, 

ventral, ventrolateral, caudal, and interfasicular nucleus) extending to different points along its 

rostral-caudal axis (Abrams, Johnson, Hollis, & Lowry, 2004; Paxinos & Watson, 1998).  Local 

inhibitory GABA interneurons are distributed throughout all of these subregions, with few to 

none in the interfasicular nucleus  (Roche et al., 2003; Soiza-Reilly & Commons, 2014; Stamp & 

Semba, 1995).  Furthermore, dorsal raphe serotonin neurons may be sensitive to stimulus 

intensity, as traumatic stressors, such as inescapable tail shock or shock prod induce more robust 

widespread activation than swim stress or a mild stressor, such as open field exposure 

(Bouwknecht et al., 2007; Cohen et al., 2017; Grahn et al., 1999; Roche et al., 2003). 
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Particular dorsal raphe subregions are responsive to different stressor types, implicated in 

active/passive coping, as well as post-stress anxiety.  Inescapable tail shock produces increased 

serotonergic activity of the caudal subregion, while active coping inhibits serotonin release in the 

rostral extent of the dorsal subregion and in the caudal subregion (via local GABAergic 

mechanisms (Amat, Paul, Zarza, Watkins, & Maier, 2006; Rozeske et al., 2011)).  Rats exposed 

to a shock prod that engage in active coping strategies (defensive burying) have higher activation 

in the caudal extent of dorsal subregion, while activity is reduced in the midrostral extent (Cohen 

et al., 2017).  Acute continuous swim stress with cold (19ºC), ambient (25ºC), or warm (35ºC) 

water activates mid-rostral levels of dorsal, ventral, and ventrolateral subregions as well as the 

caudal subregion (Drugan, Hibl, et al., 2013; Kelly et al., 2011), and ventrolateral subregions 

appear to be involved in passive behaviors induced by swim and other inescapable stressors.  A 

single 5 min forced swim in ambient water (25ºC) results in greater activation of serotonin 

neurons in dorsal and ventrolateral subregions (Kelly et al., 2011).  Acute social defeat results in 

widespread activation of dorsal, ventral, ventrolateral, and caudal subregions with increased 

serotonergic activity in ventrolateral wings associated with passive behaviors during defeat (Paul 

et al., 2011).   

The response of dorsal raphe serotonergic neurons to stress is partially dependent upon 

the stressor type, but dorsal, caudal, and ventrolateral subregions are consistently implicated in 

coping.  Furthermore, desensitization of serotonin type-1A and 1B inhibitory autoreceptors to 

produce passive coping, as well as prelimbic glutamatergic modulation of GABAergic 

interneurons, occurs primarily in dorsal and caudal subregions (Donner et al., 2018; Rozeske et 

al., 2011).  Learning an active coping strategy “quiets” serotonin neurons in those regions.  
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Therefore, the serotonergic origins of the “coping circuit” described above likely reside within 

one of those regions. 

Novel Model of Resilience 

Recently, our laboratory has identified a novel model of innate stress resilience to 

intermittent swim stress (ISS).  ISS was developed as a hybrid of the inescapable tail shock 

(learned helplessness) and forced swim (behavioral despair) models of stress (Brown, Hurley, 

Repucci, & Drugan, 2001).  As a model of inescapable stress, ISS exposes rats to a series of 

forced swims in cold (15ºC) water.  ISS produces a bimodal distribution of post-stress behavioral 

differences with some rats exhibiting vulnerability while others exhibit resilience (Christianson 

& Drugan, 2005; Levay et al., 2006).  Vulnerable rats demonstrate cognitive deficits post-ISS in 

the form of impaired instrumental escape learning (Drugan, Christianson, Stine, & Soucy, 2009; 

Levay et al., 2006; Stiller, Drugan, Hazi, & Kent, 2011), compromised spatial learning (Drugan, 

Warner, Papallo, Castracane, & Stafford, 2014), reduced active coping behavior in a subsequent 

forced swim (Drugan et al., 2014), and enhanced social avoidance (Stafford, Jones, & Drugan, 

2015).  Resilient rats do not display these deficits and exhibit superior learning and pro-social 

behaviors.   

In several early ISS studies, our laboratory found some rats emitted ultrasonic 

vocalizations (USVs) (Christianson & Drugan, 2005), and formal analysis of these effects 

demonstrated rats that emitted 22-kHz vocalizations did not display expected instrumental 

learning deficits.  Rather, these vocalizing rats exhibited superior learning (Drugan et al., 2009).  

The generality of this putative “resilience” was tested in three subsequent experiments that found 

superior spatial learning (Drugan et al., 2014), protection from ISS-induced behavioral despair 

(Drugan et al., 2014) and social anxiety (Stafford et al., 2015).  In each of these studies, 
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approximately 25-50% of ISS subjects vocalized, which is consistent with the behavioral 

expression of innate differences in resilience and vulnerability in shock (Drugan, 2000) and 

swim (Drugan et al., 1989) paradigms.   

The emission of 22-kHz USVs as a behavioral marker of resilience is a novel 

interpretation of these vocalizations.  Aversive stimuli such as mild handling (Brudzynski & 

Ociepa, 1992), air puff (Brudzynski & Holland, 2005), fever inducing prostaglandin E2 

administration (Blumberg & Moltz, 1987) or lipopolysaccharide administration (Bassi et al., 

2012), benzodiazepine receptor inverse agonists (Beckett, Aspley, Graham, & Marsden, 1996; 

Miczek, Weerts, Vivian, & Barros, 1995), foot shock (Jelen, Soltysik, & Zagrodzka, 2003), and 

intraspecific agonistic encounters (Portavella, Depaulis, & Vergnes, 1993) all result in 22-kHz 

USVs and are considered to convey an anxiety-like state.  Emission of 22-kHz USVs serve an as 

ethological long-range tool to communicate the presence of immediate threat or danger to 

conspecifics (Endres, Widmann, & Fendt, 2007; Litvin, Blanchard, & Blanchard, 2007).  Rats do 

not emit these vocalizations in the direct presence of a threat (Litvin et al., 2007).  Therefore, if 

the rat is vocalized it likely successfully fled or defended itself against the threat.  In the context 

of resilience to ISS, an alternative interpretation is that the emission of 22-kHz USVs may occur 

concomitantly with activation of neurobiological pathways associated with a particular coping 

strategy that is beneficial to the swim stress model.  

Several lines of research have also demonstrated that 22-kHz vocalizations serve a 

thermoregulatory function and are involved with hypothalamic cooling after central pro-

inflammatory (e.g., prostaglandin E2) administration (Blumberg & Moltz, 1987) or fever due to 

peripheral lipopolysaccharide injection (Bassi et al., 2012).  Furthermore, one study found rats 

that recovered quickest from fever uniquely emitted 22-kHz USVs, and these rats engaged in 
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dominant social behaviors during a subsequent social interaction (Bassi et al., 2012).  These 

studies suggest rats that emit these vocalizations during ISS may be physiologically capable of 

recovering from threat exposure as a form of stress resilience. 

Current Study 

Several studies from our laboratory demonstrated that ISS produced groups of rats that 

are behaviorally vulnerable or resilient when challenged in a post-stress test.  Resistance to 

developing ISS-induced depressive-like or anxiety-like behavior is consistent in rats that emitted 

22-kHz USVs during ISS.  Given that 22-kHz vocalizations are indicative of an anxiety-like state 

(Brudzynski & Chiu, 1995; De Vry, Benz, Schreiber, & Traber, 1993; Jelen et al., 2003; Naito, 

Nakamura, Inoue, & Suzuki, 2003), it is not immediately clear what mechanism affords 

resilience to ISS in vocalizing rats.  One hypothesis for USV-associated resilience is that 

vocalizing rats respond to ISS by adopting a more active behavioral strategy compared with non-

vocalizing rats.  Others have found in response to an interoceptive stressor (fever), 22-kHz USVs 

were emitted by dominant and less socially anxious rats that exhibited quicker recovery period 

from fever (Bassi et al., 2012).  USV-emitting rats engaged in greater social exploration post-

ISS, therefore, it is likely these rats exhibited an active phenotype.   

In order to test the active coping hypothesis, two experiments were conducted to test the 

central hypothesis that active coping is employed during ISS by rats that emit 22-kHz 

vocalizations, and this active behavioral strategy is associated with reduced activation of 

serotonin neurons within dorsal raphe.  Experiment 1 tested the hypothesis (hypothesis 1) that 

USV-emitting rats engage in active behaviors during ISS, which serve to protect against the 

anxiety-inducing effects of the stressor.  Experiment 2 tested two hypotheses that active coping 

during ISS is associated with specific function of dorsal raphe.  Specifically, experiment 2 tested 
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the hypotheses that resilient rats engaging in active coping would exhibit reduced serotonergic 

activation (hypothesis 2) and greater GABAergic activation (hypothesis 3) of dorsal and caudal 

subregions of dorsal raphe.  
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II. GENERAL METHODS 

 
Materials 

Subjects 

A total of 143 adult male Sprague Dawley rats (SAS Derived, Charles River Labs, 

Kingston, NY, USA) were used as experimental subjects in the study.  Rats weighed 275-400 g 

and were approximately postnatal day 75 (±5 days) at the time of testing.  Juvenile Sprague 

Dawley males (PD 28-32) served as social exploration stimuli in the social exploration tests.  

The vivarium was maintained on a 12-hour light/dark cycle (lights on 07:00) with cool 

fluorescent bulbs that produced ambient light of 366-400 lx.  For all rats, food and water were 

available ad libitum for the duration of the experiment.  All procedures were in accordance with 

the Guide for the Care and Use of Laboratory Animals, Eighth Edition (Institute for Laboratory 

Animal Research, The National Academies Press, Washington, DC, 2011) and were reviewed 

and approved by the University of New Hampshire Institutional Animal Care and Use 

Committee (appendix A).   

Surgical procedures 

Subjects were anesthetized with ketamine/xylazine (70/7 mg/kg) and a 2 cm lateral 

incision was made along the midline at the border between the abdomen and lower abdomen and 

a core body temperature datalogger was inserted free-floating.  The peritoneal muscle wall was 

sutured closed using dissolvable suture followed by nonabsorbable suture to close the skin.  Rats 

received a 1ml/kg injection of 5mg/ml atipamezole to reverse xylazine sedation.  Burtorphanol 

tartrate at 0.5mg/kg was administrated i.p. immediately following surgery to manage post-

operative pain and lidocaine was applied around the surgical site to reduce manipulation of 

sutures by the animals.   
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Apparatus 

Social exploration pretest and posttest were conducted in identical test chambers, which 

consisted of a plastic tub cage 40.6×20.3×20.3 cm (l×w×h), wire lid, and 3 cm of wood shaving 

bedding free of food and water.  The room was lit by cool fluorescent bulbs and light penetration 

into the test chamber was 200-300 lx. A camera that was mounted above the apparatus recorded 

behavior during each test session.  

Intermittent swim stress was conducted in two acrylic cylinders 21×42 cm (d×h) with a 

¼-inch galvanized wire mesh at the bottom of each cylinder suspended over a tank 80.6×45.7×

28.6 cm (l×w×h) filled with water maintained at 15±1 °C 

(Figure 1).  The apparatus was controlled by a custom 

Arduino software.  The room was lit by cool fluorescent 

bulbs positioned directly above the swim cylinders (subjects 

were shadowed by the ceiling of the apparatus) resulting in 

ambient light of 200-300 lx. A camera that was mounted 

above the apparatus recorded behavior during each test 

session. 

 

Vocalizations were recorded using an Ultramic 200K high frequency ultrasound 

microphone with integrated digital to analog converter (Dodotronic, Pavia, Italy) into the Sound 

Emission Analyzer program (Centro Interdisciplinare di Bioacustica e Ricerche Ambientali, 

Pavia, Italy).  Recordings were later visualized and analyzed using Raven (Cornell Lab of 

Ornithology, Cornell University, Ithaca, NY, USA).   

Figure 1. Intermittent swim stress 
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Methods 

General Procedures 

All rats arrived at the vivarium at postnatal day 21 and were allowed to acclimate to the 

vivarium for 5 weeks prior to experimentation.  Rats were group housed 4 per cage, weighed 

weekly, and handled twice weekly (to mark tails for identification) randomly by all 

experimenters.  Rats were individually housed post-op for the remainder of the experiment and 

not manipulated except for transport to the experiment room.  Cage bedding type/brand remained 

consistent and was changed twice weekly by the same husbandry staff individual throughout the 

duration of the experiment.  All surgical procedures occurred between 09:00-14:00.  In order to 

limit potential cohort effects on vocalizations and behavioral endpoints, both experiment 1 and 

experiment 2 were conducted in tandem (rats arrived in cohorts approximately n=20 and 

randomly assigned to experiment 1 or experiment 2 procedures prior to manipulation).   

Social exploration tests were conducted between 09:00-12:00 and ISS was conducted between 

08:00-14:00.  Adults were transported to the test chamber and acclimated for 1 h after which a 

juvenile was placed into the chamber and behavior scored for 3 min.  Juvenile stimuli were 

utilized for a maximum of 4 tests and adults were never exposed to the same juvenile more than 

once.   

Rats were weight-matched and assigned to ISS, confined conspecific, sham-ISS, or home 

cage control.  In order to emit USVs, ISS rats require a confined conspecific, which were paired 

(weight matched) with the ISS rat and were exposed to the apparatus in tandem in the absence of 

water.  Sham-ISS were paired (weight matched) and experienced identical treatment as ISS in 

the absence of water.  Home cage control subjects were left undisturbed in the vivarium.  ISS 

rats were exposed to 80 swim trials.  Each swim trial consisted of a 5 s forced swim in which the 
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cylinder was submerged to a depth of 25 cm.  Trials were presented at a variable 60 sec (10-110 

s) inter-trial-interval.  USVs were recorded from ISS, confined conspecific, and sham-ISS rats 

during the entirety of apparatus exposure.   

Behavioral Analyses 

Social exploration tests were scored in real time by a single trained experimenter blind to 

group membership that has previously met interrater reliability of r = 0.95.  Social exploration 

was scored via custom written open-source reaction time counter in Python v2.2.7 on OS 

X.  Exploratory adult behaviors directed at the juvenile were quantified.  Total times the adult 

engaged in the following behaviors were summed and each subject was assigned a total social 

exploration score: sniffing (direct snout contact against any portion of the juvenile and primarily 

observed directed at anogenital region, pinning (minimum of two fore-paws against juvenile), 

allogrooming (adult grooming the juvenile), and chasing. 

Intermittent swim stress recordings were manually analyzed for instances of immobility, 

swimming, or climbing during each of the 5 s swim trials by a single trained experimenter blind 

to vocalization condition that has previously met interrater reliability of r = 0.95.  Immobility 

was defined as remaining stationary in the cylinder with minimal movements to keep the head 

above water and the body adopting a horizontal posture.  Swimming was defined as 1) lateral 

movements across the radius or perimeter of the cylinder with the body adopting a horizontal 

posture, or 2) diving in which the subject submerged part of all of the body, or 3) any movement 

while submerged.  Climbing was defined as vigorous forelimb movement against the side of the 

cylinder in which the fore paws must break the surface of the water and the body adopted a 

vertical posture.  Behaviors were scored using a binary scheme (1=behavior occurred, 

0=behavior did not occur).  
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Per our previous experiments, ISS rats that emitted any 22-kHz USV were designated 

into the “ISS/USVs” group, while remaining rats were included the “ISS/No-USVs” group 

(Drugan et al., 2014; Stafford et al., 2015).  Vocalizing rats emitted between 10-150 separate 

USVs throughout the ISS session.  USVs were manually marked as separate, discrete calls based 

upon a downward frequency sweep indicating the onset of a vocalization with an interval 

vocalization interval of 10 ms.  A typical vocalization consisted of 19-kHz – 26-kHz bandwidth 

emitted in long-pulse trains of 300 ms – 1000 ms in duration.   

Core body temperature was recorded via SubCue dataloggers (Canadian Analytical 

Technologies Inc., Calgary, Alberta, CA) at 10 min intervals.  Recorded temperatures were 

calibrated using the formula (measured temp - intercept)*(slope) using specific intercept and 

slope values each datalogger provided by the manufacturer.  Data were then manually exported 

and matched to a 1 h baseline (24 h before testing), and social exploration pretests and posttests 

(acclimation period to 1 h after testing).  For both experiments body temperature was assessed 1 

h prior to ISS.  In experiment 1 body temperature was assessed for 8 h post-ISS, while in 

experiment 2 temperature was assessed up to perfusions (90 min) post-ISS.  

Data Analyses 

All behavioral and temperature data were analyzed using Prism version 7.0 (GraphPad 

Software, La Jolla, CA, USA), while cell count data were analyzed using SPSS version 25.0.  

Statistical significance was accepted at p < 0.05 for all tests.  Family-wise error for multiple 

comparisons were adjusted using the Holm’s-Sidak method (Abdi, 2010).   
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III. EXPERIMENT ONE 

 
Experiment 1 was designed to replicate our previous finding that 22-kHz USVs emitting 

during ISS predicted increased post-stress social exploration and extend our previous report by 

investigating coping strategies during ISS that may afford stress resilience.  Similar to others 

(Christianson, Paul, et al., 2008; Christianson et al., 2013, 2009), we interpreted in our previous 

report and the current study a reduction in social exploration from baseline as a social anxiety 

response and as vulnerability to the negative consequences of ISS, while a positive change or no 

change from baseline was interpreted as a lack of social anxiety and considered stress resilience 

(Stafford et al., 2015).  We hypothesized following these previous studies that vocalizing rats 

engaged in an active coping strategy during ISS that protected against post-ISS anxiety.  

Exposure to inescapable stress, such as tail shock results in social anxiety, while active 

behavioral control to terminate the stressor protects against it (Christianson, Paul, et al., 2008; 

Christianson et al., 2013, 2009).  During a forced swim, rats typically engage in three behavioral 

subsets: immobility, swimming, and climbing.  The latter two behaviors are considered active 

behaviors associated with resilience, while immobility is considered an analogue of behavioral 

depression (Drugan, Christianson, et al., 2013; Drugan et al., 2014).  Therefore, we hypothesized 

that vocalizing rats are protected against ISS-induced anxiety and related deficits by engaging in 

active coping behaviors during stress exposure.   

Methods 

Procedure 

The timeline for experiment 1 is depicted in Figure 2.  A total of 70 adult rats were used 

in this study consisting of ISS (ISS/USVs, n=7; ISS/No-USVs, n=16), confined conspecific (CC, 

n=23), sham-ISS (S-ISS, n=12), or home cage control (HCC, n=12).  Two CC rats were removed 
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after the ISS session due to computer malfunction.  A subset of rats underwent datalogger 

implantation (ISS/USVs, n=4; ISS/No-USVs, n=8; CC, n=12; S-ISS, n=8; HCC, n=8) and were 

allowed to recover for 1 week before experimentation.  After recovery, rats were tested in the 

social exploration, followed 24 h later by ISS or control conditions.  Following ISS, rats were 

towel-dried and returned to the vivarium (controls were briefly handled in a towel).  Twenty-four 

hours after ISS or control, rats were again tested in the social exploration.  

 
Figure 2.  Timeline for experiment 1 

 
Statistical Analyses 

Social exploration pretests were analyzed via one-way analysis of variance (ANOVA).  

To capture the degree of change in social exploration from pretest to posttest, the percent change 

from baseline [((posttest-pretest)/pretest)*100] was calculated and analyzed via ANOVA.  

Behaviors during ISS trials were analyzed by first calculating 10 trial blocks for active (sum of 

swimming and climbing) or passive (immobility) behaviors.  Active and passive behaviors 

between ISS/No-USVs and ISS/USVs were tested using two-way repeated measures ANOVA 

with treatment (USV emission) as the between-subjects variable and trial block as the within-

subjects variable.  All temperature data were analyzed via repeated measure ANOVA with 

treatment as the between-subjects variable and time as the within-subjects variable.  Tables 

presenting pairwise comparisons of means for behavioral data are available in appendix B.   

Surgery

40 days

Acclimation

7 days

Recovery

24 h

ISS

24 h

Pretest Posttest
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Results 

Social Exploration 

Pretest values were equivalent between groups [F(4,65) = 0.079, p = 0.988], but there 

was a significant effect of treatment on social exploration percent change from baseline after ISS 

[F (4,65) = 4.167, p = 0.005].  Group differences were further tested with all possible pairwise 

comparisons.  Rats that did not vocalize exhibited a significant change in social exploration time 

(Figure 3) compared with ISS/USVs (p < 0.001), confined conspecific (p < 0.001), sham-ISS (p 

= 0.015), and home cage 

controls (p = 0.02).  Non-

vocalizing rats exhibited an 

11.48% decrease from 

baseline, while vocalizing rats 

increased 11.02% from 

baseline.  

 

 

Intermittent Swim Stress 

There was a significant effect of treatment [F(1,18) = 14.79, p < 0.001] and trial 

[F(7,126) = 2.339, p = 0.028] and nonsignificant treatment x trial interaction on active behaviors 

during ISS [F(7,127) = 1.604, p = 0.140].  Planned comparisons were conducted to assess 

differences in active or passive behaviors at each trial block.  Vocalizing rats specifically 

engaged in significantly less active behaviors (Figure 4A) than non-vocalizing rats between trial 

blocks 2-6 (trials 11-60; all p’s < 0.05).  For passive behaviors (Figure 4B), there was also a 

Figure 3. Mean (± SEM) social exploration (in s) during the 3 
min test. * indicates significantly different from all other groups 
(p < 0.05). 
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significant effect of treatment [F(1,18) = 13.69, p = 0.002] and time [F(7,126) = 2.319, p = 

0.029], but the interaction was nonsignificant [F(7,126) = 1.206, p = 0.305].  Vocalizing rats 

engaged in greater passive behaviors between trials 31-40 compared with non-vocalizing rats (p 

= 0.022).   

 
Figure 4. Mean (± SEM) active behaviors (A) and passive behaviors (B) during ISS aggregated 
into 8 blocks of 10 trials.  * indicates significantly different from ISS/No-USVs group (p < 0.05). 

Core Body Temperature 

Baseline measurements indicated all rats had equivalent core body temperature prior to 

manipulation as there was no effect of treatment [F(4,36) = 0.601, p = 0.664], time [F(5,180) = 

1.586, p = 0.166], however the treatment x time interaction was significant [F(20,180) = 2.11, p 

= 0.005], which reflected a change due to the end of the dark cycle.   

Temperature fluctuated during the social exploration pretest (Figure 5A) as a significant 

effect to time was observed [F(12,432) = 43.42, p < 0.001].  Importantly, there was no effect of 

treatment [F(4,36) = 0.600, p = 0.665], indicating rats in each experimental group were 

equivalent on pre-stress social exploration.  In addition, the interaction was significant 

[F(48,432) = 1.52, p = 0.017].  Within subjects contrasts revealed a mild core body temperature 
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increase within the first 20 min of the acclimation and again 20 min after the social exploration 

test (all p’s < 0.05).  Body temperature during the social exploration posttest also fluctuated, 

indicated by a significant effect of time [F(15,525) = 33.17, p < 0.001].  Within subjects 

contrasts revealed mild core body temperature increase in the first 40 min of the acclimation and 

again 30 min after the social exploration test (all p’s < 0.05).  There was no effect of treatment 

on core body temperature during the posttest [F(4,35) = 0.372, p = 0.826], and the treatment x 

time interaction was nonsignificant [F(60,525) = 0.735, p = 0.931] (Figure 5B).  

 
Figure 5. Mean (± SEM) core body temperature during the social exploration test.  
Measurements were collected during the 1 h acclimation period (-1hr to 0min) and 1 h post-
testing (+10min to +60min).  Gray highlights indicate the testing period. 

During ISS, a significant effect of treatment [F(4,36) = 114, p < 0.001], time [F(30,1080) 

= 138.9, p < 0.001] and treatment x time interaction [F(120,1080) = 88.96, p < 0.001] was 

observed.  There was no significant difference in body temperature until the onset of ISS, 

confined conspecific, or sham-ISS exposure.  Planned comparisons were conducted to compare 

the following: change in temperature between the two ISS conditions and all control conditions, 

temperature differences between the ISS/USV and ISS/No-USV group, and temperature changes 

in confined conspecific and sham-ISS relative to each other and the home cage control.  
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Compared with the home cage control condition, the confined conspecific condition resulted in 

significant decrease of core body temperature for the first 40 trials, (0-40min) and again at the 

end of the 80 min session (all p’s < 0.05).  Sham-ISS was not significantly different from 

confined conspecific or home cage control.  ISS resulted in significant decrease of core body 

temperature for both vocalizing and non-vocalizing rats compared with all control groups from 

10 min to 180 min after the onset of swim stress (Figure 6).  Non-vocalizing ISS rat exhibited a 

further decrease in core body temperature compared to vocalizing rats at 60 min and sustained 

until 120 min after the onset of ISS (all p’s < 0.05).   

 

 
 

Figure 6. Mean (± SEM) core body temperature 1 hr prior to ISS, CC, S-ISS, or equivalent 
HCC time point until 240min post-ISS.  Gray highlights indicate the period of ISS exposure. 
*indicates significantly different from ISS/USVs (p < 0.05). 
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Furthermore, the non-vocalizing group exhibited a significant core body temperature 

rebound and increase compared with all other groups at 250 min that sustained until 290 min 

after the onset of ISS (Figure 7) (all p’s < 0.05).  There were no differences in weight on the day 

of ISS between vocalizing and non-vocalizing rats [t(18) = 0.428, p = 0.673, Mean Diff = -5.071 

± 11.84].   

 
Figure 7. Mean (± SEM) core body temperature 250min to 480min following ISS, CC, S-ISS, 
HCC.  *indicates significantly different from ISS/USVs (p < 0.05). 
 

Discussion 

Experiment 1 investigated the reliability of USVs to predict stress resilience and further 

explored the behavioral strategy employed by vocalizing rats during ISS that may contribute to 

resilience.  Experiment 1 replicated the previous behavioral findings from our laboratory 

(Stafford et al., 2015) that rats not emitting USVs exhibited social anxiety indicated by a 
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reduction in social exploration baseline, while the USV-emitting rats exhibited an anxiolytic 

phenotype.  Furthermore, this experiment provided initial insight into a preferential coping style 

for vocalizing rats during ISS.  Vocalizing rats engaged in a behavioral strategy during ISS that 

was counter to hypothesized, and overall consisted of fewer active behaviors than non-vocalizing 

rats.  Statistically significant decrease in core body temperature from baseline (i.e., hypothermia) 

observed during ISS was greater in non-vocalizing rats, and the reduction in core body 

temperature may reflect heat dissipation due to activity.    

Social Anxiety 

The first three experiments from our laboratory investigating the phenomenon of stress 

resilience associated with USVs utilized both a water based stressor and posttest (Drugan et al., 

2009, 2014), and the consistent findings demonstrated the effect is reliable in water-based tests.  

A subsequent experiment demonstrated the transituational nature of these effects by finding 

USVs also predicted resilience to ISS-induced deficits in the absence of water during a social 

anxiety test (Stafford et al., 2015).  The present study, by replicating the social anxiety 

experiment, establishes USVs emitted during ISS are a reliable predictor of resilience to both 

behavioral depression and social anxiety induced by this particular model of swim stress in rats.   

Coping Strategy 

Experiment 1 is the first to demonstrate distinctive coping styles during ISS, specifically 

comparing rats that do and do not emit USVs.  We hypothesized that vocalizing rats would 

engage in similar active behaviors demonstrated by others to protect against the negative 

consequences of an inescapable stressor.  The behavioral results were contrary to our hypothesis 

as we found vocalizing rats engaged in less active behaviors throughout the stress session 

compared with non-vocalizing rats.  There were no differences in the social exploration pretest 
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that suggested either group is predisposed to a particular activity phenotype.  The changes 

revealed during the post-stress social exploration were therefore likely a direct result of ISS 

experience, which appears to be fundamentally different between vocalizing and non-vocalizing 

rats.  

The core body temperature measurements revealed rats that did not emit USVs exhibited 

greater hypothermia than those that did vocalize.  Importantly, there were no obvious group 

weight differences between vocalizing and non-vocalizing rats to explain body temperature loss.  

The greater activity of the non-vocalizing rats is likely to have contributed to this hypothermia, 

while immobility in vocalizing rats preserved body temperature.  In a previous experiment, rats 

identified as resilient to ISS exhibited a nonsignificant mild hypothermia compared with 

vulnerable rats (Levay et al., 2006), rather than the relative increase in core body temperature 

above baseline (i.e., hyperthermia) found in the present experiment.  It is not clear why this 

discrepancy occurred, however, rats were classified based on post-ISS instrumental learning and 

not USV emission during the initial stressor.  The arbitrary classification and the high degree of 

variability observed in learning may not have captured discrete groups as was found in the 

present experiment, thus the temperature effects did not adequately reflect innate 

resilient/vulnerable characteristics.   

It is possible that a passive strategy is more beneficial to cope with an initial intermittent 

cold-water swim as a stressor.  Reduced activity would preserve core body temperature and serve 

as an adaptive strategy to avoid succumbing to hypothermia, and prolonged swimming leads to 

increased immobility as a survival mechanism (Nishimura et al., 1988; Pintér, Domokos, Mergl, 

Mikics, & Zelena, 2011).  The bimodal distribution of active or passive behavioral strategies did 

not appear immediately, rather differences emerged after the first 10 trials, and persisted for 30 



  26 

trials.  Thus, the change in behavior may reflect a shift in strategy in the vocalizing rats, whereas 

the non-vocalizing rats maintain a consistent strategy.  Shifting from active to passive is 

considered adaptive in the forced swim test after repeated or prolonged exposure as it reduces 

energy expenditure, increasing chances of survival in an inescapable situation (Commons et al., 

2017; De Kloet & Molendijk, 2016; De Pablo, Parra, Segovia, & Guillamón, 1989; Nishimura et 

al., 1988). 

The passive behavior and core body temperature during ISS is consistent with activity of 

the mesolimbic cholinergic pathway that produces 22-kHz USVs (Brudzynski, 2013).  This 

pathway innervates the anterior-preoptic region responsible for thermoregulation (Blumberg & 

Moltz, 1987; Boulant, 2000), and results in passive avoidant and immobile postures due to 

dorsomedial hypothalamic activation (Brudzynski & Chiu, 1995; Brudzynski, Iku, & Harness 

neé Savoy, 2011).  However, the dorsomedial hypothalamic target of this cholinergic pathway 

results in avoidant behaviors as an anxiety response (Hakvoort Schwerdtfeger & Menard, 2008; 

Hassell et al., 2017).  The lack of post-ISS anxiety is not consistent with avoidant behaviors 

produced by dorsomedial hypothalamus.  Further investigation is needed to uncover which 

pathways are activated during ISS, with particular attention to the serotonergic circuitry involved 

in coping, to produce these active or passive behaviors.   

Potential Mechanisms 

Serotonergic neurons in dorsal raphe are one possible mechanism that may drive active or 

passive behaviors during ISS.  Three candidate subregions may play a role in generating ISS-

induced active or passive behaviors.  The mid-rostral dorsal subregion, caudal subregion, and 

ventrolateral wings of dorsal raphe are implicated in the production of depressive and anxiety-

like behaviors, as well as active vs. passive coping strategies during inescapable stress (Amat et 
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al., 2008, 2006; Commons, Connolley, & Valentino, 2003; Paul et al., 2011; Paul, Johnson, 

Shekhar, & Lowry, 2014; Roche et al., 2003).  Therefore, a follow-up experiment was conducted 

to investigate the functional activation of serotonergic neurons in dorsal, caudal, and 

ventrolateral subregions of dorsal raphe nucleus.    
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IV. EXPERIMENT TWO 

 
Preferential coping strategies employed by an organism when exposed to a stressor may 

be adaptive or maladaptive.  Organisms that engage in active coping strategies to mitigate the 

negative consequences of stress exposure are considered to confer stress resilience.  One of the 

mechanisms that controls the development of active or passive behaviors is a cortico-limbic 

serotonergic circuit originating in dorsal raphe nucleus (Puglisi-Allegra & Andolina, 2015).  

Reduced serotonergic activation is associated with the development of active coping strategies 

via local inhibitory GABAergic neurons.   

The present understanding of the neurobiology associated with ISS is limited to indirect 

pharmacological manipulation (Christianson, Rabbett, Lyckland, & Drugan, 2008; Drugan, 

MacOmber, & Warner, 2010; Warner et al., 2013; Warner & Drugan, 2012) and assessment of 

post-stress dorsal raphe functioning (Stafford et al., in prep).  For example, post-ISS increases in 

forced swim immobility are reversed by peripherally administrated noradrenergic reuptake 

inhibitors (Drugan et al., 2010), while peripheral administration of serotonergic reuptake 

inhibitors administrated prior to or following ISS, or disruption of serotonin synthesis prior to 

ISS, have no effect (Christianson, Rabbett, et al., 2008).  However, without assessment of 

centrally administered compounds, it is difficult to interpret the role of dorsal raphe in post-ISS 

behavioral effects.  Unpublished evidence from our laboratory supports that caudal dorsal raphe 

is activated in post-stress vulnerability to ISS indicated by open field and social anxiety, as well 

as forced swim immobility (Stafford et al., in prep).  These previous studies assessed behavior 

and serotonergic activation 24 h post-ISS and the role of dorsal raphe in active or passive 

behavioral strategies exhibited during the initial ISS session is unknown.  Thus, experiment 2 
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was conducted to investigate the potential role of dorsal raphe serotonergic and GABAergic 

neurons in the development of active or passive behavioral strategies during ISS.  

Methods 

Procedure 

A total of 70 adult rats were used in this experiment consisting of ISS (ISS/USVs, n=7; 

ISS/No-USVs, n=16), CC (n=23), S-ISS (n=12), or HCC (n=12).  The timeline for experiment 2 

is depicted in Figure 8.  Experiment 2 was identical to experiment 1 except that rats were 

transcardially perfused (see below) 90 min post-ISS or control condition.  A subset of rats 

received datalogger implantation (ISS/USVs, n=4; ISS/No-USVs, n=8; CC, n=13; S-ISS, n=8; 

HCC, n=8).  Temperature data from one HCC rat was lost due to datalogger malfunction.  

 
Figure 8. Timeline for experiment 2. 

 
Tissue Extraction.  

Rats were anesthetized with a ketamine/xylazine combination (100/10 mg/kg) and 

transcardially perfused with ~100ml ice cold 0.9% saline followed by ~75ml ice cold 4% 

paraformaldehyde.  Brains were extracted and post-fixed in 4% paraformaldehyde (24 h), 

phosphate buffered saline (24 h), and 30% sucrose (72 h).  Tissue was stored at -80°C until 

sectioned on a cryostat (Leica model 1950, Leica Biosystems, Nußloch, DE) at 30µm.   

Antibodies 

Immunodetection of the protein product of the immediate early gene cFos was completed 

using an affinity purified polyclonal rabbit anti-cFos antibody (1:5,000, Cat. No. ABE-457, Lot 
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No. 2905394, Millipore Sigma, Burlington, MA, USA).  For immunodetection of tryptophan 

hydroxylase (TPH), an affinity isolated polyclonal sheep anti-TPH antibody raised against 

recombinant rabbit TPH (1:2,500, Cat. No. T-8575, Lot No. SLBN2143V, Millipore Sigma, 

Burlington, MA, USA).  Immunodetection of GABA was achieved using a purified monoclonal 

antibody against the cytoplasmic 67 kDa isoform of glutamic-acid decarboxylase (GAD67; the 

biosynthetic enzyme for GABA synthesis from glutamic acid) raised against recombinant 

GAD67 (1:1,000, Cat. No. MAB5406, Lot No. 2923238, Millipore Sigma, Burlington, MA, 

USA).  Secondary antibodies were as follows: for cFos, biotinylated donkey anti rabbit (1:500, 

Jackson ImmunoResearch, Cat# 711-065-15); for TPH, a biotinylated sheep anti-rabbit (1:500, 

Vector ABC kit, Vector Laboratories, Burlingame, CA, USA); and for GAD67, a biotinylated 

donkey anti-mouse (1:500, Jackson ImmunoResearch, Cat# 711-065-151) were used. 

Immunohistochemistry 

All immunohistochemistry was conducted on free-floating sections in well plates 

containing 2 ml of solution.  All washes were 15 min in duration, unless otherwise stated.  For 

cFos-TPH double-immunohistochemistry, all washes and incubations occurred at 4°C.  Prior to 

primary antibody incubation, tissue was washed 2x in 0.05M phosphate buffered saline (PBS) 

followed by 1% H2O2 to block for endogenous peroxidases.  Tissue was washed again 2x in PBS 

and followed by PBS with 0.3% Triton X-100 (PBST).  Tissue was incubated with primary 

antibody (24 h for cFos, 72 h for TPH) in PBS with 0.8% Triton X-100 with 4% normal serum 

and 0.1% bovine serum albumin.   

Following primary antibody incubation, tissue was washed 2x in PBST followed by 90 

min incubation in secondary antibody in PBST.  Tissue was rinsed 2x in PBST and incubated for 

90 min in an avidin-biotin complex (Vector ABC kit, Vector Laboratories, Burlingame, CA, 
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USA) to block for endogenous biotin, followed again by 2x wash in PBST.  Finally, a 

horseradish peroxidase substrate reaction was used to visualize cells. Visualization of cFos was 

accomplished via horseradish peroxidase chromogen reaction (Vector SG Chromogen kit, Vector 

Laboratories, Burlingame, CA, USA) to produce a blue-gray colorization of nuclei.  TPH was 

visualized accomplished via reaction with 3, 3 -diaminobenzidine (DAB) horseradish peroxidase 

(Vector ImmPACT DAB kit, Vector Laboratories, Burlingame, CA, USA) to produce a brown-

red colorization of soma.  Reactions were terminated by washing the tissue 3x in PBS for 15 

min, after which tissue was dehydrated, cleared with xylenes, and mounted onto slides. 

For cFos-GAD67 double-immunohistochemistry, the procedure was identical except all 

incubations and washes were conducted at 20°C and Triton X-100 was excluded, and the 

concentration of bovine serum albumin was increased to 3% in the GAD67 primary incubation 

solution.  Adjacent sections to those used for cFos-TPH double-immunohistochemistry were 

used for visualization of GABA activation.  

Cell Counting 

Representative sections at 180µm intervals from -7.28mm to -9.26mm posterior to 

bregma were chosen for quantification of cFos and TPH immunoreactivity within dorsal raphe 

(Figure 9).  Rostral-caudal level and subregion were confirmed against the rat stereotaxic atlas 

(Paxinos & Watson, 1998) and TPH-specific immunostaining atlas (Abrams et al., 2004).  The 

subregions analyzed within dorsal raphe were dorsal and ventral (-7.28mm to -8.18mm; figure 8, 

A-F), ventrolateral (-7.64mm to -8.18mm; figure 8, D-F) caudal (-8.36mm to -9.26mm; figure 8, 

G-L), and interfasicular nucleus (-8.36mm to -8.72mm; figure, G-I).  Comparable sections for 

dorsal and ventral (-7.28mm to -8.18mm) and caudal (-8.36mm to -8.90mm) subregions were 

analyzed for cFos and GAD67 immunoreactivity.  All cell types were manually counted under 
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brightfield microscopy at 100x magnification with confirmation of double immunostaining at 

400x magnification (see Figures 10-11 for photomicrographs).  

 
Figure 9. Photomicrographs of cFos-ir/TPH-ir immunostained sections demonstrating the 12 
rostrocaudal levels chosen for analyses.  Measurements are posterior to bregma.  Abbreviations: 
DRD, dorsal raphe nucleus, dorsal part; DRV, dorsal raphe nucleus, ventral part; DRVL, dorsal 
raphe nucleus, ventrolateral wings; DRC, dorsal raphe nucleus, caudal part; DRI, dorsal raphe 
nucleus, interfasicular part; mlf, medial longitudinal fasciculus. 

 

 
Figure 10. Photomicrographs of cFos/TPH immunostaining in the mid-rostral dorsal raphe 
representative of primary areas of analyses.  Black arrows depict cFos-immunoreactive/TPH-
immunonegative cells, white arrowheads depict cFos-immunonegative/TPH-immunoreactive 
cells, and black arrowheads depict cFos-immunoreactive/TPH-immunoreactive double-labeled 
cells.  A: dorsal raphe -8.00mm posterior to bregma shown at 10x magnification (DRD, dorsal 
subregion; DRV, ventral subregion; DRVL, ventrolateral subregion).  B, D, F: DRD, DRV, and 

       
 

       
 

      
Figure x: Photomicrographs of cFos-ir/TPH-ir immunostained sections demonstrating the 12 
rostrocaudal levels chosen for analyses.  Measurements are posterior to bregma.  Abbreviations: 
DRD, dorsal raphe nucleus, dorsal part; DRV, dorsal raphe nucleus, ventral part; DRVL, dorsal 
raphe nucleus, ventrolateral wings; DRC, dorsal raphe nucleus, caudal part; DRI, dorsal raphe 
nucleus, interfasicular part; mlf, medial longitudinal fasciculus. 
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DRVL shown at 25x magnification.  C, E, G: DRD, DRV, and DRVL shown at 50x 
magnification with representative cell types. Scale bar: 250µm (A), 100 µm (F), and 50µm (G). 

 

 
Figure 11. Photomicrographs of cFos/GAD67 immunostaining in the mid-rostral dorsal raphe 
representative of primary areas of analyses.  Black arrows depict cFos-immunoreactive/GAD67-
immunonegative cells, white arrowheads depict cFos-immunonegative/GAD67-immunoreactive 
cells, and black arrowheads depict cFos-immunoreactive/GAD67-immunoreactive double-
labeled cells.  A: dorsal raphe exemplar of -8.00mm posterior to bregma shown at 10x 
magnification (DRD, dorsal subregion; DRV, ventral subregion; DRVL, ventrolateral 
subregion).  B, D, F: DRD, DRV, and DRVL shown at 25x magnification.  C, E, G: DRD, DRV, 
and DRVL shown at 50x magnification with representative cell types.  Scale bar: 250µm (A), 
100 µm (F), and 50µm (G). 

 
Statistical Analyses 

Social exploration pretests, core body temperature, and ISS behavior were analyzed 

identical to experiment 1.  Tables presenting pairwise comparisons of means for behavioral data 

are available in appendix B.  Immunohistochemistry data for cFos-TPH, cFos, TPH, cFos-

GAD67, and GAD67 at each subregion (dorsal, ventral, ventrolateral, caudal, and interfasicular) 

were tested separately using linear-mixed effects modeling with unstructured covariance 

structure.  Treatment conditions were entered as fixed effects and stereotaxic level was treated as 

repeated measures in the model with interaction between treatment and stereotaxic level to test 

for significant treatment effects across stereotaxic levels sampled.  Tables presenting estimated 

marginal means are available in appendices C and D.   

G
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Results 

Behavioral Data 

There was no effect of treatment (ISS/USVs, ISS/No-USVs, CC, S-ISS, or HCC) on 

social exploration pretest time [F(4,68) = 0.6827, p = 0.6064].   During ISS, there was a 

significant effect of treatment [F(1,21) = 27.28, p < 0.001], but not trial [F(7,147) = 1.002, p = 

0.432] on active behaviors, while the treatment x trial interaction was significant [F(7, 147) = 

2.645, p = 0.013].  Planned comparisons were conducted to assess differences in active or 

passive behaviors at each trial block.  Vocalizing rats engaged in less active behaviors between 

blocks 2-7 (trials 11-70; all p’s < 0.05).  For passive behaviors, there was a significant effect of 

treatment [F(1,21) = 25.71, p < 0.001], a nonsignificant effect of trial [F(7,147) = 0.701, p = 

0.671], while the interaction was significant [F(7,147) = 3.15, p = 0.004].  Vocalizing rats 

engaged in greater passive behaviors between trials 21-70 compared with non-vocalizing rats 

(Figure 12) (all p’s < 0.05).    

 
Figure 12. Mean (± SEM) active behaviors (A) and passive behaviors (B) during ISS aggregated 
into 8 blocks of 10 trials.  * indicates significantly different from ISS/No-USVs group (p < 0.05). 
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Core Body Temperature 

Baseline measurements indicated all rats had equivalent core body temperature prior to 

manipulation as there was no effect of treatment [F(4,39) = 0.159, p = 0.958], however the effect 

of time was significant [F(5,195) = 3.16, p = 0.009].  The treatment x time interaction was 

nonsignificant [F(20,195) = 0.837, p = 0.667].  There was no effect of treatment on temperature 

during social exploration pretest [F(4,39) = 0.234, p = 0.917].  The effect of time was significant 

[F(12,468) = 25, p < 0.001], while the interaction of treatment x time was nonsignificant 

[F(48,468) = 0.9787, p = 0.517].  The effect of time was furthered explored via within subjects 

contrasts that revealed hyperthermia after the start of the acclimation period for 30 min and again 

after the testing for 60 min (all p’s < 0.05).  For core body temperature during ISS, there was a 

significant effect of treatment [F(4,40) = 150.4, p < 0.001], time [F(22,880) = 126.3, p < 0.001], 

and treatment x time interaction [F(88,880) = 107, p < 0.001].  Planned comparisons compared 

the following: change in temperature between the two ISS conditions and all control conditions, 

temperature differences between the ISS/USV and ISS/No-USV group, and temperature changes 

in confined conspecific and sham-ISS relative to each other and the home cage control.  Both 

vocalizing and non-vocalizing rats exhibited significant hypothermia compared to all control 

groups within 10 minutes, and ISS-induced hypothermia was maintained until the end of 

sampling immediately prior to perfusions (all p’s < 0.05).  Non-vocalizing rats exhibited greater 

hypothermia than vocalizing rats from 30 min after the start of ISS until the end of sampling just 

prior to perfusion (Figure 13) (all p’s < 0.05).  There were no differences in weight on the day of 

ISS between vocalizing and non-vocalizing rats [t(18) = 0.412, p = 0.684, Mean Diff = 6.029 ± 

14.63].   
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Figure 13. Mean (± SEM) core body temperature 1 hr prior to ISS, CC, S-ISS, or equivalent 
HCC time point until 160min post-ISS.  Gray highlights indicate the period of ISS exposure. 
*indicates significantly different from ISS/USVs (p < 0.05). 

 
Cell Count Data 

cFos-immunoreactive/TPH-immunoreactive 

Dorsal subregion: For the dorsal subregion, there was a significant effect of treatment 

[F(4,57.872) = 19.049, p < 0.001], stereotaxic level [F(5,43.925) = 11.640, p < 0.001], and 

treatment x level interaction [F(20,44.455) = 2.520, p = 0.005].  Pairwise comparisons for the 

main effect of treatment indicated that overall ISS/USVs had significantly greater double-labeled 

cells than all other groups (p < 0.001).  The ISS/No-USVs, confined conspecific, sham-ISS, and 

home cage controls were equivalent.  Pairwise comparisons for the main effect of level indicated 
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that overall there was variability of serotonergic cell activation across the different levels of 

bregma sampled as the total number of cells changes across the rostral-caudal axis. 

Pairwise comparisons for the treatment x level interaction indicated the effect of treatment varied 

at specific stereotaxic levels.  There were significantly greater double-labeled cells in the 

ISS/USVs group compared with all other groups at -7.28mm (p < 0.001), -7.82mm (p < 0.001), -

8.00mm (p < 0.001), and -8.18mm (p < 0.001).  There were no other significant differences 

between groups at any level of bregma, with the exception of increased double-labeled cells in 

the ISS/USVs group compared with S-ISS (p = 0.010) and HCC (p = 0.002) conditions at -

7.46mm (Figure 14).  

 
Figure 14. Mean (± SEM) cFos-immunoreactive/TPH-immunoreactive (closed bars) and TPH-
immunoreactive/cFos-immunonegative (open bars) within each stereotaxic level sampled of 
dorsal subregion (DRD). * indicates significantly different from ISS/USVs group (p < 0.05). 
 

Ventral subregion: Within the ventral subregion there was also a significant effect of 

treatment [F(4,56.271) = 6.472, p < 0.001], stereotaxic level [F(5,38.871) = 3.360, p = 0.013], 

and treatment x level interaction [F(20,42.344) = 2.061, p = 0.024].  Pairwise comparisons for 
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the main effect of treatment indicated that like the dorsal region, there were overall significantly 

greater double-labeled cells in the ISS/USV group than the ISS/No-USV and confined groups (p 

= 0.003), the sham-ISS group (p = 0.001), and the home cage control group (p <0.001).  Pairwise 

comparisons for the main effect of level indicated again that serotonergic cell activation varied 

across the different levels of bregma sampled. 

Pairwise comparisons for the treatment x level interaction indicated the effect of 

treatment varied depending upon stereotaxic level.  Specifically, there were significantly greater 

double-labeled cells in the ISS/USVs group compared all other groups at -7.82mm (p < 0.001), -

8.00mm (p < 0.001), and -8.18mm (p < 0.001).  There were no other significant differences 

between groups at any level of bregma (Figure 15). 

 
Figure 15. Mean (± SEM) cFos-immunoreactive/TPH-immunoreactive (closed bars) and TPH-
immunoreactive/cFos-immunonegative (open bars) within each stereotaxic level sampled of 
ventral subregion (DRV). * indicates significantly different from ISS/USVs group (p < 0.05). 
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Ventrolateral subregion: At the ventrolateral “wings” a significant effect of treatment 

[F(4,54.837) = 14.265, p < 0.001] was observed, while the effect of stereotaxic level was 

nonsignificant [F(3,46.103) = 2.105, p = 0.113].  The treatment x level interaction was 

significant [F(12,51.654) = 1.975, p = 0.005].  Pairwise comparisons for the main effect of 

treatment indicated like dorsal and ventral subregions there were overall significantly greater 

double-labeled cells in the ISS/USV group than all other groups (p < 0.001). 

Pairwise comparisons for the treatment x level interaction indicated the effect of 

treatment varied depending upon stereotaxic level.  At -7.64mm, there were significantly greater 

double-labeled cells in the ISS/USVs group compared with confined conspecifics (p < 0.001), 

sham-ISS (p = 0.001), and home cage controls (p = 0.001).  At -7.82mm, only the ISS/USVs 

group had greater double-labeled activity than home cage controls (p = 0.036).  Furthermore, the 

ISS/USVs group had 

significantly greater 

activation than all other 

groups at -8.00mm (p < 

0.001) and -8.18mm (p < 

0.001), while all other 

groups were equivalent 

(Figure 16). 

 
 
 

Figure 16. Mean (± SEM) cFos-immunoreactive/TPH-immunoreactive  
(closed bars) and TPH-immunoreactive/cFos-immunonegative (open bars)  
within each stereotaxic level sampled of ventrolateral subregion (DRVL).  
* indicates significantly different from ISS/USVs (p < 0.05). 
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Caudal subregion: Within caudal subregions, there was a significant effect of treatment 

[F(4,53.033) = 5.037, p = 0.002], stereotaxic level [F(5,47.141) = 25.392, p < 0.001], and 

treatment x level interaction [F(20,49.238) = 3.790, p < 0.001].  Pairwise comparisons for the 

main effect of treatment indicated that overall ISS/USVs had significantly greater double-labeled 

cells than HCC (p = 0.001).  There were no differences between ISS/USVs and ISS/No-USVs, 

confined conspecifics, or sham-ISS.  Pairwise comparisons for the main effect of level indicated 

that overall there was variability of serotonergic cell activation across the different levels of 

bregma sampled. 

Pairwise comparisons for the treatment x level interaction indicated several levels with 

differences between ISS/No-USVs and ISS/USVs compared with control groups.  At -8.36mm 

there were significantly greater double-labeled cells in the ISS/No-USVs compared with 

confined conspecifics (p = 0.011) and home cage controls (p = 0.001) groups; and, there were 

greater double-labeled cells in the ISS/USVs group compared with the confined conspecifics (p 

= 0.008), sham-ISS (p = 0.025), and home cage controls (p = 0.001).  At -8.54mm there were 

significantly greater double-labeled cells in the ISS/No-USVs group compared with the confined 

conspecifics (p = 0.001), S-ISS (p = 0.036), and home cage controls groups (p = 0.020); and, 

there were greater double-labeled cells in the ISS/USVs group compared with the confined 

conspecifics (p = 0.001), sham-ISS (p = 0.015), and home cage controls (p = 0.007) (Figure 17).   
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Figure 17. Mean (± SEM) cFos-immunoreactive/TPH-immunoreactive (closed bars) and TPH-
immunoreactive/cFos-immunonegative (open bars) within each stereotaxic level sampled of 
caudal subregion (DRC). *** indicates significantly different from both ISS groups (p < 0.05). 
 

 
Interfasicular nucleus: There was a significant effect of treatment [F(4,39.470)=3.884, p 

= 0.009], the effect of level was nonsignificant [F(2,47.012)=0.114, p = 0.892, while the 

treatment x level interaction was significant [F(8,47.178)=3.100, p 0.007].  Specifically, pairwise 

comparisons for the main effect of treatment indicated that overall the confined conspecifics 

group had greater double-labeled cells than the ISS/No-USV group (p = 0.006).  Pairwise 

comparisons for the treatment x level interaction revealed the ISS/USV group had greater 

double-labeled cells at -8.36mm compared with ISS/No-USVs (p = 0.001) and the home cage 

controls group (p = 0.002).  Furthermore, the confined conspecific group had significantly fewer 

double-labeled cells than the ISS/No-USVs (p = 0.003) and the ISS/USVs group (p = 0.033) at -

8.72mm (Figure 18).  
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Figure 18.  Mean (± SEM) cFos-immunoreactive/TPH-immunoreactive (closed bars) and TPH-
immunoreactive/cFos-immunonegative (open bars) within each stereotaxic level sampled of 
interfasicular nucleus (DRI). * indicates significantly different from ISS/USVs group (p < 0.05), 
*** indicates significantly different from both ISS groups (p < 0.05). 
 
 
cFos-immunoreactive/TPH-immunonegative 
 

Dorsal subregion: There was a significant effect on cFos expression in nonserotonergic 

cells of treatment [F(4,58.124)=17.736, p < 0.001], stereotaxic level [F(5,40.936)=31.182, p < 

0.001], and treatment x level interaction [F(20,41.854)=3.195, p < 0.001] on cFos expression in 

non-serotonergic cells within the dorsal subregion. Pairwise comparisons for the main effect of 

treatment indicated that overall ISS/USVs had greater cFos immunoreactive cells throughout the 

region than confined conspecifics, sham-ISS, and home cage controls (p < 0.001), while no 

different than ISS/No-USVs (p = 0.998).  Furthermore, the control groups were equivalent to 

each other.  Pairwise comparisons for the main effect of level indicated that overall there was 

variability of cFos immunoreactivity across the different levels of bregma sampled.   

Pairwise comparisons for the treatment x level interaction indicated that ISS/No-USVs had 

significantly greater cFos positive cells compared to confined conspecifics, sham-ISS, and home 

cage control groups at -7.28mm, -7.46mm, and -7.82 (all p’s < 0.05).  ISS/No-USVs had greater 

cFos immunoreactive cells at -8.00mm compared with sham-ISS and home cage control groups 

(all p’s < 0.05).  The ISS/USVs group had significantly greater cFos positive cells compared to 
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home cage controls at -7.28mm and confined conspecifics and home cage controls at -7.64mm 

(all p’s < 0.05, Table 1). 

Table 1. cFos-immunoreactive cells within dorsal subregion.  
  Group 

 ISS/No-USVs CC S-ISS HCC ISS/USVs 
  Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 
-7.28mm 23.42 3.42 11.00** 1.40 9.00** 2.10 4.80*** 1.16 22.50 1.94 
-7.46mm 23.29 2.43 9.65** 1.00 11.33** 0.96 6.20** 1.56 16.60 2.98 
-7.64mm 10.54 2.06 6.22* 0.67 6.20 0.96 4.25 1.55 13.00 2.07 
-7.82mm 7.69 1.03 4.00** 0.68 3.22** 0.60 1.67** 0.49 6.60 1.21 
-8.00mm 6.29 0.96 4.00 0.70 2.56** 0.44 1.40** 0.40 5.60 0.93 
-8.18mm 6.67 1.52 3.71 0.78 4.25 0.70 2.25 1.31 8.50 1.55 

* indicates significantly different from ISS/USVs within the same stereotaxic level, ** indicates 
significantly different from ISS/No-USVs within the same stereotaxic level. *** indicates 
significantly different from both ISS groups within the same stereotaxic level. 
 

Ventral subregion: For the ventral subregion, there was a significant effect on cFos 

expression in nonserotonergic cells of treatment [F(4,60.031)=10.462, p < 0.001], and stereotaxic 

level [F(5,43.017)=18.122, p < 0.001], while the treatment x level interaction was nonsignificant 

[F(20,43.113)=0.743, p = 0.760].  Pairwise comparisons for the main effect of treatment 

indicated that overall ISS/No-USVs had greater cFos immunoreactive cells throughout the region 

than confined conspecifics (p = 0.018) and home cage controls (p < 0.001).  ISS/USVs had 

greater cFos immunoreactivity compared with confined conspecifics (p = 0.001), sham-ISS (p = 

0.013), and home cage controls (p < 0.001).  Furthermore, the sham-ISS condition resulted in 

greater cFos positive nonserotonergic cells compared with home cage controls (p = 0.030). 

Pairwise comparisons for the main effect of level indicated that overall there was variability of 

cFos immunoreactivity across the different levels of bregma sampled (Table 2).   
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Table 2. cFos-immunoreactive cells within ventral subregion. 
  Group 

 ISS/No-USVs CC S-ISS HCC ISS/USVs 
  Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 
-7.28mm 4.50 0.65 2.40 0.34 2.00 0.55 1.17 0.17 5.25 0.48 
-7.46mm 8.64 1.09 6.19 1.07 8.56 1.21 4.00 0.89 11.00 0.58 
-7.64mm 7.15 1.25 3.75 0.58 4.30 0.79 1.25 0.95 7.80 0.86 
-7.82mm 3.56 0.67 2.40 0.46 2.00 0.24 1.17 0.48 5.80 1.24 
-8.00mm 5.32 0.83 3.61 0.66 3.73 0.73 1.40 0.51 6.40 0.51 
-8.18mm 5.38 0.92 3.67 0.76 5.10 0.80 1.00 0.71 6.75 1.38 

Note: the treatment x level interaction was nonsignificant. 
 

Ventrolateral subregion: There was a significant effect of treatment [F(4,21.970) = 

23.195, p < 0.001] on cFos expression in nonserotonergic cells within the ventrolateral 

subregion.  There was a nonsignificant effect of stereotaxic level [F(3,3.351) = 2.714, p = 0.202] 

and treatment x level interaction [F(12,3.312) = 2.950, p = 0.185].  Pairwise comparisons for 

treatment indicated that the ISS/No-USVs group had greater cFos expression than all control 

groups (p < 0.001).  The sham-ISS group had significantly more cFos positive cells than the 

home cage control group (p = 0.041).  The ISS/USVs group exhibited more cFos cells than 

confined conspecifics (p = 0.001), sham-ISS (p = 0.01), and home cage controls (p < 0.001) 

(Table 3).   

Table 3. cFos-immunoreactive cells within ventrolateral subregion.  
  Group 

 ISS/No-USVs CC S-ISS HCC ISS/USVs 
 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

-7.64mm 26.62 3.19 17.50 1.37 19.60 1.20 8.25 1.18 25.80 3.54 
-7.82mm 28.27 1.77 18.30 1.21 19.82 0.99 10.33 1.23 28.50 3.66 
-8.00mm 29.36 3.83 17.78 1.57 18.78 0.91 7.60 1.21 39.00 5.28 
-8.18mm 29.40 3.43 18.57 2.85 19.67 1.14 15.67 3.28 28.80 2.13 

Note: the treatment x level interaction was nonsignificant  
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Caudal subregion:  There was a significant effect on cFos expression in nonserotonergic 

cells of treatment [F(4,58.312)=13.629, p < 0.001], and stereotaxic level [F(5,46.229)=3.859, p = 

0.005] within the caudal subregion, while the treatment x level interaction was nonsignificant 

[F(20,47.118)=1.664, p = 0.076].  Pairwise comparisons for the main effect of treatment 

indicated that overall the ISS/No-USVs group had greater cFos immunoreactive cells throughout 

the region than confined conspecifics (p < 0.001), sham-ISS (p = 0.013), and home cage controls 

(p < 0.001).  The ISS/USVs group had greater cFos immunoreactive cells than confined 

conspecifics, sham-ISS, and home cage control (p < 0.001).  Pairwise comparisons for the main 

effect of level indicated that overall there was variability of cFos immunoreactivity across the 

different levels of bregma sampled (see Table 4).   

Table 4.  cFos-immunoreactive cells within caudal subregion 

  Group 
 ISS/No-USVs CC S-ISS HCC ISS/USVs 
 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

-8.36mm 5.19 0.56 2.74 0.36 3.08 0.70 2.00 0.58 8.00 1.30 
-8.54mm 7.80 1.50 2.17 0.39 3.15 0.66 1.60 0.40 10.00 1.22 
-8.72mm 6.86 1.39 3.86 0.76 4.11 0.82 1.17 0.40 9.20 1.53 
-8.90mm 7.36 1.38 3.19 0.65 5.13 0.93 3.71 1.06 7.67 1.33 
-9.08mm 7.82 1.72 3.29 0.74 3.67 0.82 2.00 0.82 7.80 2.13 
-9.26mm 7.64 1.32 3.18 0.68 4.50 0.82 4.00 0.62 12.33 3.18 

Note: the treatment x level interaction was nonsignificant. 
 

Interfasicular nucleus:  There were no significaint effects of treatment 

[F(4,53.310)=1.015, p = 0.408], level [F(2,46.445)=0.724, p = 0.490], or treatment x level 

interaction [F(8,50.726)=0.807, p = 0.600] within the interfasicular nucleus (Table 5). 
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Table 5.  cFos-immunoreactive cells within interfasicular subregion 

  Group 
 ISS/No-USVs CC S-ISS HCC ISS/USVs 
 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

-8.36mm 1.44 0.43 1.33 0.27 2.46 0.55 0.86 0.26 3.60 1.08 
-8.54mm 2.40 0.62 1.94 0.48 2.67 0.75 3.00 1.00 2.00 0.82 
-8.72mm 1.64 0.53 2.13 0.46 2.09 0.51 1.83 0.54 3.40 0.51 

Note: all main effects were nonsignificant. 
 
TPH-immunoreactive/cFos-immunonegative 

Dorsal subregion: For dorsal subregion, the effect of treatment was nonsignificant 

[F(4,47.322)=0.168, p = 0.954], while there was a significant effect of level 

[F(5,43.464)=13.594, p < 0.001] and interaction of treatment x level [F(20,45.253)=2.004, p = 

0.027].  Pairwise comparisons for the main effect of level indicated that overall there was 

variability of TPH immunoreactivity across the different levels of bregma sampled.  Although 

there was an interaction effect, there were no significant differences between specific groups at a 

specific stereotaxic level after controlling for family-wise error (see Figure 14).   

Ventral subregion: The effect of treatment was nonsignificant [F(4,50.969) = 0.524, p = 

0.718], while there was a significant effect of level [F(5,31.694) = 42., p < 0.001] and interaction 

of treatment x level was nonsignificant [F(20,35.303) = 1.171, p = 0.332] within the ventral 

subregion.  Pairwise comparisons of the effect of level simply revealed a change in the number 

of cells depending upon stereotaxic level sampled (see Figure 15). 

Ventrolateral subregion: There was a significant effect of treatment [F(4,53.360) = 2778, 

p = 0.036] and level [F(3,50.156) = 131.817, p < 0.001], while the interaction of treatment x 

level was nonsignificant [F(12,49.854) = 0.894, p = 0.559].  After correction for family wise 

error, there were no significant differences between treatment conditions, and pairwise 
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comparisons for the effect of level indicated that total serotonin cells varied across stereotaxic 

level sampled (see Figure 16).   

Caudal subregion: The effect of treatment was nonsignificant [F(4,51.428) = 2.483, p = 

0.055], while there was a significant effect of level [F(5,39.081) = 105.722, p < 0.001] and 

interaction of treatment x level [F(20,42.851) = 4.520, p < 0.001].  Pairwise comparisons for the 

main effect of level indicated that overall there was variability of TPH immunoreactivity across 

the different levels of bregma sampled.  Pairwise comparisons for the interaction effect revealed 

the number of TPH immunoreactive cells at -8.36mm were fewer in the ISS/No-USVs group 

compared with the CC (p < 0.001) and the S-ISS group (p = 0.001) (Figure 17.   

Interfasicular nucleus: The effect of treatment was nonsignificant [F(4,53.254) = 1.895, p 

= 0.125], while the effect of level was significant [F(2,53.233) = 31.646, p < 0.001], and the 

treatment x level interaction was nonsignificant [F(8,53.448) = 1.618, p = 0.142].  Pairwise 

comparisons for the main effect of level indicated that overall there was variability of TPH 

immunoreactivity across the different levels of bregma sampled (Figure 18). 

cFos-immunoreactive/GAD67-immunoreactive 
 

Dorsal subregion: There was no significant effect of treatment [F(4,42.980) = 0.400, p = 

0.807], while the effect of stereotaxic level was significant [F(5,42.380) = 13.195, p < 0.001]. 

The treatment x level interaction was nonsignificant [F(20,44.951) = 0.672, p = 0.832].  Pairwise 

comparisons for the main effect of level indicated that overall there was variability of 

GABAergic cell activation across the different levels of bregma sampled (Figure 19).   
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Figure 19: Mean (± SEM) cFos-immunoreactive/GAD67-immunoreactive (closed bars) and 
GAD67-immunoreactive/cFos-immunonegative (open bars) within each stereotaxic level 
sampled of dorsal subregion (DRD). There were no significant differences between groups. 

 
Ventral subregion: There was no significant effect of treatment [F(4,51.411) = 1.578, p = 

0.194], while the effect of stereotaxic level was significant [F(5,46.810) = 5.294, p = 0.001]. The 

treatment x level interaction was nonsignificant [F(20,52.225) = 1.094, p = 0.383].  Pairwise 

comparisons for the main effect of level indicated that overall there was variability of 

GABAergic cell activation across the different levels of bregma sampled (Figure 20). 
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Figure 20: Mean (± SEM) cFos-immunoreactive/GAD67-immunoreactive (closed bars) and 
GAD67-immunoreactive/cFos-immunonegative (open bars) within each stereotaxic level 
sampled of ventral subregion (DRV). There were no significant differences between groups. 

 
Ventrolateral subregion: There was a significant effect of treatment [F(4,51.992) = 

27.093, p < 0.001], stereotaxic level [F(3,49.042) = 11.443, p < 0.001], and treatment x level 

interaction  [F(12,49.532) = 2.815, p = 0.005].  Pairwise comparisons for the main effect of 

treatment indicated that the ISS/No-USVs group had significantly greater double-labeled cells 

than confined conspecifics, sham-ISS, and home cage controls (p < 0.001).  Confined 

conspecifics also had greater double-labeled cells than home cage controls (p = 0.001).  The 

ISS/USVs group had greater GABA activity than all control groups (p < 0.001) (Figure 21). 
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Caudal subregion: There was a significant effect of treatment [F(4,51.970) = 3.583, p = 

0.012] and stereotaxic level [F(3,47.963) = 9.105, p < 0.001], while the treatment x level 

interaction was nonsignificant [F(12,49.007) = 1.157, p = 0.339].  Pairwise comparisons for the 

main effect of treatment indicated that overall the ISS/No-USVs group had significantly greater 

double-labeled cells than the HCC group (p = 0.006).  Pairwise comparisons for the main effect 

of level indicated that overall there was variability of GABAergic cell activation across the 

different levels of bregma sampled (Figure 22).   

Figure 21: Mean (± SEM) cFos-immunoreactive/GAD67-immunoreactive 
(closed bars) and GAD67-immunoreactive/cFos-immunonegative (open 
bars) within each stereotaxic level sampled of ventrolateral subregion 
(DRVL). There were no significant differences between groups. ** 
indicates significantly different from HCC (p < 0.05), *** indicates 
significantly different from both ISS groups (p < 0.05) 
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Figure 22: Mean (± SEM) cFos-immunoreactive/GAD67-immunoreactive (closed bars) and 
GAD67-immunoreactive/cFos-immunonegative (open bars) within each stereotaxic level 
sampled of caudal subregion (DRC). Note: the treatment x level interaction was nonsignificant. 
 
 
GAD67-immunoreactive/cFos-immunonegative 

Dorsal subregion: The effect of treatment was nonsignificant [F(4,53.207) = 0.852, p = 

0.499], while there was a significant effect of stereotaxic level was significant [F(5,44.693) = 

33.076, p < 0.001] and treatment x level interaction [F(20,51.804) = 1.824, p = 0.043].  Pairwise 

comparisons for the main effect of level indicated that overall there was variability of 

GABAergic cell activation across the different levels of bregma sampled (Figure 19).   

Ventral subregion: There was no significant effect of treatment [F(4,52.049) = 1.843, p = 

0.135], while the effect of stereotaxic level was significant [F(5,49.233) = 22.270, p < 0.001]. 

The treatment x level interaction was nonsignificant [F(20,49.386) = 1.689, p = 0.069].  Pairwise 

comparisons for the main effect of level indicated that overall there was variability of 

GABAergic cell activation across the different levels of bregma sampled (Figure 20).   

Ventrolateral subregion: There was a significant effect of treatment [F(4,52.264) = 4.152, 

p = 0.005] and stereotaxic level [F(3,48.749) = 6.172, p = 0.001], while the treatment x level 

interaction was nonsignificant [F(12,48.944) = 1.787, p = 0.077].  Pairwise comparisons for the 

main effect of treatment indicated that there were more GABAergic cell bodies in the ISS-USVs 
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group compared with the ISS/No-USVs group (p = 0.007), confined conspecifics (p = 0.006), 

and sham-ISS (p = 0.009) (Figure 21).   

Caudal subregion: There was a nonsignificant effect of treatment [F(4,50.663) = 0.302, p 

= 0.875], while the effect of stereotaxic level was significant [F(3,47.106) = 3.967, p = 0.013], 

and the treatment x level interaction was nonsignificant [F(12,47.510) = 1.157, p = 0.362].  

Pairwise comparisons for the main effect of level indicated that overall there was variability of 

GABAergic cell activation across the different levels of bregma sampled (Figure 22).   

Discussion 

Experiment 2 was designed to investigate the functional activation of serotonergic and 

GABAergic cells in the dorsal raphe nucleus associated with active and passive coping in 

vocalizing or non-vocalizing rats.  Experiment 2 replicated that there were no differences at 

baseline between groups during the social exploration pretest.  Furthermore, experiment 2 

replicated that vocalizing rats engaged in less active and greater passive behaviors during ISS.  

Core body temperature findings from experiment 1 were also replicated as non-vocalizing rats 

exhibited a greater hypothermic response than vocalizing rats.   

Coping Strategy 

The replication of behavioral strategies during ISS provided strong support that 

vocalizing rats represent a different stress-responsive phenotype and respond in an opposing 

manner to ISS than non-vocalizing rats.  Both groups engaged in equivalent active behaviors 

during the initial 10 trials of ISS and separated into predominantly active or passive behaviors 

until the final 10 trials.  The change in behavior across several trials and eventual asymptote of 

behavioral responding is consistent with others that reported shifting strategies from active to 

passive behaviors to conserve energy (Nishimura et al., 1988; Pintér et al., 2011).  Core body 
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temperature results were consistent with behavioral strategies as passive vocalizing rats exhibited 

reduced hypothermia.  It is possible the greater activity of non-vocalizing animals resulted in 

greater body heat loss than the less active vocalizing rats.  The enhanced hypothermia in non-

vocalizing rats may have resulted in greater physiological strain (i.e., allostatic load) producing a 

more stress susceptible organism (Karatsoreos & McEwen, 2011).  

Cell Count Data 

We hypothesized that active behaviors would be associated with reduced serotonergic 

activity in dorsal, caudal, and ventrolateral subregions of dorsal raphe nucleus.  We found 

differences contrary to expected with serotonergic activation indicated via cFos expression 

localized to the mid-rostral dorsal, ventral, and ventrolateral subregions of dorsal raphe as well as 

the caudal subregion.  Activation of rostral (-7.28mm) dorsal subregion, and the mid-rostral (-

7.82mm to -8.18mm) dorsal, ventral, and ventrolateral subregions was greatest in vocalizing rats, 

while non-vocalizing rats were equivalent to all other control groups.  Both vocalizing and non-

vocalizing rats exhibited increased serotonergic activity at several stereotaxic levels of the caudal 

(-8.36mm to -8.54mm) subregion compared with controls, and both ISS groups were equivalent 

to each other.  Expression of cFos in nonserotonergic cells was greater in both ISS groups in the 

most rostral levels, but only the non-vocalizing group was different than controls in mid-rostral 

levels.  At caudal levels, vocalizing and non-vocalizing rats had equivalent cFos expression to 

each other, which was greater than all other groups.  GABAergic activation indicated by cFos 

expression in GABA cell bodies was equivalent between all groups throughout the dorsal and 

ventral subregions.  GABAergic activation was increased in both swim groups within several 

levels of ventrolateral and caudal subregions compared with sham-ISS and home-cage controls.  
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cFos-immunoreactivity in Serotonergic Cells 

In the present study, we observed an increase in rostral and several mid-rostral sections of 

the dorsal subregion in the vocalizing group compared with the non-vocalizing group.  Acute (15 

min) continuous cold-water (19ºC) swim, tail shock, shock prod, and single social defeat all 

induce cFos immunoreactivity in serotonergic neurons across the dorsal subregion (Cohen et al., 

2017; Grahn et al., 1999; Kelly et al., 2011; Paul et al., 2011).  Although we found similar 

functional activation in our study, the associated behavioral results were inconsistent.  We found 

vocalizing rats that engaged in passive coping exhibited greater functional activation of serotonin 

neurons in the rostral (-7.28mm, -7.46mm) extent of dorsal subregion.  Serotonin neuron 

activation in this subregion is specifically associated with active behaviors in other studies, such 

as defensive burying in response to shock probe (Cohen et al., 2017) or upright defensive 

behavior directed toward an aggressor (Paul et al., 2011).   

For the mid-rostral (-7.82mm to -8.18mm) dorsal subregion, we observed increased cFos 

immunoreactivity in serotonin neurons in vocalizing compared with non-vocalizing rats and all 

control groups.  The mid-rostral dorsal subregion is critical for the generation of vulnerability or 

resilience following stress.  Desensitization of serotonin type-1A inhibitory autoreceptors in 

dorsal (and caudal) subregions is a consequence of inescapable tail shock stress, and sets the 

stage for hyperactivity of serotonin neurons that is associated with learned helplessness-like 

behaviors (Rozeske et al., 2011).  The role of this dorsal subregion is clear, as reduced 

serotonergic activity is associated with learned coping during tail shock (Donner et al., 2018), 

which suggests it is a potential target mediating the behavioral strategies engaged during ISS.  

However, again our behavioral results are inconsistent with serotonergic activation.  Stress 
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resilient rats engaged in passive coping during ISS, we would have expected an associated 

decrease in serotonergic activation. 

The ventral subregion contained the majority of mid-rostral cFos positive serotonin 

neurons in vocalizing rats in the present study.  The functional topography of the ventral 

subregion is not well known, but the present study provides evidence for a potential role in 

passive coping (or energy conservation) during ISS.  The rat ventral subregion may be involved 

in motoric responses due to sensory exposure as part of the fight or flight response, as it projects 

to sensorimotor and motor cortices (Waterhouse, Border, Wahl, & Mihailoff, 1993) as well as 

the rostral pole of locus coeruleus (Kim, Lee, Lee, & Waterhouse, 2004).  Further investigation 

is required as the functional role of ventral subregion is not well characterized.  Our data are 

some of the first to demonstrate a possible role with passive coping behaviors during any model 

of stress.   

In the ventrolateral “wings” in the mid-rostral extent of dorsal raphe, we found increased 

activation in vocalizing rats compared with non-vocalizing rats and all control groups at two 

stereotaxic levels (-8.00mm, -8.18mm).  Swim stress in ambient (25ºC) or cold (19ºC) water 

results in a large number of cFos-immunoreactive serotonin cells in this region compared with 

dorsal or ventral (Drugan, Hibl, et al., 2013; Kelly et al., 2011; Roche et al., 2003), and 

activation is associated with passive coping strategies during social stress (Paul et al., 2011)   

The caudal aspects of ventrolateral wings are contiguous with ventrolateral 

periaqueductal gray, which is implicated in the generation of passive-avoidant coping behaviors 

(Keay & Bandler, 2001).  The dorsal periaqueductal gray is implicated in producing escape and 

panic-like responses, and serotonin release in dorsal periaqueductal gray from ventrolateral 

projections inhibits escape response.  Furthermore, serotonergic innervation of dorsomedial 



  56 

hypothalamus inhibits panic and promotes inhibitory avoidance (Hassell et al., 2017; Paul et al., 

2014).  The activation of ventrolateral serotonin cells is consistent with the passive behavior 

exhibited by vocalizing rats and may also provide a mechanism by which to understand the 

active behavioral strategy in non-vocalizing rats.  It is possible that the active behaviors 

employed by non-vocalizing rats represents a form of maladaptive panic-like behavior, rather 

than adaptive escape behaviors.  However, there are several functional studies that demonstrated 

opposing activation patterns of serotonergic neurons in dorsal and ventral subregions compared 

with ventrolateral wings.  When anxiogenic stimuli, such as open field or beta-carboline 

administration, activate dorsal and ventral serotonin neurons, ventrolateral subregion activity is 

suppressed, and vice versa (Abrams et al., 2004; Bouwknecht et al., 2007).  We did not observe 

the expected opposing activation patterns in the current study, which may partly be due to cold-

water exposure or reduction in core body temperature.  

The caudal subregion (-8.36mm, -8.54mm) activation reported here is consistent with 

others that suggests that the region is stress responsive as both ISS groups exhibited increased 

cFos expression in serotonin cell bodies.  Activation is associated with depressive-like behavior, 

indicated by learned helplessness is observed after acute inescapable tail shock or continuous 

cold-water swim (Donner et al., 2018; Grahn et al., 1999; Takase et al., 2004).  However, when 

compared with active coping (controllable stress), rats without control that exhibit passive 

coping demonstrate increased cFos immunoreactivity within caudal serotonin neurons in other 

studies (Grahn et al., 1999).  We did not observe differences between vocalizing and non-

vocalizing rats in that respect.  The caudal subregion is particularly sensitive to increased post-

ISS forced swim immobility, anxiety in the open field, and social anxiety, as we have found cFos 
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immunoreactivity increased in caudal serotonin neurons associated with those behavioral effects 

(Stafford et al., in prep).   

In the interfasicular nucleus, we did not find any differences in serotonergic activation 

between any groups, with the one exception of increased cFos expression in serotonin cells at the 

-8.36mm stereotaxic level between vocalizing and non-vocalizing and home cage controls, and 

the -8.72mm stereotaxic level within the confined conspecific group.  The interfasicular nucleus 

is thermosensitive, particularly to warm ambient temperatures (Hale & Lowry, 2011) and cold-

water (19ºC) (Drugan, Hibl, et al., 2013; Kelly et al., 2011).  However, activation due to swim 

stress is differential and future work needs to further elucidate the role of this subregion, as it 

may also be more sensitive to temperature contrasts in a two-day forced swim procedure with 

varying water temperatures (Drugan, Hibl, et al., 2013).  We should have observed consistent 

increased activation in swim groups in the current study within the stereotaxic expanse of the 

subregion, however, it is also possible that a series of swims in cold-water (15ºC) and the 

hypothermia induced by ISS may not drive serotonin neurons within the interfasicular nucleus in 

the same manner as continuous swim in relatively warmer temperatures.    

cFos-immunoreactivity in Non-serotonergic Cells 

Interestingly, cFos expression in non-serotonergic cell bodies was increased in both ISS 

groups compared with other groups across the rostral-caudal extent of dorsal raphe and all 

subregions.  The increase in cFos expression in non-serotonergic cells was not localized to a 

particular subregion or stereotaxic level between groups.  There were increased numbers of cFos 

positive cells in the most rostral extent of dorsal subregion compared with the mid-rostral level, 

and the rostral dorsal subregion and ventrolateral wings contained the greatest number compared 

with other subregions.  We only assessed cFos expression localized around serotonergic neurons, 
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and the primary candidate for these serotonin-proximal cells are GABAergic (Challis, Beck, & 

Berton, 2014; McDevitt et al., 2014; Roche et al., 2003) or dopaminergic (Matthews et al., 

2016).  We assessed cFos immunoreactivity in GABA cells in the present study, and activation 

of dopaminergic cells should be investigated in future studies as an alternative target. 

cFos-immunoreactivity in GABAergic Cells 

Although the behavioral and serotonergic effects in the present study were opposite to 

hypothesized, it is possible that the decreased activation in non-vocalizing rats could be due to a 

GABAergic mechanism.  We only found differences in cFos expression within GABAergic 

neurons in the ventrolateral subregion of dorsal raphe.  Specifically, both ISS groups had greater 

double-labeled GABA neurons in ventrolateral subregion at the most rostral level (-7.64mm), 

while the ISS/USVs group had more double-labeled GABA cells at the remaining three levels (-

7.82mm to -8.18mm) compared with control groups.  At the caudal subregion, vocalizing and 

non-vocalizing rats were not different.   

Previous studies have found that following 15 min acute continuous swim in ambient 

(25º) water that the majority of cFos immunoreactive neurons within dorsal raphe are 

GABAergic (Roche et al., 2003).  Local inhibitory GABAergic neurons receive glutamatergic 

input from prelimbic cortex and are responsible for “quieting” serotonergic cells during active 

coping (Puglisi-Allegra & Andolina, 2015).  The primary region of this GABAergic activation is 

within the dorsal and caudal subregions (Rozeske et al., 2011).  The lack of differences in the 

current study do not rule out a GABAergic mechanism.  The mechanism of cFos expression in 

GABA neurons or the time course of measuring cFos immunoreactivity may not capture actualy 

GABAergic activity, or there may be additional mechanisms related to hypothermia that alter 

GABergic activity during the ISS session.   
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Serotonin- or GABA-immunoreactivity Absent of cFos 

Importantly, there were no differences in the numbers of total serotonin or GABA cell 

bodies between groups.  To our knowledge, there are no studies that report a difference in 

serotonin neuron density due to stress or no-stress treatment.  Interestingly, there were more 

GABAergic neurons in the vocalizing group at -7.64mm from bregma, but that did not affect the 

total number of cFos-immunoreactive GABA cells compared with non-vocalizing group.   

Conclusion 

Taken together, the specific subregion serotonin activity are generally consistent with 

other demonstrations of stress-induced serotonergic activity associated with passive coping.  

However, the implications of this immediate stress-induced activity are not clear given that the 

behavioral and serotonergic profiles of vocalizing rats should produce a stress vulnerable, not 

stress resilient, phenotype.  One must consider coping strategies and the role of dorsal raphe 

serotonin in the context of ISS as a novel intermittent, inescapable, cold-water swim stress not 

previously investigated.   
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V. GENERAL DISCUSSION 

The social anxiety observed in the present study is consistent with our previous report 

(Stafford et al., 2015) and consistent with others that have found exposure to a traumatic stressor, 

such as a forced swim (Christianson et al., 2013), tail shock (Christianson, Paul, et al., 2008; 

Christianson et al., 2009), or social defeat (Paul et al., 2011; Wood et al., 2010) reduced post-

stress social interaction.  The post-stress avoidance of a conspecific is considered stress 

vulnerability because rats that learn a coping response (Christianson, Paul, et al., 2008; 

Christianson et al., 2013) or engage in innate dominant, active behaviors (Cohen et al., 2017; 

Wood et al., 2010) associated with resilience do not display reduced post-stress anxiety-like 

avoidance.  Thus, engaging in proactive behavioral strategies may protect the organism against 

anxiety induced by traumatic stress.   

We hypothesized vocalizing rats would engage in proactive behaviors during ISS and 

buffer against the negative consequences of ISS.  Others have found rats that emitted 22-kHz 

USVs during a stress session engaged in proactive behaviors directed toward a conspecific 

(Portavella et al., 1993), and displayed quicker recovery from an interoceptive stress of fever 

(Bassi et al., 2012).  Due to the convergence of these behavioral findings, it was expected 

vocalizing rats in the present experiments would exhibit greater active behaviors.  However, we 

found USV-emitting rats engaged in fewer active behaviors, and instead adopted a less 

active/more passive behavioral strategy throughout the majority of the stress session.   

The distinction between active and passive behaviors as adaptive or maladaptive to stress 

is not clear in the present study.  When confronted with an artificial electrical stimulus, 

aggressive conspecific, or submerged into water, adopting a proactive behavioral strategy is 

adaptive as part of the fight or flight response to survive the situation (Koolhaas, De Boer, 
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Buwalda, & Van Reenen, 2007; Korte, Koolhaas, Wingfield, & McEwen, 2005).  As an 

immediate strategy to mitigate a stressor, an active behavior is beneficial with the goal of 

escaping or terminating the situation.  The initial struggling and vigorous activity during acute 

continuous swim stress in ambient or cold water tempertures is associated with initial greater 

circulating adrenocorticotropic-releasing-hormone, increased heart rate, and serum lactate 

reflecting a sympatho-adrenal “fight or flight” state, which decrease during prolonged swimming 

until the animal is hypothermic (Abel, 1993; Dal-Zotto, Martí, & Armario, 2000; Drugan et al., 

2005; Pintér et al., 2011). 

In the long-term, or if faced with repeated stressor exposures, it may be more adaptive to 

engage in a passive, low activity strategy in order to conserve resources.  Rats exposed to 

multiple sessions of forced swims shift from an initial active strategy to a passive behavioral 

strategy, likely due to an appraisal of the swim as inescapable and adapting to the situation by 

ceasing continued escape behaviors (De Pablo et al., 1989; Tye et al., 2012; Warden et al., 2012).  

Bassi and colleagues (2012) found, similar to the present study, that a small proportion of rats 

emitted 22-kHz USVs in response to an interoceptive stressor (fever), and these USV-emitting 

rats were more dominant (e.g., active) during a social interaction test.  However, the vocalizing 

rats in their study recovered quicker than non-vocalizing rats, suggesting vocalizations in that 

study may reflect a resilient phenotype (Bassi et al., 2012).   

Passive behaviors as an energy conservation mechanism is supported by core body 

temperature differences found between vocalizing and non-vocalizing rats.  The non-vocalizing 

group of ISS rats exhibited greater hypothermia compared with vocalizing rats, which we 

attributed as heat loss due to increased struggling and associated heat dissipation.  The enhanced 

hypothermia in non-vocalizing rats may have resulted in greater physiological strain on the 
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organism.  The physiological stress of cold exposure coupled with the psychological component 

of inescapability may produce an animal more susceptible to the negative consequences of ISS, 

compared with the vocalizing group that conserved energy.   

Coping strategies are associated with opposing serotonergic activity within the dorsal 

raphe nucleus (Puglisi-Allegra & Andolina, 2015).  Patterns of cFos expression within serotonin 

neurons across the dorsal, ventrolateral, and caudal subregions were consistent with the passive 

behavior observed in vocalizing rats.  Serotonin cells within the dorsal and caudal subregion are 

implicated in anxiety as these cells innervate and release serotonin within the basolateral 

amygdala (Hale et al., 2008).  The immobile posture of vocalizing rats is consistent with dorsal 

serotonergic activity, but not consistent with post-stress reduced anxiety.  Therefore, it is 

possible that the immobility observed in the present experiments is distinct from immobility 

considered to reflect depressive-like behavior. 

Of all the subregions with cFos immunoreactive serotonin cells, the caudal extent 

sampled of ventrolateral subregion provide insight to interpret the observed behavioral 

differences.  Serotonergic neurons within the ventrolateral wings innervate the dorsal 

periaqueductal gray and dorsomedial hypothalamus (Hassell et al., 2017).  The release of 

serotonin in dorsal periaqueductal gray reduces escape behaviors.  The reduction of escape 

behaviors is considered panicolytic as serotonin inhibits panic-like behaviors via serotonin type-

1A receptors within both regions (Paul et al., 2014).  Ventrolateral serotonergic activity suggests 

that passive strategies engaged by vocalizing rats and active behaviors of non-vocalizing rats are 

reflective of panicolytic and panicogenic states.   However, non-vocalizing rats also exhibited 

serotonergic activation that was no different than control groups, which creates an additional 

layer of complexity to interpret differences between vocalizing and non-vocalizing rats.  An 
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alternative interpretation of “resilience” and “vulnerability,” must also be considered in the 

context of the current study.  It is possible that vocalizing rats are indeed hypersensitive to the 

initial ISS session, such as an enhanced initial sympathetic response or enhanced subsequent 

parasympathetic compensatory response.  Subsequent events such as a short duration social 

exploration with a juvenile, short duration swim in ambient water, or escape response learning is 

by contrast with ISS a significantly less stressful experience.   

Efferent targets of the dorsal raphe implicated in anxiety and that modulate active or 

passive coping behaviors were not examined.  The basolateral amygdala receives substantial 

efferent projections from dorsal and caudal subregions, and increased serotonergic output from 

dorsal raphe into basolateral nucleus is associated with development of social anxiety 

(Christianson et al., 2013) and coping behaviors (Puglisi-Allegra & Andolina, 2015).  

Serotonergic projections from dorsal raphe to dorsomedial hypothalamus and activation of 

serotonin type-1A receptors within the dorsomedial hypothalamus is associated with reduced 

panic and increased inhibitory avoidance.  The interaction between amygdala and hypothalamic 

nuclei may be a possible mechanism through which passive behaviors during ISS are 

orchestrated. 

It is also likely an intermittent swim model such as ISS affects neurobiological systems in 

a fundamentally different manner than continuous swim stress.  A series of brief (5 s) 

intermittent tail shock results in opioid mediated analgesia, while continuous shock is non-opioid 

mediated (Terman, Lewis, & Liebeskind, 1983).  Similar results are found between intermittent 

vs. continuous cold-water swim stress (Rochford & Henry, 1988).  The mechanism of analgesia 

also changes across time in response to the number of trials of inescapable tail shock, suggesting 

patterns of sensitization and habituation to intermittent stress exposure (Drugan et al., 1985).  
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Interestingly, we did not find stress-induced analgesia after controllable ISS (Brown et al., 2001) 

or inescapable ISS (Stafford et al., in prep).  The lack of stress-induced analgesia and the 

serotonergic/GABAergic differences observed in the present study may be due to the context of 

our model.  The ISS is a tonic-phasic stressor, whereas continuous swim is a tonic stressor and 

intermittent tail shock is phasic stressor.  The intermittent swims force the animal to engage in 

active or passive behaviors during a consistent 5 s period (phasic), however these swims are 

repeatedly interrupted by inter-trial-intervals in which the rat remains cold and continues to 

develop hypothermia (tonic).   

Water temperature and core body temprature may be significant factors driving the 

behavioral and neurobiological effects in the present experiments.  In prior experiments 

comparing short duration (5-15 min) ambient (25ºC) or cold (19ºC) water continuous swim, 

colder water temperatures and increased time increased the total time spent in passive postures 

(immobility) (Drugan, Hibl, et al., 2013; Rabasa, Delgado-Morales, Gomez-Roman, Nadal, & 

Armario, 2013).  Furthermore, ISS-induced immobility during a subsequent forced swim is 

temperature dependent.  Warmer water (30ºC) increases latency to learn and instrumental swim 

escape response during controllable ISS, but does not result in different behavioral strategies 

during a subsequent forced swim test in ambient water (25ºC) as is observed in cold water (20ºC 

or less) (Drugan et al., 2005).  Therefore, direct comparisons to continuous, cold or ambient 

water swim stress, ambient temperature ISS, or ambient (i.e., room) temperature non-swim based 

stressors may not be appropriate as fundamentally different stress dependent neurobiological 

systems may be involved.   



  65 

Limitations and Future Directions 

The foregoing studies demonstrated a particular stress-resilient phenotype associated with 

ISS.  In light of the present data compared with other models of resilience, additional 

experiments are needed to replicate, validate, and extend the understanding of 22-kHz USVs and 

resilience to swim stress.  These studies should, assess the transituational validity of resilience in 

other models of stress, further test behavioral coping during ISS, conduct a time course of these 

behavioral effects, and determine if additional pre-stress markers predict vocalizing or non-

vocalizing group membership.  Furthermore, there are several additional neurobiological 

pathways and neuroendocrine markers that may elucidate the results of the current experiments.  

One of the primary limitations of the current studies is the uniqueness of the present 

findings to ISS.  The ISS as a model of inescapable and intermittent stress is fundamentally 

different from other models, and translational validity to these other models may be limited due 

to factors such as prolonged hypothermia post-ISS.  Furthermore, one necessary comparison is a 

subsequent ISS re-exposure to test if vocalizing or non-vocalizing rats shift coping strategies as 

others have found with repeated continuous forced swim exposures.  Additional pre-stress 

measures, such as USVs emitted during social exploration or aggressive behaviors during social 

exploration may predict the resilient or vulnerable phenotype.  There is also an additional 

developmental limitation wherein the pre-weaning and transport experience of these rats is 

unknown.  There is evidence that transportation may be a significant source of stress on a naïve 

rat with long-term consequences (Balcombe, Barnard, & Sandusky, 2004; Grandin, 1997), and 

laboratory procedures may be especially stressful on weanling rats (Balcombe et al., 2004).  

Juvenile stress potentiates 22-kHz USV emission in adulthood during fear conditioning (Yee, 
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Schwarting, Fuchs, & Wöhr, 2012), therefore, future studies should replicate the current findings 

with rats bred onsite to provide an additional measure of reliability.   

There are several potential dorsal raphe mechanisms which future experiments should 

investigate.  First, the current experiments did not investigate changes in dorsal raphe functional 

activation on the day of social exploration.  We have demonstrated the caudal subregion is 

associated with increased behavioral depression and anxiety post-ISS (Stafford et al., in prep), 

but not in the context of ultrasonic vocalizations.  The extent to which activity in the dorsal raphe 

maintains post-ISS may provide critical information to interpret behavioral activity in the social 

exploration test.  We have also demonstrated ISS-induced deficits likely have a noradrenergic 

mechanism (Drugan et al., 2010; Warner & Drugan, 2012).  It is possible that ISS-induced 

deficits are produced via locus coeruleus-mediated noradrenergic activity, rather than 

serotonergic activity.  Thus, future experiments should examine functional activation of locus 

coeruleus between vocalizing and non-vocalizing rats.  Others have demonstrated several 

neuropeptides (galanin, neuropeptide Y) are functionally associated with resilience and 

noradrenergic function (Holmes, 2014; Sciolino et al., 2015).  Furthermore, the involvement of 

corticotropin releasing factor type-I and type-II receptors would provide valuable insight into the 

mechanism leading to activation of serotonin neurons within dorsal raphe.   

Dorsal raphe dopaminergic and activation of periaqueductal gray may elucidate the 

mechanisms resulting in social anxiety and active/passive coping.  Dorsal raphe dopamine may 

have regulated the post-stress social anxiety independently from serotonin activity observed 

during immediately post-ISS.  Dorsal raphe dopamine neurons are considered a caudal extent of 

ventral tegmental area (Stratford & Wirtshafter, 1990) and involved in arousal (Dougalis et al., 

2012), motivation, and social approach behaviors (Matthews et al., 2016).  Active or passive 
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coping behaviors are regulated by opposing parallel tracts through periaqueductal gray.  The 

dorsolateral column induces active coping, while activation of the ventrolateral column evokes 

passive coping (Keay & Bandler, 2001).  Future studies should compare how activation of these 

columns differs vocalizing or non-vocalizing rats.  The serotonergic activation observed in the 

present study, particularly the increase in ventrolateral wings should be considered within the 

context of active or passive behaviors generated by pathways innervating the periaqueductal 

gray. 

Implications 

The present experiments demonstrated that during intermittent swim stress, rats that 

emitted 22-kHz USVs adopted a distinct behavioral strategy from rats that did not vocalize 

during extended exposure to a novel cold-water environment unique to ISS.  The small 

proportion of vocalizing rats that exhibited a distinct phenotype from non-vocalizing rats may 

serve as a promising novel model of innate stress resilience.  The ethological implication of ISS-

induced USVs are at present not clear and will required further testing, although the current 

studies do suggest a novel interpretation of 22-kHz vocalizations.  Furthermore, the present 

experiments demonstrated a particular model in which passive behaviors are an adaptive stress 

coping response to buffer against the development of anxiety-like behaviors due to inescapable 

intermittent cold-water swim exposure.  The emission of these USVs and associated passive 

coping may serve as a novel model of stress reactivity to a psychological (inescapable, 

unpredictable) and physiological (cold-water, hypothermic) stressor, and may reflect a novel 

interpretation of stress resilience.    
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APPENDIX B: ISS BEHAVIOR PAIRWISE COMPARISONS TABLES 

Table i: Experiment 1 Active Behaviors 
Trial ISS/USVs ISS/No-USVs Mean Diff. SEM t df p 
T1-10 5.5 6.143 -0.6429 1.389 0.4628 144 0.9997 
T11-20 1.167 5.429 -4.262 1.389 3.068 144 0.0204* 
T21-30 0.6667 4.714 -4.048 1.389 2.914 144 0.0327* 
T31-40 1.667 6.214 -4.548 1.389 3.274 144 0.0106* 
T41-50 2.5 6.5 -4 1.389 2.879 144 0.0362* 
T51-60 3.167 5.714 -2.548 1.389 1.834 144 0.4343 
T61-70 2 5.571 -3.571 1.389 2.571 144 0.0859 
T71-80 3.333 4.214 -0.881 1.389 0.6341 144 0.9975 
Note: * indicates significantly different p < 0.05     
 

       
Table ii: Experiment 1 Passive Behaviors 

Trial ISS/USVs ISS/No-USVs Mean Diff. SEM t df p 
T1-10 4.833 4.214 0.619 1.354 0.4574 144 0.9998 
T11-20 8.833 5.357 3.476 1.354 2.568 144 0.0864 
T21-30 9.333 5.643 3.69 1.354 2.727 144 0.0561 
T31-40 8.333 4.214 4.119 1.354 3.043 144 0.022* 
T41-50 7.5 3.786 3.714 1.354 2.744 144 0.0534 
T51-60 7.167 4.571 2.595 1.354 1.917 144 0.3756 
T61-70 8.167 4.786 3.381 1.354 2.498 144 0.1039 
T71-80 6.833 5.786 1.048 1.354 0.774 144 0.9904 
Note: * indicates significantly different p < 0.05     
 

       
Tabel iii: Experiment 2 Active Behaviors 

Trial ISS/USVs ISS/No-USVs Mean Diff. SEM t df p 
T1-10 5.5 6.143 -0.6429 1.389 0.4628 144 0.7763 
T11-20 1.167 5.429 -4.262 1.389 3.068 144 0.0179* 
T21-30 0.6667 4.714 -4.048 1.389 2.914 144 0.0246* 
T31-40 1.667 6.214 -4.548 1.389 3.274 144 0.0106* 
T41-50 2.5 6.5 -4 1.389 2.879 144 0.0246* 
T51-60 3.167 5.714 -2.548 1.389 1.834 144 0.1924 
T61-70 2 5.571 -3.571 1.389 2.571 144 0.0439* 
T71-80 3.333 4.214 -0.881 1.389 0.6341 144 0.7763 
Note: * indicates significantly different p < 0.05     
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Table iv: Experiment 2 Passive Behaviors 
Trial ISS/USVs ISS/No-USVs Mean Diff. SEM t df p 
T1-10 5.333 5.176 0.1569 1.258 0.1247 168 >0.9999 
T11-20 8.667 4.647 4.02 1.258 3.195 168 0.0133* 
T21-30 8.833 4.176 4.657 1.258 3.702 168 0.0023* 
T31-40 8.833 4.294 4.539 1.258 3.609 168 0.0032* 
T41-50 8.833 3.588 5.245 1.258 4.17 168 0.0004* 
T51-60 9.5 3.824 5.676 1.258 4.513 168 <0.001* 
T61-70 8.167 4.294 3.873 1.258 3.079 168 0.0193* 
T71-80 6.833 5.588 1.245 1.258 0.9898 168 0.9562 
Note: * indicates significantly different p < 0.05     
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APPENDIX C: SEROTONIN ANALYSES TABLES 

Table i: cFos/TPH Information Criteria  
  REML AIC BIC 
DRD 968.073 1010.073 1084.275 
DRV 1145.692 1187.692 1261.643 
DRVL 828.707 848.707 880.637 
DRC 1159.776 1201.776 1277.652 
DRI 546.819 558.819 576.762 

    
Table ii: cFos Information Criteria  
  REML AIC BIC 
DRD 1449.072 1491.072 1565.19 
DRV 1235.561 1277.561 1351.679 
DRVL 1021.619 1041.619 1071.455 
DRC 1439.913 1481.913 1557.941 
DRI 633.514 645.514 663.577 

    
Table iii: TPH Information Criteria  
  REML AIC BIC 
DRD 2029.977 2071.977 2146.344 
DRV 2093.235 2135.235 2209.436 
DRVL 1368.387 1388.387 1420.372 
DRC 2005.894 2047.894 2123.922 
DRI 981.564 993.564 1011.628 

 
 
Table iv: DRD cFos/TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 2.51 0.26 56.65 1.98 3.03 

CC 3.11 0.24 58.27 2.62 3.60 
S-ISS 2.51 0.30 65.42 1.90 3.12 
HCC 1.33 0.44 61.40 0.46 2.20 

ISS-USVs 6.51 0.47 50.08 5.56 7.45 
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Table v: DRD cFos/TPH Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 2.04 0.13 31.52 1.77 2.31 
7.46 3.34 0.25 45.65 2.83 3.85 
7.64 2.93 0.38 45.60 2.16 3.69 
7.82 2.75 0.20 53.60 2.35 3.16 
8.00 3.89 0.32 54.99 3.26 4.52 
8.18 4.20 0.29 45.64 3.62 4.78 

 
Table vi: DRD cFos/TPH Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 1.48 0.21 31.47 1.05 1.91 
7.46 3.40 0.42 46.03 2.56 4.25 
7.64 3.36 0.63 46.04 2.09 4.62 
7.82 1.77 0.33 52.25 1.12 2.43 
8.00 2.54 0.51 51.74 1.52 3.56 
8.18 2.48 0.47 45.44 1.53 3.43 

CC 

7.28 1.66 0.23 31.59 1.20 2.13 
7.46 3.64 0.39 45.89 2.85 4.43 
7.64 3.71 0.57 45.29 2.55 4.86 
7.82 2.49 0.32 56.25 1.84 3.14 
8.00 3.40 0.48 52.85 2.44 4.35 
8.18 3.75 0.44 45.47 2.87 4.63 

S-ISS 

7.28 1.38 0.32 31.60 0.72 2.04 
7.46 2.48 0.52 46.20 1.43 3.53 
7.64 2.80 0.72 45.19 1.35 4.26 
7.82 1.98 0.41 58.19 1.16 2.80 
8.00 3.26 0.60 56.24 2.05 4.47 
8.18 3.16 0.57 46.35 2.02 4.31 

HCC 

7.28 1.42 0.33 31.40 0.75 2.08 
7.46 1.57 0.70 46.14 0.16 2.98 
7.64 0.56 1.12 46.57 -1.70 2.82 
7.82 1.52 0.53 53.74 0.46 2.57 
8.00 0.64 0.87 59.82 -1.10 2.38 
8.18 2.25 0.81 46.40 0.63 3.88 

ISS-USVs 
7.28 4.27 0.36 31.43 3.53 5.02 
7.46 5.60 0.71 44.16 4.16 7.04 
7.64 4.20 1.04 43.61 2.11 6.29 
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7.82 6.00 0.60 50.44 4.80 7.20 
8.00 9.60 0.94 51.59 7.72 11.48 
8.18 9.35 0.83 44.20 7.68 11.03 

 
Table vii: DRD cFos Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 13.11 0.78 55.97 11.55 14.67 

CC 6.68 0.73 62.28 5.23 8.14 
S-ISS 5.84 0.97 69.84 3.91 7.78 
HCC 3.30 1.28 55.53 0.73 5.86 

ISS-USVs 11.88 1.42 50.70 9.03 14.73 
      

Table viii: DRD cFos Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 14.43 1.31 37.03 11.78 17.08 
7.46 13.34 0.91 52.83 11.51 15.17 
7.64 7.77 0.74 51.82 6.30 9.25 
7.82 4.56 0.46 51.63 3.65 5.48 
8.00 3.89 0.44 51.80 3.00 4.78 
8.18 4.98 0.62 41.92 3.72 6.24 

 
Table ix: DRD cFos Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 24.83 2.08 36.53 20.61 29.05 
7.46 23.26 1.51 53.43 20.24 26.28 
7.64 10.33 1.22 52.64 7.88 12.78 
7.82 7.64 0.74 50.76 6.14 9.13 
8.00 6.35 0.69 49.82 4.97 7.73 
8.18 6.25 1.01 42.40 4.20 8.29 

CC 

7.28 12.22 2.19 37.91 7.78 16.65 
7.46 9.93 1.37 53.58 7.19 12.67 
7.64 5.99 1.06 50.97 3.86 8.12 
7.82 3.94 0.71 52.85 2.52 5.37 
8.00 3.97 0.70 54.04 2.58 5.37 
8.18 4.05 0.94 42.45 2.16 5.95 

S-ISS 
7.28 8.35 3.08 37.70 2.11 14.58 
7.46 10.79 1.86 54.03 7.06 14.52 
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7.64 6.07 1.42 51.21 3.22 8.92 
7.82 2.97 0.97 53.69 1.03 4.91 
8.00 2.53 0.91 53.39 0.71 4.34 
8.18 4.34 1.24 42.46 1.84 6.85 

HCC 

7.28 4.86 3.27 35.66 -1.78 11.49 
7.46 6.12 2.52 53.89 1.07 11.16 
7.64 3.48 2.17 53.66 -0.87 7.83 
7.82 1.68 1.20 52.27 -0.74 4.09 
8.00 1.01 1.23 52.53 -1.46 3.47 
8.18 2.65 1.75 42.94 -0.88 6.18 

ISS-USVs 

7.28 21.89 3.67 36.03 14.46 29.33 
7.46 16.60 2.62 49.98 11.34 21.86 
7.64 13.00 2.06 48.58 8.86 17.14 
7.82 6.60 1.35 49.54 3.90 9.30 
8.00 5.60 1.27 49.39 3.04 8.16 
8.18 7.60 1.80 40.05 3.97 11.22 

 
Table x: DRD TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 61.31 1.84 45.86 57.60 65.02 

CC 61.35 1.70 47.50 57.93 64.77 
S-ISS 60.32 2.24 59.38 55.85 64.79 
HCC 58.80 3.01 49.19 52.75 64.84 

ISS-USVs 60.74 3.31 39.08 54.04 67.45 
      

Table xi: DRD TPH Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 51.38 1.73 31.42 47.86 54.91 
7.46 63.42 1.73 46.25 59.94 66.91 
7.64 69.17 2.41 46.63 64.33 74.01 
7.82 62.71 2.10 47.66 58.50 66.93 
8.00 63.94 2.08 53.18 59.78 68.10 
8.18 52.40 1.86 44.68 48.65 56.15 
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Table xii: DRD TPH Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 53.57 2.73 31.54 48.00 59.13 
7.46 60.19 2.87 46.87 54.41 65.97 
7.64 73.26 4.00 47.02 65.22 81.30 
7.82 65.19 3.42 46.20 58.30 72.07 
8.00 63.10 3.29 50.82 56.50 69.70 
8.18 52.57 3.05 44.31 46.42 58.72 

CC 

7.28 52.06 2.97 31.79 46.01 58.11 
7.46 69.61 2.61 46.72 64.36 74.87 
7.64 68.23 3.62 46.41 60.94 75.52 
7.82 64.45 3.29 50.60 57.85 71.06 
8.00 60.12 3.08 52.41 53.94 66.30 
8.18 53.63 2.82 44.72 47.95 59.30 

S-ISS 

7.28 52.65 4.20 31.78 44.09 61.21 
7.46 59.20 3.56 47.43 52.04 66.36 
7.64 64.04 4.59 46.50 54.81 73.28 
7.82 64.26 4.38 50.54 55.47 73.04 
8.00 73.22 4.00 54.28 65.20 81.24 
8.18 48.54 3.74 44.98 41.01 56.06 

HCC 

7.28 50.72 4.26 30.93 42.03 59.40 
7.46 70.32 4.82 46.20 60.61 80.03 
7.64 64.91 7.07 48.38 50.69 79.12 
7.82 57.28 5.47 48.38 46.28 68.27 
8.00 54.64 5.87 55.69 42.89 66.40 
8.18 54.91 5.15 44.82 44.54 65.29 

ISS-USVs 

7.28 47.91 4.76 30.41 38.19 57.63 
7.46 57.80 4.89 44.69 47.95 67.65 
7.64 75.40 6.67 43.21 61.95 88.85 
7.82 62.40 6.19 44.93 49.94 74.86 
8.00 68.60 6.07 50.69 56.41 80.79 
8.18 52.36 5.39 43.52 41.50 63.21 
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Table xiii: DRV cFos/TPH  Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 3.08 0.40 50.66 2.28 3.88 

CC 3.13 0.37 54.13 2.39 3.87 
S-ISS 2.65 0.46 59.62 1.73 3.57 
HCC 1.63 0.62 63.22 0.38 2.87 

ISS-USVs 6.36 0.74 53.40 4.87 7.86 
      

Table xiv: DRV cFos/TPH  Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 2.19 0.39 34.78 1.41 2.97 
7.46 3.77 0.46 47.93 2.85 4.68 
7.64 3.45 0.59 44.78 2.27 4.63 
7.82 3.12 0.29 48.99 2.53 3.71 
8.00 3.68 0.28 55.84 3.13 4.23 
8.18 4.02 0.42 33.60 3.17 4.86 

 
Table xv: DRV cFos/TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 3.07 0.55 33.76 1.95 4.19 
7.46 3.73 0.71 46.62 2.31 5.15 
7.64 3.73 0.98 44.63 1.77 5.70 
7.82 2.13 0.48 46.62 1.17 3.09 
8.00 2.77 0.44 52.03 1.88 3.65 
8.18 3.07 0.68 33.83 1.69 4.45 

CC 

7.28 2.29 0.59 34.88 1.10 3.47 
7.46 3.85 0.67 47.50 2.49 5.20 
7.64 4.09 0.88 44.23 2.31 5.87 
7.82 2.31 0.48 51.18 1.35 3.27 
8.00 3.00 0.42 53.25 2.17 3.83 
8.18 3.26 0.61 31.67 2.01 4.50 

S-ISS 

7.28 1.30 0.82 34.93 -0.37 2.98 
7.46 4.29 0.83 47.42 2.62 5.96 
7.64 2.89 1.12 44.68 0.64 5.13 
7.82 2.36 0.61 53.01 1.15 3.58 
8.00 2.52 0.53 57.68 1.47 3.58 
8.18 2.54 0.83 32.29 0.84 4.23 
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HCC 

7.28 1.08 0.86 33.51 -0.67 2.82 
7.46 1.59 1.16 47.70 -0.75 3.94 
7.64 1.56 1.72 47.85 -1.90 5.01 
7.82 1.38 0.77 49.97 -0.16 2.92 
8.00 0.90 0.76 60.74 -0.62 2.43 
8.18 3.24 1.17 35.71 0.86 5.61 

ISS-USVs 

7.28 3.22 1.28 34.57 0.62 5.82 
7.46 5.38 1.48 47.98 2.40 8.35 
7.64 5.00 1.63 40.40 1.72 8.29 
7.82 7.40 0.87 45.45 5.66 9.14 
8.00 9.20 0.82 52.03 7.56 10.84 
8.18 7.99 1.19 32.39 5.58 10.41 

 
Table xvi: DRV cFos Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 5.61 0.42 53.02 4.76 6.45 

CC 3.72 0.39 59.33 2.93 4.50 
S-ISS 4.20 0.49 63.72 3.22 5.18 
HCC 1.64 0.67 64.10 0.30 2.98 

ISS-USVs 7.38 0.81 58.97 5.76 9.00 
      

Table xvii: DRV cFos Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 3.63 0.31 38.28 3.02 4.25 
7.46 7.28 0.67 44.87 5.93 8.62 
7.64 4.79 0.49 47.86 3.81 5.78 
7.82 2.95 0.31 49.98 2.33 3.58 
8.00 4.09 0.44 55.67 3.21 4.96 
8.18 4.31 0.50 40.89 3.30 5.31 
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Table xviii: DRV cFos Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 4.55 0.44 33.76 3.65 5.44 
7.46 8.05 1.02 43.68 5.98 10.11 
7.64 6.91 0.82 48.03 5.27 8.55 
7.82 3.53 0.50 48.91 2.52 4.54 
8.00 5.47 0.70 53.62 4.08 6.86 
8.18 5.14 0.80 40.68 3.52 6.75 

CC 

7.28 2.67 0.45 38.58 1.76 3.58 
7.46 6.20 0.95 43.75 4.27 8.12 
7.64 3.95 0.75 46.65 2.44 5.45 
7.82 2.57 0.51 51.79 1.56 3.59 
8.00 3.73 0.65 54.58 2.42 5.04 
8.18 3.20 0.75 40.70 1.70 4.71 

S-ISS 

7.28 3.31 0.67 37.61 1.95 4.68 
7.46 7.78 1.25 46.32 5.27 10.29 
7.64 3.80 0.94 47.63 1.91 5.69 
7.82 1.76 0.65 51.65 0.45 3.07 
8.00 3.57 0.85 56.49 1.88 5.27 
8.18 4.97 0.93 38.03 3.10 6.85 

HCC 

7.28 1.11 0.70 33.02 -0.31 2.53 
7.46 4.03 1.67 45.81 0.67 7.39 
7.64 1.51 1.44 49.65 -1.37 4.40 
7.82 1.11 0.81 50.70 -0.51 2.73 
8.00 1.26 1.24 57.47 -1.22 3.74 
8.18 0.82 1.43 41.82 -2.06 3.70 

ISS-USVs 

7.28 6.54 1.00 38.64 4.53 8.55 
7.46 10.34 2.19 43.52 5.92 14.76 
7.64 7.80 1.36 44.36 5.05 10.55 
7.82 5.80 0.91 47.79 3.98 7.62 
8.00 6.40 1.28 53.62 3.83 8.97 
8.18 7.41 1.45 40.71 4.49 10.33 
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Table xix: DRV TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 59.168 2.278 45.244 54.582 63.755 

CC 63.251 2.109 50.864 59.016 67.486 
S-ISS 63.189 2.637 56.913 57.908 68.47 
HCC 62.164 3.587 54.139 54.972 69.355 

ISS-USVs 62.19 4.268 47.842 53.608 70.772 
      

Table xx: DRV TPH Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 42.366 1.931 31.719 38.43 46.301 
7.46 59.644 2.819 44.073 53.962 65.326 
7.64 66.515 2.456 46.897 61.574 71.457 
7.82 79.25 2.474 49.226 74.278 84.221 
8.00 73.339 2.183 51.64 68.959 77.72 
8.18 50.84 2.267 39.62 46.257 55.424 

 
Table xxi: DRV TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 39.72 2.84 27.46 33.90 45.54 
7.46 55.00 4.41 41.27 46.10 63.91 
7.64 65.09 4.10 46.73 56.85 73.33 
7.82 74.66 3.99 48.23 66.63 82.68 
8.00 71.77 3.45 49.34 64.83 78.70 
8.18 48.78 3.75 40.27 41.20 56.36 

CC 

7.28 39.12 2.94 31.41 33.13 45.11 
7.46 64.91 4.10 41.91 56.63 73.19 
7.64 67.56 3.75 44.91 60.00 75.11 
7.82 83.99 4.02 50.64 75.91 92.07 
8.00 70.76 3.24 50.74 64.25 77.27 
8.18 53.17 3.39 39.53 46.33 60.02 

S-ISS 

7.28 37.95 4.04 32.16 29.72 46.17 
7.46 60.27 5.17 42.76 49.85 70.70 
7.64 69.73 4.70 46.51 60.27 79.20 
7.82 77.24 5.21 50.64 66.78 87.70 
8.00 77.21 4.18 53.45 68.84 85.59 
8.18 56.73 4.17 38.70 48.29 65.18 
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HCC 

7.28 42.81 4.45 27.04 33.67 51.95 
7.46 65.22 7.15 44.74 50.81 79.63 
7.64 67.40 7.13 47.59 53.07 81.74 
7.82 76.56 6.46 49.68 63.60 89.53 
8.00 75.36 6.22 53.32 62.88 87.84 
8.18 45.63 6.47 41.13 32.56 58.70 

ISS-USVs 

7.28 52.23 6.36 31.89 39.28 65.18 
7.46 52.82 9.20 44.13 34.29 71.35 
7.64 62.80 6.86 42.90 48.96 76.64 
7.82 83.80 7.22 47.20 69.28 98.32 
8.00 71.60 6.37 49.34 58.81 84.39 
8.18 49.89 6.61 37.84 36.51 63.26 

 
Table xxii: DRVL cFos/TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 2.927 0.406 53.14 2.112 3.743 

CC 2.784 0.375 56.037 2.033 3.535 
S-ISS 3.087 0.494 58.434 2.097 4.076 
HCC 1.49 0.65 58.748 0.19 2.791 

ISS-USVs 8.285 0.731 49.005 6.817 9.754 
      

Table xxiii: DRVL cFos/TPH Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.64 66.515 2.456 46.897 61.574 71.457 
7.82 79.25 2.474 49.226 74.278 84.221 
8.00 73.339 2.183 51.64 68.959 77.72 
8.18 50.84 2.267 39.62 46.257 55.424 

 
Table xxiv: DRVL cFos/TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.64 4.52 0.64 53.35 3.23 5.81 
7.82 3.50 0.82 48.42 1.86 5.14 
8.00 2.29 0.46 52.97 1.37 3.21 
8.18 1.40 0.55 39.44 0.28 2.51 

CC 
7.64 2.06 0.56 51.00 0.93 3.20 
7.82 3.59 0.80 53.39 1.98 5.20 
8.00 3.12 0.43 54.16 2.26 3.98 
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8.18 2.37 0.51 39.55 1.34 3.39 

S-ISS 

7.64 2.73 0.75 51.92 1.23 4.24 
7.82 3.18 1.05 51.66 1.08 5.29 
8.00 3.73 0.56 54.87 2.60 4.85 
8.18 2.70 0.68 39.55 1.34 4.07 

HCC 

7.64 1.50 1.12 56.80 -0.75 3.74 
7.82 2.19 1.31 50.93 -0.43 4.81 
8.00 0.92 0.83 56.18 -0.73 2.57 
8.18 1.36 0.95 39.05 -0.57 3.29 

ISS-USVs 

7.64 8.20 1.10 48.36 5.99 10.41 
7.82 8.20 1.48 47.62 5.23 11.17 
8.00 9.60 0.85 52.97 7.90 11.30 
8.18 7.14 0.96 39.21 5.21 9.08 

 
Table xxv: DRVL cFos Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 30.219 1.425 22.03 27.263 33.175 

CC 16.256 1.392 29.007 13.409 19.102 
S-ISS 18.788 1.696 21.758 15.269 22.308 
HCC 9.512 2.36 22.762 4.627 14.397 

ISS-USVs 30.558 2.53 17.844 25.24 35.876 
      

Table xxvi: DRVL cFos Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.64 19.366 1.159 54.748 17.043 21.689 
7.82 21.011 1.202 28.32 18.55 23.472 
8.00 21.86 1.526 34.915 18.761 24.958 
8.18 22.03 1.477 9.435 18.713 25.347 

 
Table xxvii: DRVL cFos Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.64 25.80 1.89 50.41 22.02 29.59 
7.82 26.70 1.97 32.61 22.69 30.72 
8.00 30.31 2.56 35.12 25.11 35.51 
8.18 38.06 2.42 9.71 32.65 43.47 

CC 7.64 17.68 1.67 53.23 14.33 21.04 
7.82 16.74 1.91 40.99 12.88 20.60 
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8.00 14.69 3.03 37.03 8.56 20.82 
8.18 15.91 2.27 8.83 10.76 21.06 

S-ISS 

7.64 19.45 2.25 51.49 14.93 23.98 
7.82 20.03 2.37 21.16 15.11 24.95 
8.00 18.04 2.91 34.00 12.13 23.95 
8.18 17.63 2.96 9.45 10.99 24.26 

HCC 

7.64 8.09 3.35 58.47 1.38 14.80 
7.82 10.94 3.32 29.42 4.15 17.74 
8.00 7.11 3.88 34.35 -0.77 15.00 
8.18 11.90 4.15 10.33 2.71 21.10 

ISS-USVs 

7.64 25.80 3.30 50.01 19.17 32.43 
7.82 30.64 3.46 24.27 23.51 37.76 
8.00 39.15 4.36 32.79 30.28 48.01 
8.18 26.65 4.20 8.74 17.11 36.19 

 
Table xxviii: DRVL TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 44.685 1.442 48.666 41.787 47.583 

CC 39.289 1.359 55.356 36.566 42.012 
S-ISS 44.327 1.784 58.17 40.756 47.898 
HCC 39.446 2.454 64.316 34.544 44.348 

ISS-USVs 44.637 2.578 44.039 39.442 49.832 
      

Table xxix: DRVL TPH Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.64 27.956 1.368 44.666 25.201 30.711 
7.82 59.733 2.199 48.011 55.313 64.154 
8.00 57.798 1.811 53.064 54.165 61.431 
8.18 24.42 0.904 37.703 22.589 26.25 

 
Table xxx: DRVL TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.64 35.09 2.29 44.98 30.47 39.70 
7.82 57.50 3.55 47.61 50.36 64.64 
8.00 59.53 2.84 52.53 53.83 65.23 
8.18 26.63 1.48 37.67 23.64 29.62 

CC 7.64 25.74 1.95 44.41 21.80 29.67 
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7.82 57.74 3.52 48.50 50.66 64.82 
8.00 52.98 2.68 53.05 47.61 58.35 
8.18 20.70 1.37 37.72 17.93 23.47 

S-ISS 

7.64 26.55 2.62 44.55 21.28 31.83 
7.82 62.71 4.70 48.43 53.26 72.15 
8.00 62.03 3.52 53.14 54.98 69.08 
8.18 26.02 1.81 37.57 22.35 29.70 

HCC 

7.64 22.81 4.12 45.45 14.51 31.10 
7.82 58.52 5.77 48.20 46.92 70.12 
8.00 53.05 5.20 53.48 42.64 63.47 
8.18 23.40 2.55 37.86 18.24 28.57 

ISS-USVs 

7.64 29.60 3.72 43.32 22.09 37.11 
7.82 62.20 6.36 47.42 49.41 74.99 
8.00 61.40 5.24 52.53 50.89 71.91 
8.18 25.35 2.57 37.52 20.15 30.54 

 
Table xxxi: DRC cFos/TPH  Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 3.48 0.29 54.50 2.90 4.07 

CC 2.88 0.27 53.95 2.34 3.42 
S-ISS 3.17 0.33 56.19 2.51 3.83 
HCC 1.72 0.44 51.70 0.83 2.60 

ISS-USVs 4.55 0.52 51.91 3.51 5.59 
      

Table xxxii: DRC cFos/TPH  Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 5.21 0.40 54.15 4.42 6.00 
8.54 4.41 0.29 50.32 3.82 5.00 
8.72 3.40 0.33 45.81 2.74 4.06 
8.90 2.88 0.31 43.52 2.26 3.49 
9.08 1.68 0.26 42.95 1.16 2.20 
9.26 1.38 0.22 45.77 0.94 1.81 
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Table xxxiii: DRC cFos/TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

8.36 7.13 0.67 54.04 5.78 8.48 
8.54 5.83 0.49 49.17 4.84 6.81 
8.72 3.94 0.56 45.68 2.81 5.07 
8.90 2.35 0.53 43.71 1.27 3.42 
9.08 0.92 0.48 47.13 -0.04 1.88 
9.26 0.73 0.38 46.00 -0.03 1.50 

CC 

8.36 3.96 0.63 55.06 2.69 5.22 
8.54 2.90 0.45 48.62 2.00 3.81 
8.72 2.44 0.54 46.32 1.36 3.52 
8.90 3.37 0.46 42.81 2.44 4.30 
9.08 2.43 0.43 45.79 1.57 3.29 
9.26 2.17 0.32 44.63 1.51 2.82 

S-ISS 

8.36 4.31 0.75 54.04 2.81 5.81 
8.54 3.58 0.55 49.56 2.48 4.68 
8.72 3.64 0.69 46.70 2.25 5.04 
8.90 3.09 0.59 43.62 1.91 4.28 
9.08 2.24 0.48 42.28 1.27 3.20 
9.26 2.14 0.46 47.21 1.22 3.06 

HCC 

8.36 1.86 1.02 54.04 -0.18 3.90 
8.54 2.73 0.82 54.18 1.09 4.37 
8.72 1.78 0.86 45.91 0.06 3.50 
8.90 1.86 0.69 40.37 0.46 3.25 
9.08 1.22 0.67 42.40 -0.13 2.57 
9.26 0.86 0.51 43.58 -0.17 1.88 

ISS-USVs 

8.36 8.80 1.21 54.04 6.39 11.22 
8.54 7.00 0.86 47.60 5.27 8.73 
8.72 5.20 0.95 44.85 3.30 7.10 
8.90 3.72 1.01 44.15 1.70 5.75 
9.08 1.60 0.75 40.65 0.09 3.11 
9.26 0.99 0.66 45.96 -0.34 2.32 
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Table xxxiv: DRC cFos Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 6.74 0.55 59.40 5.64 7.83 

CC 3.05 0.50 59.38 2.05 4.04 
S-ISS 3.95 0.62 61.70 2.72 5.18 
HCC 2.38 0.83 54.89 0.71 4.05 

ISS-USVs 9.18 0.99 57.15 7.20 11.17 
      

Table xxxv: DRC cFos Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 3.98 0.35 56.08 3.29 4.68 
8.54 4.90 0.52 56.15 3.86 5.94 
8.72 5.04 0.55 48.83 3.94 6.14 
8.90 5.19 0.54 44.76 4.11 6.28 
9.08 4.78 0.59 44.84 3.60 5.96 
9.26 6.45 0.59 47.11 5.26 7.65 

 
Table xxxvi: DRC cFos Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

8.36 4.09 0.59 56.23 2.90 5.28 
8.54 7.73 0.87 55.76 5.98 9.47 
8.72 6.72 0.92 49.09 4.86 8.58 
8.90 6.45 0.93 45.09 4.57 8.33 
9.08 7.30 1.10 47.44 5.08 9.51 
9.26 8.13 0.94 45.74 6.24 10.02 

CC 

8.36 2.75 0.54 57.31 1.67 3.84 
8.54 2.09 0.80 55.77 0.49 3.68 
8.72 3.66 0.89 52.59 1.88 5.43 
8.90 3.18 0.79 43.25 1.59 4.78 
9.08 3.35 0.99 46.14 1.36 5.34 
9.26 3.24 0.85 45.44 1.52 4.96 

S-ISS 

8.36 3.07 0.66 56.43 1.76 4.39 
8.54 3.19 0.95 54.20 1.29 5.10 
8.72 4.44 1.09 54.19 2.26 6.62 
8.90 5.15 1.08 45.83 2.97 7.33 
9.08 3.59 1.09 44.00 1.39 5.78 
9.26 4.26 1.21 48.21 1.82 6.69 
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HCC 

8.36 2.00 0.90 55.77 0.20 3.80 
8.54 1.49 1.45 59.77 -1.40 4.38 
8.72 1.19 1.45 47.48 -1.72 4.10 
8.90 3.71 1.23 39.87 1.22 6.21 
9.08 1.86 1.54 44.38 -1.24 4.96 
9.26 4.00 1.35 43.12 1.28 6.73 

ISS-USVs 

8.36 8.00 1.07 55.77 5.87 10.13 
8.54 10.00 1.54 53.56 6.92 13.09 
8.72 9.20 1.60 45.89 5.97 12.43 
8.90 7.46 1.76 45.95 3.92 10.99 
9.08 7.80 1.70 43.56 4.38 11.22 
9.26 12.64 1.97 48.26 8.68 16.60 

 
Table xxxvii: DRC TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 39.08 1.39 50.63 36.29 41.88 

CC 43.46 1.27 51.55 40.91 46.00 
S-ISS 43.95 1.53 56.93 40.88 47.01 
HCC 44.72 2.11 49.84 40.48 48.96 

ISS-USVs 39.47 2.48 49.19 34.49 44.44 
      

Table xxxviii: DRC TPH Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 61.25 1.63 53.59 57.98 64.53 
8.54 58.47 1.62 52.22 55.22 61.72 
8.72 45.34 1.55 44.93 42.21 48.48 
8.90 33.93 1.42 42.52 31.06 36.79 
9.08 26.35 1.07 48.68 24.20 28.50 
9.26 27.46 1.02 47.51 25.42 29.51 

 
Table xxxix: DRC TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

8.36 4.09 0.59 56.23 2.90 5.28 
8.54 7.73 0.87 55.76 5.98 9.47 
8.72 6.72 0.92 49.09 4.86 8.58 
8.90 6.45 0.93 45.09 4.57 8.33 
9.08 7.30 1.10 47.44 5.08 9.51 
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9.26 8.13 0.94 45.74 6.24 10.02 

CC 

8.36 2.75 0.54 57.31 1.67 3.84 
8.54 2.09 0.80 55.77 0.49 3.68 
8.72 3.66 0.89 52.59 1.88 5.43 
8.90 3.18 0.79 43.25 1.59 4.78 
9.08 3.35 0.99 46.14 1.36 5.34 
9.26 3.24 0.85 45.44 1.52 4.96 

S-ISS 

8.36 3.07 0.66 56.43 1.76 4.39 
8.54 3.19 0.95 54.20 1.29 5.10 
8.72 4.44 1.09 54.19 2.26 6.62 
8.90 5.15 1.08 45.83 2.97 7.33 
9.08 3.59 1.09 44.00 1.39 5.78 
9.26 4.26 1.21 48.21 1.82 6.69 

HCC 

8.36 2.00 0.90 55.77 0.20 3.80 
8.54 1.49 1.45 59.77 -1.40 4.38 
8.72 1.19 1.45 47.48 -1.72 4.10 
8.90 3.71 1.23 39.87 1.22 6.21 
9.08 1.86 1.54 44.38 -1.24 4.96 
9.26 4.00 1.35 43.12 1.28 6.73 

ISS-USVs 

8.36 8.00 1.07 55.77 5.87 10.13 
8.54 10.00 1.54 53.56 6.92 13.09 
8.72 9.20 1.60 45.89 5.97 12.43 
8.90 7.46 1.76 45.95 3.92 10.99 
9.08 7.80 1.70 43.56 4.38 11.22 
9.26 12.64 1.97 48.26 8.68 16.60 

 
Table xl: DRI cFos/TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 0.77 0.26 38.35 0.26 1.29 

CC 2.09 0.24 40.97 1.60 2.58 
S-ISS 1.35 0.30 41.27 0.74 1.95 
HCC 1.03 0.41 38.88 0.21 1.85 

ISS-USVs 1.71 0.46 38.22 0.79 2.63 
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Table xli: DRI cFos/TPH Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 1.32 0.16 54.21 1.01 1.63 
8.54 1.43 0.24 50.38 0.94 1.91 
8.72 1.43 0.29 43.12 0.84 2.02 

 
Table xlii: DRI cFos/TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 
8.36 0.56 0.27 54.16 0.03 1.10 
8.54 1.11 0.39 49.40 0.33 1.89 
8.72 0.64 0.50 43.30 -0.36 1.65 

CC 
8.36 1.33 0.25 54.61 0.83 1.83 
8.54 1.55 0.35 49.30 0.84 2.27 
8.72 3.39 0.48 43.64 2.42 4.35 

S-ISS 
8.36 1.62 0.30 54.16 1.02 2.21 
8.54 1.22 0.43 49.33 0.35 2.09 
8.72 1.21 0.62 43.79 -0.04 2.45 

HCC 
8.36 0.29 0.40 54.16 -0.52 1.09 
8.54 1.31 0.66 50.96 -0.02 2.64 
8.72 1.50 0.76 42.72 -0.04 3.03 

ISS-USVs 
8.36 2.80 0.48 54.16 1.85 3.75 
8.54 1.94 0.74 50.58 0.44 3.43 
8.72 0.40 0.83 42.72 -1.28 2.08 

 
Table xliii: DRI cFos Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 1.82 0.35 50.30 1.11 2.54 

CC 1.85 0.32 53.57 1.21 2.50 
S-ISS 2.35 0.38 56.78 1.58 3.12 
HCC 1.84 0.57 54.27 0.70 2.98 

ISS-USVs 3.07 0.64 51.80 1.78 4.36 
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Table xliv: DRI cFos Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 1.95 0.24 52.77 1.47 2.42 
8.54 2.43 0.37 49.98 1.69 3.17 
8.72 2.18 0.27 49.21 1.65 2.72 

 
Table xlv: DRI cFos Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 
8.36 1.44 0.40 52.44 0.63 2.25 
8.54 2.45 0.59 48.33 1.26 3.64 
8.72 1.58 0.46 49.71 0.65 2.51 

CC 
8.36 1.44 0.38 53.50 0.68 2.20 
8.54 2.10 0.54 48.95 1.02 3.19 
8.72 2.02 0.43 50.68 1.15 2.88 

S-ISS 
8.36 2.39 0.45 53.79 1.50 3.29 
8.54 2.52 0.66 49.69 1.20 3.84 
8.72 2.14 0.52 51.10 1.10 3.17 

HCC 
8.36 0.86 0.61 52.44 -0.37 2.08 
8.54 2.87 1.01 50.16 0.84 4.91 
8.72 1.79 0.71 48.76 0.35 3.22 

ISS-USVs 
8.36 3.60 0.72 52.44 2.15 5.05 
8.54 2.21 1.13 50.54 -0.06 4.48 
8.72 3.40 0.79 47.72 1.82 4.98 

 
Table xlvi: DRI TPH Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 24.19 0.98 50.68 22.23 26.16 

CC 23.03 0.90 53.29 21.22 24.84 
S-ISS 23.68 1.09 53.70 21.49 25.87 
HCC 27.55 1.61 54.90 24.32 30.78 

ISS-USVs 26.31 1.82 53.19 22.66 29.96 
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Table xlvii: DRI TPH Stereotaxic Level Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 19.21 0.87 54.09 17.46 20.95 
8.54 31.82 1.39 49.26 29.03 34.60 
8.72 23.84 0.55 46.99 22.73 24.95 

 
Table xlviii: DRI TPH Treatment x Level Interaction Estimated Marginal Means 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 
8.36 19.94 1.48 54.07 16.96 22.91 
8.54 28.75 2.21 49.15 24.30 33.20 
8.72 23.90 0.96 47.06 21.97 25.82 

CC 
8.36 16.95 1.40 54.16 14.15 19.75 
8.54 28.98 2.02 49.16 24.92 33.04 
8.72 23.15 0.89 47.18 21.36 24.95 

S-ISS 
8.36 18.06 1.65 54.15 14.76 21.35 
8.54 28.95 2.47 49.19 23.98 33.92 
8.72 24.05 1.08 47.22 21.88 26.22 

HCC 
8.36 17.29 2.24 54.07 12.79 21.79 
8.54 41.08 3.83 49.30 33.38 48.77 
8.72 24.29 1.46 46.92 21.35 27.23 

ISS-USVs 
8.36 23.80 2.66 54.07 18.48 29.12 
8.54 31.33 4.28 49.29 22.72 39.93 
8.72 23.80 1.60 46.80 20.58 27.02 
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APPENDIX D: GABA ANALYSES TABLES 

Table i: cFos/GAD67 Information Criteria 
  REML AIC BIC 

DRD 1043.752 1085.752 1160.365 
DRV 1067.856 1109.856 1184.387 

DRVL 747.67 767.67 799.488 
DRC 764.059 784.059 816.529 

    

Table ii: GAD67 Information Criteria  

  REML AIC BIC 
DRD 1042.48 1084.48 1159.092 
DRV 1216.892 1258.892 1333.423 

DRVL 895.279 915.279 947.097 
DRC 875.571 895.571 928.041 

 
Table iii: DRD cFos/GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 61.31 1.84 45.86 57.60 65.02 

CC 61.35 1.70 47.50 57.93 64.77 
S-ISS 60.32 2.24 59.38 55.85 64.79 
HCC 58.80 3.01 49.19 52.75 64.84 

ISS-USVs 60.74 3.31 39.08 54.04 67.45 
      

Table iv: DRD cFos/GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 51.38 1.73 31.42 47.86 54.91 
7.46 63.42 1.73 46.25 59.94 66.91 
7.64 69.17 2.41 46.63 64.33 74.01 
7.82 62.71 2.10 47.66 58.50 66.93 
8.00 63.94 2.08 53.18 59.78 68.10 
8.18 52.40 1.86 44.68 48.65 56.15 

 
 
 
 
 
 
 



  105 

Table v: DRD cFos/GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 53.57 2.73 31.54 48.00 59.13 
7.46 60.19 2.87 46.87 54.41 65.97 
7.64 73.26 4.00 47.02 65.22 81.30 
7.82 65.19 3.42 46.20 58.30 72.07 
8.00 63.10 3.29 50.82 56.50 69.70 
8.18 52.57 3.05 44.31 46.42 58.72 

CC 

7.28 52.06 2.97 31.79 46.01 58.11 
7.46 69.61 2.61 46.72 64.36 74.87 
7.64 68.23 3.62 46.41 60.94 75.52 
7.82 64.45 3.29 50.60 57.85 71.06 
8.00 60.12 3.08 52.41 53.94 66.30 
8.18 53.63 2.82 44.72 47.95 59.30 

S-ISS 

7.28 52.65 4.20 31.78 44.09 61.21 
7.46 59.20 3.56 47.43 52.04 66.36 
7.64 64.04 4.59 46.50 54.81 73.28 
7.82 64.26 4.38 50.54 55.47 73.04 
8.00 73.22 4.00 54.28 65.20 81.24 
8.18 48.54 3.74 44.98 41.01 56.06 

HCC 

7.28 50.72 4.26 30.93 42.03 59.40 
7.46 70.32 4.82 46.20 60.61 80.03 
7.64 64.91 7.07 48.38 50.69 79.12 
7.82 57.28 5.47 48.38 46.28 68.27 
8.00 54.64 5.87 55.69 42.89 66.40 
8.18 54.91 5.15 44.82 44.54 65.29 

ISS-USVs 

7.28 47.91 4.76 30.41 38.19 57.63 
7.46 57.80 4.89 44.69 47.95 67.65 
7.64 75.40 6.67 43.21 61.95 88.85 
7.82 62.40 6.19 44.93 49.94 74.86 
8.00 68.60 6.07 50.69 56.41 80.79 
8.18 52.36 5.39 43.52 41.50 63.21 
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Table vi: DRD GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 4.95 0.24 50.75 4.48 5.43 

CC 5.02 0.23 56.12 4.57 5.47 
S-ISS 5.28 0.30 65.51 4.68 5.88 
HCC 4.68 0.40 53.58 3.87 5.49 

ISS-USVs 5.63 0.43 43.62 4.77 6.49 
      

Table vii: DRD GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 5.15 0.44 35.36 4.26 6.05 
7.46 6.01 0.32 46.04 5.36 6.66 
7.64 8.00 0.44 46.45 7.11 8.89 
7.82 3.98 0.22 48.78 3.54 4.41 
8.00 3.43 0.16 54.87 3.12 3.74 
8.18 4.09 0.24 42.70 3.62 4.57 

 
Table viii: DRD GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 4.69 0.69 35.61 3.29 6.10 
7.46 6.49 0.54 46.25 5.40 7.57 
7.64 7.98 0.73 47.78 6.51 9.46 
7.82 3.88 0.35 48.51 3.18 4.59 
8.00 3.18 0.25 53.35 2.68 3.67 
8.18 3.48 0.38 42.56 2.72 4.25 

CC 

7.28 5.29 0.74 35.93 3.78 6.80 
7.46 6.21 0.49 46.31 5.23 7.20 
7.64 7.19 0.63 45.69 5.91 8.46 
7.82 3.82 0.34 49.26 3.14 4.50 
8.00 3.02 0.23 54.70 2.55 3.48 
8.18 4.58 0.36 42.56 3.86 5.30 

S-ISS 

7.28 6.47 1.04 35.75 4.36 8.59 
7.46 6.59 0.67 46.38 5.25 7.94 
7.64 8.99 0.85 46.06 7.28 10.69 
7.82 3.36 0.47 49.28 2.43 4.30 
8.00 2.60 0.30 55.55 1.99 3.21 
8.18 3.64 0.47 43.53 2.69 4.58 
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HCC 

7.28 5.26 1.09 34.85 3.04 7.49 
7.46 5.16 0.91 45.78 3.34 6.99 
7.64 7.65 1.32 48.22 5.00 10.30 
7.82 2.82 0.57 48.83 1.66 3.97 
8.00 3.75 0.45 56.23 2.86 4.65 
8.18 3.45 0.65 42.78 2.13 4.77 

ISS-USVs 

7.28 4.06 1.25 33.43 1.52 6.60 
7.46 5.60 0.91 45.68 3.78 7.43 
7.64 8.20 1.22 43.70 5.74 10.66 
7.82 6.00 0.63 48.24 4.73 7.27 
8.00 4.60 0.46 53.34 3.68 5.52 
8.18 5.31 0.69 41.17 3.93 6.70 

 
Table ix: DRV cFos/GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 2.66 0.25 44.36 2.16 3.16 

CC 2.47 0.23 49.91 2.01 2.94 
S-ISS 2.45 0.29 56.52 1.87 3.03 
HCC 1.74 0.41 60.82 0.93 2.55 

ISS-USVs 3.21 0.46 46.44 2.27 4.14 
      

Table x: DRV cFos/GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 1.28 0.24 34.76 0.79 1.78 
7.46 2.73 0.30 45.00 2.12 3.33 
7.64 3.35 0.45 45.77 2.45 4.25 
7.82 2.64 0.28 46.96 2.08 3.20 
8.00 2.27 0.23 52.73 1.81 2.72 
8.18 2.76 0.32 39.45 2.11 3.42 
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Table xi: DRV cFos/GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 2.08 0.34 33.86 1.40 2.76 
7.46 2.69 0.46 43.76 1.76 3.62 
7.64 3.35 0.75 45.76 1.85 4.86 
7.82 2.54 0.45 46.70 1.65 3.44 
8.00 2.47 0.36 50.92 1.75 3.19 
8.18 2.83 0.52 38.66 1.78 3.89 

CC 

7.28 1.23 0.34 34.79 0.53 1.92 
7.46 2.26 0.43 44.56 1.39 3.12 
7.64 3.66 0.67 45.89 2.30 5.02 
7.82 2.34 0.46 47.47 1.42 3.27 
8.00 2.50 0.34 52.45 1.82 3.17 
8.18 2.86 0.49 39.47 1.88 3.84 

S-ISS 

7.28 1.69 0.53 34.76 0.61 2.77 
7.46 2.29 0.54 44.42 1.19 3.38 
7.64 3.81 0.85 46.21 2.10 5.51 
7.82 1.80 0.59 47.57 0.61 2.99 
8.00 2.14 0.44 53.49 1.26 3.02 
8.18 2.96 0.59 39.22 1.76 4.16 

HCC 

7.28 1.02 0.54 33.36 -0.09 2.12 
7.46 2.83 0.77 44.10 1.28 4.38 
7.64 0.13 1.33 46.63 -2.55 2.82 
7.82 2.31 0.73 46.97 0.85 3.78 
8.00 2.03 0.65 54.19 0.73 3.33 
8.18 2.10 0.93 40.58 0.22 3.99 

ISS-USVs 

7.28 0.41 0.82 34.48 -1.26 2.08 
7.46 3.57 0.98 45.39 1.60 5.54 
7.64 5.80 1.23 43.57 3.32 8.28 
7.82 4.20 0.80 46.29 2.59 5.81 
8.00 2.20 0.66 50.92 0.87 3.53 
8.18 3.05 0.94 38.50 1.15 4.96 
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Table xii: DRV GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 6.78 0.25 43.07 6.28 7.29 

CC 6.82 0.23 49.67 6.35 7.29 
S-ISS 6.83 0.31 56.90 6.21 7.44 
HCC 7.81 0.44 64.87 6.93 8.69 

ISS-USVs 7.70 0.46 46.41 6.78 8.63 
      

Table xiii: DRV GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.28 5.26 0.31 39.25 4.63 5.90 
7.46 7.59 0.42 45.22 6.74 8.45 
7.64 9.48 0.45 43.11 8.58 10.38 
7.82 5.74 0.33 49.57 5.07 6.41 
8.00 8.03 0.46 52.86 7.10 8.96 
8.18 7.03 0.41 41.93 6.20 7.86 

 
Table xiv: DRV GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 

ISS-No-USVs 

7.28 6.11 0.44 36.76 5.21 7.00 
7.46 6.08 0.65 44.66 4.77 7.39 
7.64 8.87 0.75 43.34 7.37 10.37 
7.82 6.00 0.54 48.23 4.92 7.08 
8.00 7.71 0.74 49.85 6.22 9.19 
8.18 5.93 0.66 41.44 4.59 7.27 

CC 

7.28 5.11 0.45 38.90 4.20 6.01 
7.46 6.62 0.61 44.92 5.40 7.85 
7.64 9.72 0.67 42.83 8.36 11.08 
7.82 5.16 0.53 52.41 4.09 6.23 
8.00 7.27 0.69 52.02 5.89 8.65 
8.18 7.06 0.62 41.48 5.82 8.31 

S-ISS 

7.28 5.28 0.68 39.79 3.91 6.65 
7.46 6.17 0.77 44.28 4.62 7.73 
7.64 10.82 0.85 43.27 9.11 12.54 
7.82 4.68 0.69 52.93 3.30 6.06 
8.00 8.11 0.89 55.20 6.32 9.89 
8.18 5.90 0.76 41.60 4.37 7.43 
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HCC 

7.28 5.18 0.72 36.32 3.72 6.64 
7.46 8.15 1.09 44.38 5.96 10.33 
7.64 8.98 1.34 43.67 6.29 11.68 
7.82 6.06 0.87 49.23 4.31 7.82 
8.00 9.47 1.31 55.49 6.85 12.10 
8.18 9.02 1.18 42.38 6.63 11.40 

ISS-USVs 

7.28 4.64 1.04 39.22 2.54 6.74 
7.46 10.95 1.38 45.61 8.16 13.74 
7.64 9.00 1.22 41.50 6.55 11.45 
7.82 6.80 0.97 47.00 4.85 8.75 
8.00 7.60 1.36 49.85 4.86 10.34 
8.18 7.24 1.20 41.30 4.81 9.66 

 
Table xv: DRVL cFos/GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 6.23 0.29 49.38 5.66 6.80 

CC 3.75 0.27 52.47 3.21 4.29 
S-ISS 3.14 0.34 55.81 2.45 3.82 
HCC 1.43 0.48 60.23 0.47 2.39 

ISS-USVs 6.01 0.51 44.39 4.98 7.03 
      

Table xvi: DRVL cFos/GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.64 3.44 0.29 44.62 2.85 4.03 
7.82 4.97 0.32 48.44 4.32 5.61 
8.00 4.85 0.32 54.51 4.22 5.48 
8.18 3.19 0.23 37.48 2.72 3.66 
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Table xvii: DRVL cFos/GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 7.64 6.17 0.49 45.04 5.19 7.15 

 7.82 6.86 0.52 47.73 5.82 7.90 
 8.00 7.82 0.50 52.97 6.83 8.82 
 8.18 4.07 0.38 37.43 3.30 4.83 

CC 7.64 2.90 0.44 44.47 2.01 3.79 
 7.82 5.19 0.53 49.43 4.14 6.25 
 8.00 4.28 0.47 53.06 3.34 5.22 
 8.18 2.63 0.35 37.42 1.92 3.33 

S-ISS 7.64 2.31 0.56 44.33 1.18 3.43 
 7.82 3.22 0.68 49.59 1.86 4.59 
 8.00 3.68 0.61 54.93 2.45 4.90 
 8.18 3.34 0.46 37.44 2.40 4.27 

HCC 7.64 0.41 0.87 45.38 -1.35 2.17 
 7.82 1.75 0.84 48.72 0.07 3.44 
 8.00 1.67 0.89 56.30 -0.12 3.47 
 8.18 1.89 0.65 37.69 0.57 3.21 

ISS-USVs 7.64 5.40 0.80 43.29 3.79 7.01 
 7.82 7.80 0.93 47.17 5.93 9.67 
 8.00 6.80 0.92 52.97 4.96 8.64 
  8.18 4.03 0.66 37.19 2.71 5.36 

 
Table xviii: DRVL GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 12.29 0.42 50.23 11.45 13.12 

CC 12.30 0.40 53.05 11.51 13.10 
S-ISS 12.21 0.50 53.90 11.21 13.22 
HCC 13.21 0.71 62.42 11.80 14.62 

ISS-USVs 15.37 0.74 44.24 13.89 16.85 
      
Table xix: DRVL GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
7.64 12.73 0.47 43.04 11.78 13.69 
7.82 14.45 0.50 49.77 13.45 15.45 
8.00 13.57 0.38 55.31 12.82 14.32 
8.18 11.56 0.45 37.43 10.66 12.47 
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Table xx: DRVL GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 7.64 11.40 0.79 43.18 9.81 12.99 

 7.82 13.28 0.80 48.81 11.66 14.89 
 8.00 12.94 0.60 53.22 11.74 14.14 
 8.18 11.54 0.73 37.43 10.06 13.01 

CC 7.64 12.12 0.71 43.03 10.69 13.56 
 7.82 13.36 0.81 51.02 11.73 14.99 
 8.00 13.79 0.57 53.23 12.65 14.92 
 8.18 9.95 0.68 37.43 8.58 11.32 

S-ISS 7.64 12.84 0.90 42.98 11.03 14.66 
 7.82 12.42 1.04 52.04 10.34 14.50 
 8.00 12.74 0.73 55.88 11.28 14.20 
 8.18 10.85 0.89 37.44 9.04 12.66 

HCC 7.64 14.70 1.42 43.21 11.83 17.56 
 7.82 13.58 1.30 50.02 10.97 16.19 
 8.00 12.78 1.06 57.77 10.66 14.90 
 8.18 11.79 1.27 37.42 9.22 14.35 

ISS-USVs 7.64 12.60 1.28 42.73 10.03 15.17 
 7.82 19.60 1.45 47.86 16.69 22.51 
 8.00 15.60 1.10 53.22 13.39 17.81 
  8.18 13.69 1.26 37.42 11.13 16.25 

 
Table xxi: DRC cFos/GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 2.56 0.23 50.97 2.09 3.02 

CC 2.03 0.21 52.73 1.60 2.46 
S-ISS 1.83 0.26 54.59 1.30 2.36 
HCC 0.98 0.37 51.85 0.24 1.71 

ISS-USVs 1.79 0.42 49.90 0.95 2.63 
      

Table xxii: DRC cFos/GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 2.29 0.27 55.00 1.75 2.83 
8.54 2.55 0.34 52.83 1.88 3.23 
8.72 1.15 0.18 43.40 0.80 1.51 
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8.90 1.35 0.24 40.37 0.87 1.83 
 
Table xxiii: DRC cFos/GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 8.36 2.63 0.46 55.00 1.70 3.55 

 8.54 4.21 0.55 52.65 3.11 5.31 
 8.72 1.39 0.30 43.70 0.79 1.99 
 8.90 2.00 0.41 40.36 1.17 2.84 

CC 8.36 3.10 0.42 55.00 2.25 3.95 
 8.54 2.50 0.52 52.68 1.47 3.54 
 8.72 1.43 0.30 44.22 0.83 2.02 
 8.90 1.09 0.34 40.01 0.39 1.78 

S-ISS 8.36 2.77 0.51 55.00 1.75 3.79 
 8.54 2.46 0.61 52.35 1.24 3.68 
 8.72 1.19 0.37 44.34 0.44 1.93 
 8.90 0.90 0.48 40.41 -0.08 1.88 

HCC 8.36 1.57 0.70 55.00 0.18 2.97 
 8.54 0.99 0.97 53.35 -0.97 2.94 
 8.72 0.35 0.46 42.80 -0.58 1.27 
 8.90 1.00 0.52 39.48 -0.05 2.05 

ISS-USVs 8.36 1.40 0.82 55.00 -0.25 3.05 
 8.54 2.60 0.98 52.35 0.63 4.57 
 8.72 1.40 0.50 42.66 0.39 2.41 
  8.90 1.75 0.79 40.60 0.16 3.34 

 
Table xxiv: DRC GAD Treatment Estimated Marginal Means 
    95% C.I. 

Treatment Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 4.59 0.31 49.84 3.96 5.22 

CC 4.75 0.29 53.14 4.18 5.33 
S-ISS 4.77 0.36 53.86 4.04 5.49 
HCC 4.82 0.48 48.28 3.85 5.78 

ISS-USVs 5.30 0.56 49.08 4.17 6.43 
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Table xxv: DRC GAD Estimates Estimated Marginal Means 
    95% C.I. 

Stereotaxic Level Mean Std. Error df Lower Bound Upper Bound 
8.36 5.89 0.41 55.18 5.08 6.71 
8.54 4.56 0.33 52.25 3.89 5.23 
8.72 4.48 0.30 43.23 3.87 5.08 
8.90 4.45 0.31 40.46 3.82 5.08 

 
Table xxxiii: DRC GAD Estimated Marginal Means Interaction 
     95% C.I. 

Treatment Bregma Mean SEM df Lower Bound Upper Bound 
ISS-No-USVs 8.36 5.38 0.69 55.14 3.99 6.77 

 8.54 5.19 0.54 52.10 4.10 6.28 
 8.72 4.38 0.51 43.17 3.35 5.40 
 8.90 3.43 0.55 40.50 2.33 4.53 

CC 8.36 6.11 0.64 55.53 4.83 7.38 
 8.54 3.61 0.51 52.18 2.59 4.64 
 8.72 4.37 0.51 43.86 3.35 5.39 
 8.90 4.92 0.45 40.14 4.01 5.84 

S-ISS 8.36 5.69 0.77 55.14 4.15 7.24 
 8.54 4.85 0.60 52.09 3.64 6.05 
 8.72 3.90 0.63 43.83 2.64 5.17 
 8.90 4.62 0.64 40.62 3.33 5.90 

HCC 8.36 5.29 1.05 55.14 3.19 7.39 
 8.54 3.78 0.97 52.36 1.84 5.71 
 8.72 4.93 0.78 43.20 3.37 6.49 
 8.90 5.29 0.69 39.39 3.89 6.68 

ISS-USVs 8.36 7.00 1.24 55.14 4.51 9.49 
 8.54 5.40 0.97 52.09 3.46 7.35 
 8.72 4.80 0.85 42.52 3.08 6.52 
  8.90 3.99 1.04 40.68 1.89 6.10 
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