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ABSTRACT  
 

MECHANISTIC STUDIES OF THE COMPLETE ELECTROCHEMICAL OXIDATION 

OF ETHANOL INTO CO2 OVER PLATINUM-BASED CORE-SHELL 

NANOCATALYSTS 

 

by 

Guangxing Yang 

University of New Hampshire, May 2018 

 

Direct ethanol fuel cells (DEFCs) are a promising technology for the generation of 

electricity via the direct conversion of ethanol into CO2, showing higher 

thermodynamic efficiency and volumetric energy density than hydrogen fuel cells. 

However, implementation of DEFCs is hampered by low selectivity of CO2 generation at 

the anode where the ethanol oxidation reaction (EOR) happens. Therefore, anode 

catalysts with high reactivity for the EOR and high selectivity for CO2 generation via 

breaking C-C bond are highly needed. To evaluate the catalysts’ capability of splitting C-

C bond of the ethanol molecule, highly sensitive CO2 detection technique was developed 

in this research using a CO2 microelectrode. Such an in situ CO2 measurement tool 

enabled the real time detection of the partial pressure of CO2 during the EOR using linear 

sweeping voltammetry measurements, through which electro-kinetic details of CO2 

generation could be obtained. Electro-kinetics of CO2 generation were studied on the 

PtRh/SnO2 core-shell catalysts made by a ‘surfactant-free’ method. The results showed 

that Pt and Rh components located in the core were partially oxidized and therefore 



 

xvi 

improved the CO2 generation at low electrical potential. In addition, in situ CO2 

measurements provided the mechanistic understanding of potentiodynamics of the EOR, 

particularly the influence of *OH adsorbates on CO2 generation rate and CO2 selectivity. 

Our results showed that at low potential, inadequate *OH adsorbates impaired the 

removal of reaction intermediates, and thus Pt/Rh/SnO2 exhibited the best performance 

toward CO2 generation due to its strong ability to dissociate water molecules forming *OH 

oxidants, while at high potential, Rh sites were overwhelmingly occupied (poisoned) by 

*OH adsorbates, and thus Pt/SnO2 exhibited the best performance toward CO2 

generation. 



CHAPTER 1 INTRODUCTION 

1 

CHAPTER 1                                                                   

INTRODUCTION 

1.1 FUEL CELLS 

Fuel cells, the devices that directly convert the chemical energy stored in fuels to 

electric energy, have been widely studied and used in many varieties, since the first 

hydrogen fuel cells were invented in 1838. Compared with conventional combustion-

based technologies, fuel cells can operate at higher energy-conversion efficiencies 

without the limitation of the second law of thermodynamics, which is determined by the 

ratio of the Gibbs function change to the Enthalpy change in the overall cell reaction. To 

alleviate current energy crisis and environmental pollution, fuel cells can utilize renewable 

fuels such as ethanol and emit less pollutants. Moreover, the operation of fuel cells is 

safe, quiet and reliable because they are operated at a relatively low temperature and 

have fewer moving parts compared with heat engines. Motivated by the above 

advantages, fuel cells have been equipped to power vehicles recently. 

1.2 PRINCIPLE  

A variety of fuel cells have been developed, but they follow a similar working principle. 

Anode catalysts, electrolyte, and cathode catalysts comprise the necessary segments of 

a fuel cell. Catalysts loaded on electrodes are used to accelerate electrochemical 

reactions. For a typical process, fuels are transported onto the anode and then undergo 

an electrochemical oxidation on the anode catalyst, producing chemicals, electrons and 
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protons. The produced electrons travel though an external circuit (current) to power a 

given load. The generated protons pass through the electrolyte and membrane and reach 

the cathode to combine with oxidants (usually oxygen gas) and electrons from the 

external circuit to form products at the cathode.  

 

Figure 1.1 Classification of fuel cells by operation temperature 

Fuel cells can be classified according to their operating temperatures, electrolytes and 

the corresponding conductive ions, which are summarized in the Figure 1.1. Solid Oxide 

Fuel Cells (SOFC) generally operate at very high temperature above 800 oC to generate 

oxygen ions at the cathode migrating through the crystal lattice to oxidize fuel at the 

anode.[1] Molten Carbonate Fuel Cells (MCFC) need high temperature in the range of 600 
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to 700 oC to melt salts and conduct carbonate ions from the cathode to the anode.[2] The 

low-temperature fuel cells consist of Polymer Electrolyte Membrane Fuel Cells (PEMFC), 

Phosphoric Acid Fuel Cells (PAFC) and Alkaline Fuel Cells (AFC). PAFCs normally 

operate at temperatures between 180 °C and 220 °C, allowing high tolerance of carbon 

monoxide.[3] AFCs operate at temperatures between 20 and 200 oC in an alkaline solution 

with fast reaction kinetics, allowing lower quantities of noble metal catalysts.[4] PEMFCs 

operate at low temperatures ranging from 20 to 100 oC, delivering high-power density and 

offering the advantages of low weight and volume. Among various PEMFCs, hydrogen 

fuel cells have been commercialized widely. Other direct fuel cells such as methanol and 

ethanol have further advantageous for their ease of fuel delivery, storage, high safety and 

high power density.[5] 

1.3 ACIDIC DIRECT ETHANOL FUEL CELLS 

The direct ethanol fuel cells (DEFCs) are promising candidates for supplying portable 

power applications, where the chemical energy of the liquid ethanol is directly converted 

into electricity. Ethanol has an energy density of 8.03 kWh/kg, lower than that of hydrogen 

(32.8 kWh/kg). If taking the density of the fuel into account, however, the volumetric 

energy density of 6.28 kWh/L for ethanol is much higher than that of hydrogen gas 

compressed at 200 atm (0.18 kWh/L). In addition to the energy density, the theoretical 

thermodynamic energy efficiency of DEFC is much higher than that of the heat engine 

(97% vs. 35%). Even if we consider realistic operation conditions where the DEFC works 

at a voltage of 0.5 V and a current density of 100 mA/cm2 with complete oxidation of 
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ethanol to CO2 via a 12-electron transfer, the thermodynamic efficiency of a DEFC will be 

around 40%, comparable with a conventional diesel engine.[6]  

 

Figure 1.2 Schematic of the direct ethanol fuel cell 

1.3.1 ANODE: ELECTROOXIDATION OF ETHANOL 

2 5 2 23 2 12 12 0.084 .o

aC H OH H O CO H e E Vvs SHE+ −+ → + + = −    1.1 

where SHE is the standard hydrogen electrode, o

aE  is the standard potential of ethanol 

oxidation at the anode, which can be calculated from the standard energy formation of 

species as the following equation 1.2. 

For an ideal anodic reaction, ethanol is oxidized to CO2 completely with 12-electron 

transfer. Unfortunately, the undesired products such as acetaldehyde and acetic acid are 

often produced under practical conditions, which will decrease the current density 

dramatically because only 2- and 4-electron transfer reactions happen for the formation 
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of acetaldehyde and acetic acid, respectively. To obtain higher current density, selectively 

breaking C-C bond to C1 species such as *CHx and *CO will be necessary.  

2 2 5 2

1

1

1

1

2 3

2 ( 394.4) ( 174.8) 3 ( 237.1)

12 96500

97.3

12 96500

o
o r
a

f f f

CO C H OH H O

G
E

nF

G G G

nF

kJ mol

C mol

kJ mol

C mol

−

−

−

−

−

− − 
= −

− − − −


= −

 

 

 

 

− 
= −


= −

 

 0.084 .V vs SHE= −        1.2 

1.3.2 CATHODE: ELECTROREDUCTION OF OXYGEN 

   2 23 12 12 6 1.229 .o

cO H e H O E V vs SHE+ −+ + → =    1.3 

where o

cE  at the cathode can be calculated by the following formula: 

2 2

1

1

6 3

6 ( 237.1 0)

12 96500

o
o r
c

f f

H O O

G
E

nF

G G

nF

kJ mol

C mol

−

−

= −

− 
= −





 −

 

− 
= −

 

                                                 1.229 .V vs SHE=      1.4 

For the cathodic reaction, oxygen gas dissolves in water and transports onto the catalyst 

surface and then is reduced to water. The cathodic current is generally limited by the flux 

of oxygen transport. 
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1.3.3 OVERALL REACTION 

Hence, the overall electrochemical ethanol fuel cell reaction can be written as  

0

2 5 2 2 23 2 3 1.145 .OverallC H OH O CO H O E V vs SHE+ + =→     1.5 

where the overall potential of the reaction can be calculated by the formula: 

1.229 0.084 1.145o

Ov

o o

ce arall E EE V V V= + = − =      1.6 

The overall reaction energy is 

2 2 2 5 2

12 3 3 1325.3o f f

Overall CO H O C

f f

H OH OG G G G G kJ mol − =  +  − − −   =   1.7 

Hence the specific energy by mass can be obtained as follows 

1
1

1

1325.3
8.0

3600 3600 0.046

o

Overall
e

ethanol

G kJ mol
W kWh kg

M kg mol

−
−

−

−
= = = 

  
   1.8 

where M is the molar mass of 0.046 kg/mol for ethanol. 

This mass specific energy of ethanol is comparable with 6.0 kWh/kg of methanol and 

13 kWh/kg of gasoline. Therefore, ethanol is a promising and alternative fuel for the low 

temperature direct fuel cells.  

1.4 CATALYSTS FOR ELECTROOXIDATION OF ETHANOL IN ACID 

MEDIUM 

The studies of the electrooxidation of ethanol have been reported since 1920s.[7] In the 

early years, pure platinum wire and foil or platinized metal were selected as model 

material for EOR in an acidic electrolyte.[8-16] The primitive studies on the influences of 

reaction temperature, ethanol concentration, electrolyte, and impurity were conducted. 

Over almost a century of development, the anode materials for EOR have been expanded 



CHAPTER 1 INTRODUCTION 

7 

from bulk size material to nanomaterial, from platinum to other metals, and from single 

component to multi-component. In this section, the Pt-based and Pt-free electrocatalysts 

for EOR will be reviewed briefly.  

1.4.1 PLATINUM SINGLE CATALYSTS 

Metallic platinum has been widely used as electrocatalysts for EOR due to its high 

catalytic activity and passivity in acidic electrolytes. However, its high price and low 

abundance motivates researchers to minimize the amount without sacrificing the catalytic 

activity. Minimizing the size of Pt nanoparticles will increase the surface area exposed to 

reactants hence increasing the utilization of Pt atoms. Taking the size effect into account, 

Pt nanoparticles around 2.6 nm showed the best electrocatalytic activity with the size 

ranging from 1.7 to 13.9 nm.[17, 18] In addition, using a different carbon support such as 

carbon black, carbon nanotubes, and graphene with different surface area could change 

the platinum loadings and tune the distance between platinum particles. Thereby, adjust 

the diffusion of the reactants, intermediates and products.[19-24] It is reported that the Pt 

supported on graphene had higher catalytic activity than that on carbon black.[19] 

 Pt single crystal and polycrystal have been used as model catalyst to investigate the 

reaction mechanism assisted by infrared spectroscopy.[25-30] The investigation of the 

electrooxidation of ethanol on well-ordered surface planes of single crystal materials is 

an important approach to optimize the rate of the EOR and the selectivity of product. 

Some studies compared EOR processes at the smooth and stepped surface planes of Pt 

single crystal electrodes.[31-38] Korzeniewski et al found that the smooth surface of a 

Pt(111) electrode displayed lower electrocatalytic activities than the surfaces with step 

sites such as Pt(335) and Pt(557).[30, 39] More acetic acid formation was observed on 
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Pt(111) surface and more adsorbed CO on surfaces with high step density. Colmati et al 

showed that the surface with (100) steps was much less active for C-C bond breaking 

than surfaces with (110) steps,[36, 37] while the distributions of acetaldehyde and CO2 were 

not affected by (110) steps in a perchloric acid solution.[33]  

The faceted nanocrystals also showed similar properties to the single crystal with the 

same crystalline plane.[40, 41] For example, Tian et al synthesized tetrahexahedral Pt 

nanocrystals bounded by 24 facets of high-index planes. The tetrahexahedral Pt 

nanocrystals varying from 20 to 200 nm showed 3.3 times higher surface area specific 

current density than commercial Pt/C catalyst at 0.3 V vs. SCE (Saturated calomel 

electrode).[41] Moreover, this high index faceted Pt nanocrystals with size ranging from 2 

to 10 nm had higher density of atomic steps which facilitated the C-C bond splitting to 

generate double the amount of CO2 as commercial Pt/C catalyst.[42] Even after long-term 

cycling for ethanol oxidation, they still maintained the tetrahexahedral shape.[43] 

1.4.2 PLATINUM-BASED BINARY CATALYSTS 

A single-component Pt particle is not the most efficient electrocatalyst for the EOR 

because tenaciously adsorbed species generated during the reaction will poison the 

catalysts and result in quick loss of electroactivity. The addition of the other metal element 

coworking with Pt will mitigate the poisoning of Pt or tuning the selectivity of products 

though the bifunctional mechanisms or electronic effect. The following is the synopsis of 

several Pt-based binary anode catalysts commonly used for the EOR.  

1.4.2.1 PLATINUM-RUTHENIUM CATALYSTS 

Pt-Ru bimetal catalysts could be prepared by several approaches, such as 

electrochemically co-deposits of Pt and Ru,[44, 45] Ru modified Pt single crystal with 
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stepped surfaces,[46] Pt-Ru nanoparticles made by wet chemistry methods.[47-51]. 

Generally, the content of Ru in a Pt-Ru bimetal catalyst had a maximum value, depending 

on the preparation method.[47, 49, 52-54] A proper amount of Ru could provide sufficient sites 

for the dissociative adsorption of water molecules, and the resulting oxygenous species 

(e.g., *OH species) could serve as the oxidants and help the oxidation of adsorbed 

intermediates to CO2, acetaldehyde, and/or acetic acid. The addition of Ru, therefore, 

could increase the current density of the EOR. However, high Ru content could result in 

the decrease of EOR activity due to the insufficient adsorption of ethanol on the limited 

Pt sites on catalyst surface. The mass spectrometric measurement showed that the main 

products during the EOR were acetaldehyde, acetic acid and CO2. If we want to harvest 

12-electron transfer reaction from the oxidation of ethanol, obtaining high selectivity 

toward CO2 formation will be greatly important. However, it is worth mentioning that Ru 

addition not only helped the generation of CO2 but also facilitated the formation of acetic 

acid. It has been considered that increasing the roughness of the Pt-Ru electrode and the 

step sites would yield more CO2 production because both factors could facilitate C-C bond 

breaking. 

Besides the composition effect, the alloying effect of Pt-Ru materials on the EOR have 

been investigated by several researchers. For example, Colmenares et al modeled the 

Pt/Ru catalysts as the mixture of PtRu alloy and RuOx. By comparing the Pt-Ru/C 

catalysts with less alloying degree (less ratio of PtRu phase and high ratio of RuOx phase) 

with the one with totally alloying (complete PtRu phase), they concluded that the catalysts 

with a less alloying degree had lower overall current and higher onset potential with more 

generation of acetic acid. With a fixed Pt/Ru atomic ratio, the alloying degree of Pt-Ru/C 
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was reflected by the lattice parameter of the PtRu alloy and the coordination number of 

Pt-Ru, which might determine the EOR activity. [55-57] 

1.4.2.2 PLATINUM-TIN BINARY CATALYSTS 

In general, Pt-Sn bimetallic catalyst has a higher current density than a pure Pt catalyst 

at lower potentials, which has been as one of the most important groups of anode 

catalysts for the EOR. The Pt-Sn catalysts can be synthesized through several 

approaches including thermal decomposition,[58, 59] electrochemical deposition,[60-63] 

colloidal method,[64-66] and impregnation reduction process[67-70]. The synthetic process 

could affect the particle size,[71] the structural configuration of Pt and Sn on catalyst 

surface,[66, 72] chemical valence of Pt and Sn on catalyst surface, alloying degree between 

Pt and Sn, alloyed crystal structure[66] and the composition. All these characteristics 

played important roles in determining electrocatalytic activity of the EOR. Apart from the 

material preparation, atomics ratios between Pt and Sn influenced the EOR performance 

of the Pt-Sn binary catalysts. The optimum composition of Sn in Pt-Sn catalyst was 

reported to be dependent on the synthetic approaches. The role of Sn element could 

increase the current density due to the supply of the *OH (product from the dissociative 

absorption of the water) for the oxidation of intermediates, while the role of Sn element 

on the CO2 selectivity is still controversial.  

Under mild synthetic conditions, the Pt-Sn alloys generally formed a face centered 

cubic structure. The nonalloyed Sn oxide, if any, was usually dispersed around the PtSn 

alloy. Therefore, the alloying degree of PtSn and the relative amount of PtSn alloy to SnOx 

played important roles in EOR performance. Jiang et al showed that the PtSnOx exhibited 

higher current density than PtSn alloyed particle. They attributed the enhanced 



CHAPTER 1 INTRODUCTION 

11 

performance to the Pt ensembles in PtSnOx without lattice dilation that favored the 

ethanol adsorption and C-C bond splitting, as well as to the tin oxide in the vicinity of Pt 

nanoparticles that offered sufficient *OH species to remove residues.[73] This study 

indicated that the relative amount of PtSn alloyed phase and nonalloyed Sn phase was 

important for the EOR. The formation of PtSn alloy could change the electronic 

environment of Pt component which displayed a weaker adsorption of intermediates 

compared with pure Pt nanomaterial. Therefore, intermediates could desorb easily from 

the Pt sites without C-C bond cleavage and combine with the *OH generated on adjacent 

SnO2 sites. It is notable that although the presence of SnO2 in the PtSn alloy-SnO2 

nanoparticle system was very important, it would dilute the Pt sites on the catalysts 

surface, leading to the low efficiency of Pt utilization.  

1.4.2.3 PLATINUM-RHODIUM BINARY CATALYSTS 

Pure Rh has been used as the electrocatalyst for the EOR in acidic electrolytes[74-79], 

which showed extremely low current comparing with pure Pt, but exhibited very high CO2 

selectivity. Alloying with Pt can tune the electronic structure of the Rh and provide 

synergic effect to improve the EOR performance, especially enhancing CO2 selectivity. 

PtRh material could be prepared in the forms of nanoparticles,[80-82] nanocubes,[20] 

nanowires[83, 84] and Rh/Pt bilayer on Pt substrate[85] using different synthetic methods. 

Several studies showed the optimization of the Rh content in PtRh alloys for EOR. Rao 

et al and de Souza et al found an optimum Pt/Rh ratio of 9:1 for the best electroactivity of 

the EOR (high current density),[20, 79] however, other optimum ratios were reported by 

Cantane et al and Yuan et al.[77, 81, 83] It was reported that the presence of Rh in the PtRh 

bimetal system improved the CO2 generation. It also suggested that Rh composition 
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cooperating with Pt atoms helped the cleavage of C-C bond of C2 species. Only 

concerning the CO2 selectivity, the optimum of Rh content may not be the same with the 

one required for the high overall current density, probably because of slower kinetics of 

EOR on Rh sites than those on Pt sites.[86]  

Other metals can be introduced to improve the electroactivity of the EOR by the 

formation of PtBi nanomaterials,[87, 88] PtIr,[89, 90] Os on Pt single crystals [91-93], PtRe,[94] 

PtCo,[95] PtNi[96], Pt/CeO2,[97, 98] Pt/La2O3,[99] Pt/TiO2
[100, 101] binary catalysts. Santos et al 

showed that low Os coverage (around 0.15) on Pt(100) single crystal facilitated the 

complete oxidation of ethanol to CO2 and the high Os coverage up to 0.33 produced more 

acetaldehyde and acetic acid.[91] But the coverage of Os on Pt(110) showed different 

relationships with products distribution.[92] In addition, Du et al showed that Pt95Bi5 

nanowire displayed higher steady current than commercial Pt at 0.55 V vs. Ag/AgCl, due 

to the enhanced adsorption of water on Pt sites adjacent to Bi atoms, and consequently 

an increased rate of oxidation.[88] 

1.4.3 PLATINUM-BASED TERNARY CATALYSTS 

To further increase the activities of binary catalysts for the EOR and enhance the ability 

to break C-C bond then to form CO2, a third metal component is generally added to form 

ternary catalysts through synergistic interaction between three components. There are 

many different combinations for Pt-based ternary catalysts used in acidic environment,  

Pt-Ru-M (M=Rh,[102-104] Ni,[105, 106] Mo,[107-110] W,[108, 111] Bi,[87, 112] Co,[113] Cu,[114] and Pb[115]), 

and Pt-Sn-M (M=Rh,[78, 116-123] Ru,[124-127] Ir,[90] Re,[94] Pd,[116, 128, 129] Ni[116, 130, 131], Co[116], 

and Cu[132]). Among these Pt-based ternary catalysts, Pt-Sn-Rh and Pt-Ru-Sn catalysts 

are chosen for the briefly review in the following sections.  
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1.4.3.1 PLATINUM-TIN-RHODIUM TERNARY CATALYSTS 

In the cases of Pt-Rh-Sn systems, Rh was generally alloyed with Pt, hence forming bi-

phase PtRh-SnO2 materials with a PtRh alloy and a segregated SnO2 phase. They have 

been considered as the best group of catalysts for the EOR due to the excellent abilities 

for the adsorption, dehydrogenation, and oxidation of ethanol via C-C bond splitting, as 

well as plausible chemical stability.[117, 118, 120-122, 133] The superiority of Pt and Rh towards 

C-C bond splitting has been demonstrated by density functional theory (DFT) calculations, 

showing that Pt-Rh helped cleave the C-H bond of the terminal methyl group (β-carbon 

dehydrogenation) and form oxometallate intermediate (M-CH2-CH2-O-M).[134] Oxophilic 

Sn, on the other hand, interacted with water strongly to form an oxygenated species on 

catalyst surface (OHads), which helped oxidize reaction intermediates (e.g. CHx and CO) 

generated on adjacent Pt or Rh sites.[62, 66] Attributed to this bifunctional effect, Pt/Rh/Sn 

ternary catalysts have been generally considered as the most effective materials towards 

EOR, especially at higher overpotential. However, fuel cells generally tend to operate at 

an external potential close to their equilibrium potential. At low overpotentials, the 

Pt/Rh/Sn components showed a weak dissociative adsorption of water, and the resulting 

low OHads coverage on catalyst surface might not be adequate to remove the strongly 

adsorbed reaction intermediates especially CO that poisoned the active sites.  

1.4.3.2 PLATINUM-RUTHENIUM-TIN TERNARY CATALYSTS 

Platinum-ruthenium-tin ternary (Pt-Ru-Sn) catalysts have different structure 

configurations, surface chemistry, and compositions due to the variations of the synthetic 

approaches, forming various ternary structures including PtSn alloy with Ru oxide, PtRu 

alloy with Sn oxide, PtSn and PtRu alloys with Sn and Ru oxides, PtRuSn ternary alloy, 
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PtSn alloy with PtRu alloy, and Pt particles with segregated Sn and Ru oxides. In the 

cases of the presence of either Sn oxide or Ru oxide, the amount of oxides should not 

exceed a critical value in order to guarantee sufficient Pt sites accessible to ethanol 

molecules. Chang et al reported that the surface Ru oxide, which interacted with surface 

amorphous SnO instead of well crystallized SnO2, worked with PtSn alloyed component 

to promote the performance of the EOR.[124] The ratio of Ru and Sn was suggested as a 

key parameter in these ternary catalysts affecting the electroactivity of the EOR.[135] On 

the other hand, the Ru-rich PtRuSn catalysts showed the lowest onset potential of EOR 

due to the oxidative removal of the intermediates on Pt sites by oxidants generated on 

adjacent Ru sites. However, the Sn-rich PtRuSn catalyst, where the PtSn alloy and SnO2 

existed, facilitated C-C bond cleavage and hence improved the EOR current.[136] Liu et al 

synthesized both reduced and oxidized PtRuSn ternary catalysts and showed that RuO2 

helped the removal of adsorbed CO only in the high potential range, while Pt3Sn, SnO 

and SnO2 components promoted the EOR performance throughout the potential window 

by oxidizing C2H4Oads and/or COads further by SnO and RuOx via a bifunctional 

mechanism.[127] 

1.4.4 PLATINUM-FREE METAL CATALYSTS 

Besides pure platinum, pure rhodium and iridium can also be used as catalysts but 

with lower electroactivities than platinum. Interestingly, the major product on pure Rh was 

CO2, whereas the major product on pure Ir was acetic acid.[74, 76] 

Iridium-tin binary catalysts showed high electroactivity of the EOR at low potentials.[137-

139] Du et al synthesized the Ir/IrSn/SnO2 core-shell particle, consisting of an Ir-rich core 

and an IrSn alloy shell with SnO2 present on the surface using a “surfactant free” 
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synthesis process. The carbon supported IrSn catalysts showed a very low peak potential 

around 0.07 V vs. Ag/AgCl during the EOR, agreeing well with the peak potential at 0.04 

V vs. Ag/AgCl on Ir-Sn nanowires with abundant oxidized Sn. IrRu and IrRh alloys were 

synthesized and evaluated for the EOR as well.[140, 141] It was found that Ir77Ru23/C and 

Ir4Rh1 both had superior catalytic activities for the EOR compared to Ir/C and commercial 

Pt/C catalysts, probably due to the lower reaction energy of the C-C bond splitting than 

those on Ir and Ru catalysts.[140, 141] 

1.5 MECHANISMS FOR ELECTROOXIDATION OF ETHANOL IN ACID 

MEDIUM 

The mechanism of the electro-oxidation of ethanol for varying potentials in acid 

medium on Pt catalyst was investigated by differential electrochemical mass spectrometry 

(DEMS), Fourier transform infrared spectroscopy (FTIRS), sum frequency generation 

spectroscopy (SFGS) and surface enhanced Raman spectroscopy (SERS).[25, 34, 35, 142, 

143] It was concluded that the EOR process started with the adsorption of ethanol on Pt. 

Then, the adsorbed ethanol underwent the α-dehydrogenation (dehydrogenation of C-H 

where the C atom bonded to the -OH functional group) and then formed adsorbed 

acetaldehyde which further decomposed to adsorbed C1 species such as *CHx and *CO. 

Therefore, C-C bond splitting at low potentials below 0.3 V may take place readily with 

slow kinetics. Unfortunately, *CO could not be oxidized to CO2 easily in such a low 

potential range without the participation of the oxidants, and therefore it would poison Pt 

sites due to its strong interaction with Pt and then blocked the ethanol adsorption, leading 

to the low current observed from CVs below 0.3 V. Subsequently, with increasing potential 
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applied, more *OH species were generated from the dissociation of water, which could 

interact with *CHx and *CO formed at low potentials.[143] As a result, CO2 generation 

occurred via the oxidation of the *CHx and *CO by *OH, confirmed by the in situ FTIR 

results where the signal from CO2 increased coupled with the decreased signal from *CO. 

However, the experiments involving isotope-labeled ethanol showed that main CO2 

generation attributed to the oxidation of *CO rather than *CHx, likely because some *CHx 

was reduced to methane at low potentials which was observed from DEMS and *CHx still 

survived at higher potentials. After the removal of CHx and CO, the unoccupied Pt sites 

adsorbed ethanol and then broke C-H bonds to produce acetaldehyde, or the adsorb 

ethanol was oxidized by *OH to acetaldehyde at the intermediate potentials, confirmed 

by the increasing signal from acetaldehyde by DEMS and FTIR techniques. Further 

increasing potential could oxidize adsorbed ethanol and acetaldehyde to acetic acid with 

fast kinetics in the presence of abundant *OH, which was a rather stable species and 

could be further oxidized to CO2. However, in most potential regions, acetaldehyde and 

acetic acid were the major products, though CO2 was always detected, indicating that C-

C bond splitting proceeded but suffered slow kinetics. Based on the discussion above, 

the main reaction steps of the electro-oxidation of ethanol are proposed in different 

potential domains as follows (To simplify the discussion, other intermediates are not 

considered.): 

Starting with α-dehydrogenation 

3 2 3 2CH CH OH CH CH OH→        1.9 

In the low potential region: E < 0.3 V 

3 2 xCH CH OH CH CO → +          1.10 
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3 2 3CH CH OH CH CHO→          1.11

3 xCH CHO CH CO → +           1.12

4xCH CH →           1.13 

In the middle potential region: 0.3 V < E < 0.6 V 

2xCH OH CO +  →          1.14 

2CO OH CO +  →          1.15 

In the high potential region: E > 0.6 V 

3 2 3CH CH OH CH CHO→          1.16 

3 3CH CHO CH COOH →          1.17 

3 2 3CH CH OH CH COOH→         1.18 

 

Figure 1.3 Proposed reaction domain of the electro-oxidation of ethanol (Upper) on pure Pt; 

proposed limiting steps of CO2 generation on Pt (Bottom). 

To summarize, EOR began with ethanol adsorption, and then dehydrogenation. C-C 

bond is broken readily below 0.3 V forming *CO and CHx. Aided by the *OH from the 



PhD Dissertation, University of New Hampshire 

18 

dissociation of water above 0.3 V, CO2 generated from the oxidation of *CO and *CHx. 

Thereafter, acetaldehyde and acetic acid become the main products in the presence of a 

large amount of *OH, while CO2 contributed less to the final products. The scheme of the 

proposed mechanism is shown in Figure 1.3. In that case, improving the C-C bond 

splitting ability and enhancing the *CO removal rate should be an effective way to gain a 

higher CO2 generation rate with higher CO2 selectivity. 

1.6 TECHNIQUES FOR STUDYING ELECTROOXIDATION OF 

ETHANOL 

The mechanisms of the electrooxidation of ethanol can be indirectly understood by 

investigating the current signals at a given potential using specific electrochemical 

apparatus, where the voltage can be continuously increased or decreased linearly with 

respect to time. By changing the scanning rate, the electrochemical kinetics can be 

analyzed. To further study the reaction mechanism of electrooxidation of organic 

compounds, mass spectrometry or spectral technics coupled with electrochemical 

methods have been developed to deliver qualitative and quantitative results of the final 

products and intermediates during the electrochemical process. In the following sections, 

these techniques will be discussed in detail. 

1.6.1 CHRONOAMPEROMETRY (CA) AND CYCLIC VOLTAMMETRY (CV)  

Chronoamperometry is a technique that the potential of the working electrode is 

stepped and the resulting current from faradaic processes occurring at the electrode is 

monitored as a function of time Figure 1.4 a. Taking a simple elementary reaction as an 
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example, the reactant at a more reduced state (R) is oxidized at the electrode surface to 

form a product at a more oxidized state (O) (R O e+ ), accompanied by the generation 

of the electron. 

 

Figure 1.4 (a) Step increasing the potential at working electrode from 0E  to 1E  (b) Concentration 

profile of reactant R varying from the distance to the electrode and time. (c) Current with respect 

to time at 1E . 

When the potential is applied to the electrode, the reaction starts producing a very 

large current at the initial stage due to a large amount of reactant R at the surface. 

Subsequently, the current decreases because of the decrease in the concentration of 

species R at the electrode surface. It is notable that there will be a concentration gradient 

of species R from the bulk solution to the electrode surface. Therefore, species R diffuses 

from the bulk solution to the electrode surface and then will be totally oxidized to species 

O at the electrode surface. The flux of species R, hence the current of the electrochemical 

process, is proportional to the concentration gradient of the species R at the electrode 

surface. As the reaction proceeds, the thickness of diffusion layer becomes thicker, 

resulting in smaller gradient of concentration and correlated smaller current as shown in 
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Figure 1.4 b. Hence, a curve with respect to time was obtained, named by 

chronoamperometry, as shown in Figure 1.4 c.  

The potential is increased step by step from 1E  to 5E  and then each step is kept for a 

given time as shown in Figure 1.5 a. 1E  does not reach the potential that can activate the 

oxidation, so the current is 0 as curve 1 in Figure 1.5 b. 2E and 3E  can activate the 

oxidation reaction but the reaction rate is not high enough to consume all the reactants, 

therefore the concentration of species R is not zero. So the current depends on the 

applied potential at the early stage depicted as curve 2 and 3 in Figure 1.5 b. When the 

potential is increased to 4E  high enough to consume all the surface R species 

immediately, so the current depends on the diffusion rate of the R. Even though the 

potential is stepped to even high potential 5E , the current profile will not change as shown 

in Figure 1.5 c.  

 

Figure 1.5 (a) Step increasing applied potentials. (b) Current curves in response to the steps. (c) 

Sampled-current voltammogram.[144] 

Linear sweep voltammetry (LSV) is the technique where the voltage changed with 

respect to time by a linear function from initial potential 0E  to high limit potential hE . If the 
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potential reaches the high limit and then goes back to the initial potential to complete one 

cycle scan, it is called cyclic voltammetry (CV) which has become a necessary tool for 

studying electrochemical reactions (Figure 1.6 c).  

 

Figure 1.6 (a) Linear sweeping potential from 0E  up to hE  and (b) resulting oxidation current 

curve. (c) cyclic sweeping potential from 0E  upto hE  then back to 0E  and (d) resulting a cyclic 

voltammogram.[144]  

CV curves can offer both thermodynamics and kinetics information. For a typical LSV 

curve, if the initial potential 0E  is much lower than the oxidation potential 'E , then there 

is non-faradaic current at the early stage. When the potential increase to the vicinity of 

the oxidation potential, the oxidation occurs, resulting in the increase of current. As the 

potential increases more positively and eventually reaches the oxidation potential, R is 

oxidized to O, and therefore the concentration of species R at the electrode surface starts 
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to drop, which results in the concentration of species R at the electrode surface 

approaching nearly to zero. Therefore, the current depends on the mass transfer rate of 

species R. As the reaction continues, the concentration gradient of species R near the 

electrode surface becomes smaller, and the rate of mass transfer starts to drop, resulting 

in the drop of current. Over the reaction time, the diffusion reaches the steady state, so 

does the current, which results in a plateau in the high potential range after the current 

drop. The peaked current-potential curve is depicted in Figure 1.6 b.  

When the potential reaches the highest value, the concentration of species R at the 

electrode surface is nearly zero, while the concentration of the oxidation product (species 

O) is very high. When the potential decreases to the low potential values with the same 

scan rate as shown in Figure 1.6 c, the current will not turn to a negative value 

immediately due to the existence of electrooxidation process and possible non-faradaic 

contributions. As the potential reaches the electroreduction potential 'E , the 

electroreduction of species O dominates the current. The reversal current shape 

resembles the forward shape of electrooxidation of species R as shown in Figure 1.6 d. 

CV and CA techniques can provide some basic kinetic information for the 

electrooxidation of ethanol. Rightmire et al applied CV to investigate the EOR in 0.5 M 

H2SO4 over the platinum surface from 0.05 to 1.9 V versus SHE, from which two oxidation 

peaks at ~0.9 V and ~1.3 V during the forward scan and one oxidation peak at ~0.7 V 

during the backward scan were observed. The first forward peak at ~0.9 V was assigned 

to the surface oxidation of Pt surface and the partial oxidation of ethanol (Eqs. 1.19-1.21). 

The second forward peak was due to the competition of the gradual poisoning of the Pt 

surface (Eq.1.22) and the oxidation of ethanol (1.23) 
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( )2

slow

n
Pt nH O Pt OH nH ne+ −⎯⎯⎯ + +→+       1.19 

( ) ( )fast

n n
Pt OH Pt O nH ne+ −⎯⎯⎯ + +→       1.20 

( )3 2 2 3

slow

n
Pt nCH CH OH Pt OCH CH nH ne+ −⎯⎯⎯ + +→+     1.21 

( ) ( )2 2 3 3 2 
n n

H O Pt OCH CH Pt O nCH CH OH nH ne+ −+ → + + +    1.22 

( )2 3 3n
Pt OCH CH Pt nCH CHO nH ne+ −+ + +→      1.23 

During the backward scan, the oxide film on the Pt electrode was reduced until to 0.85 

V, where the Pt electrode was reactivated to oxidize ethanol or residue to form the 

oxidation peak in the backward scan. The peak current increased with the concentration 

of the ethanol. The relative intensity between the first and second forward peaks reversed 

if the concentration of ethanol increased. Also, all the peaks shifted to high potential as 

the concentration of ethanol increased. In the range of low concentration of ethanol, the 

overall reaction order (m) can be calculated according to the formula (Eq. 1.24), which 

was found around the first order reaction.  

( ) ( )log log log
nFk

j m c
S

 
= + 

 
       1.24 

where j  is the current density, n  is the charge transfer number, F  is the Faraday 

constant, S  is the geometric surface area of the electrode, c  is the concentration of the 

ethanol, m  is the overall reaction order.  

Tafel slope and exchange current density of the EOR can be obtained from CVs, 

described as:             

0

2.303 log
RT j

nF j




 
=  
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   ( ) ( )02.303 log 2.303 log
RT RT

j j
nF nF 

= −      1.25 

where   is the over-potential,   is the anodic transfer coefficient, n  is the number of 

electrons transferred in the reaction, j  is the current density, and 0j  is the exchange 

current density when over-potential is equal to zero. Tafel slope defined as 
2.303RT

nF
and 

the exchange current can be calculated from the intercept of the plot of overpotential vs. 

( )log j .  

1.6.2 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

Since the 1960s in situ IR has been used as a powerful tool to analyze reaction 

intermediates and surface species in the electrochemical processes in both the static 

electrochemical cell and the flow electrochemical cell. In general, internal and external 

reflection configurations for cell design were applied to minimize the IR absorption by 

electrolyte as shown in Figure 1.7. For the external reflection configuration depicted in 

Figure 1.7 a, the electrode sample is placed very close to the light guiding prism. There 

is a thin layer of electrolyte between the catalyst and prism, allowing the detection of the 

species dissolved in electrolyte and adsorbed on catalyst surface as shown in Figure 1.7 

b. The disadvantage of this design includes the mass transport between the thin layer 

and the bulk electrolyte usually causing deficient concentration of ethanol on the catalyst 

surface.  

On the other hand, in an internal reflection mode with an attenuated total reflection 

(ATR) a thin catalyst supported on a thin metal film deposited on a prism with high 

refractive index is used as the working electrode depicted in Figure 1.7 c.[145, 146] Since 
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the IR beam contacts with the back of electrode, the front of the electrode can be merged 

in thick solution layer, facilitating mass transport and giving a quick response of FTIR 

signal with the function of potential at a fast scanning rate as shown in Figure 1.7 d.  

 

Figure 1.7 (a) External in situ FTIR electrochemical cell and (b) the corresponding pathway of IR. 

(c) Internal in situ FTIR electrochemical cell and (d) the corresponding pathway of IR.  

Mid-IR can detect the different stretching modes of adsorbed CO from 1800 to 2000 

cm-1 on the catalyst surface and CO2 at 2343 cm-1 generated after C-C bond breaking of 

ethanol. Also, it can identify the acetaldehyde and acetic acid from the incomplete 

oxidation of ethanol indicated by the C=O bond stretching near 1720 cm-1. Meanwhile, 

the C-O single bond stretching at 1044 cm-1 can reveal the consumption of ethanol. The 
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data acquisition with high quality during in situ IR spectroscopic measurement enables 

researchers to calculate the relative selectivity of products of interest and postulate the 

reaction pathways of ethanol oxidation at different potentials. Infrared spectroscopic 

studies showed that the electrooxidation of ethanol from the bulk solution commenced 

after the consumption of the adsorbed *CO intermediate.[29, 147-150] In addition to adsorbed 

*CO, other adsorbed species containing ethoxy, acetyl and alcohol groups were also 

identified.[25]  

1.6.3 RAMAN SPECTROSCOPY  

The configuration of an in situ Raman spectroscopic cell is similar to the in situ IR cell 

as shown in Figure 1.8 a. Raman spectroscopy can reflect the information of vibrational, 

rotational, and other low-frequency modes in a system, provided by inelastic scattering 

including Stokes scattering and anti-Stokes scattering, and elastic scattering dominantly 

contributed by Rayleigh scattering as shown in Figure 1.8 b. 

During the electrooxidation of ethanol, the formation of the adsorbed CHx species was 

only postulated on the finding of an adsorbate by FTIR[39] and DEMS[151], which can be 

desorbed either as CH4 via hydrogenation or CO2 via oxidation. However, FTIR neither 

can directly distinguish C-H vibration of adsorbed *CHx from that of CHx groups in 

molecules nor detect the low frequency vibration modes such as Metal-CO (vM-CO) 

stretching and Metal-CHx (vM-CHx) stretching in the range of 400-500 cm-1.[142] Raman 

spectroscopy based on visible light rather than infrared light is able to obtain the low 

frequency vibration below 700 cm-1,[152] a region that infrared spectroscopy is hard to 

reach due to the limited transparency of most optical windows in that range. Along with 

small Raman scattering of water, Raman spectroscopy works better than infrared 



CHAPTER 1 INTRODUCTION 

27 

spectroscopy to observe metal-adsorbate vibration modes in aqueous electrochemical 

cell.  

 

Figure 1.8  (a) in situ Raman spectroscopic electrochemical cell. (b) Energy-level diagram 

showing the states involved in Raman spectra.  

Lai et al employed isotopically labeled compounds for Raman spectroscopic study, 

identifying the adsorbed *CHx should be CH as the decomposition product of ethanol. 

Their results showed that CH fragment can be oxidized to CO2 on Pt(111) surface at low 

potentials.  

1.6.4 SUM-FREQUENCY GENERATION SPECTROSCOPY (SFGS) 

FTIR spectroscopy has been widely used to detect the reaction intermediates to 

investigate reaction pathways for ethanol electrooxidation. However, the signal of FTIR 

can result from both species adsorbed on catalyst surface and species in bulk solution. 

Infrared-visible SFG spectroscopy can be used to only detect surface adsorbed species 

without the contribution of the solution. In a SFG spectroscopy, two laser beams are 

temporal and spatially overlapped on the sample. One of the laser beams has a fixed 

energy in the region of visible light with frequency of Vis and the other laser beam has 
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tunable energy in the region of infrared light with frequencies of IR . Light is emitted at 

the sum of the two incident frequencies SFG Vis IR  = + as depicted in Figure 1.9. 

 

Figure 1.9 Principle of sum frequency generation spectroscopy 

When the frequency of the tunable infrared beam coincides with a vibrational mode of 

the molecules at the interface, the intensity of the output light is resonantly enhanced. 

The SFG intensity is a measure of the second-order susceptibility ( )2
 of the sample. In 

the dipole approximation ( )2
  vanishes ( ( )2

0 = ) in centrosymmetric media: the bulk of 

the sample. However, at surfaces and interfaces the symmetry is broken, and therefore 

SFG is active. Thus, SFG spectroscopy is sensitive and selective to the species present 

at the surfaces and interfaces. In a typical in situ SFG electrochemical cell shown in 

Figure 1.10 a,  the light goes through the electrolyte layer (Figure 1.10 b), and only the 

surface species respond to the signal changes. By detecting the sum frequency (SF) light 

with respect to infrared frequency, a vibrational spectrum is obtained. Since SFG is a 

second-order non-linear optical process that occurs only at a medium (interface) where 

the inversion symmetry is broken. Thus, only the adsorbed species can be detected. SFG 

was first applied to detect the C-H stretching model at the liquid/solid interfaces by Guyot-

Sionnest et al.[153] Then it was applied to the investigation of CO vibrational bands during 
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electrochemical reactions.[154-158] Later, other surface-adsorbed species such as 

acetaldehyde, acetyl, acetate and (bi)sulfate have been identified as the adsorbed 

species on the catalyst surface in electrochemical reactions.[143, 159, 160] 

 

Figure 1.10 (a) Schematic of the in situ SFG-electrochemical setup. (b)Simplified model for the 

electrified interface probed by SFG. 

Kutz et al first applied broadband SFG spectroscopy to study the reaction pathways of 

ethanol electrooxidation on polycrystalline Pt catalysts in alkaline and acidic electrolyte. 

In acidic electrolyte, adsorbed acetate and co-adsorbed sulfuric acid anions were 

observed. Since SFG can differentiate the bands between 12CO and 13CO, isotopically 

labeled ethanol (12CH3
13CH2OH) was employed and the results showed that the methyl 

fragment (–12CHx) produced far less 12CO, and therefore suggested that the methyl group 

was reduced to methane and/or appeared to be stable (inactive) on the Pt surface in 

acidic and alkaline electrolyte. On the other hand, the results suggested that 12CO could  

be detected at unusually high potentials, indicating methyl-like species CHx was difficult 

to be oxidized.[143, 161] To effectively employ SFG spectroscopy to study the  reaction 
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mechanism of an electrochemical process, other reaction intermediates such as η2-

acetaldehyde, η2-acetyl, ethylidyne, monodentate acetate, methoxy, tertiary methanol 

derivative, *COH residue, η2-formaldehyde, mono and bidentate formate, *CH3 and *CH2 

residues were identified by Gomes et al.[160] 

1.6.5 MASS SPECTROMETRY (MS) 

In additional to in situ Raman and IR spectroscopies, online mass spectrometry was 

also utilized by electrochemists to analyze the products and intermediates involved in 

electrode reactions. In the early seventies, electrochemical mass spectrometry (EMS) 

only for the analysis of gaseous reaction products was first invented by Bruckenstein.[162] 

However, the rise time (the time from the generation of the products to the response of 

the mass spectrometer) of the mass intensity was too long (about 20 seconds). Later, 

Wolter et al improved the configuration and technique to reduce the rise time of the mass 

intensity to 1 second, allowing the measurement of the time derivative of the amount of 

species produced (namely the rate of formation).[163] Therefore, this method was called 

differential electrochemical mass spectrometry (DEMS). Additionally, sufficient fast time 

response allowed the mass intensity of a product to be measured as a function of the 

applied potential analogous to cyclic voltammetry, called mass spectrometric cyclic 

voltammetry (MSCV). In the past several decades, many new types of DEMS setup were 

developed based on conventional design to be used for different detecting conditions 

including the thin layer cell allowing the use of massive electrodes,[164, 165] the dual thin 

layer cell for continuous flow through of electrolyte,[166] rotating electrode inlet system[167, 

168] and the pinhole inlet system[169, 170]. The DEMS cell could be a static cell[171] or flow 

cell[172] depending on the requirement of the design as shown in Figure 1.11. Also, some 
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special DEMS designs worked for CO2 measurement in an electrochemical full cell 

system with wide temperature window[173] and in both acidic and alkaline solutions[174]. 

The key part of the DEMS is the membrane inlet system connecting the 

electrochemical cell to the high vacuum system of mass spectrometer as shown in Figure 

1.11 a. If the porous working electrode is together with the membrane, the volatile 

products generated on catalyst will be transported through the membrane to the vacuum 

system of the mass spectrometer. If the working electrode is separated from the 

membrane, the volatile products generated on the catalyst first diffuse into the thin layer 

and then are transported through the membrane to the vacuum system of mass 

spectrometer, resulting in longer response time caused by slow diffusion in the liquid as 

shown in Figure 1.11 c. Through calibration by known species, these products can be 

detected quantitatively, and thus the faradaic current of the desired products can be 

calculated. Hence, detailed kinetic information such as the current efficiency and Tafel 

slope of the generation of products can be obtained. But only the volatile species can be 

detected such as carbon dioxide and acetaldehyde during the EOR, so the less volatile 

species such as acetic acid as a main product will be largely overlooked.  

 

Figure 1.11 (a) DEMS with the inlet membrane back of the catalyst. (b) DEMS with a thin layer 

cell in flow system. (c) DEMS with a pinhole inlet  
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1.7 MOTIVATION, GOALS AND OBJECTIVES OF STUDY 

One bottleneck of the implementation of the DEFCs is the lack of a cost-effective 

catalyst for the EOR, the anode reaction of DEFCs, which suffers from slow kinetics and 

poor selectivity toward CO2 generation. Therefore, it is very important to develop efficient 

anode catalysts to oxidize ethanol completely into CO2 and hence achieve a twelve-

electron transfer, compared with partial oxidation of ethanol to acetaldehyde/acetic acid 

with only a two-/four-electron transfer, respectively.  

Carbon-supported Pt is one of the most studied catalysts for EOR. However, various 

spectroscopic measurements have shown that Pt has slow kinetics for generating CO2 

through breaking the C-C bond of ethanol. The main products of EOR on the Pt surface 

are acetic acid and acetaldehyde.[33, 44, 175, 176] Even though a small portion of ethanol 

undergoes C-C bond splitting on Pt, resulting C1 fragments, e.g. CHx and CO, poison 

active sites on the Pt surface because of their strong interaction with Pt, impeding the 

subsequent adsorption of ethanol and/or oxidation of reaction intermediates, and hence 

slow down the overall charge transfer rate drastically.[177-179] Efforts to improve the 

reactivity (charge transfer rate) and selectivity (CO2 generation) of the EOR, including the 

formation of binary or ternary Pt-based catalysts and the investigation of other types of 

catalysts beyond Pt (e.g., Ir and Pd), have been reported.[138, 180, 181]  

Among various studies, improved C-C bond splitting over Pt by formation of ternary 

Pt/Rh/Sn catalysts has been reported, pioneered by the research from Adzic’s group.[78, 

119, 120, 160, 182] It is generally accepted that a synergetic effect among Rh, Pt and Sn 

contributes to the supremacy of Pt/Rh/Sn toward EOR. In such a ternary system, Pt 

strongly dehydrogenates the ethanol molecules and resulting reaction intermediates, Rh 
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facilitates C-C bond splitting via promoting β-hydrogenation of ethanol, and oxophilic Sn 

promotes the dissociative adsorption of water to form adsorbed OH (*OH) on the catalyst 

surfaces to assist the oxidization of the reaction intermediates.  

Despite the extensive theoretical and experimental work that has been carried out for 

studying the EOR on various catalysts, a clear understanding of the inhibiting factors for 

CO2 generation remains unclear. This can be attributed to, at least partially, the 

complexity of the reaction pathways and reaction environments of the EOR for realistic 

computational modeling. For example, theoretical studies of rate-limiting steps for the 

EOR show some controversies. Some research work suggests the rate-limiting step 

depends on the surface: on Pt (111) surface C-C bond splitting is the rate-limiting step 

during EOR, while on Rh (111) surface β-dehydrogenation of *CH3CH2O, the dissociative 

product of ethanol, is the rate-limiting step.[182] Computational results from work by Sheng 

et al and Sutton et al have also demonstrated that Rh supported on Pt (111) is a better 

model catalyst than Pt (111) for C-C bond splitting, a rate-limiting step for the EOR.[134, 

183] Notably, Hu et al have intensively studied CO2 generation on various platinum-group-

metal surfaces using DFT calculations,[134, 179] showing that although Pt is a sufficiently 

active catalyst for CO2 production, the EOR is in fact limited by *CO removal on the 

surface.[179]  

On the other hand, the lack of clear understanding of CO2 generation and selectivity 

can also be attributed to experimental difficulty in characterizing the atomic structure of 

the catalysts and detecting CO2 generation. For example, various spectroscopic 

techniques have been used to understand the reaction mechanism of the EOR via 

qualitatively detecting the species adsorbed on catalyst surfaces and/or diffused into bulk 



PhD Dissertation, University of New Hampshire 

34 

solution. Through those studies, acetic acid, acetaldehyde and carbon dioxide have been 

identified qualitatively as main products of the EOR, along with various reaction 

intermediates  as *CO, *CH3CHO, and *CHx.[78] Quantitative analyses of CO2 generation 

and selectivity have been conducted using FTIR analysis through integrating the signal 

intensity of each species.[20, 133] However, the measurements often suffer from the 

interference of CO2 diffused into bulk solution and the neglecting of byproducts generation 

except acetic acid and acetaldehyde. In addition, DEMS has been applied to analyze 

quantitatively CO2 current efficiency (CCE), quantified as the ratio between the current 

generated during the complete oxidation of ethanol into CO2 and the overall current of the 

EOR.[86, 176, 184, 185] However, the signal of CO2 overlaps with that of CH3CHO (m/z = 44). 

The analysis of a particular fragment CO2
2+ (m/z = 22) is typically used to estimate the 

CO2 generation with less signal intensity.[184] Moreover, FTIR and DEMS often provide 

controversial results for the CCE, which vary from 0.08% to 40% under similar reaction 

conditions.[77, 86, 133, 184, 186, 187]  

Regardless of the many spectroscopic studies reported previously, the underlying 

reason behind the low CO2 selectivity during the EOR is still missing. Comprehensive 

understanding of the electrokinetics of CO2 generation and therefore the reaction pathway 

for CO2 formation via C-C bond-breaking is not only a fundamental question for electro-

catalysis, but also a key technological challenge since practical implementation of DEFC 

technology is contingent on its ability to selectively oxidize ethanol into CO2 to achieve 

exceptional energy density through a 12-electron transfer reaction. Different from FTIR 

and DEMS, a CO2 microelectrode reported here has a minimal detectable CO2 

concentration of 0.2 μM, and a high resolution of data acquisition of five seconds. 
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Moreover, its CO2 signal is not affected by the presence of acetaldehyde and acetic acid 

in typical experimental conditions as our previous studies showed.[66] 

With the help of high quality CO2 signal obtained from such a microelectrode, the 

comprehensive electro-kinetic details of CO2 generation via C-C bond-breaking will be 

revealed. Hence, in this study, we combine the uniquely advantageous motif of a CO2 

microelectrode with the well-characterized, electrocatalytic advantages of ultrafine Pt-

SnO2 and PtRh-SnO2 core-shell nanoparticles with sizes ranging from 2 to 3 nm, in order 

to study the activity and selectivity of the EOR, and thus understand the underlying 

mechanism of CO2 generation via C-C bond breaking. Specifically, the use of ultrafine Pt-

SnO2 and PtRh-SnO2 core-shell nanoparticles (2 to 3 nm) not only maximizes the surface-

to-volume ratio of the catalyst, but also provides rational comparison with commercial 

carbon supported Pt (ETEK) which has the same size range. Moreover, the role of each 

component in EOR will be clarified and the potentiodynamics effects will be investigated 

resulting from various *OH formation on different metal sites at different potential regions.
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CHAPTER 2                                                                 

EXPERIMENTAL METHODS 

2.1 SYNTHESIS OF CATALYSTS 

2.1.1 SYNTHESIS OF PtRhOx-SnO2 CATALYSTS WITH PARTIALLY OXIDIZED PtRh 

CORES 

A two-step process was used to synthesize PtRhOx-SnO2 core-shell particles. SnO2 

colloids were first synthesized. In a typical synthesis, 66.6 mg of SnCl2 (Alfa Aesar, 99%) 

was initially dissolved in 20 mL of ethylene glycol (EG, Mallinckrodt Chemicals) with 2mL 

of deionized water. SnCl2 solution was heated up to 180 °C in an open-air environment 

from room temperature (25 °C) for a duration of 1 hour. Cooling water jacket was applied 

to keep the water and EG in the reaction flask. After an hour of the reaction at 180 °C, 

the reaction is cooled to room temperature, the SnO2 colloids were stored for the later 

use. The ratio of between Pt and Sn was fixed at 1:1 based on our previous work. Here, 

catalysts with different composition were synthesized by tuning the ratio between Pt and 

Rh. In a typical synthesis of Pt37Rh20-(SnO2)43 nanoparticles, NaPtCl4·xH2O (0.06 mmol, 

27.6 mg, Alfa Aesar, 99.95%) and K3RhCl6·xH2O (0.03 mmol, 13.3 mg, Alfa Aesar) were 

dissolved in the 1.5 mL of EG at room temperature, respectively. These two solutions 

were mixed together then injected into 8 mL of preheated SnO2/EG solution (0.06 mmol 

SnO2 colloids). The reaction proceeded for 30 min with stirring of 500 rpm under argon 

flow. These Pt/Rh/Sn nanoparticles were dispersed in the solution homogenously. To 



CHAPTER 2 EXPERIMENTAL METHODS 

37 

prepare the carbon-supported catalysts, carbon black (87.7 mg, Vulcan XC-72) was 

added to the Pt37Rh20Ox-(SnO2)43 solution with vigorous stirring for 1 hour at room 

temperature. The resulting mixture was washed thoroughly with acetone and 95% ethanol 

and then the final product was collected after centrifugation.  At last, the precipitation was 

dried in vacuum at room temperature, denoted as Pt37Rh20O21-(SnO2)43/C with partially 

oxidized core and SnO2 shell determined by several techniques. Similarly, the synthesis 

of Pt/SnO2 followed the same procedure except for the addition of K3RhCl6. The nominal 

metal loadings were kept as 20 wt% (20% metal and 80% carbon by mass).  

2.1.2 SYNTHESIS OF PtRh-SnO2 CATALYSTS WITH Pt-Rh METALLIC CORE 

The catalysts with metallic cores were obtained by the reduction of the catalysts with 

partially oxidized core in a tube furnace (Thermo scientific, Lindberg Blue/M) at 250 °C 

for 2 hours under Argon (95%)/H2 (5%) flow. The resulting material was denoted as 

Pt37Rh20-(SnO2)43/C with metallic core and SnO2 shell.  

 

Figure 2.1 Synthetic route of carbon supported Pt/Rh/Sn nanoparticles 
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2.2 STRUCTURAL CHARACTERIZATIONS  

2.2.1 TRANSMISSION ELECTRON MICROSCOPY 

Regular transmission electron microscopy (TEM) images were collected on the 

Zeiss/LEO 922 Omega transmission electron microscope operated at 120 keV at the 

University Instrumentation Center at the University of New Hampshire in Durham, New 

Hampshire. The sample is exposed in the bright field with the magnification up to 100, 

000. Image acquisition and analysis were performed using Gatan Digital Micrograph and 

ImageJ software. The statistical size calculation is based on the analysis of at least 200 

particles.  

High-resolution transmission electron microscopy (HRTEM) was used to define the 

edges of nanoparticles to obtain more accurate size distribution. The HRTEM images of 

all the nanoparticles were taken using a FEI Titan 80-300 microscope at 300 kV at the 

Center for Functional Nanomaterials (CFN) at the Brookhaven National Laboratory (BNL) 

in Upton, New York.  

2.2.2 SCANNING TRANSMISSION ELECTRON MICROSCOPY COUPLED WITH 

ELECTRON ENERGY LOSS SPECTROSCOPY 

High-angle annular dark-field (HAADF) scanning transmission electron microscope 

(STEM) images and electron energy loss spectroscopy (EELS) measurements were 

performed and collected using an aberration-corrected Hitachi HD 2700C equipped with 

a modified Gatan Enfina ER spectrometer at the Center for Functional Nanomaterials at 

the Brookhaven National Laboratory. STEM could focus the electron beam onto a narrow 

spot and scan the targeted area. Combed with EELS probe, the distribution of element in 
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targeted area could be obtained. The probe size was around 0.8 ~ 1.3 angstrom and the 

beam intensity on the sample varied from 100 to 200 pA depending on the testing 

conditions. The cold field emission gun gave an energy resolution of 0.35 eV. And the 

convergence angle was usually 27 mrad and the ADF and EELS collection angles were 

45~242 and 20 mrad, respectively. The dwelling time for each pixel was about 10 s for 

the better EELS acquisition. 

2.2.3 ENERGY DISPERSIVE SPECTROSCOPY 

The energy dispersive X-ray spectroscopy (EDXS) was used to analyze the 

composition of the Pt/Rh/Sn and Pt/Sn particles by surveying 5 spots on the specimen. 

The sample holder was fully covered by samples with ~1 mm thickness. The EDXS is 

Tescan Lyra3 GMU Combined FE-SEM/FIB field emission microscope, operated 10 kV 

at the UIC. 

2.2.4 SYNCHROTRON X-RAY POWDER DIFFRACTION 

Synchrotron X-ray powder diffraction (XRD) patterns were collected at beamline 17-

BM-B ( 0.072768 = Å) of the Advanced Photon Source at Argonne National Laboratory. 

The resolution is 41.5 10E E − =  . The two-theta angle shown in the main text was based 

on the wavelength of 1.54056 Å through the Bragg’s law：  

2 sind n =           2.1 

where d  is the lattice distance, n  is a positive integer,   is the angle of the incident wave 

and   is the wavelength of the incident wave. 
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Through the Scherrer equation, the particle size of crystals can be calculated. The 

Scherrer equation can be written as 

  
cos

K
d



 
=            2.2 

where d is the mean size of the crystalline domains; K  is a dimensionless shape factor, 

typically 0.9;   is the wavelength of X-ray in nanometer;  is the width at half the 

maximum intensity of the peak selected for calculation, in radians; and   is the Bragg 

angle of the selected peak. 

2.2.5 X-RAY ABSORPTION SPECTROSCOPY (XAS) 

The XAS experiments were conducted at beam lines X18B at the National Synchrotron 

Light Source, Brookhaven National Laboratory. The samples were prepared by pressing 

20~30 mg of carbon supported catalyst powders into disk shape pellets with a hydraulic 

press. The pellets were placed between respective ion chambers for data collection in 

transmission mode. The XAS measurements were carried out at the Pt L3-edge (11564 

eV), Rh K-edge (23220 eV) and Sn K-edge (29200 eV). Metal foils (Pt, Rh and Sn) and 

metal oxide powder (PtO2, Rh2O3 and SnO2) were used as references for X-ray energy 

calibration and data alignment. The IFEFFIT package was used to perform XAS data 

processing and analysis. 

XAS is a technique that provides element specific information on the electronic and 

structural properties. It contains the information for the structure in the vicinity of the edge 

named as X-ray absorption near-edge structure (XANES). The oscillations above edge 

extended to 1000 eV or more named as extended X-ray absorption fine structure (EXAFS) 

as shown in Figure 2.2. The XANES region reflects the oxidation state and geometry, 
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and the EXAFS region can provide surrounding information of the target atoms, such as 

bond length and coordination number.  

 

Figure 2.2 Schematic representations of XANES and EXAFS regions in X-ray aborption spectrum.  

2.3 ELECTROCHEMICAL TESTS  

2.3.1 CV AND CA TESTS IN THE THREE ELECTRODE HALF CELL 

 

Figure 2.3 Procedure of the test in a three electrode half cell. 

Only one cycle of CV was measured in a 0.5 M H2SO4 electrolyte for the 

electrochemically active surface area (ECASA) measurements under narrow potential 
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window between -0.2 and 0.3 V so that the catalyst would be neither reduced at low 

potential ranges nor oxidized at high potential ranges.  

After ECASA measurements, 232.8 μL of ethanol was added into the electrolyte to 

form a 0.5 M ethanol solution. CV measurements were conducted a scan rate of 0.5 mV/s 

from 0.1 to 1.1 V (vs. Ag/AgCl) to test the EOR performance, while the CO2 signals were 

collected in situ every 5 seconds through the CO2 microelectrode. We studied the 

influence of *OH on CO2 formation in the half-cell system using a CHI 660 single channel 

electrochemical workstation (CH Instruments). A three-electrode system was employed, 

which contains a working electrode which is a glassy carbon rotating disk electrode (RDE), 

a platinum wire counter electrode, and an Ag/AgCl (4 M KCl) reference electrode. The 

RDE working electrode (WE) was controlled at a rotation rate of 1000 rpm throughout the 

study. Catalyst ink was prepared by dispersing 10 mg catalyst into 5 ml of deionized water 

(18.2 MΩ ∙ cm). The homogeneous catalyst ink was prepared through sonication of the 

dispersion and 10 μL of the well-mixed ink suspension was drop-casted onto the glassy 

carbon working electrode and vacuum dried. Upon drying, 10 μL of Nafion solution with 

volume ratio of 0.5% (volume ratio: VNafion/VWater = 0.05 mL: 10 mL, Nafion 117 purchased 

from Aldrich) was added to cover the catalyst. Before the electrochemical test, the 0.5 M 

sulfuric acid (99.999%, Sigma-Aldrich) electrolyte was purged with argon for at least 30 

minutes. Linear scanning voltammetry was first conducted from -0.22 to 0.28 V (vs 

Ag/AgCl) at a scan rate of 50 mV/s. Secondly, a chronoamperometry measurement was 

conducted for 30 minutes at 1.0 V. After that, 3 consecutive cycles of CV were conducted 

between -0.22 and 0.28 V. 
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2.3.2 ELECTROCHEMICALLY ACTIVE SURFACE AREA (ECASA) MEASUREMENT   

 

Figure 2.4 Electrochemically active surface area (ECASA)  of a typical Pt catalyst 

Figure 2.4 shows a typical CV curves of Pt nanoparticle in sulfuric acid electrolyte 

including: hydrogen atom adsorption/desorption region, double layer region, and Pt oxide 

formation/reduction region. Hupd(hydrogen underpotentially deposition)-based ECASA 

values were calculated by integrating the CV in the hydrogen atom adsorption region. 

Here the assumption is each Pt surface atom adsorbs one hydrogen atom, so the 

theoretical Qcharge value is 210 μC/cm2 based on a one-electron transfer.  

Take the Pt/C as an example for the ECASA calculation. Firstly, to integrate the shaded 

area (current × time) to calculate the charge Qcharge as shown in Figure 2.4.  Secondly, 

the ECASA can be calculated by using the following equation 

( )( )
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( ) ( )
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when we calculate the ECASA (cm2/g), only the mass (g) of noble metals such as Pt and 

Rh in Pt/SnO2 and Pt/Rh/SnO2 have been considered. It is generally accepted that the 

conversion factors of Pt and Rh for hydrogen adsorption are very similar.[188] Therefore, 

we use the factor of 210 µC/cm2 for calculating the contribution of the Rh to hydrogen 

absorption. 

2.3.3 *OH ADSORBATES FORMATION EXPERIMENT  

The influence of *OH on the EOR was conducted by a three-electrode half-cell system 

using a CHI 660 single channel electrochemical workstation (CH Instruments). The three-

electrode system contains a glassy carbon rotating disk electrode (RDE, diameter of the 

disc: 5.0 mm) as a working electrode, a platinum wire counter electrode, and an Ag/AgCl 

(4 M KCl) reference electrode. Catalyst ink was prepared by dispersing 10 mg of the 

catalysts into 5 ml of deionized water (18.2 MΩ ∙ cm). The homogeneous catalyst ink was 

prepared through the sonication, and 10 μL of the well-mixed ink suspension was drop-

casted onto the glassy carbon working electrode and vacuum dried. After that, 10 μL of 

Nafion solution with volume ratio of 0.5% (volume ratio: VNafion/Vwater= 0.05 mL: 10 mL, 

Nafion 117 purchased from Aldrich) was added to cover the catalysts.  And the resulting 

working electrode was dried in vacuum prior to the final electrochemical half-cell test.  In 

a typical test, the RDE working electrode was controlled at a rotation rate of 1000 rpm. 

The 100 mL of 0.5 M sulfuric acid (99.999%, Sigma-Aldrich) electrolyte was first added 

to the electrochemical cell, and then the working electrode was mounted, and a rotation 

rate of 1000 rpm was applied and maintained throughout the test. Before starting the test, 

the electrolyte was purged with argon for at least 30 minutes. After that, one LSV was first 

conducted from -0.2 to 0.3 V (vs Ag/AgCl) at a scan rate of 50 mV/s. And then, CA 
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measurement was conducted for 30 minutes at 1.0 V, followed by 3 consecutive cycles 

of CV conducted between -0.2 and 0.3 V. The schematic procedure is shown in Figure 

2.5. During the electrochemical tests, argon gas was purged throughout the test. 

 

Figure 2.5 *OH adsorbates on commercial Rh/C(Premetek). 

2.4 IN SITU CO2 MEASUREMENTS 

The catalyst slurry was prepared by mixing catalyst powder (4 mg) with ethanol (1 ml, 

190 proof) and a small amount of Nafion 117 solution (5 μL, Aldrich). Through drop-

casting, a thin layer of catalyst (~ 2.0 mg) was deposited on the platinum foil (working 

electrode). 8 ml of 0.5 M H2SO4 (99.999%, Sigma-Aldrich) electrolyte was placed in the 

reactor before applying the test procedure. The CO2 microelectrode was calibrated with 

standard 0.5% and 1% CO2 gases in N2 (Airgas) before every measurement. The 

electrolyte was bubbled with argon for 1h before testing, and the electrolyte was protected 

by argon during measurements. One cycle of cyclic voltammetry (CV) was performed in 

argon-purged 0.5 M sulfuric acid electrolyte scanning from -0.2 to 0.3 V (vs. Ag/AgCl) at 
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a scan rate of 20 mV/s to calculate the electrochemically active surface areas (ECASAs). 

More detailed information is described in Chapter 3. 

2.5 DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS 

All density functional theory calculations were performed with the CP2K package by 

the collaborator Prof. Deskins at the Worcester Polytech institute.[189-191] The PBE 

exchange correlation functional[192] was used and a k-point mesh consisted  only of the Γ 

point. Valence electrons were modeled by a double-zeta Gaussian basis set,[193] while 

core electrons were treated by Goedecker-Teter-Hutter pseudopotentials.[194, 195] CP2K is 

a periodic code, so the slab approach was used to model several catalysts. A Pt(111) 

surface with a [6×6] cell that was four layers deep (144 total Pt atoms) was modeled. 

Calculations were non-spin-polarized except when species with unpaired electrons were 

involved. Test results showed differences between spin-polarized and non-spin-polarized 

calculations to be small (< 0.04 eV). Then the C-C bond breaking over various surfaces 

was modeled for potential intermediates, CH3CO, CH2CO, and CHCO (*CHxCO → *CHx 

+ *CO). These three species have all been proposed key intermediates for C-C bond 

breaking.[179, 182, 183, 196-198] Due to the large number of reactions and surfaces, activation 

energies were calculated with the linear scaling method of Wang et al.[199] This method 

was developed for metal surfaces, and may not strictly hold for complex systems, such 

as metal oxide/metal interfaces. Nonetheless we hold the assumption that more negative 

reaction energies will produce lower activation barriers, and this linear scaling method 

provides a qualitative way to easily compare different surfaces.  
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To model interfaces between Pt and SnO2, or PtRh and SnO2, the “rod” approach was 

used, as described in Molina et al.[200] We used a similar approach in previous work[66]. 

This approach forms an interface between a metal rod and metal oxide support, with (111) 

facets exposed on the metal rod. Such facets are the most stable surface of Pt, and this 

rod represents a potential Pt-SnO2 interface. A three-layer (9 atomic layers) SnO2 surface 

with dimensions of 13.7 Å and 16.4 Å, or [5×2], (180 atoms) was used as a support for 

either Pt or PtRh rods. The Pt-SnO2 and PtRh-SnO2 systems had 216 total atoms. The 

atoms in alloys may arrange in several possible ways, such as well mixed, or with a 

preference of one atom type for different surface locations. To consider these different 

cases we modeled three different PtRh-SnO2 systems: one with Rh atoms on a (111) 

facet, one with Rh concentrated away from the SnO2 surface, and one with Rh more 

evenly distributed through the alloy. The PtRh rods had 18 Pt atoms and 18 Rh atoms in 

DFT calculations. Over all the surfaces adsorption of different species at many different 

initial sites was modeled. Only the final, most stable results are presented herein. 
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CHAPTER 3                                                               

DEVELOPMENT OF FOUR-ELECTRODE CELL FOR IN SITU 

CO2 MEASUREMENT  

3.1 INTRODUCTION 

To date, in situ FTIR and DEMS are the most commonly used techniques in detecting 

CO2 generation during the electrochemical test. In situ FTIR is powerful for analyzing 

products qualitatively. Quantitative measurement can also be achieved by integrating the 

signal intensity during in situ FTIR. But the accuracy of the quantitative calculation 

determined by the ratio of signal/noise of the products of interest. The most important 

limitation is to obtain an accurate calibration curve for each species. So only the relative 

ratio of CO2 to byproducts is available.  

 DEMS can obtain the absolute amount of each product. But in the electro-oxidation of 

ethanol, the products including carbon dioxide, acetaldehyde and acetic acid limited the 

use of DEMS. Issues are listed: (i)The strongest signal (m/z =44) of CO2 overlaps with 

the signal of CH3CHO. The unique signal of CO2 is CO2
2+ (m/z =22) different from 

CH3CHO (CH3CHO+, m/z=44), but it is too weak to be used as quantitative analysis. (ii) 

Acetic acid is less volatile, so its signal is underestimated by DEMS.  

Since FTIR and DEMS can be applied in different reactor designs, the former is 

generally a static cell while the latter is a flow cell in many cases. Results do not always 

agree with each other very well. CO2 current efficiency in terms of DEMS were 2.7% by 

Wang et al,[176] 0.8% by Colmeanares et al[187], 3.5% by Cantane et al[77], 0.08% by 
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Bergamaski et al[186], 5% by Delpeuch et al[86] and ~40% by Rao et al[184] in 0.1 M ethanol 

solution. However, they were ~10% by Camara et al[44] and ~12% by Li et al[133] in terms 

of FTIR.  

A flow cell is usually used for DEMS measurement to reduce the contact time of 

intermediates weakly adsorbed on the catalyst surface, probably preventing the further 

oxidation to CO2. Also, Chen et al stated that the mass signal of CO2 varied dramatically 

with different ethanol concentrations, indicating that this technique still had limitation for 

accurate analysis in this system even after the signal correction.[201]  

We reported the design of a four-electrode electrochemical cell for monitoring the CO2 

concentration in situ, where the interference of acetaldehyde and acetic acid can be 

neglected. However, only PCO2 as a function of time for CA measurements was achieved. 

However, PCO2 of potential-dependency is unknown. We updated the design to measure 

PCO2 as a function of the electrical potential. 

3.2 DESIGN OF THE FOUR-ELECTRODE ELECTROCHEMICAL CELL  

The in situ CO2 measurement system contains a Pt foil working electrode (width× 

length: 15 mm × 15 mm), a Pt foil counter electrode (width× length: 2 mm × 20 mm), an 

Ag/AgCl (3 M KCl) reference electrode (RE, MI 402, Microelectrodes), and a CO2 

microelectrode (Model MI-720, Microelectrodes Inc.), which is called a four-electrode 

electrochemical cell as shown in Figure 3.1. The catalyst slurry was prepared by mixing 

catalyst powder (4 mg) with ethanol (1 mL, 190 Proof, Pharmco Aaper) and a small 

amount of Nafion 117 solution (5 μL, Aldrich). Through drop-casting, a thin layer of 

catalyst (∼2.0 mg) was deposited on the platinum foil (working electrode). The 
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electrochemical cell was firmly supported by a stand. The working electrode was located 

on the center of the Teflon support, the edge of which was fixed by the top Teflon ring. 

The CO2 microelectrode was connected to the stand via a tubular adapter and mounted 

to the electrochemical cell. By controlling the distance between the working electrode and 

the stand, as well as the distance between the CO2 microelectrode and the stand, the 

distance between working electrode and microelectrode can be accurately tuned and kept 

as 1 mm during the EOR measurements.  

 

 

Figure 3.1  (a) Clean Pt foil. (b) Teflon support. (c) Pt foil with catalyst layer as the working 

electrode. (d) The working electrode sandwiched by the Teflon support and covers. (e) Front view 

and (f) top view of the in situ CO2 measurement cell. (g) The real picture of the in situ CO2 

measurement cell. (h) The schematic of the in situ CO2 measurement 
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3.3 EFFECTS OF POSITION OF CO2 ELECTRODE AND STIRRING ON 

CO2 SIGNAL 

In general, the well-stirred reactor is ideal for kinetic analysis due to the homogenous 

concentration of products without diffusion limitation. But in the current CO2 

microelectrode system, the concentration of CO2 was too dilute to be detected precisely 

if CO2 distributed evenly in solution in a well-stirred system. The experiment was 

conducted on the Pt/C commercial catalyst for EOR at a constant potential. The distance 

between the CO2 microelectrode and the catalyst surface was fixed at 1 mm. When the 

CO2 signal was steady which is normalized as 1 without stirring, and then magnetically 

stirring was applied at 1000 rpm. CO2 signal showed a quick decrease and finally down 

to 0.015 as shown in Figure 3.2 a.  

 

Figure 3.2  (a) The effects of stagnant and well-stirred system on CO2 signal at the distance of 

1mm, (b) the effects of distance between the CO2 microelectrode tip and the catalyst surface on 

CO2 signal.  

Similarly, when the CO2 signal reached steady state at 1 mm (distance between the 

catalyst and the CO2 microelectrode) without stirring, lifting the CO2 microelectrode up to 

4 mm resulted in a sharp decrease in CO2 signal, equivalent to an 87.2% loss as shown 
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in Figure 3.2 b. To obtain strong CO2 signal for further kinetic analysis, the distance 

between the CO2 microelectrode and the catalyst surface was fixed at 1 mm and the 

reaction was kept in a stagnant condition.   

3.4 CALCULATION OF CO2 CONCENTRATION AT THE ELECTRODE 

SURFACE 

 

Figure 3.3 Procedure to obtain working curve of CO2. 

Before the calculation of CO2 concentration, the working curve was required. First, the 

solution was purged with argon to remove air dissolved in aqueous phase until the steady 

state (The reading of signal does not change within 1 minute). Then, 0.5% CO2 gas was 

purged until the steady state. Last, 1.0% CO2 gas was purged until the steady state as 

shown in Figure 3.3. The electric signal (mV) of the CO2 microelectrode is proportional 

to the CO2 partial pressure (PCO2). According to the working curve, PCO2 of interest can be 
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calculated. And the concentration of CO2 in solution can be calculated by the conversion 

formula:   

2
760 %

22.414 760 100 22.414 760

COwater
PPa r a

S
−

=   =       3.1 

where 
2COP is the partial pressure of CO2 in mm of Hg, S is the concentration of CO2 

(mol/L), a  is the absorbtion coefficient of CO2 at the temperature listed in the Appendix 

table (0.759 at 25 oC), Pw is the vapor pressure of water at the temperature listed in 

Appendix table.  

To calculate the CO2 concentration at the catalyst surface, we build a mass transfer 

partial differential equation. 

2

2

c c
D

t z

 
=

 
          3.2 

where 
2 2

5 2 11.92 10CO H OD cm s− −

−
=    

Within every 5 seconds, the following assumptions can be made (1) constant 

concentration at the Pt surface; (2) no leakage at the boundaries; (3) steady state. 

It becomes 

2

2
0

c
D

z


=


          3.3 

with the following boundary conditions (B.C.) 

B.C.1: 00 ,z mm c c= =         3.4 

B.C.1: 7 , 0z mm c= =         3.5 

The concentration at 1 mm is known, so the concentration profile in every 5 seconds 

is solved as 

c Az B= +           3.6 
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where 

1

1

6
A c= −      and      1

7

6
B c=        3.7 

Here the CO2 concentration at 1 mm is known, so the concentration of CO2 at the 

working electrode is  

0 1

7

6
c c=           3.8 

Integrating each concentration curve with respect to z and then multiplying the cross-

section area (geometric area of working electrode) gives the total amount of CO2: 
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        ( )3
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Once the total generation of CO2 can be obtained, the total charges to form CO2 from 

ethanol can be calculated 

2

2

3 23 19

1

tan
arg

6 0.919 10 6.022 10 1.602 10CO

Number of
Avogadro cons t area of working electrodeMole of COch e transfer

Q c− −=        

              ( )1532c C=          3.10  

Based on the known curve of charge (QCO2) from CO2 generation versus time, we could 

take derivative for QCO2 with respect to time, thus the CO2 generation rate jCO2 was 

obtained: 

2

2

CO

CO

dQ
j

dt
=           3.11 
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Hence the CO2 selectivity (SCO2) can be obtained as follows. 

( )2 3 3, , ,Totalj current for generating all of proucts CO CH CHO CH COOH etc=   

              measured overall current=        3.12 

2

2

2

CO

CO generation rate
S

byproductsgeneration rate

current from generating CO

current from generatingbyproducts

=

=

 

              2

2

CO

Total CO

j

j j
=

−
         3.13 

3.5 EFFECT OF THE PLATINUM FOIL AS THE SUPPORT FOR 

MEASUREMENT 

 

Figure 3.4 (a) CV curves of Pt foil and 1.5 mg Pt/C(ETEK) from -0.2 to 0.3 V at the scan rate of 

20 mV/s in 0.5 M H2SO4 solution; (b) CV curves of Pt foil and Pt/C(ETEK) from 0.1 to 1.1 V at the 

scan rate of 0.5 mV/s in 0.5 M H2SO4 /0.5 M ethanol solution; (c) Partial pressure curves 

corresponding to CVs shown in (b). 

Here we choose Pt foil as the working electrode to support nanoparticle catalysts, but 

Pt metal is electrocatalytically active for EOR. To confirm that the electrical current and 

CO2 signal obtained during the electrochemical oxidation of ethanol were primarily 
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resulting from catalyst materials instead of platinum foil substrate, the blank experiment 

was conducted using platinum foil without active material as shown in Figure 3.4. The 

comparison between the blank platinum foil and the platinum foil fully covered with Pt/C 

catalyst shows that the former only contributed ∼3% to surface area, ∼1.5% to overall 

current and ∼2% to CO2 signal when the Pt foil was completely exposed to the electrolyte. 

Considering nearly complete surface of Pt foil was covered by the carbon supported 

catalysts, the contribution of the Pt foil toward the current and CO2 signal is expected to 

be far below 1.5%. 

3.6 DISCUSSION  

In this chapter, we designed an in situ CO2 measurement four-electrode cell using a 

CO2 microelectrode as a sensor. Considering the transport issue of CO2 in the electrolyte 

from the catalysts interface to the CO2 sensor, the effects of position of CO2 

microelectrode and the type of reactor (with/without stirring) were investigate. Through 

the design, the distance between the interface of the electrocatalyst and the CO2 probe 

was controlled in the range of mm level. The result shows that closer distance generates 

stronger CO2 signals.  Because of the small amount of CO2 products, the stirring reactor 

cannot present reliable signals due to so diluted CO2 concentration.  

Through a reasonable approximation, the CO2 concentration can be calculated at the 

surface of the electrocatalyst. Thereafter, the CO2 generation rate and the CO2 selectivity 

can be obtained in terms of a series of formulas.  
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CHAPTER 4                                                                              

THE EFFECT OF LATTICE OXGEN ON CO2 GENERATION ON 

PLATINUM-RHODIUM-TIN OXIDE CATALYSTS  

4.1 INTRODUCTION 

EOR via the C-C bond-cleavage pathway leads to the production of CO2 through a 

complete oxidation of ethanol with a twelve-electron transfer, while cleavages of C-H, O-

H and/or C-O bonds without C-C bond cleavage lead to  incomplete oxidation with the 

production of acetaldehyde (two-electron transfer) or acetic acid (four-electron 

transfer).[35, 44, 176, 202-204] 

Bi-phase PtRh-SnO2 materials with a PtRh alloy and a segregated SnO2 phase have 

been synthesized for EOR,[78, 117-122]  due to the lower energy barrier in the presence of 

Rh.[134] The intermediates after the C-C bond splitting can be oxidized by oxygenated 

species on the catalyst surface (OHads) on Sn sites adjacent to Pt and Rh sites. [62] 

Attributed to this bifunctional effect, Pt/Rh/Sn ternary catalysts have been generally 

considered as the most effective materials towards EOR, especially at higher 

overpotential. However, fuel cells generally tend to operate at an external potential close 

to their equilibrium potential. At low overpotential at the anode, the Pt/Rh/Sn components 

have a weak dissociative adsorption of water, and the resulting low OHads coverage on 

the catalyst surface may not be adequate to remove the strongly adsorbed reaction 

intermediates especially CO that poisons the active sites. Therefore, finding an optimal 

catalytic structure that can effectively dissociate ethanol via C-C splitting at low 
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overpotential and consequently remove the CO intermediates is of great importance for 

the implementation of DEFC technology.  

In the past decade, studies have shown that the kinetics of the CO oxidation reaction 

on surfaces of Ru, Pt, Pd, Rh and PtRh increases significantly in conjunction with the 

formation of a thin oxide film on the surface of metal or alloy catalysts.[205-209] It has been 

found that the active phase for CO oxidation is oxidized rather than metallic. Although 

these results obtained from solid/gas phase reaction are expected to be relevant for 

general heterogeneous catalysis, reactivity of noble metal oxides towards electro-

catalysis, especially EOR, has not been well studied. Particularly, most of the studies on 

Pt-based EOR catalyst have only focused on non-noble metal oxides, such as SnO2 and 

CeO2.[210] However, the role of Pt or Rh oxides on the electro-kinetics of EOR, especially 

C-C splitting, has not been reported. 

Table 4.1 Summary of the structural properties of different PtRhSn catalysts 

Catalysts 

EDS 

(Pt:Rh:Sn) 

molar ratioa 

Size(nm)b Size(nm)c 

Pt1/Rh0.25/Sn1_Reduced 
39:12:49 

5.4±1.3 4.4 

Pt1/Rh0.25/Sn1_As-made 2.6±0.6 2.7 

Pt1/Rh0.5/Sn1_Reduced 
37:20:43 

6.5±2.3 3.5 

Pt1/Rh0.5/Sn1_As-made 2.8±0.9 2.6 

Pt/C(ETEK) 100:0:0 2.7±0.6 2.7 

a.Molar ratio of PtRhSn by EDS analysis; b. Calculated by TEM images statistically; c. calculated by XRD 

patterns based on (220) plane. 



CHAPTER 4 THE EFFECT OF LATTICE OXGEN ON CO2 GENERATION ON PLATINUM-RHODIUM-TIN OXIDE CATALYSTS 

59 

4.2 STRUCTURAL CHARACTERIZATION OF PLATINUM-RHODIUM-TIN 

OXIDE MATERIALS 

The molar ratio between Pt and SnO2 was kept as 1:1, while ratio between Pt and Rh 

varied from 2:1 to 4:1. Table 4.1 summarizes the results from energy-dispersive X-ray 

spectroscopy measurement of the resulting catalysts, confirming the atomic ratio of 

Pt:Rh:Sn as 37:20:43, and 39:12:49. 

 

Figure 4.1 TEM images of (a) Pt37Rh20Ox-(SnO2)43/C, (b) Pt37Rh20-(SnO2)43/C, (c) Pt39Rh12O21-

(SnO2)49 and (d) Pt39Rh12-(SnO2)49. 
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Figure 4.1 shows transmission electron microscopy (TEM) images of as-made and 

reduced carbon supported Pt37/Rh20/Sn43 and Pt39/Rh12/Sn49 nanoparticles with average 

sizes of 2.8±0.9 nm, 6.5±0.9 nm, 2.6±0.6 nm and 5.4±1.3 nm, respectively. The large size 

of the reduced samples was due to coalescence of nanoparticles during the thermal 

treatment in H2/Ar flow at 250 oC.  

 

Figure 4.2 (b) EELS line scan across Pt37Rh20Ox-(SnO2)43 particle as indicated by the arrow in (a) 

Figure 4.2 shows the scanning transmission electron microscope-electron energy loss 

spectroscopy (STEM-EELS) line scans of a typical as-made Pt37/Rh20/Sn43 particle. Data 

show that Sn displayed strong signal at the edges of the particle, while Pt displayed strong 

signal in the center. The data provide unambiguous evidence of the core-shell structure 

with a Pt-core-rich and Sn-shell-rich heterogeneous structure at the atomic scale. The 

ionization energy of the Rh M4/5 edge is in the range from 307 to 312 eV of energy loss, 

which is unfortunately overlapped by the residual signal from carbon K edge. Therefore, 

the EELS line scan was unable to measure the distribution of Rh within the catalysts, 

though the EDS spectra showed the existence of Rh with appropriate chemical 

composition close to the ratio of the precursors.  
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Figure 4.3 XRD patterns of carbon-supported Pt37Rh20-(SnO2)43, Pt37Rh20O21-(SnO2)43, Pt39Rh12-

(SnO2)49, and Pt39Rh12O21-(SnO2)49. 

Figure 4.3 shows the XRD patterns of carbon-supported Pt37Rh20-(SnO2)43, 

Pt37Rh20O21-(SnO2)43, Pt39Rh12-(SnO2)49, and Pt39Rh12O21-(SnO2)49. The diffraction peaks 

of around 39.5o, 45.9o, 67.2o, 81.8o and 86.0o were assigned to the (111), (200), (220), 

(311) and (222) planes, respectively, corresponding to a face centered cubic (FCC) 

structure, suggesting the formation of the cubic structure. The average sizes were 

calculated to be 2.6 nm, 3.5 nm, 2.7 nm, and 4.4 nm for Pt37Rh20-(SnO2)43, Pt37Rh20O21-

(SnO2)43, Pt39Rh12-(SnO2)49, and Pt39Rh12O21-(SnO2)49, respectively, by the Scherrer 

equation, which are similar to the sizes obtained from TEM images. Diffraction peaks of 

SnO2 were not observed in as-made or reduced samples, although the STEM-EELS line 

scan showed Sn-rich shell in both samples. This could be attributed to the fact that Sn or 

SnO2 existed in the form of very small nanoparticle or of an amorphous phase. 
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Figure 4.4 XANES data of (a) Sn K edge, (b) Rh K edge, and (c) Pt L3 edge.  And EXAFS fitting 

curves for the as-made and reduced catalysts: (d, e, f and g) Sn K-edge; (h, i, j and k) Rh K-edge; 

and (l, m, n and o) Pt L3-edge. 

X-ray absorption (XAS) measurements were used to investigate the electronic states 

and local atomic environment of the Pt, Rh and Sn in the as-made and reduced 

Pt37/Rh20/Sn43 catalysts. Figure 4.4 shows the XAS data of K-edges of Sn and Rh, and 

L3-edge of Pt of Pt/Rh/Sn catalysts, together with the standard materials such as metallic 

Sn, Pt and Rh foils, as well as their oxides SnO2, PtO2 and Rh2O3. Figure 4.4 a shows 
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that the Sn K-edge data of the as-made and reduced Pt/Rh/Sn were very similar to those 

of SnO2, suggesting that Sn was predominantly oxidized in all Pt/Rh/Sn samples. 

Combined with the structural information obtained from the STEM-EELS line scan, it has 

been suggested that SnO2 primarily existed as a shell in both as-made and reduced 

samples.  

Table 4.2 EXAFS fitting results of Pt/Rh/Sn catalysts 

 
Pt foil Rh foil Sn foil SnO2 

Pt39Rh12-

(SnO2)49 

Pt39Rh12O21-

(SnO2)49 

Pt37Rh20-

(SnO2)43 

Pt37Rh20O21

-(SnO2)43 

NPt-Pt 12    3.7 ± 1.4 5.6 ± 1.7 3.7 ±0.5 7.4±1.5 

NPt-Rh     2.69  2.5  

NPt-O      0.9 ±0.3  1.2 ±0.5 

NRh-Rh  12   2.8 ± 1.2 1.6 ± 1.4 4.7 ±1.1 1.7±1.1 

NRh-Pt     8.8 ± 3.2  4.6 ± 0.6  

NRh-O     0.83±0.34 2.7 ± 0.8 0.9 ±0.6 2.2 ±0.6 

NSn-Sn   4 2   5.8 ± 2.5  

NSn-O    6 2.8± 0.5 5.1 ±0.5 3.3±0.4 4.9 ±0.5 

RPt-Pt (Å) 2.764±  

0.003 

   2.73±0.02 

 

2.68 ± 0.02 2.73±0.01 2.67 ± 0.01 

RPt-Rh(Å)     2.72±0.03  2.72±0.01  

RPt-O(Å)      2.00 ±0.02  1.99 ±0.02 

RRh-Rh(Å)  2.685±  

0.002 

  2.65±0.03 2.83 ±0.03 2.68±0.01 2.80±0.03 

RRh-O(Å)     2.00±0.04 2.06 ±0.03 1.96±0.02 2.07±0.02 

RSn-Sn(Å)   3.001±    

0.004 

   3.10   ±      

0.05 

 

RSn-O(Å)    2.03±0.0

1 

2.03  ±0.01 2.045±0.008 2.05±0.01 

 

2.05± 0.01 

 

On the other hand, the Pt L3- and Rh K- edge absorption data suggested that Pt and 

Rh had very different electronic structures between the reduced and the as-made 
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samples (Figure 4.4 b and c). For the reduced samples, Pt and Rh existed as 

predominantly a metallic phase, evidenced by the similar white line (the intense peak at 

the K absorption edge) compared with their metal foil counterparts. For the as-made 

catalysts, Pt and Rh data resembled those of PtO2 and Rh2O3 indicating the existence of 

oxidized phases, though there were still discernable metallic Pt and Rh phases observed 

in both as-made samples. 

The Fourier transform magnitudes of extended X-ray absorption fine structure (EXAFS) 

data and theoretical fits for Pt, Sn and Rh of Pt/Rh/Sn catalysts are shown in Figure 4.4 

and Table 4.2. For the reduced sample, the obtained first-nearest-neighbor Pt-metal (NPt-

M= NPt-Pt + NPt-Rh) and Rh-metal (NRh-M= NRh-Rh + NRh-Pt) coordination numbers all had 

reasonably similar values within the uncertainties (6.2 ± 0.5 and 9.3 ± 1.6, respectively). 

That fact, and the other observation that the Pt-Rh and Rh-Pt contributions were required 

for both Pt and Rh edge analyses, in addition to the Pt-Pt and Rh-Rh contributions, 

respectively, demonstrated unambiguously the formation of a Pt-Rh alloy. For the as-

made sample, however, Pt and Rh appeared to be the segregated phases without alloy 

formation, evidenced by the fact that only Pt-Pt (NPt–Pt = 7.4 ± 1.5) and Rh-Rh (NRh–Rh =1.7 

± 1.1) coordinations had been observed without Pt-Rh and Rh-Pt coordinations. Moreover, 

discernable Pt-O and Rh-O coordinations indicated the existence of oxidized Pt and Rh 

phases. Strong Pt-Pt and Rh-Rh coordinations, weak but discernable Pt-O and Rh-O 

coordinations, and non-detectable Pt-Sn and Rh-Sn coordinations corroborated well the 

XANES analyses concluding that the as-made Pt37/Rh20/Sn43 catalysts were comprised 

of partially oxidized Pt and Rh cores.  
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Independent evidence towards similar conclusions could be concluded from the 

information of bond distances. Table 4.2 indicates that Pt and Rh exists mainly in the 

metallic phase in the reduced Pt37/Rh20/Sn43 sample, compared with the as-made one. In 

the former sample, the Pt-Pt bond distance (2.73 ± 0.01 Å) and the Rh-Rh bond distance 

(2.68 ± 0.01 Å) are more similar to that in a pure Pt (2.764 ± 0.003 Å) and Rh (2.685 ± 

0.002 Å). In the as-made sample, the Pt-Pt bond distance (2.67 ± 0.01 Å) and Rh-Rh 

bond distance (2.80 ± 0.03 Å) are rather different from pure metallic Pt and Rh.  

Meanwhile, the strong Sn-O coordination from both the as-made and the reduced sample 

suggested the formation of tin oxide clusters, confirmed by the results obtained 

independently from STEM-EELS and XANES.  

Therefore, we concluded the coexistence of bi-phase throughout the reduced 

Pt37/Rh20/Sn43 catalyst expressed as Pt37Rh20-(SnO2)43: homogenous alloys core 

containing Pt and Rh, and SnO2 clusters segregated on the shell; while the as-made 

sample showed a tri-phase feature expressed as Pt37-Rh20-Ox-(SnO2)43: partially oxidized 

Pt and Rh core with segregated Pt and Rh phases, and SnO2 clusters on the shell.  Similar 

structural details can also be found in as-made and reduced Pt39/Rh12/Sn49 catalysts.   

Moreover, the degree of oxidation (value of x) for both Pt and Rh components in Pt37-

Rh20-Ox-(SnO2)43 catalysts can be estimated by the following equation: 

( )
1.2 2.2

37 20 57 21
7.4 1.7

Pt O Rh O

Pt Pt Rh Rh

N N
x

N N
− −

− −

+ +
=  + =  =

+ +
    4.1 

where NPt-O is the coordinating number of Pt-O from EXAFS fitting data, similarly to NRh-

O, NPt-Pt, and NRh-Rh. 

Therefore, the exact formula of partially oxidized catalysts can be expressed as Pt37-

Rh20-O21-(SnO2)43.  
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Figure 4.5 CVs of Pt/Rh/Sn catalysts and commercial Pt/C in (a) three-electrode half-cell and (b) 

four-electrode in situ cell. 

Table 4.3 Summary of the electrochemical properties of Pt/Rh/Sn catalysts 

Catalysts 

Half-cell Measurement CO2 measurement 

ECASA 

(m2/g 

PtRh)a 

j(mA/cm2)b j(μA/cm2)c 

ECASA 

(m2/g 

PtRh)d 

j(μA/cm2)e 
PCO2(mmHg/m2) 

at 0.35V 

jCO2(μA/cm2) 

at 0.35V 

Selectivity 

of CO2 at 

0.35V (%) 

Pt39Rh12-

(SnO2)49/C 
43±2.4 0.19±0.04 36±7.8 26±4.5 22±8.7 26±22 0.35 1.6 

Pt39Rh12O21-

(SnO2)49/C 
81±3.1 0.18±0.06 39±15 32±6.6 11±5.0 20±13 0.28 2.8 

Pt37Rh20-

(SnO2)43/C 
27±3.2 0.31±0.13 74±23 36±7.3 18±5.4 46±24 0.75 4.3 

Pt37Rh20O21-

(SnO2)43/C 
87±10 0.12±0.03 26±13 56±10 21±5.4 101±73 2.03 10.2 

Pt/C(ETEK) 97±8.5 0.10±0.01 6.9±3.6 61±7.6 3.8±0.08 30±5 0.83 17.9 

 

a. ECASA calculated by Hupd area in half-cell reactor; b. Data recorded from CV at 0.35 V vs. Ag/AgCl in 

half-cell reactor; c. data recorded at 1hr reaction of CA at 0.35 V vs. Ag/AgCl in half-cell reactor; d. ECASA 

calculated by Hupd area in CO2 measurement reactor; e. Data recorded from CV at 0.35 V vs. Ag/AgCl in 

CO2 measurement reactor. 
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Figure 4.5 shows CVs of Pt/Rh/Sn catalysts and commercial Pt/C in (a) the three-

electrode half-cell and (b) the four-electrode in situ cell, where the hydrogen 

electrochemical active surface areas of Pt37Rh20-(SnO2)43/C, Pt37Rh20O21-(SnO2)43/C, 

Pt39Rh12-(SnO2)49/C, Pt39Rh12O21-(SnO2)49/C, and Pt/C(ETEK) catalysts were tested (a) 

in 0.5 M of H2SO4 at the potential scan rate of 50 mV/s in the three-electrode half-cell and 

(b) at the potential scan rate of 20 mV/s in the four-electrode cell. The surface areas are 

summarized in Table 4.3. The discrepancy of ECASA values is mainly due the different 

loading of the catalysts. [211] In the four-electrode cell test, the catalyst loading density (~ 

0.89 mg/cm2) was much larger than the one (~ 0.1 mg/cm2) in the three-electrode system 

with the rotating disc electrode. 

 

 

Figure 4.6 Electrochemical measurements in the three-electrode half-cell: (a) CVs from 0 to 0.35 

V by the scan rate of 50 mV/s; (b) CAs of catalysts conducted at 0.35 V.  

Figure 4.6 a shows the CV analyses of various catalysts measured in 0.5 M H2SO4 

and 0.5 M ethanol electrolyte at a scan rate of 50 mV/s in the three electrode half cell. 

Reduced Pt37Rh20-(SnO2)43/C catalyst exhibited the superior current density, normalized 
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by its ECASAs. For Pt37Rh20Sn43 catalyst, the current densities at 0.35 V obtained from 

CVs measurement are shown in Table 4.3, following the order as: Pt37Rh20-(SnO2)43 > 

Pt37Rh20O21-(SnO2)43 > Pt. The same order was also observed from chronoamperometry 

(CA) as shown in Table 4.3 and Figure 4.6 b. These results indicated that Pt37Rh20-

(SnO2)43 with a metallic PtRh alloy core increased the overall charge-transfer kinetics of 

EOR. High current density observed from Pt37Rh20-(SnO2)43 catalysts could be attributed 

to the bi-functional effect (as Pt/Rh atoms provide active sites for dehydrogenation of 

ethanol, while Sn provide oxygenated species to oxidize the intermediates). Such 

synergistic interaction made Pt37Rh20-(SnO2)43 a better catalyst with fast kinetics for 

adsorption and dehydrogenation of the ethanol molecule.    

4.3 ELECTROKINETICS ANALYSES OF PtRhOX-SnO2 AND PtRh-SnO2  

CV measurement with a scan rate of 0.5 mV/s was conducted for the EOR using the 

four-electrode cell. The total amount of CO2 generation NCO2 was then calculated, as well 

as the generation rate of CO2. The current density resulting from the generation of CO2 

(
2COj ) is expressed as: 

2

2
6

CON

CO

d
j F

dt
=            4.2 

where F is Faraday constant, 6 represents the number of electron transfer upon forming 

one CO2 molecule. Finally, selectivity of CO2 generation is calculated by: 

2

2

2

CO

CO

Total CO

j
S

j j
=

−
         4.3 
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where jTotal is the total current, obtained from CV measurement, which represents the 

current resulting from the formation of all products.  

Many studies have been reported to study the CO2 generation in situ using Fourier 

transform infrared spectroscopy, differential electrochemical mass spectrometry or gas 

chromatography,[185, 212] from which the concentrations of CO2 as a function of potential 

were presented. However, to our best knowledge, the electro-kinetics details about CO2 

formation, such as CO2 generation rate and/or selectivity of CO2 generation have not 

been reported. Thanks to the high sensitivity (towards CO2 concentration of 0.2 μM) and 

short data acquisition time (five seconds) of the CO2 microelectrode, in this study we were 

able to provide the comprehensive electro-kinetic details of CO2 generation via C-C 

splitting, which has never been reported before. 

 

Figure 4.7 (a) Current density and (b) PCO2 in the four-electrode electrochemical cell. 

Figure 4.7 shows the current density and CO2 partial pressure of Pt/Rh/Sn catalysts 

by the scanning rate of 0.5 mV/s from 0 to 0.35 V in the four-electrode in situ cell. The 

electrochemical properties and kinetics analyses for all the catalysts are summarized in 

Table 4.3. Because the Pt37Rh20O21-(SnO2)43 catalyst shows the best CO2 generation, 
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Pt37Rh20O21-(SnO2)43 and its counterpart of Pt37Rh20-(SnO2)43 are the focus in the 

following analysis. Figure 4.9 shows the CO2 generation of carbon supported 

Pt37Rh20O21-(SnO2)43, Pt37Rh20-(SnO2)43 and Pt (ETEK) catalysts during CV 

measurements, including (a) partial pressure (PCO2), (b) current density resulting from 

CO2 generation (jCO2), (c) onset potential for CO2 generation, and (d) CO2 selectivity. 

 

Figure 4.8 Fitting curves of current density from CO2 generation over (a) Pt/C(ETEK), (b) 

Pt37Rh20O21-(SnO2)43/C, and (c) Pt37Rh20-(SnO2)43/C catalysts. 

Pt37Rh20O21-(SnO2)43 catalysts showed 2.2 and 3.3 times higher PCO2, as well as 2.5 

times higher CO2 generation rate than Pt37Rh20-(SnO2)43 and commercial Pt catalysts at 

0.35V as shown in Figure 4.9 b, respectively. Also, onset potential of CO2 generation for 

Pt37Rh20O21-(SnO2)43, calculated through fitting Figure 4.8, was about 37 and 61 mV 

lower than that of Pt37Rh20-(SnO2)43 and commercial Pt as shown in Figure 4.9 c. Figure 

4.9 d shows that Pt37Rh20O21-(SnO2)43 displayed higher CO2 selectivity than Pt37Rh20-

(SnO2)43 from 0.2 to 0.35 V, demonstrating 2.8 times higher CO2 selectivity at 0.35 V. 

These results showed that CO2 generation via C-C bond splitting of ethanol was 

enhanced on tri-phase Pt37Rh20O21-(SnO2)43 with a partially oxidized Pt and Rh core. We 

note that though Pt37Rh20O21-(SnO2)43 displayed a superior CO2 generation rate, 
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commercial Pt has the highest CO2 selectivity, largely due to the low overall current 

density ( Totalj ). 

 

Figure 4.9 Electrokinetics analyses of carbon supported Pt37Rh20O21-(SnO2)43, Pt37Rh20-(SnO2)43 

and Pt (ETEK). 

4.4 STABILITY TESTS OF Pt37Rh20O21-(SnO2)43 

To evaluate the stability of the core-shell structure during EOR. The catalyst was tested 

at 0.35 V for an hour in the three-electrode half cell. The TEM image showed that 

Pt37Rh20O21-(SnO2)43 catalysts after one-hour CA measurement had very similar sizes 

and distribution compared with fresh catalysts without discernible particles dissolution or 

agglomeration, and the STEM-EELS line scan demonstrated a similar core-shell structure 

with a Pt-Rh-rich core and a SnO2-rich shell in Figure 4.10.  Moreover, Pt37Rh20O21-

(SnO2)43 only showed a 14% loss of ECASA after one-hour CA measurement, much lower 
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than that of commercial Pt/C (20% loss) as shown in Figure 4.11. All these results pointed 

to the fact that Pt37Rh20O21-(SnO2)43 catalysts have a superior chemical stability even 

compared with commercial Pt catalysts.  

 

Figure 4.10 (a) TEM images of the spent-Pt37Rh20O21-(SnO2)43/C after one hour CA measurement.  

(b, c) EELS line scan across the spent-Pt37Rh20O21-(SnO2)43 particle as indicated by the arrow. 

 

Figure 4.11 Comparison of ECASAs between the fresh and spent samples after one hour CA 

measurements. (a) Pt37Rh20O21-(SnO2)43/C and (b) Pt(ETEK).  

4.5 DISCUSSION AND CONCLUSION  

In addition to the discovery of unexpected promotional effect of partially oxidized Pt 

and Rh core on the CO2 generation, we also found that the chemical composition of Pt 
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and Rh also played a role in the electro-kinetics of CO2 generation. Pt/Rh/Sn materials 

with different Pt and Rh composition were synthesized, indexed as Pt39/Rh12/Sn49. Our 

electrochemical data showed the similar results: in term of CO2 generation Pt39/Rh12/Sn49 

underperform Pt37/Rh20/Sn43 summarized in Table 4.3, but tri-phase Pt39Rh12O21-

(SnO2)49 with a partially oxidized Pt and Rh core indeed outperform bi-phase Pt39Rh12-

(SnO2)49 with a PtRh alloy core. The former suggests a Pt to Rh ratio of nearly 2:1 was 

the optimal composition for the CO2 generation, and the latter confirms that a partially 

oxidized Pt and Rh core has a better CO2 generation kinetics than Pt-Rh alloy core.  

Although our results demonstrated that oxidation states of Pt and Rh, and chemical 

compositions of Pt/Rh/Sn play important roles in the activity and selectivity of EOR, 

however, other factors which are not covered in this study may also be critical. For 

example, single crystal noble metal nanoparticles with high-index facets have 

demonstrated a high activity (charge-transfer rate) towards EOR.[41, 42] However, the role 

of high-index facets of noble metal catalysts on the C-C bond-breaking of ethanol has 

been rarely reported, and therefore deserves further studies in the future.  

In this study, we synthesized two types of carbon supported Pt/Rh-SnO2 core-shell 

nanoparticles: one was tri-phase PtRhOx-SnO2 with a partially oxidized Pt and Rh core 

(segregated Pt and Rh phases) and a SnO2 shell, and the other was bi-phase PtRh-SnO2 

with a PtRh alloy core and a SnO2 shell. Using our newly designed four-electrode 

electrochemical cell equipped with a CO2 microelectrode, we comprehensively studied 

the electro-kinetics of the CO2 generation, including CO2 generation rate and CO2 

selectivity, on both types of catalysts. Our studies showed that, for the first time, while the 
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PtRh-SnO2 with a PtRh alloy core was still active, the formation of a partially oxide Pt and 

Rh core coincides with a 2.5-fold increase in the CO2 generation rate towards EOR. 

The exact mechanism of the promotional effect of the partially oxidized Pt and Rh core 

found in Pt37Rh20O21-(SnO2)43 on the CO2 generation kinetics via C-C splitting is still under 

investigation. However, it is clear that the ensemble effect, associated with particular 

arrangements of the Pt, Rh and O constituents, have played an important role towards 

the C-C splitting of ethanol. In lieu of ethanol dissociation, co-existing metallic and 

oxidized Pt and Rh might show special advantage towards C-C splitting. According to 

DFT calculations conducted on the process of 
2 2

1

2
CO O CO+ →  , the reaction barrier of 

CO2 formation is significantly lower if O atoms from the edge of the surface oxide are 

involved in the CO oxidation, compared with the reaction only involved with chemisorbed 

O atoms.[209] Thus, co-existence of metallic and oxidized Pt and Rh on the surface is 

expected to facilitate the CO2 formation, whereas metallic phase provides large and 

available site for dissociative adsorption of ethanol via C-C splitting and oxidized Pt and 

Rh phases provide mobile O atoms for the oxidation of reaction intermediates such as 

CO and CHx. Our findings of the partially oxidized core-shell catalysts, Pt37Rh20O21-

(SnO2)43, are of major importance for understanding complete electro-oxidation of ethanol 

on a fundamental level, and will help the design of a new genre of electro-catalysts that 

have a partially oxidized noble metal core for various reactions. 
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CHAPTER 5                                                                     

POTENTIODYNAMICS STUDY OF CO2 GENERATION DURING 

EOR: *OH ADSORBATES EFFECT 

5.1 INTRODUCTION 

Carbon-supported Pt is one of the most studied catalysts for EOR but is limited by the 

slow kinetics for generating CO2 via breaking the C-C bond of C2 species, producing more 

acetic acid and acetaldehyde.[33, 44, 175, 176]  Moreover, small amounts of CHx and CO could 

poison Pt and impede the subsequent reactions.[177-179]  The formation of binary or ternary 

Pt-based catalysts has been reported,[138, 180, 181] among which ternary Pt/Rh/Sn was the 

best for CO2 generation.[78, 119, 120, 160, 182] In such a ternary system, Pt strongly 

dehydrogenates the ethanol molecules and the resulting reaction intermediates, Rh 

facilitates C-C bond splitting via promoting β-hydrogenation of ethanol, and oxophilic Sn 

promotes the dissociative adsorption of water to form adsorbed OH (*OH) on catalyst 

surfaces to assist the oxidization of the reaction intermediates.  

Two steps of C-C bond splitting and *CO removal by *OH oxidant resulting from water 

dissociation are generally accepted as crucial steps for EOR. [134, 179, 182, 183] Clearly 

characterizing the atomic structure of the catalysts and accurately detecting CO2 

generation will be helpful to understand the contributions of the reaction steps mentioned 

above. Regardless of the many studies reported previously, the underlying reason behind 

the low CO2 selectivity during the EOR is still missing.  
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Hence, in this chapter, we combine the uniquely advantageous motif of a CO2 

microelectrode with the well-characterized, electrocatalytic advantages of ultrafine Pt-

SnO2 and PtRh-SnO2 core-shell nanoparticles with sizes ranging from 2 to 3 nm, in order 

to study the activity and selectivity of the EOR, and thus understand the underlying 

mechanism of CO2 generation via C-C bond-breaking. Specifically, the use of ultrafine 

Pt-SnO2 and PtRh-SnO2 core-shell nanoparticles (2 to 3 nm) not only maximizes the 

surface-to-volume ratio of the catalyst, but also provides a rational comparison with 

commercial carbon supported Pt (ETEK) which has the same size range. Moreover, noble 

metals show a distinctive surface strain when their diameter is decreased below a critical 

value of a few nanometers, which often results in a shift of the electronic band structure 

of noble metals and changes the interaction between reaction intermediates, and 

therefore could augment the inherent catalytic activity.[213-215] In this study, we have 

reported the synthesis and the characterization of Pt/Rh/SnO2 and Pt/SnO2 core-shell 

nanoparticles with sizes of 2.1±0.5 nm and 2.5±0.6 nm, compared with commercial Pt 

(ETEK) of 2.7±0.6 nm, using transmission electron microscopy (TEM), scanning 

transmission electron microscope-electron energy loss spectroscopy (STEM-EELS), X-

ray absorption near edge structure (XANES), energy dispersive spectroscopy (EDS) and 

X-ray diffraction (XRD). The electrochemical activity towards EOR, especially CO2 

generation, was tested on these catalysts, along with commercial Pt. A four-electrode 

half-cell is used to detect in situ CO2 generation during the EOR using linear sweep 

voltammetry (LSV) measurements, through which the CO2 partial pressure, CO2 

generation rate and selectivity have been obtained to reveal the potentio-kinetic behaviors 

of these catalysts. Therefore, insight into the influence of *OH adsorbates on the CO2 
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generation rate and selectivity has been obtained. Density functional theory (DFT) was 

used to model surface reactions and species over relevant catalyst surfaces.  

5.2 STRUCTURAL CHARACTERIZATIONS OF CORE-SHELL 

PARTICLES  

 

Figure 5.1 TEM images of (a) Pt/Rh/Sn, (b) Pt/Sn, (c) Pt/C(ETEK) nanoparticles.  

Figure 5.1 shows TEM images of carbon-supported Pt/Rh/Sn, Pt/Sn, and commercial 

Pt (ETEK), showing evenly dispersed nanoparticles on active carbon. On the basis of 200 

particles counted from TEM images, the average particle sizes of Pt/Rh/Sn, Pt/Sn and Pt 

(ETEK) are 2.1±0.5 nm, 2.5 ±0.6 nm, and 2.7±0.6 nm, respectively. Figure 5.2 shows the 

EELS line scans of Pt and Sn from a typical Pt/Rh/Sn and Pt/Sn particle, acquired from 

an aberration-corrected STEM. In Figure 5.2 b and d, the Sn element showed stronger 

signals at the particle edge than those at the center. In contrast, the Pt element showed 

a “volcano-like” distribution across the particle. These results indicate a core-shell 

structure with Pt-rich-core and Sn-rich-shell. Unfortunately, the ionization energy of the 

Rh M4/5 edge is in the range of from 307 to 312 eV of energy loss, which overlaps with 
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the signal (from 280 to 340 eV) of the carbon K edge. Therefore, EELS could not detect 

the Rh distribution within the Pt/Rh/Sn nanoparticle. 

 

Figure 5.2 EELS line scan across (b) Pt/Rh/Sn and (d) Pt/Sn particles as indicated by the arrows 

in (a) and (c), respectively. 
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Figure 5.3 XANES data of (a) Pt L3-edge (c) Rh K-edge. (e) Sn K-edge. R-space of (b) Pt L3-

edge (d) Rh K-edge. (f) Sn K-edge. 

XANES measurements were used to investigate the electronic states of the Pt, Rh and 

Sn in catalysts. Figure 5.3 shows the K-edges of Sn and Rh, and L3-edge of Pt of 
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commercial Pt/C, and home-made Pt/Rh/Sn and Pt/Sn catalysts, together with the 

standard materials including Sn, Pt and Rh metal foils, and SnO2, PtO2 and Rh2O3 oxide 

powders. The Sn K-edge features of Pt/Rh/Sn and Pt/Sn as shown in Figure 5.3 e was 

very different from those of metallic Sn foil, but similar to those of SnO2 standard. It 

therefore strongly suggested that Sn was predominantly oxidized in Pt/Rh/Sn and Pt/Sn 

catalysts, denoted as Pt/SnO2 and Pt/Rh/SnO2, respectively. Figure 5.3 a shows that Pt 

L3-edge features (e.g. white line and oscillation of absorption features at higher energy) 

of Pt, Pt/Rh/Sn and Pt/Sn were very different from, PtO2, the oxide standard, but similar 

to Pt foil, suggesting that Pt was predominantly metallic in Pt, Pt/Rh/Sn and Pt/Sn 

catalysts. Moreover, Pt/Rh/Sn and Pt/Sn showed slightly shifted white lines toward higher 

energy positions, mainly attributed to the interaction between the Pt and O atoms of 

adjacent SnO2 clusters on the shell. On the other hand, in Figure 5.3 c the Rh K-edge of 

Pt/Rh/Sn showed mixed features resembling the Rh foil and Rh2O3, indicating that a 

mixture of metallic and oxidized Rh existed.  

 

Figure 5.4 XRD patterns of carbon supported Pt/Rh/SnO2, Pt/SnO2, and Pt (ETEK).  
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Figure 5.4 shows the XRD patterns of Pt/Rh/SnO2, Pt/SnO2, and commercial Pt 

(ETEK). The diffraction peaks of Pt/C at 39.5o, 45.9o, 67.2o, 81.8o and 86.0o were 

assigned to the (111), (200), (220), (311) and (222) planes, respectively, corresponding 

to a face centered cubic (FCC) structure. Pt/Rh/SnO2 and Pt/SnO2 had nearly identical 

diffraction peaks compared with commercial Pt, suggesting that they kept a cubic 

structure. The averages sizes were calculated to be 2.6, 2.7 and 2.2 nm for Pt/Rh/SnO2, 

Pt/SnO2, and Pt by the Scherrer equation, agreeing well with the values obtained from 

TEM images. No discernable peak shift between Pt/Rh/SnO2, Pt/SnO2 and Pt were 

observed. It is possible that the Pt alloyed with the Rh in the Pt/Rh/SnO2 catalyst. 

However, due to the similar lattice constants of the Pt (0.392 nm) and the Rh (0.380 nm) 

and the peak broadening from the finite size effect, the peaks shift in the diffractograms 

may not be observed even if there was a formation of a PtRh alloy in the Pt/Rh/SnO2 

catalyst. On the other hand, it is also possible that the Pt and Rh were in separated 

phases (segregated Pt metal and Rh metal within 2.1 nm for the Pt/Rh/SnO2 catalyst). 

Due to the similar reasons (similar lattice constants and finite size effect), the diffraction 

peaks from the Pt and the Rh components were overlapped and indiscernible. Diffraction 

peaks from SnO2, PtO2 or Rh2O3 were not observed in either Pt/Rh/SnO2 or Pt/SnO2 

catalysts, though XANES and STEM-EELS strongly suggested that Sn existed primarily 

as a SnO2 phase on the shell region, as well as the coexistence of metallic and oxidized 

Pt and Rh components. It is possible that SnO2, PtO2 or Rh2O3 components were very 

small crystalline clusters or highly disordered materials, so that they couldn’t be detected 

by XRD due to the lack of long-range order. 
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5.3 ELECTROKINECTICS ANALYSES   

 

Figure 5.5 (a) LSV and CO2 generation curves of 2 mg activated carbon with respect to potential 

at the scan rate of 0.5 mV/s in 0.5 M H2SO4 electrolyte. (b) LSV curves on 2 mg carbon supported 

Pt in 0.5 M ethanol/ 0.5 M H2SO4 electrolyte and 2 mg activated carbon in 0.5 M H2SO4 electrolyte. 

Electrochemical activities of Pt/Rh/SnO2, Pt/SnO2 and Pt(ETEK) toward EOR were 

evaluated in an electrochemical cell equipped with a CO2 microelectrode for in situ CO2 

detection. To confirm that the electrical current and CO2 signal obtained during the 

electrochemical oxidation of ethanol were primarily from the catalyst materials instead of 

the platinum foil substrate, the blank experiment was conducted using platinum foil 

without active material as shown in Figure 5.5. The comparison between blank platinum 

foil and platinum foil fully covered with Pt/C catalyst shows that the former only contributed 

~3% to surface area, ~1.5% to overall current and ~2% to CO2 signal when the Pt foil was 

completely exposed to the electrolyte. Considering the complete surface of the Pt foil was 

nearly covered by the carbon supported catalysts, the contribution of Pt foils toward the 

current and CO2 signal is expected to be far below 1.5 %. 
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Figure 5.6  (a) CV scans in the 0.5 M of H2SO4 electrolyte at the potential scan rate of 20 mV/s 

and (b) CV forward scans in the 0.5 M H2SO4/ 0.5 M ethanol solution at the potential scan rate of 

0.5 mV/s over carbon supported Pt/Rh/SnO2, Pt/SnO2 and Pt (ETEK).  

The CVs were first conducted in 0.5 M H2SO4 electrolyte (Figure 5.6), from which the 

electrochemically active surface area (ECASAs) of the Pt/Rh/SnO2, Pt/SnO2 and 

Pt(ETEK) catalysts were calculated to be 56, 39 and 61 m2/g, respectively. Figure 5.6 b 

shows the current densities of the EOR, averaged by ECASAs, as a function of external 

potential obtained from the LSV measurements at a scan rate of 0.5 mV/s in 0.5 M H2SO4 

and 0.5 M ethanol. Pt/SnO2 exhibited the highest current density throughout a potential 

window from 0.1 to 1.1 V (vs. Ag/AgCl). At 0.65 V, Pt/SnO2 showed a current density 

around 3.4 and 1.6 times higher than those of Pt/Rh/SnO2 and Pt. The results showed 

that the addition of SnO2 to Pt increased the overall charge transfer rate of EOR, mainly 

due to the bifunctional effect in which the *OH was formed from water dissociation on 

SnO2 and further reacted with the intermediates resulting from the α-dehydrogenation of 

ethanol. On the other hand, addition of Rh to Pt/SnO2 resulted in a decreased charge 

transfer rate of the EOR. It has been generally accepted that the main products of the 

EOR are acetaldehyde and acetic acid, resulting from the α-dehydrogenation of 

ethanol.[176] Therefore, the α-dehydrogenation process, through the incomplete oxidation 
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of ethanol, in fact mainly contributed to the overall current density (charge transfer rate) 

of EOR. However, α-dehydrogenation was less favored on Rh sites, demonstrating that 

lower current density was observed on the Rh-containing catalyst of Pt/Rh/SnO2 

compared with Pt/SnO2. It is also possible that in Pt/Rh/SnO2 catalysts, the Rh component 

facilitates the C-C bond splitting favoring the formation C1 fragments such as CO and CHx, 

which poison the active Pt sites and account for the low current density observed.   

 

Figure 5.7 (a) Partial pressure of CO2 (PCO2), (b) current density from CO2 generation (jCO2), and 

(c) onset potential of CO2 generation (enlarged from b) and (d) selectivity of CO2 (SCO2) with 

respect to potential at potential scan rate of 0.5 mV/s. 

Figure 5.7 a shows the partial pressure of CO2 (PCO2) resulting from the generation of 

CO2 during the EOR over Pt/SnO2, Pt/Rh/SnO2 and Pt using our four-electrode 

electrochemical cell. In previous EOR studies, in situ CO2 measurements conducted 
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using FTIR and DEMS,[77, 86, 177, 178, 198] the CO2 partial pressure (and/or concentration) 

was usually plotted as a function of reaction time or external potential. However, to better 

describe the electro-kinetics of EOR (e.g, CO2 generation rate and selectivity), the time-

resolved CO2 production, namely accumulation rate, as a function of external potential is 

needed. In this study, the PCO2 measured in situ was used to calculate the total molar 

amount of generated CO2 (NCO2), and the CO2 generation rate could be obtained by taking 

a derivative of CO2 generation with respect to time. 

Our results show that both PCO2 and jCO2 were strongly dependent on the external 

potential. At potentials ranging from 0.2 to 0.46 V, the PCO2 and jCO2 followed the order: 

Pt/Rh/SnO2 > Pt/SnO2 > Pt, indicating promotional effects of Rh and SnO2 on CO2 

generation at low potentials. Figure 5.7 c shows the onset potential of CO2 generation 

follows the order of Pt/Rh/SnO2 (0.226 V) < Pt/SnO2 (0.237 V) < Pt (0.290 V). However, 

when the potential increased to the range from 0.46 to 0.56 V, PCO2 and jCO2 of Pt 

increased more considerably than Pt/SnO2 and Pt/Rh/SnO2, showing an order of Pt > 

Pt/Rh/SnO2 > Pt/SnO2; when the potential continued to increase beyond 0.56 V, PCO2 and 

jCO2 of Pt and Pt/Rh/SnO2 decreased sharply, while Pt/SnO2 showed continuously 

increasing PCO2 and jCO2. At 1.1 V, the PCO2 of Pt/SnO2 was about 4.3 and 4.5 times higher 

than those of Pt and Pt/Rh/SnO2, and the jCO2 of Pt/SnO2 was about 9.0 and 19.7 times 

higher than those of Pt and Pt/Rh/SnO2. The distinct potential dependent PCO2 and jCO2 

strongly indicated that the C-C bond splitting mechanism depends on potential range and 

chemical compositions. Our CO2 generation results obtained from the CO2 

microelectrode are consistent with the reported results using in situ DEMS. For example, 

Behm’s group observed discernable CO2 generation over Pt3Sn/C up to 0.64 V(vs. 
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Ag/AgCl) [178].  Delpeuch et al reported that Pt-SnO2/C showed a decreased CO2 signal 

when potential increased from 0.55 to 0.75 V, followed by an increase of CO2 as potential 

further increased from 0.75 to 1.0 V(vs. Ag/AgCl), which is consistent with what we 

observed in the current study on Pt/SnO2 [78]. It is also worth mentioning that although the 

amount of CO2 generation at the low potential range (0.1 - 0.7 V) is strongly depended 

on the chemical compositions, following the trend as Pt > Pt/Rh/SnO2 > Pt/SnO2 (Figure 

5.7 b), all three catalysts showed the first peaks of C-C scission at similar potential values 

(~ 0.5 V), independent on the chemical compositions.  Similar results have been reported 

recently by Pastor and Garcia et al in Pt/Sn systems, where FTIR and DEMS analyses 

showed C-C scission all happened at similar potential values independent of Sn loading 

[216].  

Figure 5.7 d shows CO2 selectivity (SCO2). A similar potential-dependent CO2 

selectivity was observed. From 0.2 to 0.56 V, SCO2 followed the order Pt > Pt/Rh/SnO2 > 

Pt/SnO2, while in the potential window from 0.56 to 1.1 V, SCO2 followed the order Pt/SnO2 > 

Pt/Rh/SnO2 ≈ Pt. Commercial Pt showed the highest SCO2 value of 51% at 0.47 V, 

corresponding to a CCE value of 34% based on the formula: 

2

2
1

CO

CO

S
CCE

S
=

+
         5.1 

It should be noted that a CCE value of 34% observed from commercial Pt in this study 

is slightly higher than those reported from DEMS measurements from which CCE values 

ranged from 12% to 26% [133, 217]. The difference between the DEMS results reported 

elsewhere and our own results is not just attributed to the experimental conditions such 

as ethanol concentration and catalysts loading [184, 218].  
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5.4  DFT CALCULATIONS 

 

Figure 5.8 Configuration of each model for the DFT calculations: (a) 1st PtRh-SnO2 model, (b) 2nd 

PtRh-SnO2 model, (c) 3rd PtRh-SnO2 model, (d) Pt-SnO2 model, and (e) Pt(111). 

DFT calculations were conducted on the surfaces of Pt, Pt-SnO2 and PtRh-SnO2 to 

understand how the Rh and SnO2 affected the C-C bond splitting of ethanol. We modeled 

the step of C-C bond splitting from three possible C2 intermediates (*CH3CO, *CH2CO, 

and *CHCO) as shown in the following pathways: 

3 3* *CH CO CH CO → +         5.2 

2 2* *CH CO CH CO → +         5.3 

* *CHCO CH CO → +         5.4 
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In this study, three different PtRh-SnO2 models were considered, in comparison to a 

Pt-SnO2 model. The top and side views of each model are shown in Figure 5.8. The Pt 

atoms are light grey, oxygen atoms are red, Sn atoms are dark grey, and Rh atoms are 

blue-green. In the 1st PtRh-SnO2 model, the Rh atoms are distributed through the PtRh 

alloy; in the 2nd model, the Rh atoms are located on a (111) facet of Pt; in the 3rd model, 

the Rh atoms are concentrated away from the SnO2 surface. Table 5.1 shows the 

calculated reaction energies for C-C bond splitting, from which activation energies were 

estimated in accordance with the Brønsted-Evans-Polanyi relation. More details of the 

calculations over each surface are shown in Appendix. Taking the precursor *CHCO as 

an example, we calculated the reaction energies over Pt-SnO2, PtRh-SnO2 (1st model), 

PtRh-SnO2 (2nd model), and PtRh-SnO2 (3rd model) surfaces to be -1.07, -1.36, -1.62 

and -1.34 eV, respectively. All of the Rh-containing models had lower reaction energies 

than Pt-SnO2, demonstrating that Rh facilitates C-C bond splitting as shown in Figure 5.9 

and Table 5.1. These calculations agreed well with our experimental data especially 

obtained at lower potentials.  

 

Figure 5.9 Structures of three different PtRh-SnO2 models ((a) 1st model, (b) 2nd model, and (c) 

3rd model), (d) Pt-SnO2 model and (e) Pt(111)model. Reaction energies for C-C bond splitting of 

(f) *CH3CO, (g) *CH2CO, and (h) *CHCO over the Pt(111), Pt-SnO2, and PtRh-SnO2 surfaces.   



CHAPTER 5 POTENTIODYNAMICS STUDY OF CO2 GENERATION DURING EOR: *OH ADSORBATES EFFECT 

89 

Table 5.1 Calculated reaction energies (eV) for C-C bond splitting over various catalyst surfaces 

( * *x xCH CO CH CO → + ). 

Catalyst 

Reaction Energy (eV)a 

*CHCO *CH2CO *CH3CO 

Pt(111) -1.08 -0.5 -0.63 

Pt-SnO2 -1.07 -0.58 -0.45 

PtRh-SnO2(1
st model) -1.36 -1.51 -1.08 

PtRh-SnO2(2
nd model) -1.62 -1.77 -1.57 

PtRh-SnO2(3
rd model) -1.34 -1.33 -0.94 

 

a  Reaction energy=the adsorption energy of CO on a catalyst + the adsorption energy of CHx on 

a catalyst – the adsorption energy of CHxCO on a catalyst. It can reflect the activation energy of 

C-C bond splitting.  

Other promotional effects of Rh on C-C bond splitting could be due to the fact that Rh 

had strong ability to promote β-dehydrogenation of *CH3CHO, a reaction intermediate 

after dehydrogenation of the α-carbon and hydroxyl group of an ethanol molecule, to form 

*CH2CHO that was the preferable precursor of C-C bond splitting.[20, 86, 134] On the other 

hand, SnO2 had a strong interaction with water and formed *OH via dissociative 

adsorption of water at a lower potential. The resulting *OH species would oxidize adjacent 

*CO or *CHx occupied on Pt and/or Rh sites to CO2 as reactions 2xCH OH CO + →  and 

2CO OH CO + → , evidenced by the fact that CO2 was detected at lower potentials on 

Pt/Rh/SnO2 and Pt/SnO2 instead of Pt. 

A comparative set of DFT calculations for H2O and *OH adsorbates formation on the 

surfaces of Pt, SnO2, Pt-SnO2 and PtRh-SnO2 were conducted. The adsorption energies 

of H2O and *OH adsorbates on various surfaces are summarized in Table 5.2. The results 
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show that, firstly, the formation of *OH adsorbates is considerably more exothermic than 

that of H2O on all the studied surfaces, indicating *OH more stable than H2O on the 

catalysts. The *OH adsorption energies follow the order: Pt (-2.2 eV) > PtRh-SnO2(1st 

model: -2.81 eV, 2nd model: -2.64 eV, and 3rd model: -2.95 eV) > Pt-SnO2( -3.23 eV). It 

is important to point out that the DFT calculations describe the reaction mechanism under 

equilibrium state, corresponding more closely to the catalyst-OH interaction at low 

potentials.  

Table 5.2 Calculated adsorption energies (eV) for water and *OH adsorption over various catalyst 

surfaces  

Catalyst Adsorbate 
Adsorption 

energy (eV)a 

Pt(111) 
*H2O -0.34 

*OH -2.2 

SnO2 
*H2O -1.26 

*OH -1.53 

Pt-SnO2 
*H2O -0.94 

*OH -3.23 

PtRh-SnO2(1st model) 
*H2O -0.92 

*OH -2.81 

PtRh-SnO2(2nd model) 
*H2O -0.83 

*OH -2.64 

PtRh-SnO2(3rd model) 
*H2O -1.06 

*OH -2.95 

 

a.Adsorption energy= the energy for the free species (H2O or OH) + the energy for the surface of 

the catalyst – the total energy of the adsorption system (H2O-catalyst or OH-catalyst) 
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5.5 THE INFLUENCE OF *OH ADSORBATES  

 

Figure 5.10 *OH formation and effect on the ECASA over Pt/Rh/SnO2, Pt/SnO2, and Pt/C. 

The promotional effect of Rh and SnO2 on the generation of CO2 at lower potentials 

was observed experimentally and was confirmed by DFT calculations. However, the 

superior electro-kinetics of Pt/SnO2 at higher potentials ranging from 0.46 to 1.1 V, such 

as CO2 partial pressure (PCO2), generation rate (jCO2) and selectivity (SCO2) compared with 
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Pt and Pt/Rh/SnO2, has not been reported before. To understand this unexpectedly high 

electro-kinetics of Pt/SnO2 at higher potentials (0.46 to 1.1 V), we conducted a well-

designed series of experiments to show that the *OH adsorbates played an important role 

in determining the CO2 generation as shown in Figure 5.10. The first row describes the 

sequence of the experimental procedure. Only one cycle of CV was conducted from -0.22 

to 0.28 V in 0.5 M H2SO4 electrolyte at potential scan rate of 50 mV/s, and then CA at 1 

V was conducted for 0.5 hour. After that, 3 cycles of CV were conducted; CVs, CA and 

ECASAs over (2nd row) Pt/Rh/SnO2 and (3rd row) Pt/SnO2 are shown by the sequence 

of the procedure. The shadowed area was used to calculate the ECASA. 

Our data showed that Pt/Rh/SnO2 had an initial ECASA of 94.9 m2/g after the 1st CV 

(black). After formation of *OH adsorbates at 1.0 V, the ECASA calculated from the 2nd 

CV (red curve) was 68.5 m2/g, corresponding to a 27.8% loss of ECASA compared with 

the value calculated from the first cycle of CV, indicating that the *OH coverage on the 

surface blocked considerable number of active sites. The values of ECASA from 

consecutive 3rd and 4th CVs increased to 94.0/91.6 m2/g, very close to the initial ECASA 

value obtained from the first cycle of CV experiment (94.9 m2/g). The recovered ECASA 

strongly suggested that the observed 27.8% loss of ECASA after CA measurements was 

indeed due to the coverage of *OH adsorbates instead of irreversible reconstruction of 

the surface. On the other hand, Pt/SnO2 showed only a 7.0 % (from 49.9 to 46.4 m2/g) 

loss of its initial ECASAs and Pt did not show any loss of ECASAs, after formation of *OH 

adsorbates from CA measurements. The results suggested that the Rh component had 

a much stronger susceptibility toward *OH coverage or poisoning compared to Pt or SnO2, 

evident by the weak *OH tolerance found in Pt/Rh/SnO2. To further confirm our results, 
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we also studied *OH coverage on commercial Rh/C using the same procedure as shown 

in Figure 2.5. The data showed that Rh had an almost 63.3% loss of initial ECASA after 

CA measurement at 1.0 V. It is worth mentioning that the values of ECASA of all three 

catalysts obtained from the three-electrode half-cell measurements are higher than the 

ones obtained from the four-electrode electrochemical cell reported previously.  

5.6 DURABILITY TESTS OF Pt, Pt/SnO2 AND Pt/Rh/SnO2  

 

Figure 5.11 CVs of carbon supported (a) Pt(ETEK), (b) Pt/SnO2 and (c) Pt/Rh/SnO2 catalysts in 

0.5 M H2SO4 solution at the scan rate of 50 mV/s from -0.2 to 1.1 V for 30 cycles. (d) Relative 

ECASAs at different cycles of each catalyst during cycling.  

The durability of Pt-based catalysts is one of the main challenges to be overcome for 

the large-scale deployment of proton exchange membrane fuel cell technologies. 
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Particularly, recent work using inductively coupled plasma mass spectrometry (ICP–MS) 

and in situ Raman studies have unambiguously showed that Pt dissolution in an acidic 

environment happens either upon the formation of a transient oxide in an anodic process 

or via the reduction of the Pt oxide during a cathodic process [219, 220].  Here we have 

studied the durability of the Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts in an acidic 

environment during the high potential CV cycling and during the EOR processes.  

Figure 5.11 shows the CVs of carbon supported Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts 

in a 0.5 M H2SO4 solution, cycling between -0.2 and 1.1 V for 30 cycles. It is clearly seen 

that all the catalysts show continuously decreasing peak intensities, including the 

hydrogen oxidation peak (from -0.2 to 0.1 V) and Pt oxidation peak (from 0.7 to 1.1 V) in 

the anodic scans as well as Pt reduction peaks (from 0.7 to 0.2 V) and a hydrogen 

absorption peak (from 0.3 to -0.2 V) in the cathodic scans. Intensity loss indicates that 

during the cycling in the acid electrolyte Pt and/or Rh dissolution and surface 

reconstruction happened for all three catalysts. Particularly, Pt/Rh/SnO2 catalysts showed 

not only the biggest loss in current density, but also the most distinct changes of CV 

features in the Pt region (from 0.7 to 0.2 V) in the cathodic scans. As shown in Figure 

5.11 c, during the cathodic sweeps the peaks of the Pt reduction shifted from 0.36 to 0.54 

V and finally reached a steady–state Pt–like CVs, indicating significant dissolution and/or 

poisoning of Rh via its strong interaction with *OH. On the other hand, Pt/SnO2 showed 

the least changes of CV features during the cycling. Figure 5.11 d summarizes the 

ECASAs of all three catalysts calculated from the hydrogen absorption range from -0.2 to 

0.3 V during 30 cycles of sweeps between -0.2 and 1.1 V. All three catalysts showed very 

similar losses in ECASA within 5 cycles. Upon more cycling, Pt/SnO2 showed the smallest 
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ECASA loss and retained 61.4% of with its original value after 30 cycles of CVs, while 

Pt/Rh/SnO2 showed the largest ECASA loss and retained only 47.7% of its original value 

after cycling. This indicates (i) SnO2 shell can prevent Pt from dissolution during the high 

potential cycling, and (ii) compared with Pt, the Rh components is more vulnerable to be 

poisoned and/or leached through interacting with the *OH species during the high 

potential sweeping. These results are congruent with the conclusion on influence of *OH 

adsorbates on the CO2 generation shown in Figure 5.7, that the SnO2 component 

protected the Pt from interacting with the *OH species and the Rh component was more 

easily dissolved during the high potential sweeping than Pt. 

Figure 5.12 shows the durabilities of Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts during the 

EOR in a 0.5 M ethanol and 0.5 M H2SO4 solution via one-hour CA measurements at 

constant potentials of 0.5 and 1.0 V, respectively. Figure 5.12  a and b show that current 

densities of the EOR drop continuously with time, which could be due to the poisoning of 

surface active sites. At a potential of 0.5 V, EOR current densities followed the order of 

Pt/SnO2 > Pt ≈ Pt/Rh/SnO2 after one-hour CA, while at 1.0 V the current densities followed 

the order of Pt/SnO2 ≈ Pt > Pt/Rh/SnO2. The long-term durabilities of all three catalysts 

from CA measurements largely followed similar trends as the CV results demonstrated in 

Figure 5.6 b, where Pt/SnO2 showed the highest EOR activities at various potentials and 

the Pt/Rh/SnO2 showed the lowest activities. Figure 5.12 c and d show the values of PCO2 

during one-hour CA measurements of Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts at 0.5 V and 

1.0 V, respectively. Slightly different from current density profiles shown in Figure 5.12 a 

and b, the values of PCO2 increased rapidly within the first 5 minutes of the reaction and 

then decreased rather slowly till reaching quasi-steady states after 30 minutes of reaction. 
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Moreover, our results showed that Pt catalysts had the highest CO2 generation ability at 

the low potential (0.5 V), while Pt/SnO2 showed the highest CO2 generation at the high 

potential (1.0 V). This result again supported our hypothesis that at low potentials the CO2 

generation could be limited by the supply of *OH from water dissociation, while at high 

potentials Rh strongly interacted with water and could resulted in the dissolution and/or 

poisoning of the Rh site. Thus, Pt/SnO2 appeared to the best catalysts since the SnO2 

shell mitigated the *OH poisoning and/or leaching. 

 

Figure 5.12 (a) CA and (c) CO2 generation curves at 0.5 V for an hour of carbon supported 

Pt(ETEK), Pt/SnO2 and Pt/Rh/SnO2 catalysts. (b) CA and (d) CO2 generation curves at 1.0 V for 

an hour of carbon supported Pt(ETEK), Pt/SnO2 and Pt/Rh/SnO2 catalysts. 

It is important to point out that although Pt dissolution readily happens during the EOR 

at a constant high potential range with a dissolution rate of 2.2 × 10-14 g/(cm2·s) as shown 
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from Mayrhofer’s work recently [221]. Figure 5.13 a and b show the time resolved 

dissolution profile of Pt during CV scans in 0.1 M HClO4 at the scan rate of 10 mV/s. 

(Reprinted from Figure 1: Topalov, et al. Angew. Chem. Int. Ed. 51 (2012) 12613.)  and 

the resulting current from the dissolution of Pt extracted from Figure 5.13 a. Figure 5.13 

c shows the LSV curves of EOR on Pt/C(ETEK) at the scan rate of 0.5 mV/s (black curve) 

and 50 mV/s (purple curve) and the current resulted from the dissolution of Pt 

polycrystalline (anodic scan) in Figure 5.13 b (blue curve),  and electrochemical current 

on a Pt(111) electrode in 0.1 M HClO4 at the scan rate of 50 mV/s(yellow curve). 

(Reprinted from Figure 2b: Huang, et al. Nat. Commun. 7 (2016) 12440). Figure 5.13 d 

shows CA curves of EOR on Pt/C (ETEK) at 0.5 V (red curve) and 1.0 V (black curve); 

the calculated current from dissolution of Pt/C (4.8 nm) at 0.69 V in 0.1 M HClO4 (blue 

curve). (Reprinted from Table 1: Cherevko, et al. ChemElectroChem 2 (2015) 1471.)  

Our calculations showed that the observed EOR current densities in this study were 

nearly 6 orders of magnitude higher than the current density attributed to the Pt dissolution 

(Figure 5.13). We also compared our linear sweep voltammetry (LSV) data with the 

recent work from Koper’s group, where the formation of OH on the surface of single crystal 

Pt (111) were related to the interaction of between ClO4
-  and the OHads. Taking the peak 

current density at ~ 0.8 V vs RHE (corresponding to 0.6 V vs Ag/AgCl) as a result of Pt 

dissolution as shown in Koper’s work (of course this is a very rough approximation as the 

oxidized Pt upon anodic scan might not be completely dissolved, meanwhile a certain 

portion of the current should be attributed to the capacitive process), we found that the 

peak current density from the EOR measured at the same scan rate (50 mV/s) in our 

study was 7.7 times higher than the current density from the Pt dissolution as shown in 
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Figure 5.13 c. Therefore, our EOR results and the studies of *OH adsorbates on CO2 

generation were not affected by Pt dissolution during the high potential reaction.  

 

Figure 5.13 Comparative study of Pt dissolution from the related references. (Copyright 2012 

WILEY - VCH VERLAG GMBH & CO. KGAA) 

5.7 DISCUSSION  

The scheme presented in Figure 5.14 describes the comprehensive understanding of 

the mechanism underlying the formation of CO2 during the EOR, where the influence of 

*OH adsorbates plays a very important role in the electro-kinetics of CO2 generation. At 

low potentials (0.1 to 0.2 V), C-C bond splitting of ethanol could already take place. 

However, the resulting C1 species (e.g. *CHx and *CO) cannot be oxidized completely 
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into CO2 since dissociative adsorption of water at low potentials was sluggish.[62] 

Therefore, the reaction intermediates (C1 species) poisoned active sites, which explained 

the observed low current density and nearly zero CO2 generation observed from the CVs 

below 0.2 V, as shown in Figure 5.7. When the potential increased (> 0.2 V), *OH started 

to be generated from the dissociation of water, which helped the oxidization of C1 species 

and the generation of CO2. The observed threshold for CO2 generation at 0.2 V in this 

study was also reported previously through in situ FTIR studies.[35, 143, 203, 222] Therefore, 

we concluded that at low potentials (0.1 to 0.46 V), the limited supply of *OH adsorbates 

as a result of water dissociation was the rate limiting step, which resulted in the insufficient 

removal of C1 species generated at low potentials. In this context, Pt/Rh/SnO2 was a 

better catalyst for CO2 generation than Pt and Pt/SnO2, evidenced by fact that its onset 

potential for CO2 generation was around 11 mV and 64 mV lower than Pt/SnO2 and Pt, 

respectively. The superamacy of Pt/Rh/SnO2 for EOR at low potentials is because Rh 

component faciliated the C-C splitting via promoting the dehydrogenation of the β-C-H 

bond, and SnO2 component helped the dissociative adsorption of water to form *OH to 

remove the C1 species generated from the C-C bond splitting. Our results on the CO2 

generation at the low potential range (0.1 to 0.46 V) are in agreement with recent EOR 

mechanistic studies on the mesoporous Pt electrode using a newly designed 

electrochemical mass spectrometer (EC-MS) by Pastor’s group [223]. Their comprehensive 

EC-MS studies showed that at a relatively low potential region, CH4 and even C2H6 were 

detected due to the lack of *OH species from water dissociation. 

On the other hand, at higher potentials (0.46 to 1.1 V), the SCO2 values of Pt/Rh/SnO2 

and Pt were close to zero, in which region the presence of *OH adsorbates was 
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considerably enhanced due to the dissociative adsorption of water at higher potentials.[224] 

The resulting excess amount of *OH adsorbates could poison active sites. In particularly, 

Rh sites were more prone to be poisoned since they were more susceptible to *OH 

coverage than Pt. The poisoned Rh averted β-dehydrogenation of ethanol, and resulted 

in the sharp decrease in CO2 generation. Meanwhile, the overall charge transfer rate was 

dominated by α-dehydrogenation primarily on Pt sites which were not severely blocked 

by *OH adsorbates. Consequently, jCO2 and SCO2 of Pt and Pt/Rh/SnO2 decreased 

drastically when the potential was higher than 0.46 V. The higher jCO2 and SCO2 of Pt/SnO2, 

compared with Pt and Pt/Rh/SnO2 indicated that the addition of Sn (in the form of SnO2) 

onto the Pt surface seemed to mitigate the *OH poisoning of the Pt sites since dissociative 

adsorption of water might prefer to take place at the Sn sites instead of Pt sites, while the 

Rh sites were much more vulnerable to *OH poisoning even in the presence of SnO2. 

 

Figure 5.14 Schematic of the electrooxidation of ethanol on catalysts from 0.1 to 1.1 V. 
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The adsorption energies of H2O and *OH adsorbates on various surfaces show that 

addition of SnO2 to Pt or PtRh decreases the *OH adsorption energy dramatically to 

stabilize *OH. The results clearly indicate that a core-shell particle with a SnO2 shell can 

offer more adsorption sites for *OH to enhance the oxidation of ethanol and/or reaction 

intermediates compared with Pt. 
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CHAPTER 6                                                                   

SUMMARY  

 In this study, we first developed a four-electrode electrochemical cell for measuring 

CO2 generation with high accuracy. Assisted by the high sensitivity of the CO2 

microelectrode and unique CO2 in situ cell design, we obtained the high resolutionCO2 

signal during the electrooxidation of ethanol on the various catalysts.  Hence, the kinetic 

information including the CO2 generation rate and selectivity can be calculated, providing 

great insight on the reaction mechanisms of the EOR. 

The Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell and 

the Pt/Rh/Sn catalyst with a Pt and Rh metallic core and a SnO2 shell were synthesized 

with “surfactant free” method with/without post-treatment in hydrogen gas. 

Complementary characterization techniques including TEM, EDXS, STEM-EELS, XRD, 

EXAFS and XANES were used to identify the heterogeneous structure of Pt37Rh20O21-

(SnO2)43 and Pt37Rh20O21-(SnO2)43. In situ CO2 measurements and kinetic analyses show 

that, for the first time, the tri–phase PtRhOx-SnO2 catalysts with a partially oxidized Pt and 

Rh core and a SnO2 shell coincided with a 2.5-fold increase in the CO2 generation rate 

towards the ethanol oxidation reaction, compared with the bi-phase PtRh-SnO2 catalysts 

with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the 

design of a new genre of electro-catalysts with a partially oxidized noble metal. 

Carbon-supported monometallic Pt, binary Pt/SnO2, and ternary Pt/Rh/SnO2 

nanoparticles from 2 to 3 nm were prepared using a surfactant-free seeded growth 

approach. Several characterization techniques, including TEM, STEM-EELS, XRD, 
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XANES, EDXS, were employed to elucidate the heterogeneous structure of the catalyst 

as Pt or Pt-Rh core and SnO2 shell core/shell particles. DFT calculations also provided 

insight on the surface reactions and intermediates. 

A combination of electrochemical measurements and in situ CO2 microelectrode was 

used to investigate the catalytic properties of the Pt, Pt/SnO2, and Pt/Rh/SnO2 

electrocatalysts for the electro-oxidation of ethanol. A newly developed electrochemical 

cell equipped with a highly sensitive CO2 microelectrode not only measured the catalytic 

activities of all three catalysts for the EOR, but also analyzed quantitatively the 

potentiodynamics of the EOR such as partial pressure, generation rate and selectivity 

towards CO2 production. Our studies, for the first time, revealed the influences of *OH 

adsorbates on the CO2 generation rate and selectivity: at low potentials (0.1 V to 0.46 V), 

the CO2 generation was limited by water dissociation, Pt/Rh/SnO2 was a better EOR 

catalyst than Pt and Pt/SnO2 due to the promotional roles of the Rh component on C-C 

splitting and of the SnO2 component on the formation *OH, showing much lower onset 

potential for CO2 generation than Pt and Pt/SnO2. On the other hand, at high potentials 

(0.46 to 1.1 V), the Rh component strongly interacted with water and could result in the 

dissolution and/or poisoning of the Rh site. Thus Pt/SnO2 exhibited the best performance 

toward CO2 generation, evidenced by our well designed *OH adsorbates experiments. 

The findings presented in this thesis provide fundamental insight on the EOR electro-

catalysis and help in designing novel nanostructured materials with enhanced activity and 

selectivity in the ethanol electro-oxidation.  
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APPENDICES 
 

 
Appendix Figure 1. Reactions for C-C bond scission of *CHCO on various catalyst surfaces: (a) 

PtRh-SnO2 (1st model), (b) PtRh-SnO2 (2nd model), (c) PtRh-SnO2 (3rd model), (d) Pt-SnO2 and 

(e) Pt(111). Numbers indicate adsorption energies of the indicated species. 
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Appendix Figure 2. Reactions for C-C bond scission of *CH2CO on various catalyst surfaces: (a) 

PtRh-SnO2 (1st model), (b) PtRh-SnO2 (2nd model), (c) PtRh-SnO2 (3rd model), (d) Pt-SnO2 and 

(e) Pt(111). Numbers indicate adsorption energies of the indicated species. 
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Appendix Figure 3. Reactions for C-C bond scission of *CH3CO on various catalyst surfaces: (a) 

PtRh-SnO2 (1st model), (b) PtRh-SnO2 (2nd model), (c) PtRh-SnO2 (3rd model), (d) Pt-SnO2 and 

(e) Pt(111). Numbers indicate adsorption energies of the indicated species. 
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Appendix Table 1 

Vapor pressure of water-Pwater (mmHg) 

T Pwater T Pwater T Pwater T Pwater 

20.0 17.535 23.0 21.068 26.0 25.209 29.0 30.043 

20.2 17.753 23.2 21.324 26.2 25.509 29.2 30.392 

20.4 17.974 23.4 21.583 26.4 25.812 29.4 30.745 

20.6 18.197 23.6 21.845 26.6 26.117 29.6 31.102 

20.8 18.422 23.8 22.110 26.8 26.426 29.8 31.461 

21.0 18.650 24.0 22.377 27.0 26.739 30.0 31.824 

21.2 18.880 24.2 22.648 27.2 27.055 30.2 32.191 

21.4 19.113 24.4 22.922 27.4 27.374 30.4 32.561 

21.6 19.349 24.6 23.198 27.6 27.696 30.6 32.934 

21.8 19.578 24.8 23.476 27.8 28.021 30.8 33.312 

22.0 19.827 25.0 23.756 28.0 28.349 31.0 33.695 

22.2 20.070 25.2 24.039 28.2 28.680 31.2 34.082 

22.4 20.316 25.4 24.326 28.4 29.015 31.4 34.471 

22.6 20.565 25.6 24.617 28.6 29.354 31.6 34.864 

22.8 20.815 25.8 24.912 28.8 29.697 31.8 35.261 
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Appendix Table 2 

Temperature (T/oC) vs. absorption coefficient (a) for carbon dioxide in water 

T a T a 

5 1.424 19 0.902 

6 1.377 20 0.878 

7 1.331 21 0.854 

8 1.282 22 0.829 

9 1.237 23 0.804 

10 1.194 24 0.781 

11 1.154 25 0.759 

12 1.117 26 0.738 

13 1.083 27 0.718 

14 1.050 28 0.699 

15 1.019 29 0.682 

16 0.985 30 0.665 

17 0.956 35 0.592 

18 0.928 40 0.530 
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