
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Spring 2018

SECURING FPGA SYSTEMS WITH MOVING
TARGET DEFENSE MECHANISMS
Zhiming Zhang
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Zhang, Zhiming, "SECURING FPGA SYSTEMS WITH MOVING TARGET DEFENSE MECHANISMS" (2018). Master's Theses
and Capstones. 1194.
https://scholars.unh.edu/thesis/1194

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/1194?utm_source=scholars.unh.edu%2Fthesis%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

SECURING FPGA SYSTEMS WITH MOVING TARGET DEFENSE

MECHANISMS

BY

ZHIMING ZHANG

Bachelor of Engineering, Qingdao University of Science and Technology, Qingdao,

China, 2016

DISSERTATION

Submitted to the University of New Hampshire

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electrical and Computer Engineering

May, 2018

This thesis will be examined by and approved in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering by:

Thesis Director, Qiaoyan Yu, Ph.D.

Associate Professor

Department of Electrical & Computer Engineering

Edward Song, Ph.D.

Assistant Professor

Department of Electrical & Computer Engineering

Mehmet Kayaalp, Ph.D.

Assistant Professor

Department of Electrical & Computer Engineering

On May, 2018

Original approval signatures are on file with the University of New Hampshire Graduate

School.

ii

ACKNOWLEDGEMENTS

First and foremost, I want to say thank you to my advisor Dr. Qiaoyan Yu. I received

great amount of help form her in both my course work and the project we worked on

together. Besides the academic aspect, she also gave me a lot of advice and encourage-

ment when I made important decisions about my career. Most importantly, she helped

me build up my interest and confidence to my research work.

I would also like to thank Dr. Song, Dr. Kayaalp and Prof. Whitney for their willing-

ness to provide help on my thesis and other graduation work as members of my thesis

committee.

I would also like to thank my fellow graduate students in the UNH Reliable VLSI

Systems Lab: Jaya Dofe, Chenghua She, and Sean Kramer. I got a lot of help and advice

from them on my research and I really had a great time working with them.

Finally, I wish to thank my family. Their support and care removed any concerns I

could have living in a foreign country so I could fully focus on my research work.

iii

Contents

Acknowledgements iii

List of Tables viii

List of Figures ix

Abstract xiii

1 Introduction 1

1.1 Trend of FPGA Utilization . 1

1.2 Security Concerns on FPGA Applications . 2

1.3 Key Contributions . 3

1.4 Thesis Outline . 4

2 Background 7

2.1 FPGA Architecture . 7

2.2 FPGA Design Suite . 8

2.3 Existing Researches on FPGA Security . 9

2.3.1 IP Piracy . 9

2.3.2 Hardware Trojan . 11

2.3.3 Side Channel Analysis . 13

iv

2.4 Moving Target Defense . 14

2.4.1 Principle of MTD . 14

2.4.2 MTD Applications in Electronic Systems 14

3 Securing FPGA-Based Obsolete Component Replacement for Legacy Systems 16

3.1 Motivation . 16

3.2 Existing Solutions . 17

3.3 Proposed Method . 18

3.3.1 Proposed Runtime Pin Grounding . 20

3.3.2 Proposed Hardware Moving Target Defense 21

3.4 Experiment Results . 23

3.4.1 Experimental Setup . 23

3.4.2 Hardware Trojan Bypass Rate . 23

3.4.3 Overhead on Hardware Cost and Performance 26

4 FPGA-Oriented Moving Target Defense against Security Threats from Mali-

cious FPGA Tools 29

4.1 Motivation . 29

4.1.1 Three Levels of Attacks . 31

4.2 Existing Solutions . 32

4.3 Proposed Method . 32

4.3.1 Defense Line 1 (DFL1): Slice Position Selection through User Con-

straints File . 33

Method description . 33

Case study . 34

v

Theoretical bound for defense line 1 thwarting different Trojan attacks 36

4.3.2 Defense Line 2 (DFL2): Pseudo-Random Replica Selection 37

Method description . 37

Theoretical bound for defense line 2 thwarting different Trojan attacks 38

4.3.3 Defense Line 3 (DFL3): Runtime Design Assembling 40

Method description . 40

Theoretical bound for defense line 3 thwarting different Trojan attacks 44

4.4 Experimental Results . 45

4.4.1 Experimental Setup . 45

4.4.2 Variation on FPGA Slice Utilization 45

4.4.3 Assessment on Attack Resilience . 47

Hardware Trojan Hit Rate for L-1 Attacks 47

Hardware Trojan Hit Rate for L-2 Attack 49

Hardware Trojan Hit Rate for L-3 Attack 51

4.4.4 Dependent Design Factors on Trojan Hit Rate 53

4.4.5 Assessment on Hardware Cost, Delay and Power 55

Hardware Utilization . 55

Power Consumption . 57

Worst-case Delay . 57

4.4.6 Comparing Proposed FOMTD with Static Trojan Detection Method . 58

5 Conclusion and Future Work 61

5.1 Conclusion . 61

5.2 Future Work . 63

5.2.1 Reduce the Delay Overhead Caused by Implementing HMTD 63

vi

5.2.2 Applying the information of LUT location to bitstream encryption . 63

A Source Codes for Defense Line 1 of FPGA-Oriented Moving Target Defense 65

A.1 Commands in the User Constraints File of Benchmark Circuit c432 65

A.2 Commands in the User Constraints File of Benchmark Circuit c6288 66

A.3 Commands in the User Constraints File of Benchmark Circuit s444 66

A.4 Commands in the User Constraints File of Benchmark Circuit s13207 67

B Source Codes for Defense Line 2 of FPGA-Oriented Moving Target Defense 68

B.1 Verilog Implementation on Benchmark Circuit c432 68

B.2 Verilog Implementation on Benchmark Circuit s444 69

C Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense 71

C.1 Verilog Implementation on Benchmark Circuit c432 71

C.1.1 Top-Level Control Logic . 71

C.1.2 Modified Instance . 72

C.2 Verilog Implementation on Benchmark Circuit S444 80

C.2.1 Top-Level Control Logic . 80

C.2.2 Modified Instance . 82

References 95

vii

List of Tables

3.1 FPGA Overhead of Proposed Runtime Pin Grounding 27

4.1 Medians of Non-Similarity Rate . 47

4.2 Number of FPGA LUTs utilized by different methods. 56

4.3 FPGA Total Power Consumption (mW) by Different Methods 57

4.4 Comparison of worst-case delay. Unit: ns . 58

viii

List of Figures

1.1 Security threats to FPGA system [3] . 2

1.2 Potential security vulnerability in FPGA supply chain 3

2.1 FPGA internal architecture [6] . 8

2.2 Architectures of Xilinx LUT and flip-flop . 9

2.3 Typical FPGA configuration flow [8] . 10

2.4 Taxonomy of FPGA-specific hardware Trojans [13] 12

2.5 Taxonomy of FPGA-specific hardware Trojans [14] 13

2.6 MIGRATE Architecture [24] . 15

3.1 Overview of proposed countermeasure to secure the FPGA replacement for

a legacy system. To replace the aged module (MTR), the proposed method

connects a group of FPGA modules (HMTD+Rin+Rout+CCU) to the origi-

nal modules U1 and U2 in the legacy system. 19

3.2 Detailed slice assignment shown in the FPGA Editor. The two red dots

represents the locations for the two replicas of MTR equivalence that are

specified in our method through FPGA Editor. 21

3.3 Flowchart of proposed hardware moving defense method. 22

3.4 FPGA hardware Trojans inserted without disturbing the hardware descrip-

tion file. The modified slice can be observed. 24

ix

3.5 Hardware Trojan bypass rate versus number of hardware Trojans inserted

in the FPGA device. 25

3.6 Impact of the number of FPGA slices on hardware Trojan bypass rate. . . . 27

3.7 Three-dimensional plot for the dependent factors for hardware Trojan by-

pass rate. 28

3.8 The delay overhead of proposed HMTD applied on benchmark circuits. . . 28

4.1 Monitor displays (A) before and (B) after modification 31

4.2 FPGA mapping modified by proposed defense line 1. Three parts in differ-

ent colors represent three partitions of the intended design. Black squares

are three LUT configurations. Proposed defense line 1 alters the default

LUT mapping on the FPGA grid. 34

4.3 Design placement observed from the Xilinx FPGA editor for (A) default

setting, (B) single-slice selection, and (C) triple-slice selection cases. 35

4.4 Pseudo-random replica selection provided by the proposed method. 38

4.5 Hardware Trojan attack exploration space for (a) the design placement with

default FPGA setting, (b) the design protected with FOMTD defense lines

1 and 2. 39

4.6 Hot-swappable submodule assembling provided by defense line 3. 41

4.7 Two styles of applying defense line 3 to sequential circuits. 41

4.8 Gate replacement for the security enhancement of defense line 3. 43

x

4.9 Non-similarity rate achieved by proposed defense line 1. Non-similarity

rate between one slice-position designation case and the baseline. The sub-

scripts 1s and 3s means the location of a single slice or three slices are spec-

ified in the user constraints file for the FPGA implementation. On each bar,

the central mark indicates the median, and the bottom and top edges of the

box indicate the 25th and 75th percentiles, respectively. 46

4.10 Hardware Trojan hit rate reduction by proposed defense line 1 applied in

the benchmark circuit in the condition of L-1 attacks. 48

4.11 Hardware Trojan hit rate for (A) c432, and (B) seven benchmark circuits

suffering from four hardware Trojans inserted via L-2 attacks. 50

4.12 Hardware Trojan hit rate for (A) c432, and (B) seven benchmark circuits

suffering from four hardware Trojans inserted via L-3 attacks. 52

4.13 Increase on hardware Trojan hit rate due to advanced attacks. 53

4.14 Comparison of number of Trojan hits for without and with gate replace-

ment to thwart L-3 pattern searching attack. (A) Exact matching and (B)

Approximate matching. 54

4.15 Comparison of hardware Trojan hit rate for without or with gate replace-

ment to thwart L-3 pattern searching attack. (A) Exact matching and (B)

Approximate matching. 54

4.16 Impact of number of hot swaps on hardware Trojan hit rate for c432 under

(A) L-2 attack, and (B) L-3 attack. 55

4.17 Impact of number of hot swaps on hardware Trojan hit rate for seven bench-

mark circuits affected by four hardware Trojans inserted via (A) L-2 attack,

and (B) L-3 attack. 55

xi

4.18 Comparison of hardware Trojan hit rate for proposed defense line 3 and

DMR affected by four Trojans inserted via (A) L-2 and (B) L-3 attacks. 59

4.19 Comparison of number of exact matching on LUT configuration. 60

4.20 Comparison of power consumption between proposed DFL3 and DMR. . . 60

xii

ABSTRACT

SECURING FPGA SYSTEMS WITH MOVING TARGET DEFENSE

MECHANISMS

by

Zhiming Zhang

University of New Hampshire

Field Programmable Gate Arrays (FPGAs) enter a rapid growth era due to their attrac-

tive flexibility and CMOS-compatible fabrication process. However, the increasing popu-

larity and usage of FPGAs bring in some security concerns, such as intellectual property

privacy, malicious stealthy design modification, and leak of confidential information. To

address the security threats on FPGA systems, majority of existing efforts focus on coun-

teracting the reverse engineering attacks on the downloaded FPGA configuration file or

the retrieval of authentication code or crypto key stored on the FPGA memory. In this

thesis, we extensively investigate new potential attacks originated from the untrusted

computer-aided design (CAD) suite for FPGAs. We further propose a series of counter-

measures to thwart those attacks. For the scenario of using FPGAs to replace obsolete ag-

ing components in legacy systems, we propose a Runtime Pin Grounding (RPG) scheme

to ground the unused pins and check the pin status at every clock cycle, and exploit the

principle of moving target defense (MTD) to develop a hardware MTD (HMTD) method

against hardware Trojan attacks. Our method reduces the hardware Trojan bypass rate

by up to 61% over existing solutions at the cost of 0.1% more FPGA utilization. For gen-

eral FPGA applications, we extend HMTD to a FPGA-oriented MTD (FOMTD) method,

which aims to thwart FPGA tool induced design tampering. Our FOMTD is composed of

three defense lines on user constraints file, random design replica selection, and runtime

xiii

submodule assembling. Theoretical analyses and FPGA emulation results show that the

proposed FOMTD is capable of tackling three levels’ attacks from malicious FPGA design

software suite.

xiv

Chapter 1

Introduction

1.1 Trend of FPGA Utilization

Field programmable gate arrays (FPGAs) as a group of programmable integrated cir-

cuitries are famous for their flexibility, low cost and efficiency. The programmable archi-

tecture and internal connection allow any functions of an ASIC to be realized in a FPGA

chip. In fact, FPGAs have played very important roles in many fields. Both the usage and

popularity of FPGAs kept increasing in the past several decades and it is reasonable to

expect a even better trend of its development. In 2016, according to the data provided by

[1], the FPGA market was already valued at USD 5.34 Billion and in 2023, this number is

expected to be increasing to 9.50 Billion. The great amount of FPGA applications covering

a variety of areas make a great contribution to the FPGA market size. The applications

are broadly distributed in Aerospace, high performance computing, wireless commu-

nication, and security including, in detail, digital signal processing, ASIC prototyping,

super computer, etc. FPGA can be widely involved in the designs of electronic systems

because of its programmable and parallel nature, the low cost of updating compared to

1

Chapter 1. Introduction

FIGURE 1.1: Security threats to FPGA system [3]

ASIC, and easy-to-design property for faster time-to-market [2]. However, nothing is per-

fect. Besides so many above mentioned advantages, FPGA systems can also face security

problems.

1.2 Security Concerns on FPGA Applications

The security threats to FPGA systems can be from both the FPGA device and the supply

chain including intellectual property (IP) theft, reverse engineering, logic tempering, and

hardware Trojan [3] as can be seen in the figure 1.1. The rapidly increasing speed of FPGA

market size can also bring some security issues because it also attracts attackers’ attention

for the high improper interest which may be obtained once the FPGA applications are

manipulated.

Although many protections schemes have been developed to address the security con-

cerns, there are still some blind spots being ignored. If we can detect those unrevealed

potential security vulnerabilities, we are going to make a contribution for keeping the de-

velopment of FPGA systems along a healthy path. In this thesis, we focus on hardware

2

Chapter 1. Introduction

FIGURE 1.2: Potential security vulnerability in FPGA supply chain

Trojan attacks on FPGA systems and reveal that one potential security threat can be from

the FPGA design software, which is usually called a CAD tool. Figure 1.2 shows a basic

FPGA supply chain and we doubt the reliability of the CAD tool during the stage that

after it is developed but before it is used. Furthermore, we propose a series of counter-

measures to thwart this type of attacks.

1.3 Key Contributions

To address the security threat discussed in the previous section, we propose our protec-

tion mechanisms to thwart the attacks of hardware Trojan which is inserted through a

untrusted CAD tool. More specifically, our main contributions are as follows.

1. We investigate new potential attacks originated from the untrusted FPGA design

software and further propose a series of countermeasures to thwart those attacks.

2. To removed the security concerns when replacing obsolete aging components in

legacy systems with FPGAs, we propose a RPG scheme to ground the unused pins

3

Chapter 1. Introduction

and check the pin status at every clock cycle, and exploit the principle of MTD to

develop a HMTD method against hardware Trojan attacks.

3. For general FPGA applications, we extend HMTD to a FOMTD method, which aims

to thwart FPGA tool-induced design tampering, FOMTD is composed of three de-

fense lines in the user constraints file, random design replica selection, and runtime

submodule assembling to defend the attacks from three different levels.

1.4 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, an overview of FPGA architec-

ture and the FPGA design suite will be introduced. Then we will talk about some existing

research on the security problems of FPGA systems and a classic moving target defense

countermeasure will be illustrated.

In Chapter 3, we address the security problems of using FPGAs to replace the aging

components of legacy system.

1. To the best of our knowledge, this is the first work that investigates the countermea-

sure against the security threats that occur during the FPGA deployment for legacy

systems. The primary goal of this work is to address the security attacks from the

untrusted FPGA vendor and the CAD tools for FPGA configuration, rather than the

IP piracy and side-channel attacks on FPGAs.

2. We propose a RPG scheme. Compared with the conceptual proposal in [4], we im-

plemented the pin grounding concept on a Nexys-3 Spartan-6 FPGA board that suc-

cessfully prevents the communication between the external environment and the

4

Chapter 1. Introduction

FPGA device. Moreover, our scheme additionally performs runtime checking to ex-

amine whether all user-unused I/O pins are truly grounded at every clock cycle,

thus thwarting the countermeasure mutation by the FPGA CAD tool.

3. We propose a HMTD method. In our method, the hardware description of the aged

functional module in the legacy system is replicated multiple times. Two of the

replicas are randomly selected by an on-chip random number generator to examine

the consistency between the two groups of outputs. Furthermore, instead of leav-

ing the FPGA CAD tool to place and route the replacement module with default

settings, we propose to explicitly specify the slice physical distance between the

replicas in a FPGA user constraint file. Our method is able to thwart the stationary

hardware Trojan insertion by the CAD tool.

In Chapter 4, we continue to work on the security vulnerabilities of the CAD tool and

propose corresponding countermeasures to create unpredictabilities to the attacker.

1. We exploit the principles of moving target defense (MTD) and propose a FPGA-

oriented MTD (FOMTD) countermeasure to resist the attacks from malicious FPGA

tools. To the best of our knowledge, this work together with our prior work [5]

are the first attempt to assess the feasibility of applying the MTD concept to defeat

hardware Trojans from malicious FPGA software.

2. We propose three defense lines to generate three types of unpredictabilities to

thwart the stealthy modification from compromised FPGA software.

3. We emulate a hardware Trojan hit rate for each defense line and analyze the emula-

tion results.

5

Chapter 1. Introduction

In Chapter 5, the main contributions of the thesis are summarized and future work

related to the topic is proposed.

6

Chapter 2

Background

2.1 FPGA Architecture

FPGA’s reconfigurable architecture, which is illustrated in figure 2.1, allows it to be pro-

grammed after fabrication to perfectly mimic almost any logic functions that basic dig-

ital circuits can do. A standard FPGA is usually composed of three portions which are

programmable logic blocks, programmable interconnections, and I/O blocks plus some

additional advanced on-chip integrated circuitries, such as ALUs, block RAM, or DSP-48,

for corresponding specific operations [6].

In general, programmable logic blocks are mainly made of look up tables (LUTs)

which can complete combinational logics efficiently and flip-flops/latches. Figure 2.2

shows the LUTs and flip-flops in one slice of a Xilinx FPGA. The programmable rout-

ing usually includes pass transistors and buffers. The I/O blocks are used for off-chip

connections.

7

Chapter 2. Background

FIGURE 2.1: FPGA internal architecture [6]

2.2 FPGA Design Suite

FPGA behavior is driven by a bitsream file which is generated through FPGA design

suite CAD software. Two main FPGA design suites in the market are Xilinx ISE and

Altera Quartus. The design flows in these two kinds of CAD tools have some common

features, as shown in figure 2.3. In Xilinx ISE [7], the design programmed in hardware

design language is first synthesized. The output file of this stage will be combined with

user constraints to be send to NGDBuild. After this step, the translated design is mapped

then placed and routed according to the specified FPGA device. Finally, bitstream will

generated. A similar procedure can also be performed in Altera Quartus in command

line by quartus_map, quartus_fit, quartus_tan, and quartus_asm [8].

8

Chapter 2. Background

FIGURE 2.2: Architectures of Xilinx LUT and flip-flop

2.3 Existing Researches on FPGA Security

2.3.1 IP Piracy

Intellectual property (IP) of an electronic design always carries the key knowledge and

technique of the research team who developed it. This also makes it become the target

9

Chapter 2. Background

FIGURE 2.3: Typical FPGA configuration flow [8]

of attackers because by pirating the IP, attackers have a chance to significantly reduce the

cost of developing an original one including money, time and research effort. In [9], it has

already been proven that it is feasible to extract the FPGA design of IP using a Xilinx ISE

FPGA design suite.

There are also some countermeasures being proposed to protect the IP integrity of FP-

GAs. A group of traditional countermeasures for IP piracy is watermarking. In [10], a

method is presented which generates the watermarking for helping to identify the au-

thorship of the design by manipulating the state transition graph to make it create a very

10

Chapter 2. Background

rare property. In this way, the watermarking can be very hard to be removed. A novelty

PUF-FSM binding protection mechanism, in which a FSM is embedded in IP and it is acti-

vated by the response from the PUF embedded in FPGA, is proposed in [11] to restrict the

IP to be only executed in an authorized FPGA device to avoid the IP being pirated. The

approach demonstrated in [12] also provides a novel approach of device identification

which proposes to assign each FPGA device a unique architecture and the architecture

information will be used to encrypt the bitstream. By doing this, only the authorized de-

vice can work with the encrypted the bitstream so that the economic motivation of reverse

engineering IP will be reduced.

2.3.2 Hardware Trojan

Hardware Trojan is another group of security threats which can be harmful for FPGA

designs. The Trojans as extra and malicious circuitries can be inserted to FPGA systems

through the vulnerable stages of FPGA design flow [13]. The purpose of a hardware Tro-

jan can be disrupt the normal operation or leaking significant information and different

with non-programmable devices, the hardware Trojans in FPGA can impact the design

after configuration by exploiting the programmability. A taxonomy of FPGA-specified

hardware Trojans is provided in [13]. It categorizes the Trojan into two main groups in

terms of their triggers and payloads, as shown in figure 2.4.

The Morph Onion-encryption Replication partially runtime reconfiguration (PRR) hard-

ware abstraction layer (HAL) (MORPH) architecture proposed in [14] is a very good

defense mechanism, as shown in figure 2.5. It combines multiple levels of protections

schemes including morph operation, onion encryption, replication, PRR as well as HAL

and is able mitigate the Trojan from both fabrication-time and design-time. To solved

11

Chapter 2. Background

FIGURE 2.4: Taxonomy of FPGA-specific hardware Trojans [13]

the problem that hardware Trojan insertion protection may leave chip resources unused

for attackers to manipulate, a solution is proposed in [15] which fills up the unoccupied

space with low-level dummy logics. By doing this, there is no room in the bitstream

of design for hardware Trojan insertion anymore. Adapted triple modular redundancy

(ATMR) is another effective countermeasure to mitigate hardware Trojan attacks. In [13],

a specific taxonomy of FPGA-based hardware Trojan attacks is first illustrated and in

which the attacks are categorized according to the trigger and payload. Then a Adapted

TMR aiming at detecting the hardware Trojan on chip is presented which replicates the

design into three copies and the third copy is only activated when mismatch is found be-

tween first two. In [16], a Hardware Trojan Threats (HTT) detectability metric (HDM) is

proposed to detect hardware Trojan in which the normalized physical parameters, such

as power consumption and timing variation, will be weighted combined to be compared

with threshold. If the combined result value is higher than the threshold, the FPGA will

be determined to be malicious.

12

Chapter 2. Background

FIGURE 2.5: Taxonomy of FPGA-specific hardware Trojans [14]

2.3.3 Side Channel Analysis

Side channel analysis is one type of serious security problems, which is mainly composed

of power analysis, timing analysis and electromagnetic emanation analysis [17], for dig-

ital circuits because of its ability to extract data and it also commonly threatens FPGA

systems. There are also existing solutions to deal with this threat. A fake key based

countermeasure is introduced in [18], in which a runtime changed fake key is randomly

selected to perform the AES algorithm aiming at confusing the attacker. Extracting data

by running SCA, no matter power consumption analysis or electromagnetic radiation

analysis, on the fake AES algorithm cannot provide attackers any important information

about the protection method. In the method proposed in [19], an interfering power signal

is generated by a uncorrelated power noise generator according to the manipulated data

13

Chapter 2. Background

and an interfering key. The aim of doing this is to let the interfering power signal inter-

fere with the attacker’s analysis by breaking the correlation between the power measured

and the encryption key. An asynchronous FPGA architecture, SCAR-FPGA, is designed

in [20] to thwart power-based side channel attacks. It is based on pre-charged logic and a

proposed LUT structure that can help balance the power consumption when reading the

values “1" and “0" so that it generates data-independent power signal.

2.4 Moving Target Defense

2.4.1 Principle of MTD

The key idea of the whole protection system proposed in this thesis is based on the clas-

sic moving target defense method. It can be well illustrated with a “shell game" [21].

The game host randomly switches the positions of the shells to mess up the inference

of audience about which one the ball is covered with. Moving target defense has been

broadly used in the designs of protection for electronic systems. The key idea of it is de-

veloped into dynamically shifting the attacker surfaces, such as network IP address and

port conditions, to increase the unpredictability, complexity and cost to attackers when

implementing attacks.

2.4.2 MTD Applications in Electronic Systems

The method of moving target defense has been implemented in electronic systems in

varies of domains. In [22], moving target defense is developed to mitigate the privacy-

related attacks in IPv6 by reducing the ability of attackers to determine the two commu-

nicating hosts. In [23], the idea of moving target defense is adopted to thwart distributed

14

Chapter 2. Background

FIGURE 2.6: MIGRATE Architecture [24]

denial of service attacks. A MIGRATE, as shown in figure 2.6, is proposed in [24] which

is a real-time moving target defense for creating obfuscations to defend the co-residency

side channel attacks on computing clouds. The proposed countermeasures in the thesis

are also inspired by moving target defense and develop the idea of it to provide better

protection for the FPGA systems in hardware level.

15

Chapter 3

Securing FPGA-Based Obsolete

Component Replacement for Legacy

Systems

3.1 Motivation

The lifetime of electronics systems is always expected to be long in civil use, industry, mil-

itary, etc. In a legacy system, component-aging is unavoidable and some electronic com-

ponents may experience aging earlier than others. Unfortunately, the aged components

may no longer be manufactured or available on the market. A straightforward solution

is to re-design the entire system, but the total cost for re-designing, testing, and instal-

lation could be 10 times that of other alternatives, such as component replacement [25].

An obsolete component can be substituted by an equivalent device from gray market,

application-specific integrated circuit (ASIC), field-programmable gate array (FPGA) [26],

or uncommitted logic array (ULA).

Traditionally, functionality matching is the primary focus when we replace the aged

16

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

module with a functional equivalent. Little or no attention is paid to the security threats

originated from the component replacement. Unfortunately, the trustworthiness of the

FPGA supply chain has become a serious concern now, so it is imperative to address those

security threats, in particular, from untrusted FPGA manufacturers and computer-aided

design (CAD) tools associated with FPGA deployment.

3.2 Existing Solutions

Many protection schemes have been proposed to protect against FPGA security threats.

To detect the hardware Trojans carried in the FPGA configuration bitstream, Chakraborty

et al. [4] suggest the following: grounding the unused I/O pins; monitoring the temper-

ature of the FPGA device; filling up the unused resources of the FPGA; or scrambling

the bitstream file. Bloom et al. [27] propose to morph on-chip resources for moving tar-

get defense (MTD) against fabrication-time Trojans. Their method heavily utilizes en-

cryption on the FPGA configuration for initialization boot and hardware description of

functional modules. Moreover, process memory, L1 cache, and L2 cache are encrypted

separately using multi-layer encryption. Although the alteration of two instances for the

same CPU implementation can thwart random hardware Trojans, the multi-layer encryp-

tion is too costly for many real-time systems. The ideas proposed in [4] and [27] remain at

the conceptual level, and no practical experiments have been conducted to demonstrate

the method’s feasibility.

To protect the FPGA configuration bitstream against piracy, reverse engineering, and

tampering, Karam et al. [28] obfuscate the FPGA bitstream by inserting additional func-

tions in the look-up tables (LUTs) that are configured for the true functionality of the

17

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

design. Jyothi et al. [29] utilize ring-oscillator arrays to measure process variation among

FPGA slices, which may be modified by the untrusted FPGA manufacturer. Then, the

FPGA region where the process variation is below the acceptable threshold is identified

as a trust zone. The authors place the hardware design only in the trusted FPGA zones.

This method assumes that the malicious FPGA slices lead to significant changes in delay,

and the FPGA CAD tool is trusted. Mal-Sarkar et al. [13] propose an adapted triple mod-

ular redundancy (ATMR) technique to detect the hardware Trojan inserted in one of the

design replicas. To reduce the overhead on power consumption, the third replica is acti-

vated once the output mismatch is detected from the other two replicas. The limitation of

this method is that the three copies of the design module are allocated by the FPGA CAD

tool in a stationary manner. Because the untrusted CAD tool has the prior knowledge

of the place and route rules, theoretically, the tool can insert the same Trojan in the two

replicas of the design. Thus, the ATMR method may not detect the Trojan.

The aforementioned methods assume that the FPGA CAD tool is trusted. These meth-

ods do not consider the scenarios in which hardware Trojans in the bitstream configura-

tion can be inserted during the place and route stage. Another challenge is how to prevent

the countermeasure from being removed/muted by the untrusted FPGA CAD tool.

3.3 Proposed Method

To address the security concerns discussed in the previous section, we propose a frame-

work to detect the hardware Trojan inserted by an untrusted FPGA manufacturer or CAD

tools. The proposed countermeasure, which is composed of two parts: (1) RPG and (2)

HMTD, protects against the hardware Trojan attacks by appending commands in user

18

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

HMTD

Rin

N M

Rout

CCU

M
TR

U1

U2

Runtime	Pin	
Grounding	(RPG)
Hardware	Moving	
Target	Defense	
(HMTD)
In/Out	Router	(Rx)

Consistency	
Checking	Unit	(CCU)

Module-To-Replace	
(MTR)

N

M

Legacy	System

FPGA	Device

RPG

I/O	Pins

FIGURE 3.1: Overview of proposed countermeasure to secure the FPGA re-
placement for a legacy system. To replace the aged module (MTR), the pro-
posed method connects a group of FPGA modules (HMTD+Rin+Rout+CCU)

to the original modules U1 and U2 in the legacy system.

constraints file and modifying the original Verilog design files. The RPG scheme is to ter-

minate the hardware Trojans that communicate with the external environment through

unused I/O pins on the FPGA device. The HMTD method prevents the Trojan horses in-

duced by the malicious FPGA CAD tools from interfering with the FPGA replacement in

legacy systems. Figure 3.1 depicts the overview of the proposed countermeasure against

hardware Trojans on the FPGA device.

19

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

3.3.1 Proposed Runtime Pin Grounding

Inspired by the idea proposed in [4], we apply the pin grounding scheme to the unused

FPGA I/O pins by using a user constraint file. In this work, we continue to use the

Nexys-3 FPGA board to introduce the procedure of our RPG scheme. This scheme is

implemented in the top level of the hardware description module as shown in the black

shadowed area of Fig. 3.1.

First, we assign every unused pin a net name in the top level of the hardware design

file. Then, each NET name is linked with an unused I/O pin in the user constraint file by

using the command (1).

NET “net_name" LOC = pin_name (1)

After that, we proceed to ground those I/O pins through the command (2).

NET “net_name" PULLDOWN (2)

Even if we have grounded all of the unused pins through the user constraint file, the

malicious FPGA CAD tool can alter the user-specified pin configuration by modifying the

native circuit description (.ncd) file. This phenomenon has been observed in our FPGA

deployment environment Xilinx ISE 14.1 [30] when we manually ground the pin reserved

for the power supply. Because the .ncd file is not readable, the hardware Trojans placed

by the CAD tool are stealthy. To thwart the unrevealed modification from the CAD tool,

we enhance our pin grounding scheme by adding a runtime detection circuit. Since we

have assigned a net name for each unused I/O pin, we can simply use the logic of NOR

to examine the grounding status of those unused pins.

20

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

FIGURE 3.2: Detailed slice assignment shown in the FPGA Editor. The two
red dots represents the locations for the two replicas of MTR equivalence that

are specified in our method through FPGA Editor.

3.3.2 Proposed Hardware Moving Target Defense

To prevent the malicious CAD tool from successfully sabotaging the original FPGA con-

figuration, we use the principle of MTD to develop the HMTD method. We assume that

the functionality of the module-to-replace (MTR) in the legacy system is known by the

FPGA deployment team, who is trusted. Our HMTD method replicates the MTR into

multiple copies CP0, CP1, · · · , CPj . We use the “RLOC" command to specify the relative

physical distance between two replicas in the user constraint file. For instance, we can

assign CP0 and CP1 to the two corners of the FPGA device by setting RLOC = X36Y61

and RLOC = X1Y60, respectively. Alternatively, we can utilize the FPGA Editor tool to

perform the similar operation. Figure 3.2 shows that two replicas of MTR equivalent are

successfully placed to two FPGA corners by our method.

In the next step, we add a low-cost, random number generator in the Rin unit to se-

lect two replicas of the function module to feed the N-bit inputs from U2 in the legacy

21

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

Replicate	functional	
module

CP0,	CP1,	…,	CPj

Specify	the	slice	location	
for	replicated	netlist

Randomly	select	two	
replicas	in	HMTD	to	

provide	inputs	and	read	
outputs

Examine	the	consistency	
of	outputs	from	two	

replicas

HDL	of	MTR

Continue	operation	or	terminate	FPGA	replacement

FIGURE 3.3: Flowchart of proposed hardware moving defense method.

system. This setting is essentially a power-gating technique to reduce the power con-

sumption. For sequential circuits, state restore will be required in order to use the input

gating technique. Note that the random number generator is implemented on the FPGA,

and thus the random selection is performed at runtime. The random number generator

also controls the Rout unit to choose which two replicas for the Trojan detection in the

consistency checking unit (CCU). Once the output inconsistency is found, the M-bit out-

put pins are grounded immediately and the flag for the Trojan detection is turned on. The

flowchart of our HMTD method is summarized in Fig. 3.3.

22

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

3.4 Experiment Results

3.4.1 Experimental Setup

The following experiments were performed on the Nexys-3 Board, which contains a Xil-

inx Spartan-6 XC6SLX16 CSG324C FPGA. This FPGA device includes 324 I/O pins (232

of which are user I/O pins) and 2,278 slices, each containing four 6-input LUTs and eight

flip-flops. We used the Xilinx ISE 14.1 version to synthesize, place and route the Verilog

HDL design files and generate bitstreams. The hardware overhead assessment was based

on the ISCAS’85 benchmark circuits. We inserted the hardware Trojans on the FPGA

device through two techniques: one is through the FPGA Editor, and the other is via edit-

ing the native circuit description file. Both of these techniques do not require changing

the Verilog HDL file of the function module. The slice assignment shown in the FPGA

Editor (see Fig. 3.4(a)) demonstrates that the FPGA CAD tool can successfully alter the

configuration of one unused FPGA slice without disturbing the logic netlist. Although a

native circuit description (.ncd) file is not readable, we can use an xdl program to translate

that .ncd file to a readable file. Figure 3.4(b) also demonstrates that the hardware Trojan

has been successfully placed in an un-occupied slice. We compared the Trojan resistance

strength of our method and the ATMR approach [13] in the following subsection.

3.4.2 Hardware Trojan Bypass Rate

We validated the proposed HTMD method on the Nexys-3 board. Whenever a Trojan

is detected, the flag light on the board will be turned on as shown in the right side of

23

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

(A) The FPGA Editor

(B) The .xdl file converted from a .ncd file

FIGURE 3.4: FPGA hardware Trojans inserted without disturbing the hard-
ware description file. The modified slice can be observed.

Fig. 3.3. To extensively assess the success rate of different FPGA hardware Trojan detec-

tion methods, we modeled the Trojan insertion and the detection methods in MATLAB.

24

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

0 2 4 6 8 10

Number of Hardware Trojans

0

0.02

0.04

0.06

0.08

0.1

0.12
T

ro
ja

n
 B

y
p
a
s
s
 R

a
te

ATMR, No.FPGA Slice = 50

Propsoed, No.FPGA Slice = 50

ATMR, No.FPGA Slice = 150

Proposed, No.FPGA Slice = 150

FIGURE 3.5: Hardware Trojan bypass rate versus number of hardware Tro-
jans inserted in the FPGA device.

We randomly selected 10 slices for hardware Trojan insertion. This operation was con-

ducted after the slices for the original design module were configured. The hardware

Trojan bypass rate is defined as the number of incorrect outputs, due to Trojans, over the

number of test cases.

The impact of the number of the hardware Trojans on the Trojan bypass rate is shown

in Fig. 3.5. As can be seen, for the range of 1 to 10 Trojans, the Trojan bypass rate almost

monotonically increases with the number of injected hardware Trojans. As the number

of Trojans increases, the probability for multiple replicas of the functional module simul-

taneously containing Trojans increases. Hence, comparison of the two copies’ outputs

gradually loses the Trojan detection capability, and thus the Trojan bypass rate increases.

We vary the number of FPGA slices to examine the impact of the FPGA size on the

25

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

hardware Trojan bypass rate. In Fig. 3.6, we can observe that the Trojan bypass rate for a

larger FPGA is lower than that for a smaller one. This is because the number of Trojans

placed in the FPGA device is fixed per each FPGA size. The chance for a Trojan slice

colliding with a design slice is higher in a smaller FPGA than in a larger one. The ATMR

method compares the two of three copies for the design module using a fixed algorithm,

which can only resist truly random Trojans. In contrast, our method randomly selects

any two replicas for Trojan detection at runtime; moreover, our method is capable of

assigning each replica to a specific location. Thus, the design location specified by our

method is not predictable to the CAD tool. Hence, the randomness and unpredictability

of our method strengthens the FPGA replacement resistance against the security threats

from the untrusted FPGA manufacturer and CAD tool vendor.

To have a comprehensive view, we plot the Trojan bypass rate versus the FPGA size

and the number of Trojans in Fig. 3.7. As shown, the 3D mesh sheet of our method is

lower than that of the ATMR method [13]. On average, our method reduced the Trojan

bypass rate by 61%.

3.4.3 Overhead on Hardware Cost and Performance

We applied the RPG scheme to the ISCAS’85 benchmark circuits. Because more unused

I/O pins lead to more overhead for pin grounding, we chose the benchmark circuits with

a small number of inputs/outputs. As shown in Table 3.1, the number of utilized LUTs

go as high as 40, whereas the number of occupied slices go up to 16. These hardware

implementations consume 0.044% more LUTs and 0.07% more slices, respectively.

After the FPGA place and route step, we measured the worst-case delay of the c432,

c1355, and c6288 benchmark circuits with and without the proposed HMTD method. As

26

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

50 100 150
Number of FPGA Slices

0

0.02

0.04

0.06

0.08

0.1

0.12
T

ro
ja

n
 B

y
p
a
s
s
 R

a
te

ATMR, No.Trojan = 5

Proposed, No.Trojan = 5

ATMR, No.Trojan = 10

Proposed, No.Trojan = 10

FIGURE 3.6: Impact of the number of FPGA slices on hardware Trojan bypass
rate.

TABLE 3.1: FPGA Overhead of Proposed Runtime Pin Grounding

Overhead\Circuits s298 s344 s444 s526 s1488
Increased No. LUTs 40 30 38 40 39
Increased No. Slices 12 6 11 12 16

we mentioned in Section IV.B, we manually added a physical distance between the repli-

cas of the functional module to thwart the Trojan attack from the CAD tool. The induced

separation may result in longer routing interconnects than the baseline. Depending how

the replicas are assigned to the FPGA slices and the amount of distance is added between

two copies, the delay overhead of our method varies. We recorded the minimum and

maximum delay overhead as observed in our case study. As shown in Fig. 3.8, the aver-

age minimum (maximum) delay overhead of HMTD is 37% (70%).

27

Chapter 3. Securing FPGA-Based Obsolete Component Replacement for Legacy Systems

T
ro

ja
n

 B
y
p

a
s
s
 R

a
te

Number of FPGA Slices Number of Hardware Trojans

0
150

0.02

0.04

10

0.06

0.08

8
100

0.1

6

0.12

4
2

50 0

Proposed

ATMR

FIGURE 3.7: Three-dimensional plot for the dependent factors for hardware
Trojan bypass rate.

FIGURE 3.8: The delay overhead of proposed HMTD applied on benchmark
circuits.

28

Chapter 4

FPGA-Oriented Moving Target Defense

against Security Threats from Malicious

FPGA Tools

4.1 Motivation

Field Programmable Gate Arrays (FPGAs) enter a rapid growth era due to their attrac-

tive flexibility and CMOS-compatible fabrication process. Because of the high demand

on the FPGA usage in data processing, industrial, automotive, consumer electronics, tele-

com, military & aerospace, FPGA market achieves a compound annual growth rate of

8.4% [31]. Global Market Insights predicts that the FPGA market size is expected to reach

9.98 billion US dollars by 2022 [31]. The increasing popularity of FPGA may drive more

attackers to compromise FPGA-based systems through various channels.

The work [32] highlights that FPGA security embraces four aspects: (1) the secure op-

erations conducted by FPGA devices, (2) the utilization of FPGAs for the system security

enhancement, (3) the secure bitstream delivery to FPGA devices, and (4) the exploitation

29

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

of FPGA devices as an attack surface of FPGA-based systems. The aspects (1) and (2) are

toward the benefits we could obtain by utilizing FPGAs. The programmable features of

FPGAs have been exploited to address the security challenges that ASIC chips are fac-

ing. For example, the embedded FPGA is used to perform locking key authentication [17,

33]. Whereas, FPGAs have their own security vulnerabilities. The surveys [34, 35] and

literatures [17, 36, 37] extensively discuss the aspects (3) and (4). If a FPGA device is

not carefully deployed its security vulnerability would eventually lead the FPGA-based

system to be compromised.

The security threats from malicious FPGA design software is paid much less attention

however, can cause serious problems. Here we use a simple example to demonstrate

how significantly attackers can impact the FPGA configuration through the exploitation

of a FPGA software. First, we connected a Xilinx FPGA board with a monitor through a

VGA cable. Next, we implemented a functional module in the FPGA device to draw a

"chess board" on a screen by sending a VGA signal to the monitor. Our attack goal was

to modify this "chess board" without disturbing the functional module in Verilog and the

user constraints for FPGA configuration.

In the process of the attack, we opened the project with the Xilinx FPGA editor, located

the slice that controls the VGA pins of the board, and then we only modified a single logic

function on that slice. Next, we generated the bitstream for the modified .ncd file output

from the FPGA editor and download the bitstream to the Xilinx FPGA. As a result, the

output picture became white bars, not a chess board. Meanwhile, the width of the bars

is doubled compared to the original picture. The pictures displayed on the monitor for

before and after attacks are shown in Figs. 4.1(a) and (b), respectively. In this demon-

stration, we manually performed the attack behaviors in the FPGA design suite, but the

30

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

(A) Before modification (B) After modification

FIGURE 4.1: Monitor displays (A) before and (B) after modification

attack operations can certainly be implemented in a stand-alone software.

4.1.1 Three Levels of Attacks

More precisely, this work assumes that three levels of attacks can take place due to the

malicious software implanted in the FPGA design suite.

• L-1: Based on attackers’ experiences, an attacker places hardware Trojans in the

most popular FPGA die area. At this level, the attacker does not have to have any

knowledge of the design to be configured on the FPGA.

• L-2: The attacker is able to extract information like which slices are utilized by the

current design from the FPGA placelist. Although the attack at this level does not

analyze the exact function of the design, the attack exploration space is significantly

smaller than the L-1 attacks.

31

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

• L-3: The malicious software can search for the identical portion of the design, which

may be protected with duplication technique, and insert the same Trojan to each

replica. The attack at this level is the most challenging one, but costing the attacker

more resource to guarantee the success of attacks.

4.2 Existing Solutions

Since the security threats associated with FPGAs [4, 13, 34–37] were identified, counter-

measures against those threats receive increasing attention. One category of countermea-

sure is to address the intellectual property (IP) theft issues during the FPGA deployment

phase [11, 27, 32, 35]. Another category is to resist the attacks originated from malicious

FPGA devices [38, 39]. The attacks on FPGAs in the existing work are mainly from un-

trusted IP designers, system integration engineers, or malicious end users [39]. Although

the FPGA vendors [40] adopt bit encryption, authentication, and key/register zeroization

techniques to prevent bitstreams from being tampered, those techniques do not thwart

the design tampering happened before the bitstream is generated by the FPGA software.

There are limited work addressing the security threats from malicious FPGA design soft-

ware, which could harm the integrity of a design running on a SRAM FPGA device [4].

4.3 Proposed Method

We exploit the principle of moving target defense (MTD) as a mean to proactively address

the security threats from malicious FPGA software. Different with the traditional MTD

methods applied in the domain of cyber security, our proposed FPGA-oriented moving

target defense (FOMTD) method explores the unpredictability of the way that a hardware

32

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

design is configured on FPGAs to deter attackers from precisely inserting hardware Tro-

jans. More specifically, the key idea of FOMTD is to make the output of FPGA placement

and routing unpredictable, such that attackers who mounts a malicious program on the

original FPGA design suite cannot easily alter the original implementation on a FPGA.

The proposed FOMTD is implemented by appending commands in user constraints file

and modifying the original Verilog design files.Note, our method does not guarantee to com-

pletely prevent all hardware intrusions but it will increase the difficulty of a Trojan successfully

landing on one (or more) of the FPGA slices occupied by the design.

The desired unpredictability can be achieved by the three defense lines provided by

our method. In the domain of hardware (i.e. FPGA), we exploit the following config-

uration resources to realize the FOMTD method: (i) the availability of multiple replicas

of the intended design, (ii) random selection of one replica for operation at runtime, (iii)

random designation of FPGA slice positions for the selected lookup tables (LUTs), and

(iv) hot-swappable submodules for runtime design assembling.

4.3.1 Defense Line 1 (DFL1): Slice Position Selection through User Con-

straints File

Method description

Instead of using default FPGA setting for placement and routing, we specify the slice po-

sitions on the FPGA die for the selected LUTs, so that the default design mapping on the

FPGA grid can be modified. Figure 4.2 shows the effect of the proposed defense line 1. By

specifying few LUTs (black squares in Fig. 4.2), we change the slice locations for the three

parts of the intended design. This specification can be performed by appending command

33

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

FIGURE 4.2: FPGA mapping modified by proposed defense line 1. Three
parts in different colors represent three partitions of the intended design.
Black squares are three LUT configurations. Proposed defense line 1 alters

the default LUT mapping on the FPGA grid.

to the user constraints file, which is typically used to specify pin and timing constraints.

Note, the selection of slice positions is conducted by FPGA users at the FPGA deployment stage,

which is after the implementation of the malicious FPGA software. Hence, attackers (malicious

software designers) will have hard time to decide where to place effective hardware Tro-

jans. Blindly inserting Trojans may not effectively impact the design on the FPGA.

Case study

We used the ISCAS benchmark circuit c6288 as an example to show the effect of slice

position specification. In the first case, we followed the default setting of the Xilinx ISE

14.1 to generate the placelist for c6288. In the second case, we chose one slice position for

four randomly selected LUTs (we refer this is the single-slice case). In the third case, three

slice locations are designated to twelves LUTs (we refer this is the triple-slice case). We can

observe the design placement details in the FPGA editor, which is available in the Xilinx

34

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

(A) Default setting (B) Single-slice-selection (C) triple-slice selection

FIGURE 4.3: Design placement observed from the Xilinx FPGA editor for (A)
default setting, (B) single-slice selection, and (C) triple-slice selection cases.

design suite.

Figure 4.3 shows the slice occupation results (red dots) for the three cases described

above. From Fig. 4.3 we can see, our defense line 1 indeed significantly changes the design

placement on the FPGA die. To quantify the location difference, we define a metric, non-

similarity rate, to assess the degree of changes that have been made by our defense line 1.

Non-similarity rate represents the ratio of the number of the LUT instances being placed

to a new position due to our method over the total number of slices in use. A higher non-

similarity rate obtained from less number of slice designations is better. In the case study

of c6288, the single-slice case achieves a non-similarity rate of 33.2% and the triple-slice

case increases the non-similarity rate to 35.9%. We expect that more slice specification can

allow us to further improve the non-similarity rate and thus enhance the unpredictability

of slice utilization.

35

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

Theoretical bound for defense line 1 thwarting different Trojan attacks

The baseline below is the original design without any protection. We assume that the

intended baseline design occupies φ slices, the entire FPGA die is composed of Φ user

controllable slices, and the control logic for replica selection is small enough (compared

to φ) to be ignored for the simplicity of analysis. If a hardware Trojan will impact the

design once it is triggered, we call a Trojan Hit. We define the hardware Trojan hit rate,

Γ, as the probability that a randomly-picked slice is indeed one of slices utilized by the

design. If an attacker blindly inserts a hardware Trojan to the FPGA die (i.e., blind attack),

the Trojan hit rate is equal to Eq. (4.1).

Γbaselinevs. blind attack
=
φ

Φ
(4.1)

When the attacker has knowledge of the commonly used slice area (i.e. L-1 attack),

the target FPGA area will be smaller than the entire FPGA die. We assume ξ ∈ (0, 1) is

the coefficient for how much Trojan insertion space is narrowed by the attacker based on

the attacker’s experience. Hereafter, we name ξ as the space coefficient of Trojan attack.

The non-linear function f(ξ) represents the degree of accuracy regarding whether the real

design placement matches to the attacker’s prediction. Now, the hardware Trojan hit rate

for the design without any protection against L-1 attack is calculated in Eq. (4.2). If f(ξ)

reaches its maximum value, the entire design will be covered in the attack space, and

Γbaselinevs. L−1
will decrease with the increasing space coefficient of Trojan attack ξ.

Γbaselinevs. L−1
=

φ

Φ′ =
f(ξ) ∗ φ
ξ ∗ Φ

(4.2)

36

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

When the L-2 attacker has the knowledge of the detailed slice utilization, each inserted

hardware Trojan will absolutely impact the original design because the Trojan exploration

space is equal to the injection space. This is expressed in Eq. (4.3). As the attacker has

more understanding on the placed design, the Γbaselinevs. L−3
will be equal to Eq. (4.3).

Γbaselinevs. L−2
=

φ

Φ′′ =
φ

φ
= 1 (4.3)

In contrast, our proposed defense line 1 (DFL1) does not use the default FPGA map-

ping settings. Thus, the target FPGA area remains as the entire FPGA die Φ. Our Trojan

hit rate turns to Eq. (4.4). Comparing Eq. (4.2) and Eq. (4.4) we can see that, the de-

nominator of Eq. (4.4) is larger than that in Eq. (4.2). Hence, our defense line 1 reduces

the Trojan hit rate in the scenario of L-1 attack. Once the attacker knows the exact slice

utilization, the proposed defense line 1 cannot thwart L-2 and L-3 attacks.

ΓDFL1 vs. L−1
=
f(ξ) ∗ φ

Φ
(4.4)

4.3.2 Defense Line 2 (DFL2): Pseudo-Random Replica Selection

Method description

FPGA has a nature of reconfiguration and redundancy. We exploit this nature to imple-

ment the principle of MTD on FPGAs. The design to be implemented on the FPGA is

first duplicated by n copies. However, only one of the replicas will be active at a time,

and the rest of the replicas are inactive by using input gating technique. The replica se-

lection and input gating are controlled by a pseudo-random selector, which is not a true

random number generator. This is because we only have a limited number of replicas

37

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

FIGURE 4.4: Pseudo-random replica selection provided by the proposed
method.

on the FPGA, and thus the range of the random number is not large. A user-defined ar-

bitrary logic function and a set of external inputs are good enough to pseudo-randomly

choose one of the replicas. Figure 4.4 shows the concept of our defense line 2. Note, in this

defense line, we do not have a comparison logic to examine the consistency among the n

replicas for the purpose of power saving. As the fact that which replica will be active is

determined after the FPGA configuration, an attacker (at L-1) needs to blindly place the

hardware Trojan to the entire FPGA die to make a successful attack.

Theoretical bound for defense line 2 thwarting different Trojan attacks

Figure 4.5 depicts an example of exploration expansion by our proposed defense line

2. A complete design (including replication) consists of multiple units. Because of the

slice position specification, the rough size of the Trojan exploration space SFOMTD can be

38

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

FIGURE 4.5: Hardware Trojan attack exploration space for (a) the design
placement with default FPGA setting, (b) the design protected with FOMTD

defense lines 1 and 2.

expressed by Eq. (4.5).

SFOMTD = max (|Xi −Xj|) ∗max (|Yi − Yj|) (4.5)

Compared to the baseline, our method achieves the theoretical worst-case hardware

Trojan hit rate for L-2 and L-3 attacks as described in Eqs. (4.6) and (4.7), respectively. If L-

2 attacks are taken place in the design, Γbaselinevs. L−2
increases to 1; in contrast, ΓDFL1&2 vs. L−2

remains low due to the expanded Trojan exploration space by the proposed defense line 2.

The exact Trojan hit rate depends on the size of the design unit for duplication, ν. Under

the condition of L-3 attack, our Trojan hit rate will not go beyond 1/n (theoretically the

worst-case hit rate is a uniform distribution of random replica selections). In our simula-

tion section, we observe that the actual Trojan hit rate of our method never reaches this

upper bound due to many random factors.

φ

SFOMTD

6 ΓDFL1&2 vs. L−2
6

φ

n ∗ ν + (φ− ν)
(4.6)

39

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

ΓDFL1&2 vs. L−3
6

φ

n ∗ φ
(=

1

n
) (4.7)

4.3.3 Defense Line 3 (DFL3): Runtime Design Assembling

Method description

Our defense line 3 is the hot-swappable submodule assembling technique, as shown in

Fig. 4.6. We partition the original design into m submodules and each submodule is du-

plicated by n times. In the moment of interest, only one replica of each submodule will be

assembled into a complete design. The pseudo-random selector is utilized to determine

which replica to choose at runtime. After a period of time, the selection of submodule

replicas will be changed without stopping the normal operation (i.e. hot-swappable as-

sembling). The total number of design configurations we can achieve is nm. This large

number of configurations further increases the difficulty for the attacker to recognize the

entire design for attack.

The hot-swappable assembling technique shown in Fig. 4.6 is directly applicable for

combinational circuits. We tailor this technique to make it suitable for sequential circuits.

As shown in Fig. 4.7, two styles are available for the circuit composed of combinational

logic and memory elements. In style I, we do not duplicate the registers, thus the sub-

module assembling technique for combinational and sequential circuits is the same. In

style II, the registers have replicas, too. To realize the hot-swappable feature, we copy

the content of active registers to the hot-swap registers (HS Reg. in Fig. 4.7) before the

runtime submodule swapping happens. Then, we load the value saved in HS Reg. to all

register replicas to resume the operation after runtime submodule swapping.

40

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

FIGURE 4.6: Hot-swappable submodule assembling provided by defense line
3.

FIGURE 4.7: Two styles of applying defense line 3 to sequential circuits.

41

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

Additional option 1: input gating. To thwart L-3 attacks, we could further strengthen

our defense line 3 by loosing the input gating and enabling two complete replicas ac-

tive, such that the two replicas can examine the consistency between their final outputs.

However, the enhanced defense capability comes with more power consumption.

Additional option 2: gate replacing on replicas. To better defeat L-3 attacks, we

enhance our defense line 3 by bringing diversity to the replicas for hot-swappable sub-

modules. In the work [39], the diversity on implementation is introduced by using differ-

ent hard macros, which are obtained by applying different constraint conditions during

FPGA synthesis. Inspired by the work [39], we create hard macros at gate level so that

we have more flexibility to facilitate the implementation of heterogeneous replicas for

submodules. Those gate-level hard macros are used to replace some gates in one of the

replicas. As a result, even if an attacker searches the same FPGA configuration pattern

between two replicas, the success rate of finding two identical copies for Trojan insertion

will be extremely low.

The flowchart for the proposed gate replacing on replicas is depicted in Fig. 4.8. First,

we randomly choose one (or more) type(s) of logic gates, for instance nand (c, a, b), in

one replica. Next, we apply the de Morgan’s laws to replace the chosen gate with other

types of logic gates, while maintaining the same Boolean function. For the 2-input nand

gate, we can replace it with or (c, ∼a, ∼b). Note, all the gate replacement is done in

the Verilog description. To prevent the FPGA synthesis tool from removing our gate

replacement during the logic optimization process, we implement the or (c, ∼a, ∼b) with

three customized hard macros, HM_OR (ā, b̄, c), HM_NOT (a, ā) and HM_NOT (b, b̄).

HM_OR and HM_NOT are defined as Verilog modules which will complete the logic OR

and inversion operations. By using hard macros, the gates for replacement can be mapped

42

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

FIGURE 4.8: Gate replacement for the security enhancement of defense line
3.

into one independent slice and they will not be merged with other LUT configuration.

We can conduct gate replacement for one or multiple replicas so that the identical LUT

configurations will be removed. Consequently, our enhanced defense line 3 is capable to

thwart L-3 attacks.

43

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

Theoretical bound for defense line 3 thwarting different Trojan attacks

With respect to L-2 attacks, the attacker knows which slices are occupied by the design but

cannot differentiate which submodule belongs to which replica. Hence, the target slice for

Trojan insertion is not clear. The attacker has to randomly chooses φ slices out of all the

occupied slices n ∗ ν + (φ− ν). Because defense line 3 changes the complete design by re-

assembling the submodules from different replicas, only the Trojan placed in the common

non-duplicated area (φ− ν) will lead to Trojan hit constantly. The corresponding Trojan

hit rate for this scenario is expressed in Eq. (4.8).

ΓDFL3 vs. L−2
=

(φ− ν)

n ∗ ν + (φ− ν)
(4.8)

In L-3 attacks, the attacker has full knowledge of which slices are configured for the

design with the defense line 3, but he/she could only form the complete design by guess-

ing which submodule replicas will be used. Without gate replacement, the corresponding

Trojan hit rate is shown in Eq. (4.9).

ΓDFL3 vs. L−3
=

(
(n− 1)m

nm

)sp

(4.9)

In which, m and n are the number of submodules per design and the number of de-

sign replicas, respectively. sp is the number of different hot-swapping configurations. As

the proposed defense line 3 changes design configuration over time, there are nm con-

figurations in total and (n− 1)m configurations do not contain the inserted Trojan. The

more swapping happens during the runtime operation, the less Trojan hit rate the attacker

could achieve.

44

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

4.4 Experimental Results

4.4.1 Experimental Setup

In the following experiments, we synthesized, placed and routed the Verilog HDL codes

for four ISCAS’85 and ISCAS’89 benchmark circuits through the Xilinx ISE 14.1 design

suite, and generated the corresponding bitstreams. Those bitstreams are specific for a Xil-

inx Spartan-6 XC6SLX16 FPGA. The detailed slice utilization of each circuit was analyzed

by our Python script to extract the occupied FPGA slice positions. We used MATLAB

programs to insert hardware Trojans blindly or purposely (depending on the experiment

goal) and then measured the hardware Trojan hit rate. We assume the Trojan inserted in

the design will be triggered and affect the original design function. The FPGA slice uti-

lization and worst-case delay were obtained from the tools available in the Xilinx design

suite.

4.4.2 Variation on FPGA Slice Utilization

Variation on the position of all the slices occupied by the design is critical to ensure the

high unpredictability of FPGA utilization and the success of our method. Hence, we first

examined the impact of our defense line 1 on the FPGA slice utilization. We compared

the positions (on the FPGA die) of all the slices used by the baseline design and the one

applied user-specified slice designations. The baseline means the original benchmark

circuits without any protection. The non-similarity rate defined in Section V.B.2) is adopted

as a metric for evaluation.

45

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

c432
1s

c1355
1s

c1908
1s

c6288
1s

c432
3s

c1355
3s

c1908
3s

c6288
3s

0.47

0.48

0.49

0.5

0.51

0.52

0.53

N
o
n
-s

im
ila

ri
ty

 R
a
te

FIGURE 4.9: Non-similarity rate achieved by proposed defense line 1. Non-
similarity rate between one slice-position designation case and the baseline.
The subscripts 1s and 3s means the location of a single slice or three slices are
specified in the user constraints file for the FPGA implementation. On each
bar, the central mark indicates the median, and the bottom and top edges of

the box indicate the 25th and 75th percentiles, respectively.

As shown in Fig. 4.9, compared to the baseline, our method achieves an average non-

similarity rate in the range of 0.49 to 0.51. This means, on average, about 50% of the LUT

instances for each benchmark circuit being placed to different positions on the FPGA die

due to our defense line 1. We further examined the variation on the different positions of

the occupied slices due to the different designated destinations on the FPGA die.

We repeated the simulation on non-similarity rate for sequential circuits and summa-

rized the median values for all non-similarity rates in Table 4.1. As shown, the proposed

defense line 1 approximately achieves a non-similarity rate of 0.5. The increase on the

number of user specified slice locations only slightly enhances the non-similarity rate.

Each non-similarity rate in Table 4.1 was based on five test cases. According to our case

study, we observe that the difference on the specified slide locations yields the average

46

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

TABLE 4.1: Medians of Non-Similarity Rate

Circuits c4321s c13551s c19081s c62881s Std. deviation
Median 0.49167 0.50595 0.49351 0.49123 0.0070
Circuits c4323s c13553s 19083s c62883s Std. deviation
Median 0.5000 0.50595 0.49351 0.50125 0.0051
Circuits s3442s s5262s s14882s s132072s Std. deviation
Median 0.48333 0.42105 0.4878 0.43367 0.0340

standard deviation on the median value in the range of 0.0070 to 0.034, which is very

small.

4.4.3 Assessment on Attack Resilience

The attack resilience of baseline and our method are compared in the subsections below.

Three attack levels mentioned in Section 4.1.1 are considered in the following assessment.

Hardware Trojan Hit Rate for L-1 Attacks

Recall that attackers who execute L-1 attacks do not know the locations of all the occupied

slides for the design of interest. We varied the range of attack exploration space from 5%

to 50% of the entire FPGA die in the following experiments. Figure 4.10 shows that the

proposed method achieves a lower hardware Trojan hit rate Γ (defined in Section 4.3.2)

than the baseline in a wide range of the attack exploration space. This is because our de-

fense line 1 makes the LUT placement unpredictable and not targetable for L-1 attackers.

The hardware Trojan hit rate for c432, c1908, c6288, s444, and s13207 first increases with

the increasing ξ because f(ξ) ∗ φ in Eq.(4.2), the number of occupied slices falling in the

attack space, grows faster than ξ ∗Φ, the attack space. As the maximum value of f(ξ) is 1,

Γbaseline starts to drop after ξ exceeds a threshold. In our case studies, the ξ thresholds for

47

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

0% 10% 20% 30% 40% 50%

Space coefficient of Trojan attacks, ξ

0

0.05

0.1

0.15

0.2

0.25

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

,
Γ c432-baseline

c432-proposed

(A) c432

0% 10% 20% 30% 40% 50%

Space coefficient of Trojan attacks, ξ

0

0.2

0.4

0.6

0.8

1

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

,
Γ c1355-baseline

c1355-proposed

(B) c1355

0% 10% 20% 30% 40% 50%

Space coefficient of Trojan attacks, ξ

0

0.1

0.2

0.3

0.4

0.5

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

,
Γ c1908-baseline

c1908-proposed

(C) c1908

0% 10% 20% 30% 40% 50%

Space coefficient of Trojan attacks, ξ

0

0.1

0.2

0.3

0.4

0.5

0.6

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

,
Γ

c6288-baseline

c6288-proposed

(D) c6288

0% 10% 20% 30% 40% 50%

Attack exploration space on FPGA

0

0.005

0.01

0.015

0.02

0.025

0.03

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

,
Γ

s444-baseline

s444-proposed

(E) s444

0% 10% 20% 30% 40% 50%

Attack exploration space on FPGA

0

0.05

0.1

0.15

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

,
Γ s13207-baseline

s13207-proposed

(F) s13207

FIGURE 4.10: Hardware Trojan hit rate reduction by proposed defense line 1
applied in the benchmark circuit in the condition of L-1 attacks.

48

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

c432, c1355, c1908, c6288, s444, and s13207 are 15%, 5%, 15%, 25%, 40%, and 35%, respec-

tively. The case of c1355 has a smaller ξ threshold than the other benchmark circuits, so

we do not observe that the corresponding Γbaseline increases with ξ. The hardware Trojan

hit rate of our method increases much slower with the increasing ξ than the baseline. Our

method reduces the hardware Trojan hit rate to 0.213, 0.8272, 0.4114, 0.49, 0.0036, 0.0752

for c432, c1355, c1908, c6288, s444, and s13207, respectively. When the attack exploration

space is large enough to cover the entire design placed on the FPGA die, the Trojan hit

rate of proposed method will be equal to the Trojon hit rate of the baseline eventually.

Hardware Trojan Hit Rate for L-2 Attack

Different with L-1 attacks, L-2 attacks are able to retrieve the exact locations of the oc-

cupied slices. Consequently, the baseline design does not have any resilience against

L-2 attacks. The proposed defense line 2 (DFL2) activates one complete design replica

according to the pseudo-random selection and defense line 3 (DFL3) assembles the hot-

swappable submodules at runtime . Thus, our method further increases the unpredictabil-

ity of the truly activated design copy and achieves a lower Trojan hit rate over the base-

line. As shown in Fig. 4.11(a), the baseline without any protection yields a hardware

Trojan hit rate of 1, which means each triggered Trojan is definitely located in one of the

occupied slices. In contrast, our DFL2 and DFL3 significantly reduce the Trojan hit rate

over the baseline especially for the small number of inserted Trojans. When more Trojans

are placed in the utilized FPGA slices, our Trojan hit rate eventually increases due to the

limited number of design replicas used (we used two replicas in our experiment). If more

copies are available, the slope of the Trojan hit rate will be less than what is shown in

Fig. 4.11(a).

49

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

1 2 3 4 5 6

Number of inserted hardware Trojans

0

0.2

0.4

0.6

0.8

1

H
a
rd

w
a
re

 T
ro

ja
n
 h

it
 r

a
te

Baseline
vs. L-2 attack

DFL2
vs. L-2 attack

DFL3
vs. L-2 attack

(A) c432

c432 c1355 c1908 c6288 s444 s1488 s13207

Benchmark circuits

0

0.2

0.4

0.6

0.8

1

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

Baseline
vs. L-2 attack

DFL2
vs. L-2 attack

DFL3
vs. L-2 attack

(B) Seven benchmark circuits

FIGURE 4.11: Hardware Trojan hit rate for (A) c432, and (B) seven benchmark
circuits suffering from four hardware Trojans inserted via L-2 attacks.

We examined the Trojan hit rate for seven benchmark circuits, which suffer from dif-

ferent numbers of Trojan insertions via L-2 attacks. Each hardware Trojan hit rate was

obtained from 10,000 test cases. The average Trojan hit rate of DFL2 (DFL3) is 69% (31%).

As shown in Fig. 4.11(b), the DFL2 reduces the hit rate by up to 40% over the baseline.

The reduction on the Trojan hit rate can be further improved by DFL3 up to 91%.

50

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

Hardware Trojan Hit Rate for L-3 Attack

The L-3 attack can recognize the multiple replicas of the design that will be implemented

on the FPGA by searching for the exact same or approximately similar LUT configuration.

We repeated the same experiments as we did for Section 4.4.3, except a different attack

level. As shown in Fig. 4.12(a), the Trojan hit rate for the design under L-3 attack increase

with the increasing number of Trojans, which is similar with that for the L-2 attack case.

However, the average Trojan hit rate of DFL2 (DFL3) increases to 73% (44%), which is

higher than that resisting L-2 attacks. As shown in Fig. 4.12(b), the DFL2 reduces the hit

rate by up to 35% over the baseline. The reduction on the Trojan hit rate can be further

improved by DFL3 up to 72%.

From Figs. 4.11(b) and 4.12(b), we can also conclude that L-3 attack indeed is more

powerful than L-2 attack. This is due to L-3 attack can search for the matched LUT con-

figuration pattern. We subtracted the Trojan hit rate for DFL3 against L-3 attack from

that against L-2 attacks and calculated the increase on the hit rate in Fig. 4.13. The peak

of Trojan hit rate increase appears at the number of inserted Trojans equal to 2. When

more Trojans are introduced to the design, the increase on Trojan hit rate gradually re-

duces. The reason for this phenomenon is, statistically, the number of exactly matched

LUT configurations due to the application of replicas is approximate to 2. This means, for

some cases in L-3 attack, two hardware Trojans can be respectively placed to two identi-

cally configured LUTs. Thus, those cases can successfully launch the Trojan without being

detected.

Figure 4.14(a) shows that the average number of exactly matched LUT configurations

per each benchmark circuit is close to 100 (i.e. 1). If we search for the LUT configuration

with similar format but different input/out pins (i.e approximate matching), the number of

51

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

1 2 3 4 5 6

Number of inserted hardware Trojans

0

0.2

0.4

0.6

0.8

1

H
a
rd

w
a
re

 T
ro

ja
n
 h

it
 r

a
te

Baseline
vs. L2 attack

DFL2
vs. L3 attack

DFL3
vs. L3 attack

(A) c432

c432 c1355 c1908 c6288 s444 s1488 s13207

Benchmark circuits

0

0.2

0.4

0.6

0.8

1

H
a

rd
w

a
re

 T
ro

ja
n

 h
it
 r

a
te

Baseline
vs. L-3 attack

DFL2
vs. L-3 attack

DFL3
vs. L-3 attack

(B) Seven benchmark circuits

FIGURE 4.12: Hardware Trojan hit rate for (A) c432, and (B) seven benchmark
circuits suffering from four hardware Trojans inserted via L-3 attacks.

matched cases increases. To address this issue, we apply the gate replacement technique

to the defense line 3. As can be seen from Fig. 4.14(a), our enhanced method can increase

the number of exact matching LUT configurations for two replicas. Now, the same LUT

configurations do not stand for the identical logic function for the benchmark circuit any

52

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

1 2 3 4 5 6

Number of inserted hardware Trojans

0

5

10

15

20

In
c
re

a
s
e
 o

n
 T

ro
ja

n
 h

it
 r

a
te

 (
%

)

c432

c6288

s444

s13207

FIGURE 4.13: Increase on hardware Trojan hit rate due to advanced attacks.

more. Therefore, when the attacker performs L-3 attacks, the Trojan hit rate due to L-3

attack can be reduced. Not only increasing the number of exact matching cases, our gate

replacement technique also increases the number of approximate matching patterns, as

shown in Fig. 4.14(b). As a result, our enhanced DFL3 reduces the hardware Trojan (HT)

hit rate. From Fig. 4.15 we can see, the proposed gate replacement technique reduce the

Trojan hit rate for different circuits. On average, our method makes the Trojan hit rate

decrease by 62% and 88% for the attacker searches for exact matching and approximate

matching configures, respectively.

4.4.4 Dependent Design Factors on Trojan Hit Rate

In proposed defense line 3, our method swaps the replicas of submodules at runtime.

We examined the impact of number of hot swaps on the Trojan hit rate. As depicted

in Figs. 4.16(a) and (b), a larger number of hot swaps used in the design yields a lower

hardware Trojan hit rate. However, as the number of inserted hardware Trojans increases,

53

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

c432 c1355 c1908 c6288

Benchmark circuits

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

E
x
a
c
t
M

a
tc

h
in

g

w/o gate replacement

w/ gate replacement

(A) Exact matching

c432 c1355 c1908 c6288

Benchmark circuits

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

A
p
p
ro

x
im

a
te

 M
a
tc

h
in

g

w/o gate replacement

w/ gate replacement

(B) Approximate matching

FIGURE 4.14: Comparison of number of Trojan hits for without and with gate
replacement to thwart L-3 pattern searching attack. (A) Exact matching and

(B) Approximate matching.

c432 c1355 c1908 c6288

Benchmark circuits

0

0.02

0.04

0.06

0.08

0.1

H
T

 H
it
 R

a
te

 b
y
 S

e
a
rc

h
in

g

fo
r

E
x
a
c
t
M

a
tc

h
in

g

w/o gate replacement

w/ gate replacement

(A) Exact matching

c432 c1355 c1908 c6288

Benchmark circuits

0

0.2

0.4

0.6

0.8

H
T

 H
it
 R

a
te

 b
y
 S

e
a
rc

h
in

g

fo
r

A
p
p
ro

x
im

a
te

 M
a
tc

h
in

g

w/o gate replacement

w/ gate replacement

(B) Approximate matching

FIGURE 4.15: Comparison of hardware Trojan hit rate for without or with
gate replacement to thwart L-3 pattern searching attack. (A) Exact matching

and (B) Approximate matching.

the Trojan hit rate reduced by hot swapping gradually decreases. This conclusion applies

to all benchmark circuits we tested, which is confirmed in Figs. 4.17(a) and (b).

54

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

1 2 3 4 5 6

Number of inserted hardware Trojans

0

20

40

60

80

100

R
e

d
u

c
ti
o

n
 o

n
 h

a
rd

w
a

re
 T

ro
ja

n

h
it
 r

a
te

 o
v
e

r
n

o
 s

w
a

p
p

in
g

 (
%

)

2 hot swaps

4 hot swaps

6 hot swaps

8 hot swaps

(A) L-2 attack

1 2 3 4 5 6

Number of inserted hardware Trojans

0

20

40

60

80

100

R
e

d
u

c
ti
o

n
 o

n
 h

a
rd

w
a

re
 T

ro
ja

n

h
it
 r

a
te

 o
v
e

r
n

o
 s

w
a

p
p

in
g

 (
%

)

2 hot swaps

4 hot swaps

6 hot swaps

8 hot swaps

(B) L-3 attack

FIGURE 4.16: Impact of number of hot swaps on hardware Trojan hit rate for
c432 under (A) L-2 attack, and (B) L-3 attack.

2 4 6 8

Number of hot swaps

0

20

40

60

80

100

R
e
d
u
c
ti
o
n
 o

n
 h

a
rd

w
a
re

 T
ro

ja
n

h
it
 r

a
te

 (
%

)

s13207

s1488

s444

c6288

c1908

c1355

c432

(A) L-2 attack

2 4 6 8

Number of hot swaps

0

20

40

60

80

100

R
e
d
u
c
ti
o
n
 o

n
 h

a
rd

w
a
re

 T
ro

ja
n

h
it
 r

a
te

 (
%

)

s13207

s1488

s444

c6288

c1908

c1355

c432

(B) L-3 attack

FIGURE 4.17: Impact of number of hot swaps on hardware Trojan hit rate for
seven benchmark circuits affected by four hardware Trojans inserted via (A)

L-2 attack, and (B) L-3 attack.

4.4.5 Assessment on Hardware Cost, Delay and Power

Hardware Utilization

Table 4.2 summarize the number of utilized LUTs for different methods. Since the pro-

posed defense line 1 only changes the location of designated slices, on average, our

55

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

TABLE 4.2: Number of FPGA LUTs utilized by different methods.

Circuits c432 c1355 c1908 c6288 s444 s1488 s13207
Baseline 58 62 58 530 33 117 180
Defense
line 1 58 62 59 530 33 117 181

Defense
line 2 158 156 178 1123 67 261 429

Defense
line 3.G 173 167 216 1157 84 296 443

Defense
line 3.NG 110 158 181 1118 96 259 433

method consumes 0.33% more LUTs than the baseline. In the proposed defense line 2,

we duplicated the design under protection once and utilized a pseudo-random selection

unit for replica selection. The unselected replica is muted through input gating. For the

small circuits, the increase on the LUT utilization could be large due to the relative large

size of pseudo-random selection and input gating. However, the object for protection is

large, the FPGA overhead can be reduced through optimization. The LUT overheads for

the largest combinational circuit c6288 and sequential circuit s13207 in our case studies

are 111.89% and 138.33%, respectively. During the hot-swapping process, the proposed

defense line 3 interleaves multiple sections of the original design and its replica. In ad-

dition to the primary inputs, the input gating technique is also applied to the inputs for

hot-swappable submodules. As a result, the LUT overheads for c6288 and s13207 in-

crease to 116.79% and 145%, respectively. When we remove the input gating (i.e. NG)

option, the corresponding overheads on utilized LUTs for the largest circuits are reduced

to 10.94% and 140.56%, respectively. Certainly, removing the input gating will cost more

power consumption. Although our method (defense line 3) incurs similar LUT utiliza-

tion for double modular redundancy, our runtime replica selection ensures lower power

consumption than DMR and provides good unpredictability.

56

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

TABLE 4.3: FPGA Total Power Consumption (mW) by Different Methods

Circuits Baseline Defense line 2 Defense line 3
c432 10.37 (100%) 11.05 (107%) 11.82 (114%)
c1355 48.66 (100%) 50.56 (104%) 50.56 (104%)
c1908 40.14 (100%) 42.50 (106%) 43.56 (109%)
c6288 217.41 (100%) 232.75 (107%) 233.67 (107%)
s444 20.01 (100%) 21.68 (108%) 21.85 (109%)
s1488 12.50 (100%) 15.25 (122%) 15.56 (124%)
s13207 303.33 (100%) 329.03 (108%) 335.07 (110%)

Power Consumption

We synthesized the Verilog code for the four benchmark circuits in the Synopsys Design

Compiler. The clock frequency was set to 100 MHz for all the designs. We measured the

power consumption in the tool Design Compiler and reported in Table 4.3. On average,

the proposed defense line 2 leads to an increase on total power of 8.86% over the base-

line. Our defense line 3 with input gating provides better resilience against advanced

attacks, at the cost of consuming 11% more total power, on average, than the baseline.

The increased power consumption is due to the pseudo-random selection and input gat-

ing logic, as well as the multiplexers before the final outputs.

Worst-case Delay

We measured the worst-case delays for different designs using the PlanAhead tool in

Xilinx ISE 14.1 design suite. As shown in Table 4.4, slice designation used in the proposed

defense line 1 could lead to more or less worst-case delay, depending on where the slice

is designated. To examine the impact of the slice designation on the worst-case delay, we

57

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

TABLE 4.4: Comparison of worst-case delay. Unit: ns

Circuits c432 c1355 c1908 c6288 s444 s1488 s13207
Baseline 5.659 4.677 5.241 10.181 1.43 4.105 3.328

Defense line 1

single-slice
designation

case 1 5.713 4.677 5.500 10.128 1.314 4.051 3.328
case 2 5.603 4.677 5.458 10.358 1.322 3.997 3.274
case 3 5.549 4.677 5.322 10.18 1.43 3.947 3.274
case 4 5.711 4.622 5.257 10.013 1.322 3.979 3.274
case 5 5.657 4.679 5.278 9.905 1.376 4.049 3.328
+/- delay -1.94%∼0.95% -1.18%∼0 0∼0.49% -1.65%∼1.74% -0.81%∼0 -3.85%∼0 1.62%∼0

triple-slice
designation

case 1 5.607 4.57 5.287 10.234 1.378 4.009 3.272
case 2 5.715 4.731 5.406 9.966 1.378 3.979 3.328
case 3 5.553 4.679 5.335 9.979 1.378 4.049 3.328
case 4 5.661 4.677 5.448 10.51 1.378 4.049 3.328
case 5 5.606 4.669 5.334 9.899 1.322 4.009 3.272
+/- delay -0.96%∼1.93% 0%∼3.52% 0∼3.05% -3.27%∼2.7% -4.06%∼0 -0.75%∼1% 0%∼1.17%

Defense line 2 6.164
(+8.92%)

5.249
(+12.23%)

5.702
(+8.80%)

10.612
(+4.23%)

1.578
(+10.35%)

4.699
(+14.47%)

3.900
(+17.19%)

Defense line 3 6.528
(+15.36%)

5.707
(+22.02%)

6.177
(+17.86%)

10.925
(+7.31%)

1.637
(+14.48%)

4.785
(+16.57%)

3.900
(+18.81%)

varied the number of designated slices from 1 to 3, and performed five test cases for each

designation condition. Based on our case studies, the proposed defense line 1 induces

a delay overhead as large as 1.74% and 3.52% for the single-slice designation and triple-

slice designation, respectively. Compared to the baseline, our defense line 2 leads to the

worst-case delay increase in the range of 4.23% to 17.19% for different benchmark circuits.

Due to the hot-swapple logic, the delay overhead induced by the proposed defense line 3

can be as high as 22.02%.

4.4.6 Comparing Proposed FOMTD with Static Trojan Detection Method

In this section, we compare our proposed moving target defense method with a static

Trojan detection method, which is based on double modular redundancy (DMR). The

DMR based static Trojan detection increases the number of LUTs. Even though the at-

tacker who is performing L-2 attacks can see the utilized LUTs, the chance of hitting two

identical LUTs is low. Some Trojans inserted on the replica comparison logic will not be

58

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

Proposed DFL3 DMR
0

0.2

0.4

0.6

0.8

1

H
a
rd

w
a
re

 T
ro

ja
n
 h

it
 r

a
te

c1355

c1908

c6288

s1488

s13207

(A) L-2 attacks

Proposed DFL3 DMR
0

0.2

0.4

0.6

0.8

1

H
a
rd

w
a
re

 T
ro

ja
n
 h

it
 r

a
te

c1355

c1908

c6288

s1488

s13207

(B) L-3 attacks

FIGURE 4.18: Comparison of hardware Trojan hit rate for proposed defense
line 3 and DMR affected by four Trojans inserted via (A) L-2 and (B) L-3 at-

tacks.

detected by DMR. Therefore, the Trojan hit rate cannot be reduced to zero. When we ad-

vance the attack method to L-3 attack, our defense line 3 effectively reduces the Trojan

hit rate. Together with the runtime hot-swapping feature, fewer number of exact match-

ing LUT configurations available in the netlist of our method benefits us to reduce the

success rate of a Trojan inserted by L-2 and L-3 attacks. Figures 4.18(a) and (b) indicate

that our method achieves a lower Trojan hit rate than DMR. On average, our defense line

3 reduces the Trojan hit rate by 63.25% and 42.51% against L-2 and L-3 attacks, respec-

tively. Indeed, L-3 attack can search for the identical LUT configurations; unfortunately,

the number of exact matching LUT configurations is not high in FPGA mapping (which

is different with ASIC design). Figure 4.19 shows that our defense line 3 can effectively

reduce the number of exact matching cases over DMR. Thus, our defense line 3 obtains a

better attack resilience than DMR. Defense line 3 also reduces the power consumption, as

indicated in Fig. 4.20.

59

Chapter 4. FPGA-Oriented Moving Target Defense against Security Threats from

Malicious FPGA Tools

c1355 c1908 c6288 s1488 s13207
1

1.2

1.4

1.6

1.8

2

2.2
A

v
e

ra
g

e
 N

u
m

b
e
r

o
f

E
x
a
c
t
M

a
tc

h
in

g
Proposed DFL3

DMR

FIGURE 4.19: Comparison of number of exact matching on LUT configura-
tion.

FIGURE 4.20: Comparison of power consumption between proposed DFL3
and DMR.

60

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The study and usage of FPGA systems have reached a very high level. FPGAs are able

to work as crucial components to build up large complicated electronic systems and they

have played important roles in the applications of many fields including civil use, indus-

try, military, etc. We should keep sober on the dramatic increasing trend of the popu-

larity of FPGA systems because it can also attract attackers’ attention for high improper

benefits. To protect FPGAs from malicious attack and also maintain a safe operating en-

vironment for them, many defense schemes have been proposed. However, most of the

existing technologies ignore one blind spot in the whole FPGA supply chain, which is

the potential security threat from FPGA design software that is commonly called CAD

tool. In this thesis, we fill the gap to reveal the CAD-based security threats and exploit

the principles of moving target defense to propose a series of countermeasures against

the potential attacks.

In Chapter 3, we validate the feasibility of pin grounding and further extends it to a

runtime scheme. Our method not only grounds the FPGA I/O pins at the configuration

61

Chapter 5. Conclusion and Future Work

time, but it also checks the pin status during the operation time. To thwart the FPGA

Trojan configured by an untrusted FPGA vendor or malicious CAD tools, we propose

an HMTD method. In addition to replicating the functional module to replace the obso-

lete component for the legacy system, our method further specifies the relative physical

distance between two replicas in the FPGA user constraint file and performs output com-

parison from two randomly selected replicas. Because the CAD tool cannot foresee the

user constraint file, our method can effectively detect FPGA Trojans inserted by the CAD

tool through implicit settings at the development time of that tool. Our experimental re-

sults show that the proposed HMTD method reduces the hardware Trojan bypass rate by

61% (on average) lower than the existing ATMR method. Our RPG scheme increases the

FPGA utilization rate below 0.1%.

In Chapter 4, we introduce the proposed FOMTD, which is composed of three de-

fense lines to defend three levels of attacks in terms of the level of attacker’s knowledge

to the design. Experiment results show that proposed FOMTD can effectively reduce

the hardware Trojan hit rate with very reasonable overhead. More precisely, defense line

one of FOMTD countermeasure reduces the hardware Trojan hit rate of level one attack

to as low as 0.36% with only 0.33% more LUT consumption. Defense line two further

reduces the Trojan hit rate up to 40% (35%) over the baseline for level two attack (level

three attack) while consumes 14.68% more power. Defense line three reduces the Trojan

hit rate up to 91% (72%) for level two attack (level three attack) with 15.51% more power

cost. For the overhead of worst-case delay, the measurements vary because of the differ-

ent slice designations. However, the highest delay increment for all the test cases is still

under 23%. Comparing to DMR, our proposed defense two consumes less power and

defense three has a better effect in controlling the hardware Trojan hit rate. Furthermore,

62

Chapter 5. Conclusion and Future Work

proposed enhancement of losing input gating of defense line three can achieve an even

better security performance and the gate replacing enhancement can significantly miti-

gate the ability of attackers to locate identical locations for multiple-Trojan insertion. On

average, our method makes the Trojan hit rate decrease by 62% and 88% for the attacker

searches for exact matching and approximate matching configures, respectively. When

advanced attacks is further made, our defense lines maintain the hit rate as low as 35%.

Considering the significant improvement on the resilience on Trojan attacks, the overhead

of our method is moderate and acceptable for security critical applications.

5.2 Future Work

5.2.1 Reduce the Delay Overhead Caused by Implementing HMTD

In Chapter 3, we introduced a hardware MTD method to thwart the attacks from mali-

cious CAD tool. One limitation of the scheme is the delay overhead. In the future work,

more attention can be paid to optimize the timing problem of HMTD while keeping the

effect of it on limiting the hardware Trojan bypass rate.

5.2.2 Applying the information of LUT location to bitstream encryp-

tion

In both the countermeasures we introduced in Chapter 3 and 4, LUT location assignment

is an important technique for achieving the effect of protection. In the future study, one

possible defense of encrypting bitstream with physical location information can be tried

to investigate. In this case, the bitstream encrypted by the location information key can

63

Chapter 5. Conclusion and Future Work

and only can be decrypted when running in the FPGA device which is constructed with

the same location information. This “one-to-one" cryptography procedure can get rid of

the transition process of the key and in this way, there is no need to worry about data

leaking during the key propagation.

64

Appendix A

Source Codes for Defense Line 1 of
FPGA-Oriented Moving Target Defense

A.1 Commands in the User Constraints File of Benchmark
Circuit c432

INST "Mxor_N227_xo<0>1" BEL = C5LUT;
INST "Mxor_N227_xo<0>1" LOC = SLICE_X0Y61;
INST "Mxor_N239_xo<0>1" BEL = D5LUT;
INST "Mxor_N239_xo<0>1" LOC = SLICE_X0Y61;
INST "out3_SW0" BEL = B6LUT;
INST "out3_SW0" LOC = SLICE_X0Y61;
INST "out5_SW0" BEL = A6LUT;
INST "out5_SW0" LOC = SLICE_X0Y61;
INST "out181" BEL = D6LUT;
INST "out181" LOC = SLICE_X37Y61;
INST "out1811" BEL = C6LUT;
INST "out1811" LOC = SLICE_X37Y61;
INST "Mxor_N251_xo<0>1" BEL = A6LUT;
INST "Mxor_N251_xo<0>1" LOC = SLICE_X37Y61;
INST "N4211_SW0" BEL = B6LUT;
INST "N4211_SW0" LOC = SLICE_X37Y61;
INST "N3291" BEL = D6LUT;
INST "N3291" LOC = SLICE_X18Y61;
INST "out1814" BEL = C6LUT;
INST "out1814" LOC = SLICE_X18Y61;
INST "N432" BEL = A6LUT;
INST "N432" LOC = SLICE_X18Y61;
INST "Mxor_N247_xo<0>1" BEL = B5LUT;
INST "Mxor_N247_xo<0>1" LOC = SLICE_X18Y61;

65

Appendix A. Source Codes for Defense Line 1 of FPGA-Oriented Moving Target Defense

A.2 Commands in the User Constraints File of Benchmark
Circuit c6288

INST "n1143_SW0" BEL = B6LUT;
INST "n1143_SW0" LOC = SLICE_X0Y61;
INST "n1155_SW0" BEL = A6LUT;
INST "n1155_SW0" LOC = SLICE_X0Y61;
INST "n1267" BEL = C6LUT;
INST "n1267" LOC = SLICE_X0Y61;
INST "n1271" BEL = D5LUT;
INST "n1271" LOC = SLICE_X0Y61;
INST "n1145_SW0" BEL = A6LUT;
INST "n1145_SW0" LOC = SLICE_X37Y61;
INST "n1721" BEL = B6LUT;
INST "n1721" LOC = SLICE_X37Y61;
INST "n1273" BEL = C5LUT;
INST "n1273" LOC = SLICE_X37Y61;
INST "n1805" BEL = D5LUT;
INST "n1805" LOC = SLICE_X37Y61;
INST "n1139_SW0" BEL = D6LUT;
INST "n1139_SW0" LOC = SLICE_X18Y61;
INST "n1153_SW0" BEL = C6LUT;
INST "n1153_SW0" LOC = SLICE_X18Y61;
INST "n1265" BEL = B5LUT;
INST "n1265" LOC = SLICE_X18Y61;
INST "n1697" BEL = A6LUT;
INST "n1697" LOC = SLICE_X18Y61;

A.3 Commands in the User Constraints File of Benchmark
Circuit s444

INST "G571" BEL = B5LUT;
INST "G571" LOC = SLICE_X0Y61;
INST "G801" BEL = C6LUT;
INST "G801" LOC = SLICE_X0Y61;
INST "G1111" BEL = D6LUT;
INST "G1111" LOC = SLICE_X0Y61;
INST "G371" BEL = C6LUT;

66

Appendix A. Source Codes for Defense Line 1 of FPGA-Oriented Moving Target Defense

INST "G371" LOC = SLICE_X37Y61;
INST "G921" BEL = B6LUT;
INST "G921" LOC = SLICE_X37Y61;
INST "G451" BEL = A6LUT;
INST "G451" LOC = SLICE_X37Y61;
INST "G1101" BEL = C6LUT;
INST "G1101" LOC = SLICE_X18Y61;
INST "G411" BEL = D6LUT;
INST "G411" LOC = SLICE_X18Y61;
INST "G1011" BEL = A6LUT;
INST "G1011" LOC = SLICE_X18Y61;

A.4 Commands in the User Constraints File of Benchmark
Circuit s13207

INST "g43741" BEL = D6LUT;
INST "g43741" LOC = SLICE_X0Y61;
INST "g55371" BEL = C6LUT;
INST "g55371" LOC = SLICE_X0Y61;
INST "g50961" BEL = A6LUT;
INST "g50961" LOC = SLICE_X0Y61;
INST "g56984_SW0" BEL = B6LUT;
INST "g56984_SW0" LOC = SLICE_X0Y61;
INST "g35151" BEL = A6LUT;
INST "g35151" LOC = SLICE_X37Y61;
INST "g35152" BEL = C6LUT;
INST "g35152" LOC = SLICE_X37Y61;
INST "g46761" BEL = B6LUT;
INST "g46761" LOC = SLICE_X37Y61;
INST "g48681" BEL = D6LUT;
INST "g48681" LOC = SLICE_X37Y61;
INST "g56721" BEL = A6LUT;
INST "g56721" LOC = SLICE_X18Y61;
INST "g61201" BEL = B6LUT;
INST "g61201" LOC = SLICE_X18Y61;
INST "g60031" BEL = C5LUT;
INST "g60031" LOC = SLICE_X18Y61;
INST "g64601" BEL = D5LUT;
INST "g64601" LOC = SLICE_X18Y61;

67

Appendix B

Source Codes for Defense Line 2 of
FPGA-Oriented Moving Target Defense

B.1 Verilog Implementation on Benchmark Circuit c432

module c432_DMRrandom_gating(N1_1, N1_2, N4,N8,N11,N14,N17,N21,N24,N27,
N30,N34,N37,N40,N43,N47,N50,N53,N56,N60,N63,N66,N69,N73,N76,N79,N82,N86,
N89,N92,N95,N99,N102,N105,N108,N112,N115,N223,N329,N370,N421,N430,N431,N432);
input N1_1, N1_2, N4,N8,N11,N14,N17,N21,N24,N27,N30,N34,N37,N40,N43,N47,N50,
N53,N56,N60,N63,N66,N69,N73,N76,N79,N82,N86,N89,N92,N95,N99,N102,N105,N108,
N112,N115;
output N223,N329,N370,N421,N430,N431,N432;
wire sel;
c432_basic_gating copy1(sel & N1_1,sel & N4,sel & N8,sel & N11,sel & N14,sel & N17,sel
& N21,sel & N24,sel & N27,sel & N30,sel & N34,sel & N37,sel & N40,sel & N43,sel &
N47,sel & N50,sel & N53,sel & N56,sel & N60,sel & N63,sel & N66,sel & N69,sel & N73,sel
& N76,sel & N79,sel & N82,sel & N86,sel & N89,sel & N92,sel & N95, sel & N99,sel &
N102,sel & N105,sel & N108,sel & N112,sel & N115, N223_1, N329_1, N370_1, N421_1,
N430_1, N431_1, N432_1);
c432_basic_gating copy2(∼sel & N1_2,∼sel & N4,∼sel & N8,∼sel & N11,∼sel & N14,∼sel
& N17,∼sel & N21,∼sel & N24,∼sel & N27,∼sel & N30,∼sel & N34,∼sel & N37,∼sel
& N40,∼sel & N43,∼sel & N47,∼sel & N50,∼sel & N53,∼sel & N56,∼sel & N60,∼sel
& N63,∼sel & N66,∼sel & N69,∼sel & N73,∼sel & N76,∼sel & N79,∼sel & N82,∼sel
& N86,∼sel & N89,∼sel & N92,∼sel & N95,∼sel & N99,∼sel & N102,∼sel & N105,∼sel
& N108,∼sel & N112,∼sel & N115, N223_2, N329_2, N370_2, N421_2, N430_2, N431_2,
N432_2);

assign sel = N8 ∧ N60;
assign N223 = sel? N223_1 : N223_2;
assign N329 = sel? N329_1 : N329_2;
assign N370 = sel? N370_1 : N370_2;

68

Appendix B. Source Codes for Defense Line 2 of FPGA-Oriented Moving Target Defense

assign N421 = sel? N421_1 : N421_2;
assign N430 = sel? N430_1 : N430_2;
assign N431 = sel? N431_1 : N431_2;
assign N432 = sel? N432_1 : N432_2;

endmodule

B.2 Verilog Implementation on Benchmark Circuit s444

module s444_DMRRandom_gating(input blif_clk_net,
input blif_reset_net,
input G0_1,
input G0_2,
input G1,
input G2,
output G118,
output G167,
output G107,
output G119,
output G168,
output G108);

wire sel;
s444_bench_gating copy1(blif_clk_net, blif_reset_net, sel & G0_1, sel & G1, sel & G2,
G118_1, G167_1, G107_1, G119_1, G168_1, G108_1);
s444_bench_gating copy2(blif_clk_net, blif_reset_net, ∼sel & G0_2, ∼sel & G1, ∼sel &
G2, G118_2, G167_2, G107_2, G119_2, G168_2, G108_2);
reg SEL;
always @(posedge blif_clk_net)
begin

if (blif_reset_net == 1’b1)
SEL = 0;
else
SEL = G1 ∧ G2;

end
assign sel = SEL;
assign G118 = sel? G118_1 : G118_2;
assign G167 = sel? G167_1 : G167_2;
assign G107 = sel? G107_1 : G107_2;
assign G119 = sel? G119_1 : G119_2;
assign G168 = sel? G168_1 : G168_2;

69

Appendix B. Source Codes for Defense Line 2 of FPGA-Oriented Moving Target Defense

assign G108 = sel? G108_1 : G108_2;
endmodule

70

Appendix C

Source Codes for Defense Line 3 of
FPGA-Oriented Moving Target Defense

C.1 Verilog Implementation on Benchmark Circuit c432

C.1.1 Top-Level Control Logic

module c432_AsseDMR_gating_4sec_all_input_gating(N1_1, N1_2, N4,N8,N11,N14,N17,
N21,N24,N27,N30,N34,N37,N40,N43,N47,N50,N53,N56,N60,N63,N66,N69,N73,N76,N79,
N82,N86,N89,N92,N95,N99,N102,N105,N108,N112,N115,N223,N329,N370,N421,N430,
N431,N432);
parameter NUMSUB = 4;
input N1_1, N1_2,N4,N8,N11,N14,N17,N21,N24,N27,N30,N34,N37,N40,N43,N47,N50,
N53,N56,N60,N63,N66,N69,N73,N76,N79,N82,N86,N89,N92,N95,N99,N102,N105,N108,
N112,N115;
output N223,N329,N370,N421,N430,N431,N432;
wire N223,N329,N370,N421,N430,N431,N432;
wire[NUMSUB-1:0] sel;
wire copysel;
wire[NUMSUB-1:0] NodeOut1, NodeOut2;
c432_submod_gating_4 copy1(copysel & N1_1,copysel & N4,copysel & N8,copysel & N11,
copysel & N14,copysel & N17,copysel & N21,copysel & N24,copysel & N27,copysel &
N30, copysel & N34,copysel & N37,copysel & N40,copysel & N43,copysel & N47,copysel
& N50,copysel & N53,copysel & N56,copysel & N60,copysel & N63, copysel & N66,copysel
& N69,copysel & N73,copysel & N76,copysel & N79,copysel & N82,copysel & N86,copysel
& N89,copysel & N92,copysel & N95, copysel & N99,copysel & N102,copysel & N105,
copysel & N108,copysel & N112,copysel & N115, N223_1, N329_1, N370_1, N421_1, N430_1,
N431_1, N432_1, sel, copysel, NodeOut2, NodeOut1);
c432_submod_gating_4 copy2(∼copysel & N1_2,∼copysel & N4,∼copysel & N8,∼copysel
& N11,∼copysel & N14,∼copysel & N17,∼copysel & N21,∼copysel & N24,∼copysel &

71

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

N27,∼copysel & N30, ∼copysel & N34,∼copysel & N37,∼copysel & N40,∼copysel &
N43,∼copysel & N47,∼copysel & N50,∼copysel & N53,∼copysel & N56,∼copysel & N60,
∼copysel & N63, ∼copysel & N66,∼copysel & N69,∼copysel & N73,∼copysel & N76,
∼copysel & N79,∼copysel & N82,∼copysel & N86,∼copysel & N89,∼copysel & N92,
∼copysel & N95, ∼copysel & N99,∼copysel & N102,∼copysel & N105,∼copysel & N108,
∼copysel & N112,∼copysel & N115, N223_2, N329_2, N370_2, N421_2, N430_2, N431_2,
N432_2, sel, ∼copysel, NodeOut1, NodeOut2);

assign sel[0]= N34 & N37;
assign sel[1]= N63 ∧ N66;
assign sel[2]= N56 ∧ N60;
assign sel[3]= N73 ∼∧ N76;
assign copysel = N8 ∧ N60;

wire [6:0] copy1out, copy2out;
assign copy1out = {N223_1, N329_1, N370_1, N421_1, N430_1, N431_1, N432_1};
assign copy2out = {N223_2, N329_2, N370_2, N421_2, N430_2, N431_2, N432_2};
assign {N223,N329,N370,N421,N430,N431,N432} = copysel? copy1out : copy2out;

endmodule

C.1.2 Modified Instance

‘define CASE1
//‘define CASE2
//‘define CASE3
//‘define CASE4
//‘define CASE5
module c432_submod_gating_4 (N1,N4,N8,N11,N14,N17,N21,N24,N27,N30, N34,N37,
N40,N43,N47,N50,N53,N56,N60,N63, N66,N69,N73,N76,N79,N82,N86,N89,N92,N95,
N99, N102,N105,N108,N112,N115,N223,N329,N370,N421, N430,N431,N432, sel, copysel,
NodeIn, NodeOut);
input N1,N4,N8,N11,N14,N17,N21,N24,N27,N30, N34,N37,N40,N43,N47,N50,N53,N56,
N60, N63, N66,N69,N73,N76,N79,N82,N86,N89,N92,N95, N99,N102,N105,N108,N112,
N115;
input copysel;
output N223,N329,N370,N421,N430,N431,N432;
wire N118,N119,N122,N123,N126,N127,N130,N131,N134,N135, N138,N139,N142,N143,
N146,N147,N150,N151,N154,N157, N158,N159,N162,N165,N168,N171,N174,N177,N180,
N183, N184,N185,N186,N187,N188,N189,N190,N191,N192,N193, N194,N195,N196,N197,
N198,N199,N203,N213,N224,N227, N230,N233,N236,N239,N242,N243,N246,N247,N250,
N251, N254,N255,N256,N257,N258,N259,N260,N263,N264,N267, N270,N273,N276,N279,
N282,N285,N288,N289,N290,N291, N292,N293,N294,N295,N296,N300,N301,N302,N303,

72

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

N304, N305,N306,N307,N308,N309,N319,N330,N331,N332,N333, N334,N335,N336,N337,
N338,N339,N340,N341,N342,N343, N344,N345,N346,N347,N348,N349,N350,N351,N352,
N353, N354,N355,N356,N357,N360,N371,N372,N373,N374,N375, N376,N377,N378,N379,
N380,N381,N386,N393,N399,N404, N407,N411,N414,N415,N416,N417,N418,N419,N420,
N422, N425,N428,N429;
parameter NUMSUB = 4;
input [NUMSUB-1:0] sel;
input [NUMSUB-1:0] NodeIn;
output [NUMSUB-1:0] NodeOut;
wire [NUMSUB-1:0] sel;
wire [NUMSUB-1:0] NodeIn;
wire [NUMSUB-1:0] NodeOut;
wire [NUMSUB-1:0] SelectedNode;

‘ifdef CASE1
assign NodeOut = {N425_current, N344_current, N194_current, N118_current};
‘endif
‘ifdef CASE2
assign NodeOut ={N428_current, N345_current, N195_current, N119_current};
‘endif
‘ifdef CASE3
assign NodeOut = {N429_current, N346_current, N196_current, N122_current};
‘endif
‘ifdef CASE4
assign NodeOut = {N430_current, N347_current, N197_current, N123_current};
‘endif
‘ifdef CASE5
assign NodeOut = {N431_current, N348_current, N198_current, N126_current};
‘endif
assign SelectedNode[0] = copysel & (sel[0]? NodeOut[0] : NodeIn[0]);
assign SelectedNode[1] = copysel & (sel[1]? NodeOut[1] : NodeIn[1]);
assign SelectedNode[2] = copysel & (sel[2]? NodeOut[2] : NodeIn[2]);
assign SelectedNode[3] = copysel & (sel[3]? NodeOut[3] : NodeIn[3]);
‘ifdef CASE1
assign N118 = SelectedNode[0];
assign N194 = SelectedNode[1];
assign N344 = SelectedNode[2];
assign N425 = SelectedNode[3];
‘endif
‘ifdef CASE2
assign N119 = SelectedNode[0];

73

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

assign N195 = SelectedNode[1];
assign N345 = SelectedNode[2];
assign N428 = SelectedNode[3];
‘endif
‘ifdef CASE3
assign N122 = SelectedNode[0];
assign N196 = SelectedNode[1];
assign N346 = SelectedNode[2];
assign N429 = SelectedNode[3];
‘endif
‘ifdef CASE4
assign N123 = SelectedNode[0];
assign N197 = SelectedNode[1];
assign N347 = SelectedNode[2];
assign N430 = SelectedNode[3];
‘endif
‘ifdef CASE5
assign N126 = SelectedNode[0];
assign N198 = SelectedNode[1];
assign N348 = SelectedNode[2];
assign N431 = SelectedNode[3];
‘endif
‘ifdef CASE1
not NOT1_1 (N118_current, N1);
‘else
not NOT1_1 (N118, N1);
‘endif
‘ifdef CASE2
not NOT1_2 (N119_current, N4);
‘else
not NOT1_2 (N119, N4);
‘endif
‘ifdef CASE3
not NOT1_3 (N122_current, N11);
‘else
not NOT1_3 (N122, N11);
‘endif
‘ifdef CASE4
not NOT1_4 (N123_current, N17);
‘else

74

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

not NOT1_4 (N123, N17);
‘endif
‘ifdef CASE5
not NOT1_5 (N126_current, N24);
‘else
not NOT1_5 (N126, N24);
‘endif
not NOT1_6 (N127, N30);
not NOT1_7 (N130, N37);
not NOT1_8 (N131, N43);
not NOT1_9 (N134, N50);
not NOT1_10 (N135, N56);
not NOT1_11 (N138, N63);
not NOT1_12 (N139, N69);
not NOT1_13 (N142, N76);
not NOT1_14 (N143, N82);
not NOT1_15 (N146, N89);
not NOT1_16 (N147, N95);
not NOT1_17 (N150, N102);
not NOT1_18 (N151, N108);
nand NAND2_19 (N154, N118, N4);
nor NOR2_20 (N157, N8, N119);
nor NOR2_21 (N158, N14, N119);
nand NAND2_22 (N159, N122, N17);
nand NAND2_23 (N162, N126, N30);
nand NAND2_24 (N165, N130, N43);
nand NAND2_25 (N168, N134, N56);
nand NAND2_26 (N171, N138, N69);
nand NAND2_27 (N174, N142, N82);
nand NAND2_28 (N177, N146, N95);
nand NAND2_29 (N180, N150, N108);
nor NOR2_30 (N183, N21, N123);
nor NOR2_31 (N184, N27, N123);
nor NOR2_32 (N185, N34, N127);
nor NOR2_33 (N186, N40, N127);
nor NOR2_34 (N187, N47, N131);
nor NOR2_35 (N188, N53, N131);
nor NOR2_36 (N189, N60, N135);
nor NOR2_37 (N190, N66, N135);
nor NOR2_38 (N191, N73, N139);

75

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

nor NOR2_39 (N192, N79, N139);
nor NOR2_40 (N193, N86, N143);
‘ifdef CASE1
nor NOR2_41 (N194_current, N92, N143);
‘else
nor NOR2_41 (N194, N92, N143);
‘endif
‘ifdef CASE2
nor NOR2_42 (N195_current, N99, N147);
‘else
nor NOR2_42 (N195, N99, N147);
‘endif
‘ifdef CASE3
nor NOR2_43 (N196_current, N105, N147);
‘else
nor NOR2_43 (N196, N105, N147);
‘endif
‘ifdef CASE4
nor NOR2_44 (N197_current, N112, N151);
‘else
nor NOR2_44 (N197, N112, N151);
‘endif
‘ifdef CASE5
nor NOR2_45 (N198_current, N115, N151);
‘else
nor NOR2_45 (N198, N115, N151);
‘endif
and AND9_46 (N199, N154, N159, N162, N165, N168, N171, N174, N177, N180);
not NOT1_47 (N203, N199);
not NOT1_48 (N213, N199);
not NOT1_49 (N223, N199);
xor XOR2_50 (N224, N203, N154);
xor XOR2_51 (N227, N203, N159);
xor XOR2_52 (N230, N203, N162);
xor XOR2_53 (N233, N203, N165);
xor XOR2_54 (N236, N203, N168);
xor XOR2_55 (N239, N203, N171);
nand NAND2_56 (N242, N1, N213);
xor XOR2_57 (N243, N203, N174);
nand NAND2_58 (N246, N213, N11);

76

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

xor XOR2_59 (N247, N203, N177);
nand NAND2_60 (N250, N213, N24);
xor XOR2_61 (N251, N203, N180);
nand NAND2_62 (N254, N213, N37);
nand NAND2_63 (N255, N213, N50);
nand NAND2_64 (N256, N213, N63);
nand NAND2_65 (N257, N213, N76);
nand NAND2_66 (N258, N213, N89);
nand NAND2_67 (N259, N213, N102);
nand NAND2_68 (N260, N224, N157);
nand NAND2_69 (N263, N224, N158);
nand NAND2_70 (N264, N227, N183);
nand NAND2_71 (N267, N230, N185);
nand NAND2_72 (N270, N233, N187);
nand NAND2_73 (N273, N236, N189);
nand NAND2_74 (N276, N239, N191);
nand NAND2_75 (N279, N243, N193);
nand NAND2_76 (N282, N247, N195);
nand NAND2_77 (N285, N251, N197);
nand NAND2_78 (N288, N227, N184);
nand NAND2_79 (N289, N230, N186);
nand NAND2_80 (N290, N233, N188);
nand NAND2_81 (N291, N236, N190);
nand NAND2_82 (N292, N239, N192);
nand NAND2_83 (N293, N243, N194);
nand NAND2_84 (N294, N247, N196);
nand NAND2_85 (N295, N251, N198);
and AND9_86 (N296, N260, N264, N267, N270, N273, N276, N279, N282, N285);
not NOT1_87 (N300, N263);
not NOT1_88 (N301, N288);
not NOT1_89 (N302, N289);
not NOT1_90 (N303, N290);
not NOT1_91 (N304, N291);
not NOT1_92 (N305, N292);
not NOT1_93 (N306, N293);
not NOT1_94 (N307, N294);
not NOT1_95 (N308, N295);
not NOT1_96 (N309, N296);
not NOT1_97 (N319, N296);
not NOT1_98 (N329, N296);

77

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

xor XOR2_99 (N330, N309, N260);
xor XOR2_100 (N331, N309, N264);
xor XOR2_101 (N332, N309, N267);
xor XOR2_102 (N333, N309, N270);
nand NAND2_103 (N334, N8, N319);
xor XOR2_104 (N335, N309, N273);
nand NAND2_105 (N336, N319, N21);
xor XOR2_106 (N337, N309, N276);
nand NAND2_107 (N338, N319, N34);
xor XOR2_108 (N339, N309, N279);
nand NAND2_109 (N340, N319, N47);
xor XOR2_110 (N341, N309, N282);
nand NAND2_111 (N342, N319, N60);
xor XOR2_112 (N343, N309, N285);
‘ifdef CASE1
nand NAND2_113 (N344_current, N319, N73);
‘else
nand NAND2_113 (N344, N319, N73);
‘endif
‘ifdef CASE2
nand NAND2_114 (N345_current, N319, N86);
‘else
nand NAND2_114 (N345, N319, N86);
‘endif
‘ifdef CASE3
nand NAND2_115 (N346_current, N319, N99);
‘else
nand NAND2_115 (N346, N319, N99);
‘endif
‘ifdef CASE4
nand NAND2_116 (N347_current, N319, N112);
‘else
nand NAND2_116 (N347, N319, N112);
‘endif
‘ifdef CASE5
nand NAND2_117 (N348_current, N330, N300);
‘else
nand NAND2_117 (N348, N330, N300);
‘endif
nand NAND2_118 (N349, N331, N301);

78

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

nand NAND2_119 (N350, N332, N302);
nand NAND2_120 (N351, N333, N303);
nand NAND2_121 (N352, N335, N304);
nand NAND2_122 (N353, N337, N305);
nand NAND2_123 (N354, N339, N306);
nand NAND2_124 (N355, N341, N307);
nand NAND2_125 (N356, N343, N308);
and AND9_126 (N357, N348, N349, N350, N351, N352, N353, N354, N355, N356);
not NOT1_127 (N360, N357);
not NOT1_128 (N370, N357);
nand NAND2_129 (N371, N14, N360);
nand NAND2_130 (N372, N360, N27);
nand NAND2_131 (N373, N360, N40);
nand NAND2_132 (N374, N360, N53);
nand NAND2_133 (N375, N360, N66);
nand NAND2_134 (N376, N360, N79);
nand NAND2_135 (N377, N360, N92);
nand NAND2_136 (N378, N360, N105);
nand NAND2_137 (N379, N360, N115);
nand NAND4_138 (N380, N4, N242, N334, N371);
nand NAND4_139 (N381, N246, N336, N372, N17);
nand NAND4_140 (N386, N250, N338, N373, N30);
nand NAND4_141 (N393, N254, N340, N374, N43);
nand NAND4_142 (N399, N255, N342, N375, N56);
nand NAND4_143 (N404, N256, N344, N376, N69);
nand NAND4_144 (N407, N257, N345, N377, N82);
nand NAND4_145 (N411, N258, N346, N378, N95);
nand NAND4_146 (N414, N259, N347, N379, N108);
not NOT1_147 (N415, N380);
and AND8_148 (N416, N381, N386, N393, N399, N404, N407, N411, N414);
not NOT1_149 (N417, N393);
not NOT1_150 (N418, N404);
not NOT1_151 (N419, N407);
not NOT1_152 (N420, N411);
nor NOR2_153 (N421, N415, N416);
nand NAND2_154 (N422, N386, N417);
‘ifdef CASE1
nand NAND4_155 (N425_current, N386, N393, N418, N399);
‘else
nand NAND4_155 (N425, N386, N393, N418, N399);

79

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

‘endif
‘ifdef CASE2
nand NAND3_156 (N428_current, N399, N393, N419);
‘else
nand NAND3_156 (N428, N399, N393, N419);
‘endif
‘ifdef CASE3
nand NAND4_157 (N429_current, N386, N393, N407, N420);
‘else
nand NAND4_157 (N429, N386, N393, N407, N420);
‘endif
‘ifdef CASE4
nand NAND4_158 (N430_current, N381, N386, N422, N399);
‘else
nand NAND4_158 (N430, N381, N386, N422, N399);
‘endif
‘ifdef CASE5
nand NAND4_159 (N431_current, N381, N386, N425, N428);
‘else
nand NAND4_159 (N431, N381, N386, N425, N428);
‘endif
nand NAND4_160 (N432, N381, N422, N425, N429);

endmodule

C.2 Verilog Implementation on Benchmark Circuit S444

C.2.1 Top-Level Control Logic
module s444_AsseDMR_gating_4sec_all_input_gating(input blif_clk_net,

input blif_reset_net,
input G0_1,
input G0_2,
input G1,
input G2,
output G118,
output G167,
output G107,
output G119,
output G168,

80

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

output G108);
wire [3:0] NodeIn, NodeOut, sel;
wire copysel;
reg [3:0] SEL;
reg COPYSEL;
s444_submod_gating_4 copy1(blif_clk_net, blif_reset_net, ∼copysel & G0_1, ∼copysel
& G1, ∼copysel & G2, G118_1, G167_1, G107_1, G119_1, G168_1, G108_1, ∼copysel,
NodeIn, NodeOut, sel);
s444_submod_gating_4 copy2(blif_clk_net, blif_reset_net, copysel & G0_2, copysel & G1,
copysel & G2, G118_2, G167_2, G107_2, G119_2, G168_2, G108_2, copysel, NodeOut,
NodeIn, sel);
always @(posedge blif_clk_net)
begin

if (blif_reset_net == 1’b1)
begin
SEL[0] = 0;
SEL[1] = 0;
SEL[2] = 0;
SEL[3] = 0;
COPYSEL = 0;
end
else
begin
SEL[0] = G1;
SEL[1] = G2;
SEL[2] = G1 | G2;
SEL[3] = G1 ∧ G2;
COPYSEL = G1 ∧ G2;
end

end
assign sel = SEL;
assign copysel = COPYSEL;
assign G118 = copysel? G118_2 : G118_1;
assign G167 = copysel? G167_2 : G167_1;
assign G107 = copysel? G107_2 : G107_1;
assign G119 = copysel? G119_2 : G119_1;
assign G168 = copysel? G168_2 : G168_1;
assign G108 = copysel? G108_2 : G108_1;

endmodule

81

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

C.2.2 Modified Instance
module s444_submod_gating_4(blif_clk_net, blif_reset_net, G0, G1, G2, G118, G167, G107,
G119, G168, G108, copysel, NodeIn, NodeOut, sel);
input blif_clk_net;
input blif_reset_net;
input G0;
input G1;
input G2;
input copysel;
output G118;
output G167;
output G107;
output G119;
output G168;
output G108;
input [3:0] NodeIn;
output [3:0] NodeOut;
input [3:0] sel;
reg G11;
reg G12;
reg G13;
reg G14;
reg G15;
reg G16;
reg G17;
reg G18;
reg G19;
reg G20;
reg G21;
reg G22;
reg G23;
reg G24;
reg G25;
reg G26;
reg G27;
reg G28;
reg G29;
reg G30;
reg G31;

82

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

wire IIII212;
wire G50;
wire G95;
wire IIII211;
wire G120;
wire IIII192;
wire IIII272;
wire G79;
wire G138;
wire G61;
wire G140;
wire G161;
wire IIII201;
wire G77;
wire IIII190;
wire IIII283;
wire G93;
wire G137;
wire G105;
wire G165;
wire G144;
wire G129;
wire IIII226;
wire IIII281;
wire IIII372;
wire G134;
wire IIII235;
wire G147;
wire G146;
wire G41;
wire G83;
wire G160;
wire G35;
wire G122;
wire G80;
wire G117;
wire G132;
wire G151;
wire G158;
wire G65;

83

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

wire G81;
wire G113;
wire G73;
wire G58;
wire IIII181;
wire G163;
wire G148;
wire G43;
wire IIII271;
wire IIII392;
wire G153;
wire G114;
wire G85;
wire G74;
wire G115;
wire G103;
wire IIII202;
wire G51;
wire IIII236;
wire G49;
wire IIII246;
wire G157;
wire G130;
wire G54;
wire G67;
wire G42;
wire IIII182;
wire G87;
wire G71;
wire G69;
wire G90;
wire IIII255;
wire G126;
wire IIII321;
wire G75;
wire G47;
wire G111;
wire G142;
wire IIII304;
wire G40;

84

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

wire IIII180;
wire IIII318;
wire G101;
wire G121;
wire G57;
wire IIII225;
wire G166;
wire G159;
wire G149;
wire IIII256;
wire G33;
wire IIII200;
wire G139;
wire G109;
wire IIII257;
wire G162;
wire G164;
wire G68;
wire IIII293;
wire IIII291;
wire G145;
wire G37;
wire G66;
wire G136;
wire IIII191;
wire G125;
wire G141;
wire G123;
wire IIII273;
wire IIII105;
wire IIII292;
wire G155;
wire G56;
wire G44;
wire G128;
wire G46;
wire G94;
wire G91;
wire G59;
wire G97;

85

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

wire IIII210;
wire G62;
wire G102;
wire G104;
wire G150;
wire IIII227;
wire G99;
wire G152;
wire G135;
wire G116;
wire G112;
wire G60;
wire G82;
wire G64;
wire IIII237;
wire G84;
wire G86;
wire IIII382;
wire G92;
wire G34;
wire IIII245;
wire IIII336;
wire G162BF;
wire G45;
wire G89;
wire IIII324;
wire G76;
wire G72;
wire G98;
wire G63;
wire G55;
wire G133;
wire G78;
wire G96;
wire G38;
wire G127;
wire IIII247;
wire G48;
wire G53;
wire G36;

86

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

wire G156;
wire G110;
wire G88;
wire G32;
wire IIII302;
wire G131;
wire IIII282;
wire G143;
wire G100;
wire G70;
wire IIII303;
wire G154;
wire G52;
wire G124;
wire G106;

assign NodeOut = G104_current, IIII304_current, G73_current, G140_current;
assign G140 = copysel & (sel[0]? NodeIn[0] : NodeOut[0]);
assign G73 = copysel & (sel[1]? NodeIn[1] : NodeOut[1]);
assign IIII304 = copysel & (sel[2]? NodeIn[2] : NodeOut[2]);
assign G104 = copysel & (sel[3]? NodeIn[3] : NodeOut[3]);

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G11 <= 0;
else
G11 <= G37;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G12 <= 0;
else
G12 <= G41;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G13 <= 0;
else
G13 <= G45;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G14 <= 0;
else
G14 <= G49;

87

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G15 <= 0;
else
G15 <= G58;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G16 <= 0;
else
G16 <= G62;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G17 <= 0;
else
G17 <= G66;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G18 <= 0;
else
G18 <= G70;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G19 <= 0;
else
G19 <= G80;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G20 <= 0;
else
G20 <= G84;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G21 <= 0;
else
G21 <= G88;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G22 <= 0;
else
G22 <= G92;

88

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G23 <= 0;
else
G23 <= G101;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G24 <= 0;
else
G24 <= G162BF;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G25 <= 0;
else
G25 <= G109;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G26 <= 0;
else
G26 <= G110;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G27 <= 0;
else
G27 <= G111;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G28 <= 0;
else
G28 <= G112;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G29 <= 0;
else
G29 <= G113;

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G30 <= 0;
else
G30 <= G114;

89

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

always @(posedge blif_clk_net or posedge blif_reset_net)
if(blif_reset_net == 1)
G31 <= 0;
else
G31 <= G155;
assign IIII212 = ((∼G51))|((∼IIII210));
assign G50 = ((∼G52));
assign G95 = ((∼G76)&(∼G77)&(∼G78)&(∼G79));
assign IIII211 = ((∼G14))|((∼IIII210));
assign IIII192 = ((∼G43))|((∼IIII190));
assign G120 = ((∼G150))|((∼G128));
assign G167 = ((∼G29));
assign IIII272 = ((∼G19))|((∼IIII271));
assign G79 = ((∼G97));
assign G138 = (G136)|(G142);
assign G61 = ((∼IIII226))|((∼IIII227));
//assign G140 = (G24)|(G21)|(G20)|(G150);
assign G140_current = (G24)|(G21)|(G20)|(G150);
assign G161 = ((∼G17));
assign IIII201 = ((∼G13))|((∼IIII200));
assign G77 = ((∼G20));
assign G93 = ((∼G74)&(∼G79)&(∼G75));
assign IIII283 = ((∼G86))|((∼IIII281));
assign IIII190 = ((∼G12))|((∼G43));
assign G137 = (G136)|(G20)|(G19);
assign G105 = (G102)|(G103);
assign G165 = ((∼G148))|((∼G149));
assign G144 = ((∼G21));
assign G129 = ((∼G19))|((∼G135));
assign IIII226 = ((∼G15))|((∼IIII225));
assign IIII281 = ((∼G20))|((∼G86));
assign IIII372 = ((∼G0));
assign G134 = (G152)|(G142)|(G21);
assign IIII235 = ((∼G16))|((∼G64));
assign G147 = (G152)|(G144);
assign G146 = (G152)|(G143);
assign G41 = ((∼G98)&(∼G42)&(∼G152));
assign G83 = ((∼IIII272))|((∼IIII273));
assign G160 = ((∼IIII382));
assign G35 = ((∼G12));

90

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

assign G122 = (G24&G121);
assign G80 = ((∼G93)&(∼G81)&(∼G152));
assign G117 = ((∼G145))|((∼G146))|((∼G147));
assign G151 = ((∼G20))|((∼G144))|((∼G143))|((∼G139));
assign G132 = ((∼G133))|((∼G134));
assign G158 = (G31)|(G160);
assign G65 = ((∼IIII236))|((∼IIII237));
assign G81 = ((∼G83));
assign G113 = ((∼G163)&(∼G164));
//assign G73 = ((∼IIII256))|((∼IIII257));
assign G73_current = ((∼IIII256))|((∼IIII257));
assign G58 = ((∼G97)&(∼G59)&(∼G152));
assign IIII181 = ((∼G11))|((∼IIII180));
assign G163 = (G161&G165&G162);
assign G148 = ((∼G150))|((∼G135))|((∼G132));
assign G43 = ((∼G34));
assign IIII271 = ((∼G19))|((∼G82));
assign IIII392 = ((∼G30));
assign G114 = ((∼G150)&(∼G151));
assign G153 = ((∼G152));
assign G85 = ((∼G87));
assign G115 = (G161&G117&G162);
assign G74 = ((∼G22));
assign G103 = ((∼G106));
assign IIII202 = ((∼G47))|((∼IIII200));
assign G51 = ((∼G34)&(∼G35)&(∼G36));
assign IIII236 = ((∼G16))|((∼IIII235));
assign G49 = ((∼G98)&(∼G50)&(∼G152));
assign IIII246 = ((∼G17))|((∼IIII245));
assign G118 = ((∼IIII336));
assign G157 = ((∼G160));
assign G130 = ((∼G143)&(∼G152));
assign G54 = ((∼G15)&(∼G16)&(∼G17));
assign G67 = ((∼G69));
assign G42 = ((∼G44));
assign G107 = ((∼IIII321));
assign IIII182 = ((∼IIII180));
assign G87 = ((∼IIII282))|((∼IIII283));
assign G71 = ((∼G73));
assign G69 = ((∼IIII246))|((∼IIII247));

91

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

assign G90 = ((∼G76)&(∼G77)&(∼G79));
assign IIII255 = ((∼G18))|((∼G72));
assign G126 = (G139&G21);
assign IIII321 = ((∼G25));
assign G75 = ((∼G19)&(∼G20)&(∼G21));
assign G47 = ((∼G34)&(∼G35));
assign G111 = ((∼G140))|((∼G141))|((∼G139));
assign G142 = ((∼G22));
//assign IIII304 = ((∼G95))|((∼IIII302));
assign IIII304_current = ((∼G95))|((∼IIII302));
assign G40 = ((∼IIII181))|((∼IIII182));
assign IIII180 = ((∼G11));
assign IIII318 = ((∼G2));
assign G101 = (G100&G99);
assign G57 = ((∼G31)&(∼G98));
assign G121 = ((∼G19))|((∼G135))|((∼G142))|((∼G136));
assign IIII225 = ((∼G15))|((∼G60));
assign G166 = ((∼G162));
assign G149 = ((∼G131))|((∼G130));
assign G159 = (G156)|(G157);
assign IIII256 = ((∼G18))|((∼IIII255));
assign G33 = ((∼G11)&(∼G12)&(∼G13));
assign IIII200 = ((∼G13))|((∼G47));
assign G139 = ((∼G152));
assign G109 = ((∼G122)&(∼G123));
assign IIII257 = ((∼G72))|((∼IIII255));
assign G162 = ((∼G120))|((∼G149));
assign G164 = (G165&G166);
assign IIII293 = ((∼G90))|((∼IIII291));
assign G68 = ((∼G55)&(∼G56)&(∼G57));
assign IIII291 = ((∼G21))|((∼G90));
assign G37 = ((∼G98)&(∼G38)&(∼G152));
assign G145 = (G152)|(G142)|(G20)|(G19);
assign G66 = ((∼G97)&(∼G67)&(∼G152));
assign G136 = ((∼G23));
assign IIII191 = ((∼G12))|((∼IIII190));
assign G125 = (G139&G20&G19);
assign G141 = (G24)|(G22)|(G21);
assign G123 = ((∼G137))|((∼G138))|((∼G21))|((∼G139));
assign G168 = ((∼IIII392));

92

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

assign IIII273 = ((∼G82))|((∼IIII271));
assign IIII105 = ((∼G162));
assign IIII292 = ((∼G21))|((∼IIII291));
assign G155 = (G154&G153);
assign G56 = ((∼G16));
assign G44 = ((∼IIII191))|((∼IIII192));
assign G128 = ((∼G20)&(∼G144)&(∼G136)&(∼G152));
assign G46 = ((∼G48));
assign G94 = ((∼G96));
assign G91 = ((∼IIII292))|((∼IIII293));
assign G59 = ((∼G61));
assign G97 = ((∼G53)&(∼G57)&(∼G54));
assign IIII210 = ((∼G14))|((∼G51));
assign G62 = ((∼G97)&(∼G63)&(∼G152));
assign G102 = ((∼G23));
assign G150 = ((∼G19));
//assign G104 = (G23)|(G106);
assign G104_current = (G23)|(G106);
assign IIII227 = ((∼G60))|((∼IIII225));
assign G99 = ((∼G152));
assign G152 = ((∼IIII372));
assign G135 = ((∼G20));
assign G116 = (G117&G166);
assign G112 = ((∼G115)&(∼G116));
assign G60 = ((∼G57));
assign G82 = ((∼G79));
assign G64 = ((∼G55)&(∼G57));
assign IIII237 = ((∼G64))|((∼IIII235));
assign G84 = ((∼G93)&(∼G85)&(∼G152));
assign G86 = ((∼G76)&(∼G79));
assign IIII382 = ((∼G1));
assign G92 = ((∼G93)&(∼G94)&(∼G152));
assign G34 = ((∼G11));
assign IIII245 = ((∼G17))|((∼G68));
assign IIII336 = ((∼G27));
assign G162BF = ((∼IIII105));
assign G45 = ((∼G98)&(∼G46)&(∼G152));
assign G89 = ((∼G91));
assign IIII324 = ((∼G26));
assign G76 = ((∼G19));

93

Appendix C. Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense

assign G98 = ((∼G32)&(∼G33));
assign G72 = ((∼G55)&(∼G56)&(∼G161)&(∼G57));
assign G63 = ((∼G65));
assign G55 = ((∼G15));
assign G133 = (G152)|(G136)|(G22)|(G144);
assign G78 = ((∼G21));
assign G96 = ((∼IIII303))|((∼IIII304));
assign G38 = ((∼G40));
assign G127 = (G139&G24);
assign IIII247 = ((∼G68))|((∼IIII245));
assign G53 = ((∼G18));
assign G48 = ((∼IIII201))|((∼IIII202));
assign G36 = ((∼G13));
assign G156 = ((∼G31));
assign G108 = ((∼IIII324));
assign G110 = ((∼G124)&(∼G125)&(∼G126)&(∼G127));
assign G88 = ((∼G93)&(∼G89)&(∼G152));
assign G32 = ((∼G14));
assign IIII302 = ((∼G22))|((∼G95));
assign G119 = ((∼G28));
assign G131 = (G144)|(G22)|(G23)|(G129);
assign IIII282 = ((∼G20))|((∼IIII281));
assign G143 = ((∼G24));
assign G100 = (G104&G105);
assign G70 = ((∼G97)&(∼G71)&(∼G152));
assign IIII303 = ((∼G22))|((∼IIII302));
assign G154 = (G158&G159);
assign G52 = ((∼IIII211))|((∼IIII212));
assign G124 = (G139&G22&G150);
assign G106 = ((∼IIII318));

endmodule

94

References

[1] Fpga market by technology (sram, antifuse, flash), node size (less than 28 nm, 28-90 nm,
more than 90 nm), configuration (high-end fpga, mid-range fpga, low-end fpga), verti-
cal (telecommunications, automotive), and geography - global forecast to 2023. [Online].
Available: https://www.marketsandmarkets.com/Market- Reports/
fpga-market-194123367.html.

[2] Fpgas accelerate time to market for industrial designs. [Online]. Available: https://
www.eetimes.com/document.asp?doc_id=1150608.

[3] Soc fpga hardware security requirements and roadmap. [Online]. Available: https :
//www.altera.com/content/dam/altera-www/global/en_US/pdfs/
education/events/northamerica/isdf/SoC-FPGA-Hardware-Security.
pdf.

[4] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware Trojan
Insertion by Direct Modification of FPGA Configuration Bitstream”, IEEE Design
Test, vol. 30, no. 2, pp. 45–54, 2013, ISSN: 2168-2356. DOI: 10.1109/MDT.2013.
2247460.

[5] Z. Zhang, L. Njilla, C. Kamhoua, K. Kwiat, and Q. Yu, Securing FPGA-based Obsolete
Component Replacement for Legacy Systems, to appear in Proc. ISQED’18.

[6] Basic fpga architecture and its applications. [Online]. Available: https://www.edgefx.
in/fpga-architecture-applications/.

[7] ISE In Depth Tutorial.

[8] Altera design flow for xilinx users. [Online]. Available: http://home.engineering.
iastate.edu/~zambreno/classes\\/cpre583/documents/altera/
an307.pdf.

[9] V. Mirian and P. Chow, “Extracting designs of secure ips using fpga cad tools”, in
2016 International Great Lakes Symposium on VLSI (GLSVLSI), 2016, pp. 293–298. DOI:
10.1145/2902961.2903033.

[10] A. L. Oliveira, “Techniques for the creation of digital watermarks in sequential cir-
cuit designs”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 9, pp. 1101–1117, 2001, ISSN: 0278-0070. DOI: 10.1109/43.
945306.

95

https://www.marketsandmarkets.com/Market-Reports/fpga-market-194123367.html
https://www.marketsandmarkets.com/Market-Reports/fpga-market-194123367.html
https://www.eetimes.com/document.asp?doc_id=1150608
https://www.eetimes.com/document.asp?doc_id=1150608
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/education/events/northamerica/isdf/SoC-FPGA-Hardware-Security.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/education/events/northamerica/isdf/SoC-FPGA-Hardware-Security.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/education/events/northamerica/isdf/SoC-FPGA-Hardware-Security.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/education/events/northamerica/isdf/SoC-FPGA-Hardware-Security.pdf
https://doi.org/10.1109/MDT.2013.2247460
https://doi.org/10.1109/MDT.2013.2247460
https://www.edgefx.in/fpga-architecture-applications/
https://www.edgefx.in/fpga-architecture-applications/
http://home.engineering.iastate.edu/~zambreno/classes\\/cpre583/documents/altera/an307.pdf
http://home.engineering.iastate.edu/~zambreno/classes\\/cpre583/documents/altera/an307.pdf
http://home.engineering.iastate.edu/~zambreno/classes\\/cpre583/documents/altera/an307.pdf
https://doi.org/10.1145/2902961.2903033
https://doi.org/10.1109/43.945306
https://doi.org/10.1109/43.945306

References

[11] J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A PUF-FSM Binding Scheme for FPGA IP
Protection and Pay-Per-Device Licensing”, IEEE Trans. on Information Forensics and
Security, vol. 10, no. 6, pp. 1137–1150, 2015, ISSN: 1556-6013. DOI: 10.1109/TIFS.
2015.2400413.

[12] R. Karam, T. Hoque, S. Ray, M. Tehranipoor, and S. Bhunia, “MUTARCH: Archi-
tectural diversity for FPGA device and IP security”, in Proc. 22nd Asia and South
Pacific Design Automation Conf., 2017, pp. 611–616. DOI: 10.1109/ASPDAC.2017.
7858391.

[13] S. Mal-Sarkar, R. Karam, S. Narasimhan, A. Ghosh, A. Krishna, and S. Bhunia, “De-
sign and Validation for FPGA Trust under Hardware Trojan Attacks”, IEEE Trans-
actions on Multi-Scale Computing Systems, vol. 2, no. 3, pp. 186–198, 2016. DOI: 10.
1109/TMSCS.2016.2584052.

[14] G. Bloom, B. Narahari, R. Simha, A. Namazi, and R. Levy, “Fpga soc architecture
and runtime to prevent hardware trojans from leaking secrets”, in 2015 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST), 2015, pp. 48–51.
DOI: 10.1109/HST.2015.7140235.

[15] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “Fpga-based protection
scheme against hardware trojan horse insertion using dummy logic”, IEEE Embed-
ded Systems Letters, vol. 7, no. 2, pp. 46–50, 2015, ISSN: 1943-0663. DOI: 10.1109/
LES.2015.2406791.

[16] D. M. Shila and V. Venugopal, “Design, implementation and security analysis of
Hardware Trojan Threats in FPGA”, in Proc. 2014 IEEE International Conference on
Communications (ICC), 2014, pp. 719–724. DOI: 10.1109/ICC.2014.6883404.

[17] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “FPGA-oriented Security”, in Springer,
New York,, 2011.

[18] R. Lumbiarres-Lopez, M. Lopez-Garcia, and E. Canto-Navarro, “Hardware archi-
tecture implemented on fpga for protecting cryptographic keys against side-channel
attacks”, IEEE Transactions on Dependable and Secure Computing, vol. PP, no. 99, pp. 1–
1, 2017, ISSN: 1545-5971. DOI: 10.1109/TDSC.2016.2610966.

[19] N. Kamoun, L. Bossuet, and A. Ghazel, “Correlated power noise generator as a low
cost dpa countermeasures to secure hardware aes cipher”, in 2009 3rd International
Conference on Signals, Circuits and Systems (SCS), 2009, pp. 1–6. DOI: 10.1109/
ICSCS.2009.5412604.

[20] A. Mokari, B. Ghavami, and H. Pedram, “Scar-fpga : A novel side-channel attack
resistant fpga”, in 2009 5th Southern Conference on Programmable Logic (SPL), 2009,
pp. 177–182. DOI: 10.1109/SPL.2009.4914903.

96

https://doi.org/10.1109/TIFS.2015.2400413
https://doi.org/10.1109/TIFS.2015.2400413
https://doi.org/10.1109/ASPDAC.2017.7858391
https://doi.org/10.1109/ASPDAC.2017.7858391
https://doi.org/10.1109/TMSCS.2016.2584052
https://doi.org/10.1109/TMSCS.2016.2584052
https://doi.org/10.1109/HST.2015.7140235
https://doi.org/10.1109/LES.2015.2406791
https://doi.org/10.1109/LES.2015.2406791
https://doi.org/10.1109/ICC.2014.6883404
https://doi.org/10.1109/TDSC.2016.2610966
https://doi.org/10.1109/ICSCS.2009.5412604
https://doi.org/10.1109/ICSCS.2009.5412604
https://doi.org/10.1109/SPL.2009.4914903

References

[21] Moving Target Defense. [Online]. Available: https://www.dhs.gov/science-
and-technology/csd-mtd.

[22] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “Mt6d: A moving
target ipv6 defense”, in 2011 - MILCOM 2011 Military Communications Conference,
2011, pp. 1321–1326. DOI: 10.1109/MILCOM.2011.6127486.

[23] S. Venkatesan, M. Albanese, K. Amin, S. Jajodia, and M. Wright, “A moving target
defense approach to mitigate ddos attacks against proxy-based architectures”, in
2016 IEEE Conference on Communications and Network Security (CNS), 2016, pp. 198–
206. DOI: 10.1109/CNS.2016.7860486.

[24] M. Azab and M. Eltoweissy, “Migrate: Towards a lightweight moving-target de-
fense against cloud side-channels”, in 2016 IEEE Security and Privacy Workshops
(SPW), 2016, pp. 96–103. DOI: 10.1109/SPW.2016.28.

[25] Managing time and costs in legacy component upgrades,
http://www.militaryaerospace.com/articles/print/volume-14/issue-12
/departments/viewpoint/managing-time-and-costs-in-legacy-component-
upgrades.html.

[26] D. Hallmans, K. Sandström, T. Nolte, and S. Larsson, “A method and industrial
case: Replacement of an FPGA component in a legacy control system”, in Proc. IEEE
13th Intl. Conf. on Industrial Informatics, 2015, pp. 208–214. DOI: 10.1109/INDIN.
2015.7281736.

[27] G. Bloom, B. Narahari, R. Simha, A. Namazi, and R. Levy, “FPGA SoC architecture
and runtime to prevent hardware Trojans from leaking secrets”, in Proc. 2015 IEEE
Intl. Symp. on Hardware Oriented Security and Trust, 2015, pp. 48–51. DOI: 10.1109/
HST.2015.7140235.

[28] R. Karam, T. Hoque, S. Ray, M. Tehranipoor, and S. Bhunia, “Robust bitstream pro-
tection in FPGA-based systems through low-overhead obfuscation”, in Proc. 2016
International Conference on ReConFigurable Computing and FPGAs, 2016, pp. 1–8. DOI:
10.1109/ReConFig.2016.7857187.

[29] V. Jyothi, M. Thoonoli, R. Stern, and R. Karri, “FPGA Trust Zone: Incorporating
trust and reliability into FPGA designs”, in Proc. IEEE 34th International Conference
on Computer Design, 2016, pp. 600–605. DOI: 10.1109/ICCD.2016.7753346.

[30] Xilinx ise in-depth tutorial ug695 (v14.1), https://www.xilinx.com/support/
documentation/sw_manuals/xilinx14_1
/ise_tutorial_ug695.pdf.

[31] Fpga market size set to exceed usd 9.98 billion by 2022, with over 8.4% cagr from 2015 to
2022: Global market insights inc. [Online]. Available: https://goo.gl/uEmByo.

97

https://www.dhs.gov/science-and-technology/csd-mtd
https://www.dhs.gov/science-and-technology/csd-mtd
https://doi.org/10.1109/MILCOM.2011.6127486
https://doi.org/10.1109/CNS.2016.7860486
https://doi.org/10.1109/SPW.2016.28
https://doi.org/10.1109/INDIN.2015.7281736
https://doi.org/10.1109/INDIN.2015.7281736
https://doi.org/10.1109/HST.2015.7140235
https://doi.org/10.1109/HST.2015.7140235
https://doi.org/10.1109/ReConFig.2016.7857187
https://doi.org/10.1109/ICCD.2016.7753346
https://goo.gl/uEmByo

References

[32] Security for volatile FPGAs. [Online]. Available: \sloppyhttp://www.cl.cam.
ac.uk/techreportsUCAM-CL-TR-763.pdf.

[33] M. Majzoobi and F. Koushanfar, “Time-Bounded Authentication of FPGAs”, IEEE
Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 1123–1135, 2011,
ISSN: 1556-6013. DOI: 10.1109/TIFS.2011.2131133.

[34] I. Hadzic, S. Udani, and J. M. Smith, “FPGA Viruses”, in Proc. Intl. Workshop on Field-
Programmable Logic and Applications, 1999, pp. 291–300, ISBN: 3-540-66457-2. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=647926.739074.

[35] S. Trimberger, “Trusted Design in FPGAs”, in Proc. 44th Annual Design Automation
Conference, San Diego, California, 2007, pp. 5–8, ISBN: 978-1-59593-627-1. DOI: 10.
1145/1278480.1278483. [Online]. Available: http://doi.acm.org/10.
1145/1278480.1278483.

[36] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discovers backdoor
in military chip”, in Proc. CHES’12, Leuven, Belgium, 2012, pp. 23–40, ISBN: 978-3-
642-33026-1. DOI: 10.1007/978- 3- 642- 33027- 8_2. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33027-8_2.

[37] P. Swierczynski, A. Moradi, D. Oswald, and C. Paar, “Physical Security Evaluation
of the Bitstream Encryption Mechanism of Altera Stratix II and Stratix III FPGAs”,
ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 4, 34:1–34:23, Dec. 2014, ISSN:
1936-7406. DOI: 10.1145/2629462. [Online]. Available: http://doi.acm.
org/10.1145/2629462.

[38] Y. Pino, V. Jyothi, and M. French, “Intra-die process variation aware anomaly detec-
tion in FPGAs”, in Proc. 2014 ITC, 2014, pp. 1–6. DOI: 10.1109/TEST.2014.
7035343.

[39] S. Mal-sarkar, A. Krishna, A. Ghosh, and S. Bhunia, “Hardware Trojan Attacks
in FPGA Devices: Threat Analysis and Effective Countermeasures”, in Proc. ACM
Great Lakes Symposium on VLSI, 2014, pp. 287–292.

[40] R. Druyer, L. Torres, P. Benoit, P. V. Bonzom, and P. Le-Quere, “A survey on security
features in modern fpgas”, in 2015 10th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2015, pp. 1–8. DOI: 10.1109/
ReCoSoC.2015.7238102.

98

\sloppy http://www.cl.cam.ac.uk/techreportsUCAM-CL-TR-763.pdf
\sloppy http://www.cl.cam.ac.uk/techreportsUCAM-CL-TR-763.pdf
https://doi.org/10.1109/TIFS.2011.2131133
http://dl.acm.org/citation.cfm?id=647926.739074
https://doi.org/10.1145/1278480.1278483
https://doi.org/10.1145/1278480.1278483
http://doi.acm.org/10.1145/1278480.1278483
http://doi.acm.org/10.1145/1278480.1278483
https://doi.org/10.1007/978-3-642-33027-8_2
http://dx.doi.org/10.1007/978-3-642-33027-8_2
https://doi.org/10.1145/2629462
http://doi.acm.org/10.1145/2629462
http://doi.acm.org/10.1145/2629462
https://doi.org/10.1109/TEST.2014.7035343
https://doi.org/10.1109/TEST.2014.7035343
https://doi.org/10.1109/ReCoSoC.2015.7238102
https://doi.org/10.1109/ReCoSoC.2015.7238102

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2018

	SECURING FPGA SYSTEMS WITH MOVING TARGET DEFENSE MECHANISMS
	Zhiming Zhang
	Recommended Citation

	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Introduction
	Trend of FPGA Utilization
	Security Concerns on FPGA Applications
	Key Contributions
	Thesis Outline

	Background
	FPGA Architecture
	FPGA Design Suite
	Existing Researches on FPGA Security
	IP Piracy
	Hardware Trojan
	Side Channel Analysis

	Moving Target Defense
	Principle of MTD
	MTD Applications in Electronic Systems

	Securing FPGA-Based Obsolete Component Replacement for Legacy Systems
	Motivation
	Existing Solutions
	Proposed Method
	Proposed Runtime Pin Grounding
	Proposed Hardware Moving Target Defense

	Experiment Results
	Experimental Setup
	Hardware Trojan Bypass Rate
	Overhead on Hardware Cost and Performance

	FPGA-Oriented Moving Target Defense against Security Threats from Malicious FPGA Tools
	Motivation
	Three Levels of Attacks

	Existing Solutions
	Proposed Method
	Defense Line 1 (DFL1): Slice Position Selection through User Constraints File
	Method description
	Case study
	Theoretical bound for defense line 1 thwarting different Trojan attacks

	Defense Line 2 (DFL2): Pseudo-Random Replica Selection
	Method description
	Theoretical bound for defense line 2 thwarting different Trojan attacks

	Defense Line 3 (DFL3): Runtime Design Assembling
	Method description
	Theoretical bound for defense line 3 thwarting different Trojan attacks

	Experimental Results
	Experimental Setup
	Variation on FPGA Slice Utilization
	Assessment on Attack Resilience
	Hardware Trojan Hit Rate for L-1 Attacks
	Hardware Trojan Hit Rate for L-2 Attack
	Hardware Trojan Hit Rate for L-3 Attack

	Dependent Design Factors on Trojan Hit Rate
	Assessment on Hardware Cost, Delay and Power
	Hardware Utilization
	Power Consumption
	Worst-case Delay

	Comparing Proposed FOMTD with Static Trojan Detection Method

	Conclusion and Future Work
	Conclusion
	Future Work
	Reduce the Delay Overhead Caused by Implementing HMTD
	Applying the information of LUT location to bitstream encryption

	Source Codes for Defense Line 1 of FPGA-Oriented Moving Target Defense
	Commands in the User Constraints File of Benchmark Circuit c432
	Commands in the User Constraints File of Benchmark Circuit c6288
	Commands in the User Constraints File of Benchmark Circuit s444
	Commands in the User Constraints File of Benchmark Circuit s13207

	Source Codes for Defense Line 2 of FPGA-Oriented Moving Target Defense
	Verilog Implementation on Benchmark Circuit c432
	Verilog Implementation on Benchmark Circuit s444

	Source Codes for Defense Line 3 of FPGA-Oriented Moving Target Defense
	Verilog Implementation on Benchmark Circuit c432
	Top-Level Control Logic
	Modified Instance

	Verilog Implementation on Benchmark Circuit S444
	Top-Level Control Logic
	Modified Instance

	References

