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ABSTRACT 

 

HYDROTREATING TUNGSTEN CATALYST FOR PRODUCTION OF GREEN 

DIESEL FROM BIODIESEL 

 

BY 

 

GAGANDEEP SINGH DHILLON 

University of New Hampshire, May 2018. 

 

               The search for alternatives to petroleum-based fuels has led to the development of 

fuels from various sources, including renewable feedstocks such as fats and oils. Several types 

of fuels can be derived from these triacylglycerol-containing feedstocks. One of them is 

biodiesel, which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel 

is produced by transesterifying the oil or fat with an alcohol such as methanol under mild 

conditions in the presence of a base catalyst. Another kind of product that can be obtained from 

lipid feedstocks is a fuel whose composition simulates that of petroleum-derived diesel fuel. 

This fuel termed as ‘‘green diesel’’, is produced from biodiesel by hydrodeoxygenation 

reaction at elevated temperature and pressure in the presence of a catalyst. Here, tungsten is 

used as hydrodeoxgenation catalyst to get green diesel from biodiesel. In this research, the 

effects of feed-stock, reduction and reaction temperatures, hydrogen flowrate and choice of 
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promoter on the hydrodeoxygenation activity of the catalyst were examined. It is found that 

reduction and reaction temperatures are the two most important parameters for overall biodiesel 

conversion and yield of green diesel. The results for unpromoted and promoted tungsten 

catalyst are compared with the results for both the oxide and sulfide forms of the catalyst.
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Chapter 1 

INTRODUCTION 

               Hydrodeoxygenation (HDO), hydrodesulphurization (HDS), hydrodenitrogenation 

(HDN), hydrodemetallization (HDM) and hydrogenation (HYD) are the main hydrotreating 

processes that occur simultaneously during hydroprocessing of petroleum feedstocks for the 

production of fuels. To address the environment problems, removal of sulfur and nitrogen from 

petroleum feedstocks is necessary because SOX and NOX are generated by combustion of fossil 

fuels. Also, N-compounds in the feed poison catalysts; therefore, their removal is required to 

achieve deep HDS of fuel in a final hydroprocessing step. During HDO, oxygen in the feed is 

converted to H2O which is environment friendly. Some of the O-compounds in the feed readily 

polymerize and may be the cause of rapid catalyst deactivation thus removal of oxygen is 

necessary [1]. HDO of biodiesel is fairly recent; biodiesel contains esters of long chain fatty 

acids (FAME) and removal of oxygen from it produces green diesel with a higher cetane 

number. Biodiesel fuel can be produced by transesterification of virtually any triglyceride 

feedstock. This includes oil-bearing crops, animal fats, and algal lipids. The literature contains 

hundreds of references of biodiesel production from a wide variety of feedstocks [16].  
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Property Petroleum Diesel Biodiesel Green Diesel 

Carbon % 86.8 76.2 84.9 

Hydrogen % 13.2 12.6 15.1 

Oxygen % 0.0 11.2 0.0 

Specific gravity 0.85 0.88 0.78 

Cetane Number 40-55 45-55 70-90 

Kinematic Viscosity (mm2/s) 2 – 3 4 – 5 3 – 4 

Energy Content (MJ/Kg) 43 39 44 

 

 

Table 1. Properties of petroleum diesel, biodiesel and green diesel [35].  

               Triglycerides-based feedstocks such as sunflower oil, coconut oil, jatropha oil, 

palm oil and rapeseed oil are used for production of biodiesel and green diesel. Relatively 

cheaper feedstock such as waste cooking oil can also be used [28]. Methyl esters can be 

hydrogenated to fatty alcohols or hydrolysed to fatty acids. Specific temperature/high 

pressure and catalysts are required for direct hydrogenation of esters to alcohols. Lewis 

acid sites of alumina support plays important role in ester hydrolysis. Methyl esters are less 

prone to hydrolysis than compounds containing β-hydrogen atoms [7]. 
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Fig. 1.1 Possible routes of deoxygenation reaction [2].  

               

               However, free fatty acid content being high, difficulty arises in production of 

biodiesel. There are mainly three routes of upgrading triglycerides – 1st is the 

transesterification with methanol to produce FAME, 2nd is selective deoxygenation to produce 

green diesel using hydrotreating catalysts such as Ni, Mo, W, Pd, etc. and the 3rd method 

is hydrocracking using acidic supports. The most common mechanism in the deoxygenation 

(DO) of triglycerides and biodiesel involves the following steps – first, the saturation of double 

bonds of the fatty acid chain is followed by the formation of propane and carboxylic acids 
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via hydrogenolysis and then the formation of hydrocarbons through decarbonylation or 

decarboxylation or hydrodeoxygenation in which CO, CO2 or H2O is removed as by product 

respectively [28]. The commonly used hydrodeoxygenation catalysts are supported noble and 

sulfided or oxided metal catalysts. Co-Mo/Al2O3, Ni-Mo/Al2O3 and W-Ni/Al2O3 are widely 

used for hydrodeoxygenation [2]. Intensive research in the last decade has shown 

that palladium based and bimetallic NiMo, CoMo and NiW catalysts supported on high 

surface area supports are promising choices for selective deoxygenation of natural triglycerides 

and FAME to produce green diesel [28]. Noble metals supported on various high 

surface carriers and conventional NiMo, CoMo and NiW sulfided catalysts have been proven 

to be very promising for upgrading of petroleum feedstocks and hydrotreating 

reactions. However, the noble metal catalysts seem to be not viable economically. This is due 

to their limited availability and high cost. Also, they may seem to be contaminated by 

oxygenated compounds present in the feedstock [20]. Many factors that affect the HDO 

activity are: presence of water and ammonia, support materials, sulfidation temperature, H2S 

partial pressure, loading of metal and impregnation order. Those of tungsten-based catalysts 

are strongly dependent on degree of sulfidation. WS2 is formed via oxysulfide (WOS2) 

intermediate from WO3. With increase in calcination temperature, the sulfidability of tungsten 

degrades which is related to degree of interaction between tungsten species and support 

materials. As interaction of tungsten with titania support being less, sulfidation is facilitated 

over W/TiO2 catalyst but with alumina support, its interaction is stronger and 

thus sulfidation decreases with increase in calcination temperature [9]. 

              Organometallic catalysts are reported to be highly reactive and reaction specific 

thereby minimizing side reactions so their continuous useability is less and thereby losing its 
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acidity in the long runs. Same is the case with fluoride modified NiMo catalyst [14]. 

Sulfided catalysts are considerably more active than the corresponding reduced ones when the 

conventional Co(Ni)Mo(W)/γ-Al2O3 is compared with its counterparts in reduced form 

and sulfided form. An effort has been recently undertaken to develop Co(Ni)-Mo(W) / γ -Al2O3 

reduced catalysts with higher activities similar to those of the corresponding sulfided ones. 

This was done by doping the support with lanthana, ceria and phosphorous. The resulting 

catalysts showed similar catalytic activity as corresponding to non-doped sulfided ones [21]. 

The catalytic synergy between Ni(Co)Mo(W)/Al2O3 catalysts is due 

to formation of NiMoWS or CoMoS phases where highly dispersed MoWS2 crystallites are 

promoted by Ni or Co [29]. The active phase Co(Ni)-Mo/S is dispersed by the presence of γ-

alumina support in hydrotreating reactions. Fully sulfided catalysts results in most active 

catalysts. On the other hand, some interaction between Mo and the support is usually assumed 

to be beneficial for high MoS2 dispersion. It has been shown 

that sulfided CoMo and NiMo catalysts supported on activated carbon in HDS 

reactions gives outstanding performances due to their weak interaction with the active metal 

sulphides [23]. The Sulfided NiMo/γ-Al2O3 catalyst exhibited high rate of isomerized product 

activities due to high acidity of the catalyst thus giving high HDO rates 

and selectivities. Iso paraffins are more important than normal ones due to their cold flow 

properties such as cold flow filter point and freezing point of biofuel. Addition of urea in Ni 

and Mo organometallic complexes improves the metals' dispersion and solubility in the γ-

Al2O3 support which in turn enhances its morphology and textural properties leading to the 

formation of highly reactive octahedral molybdenum and nickel oxides with proper acidity 

[14].  
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               In hydrotreating reactions, alumina is mostly used as support due to its 

high thermal stability and higher surface area. But it suffers coke formation on its surface due 

to its strong interaction with the metal oxide thus hindering its sulfidation and this is due to 

presence of acid sites on alumina surface. As compared to this, carbon is more preferable than 

alumina due to its surface inertness and amphoteric properties. Also, carbon 

supports stabilize CoMoS active phase [15]. So, by combining the properties of carbon and 

alumina is an interesting way to overcome the demerits of alumina support. Incorporating 

carbon in alumina results in decrease in interaction between support phase and sulfide phase 

of catalyst. Titania is preferred over alumina and carbon support on MoS2 catalyst in HDO 

reactions. For CoMoS systems, zirconia as a support offers highest activity to the catalyst [10]. 

However, industrial application of carbon supports is limited due to its low packing density 

and small porosity. In HDS of vacuum gas oil blended with 15% of sunflower oil over Co-

РMo/Al2O3 catalyst, there is increase in cetane number by 5 and this is due to conversion of 

fatty acid triglycerides to linear alkanes thus increasing pour point of hydrogenated products 

by 5 ºC [15].  

               Silica supported metal phosphides are also very active for HDO reactions and those 

prepared from phosphite precursors have high surface area along with good catalytic activity. 

Also, transition metal phosphides of Ni, Mo, W and Fe are highly active for HDS and HDN 

of petroleum feedstocks. Regarding the supports, less acidic materials such as silica, 

hexagonal mesoporous silica and MCM-41 favour the formation of metal phosphides due to 

low interaction between support and precursor which is usually metal phosphate or 

metal phosphite. As phosphites and hypophosphites are low in their oxidation states, they are 

more easily reducible at lower temperatures as compared to phosphate precursors. Of 
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all aforementioned catalysts for hydrotreating reactions, Ni2P prepared by phosphate precursor 

is the most effective catalyst [27]. 

               In this study of HDO reactions, we used tungsten oxide (WO3) and tungsten sulfide 

(WS2) along-with Ni promoted tungsten oxide and tungsten sulfide catalysts supported on γ-

Al2O3. The supported tungsten oxide catalysts find numerous applications like hydrocarbon 

cracking, hydrodesulfurization, hydrodenitrogenation, hydrodeoxygenation, olefin metathesis, 

alkane isomerisation and selective catalytic reduction. [4]. Supported oxides and sulfides of 

molybdenum and tungsten are well known for catalyzing a great variety of reactions. W-based 

catalysts have been reported to have better properties than Mo-based catalysts [12]. 

The broad objectives of this thesis are as follows: 

1. To prepare supported tungsten oxide by decomposition of ammonium metatungstate 

and tungsten sulfide by decomposition of ammonium tetrathio-tungstate in 

hydrogen; to prepare Ni promoted oxide and sulfide catalysts and to compare the 

activity of both catalysts. 

2. To study the effect of various pretreatment and reaction temperatures on the overall 

conversion, yield and selectivity. 

This thesis is divided into five chapters. Chapter 2 contains literature review on different 

catalysts employed for hydrodeoxygenation and its mechanism. Chapter 3 describes the 

experimental setup and procedures for making catalysts and reaction runs. Chapter 4 presents 

the results of the study and lastly the conclusions and recommendations are presented in 

Chapter 5.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Hydrodeoxygenation general mechanism 

               The main route in the formation of hydrocarbons (C11-C18) from fatty acid methyl 

esters ranging from methyl laurate to methyl oleate involve decarbonylation or/and 

decarboxylation which proceeds by hydrogenation of unsaturated C=C bonds, 

progressive hydrogenolysis of the C=O bond to fatty acid and finally reduction to lead 

hydrocarbons via intermediate aldehyde formation. The second route in C11-C18 hydrocarbons 

formation is known as hydrodeoxygenation involves aforementioned steps leading to 

formation of intermediate alcohols by dehydration on acid sites and then hydrogenation on 

active metal sites to produce hydrocarbons [3, 20, 28].  

2.2 Ni catalysts for HDO  

               Jenistova et al. [13] have investigated HDO of stearic acid and tall oil fatty acids 

using Ni catalyst supported over γ-Al2O3. They studied the effect of pressure on the HDO 

activity of Ni/γ-Al2O3 at a reaction temperature of 300 ºC. Low metal loaded catalyst (5%) 

was prepared and during H2-TPR, it was found that NiO species are reduced to Ni2+ which 

attributed to octahedral position. HDO of stearic acid over Ni/γ-Al2O3 which was reduced at 

450 ºC ex-situ in absence of hydrogen atmosphere revealed very low conversion of stearic acid 

(19%) and low selectivity to C17 alkanes (26%). By carrying out reaction in hydrogen 

atmosphere, the conversion was increased from 19% to 80%. This necessitates the requirement 
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of hydrogen in HDO reactions. Also, necessity of pre-reduction was studied and it was found 

that pre-reduced catalyst had overall conversion of 99% vs 31% obtained with unreduced 

catalyst. Moreover, unreduced catalyst had 84% selectivity towards C17 while remaining as 

stearyl alcohol whereas reduced catalyst had 97% selectivity to C17 hydrocarbon. Possible 

explanation for this can be redispersion of Ni particles on the support and formation of smaller 

Ni particles during in-situ reduction.  

               Previous studies on HDO of stearic acid over 15 wt% Ni/γ-Al2O3 reveals first order 

kinetics based on power law model and apparent activation energy is found to be 175.4 

kJ/mol which is greater than FeMoOx/zeolite catalysts for which HDO activation energy 

is about 130.3 kJ/mol. Precious metal-based catalysts were found to be more effective in 

lowering activation energy than the base metal catalysts. The apparent activation energy of 

HDO of palm stearic fatty acid mixture over 5% Ru/Al2O3 was reported to be 49.22 

kJ/mol, with the order of 0.8 with respect to H2 partial pressure and 1.2 to liquid reactant [22].  

               Hong et al. [9] studied hydrodeoxygenation of guaiacol over NiW/TiO2 at a reaction 

temperature of 300 ºC and hydrogen pressure of 7 MPa for 150 min and they found that 

products were mostly cyclohexane and benzene with some amounts of phenol, anisole, 

catechol and cresol with 100% conversion and 16% yield of cyclohexane. NiW/TiO2 proved 

to be best catalyst among Co promoted and commercial catalyst. Moreover, it was found that 

Co didn’t promote the catalyst as Ni promoted.  

               Ayodele et al. [14] studied hydrodeoxygenation of oleic acid into normal and iso-

octadecane using Ni oxalate catalyst supported on alumina. This group reported that as catalyst 

loading increased from 10 mg to 30 mg, there is an increase in the HDO activity of the catalyst 

due to increase in the active Ni sites for the reaction. By formation of n-C18 due to HDO of 
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oleic acid, there was formation of iso-C18 which is a secondary reaction. The catalyst was 

reduced at 200 ºC in-situ for 1 h prior to reaction.  As the reaction temperature increased from 

320 ºC to 360 ºC, the yield of n-C18 increased from 40% to 72% and yield of iso-C18 increased 

from 5% to 21%. Moreover, on increasing the reaction temperature to 360 ºC, the ratio of iso-

C18 to n-C18 increased, which implies that secondary reactions are more dominant at higher 

reaction temperatures.  

               Sulfur free Ni catalyst have been studied for production of green diesel by HDO over 

Ni catalyst. Hachemi et al. [16] used γ-Al2O3, SiO2 and H-Y zeolite as support materials and 

quite interesting results were found. Transformation of stearic acid was more rapid over Ni/H-

Y than over Ni/Al2O3 and Ni/SiO2, giving respective conversions values after 90 min of 94%, 

43%, and 46%. Here, stearyl alcohol appeared as an intermediate in the first 2 h of the reaction 

and then disappeared completely at the end of the reaction.  Nickel supported on nonacidic 

activated carbon gives high selectivity to C17 HCs through decarboxylation of stearic acid. 

High selectivity to C18 HCs can be inferred from the fact that high acidity of the supports leads 

to sequential hydrogenation of fatty acids to aldehydes and alcohols on nickel metal clusters 

followed by dehydration of fatty alcohols on Bronsted acid sites to olefins and hydrogenation 

of the double bond on the metal. The catalyst deactivated after the 1st run showing 39% 

decrease in surface area for Ni. Another reason for catalyst deactivation is the decrease in the 

pore size and thereby decreasing the number of active sites. Also, minor increase in the metal 

size led to reduction in the reaction rates. The zeolite-containing catalysts tend to become 

deactivated and are generally regenerated at high temperature with oxygen containing gas to 

restore their activity.   
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               Gousi et al. [20] studied Ni-alumina co-precipitated catalysts. The reaction products 

mainly consisted of normal HCs in the diesel range (C15-C18), fatty acids and unreacted 

triglycerides. Propane, ethane, CH4, CO, and CO2 were detected in the gas phase indicating 

decarbonation to be dominant reaction route over hydrodeoxygenation on Ni/Al2O3 catalysts. 

The total yield to hydrocarbons increased with the nickel loading up to the sample 60NiAl and 

then it decreased. The initial increase in Ni loading led to increase in the HC production and 

then it decreased due to amount of NiAl2O4 like phase present on the catalyst surface which 

seems to be difficult to reduce even at 700 ºC and thus inactive for hydrogen transfer reactions. 

Complete conversion of sunflower oil into hydrocarbons in the diesel range was achieved after 

3 h. the product distribution was: 86% C17, 4% C18, 9% C15 and 1% C16. The heating value of 

this product was calculated to be almost equal to 43.9 MJ/kg, which is very close to the heating 

value of diesel (43.4 MJ/Kg). Mild acidity promotes selective deoxygenation and prevents 

extensive cracking. Catalyst prepared by controlled co-precipitation/activation method 

resulted in nickel-alumina nano-structured mesoporous material having very high surface area 

thus giving high catalytic activity.  

 

2.3 Mo catalysts for HDO 

               Hydrodeoxygenation of oleic acid into n- and iso- paraffin biofuel using zeolite 

supported fluoro-oxalate modified molybdenum catalyst have been studied [6]. This research 

reports that HDO of oleic acid proceeds by hydrogenation to stearic acid and then subsequent 

deoxygenation to produce n- and iso- C18. At the end of 60 min of reaction, 59% of n- C18 and 

21% of iso- C18 was found in the reaction product along-with stearic acid and traces of gases. 

Increasing the loading of catalyst and the reaction temperature also increased the yield of iso- 
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C18 as compared to n-C18. Also, the rate of reaction of hydrogenation of oleic acid to stearic 

acid was higher than deoxygenation that implied deoxygenation to be rate controlling step in 

HDO process. The catalyst didn’t deactivate after its reusability over 3 consecutive 

experiments and this is due to formation of fluoro-molybdenum-oxalate complex. Due to 

strong carbon-fluorine chemical bond, the corresponding fluoro-metal-oxalates have been 

reported to have very high thermal and chemical stability. Higher dispersion of Mo species on 

the support caused by the functionalization of flouride and oxalate makes them highly reactive 

octahedral catalysts that are superior than conventional tetrahedral Mo oxide catalysts. Here, 

the formation of iso-paraffin (C18) was thought to be because of increased acidity due to oxalic 

acid functionalization. Also, isomerised compounds are value added ones due to their lower 

freezing point and their applications for cold flow properties. One US patent claim that metal-

oxalate catalysts are reaction specific thus minimizing side products. Research by Deng [17] 

showed that Mo has C18/C17 ratio between 10-13 and conversion about 59% for HDO of methyl 

oleate and biodiesel, which indicates that Mo favours hydrodeoxygenation over decarbonation 

to produce diesel ranged products.  

 

2.4 Ni-Mo catalysts for HDO 

               Hydrodeoxygenation of methyl oleate over sulfided Ni-Mo catalysts has been studied 

by Coumans et al [23]. It is demonstrated that NiMo/Al2O3 and NiMo/ASA (amorphous silica-

alumina) are very active during their early hours of operation but their activity decreases with 

time. Higher initial activity of NiMo/Al2O3 and NiMo/ASA is supposed due to presence of 

Al3+ sites on the Al-containing support surfaces. Deposition of FAMEs on the support block 

these Al3+ sites and slows the rate of methyl ester hydrolysis. Thus, alumina and ASA 
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supported catalysts exhibit deactivation after prolonged use. Also, NiMo/C has 

higher activity, C17/C18 selectivity and yield as compared to NiMo/SiO2 catalyst and this can 

be due to an intrinsically higher activity of the metal sulfide phase in this HDO reaction.  

               Wang et al. [24] investigated the effect of feedstock on the product distribution using 

5%Ni-10%Mo supported over γ-Al2O3. HDO of waste cooking oil and algal oil over 5%Ni-

10%Mo/γ-Al2O3 yields 74.48% and 62.57% HCs respectively. The low reactivity 

is mainly attributed to the presence of an excess larger molecules such 

as diaclyglyerols and triacylglycerols in waste cooking oil and algal oil. HDO efficiency 

increases with increase in Mo loading (5% to 10%) from 92.3% to 96.7%. 

Further increase in loading upto 30% doesn’t affect efficiency much giving increase of only 

0.3% in conversion. Increase in Ni loading from 3% to 7% doesn’t affects the HDO efficiency 

and remains nearly same (~97%). But product distribution is affected by Ni loading. On higher 

Ni loadings, linear alkanes dominate the reaction products while branched alkanes are less 

formed whereas low Ni loading enhances the formation of branched alkanes, cycloparaffins, 

alkyl benzenes and linear alkanes. The 5%Ni-10%Mo catalyst proved to be most stable for 

HDO reactions upto 120 h. also, the HDO yield remained constant (~97%) during this time.  

               Coumans et al. [7] studied the hydrodeoxygenation of oleic acid, methyl oleate and 

triolein over alumina supported NiMo sulfide. During HDO of methyl oleate, fatty acids (oleic 

acid), along with aldehydes and alcohols are found to be the reaction intermediates that 

produces C17 and C18 hydrocarbons. Methane is found to be dominant reaction by-product with 

traces of CO and CO2 indicating that CO and CO2 are methanated under reaction conditions. 

The HDO reaction carried out at 260 ºC and 60 bar exhibited 1st order reaction and –0.09 with 

respect to H2S and activation energy of 193 kJ/mol. Also, for methyl heptanoate, the rate of 
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decarbonation is found to be increasing with increase in H2S on NiMoS/γ-Al2O3. Hence its can 

be said that decarbonation is promoted by H2S and HDO is inhibited by H2S. Also, along with 

C17 and C18 alkanes, some amount of olefins (α-olefins) are also formed during decarbonation 

of methyl oleate. MoS2 is found to be more selective for HDO than decarbonation. Selectivity 

of olefins increases with time and with deactivation of catalyst, decarbonation was less affected 

by deactivation while HDO was more affected. Due to blocking of Lewis acid sites of alumina 

support, the catalyst gets slowly deactivated with time thus decreasing the rate of 

hydrodeoxygenation. Kinetics of HDO of triolein and methyl oleate were found to be similar. 

If alkali metals are present as minor impurities in the catalyst, then it can deactivate the 

catalyst.  

               Hydrodeoxygenation of oleic acid was investigated by Ayodele et al. [18] using Mo 

modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion. 

Increase in process parameters such as temperature, pressure and catalyst loading lead 

to increase in normal paraffins from 40% to 73% and iso-paraffins from 10 to 23%. 

Best conversions and yields were observed at 360 ºC and 20 bar pressure and catalyst loading 

of 30 mg. The presence of iso paraffins was due to the functionalization of catalyst 

with fluoride ion. The catalyst reusability showed marginal loss of 2% after 3rd use.  

               Hydrodeoxygenation of methyl laurate was studied [19] over supported Ni-Mo 

catalysts under low hydrogen pressure. The catalyst was pre-reduced under hydrogen at 370ºC 

and then HDO was carried out at 300 ºC and 0.4 MPa pressure and LHSV of 40 h-1. This 

research showed that γ-Al2O3 didn’t catalyze the reaction and conversion was about 0.1% 

only. Introducing Ni species on γ-alumina support enhanced the reaction rate thereby giving 

conversion values upto 30%, 55% and 80% when loading was 10wt%, 20wt% and 28wt% 
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respectively. Also, yield of undecane increased with increasing Ni content which indicated its 

high dependency on Ni content. The yields of lower hydrocarbons (C2-C10) was also 

increased. But in contrast to this, yield of dodecane didn’t had any significant change to Ni 

content, rather it was formed in very negligible amount indicating decarbonylation and 

decarboxylation to be controlling mechanisms. Also, formed CO and CO2 were readily 

converted into CH4, - which implies that Ni species also readily catalyse methanation of CO2 

and CO. The hydroconversion using NiMo/γ-Al2O3 catalyst was higher than their individual 

sum of conversions. Moreover, phosphorized Ni catalysts had lower activity even though 

using higher hydrogen pressure of about 3 MPa. NiMo exhibited smaller yield ratios of C11/C12 

as compared to Ni and Mo over γ-alumina, which is similar 

to ratios observed over sulfided NiMo catalysts for hydroconversion of triglycerides. By 

addition of Mo, catalytic activity of Ni/Al2O3 was improved and yield of C2-C10 HCs 

decreased. These observations suggest synergistic effect between Ni and Mo species even 

without the sulfurization to play important roles in improving in the catalytic activity, 

accelerating the HDO reaction, and suppressing the hydrocracking of the hydrocarbon 

products as well as the methanation of CO.  

               Synergistic ratio of the NiMo/γ-alumina reduced catalysts have been investigated by 

Kordoulia et al. [21] for the transformation of natural triglycerides into green diesel. 

Maximum yield is observed for Ni/Ni+Mo ratio of about 0.8, i.e. 3.5Ni0.5Mo. The reduced 

catalyst 1Ni3Mo with Ni/Ni+Mo atomic ratio of 0.25 showed very less yield to 

hydrocarbons (~3% and 39% conversion) compared to sulfided catalysts NiMo having same 

atomic ratios (0.25) which showed 94% conversion of sunflower oil and 21% yield to diesel 

range HCs thus proving sulfided catalysts to be more superior than reduced ones for 
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hydrotreating applications. The critical synergistic ratio is similar for HDS and SDO for 

the NiMo/ γ-Al2O3 catalysts in their sulfided form (about 0.3) but this ratio is very different for 

the SDO concerning the reduced form of the catalysts (about 0.8). Explanation for this is that 

the active sites in the sulfided phase are located at MoS2 slabs decorated by nickel ions 

(NiMoS phase) whereas the active sites in the reduced state are metallic nickel atoms promoted 

by MoO3 or MoOx (with Mo oxidation number between 5 and 4).  

               A review paper [11] reported that DO of rapeseed oil at reaction conditions of 240 ºC 

– 280 ºC 35 bar and 0.25 – 4 h-1over sulfided NiMo catalysts supported on alumina mainly 

produced saturated HCs with even number of carbon atoms. The triglycerides 

first saturated and then converted into fatty acids which underwent further hydrogenation to 

yield fatty alcohols and then hydrocarbons. In the DO of rapeseed oil, NiMo/Al2O3 catalyst 

exhibited higher HC conversion, selectivity and lowest catalytic deactivation as compared to 

Ni/Al2O3 and Mo/Al2O3. Further, NiMo resulted in both HDO and DCX while Mo favored 

only HDO and Ni formed only DCX products. HDO reaction of low-grade waste cooking oils 

and trapped grease over NiMo sulfided catalysts supported on alumina and solic acid (B2O3-

Al2O3) reported higher HDO activity with minimum olefin formation. DO of unsaturated 

feedstocks under Ar/He atmosphere instead of H2 causes undesired reactions like cracking and 

formation of heavier products. So, it can be concluded that H2 assisted environment is best for 

carrying out DO reactions.  

               Gutierrez et al. [5] studied role of sulfur-containing groups in the reaction network in 

the HDO of model compounds using NiMo/γ-Al2O3. The reactions were carried out between 

200 ºC – 360 ºC temperature and 1.5 – 8 MPa. Sulfur containing groups on the catalyst surface 

after presulfiding forms the basis for HDO scheme. The introduction of nucleophile SH- is the 
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primary factor in activation of the starting compounds. Adding H2S improved the reactivity of 

methyl heptanoate and guaiacol but decreased for phenol and also addition of H2S lead to 

shifting the selectivity from C7 HCs (formed without adding H2S) to C6 HCs. 

The sulfided catalysts show Bronsted acid character because SH- exists on the surface of the 

catalyst. From this research, it was found that NiMo is more active than CoMo catalyst 

providing higher hydrogenation activity, conversions and selectivity. Water as an additive also 

had profound effects on conversions and product selectivities. It was found that with increasing 

the amount of water, C7 HCs formation increased over C6 and conversion was lowered. 

Addition of H2S together with water recovered the activity but formation of C6 HCs increased.   

 

2.5 CoMo catalysts for HDO 

               Nikulshin et al. [10] investigated use of carbon-coated alumina as support over 

CoMoS catalyst for hydrodeoxygenation of oleic acid and guaiacol. The reaction rates of both 

guaiacol and oleic acid followed pseudo 1st order kinetics. Reactions were carried out between 

260 ºC – 340 ºC, 3.0 MPa hydrogen, 12-80h-1 LHSV. The guaiacol conversions varied from 

32 % to 60% and HDO degree was between 13%-22% at 260°C. Maximal conversions were 

achieved over CoMoS/C2/Al2O3 catalyst. Two routes were dominant in HDO of guaiacol: by 

methylation with formation of catechol and its derivatives and methane (major route) 2) and 

through demethoxylation with formation of phenol and methanol. phenol was major product 

over all catalysts. With increase in reaction temperature to 340 ºC, the guaiacol conversion 

reached upto 96% over all types of catalysts. The activation energy is reported to be 67-

71 kJ/mol. Deactivation degree in guaiacol conversion and HDO decreased from 46% to 31% 

and from 69% to 4% respectively with increase of carbon content in the Cx/Al2O3. Oleic acid: 
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the conversion of oleic acid varied from 41% to 57% and the HDO degree was 33% - 53%. 

Rate constants in oleic acid were 3-7 times higher than in guaiacol. C17 and C18 HCs were the 

main reaction products in the HDO of oleic acid. Also, there were minor amounts of shorted 

fatty acids and C18 aldehydes and alcohols. Approaching the reaction temperature of 340 ºC, 

the oleic acid conversion reached 80% - 100% and activation energy was found to be 64 -

66 kJ/mol. Deactivation degrees in oleic acid conversion and HDO decreased from 31% to 2% 

and from 29% to 1% with increase in carbon content in Cx/Al2O3 supports upto 5.6 wt% of 

carbon. The catalyst deactivation due to formation of coke was attributed to Lewis acid-base 

pairs on the alumina. So, by adjusting the acidity of the alumina, effective HDO catalysts could 

be designed.   

 

2.6 Pd catalysts for HDO 

               Stearic acid hydrogenation was studied [26] over Pd nanoparticles embedded in 

mesoporous hypercrosslinked polystyrene and it was revealed that the use of 1% Pd/HPS 

allowed converting stearic acid upto 97% heptadecane yield. The conversion increased from 

15% to 97.5% when the temperature was increased from 230 ºC to 300 ºC at a constant pressure 

of 0.6 MPa. Also, increase in pressure from 0.2 MPa to 1.8 MPa increased the conversion from 

55% to almost 100% when the temperature was constant (255 ºC).  

               On Pd catalysts supported on carbon, decarbonylation and decarboxylation were the 

main routes of deoxygenation of stearic acid with products mainly dominated by C17s 

Moreover, C17s were also products when oleic acid was deoxygenated with Pd/C as catalyst. 

Also, with Carbon supported Ni and Pt catalyst, the major products C17s as in the case of Pd/C. 

Highest activity was observed with Pd/C catalyst. During DO of ethyl stearate 
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over Pd catalysts, nearly double reaction rate was observed when reaction temp increased from 

300 ºC to 330 ºC. Deoxygenation tendency of catalysts increases with higher metal loading 

and this is attributed to higher number of active sites on the catalyst surface thus increasing 

formation of diesel ranged products [11]. Pd/Al2O3 showed an increase in the conversion from 

0.4% to 5% in HDO of 2-methyl tetrahydrofuran when temperature was raised from 250 ºC to 

350 ºC. This is anticipated due to carbon deposition on the catalyst surface thus blocking 

the active sites for the reaction and resulting in low conversion [27].  

 

2.7 Pt catalysts for HDO  

               Zhou et al [22] studied the kinetics of hydrodeoxygenation of microalgal oil over Pt/ 

γ-Al2O3. Kinetic study of microalgal oil over 1% Pt/γ-Al2O3 revealed activation energy 

about 60.3 kJ/mol considering power law and eley-rideal mechanism of adsorption which is 

lower than the intrinsic activation energy of 92.9 kJ/mol obtained considering langmuir-

hinshelwood kinetics which is assumed due to the exothermic adsorption of reactants. Also, 

H2 was found to be adsorbed on the surface without dissociation which is different from 

gaseous reaction with consistent dissociative adsorption of H2.  The rhenium-modified Pt/H-

ZSM-5 catalyst showed superior catalytic activity and excellent HC conversion towards C15-

C18 compared to Pt/H-ZSM-5 for hydrotreating of jatropha oil [11].  
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2.8 Fe catalysts for HDO  

               MSN-supported iron nanoparticles have been investigated by Kandel for HDO of 

microalgal oil et al [25]. C18 was the major reaction product after 6 h of reaction (yield ~87%) 

while C17 was a minor product (yield~12%) indicating hydrodeoxygenation to be 

the most dominating reaction pathway. In contrast to hydrogenation of oleic acid over MSN 

supported Ni catalysts mostly produced cracking products with very low selectivity towards 

diesel range products. Stearic acid and octadecanol were the major reaction 

intermediates during the course of reaction. Octadecanol disappeared slowly as compared to 

stearic acid implying hydrodeoxygenation to be more dominant that decarbonation 

mechanisms. Aldehyde was not detected under the reaction conditions indicating 

aldehyde reduction rate was fast over Fe-MSN catalysts. The production of HCs 

increased dramatically (conversion ~100%) from 230 ºC to 290 ºC with major increase in 

formation of octadecane while hydrocracking and decarbonylation was 

not observed until 290ºC. This implies that activation energies for cracking and decarbonation 

is higher as compared to hydrodeoxygenation reaction over Fe-MSN catalysts. Low 

hydrogen pressure (10 bar) favoured decarboxylation, decarbonylation and cracking while 

high hydrogen pressures (40 bar) favoured hydrodeoxygenation. As Fe forms strong metal-

oxygen bond than Ni, hydrodeoxygenation is favoured over decarbonation by stopping the 

reaction at decarbonyl stage due to high retention time of the oxygenated compound on the 

catalyst surface.  
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2.9 Rh catalysts for HDO 

               Bie et al. [3] reported HDO of methyl palmitate over bifunctional Rh/ZrO2 at a 

reaction temperature of 270 ºC and 80 bar pressure. In this project, pentadecane was the 

dominant reaction product along with a little hexadecane. The concentrations of palmitic acid 

and hexadecanol was also found to decrease with time indicating their nature as intermediates. 

The most active sites for the reaction was supposed to be interface between the Rh atoms and 

the support ZrO2. Here both the Rh sites and oxygen vacant ZrO2 sites contribute 

synergistically for the reaction. Most active catalyst is supposed to be the bifunctional 

comprising of reducible metal oxide as support and active metal center (noble/transition metal). 

ZrO2 supported Pt and Rh catalyst was investigated for HDO of methyl heptanoate and it was 

found that Rh catalyst had higher activity that Pt catalyst. ZrO2 manifests an ability to activate 

oxygenates whereas the presence of metal is responsible for higher activity and hydrocarbon 

formation. It is reported that decarbonylation and decarboxylation take place over noble metal 

carbides. (Rh/C and Pd/C). ZrO2 supported catalysts are found to be more active than C, 

Al2O3 and SiO2 supports. Oxygen vacancy sites on supports are considered to be active sites 

for activating carboxylate group of FAME thus forming a ketene species via aldehyde 

intermediate. It has been found that fatty esters having different HC chain length exhibit 

different kinetic behaviour.  
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2.10 Transition metal phosphides as catalysts for HDO 

               Transition metal phosphides have been studied for hydrodeoxygenation of biofuel 

model compound by Bui et al [27].  They prepared phosphide catalysts using either phosphites 

or phosphates as the catalyst precursors. In the HDO of 2-methyltetrahydrofuran, Ni2P 

and CoP is selective towards C4 and C5 alkanes while WP, MoP and FeP had 

mostly unsaturated products (pentenes and pentadienes). C4 is mainly produced 

through decarbonylation mechanism for which Ni, Co and W are known to be very active. 

WP/SiO2 prepared by phosphate method produced pentadienes prior to pentenes, so surface 

intermediate is suggested to have bound to two active sites for simultaneous dehydrogenation 

for the initial pentadienes formation whereas WP/SiO2 prepared using phosphite precursor 

produces pentenes prior to pentadienes suggesting dehydrogenation to have been occured on a 

single site. CoP and MoP prepared using phosphite method are more active than phosphate 

ones while phosphides of W, Ni and Fe prepared using phosphate precursor are more effective 

than phosphite method. The order of activity of the catalysts prepared by phospite method is 

WP > Ni2P > MoP > CoP > FeP and that prepared by phosphate method is Ni2P > WP 

> MoP > CoP > FeP. Supported Ni2P, WP and MoP catalysts show high conversion (~90% – 

100%) within the temperatures range of 250 ºC – 350 ºC whereas, FeP prepared 

from phosphite precursor doesn’t show any activity at 275 ºC, and slowly deactivated at 350 

ºC [27]. In the SDO of lauric acid, Ni phosphide catalyst mainly produced C11 and C12 alkanes. 

The order of catalytic activity of Ni2P over various supports for high conversion of methyl 

laurate at 340 ºC. Ni2P/SiO2 > Ni3P-Ni12P5/Al2O3 > Ni2P/TiO2 > Ni2P/SAPO-11 > Ni2P-

Ni12P5/HY > Ni2P/CeO2. [28].  
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2.11 Effect of different supports, additives, catalyst to oil ratio and catalyst particle size 

on HDO [28]. 

a) Supports.  

               High acidity of support favours fragmentation while low acidity offers low catalytic 

activity hence medium-carefully regulated acidity should be best for high yields of green 

diesel. For zeolite type of supports, relatively high Si/Al ratio leads to low acid site 

concentration on the catalytic surface. For instance, in the SDO of stearic acid over 

10%Ni/HZSM-5 (Si/Al = 45) catalyst, full conversion but severe cracking of hydrocarbon 

chain was seen and selectivity to green diesel was about 43% only. By using same support with 

high Si/Al ratio (120 – 200), the acidity decreased leading to higher selectivities to green 

diesel (84% – 93%). Ni catalysts supported on zirconia, titania and ceria showed almost full 

conversion for stearic acid with 87 – 96% yield of heptadecane while rest being C13-C18 HCs. 

The high activities of the catalysts on the slightly reducible supports were attributed to the 

participation of the support surface on the reaction mechanism through defect oxygen sites. 

Give below is the comparison of Ni, Pt and Pd catalysts on various supports for SDO of 

palmitic acid.   

15%Ni / ZrO2 = 5%Ni / HZSM-5 (Si/Al = 200) > 5%Ni / HBEA (Si/Al = 180) > 10%Ni/ZrO2 

> 5%Ni / ZrO2 > 5%Pd / ZrO2 > 5%Pt / ZrO2 > 3%Ni / ZrO2 > 5%Ni / Al2O3 > 5%Ni / SiO2 > 

5%Pt / C > 5%Pd / C.  

Thus, it seems that zirconia is better support than alumina, silica and activated carbon.    

For SDO of methyl palmitate, silica support proved to be least effective while HZM-5 and HY 

support offered 90% conversion but product distribution was shifted towards 

lower alkanes rather than diesel ones. The most promising catalyst proved to be 7%Ni /γ-Al2O3 
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and 7%Ni / SAPO-11 which showed high conversion of MP and high selectivity for C15 and 

C16. The good catalytic activity of HZSM-5 and SAPO-11 was attributed to the medium 

acidity. For SDO of palm oil, 9%Ni / SAPO-11 had almost 83% selectivity to isomerized 

hydrocarbons indicating good balance between Ni and SAPO-11. Highest selectivity 

for heptadecane was obtained over Ni / ZrO2-CeO2 catalyst for SDO of biodiesel indicating 

incorporation of zirconia in the support suppresses hydrocracking and favours decarbonation. 

Most promising supports among the non-reducible oxides are HBeta, SAPO-11, Al-SBA-15 

and γ-Al2O3 which exhibit high surface area and prevents hydrocracking. In the SDO of lauric 

acid, Ni phosphide catalyst mainly produced C11 and C12 alkanes. Given below is the order of 

catalytic activity of Ni2P over various supports for high conversion of methyl laurate at 340 

ºC. Ni2P/SiO2 > Ni3P-Ni12P5/Al2O3 > Ni2P/TiO2 > Ni2P/SAPO-11 > Ni2P-Ni12P5/HY > 

Ni2P/CeO2.  

b) Effect of additives. 

              SDO of jatropha oil into green diesel over NiMo catalysts supported on 

alumina doped with lanthana has been studied. 5% Lanthanum doped catalyst 

(5%Ni10%Mo) is proven to be most promising among non-sulfided catalysts giving maximum 

yield between 280 ºC – 370 ºC and HC distribution is C15 – C18. The well dispersed lanthanum 

oxide on catalyst promotes the reduction of Ni2+ to metallic Nickel while it also oxidizes Mo4+ 

to Mo6+. Moreover, lanthanum oxide increases the basicity of the catalyst. 

Similar characteristics are observed in NiMo catalyst when cerium oxide is doped into it. Most 

active catalyst is 5% Ceria doped non sulfided NiMo/Al2O3. Also, these non-sulfided catalysts 

have been found to be equivalent to the corresponding sulfided ones in their action. In SDO of 

biodiesel over Ni and Ni-Cu catalysts, absence of CO and CO2 formed as a result 
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of decarbonation confirms that methanation also takes place consuming more hydrogen in the 

process.   

c) Effect of catalyst to oil ratio. 

               For SDO of soybean oil, the conversion is dependent on catalyst to oil ratio. When 

the ratio was 0.044 the following order was obtained. NiMo/γ-Al2O3 (92.9%) > 5%Pd / γ-

Al2O3 (91.9%) > sulfided CoMo / γ-Al2O3 (78.9%) > 66%Ni / SiO2-Al2O3 (60.8%) > 5%Pt/ γ-

Al2O3 (50.8%) > 5% Ru/Al2O3 (39.7%), while at catalyst to oil weight ratio of 0.088, 

following trend was obtained: 66%Ni/SiO2-Al2O3 (95.9%) > sulfided NiMo/γ-Al2O3 (91.9%) 

> 5% Pd/γ-Al2O3 (90.9%) > sulfided CoMo/γ-Al2O3 (80%). Hydrocarbons in the diesel range 

were produced mostly while sulfided CoMo/γ-Al2O3 produced considerable amounts of jet 

fuel and naphtha.   

d) Effect of catalyst particle size.  

               In the SDO of methyl oleate, Ni metal and Ni2P supported on SBA-15 showed almost 

80% conversion at 20 h-1 WHSV for the temperatures higher than 290 ºC and pressure equal 

to 30 bar. But it was found that Ni2P particles with average diameter of 7 nm were well 

dispersed within the mesopores of SBA-15 while metallic Ni were larger in size (~25-60 nm) 

and were spread out on the surface of support.   
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Chapter 3 

Experimental 

               The materials used in this research were methyl oleate, commercial biodiesel, 

ammonium meta-tungstate, ammonium tetrathio-tungstate, ammonium hydroxide, nickel 

nitrate hexahydrate, (heptadecane & octadecane for calibration) and γ-alumina. All of these 

materials were purchased from Sigma-Aldrich Company, St. Louis, MO and commercial 

biodiesel was purchased from Diesel-Direct Company, Stoughton, MA.  

3.1 WO3 /γ-Al2O3 catalyst preparation 

               15 g of Ammonium meta-tungstate was dissolved in 50 mL water and 15 mL 

ammonium hydroxide solution to form a uniform saturated solution. Impregnation was carried 

out at room temperature by introducing 25 g of γ-alumina to this saturated solution and 

blanketed under nitrogen gas at room temperature (25ºC) for 24 h. The equilibrated γ-alumina 

was separated by filtration and then calcined in an oven at 400ºC for 2 h. This calcining 

procedure thermally decomposed the Ammonium meta-tungstate into immobilized WO3 on γ-

Al2O3 according to the equation: 

223324212264 86124)()( OOHNHWOOHOWHNH   

Finally, all prepared WO3/γ-Al2O3 samples were cooled under nitrogen gas and stored at room 

temperature for future use. The surface area of catalysts was evaluated by the Brunauer-

Emmett-Teller method (BET), and the loading of tungsten and promoted tungsten was 

characterized by X-ray Photoelectron Spectroscopy method (XPS).  
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3.2 NiWO4/γ-Al2O3 catalyst preparation 

              Nickel is present as NiWO4 and NiAl2O4 as per study by Ng and Hercules (1976, [8]). 

They showed that pretreatment of the Nickel promoted catalyst with H2 reduces Nickel species 

to Ni metal on the surface whereas WO3 is quite stable compared to nickel aluminate and nickel 

tungstate [8].   

               5 g of Nickel nitrate hexahydrate were dissolved in 40 mL water to form a solution 

at room temperature (25ºC) and 150 rpm. Then 15 g of WO3/γ-Al2O3 were added to this 

solution and blanketed in air at room temperature for 48 h. Finally, the solid catalyst was 

collected by filtration and dried in a vacuum desiccator at room temperature for 

24 h to get NiWO4 according to the ionic equation,  

4

22

4 NiWONiWO  

 

The NiWO4/ γ-Al2O3 catalyst was characterized by BET and XPS and then stored at room 

temperature for future use.  

3.3 WS2/γ-Al2O3 catalyst preparation 

               Alumina is usually used as a support with NiW or CoMo catalysts because of its high 

surface area, high thermal stability, high physical strength and recoverability. But alumina 

support strongly interacts with the metal oxide and thus hinders its sulfidation. For instance, 

the Mo-O bond is weaker than W-O bond thus it is more difficult to transform WO3 to 

WS2 and also require high temperatures and high H2S/H2 ratios or high DMDS (Dimethyl 

Disulfide) therefore we have used sulfided W complex as the precursor to get WS2 catalyst 

[29]. The catalyst was prepared by wet impregnation as described in the literature [30 – 34].  
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               15 g of Ammonium tetrathio-tungstate were dissolved in 50 mL of water and 15 mL 

of ammonium hydroxide to form a uniform saturated solution. Impregnation was carried out 

at room temperature by introducing 25 g of γ-alumina to this saturated solution and blanketing 

under nitrogen gas at room temperature (25ºC) for 24 h. The equilibrated catalyst was 

separated by vacuum filtration and nitrogen gas was blown over it to maintain an inert 

atmosphere. The separated catalyst was dried under vacuum desiccator for 24 h and then stored 

under nitrogen for future use. Supported catalyst was thermally decomposed in the reactor with 

H2 to give WS2 according to the equation below.   

yWSSyHSNHyHWSNH  32242424 )()(  

3.4 NiWS4/γ-Al2O3 catalyst preparation   

               The catalyst prepared as described in the previous section was used to prepare nickel 

promoted tungsten sulfide catalyst. 5 g of nickel nitrate hexahydrate were dissolved in 40 mL 

water to form a solution at room temperature (25ºC) and 150 rpm. Then 15 g of ATT/γ-

Al2O3 was added to this solution and blanketed in nitrogen at room temperature for 48 

h. Finally, the solid catalyst was collected by vacuum filtration and nitrogen gas blown over 

it and dried in a vacuum desiccator at room temperature for 

24 h to get grey colored NiWS4 according to the ionic equation.  

4

22

4 NiWSNiWS  
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3.5 Surface area and loading measurements 

               All the catalysts prepared were evaluated by BET to determine the surface area and 

by XPS to determine the loading of tungsten and nickel. The details of BET and XPS methods 

are introduced next, and the results are shown in Tables 2 and 3. 

3.6 BET area measurement 

            The surface area was determined by N2 adsorption at -195ºC using 

a Quantasorb analyzer. Nitrogen partial pressure was changed by regulating the flow rate of 

N2 in a N2/He mixture. The incremental volumes adsorbed were detected by a thermal 

conductivity detector. The corresponding calibration constant was used to convert peak area to 

adsorbed N2 volume.  

Catalyst BET Area (m2/g) 

WO3/γ-Al2O3 191 

NiWO4/γ-Al2O3 176 

WS2/γ-Al2O3 100 

NiWS4/γ-Al2O3 106 

 

Table2. BET Area measurements. 

3.7 XPS loading measurement  

               XPS is a surface-sensitive quantitative spectroscopic technique that measures the 

elemental composition at the parts per thousand range, empirical formula, chemical state and 

electronic state of the elements that exist within a material. XPS spectra were obtained by 

irradiating the sample with a beam of X-rays while simultaneously measuring the kinetic 
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energy and number of electrons that escape from the top 0 to 10 nm of the material being 

analyzed. Usually XPS requires high vacuum (P ~10−8 millibar) or ultra-high vacuum (P < 

10−9 millibar) conditions. The loadings of catalysts were calculated with the data for mass of 

W and Ni, as well as the total mass tested.   

Catalyst W wt% Ni wt% 

WO3/γ-Al2O3 6.99% - 

NiWO4/γ-Al2O3 4.91% 1.46% 

WS2/γ-Al2O3 14.07% - 

NiWS4/γ-Al2O3 24.47% 5.05% 

 

Table 3. XPS Catalyst loading measurements. 

 

3.8 Equipment setup and reaction procedure 

3.8.1 Reaction setup 

               Typically, the catalytic HDO process contains three steps: (i), pretreatment of the 

catalyst by hydrogen gas to reduce WO3 and/or NiO; (ii), reaction step with biodiesel and 

hydrogen gas, with samples periodically analyzed by gas chromatography (GC); and (iii), 

cleaning and drying step of catalyst by inert gas. Based on these steps, an auto-sampling 

bubbler-reactor system was designed and assembled, as shown in Fig. 3.1. 
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Fig. 3.1 Reaction system setup. 

                

               The system essentially consisted of a stainless-steel micro-reactor (1/4×17/4 in.) and 

a stainless-steel bubbler (5/4×17/4in.) equipped with three 3-way valves that 

permitted in situ pretreatment, reaction, and activity measurement of the catalyst. The lines 

between the bubbler, the microreactor, and the line downstream of the reactor were stainless-

steel coil (1/4 in.) wrapped with heating tape to prevent condensation of reactants. There also 

were heating lamps around the whole system to provide a constant temperature environment. 

All the sample points were covered with silica septa and the samples were taken by a gas-proof 

pressure-lock syringe and analyzed by gas chromatography (Hewlett Packard 5890). The 

reactor was loaded with 0.1 g of catalyst as well as glass wool, and the bubbler was loaded 
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with 120 mL biodiesel or methyl oleate and 12 mL iso-octane. The detail of valves set in every 

reaction step will be described in the next section.   

3.8.2 Pretreatment step 

               In this step, the first 3-way valve was set to connect the hydrogen gas to the system, 

and the second valve was set to connect the inlet gas directly to the reactor. The third valve 

was set to connect the bubbler to the vent, as shown in Fig. 3.2. 60 mL/min of the hydrogen 

gas flowed through the microreactor to reduce the catalyst. The temperature of reactor was set 

at 250ºC, 300ºC, 350ºC or 400ºC and the reduction was carried out for 1 h. Previous literature 

works [31, 32] have shown that reduction carried for 1 h or more has no effect on the catalyst 

functioning. If the catalyst is unreduced then it will not have any activity.  

Fig. 3.2 Valves set-up for pretreatment step.   



33 
 

3.8.3 Reaction step and sample analysis   

               In this step, the first 3-way valve was set to connect the hydrogen gas to the system, 

the second valve was set to connect the inlet gas to the bubbler, and the third valve was set to 

connect the outlet of bubbler to the reactor, as shown in Fig. 3.3. The reactor temperature was 

set at 350ºC or 400ºC and the hydrogen flow rate was set at 60 mL/min. 0.3 mL of gas sample 

of the final product was taken by a gas-proof pressure-lock syringe at a reaction time of 60 min. 

Inlet samples (at the outlet of bubbler) of 0.3 mL was taken before the reaction step. All 

samples were analyzed by gas chromatography (Hewlett Packard 5890, detector: FID). In the 

analysis step, helium gas was used as a carrier for the GC and the flow rate was set at 2.52 

mL/min. Hydrogen and compressed air were used for the FID, and the flow rates were set at 

30.8 mL/min and 300 mL/min, respectively. The injector temperature of GC was kept at 180ºC 

and the detector temperature at 350ºC. The initial temperature of the GC oven was set at 180ºC, 

and this temperature was kept for 2 min. Then the oven temperature was increased to 220ºC at 

a rate of 10ºC/min. The final temperature of 220ºC was kept for 30 min. The data were 

transferred to a computer with the help of Peak96. The data files were analyzed by software 

Origin-8 to calculate the areas of all peaks. With the help of a calibration line shown in 

Appendix B, the concentration of initial biodiesel, final biodiesel, C18 green diesel, and 

C17 green diesel were calculated from the area results. Finally, the total conversion of biodiesel, 

green diesel’s C18/C17 ratio (for the pathway selectivity) were calculated from these data, as 

shown in Appendix C. 
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Fig. 3.3 Valves set-up for reaction step. 

3.8.4 Post-reaction cleanup step 

               In this step, the first 3-way valve was set to connect the helium gas to the system, the 

second valve was set to connect the inlet gas directly to the reactor, and the third valve was set 

to connect the bubbler to the vent, as shown in Fig. 3.4. 20 mL/min of helium gas was used to 

blow out all reactant residues as well as water produced in the reaction. The temperature of 

reactor was kept at 200ºC and this step lasted for 1 h. 
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Fig. 3.4 Valves set-up for post-reaction cleanup step. 

  

3.9 Catalyst activity investigation 

3.9.1 Effect of feedstock 

               In this research, two sources of biodiesel (ACS grade methyl oleate, which served as 

a model compound, from Sigma - Aldrich and commercial biodiesel B100 from Diesel Direct) 

were investigated. 120 mL of biodiesel (methyl oleate or commercial biodiesel B100) and 

12 mL of isooctane were loaded into the bubbler, and 0.1 g of catalyst was loaded into the 

reactor. The pretreatment temperature was set at 250ºC, 300ºC, 350ºC or 400ºC and the 

pretreatment hydrogen flow rate was set at 60 mL/min. The reaction temperature was set at 

350ºC or 400ºC and hydrogen flow rate during the reaction step was also set at 60 mL/min. 
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The final product samples were taken at 1, 2, 3 and 4h respectively. Reaction inlet 

sample was taken before the reaction step. All samples were tested by GC and the conversions 

were calculated.  

3.9.2 Effect of pretreatment temperature and/or reaction temperature 

               In this experiment, 120 mL of Biodiesel and 12 mL of isooctane were loaded into the 

bubbler, and 0.1g of hydrodeoxygenation catalyst (WO3/γ-Al2O3) was loaded into the reactor. 

Four pretreatment temperatures (250ºC, 300ºC, 350ºC or 400ºC) were investigated. The 

pretreatment hydrogen flow rate was set at 60 mL/min, the reaction temperature set at 350ºC 

or 400ºC, and hydrogen flow rate during the reaction step was also set at 60 mL/min. The final 

product samples were taken at 1, 2, 3 and 4 h respectively. Reaction inlet sample was taken 

before the reaction step. Samples were tested by GC and the conversion was calculated. 

Conversions of different pretreatment temperatures were then compared.  

3.9.3 Effect of hydrogen flow rates 

               In this experiment, 120 mL of Biodiesel and 12 mL of isooctane were loaded into the 

bubbler, and 0.1g of hydrodeoxygenation catalyst (WO3/γ-Al2O3) was loaded into 

the reactor. Three hydrogen flow rates (40, 60 and 80 mL/min) during the reaction step 

were investigated at reduction temperature of 300ºC and reaction temperature of 400ºC. The 

rest of the procedure was similar to the one described in the previous section. 
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3.9.4 Effect of promoter 

               In this experiment, 120 mL of Biodiesel and 12 mL of isooctane were loaded into the 

bubbler, and 0.1g of hydrodeoxygenation catalyst (Ni-W/γ-Al2O3) was loaded into 

the reactor. The pretreatment temperature was set at 300ºC, the pretreatment hydrogen flow 

rate set at 60 mL/min, the reaction temperature set at 400ºC and the hydrogen flow rate during 

the reaction step was set at 60 mL/min. The final product samples were taken at 1, 2, 3 and 4 

h respectively. Reaction inlet sample was taken before the reaction step. Samples were tested 

by GC and the conversion was calculated. Conversions and yields were then compared with 

unpromoted catalyst.   

3.9.5 Comparison between oxide and sulfide catalyst 

               In this experiment, 120 mL of Biodiesel and 12 mL of isooctane were loaded into the 

bubbler, and 0.1g of hydrodeoxygenation catalyst (WS2/γ-Al2O3) was loaded into 

the reactor. The pretreatment temperature was set at 300ºC, the pretreatment hydrogen flow 

rate set at 60 mL/min, the reaction temperature set at 400ºC and the hydrogen flow rate during 

the reaction step was set at 60 mL/min. The final product samples were taken at 1, 2, 3 and 4 

h respectively. Reaction inlet sample was taken before the reaction step. Samples were tested 

by GC and the conversion was calculated. Conversion of methyl oleate using unpromoted and 

promoted sulfide catalyst were then compared with oxide catalyst. 
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3.9.6 Effect of continuous usage of catalyst 

               In this experiment, 120 mL of Biodiesel and 12 mL of isooctane were loaded into the 

bubbler, and 0.1g of hydrodeoxygenation catalyst (WO3/γ-Al2O3) was loaded into 

the reactor. The pretreatment temperature was set at 300ºC, the pretreatment hydrogen flow 

rate set at 60 mL/min, the reaction temperature set at 400ºC and the hydrogen flow rate during 

the reaction step was set at 60 mL/min. The catalyst was used again on the second day and the 

activity of the catalyst was compared with unused/reduced catalyst. The rest of the procedure 

was identical. 
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CHAPTER 4 

Results and Discussion 

4.1 Effect of feedstock 

               Commercial biodiesel is a complex mixture of fatty acid methyl esters. It has 49–

57 vol% of the component methyl oleate (C17H33O2CH3), 18–30 vol% methyl linoleate 

(C17H31O2CH3), 8–13 vol% methyl palmitate (C15H31O2CH3), as well as small amounts of 

methyl stearate (C17H35O2CH3) and methyl linolenate (C17H29O2CH3). Evaluation of 

commercial biodiesel is usually a complex task, and ACS grade methyl oleate is typically used 

as a model compound for biodiesel.  

               In this research, ACS grade methyl oleate and commercial biodiesel B100 were used 

to run the hydrodeoxygenation process using tungsten catalyst promoted with Ni. The results 

of overall methyl oleate and biodiesel conversions are shown in Fig. 4.1.  
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Fig. 4.1 Overall methyl oleate/biodiesel conversions. Catalysts loadings were 0.1±0.05 g.  

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

Hydrogen flowrate: 60 mL/min  

               From this result, we can find that the overall conversions of methyl oleate and 

commercial biodiesel are almost the same, with methyl oleate a little higher than commercial 

biodiesel (98.5% versus 93.5%). As commercial biodiesel contains some amount of saturated 
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fatty acid esters, its reactivity is a little less than ACS grade methyl oleate which is 70% methyl 

oleate and 30% methyl linoleate (by weight) both of which are unsaturated fatty acid 

esters. Additionally, the C18/C17 ratios of the final product are found to be 6.5 versus 

5.7. This result proves that the reactivity is less with commercial biodiesel as compared to 

methyl oleate.   

4.2 Effect of pretreatment temperature 

               Pretreatment is an important step to promote and maintain the activity of the catalyst. 

In the catalytic HDO process, pretreatment of the catalyst by hydrogen at a certain temperature 

reduces the metal oxide and provides the active sites used in further reaction steps. This 

reduction procedure is mainly affected by temperature thus study of the pretreatment 

temperature is an important and necessary step.    

               In this research, four pretreatment temperatures were tested, namely, 250°C, 300°C, 

350°C and 400°C. It is found that conversion of methyl oleate/biodiesel increases 

with increase in reduction temperature, but the yield of green diesel and ratio of C18/C17 is 

optimal at a reduction temperature of 300°C as shown in Fig.  4.2 and Fig. 4.3. 
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Fig. 4.2 Effect of reduction temperature on overall conversion. 

Operating conditions: Reaction temperature: 400 ºC 

Hydrogen flowrate: 60 mL/min  
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Fig. 4.3 Effect of reduction temperature on C18/C17 ratio. 

Operating conditions: Reaction temperature: 400 ºC 

Hydrogen flowrate: 60 mL/min                 

               Moreover, with WO3/γ-Al2O3 catalyst, at lower reduction temperatures of 250°C, 

conversion is 82% and selectivity towards kerosene and gasoline range products (than green 

diesel) is ~85%. Oxidic support of the metal catalyst also facilitates hydrocracking and shifts 

the product distribution to gasoline-range products apart from hydrogenation [7].  It is 

anticipated that WO3 catalyst interacts with the γ-Al2O3 support to form Al2(WO4)3 [8], which 

leads to the cracking of hydrocarbon chain of the fatty acid methyl ester as per following 

reaction mechanism. 
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Fig. 4.4 Hydrocracking reaction mechanism. 

               The double bond of fatty acid chain is first hydrogenated and then cracking reaction 

takes place. Aluminium Tungstate being a Lewis acid, donates H+, and this proton attacks the 

double bond of the hydrocarbon chain to crack the molecules as shown in Fig. 4.4. 

4.3 Effect of hydrogen flowrate 

               Hydrogen pressure plays a key role in the hydrodeoxygenation process, especially in 

overall biodiesel conversion and deoxygenation pathway selection. Additionally, hydrogen gas 

also acts as a carrier gas for biodiesel in the experimental system, so the mass of biodiesel in 

the system is affected by hydrogen flow rate. In this study, three hydrogen flow rates (40, 60 

and 80 mL/min) were investigated with the WO3/γ-Al2O3 catalyst. The result of mass of 

biodiesel input in 3 mL inlet gas sample is shown in Fig. 4.5.  
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Fig. 4.5 Mass of Methyl Oleate input at different hydrogen flow rate. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

               From this data, the Linear Hourly Space Velocity can be calculated. The LHSV of 

methyl oleate decreased from 6.30 h-1 to 0.76 h-1 when hydrogen flow rate was increased from 

40 mL/min to 80 mL/min, as shown in Fig. 4.6. External mass transport can be enhanced by a 

better mixing of the fluid. A higher flowrate of hydrogen contributes to enhanced mass transfer 

by reducing the laminar film around the catalyst particle and ensuring that more reactants are 

transported to the surface of the catalyst. At low flowrates of hydrogen, it is also conceivable 
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that there is more adsorption of methyl oleate or biodiesel on the catalyst leading to reduction 

in surface area. Consequently, the overall conversion of the reactants can be increased in spite 

of lowering the residence time.   

 

 

Fig. 4.6 LHSV of methyl oleate input with different hydrogen flow rate. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

               Also, the overall methyl oleate conversion and product C18/C17 ratio with different 

hydrogen flow rates were determined and are shown in Fig. 4.7 and Fig. 4.8.  
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Fig. 4.7 Effect of hydrogen flowrates on overall conversion. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 
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Fig. 4.8 Effect of hydrogen flowrates on C18/C17 ratio. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

               It is clearly found from Fig. 4.5 and Fig. 4.6 that as hydrogen gas flow rate increases, 

the mass of methyl oleate per unit volume of gas decreases, which also means an increase in 

hydrogen partial pressure. Fig. 4.7 shows that this increased hydrogen pressure can benefit the 

overall conversion, which increased from 89.4% to 99.1% as the H2 flow rate increased from 

40 mL/min to 80 mL/min. There are probably two reasons: (1) because hydrogen is also a 

carrier gas, higher hydrogen flow rate can produce a higher bulk flow rate that benefits the 

mass-transfer rate, and (2) the mass of methyl oleate per volume of input gas decreases, which 
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results in a higher hydrogen/methyl oleate ratio and a higher partial pressure of H2. This 

benefits the hydrodeoxygenation reaction.  

               A higher product C18/C17 ratio means that the hydrodeoxygenation pathway also 

benefits from the higher hydrogen pressure as shown in Fig. 4.8. The stoichiometry of the 

reactions indicates that more hydrogen is required in the hydrodeoxygenation pathway than 

the decarbonylation/decarboxylation pathway. Moreover, from the mechanism of the HDO 

process, it is clear that more gaseous products are formed in the decarbonylation and 

decarboxylation pathways, which mean they are more favorable at lower reaction pressures. 

Thus, higher hydrogen pressure will shift the reaction towards the HDO pathway at the expense 

of other two pathways. Considering all these benefits, a hydrogen flow rate of 60 mL/min 

provided the optimal condition and was applied in other experimental runs. 

4.4 Effect of reaction temperature 

               Reaction temperature is the most important factor that affects the HDO process and 

catalyst selectivity. In this study, three reaction temperatures (250ºC, 350ºC and 400ºC) were 

investigated in the HDO process. From Fig. 4.9 it is clear that a reaction temperature of 400 ºC 

is optimum. The main reason is that increase of reaction temperature benefits the reaction rate 

and equilibrium conversion. Calculation from the stoichiometry of the reaction indicates that 

the reaction enthalpies (ΔH) of hydrodeoxygenation, decarboxylation, and decarbonylation 

pathways are 82.5, 31.1, and 72.3 kJ/mol, respectively. Moreover, with increase in 

temperature, there are more anion vacancies existing in the metal-support component that 

benefit the reactions [1]. As temperature is increased further, coke formation occurs, which 

can cover the catalyst’s active sites to inhibit the mass-transfer rate and reaction rate. 
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Fig. 4.9 Effect of reaction temperature on overall conversion. 

Operating conditions: Reduction temperature: 300 ºC 

Hydrogen flowrate: 60 mL/min  

4.5 Effect of Promoter 

               From the results of the experiments, it is found that Ni increases conversion, yield 

and selectivity of green diesel when used with WO3 catalyst. It is generally accepted that there 

are at least two different active sites for the hydrotreating reactions, the edges being occupied 

by the promoter atoms. Moreover, sulfur anion vacancies associated with the promoter have 

been found to be more active than those with W atom [5].  The results are shown in figures 

4.10 – 4.13. 
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Fig. 4.10 Effect of addition of Ni promoter to W and its comparison on overall conversion 

when using Methyl Oleate. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

Hydrogen flowrate: 60 mL/min  
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Fig. 4.11 Effect of addition of Ni promoter to W on C18/C17 ratio and its comparison when 

using methyl oleate.  

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

Hydrogen flowrate: 60 mL/min  
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Fig. 4.12 Effect of addition of Ni promoter to W and its comparison on overall conversion 

when using Commercial Biodiesel. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

Hydrogen flowrate: 60 mL/min  
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Fig. 4.13 Effect of addition of Ni promoter to W on C18/C17 ratio and its comparison when 

using Commercial Biodiesel. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC 

Hydrogen flowrate: 60 mL/min  
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4.6 Comparison between oxide and sulfide catalyst 

               It is found the introducing anion to the catalyst increases its efficiency in terms of 

activity, selectivity and overall conversion. It also prevents the catalyst from poisoning. In this 

research, W catalyst was used in two forms viz, oxide and sulfide. The results of W oxide and 

sulfide promoted with Ni are shown in the Fig. 4.14. The results from BET analysis show that 

surface area of oxide catalyst is more than sulfide catalyst. This is due to high metal content in 

sulfide catalyst than oxide catalyst. Thus, conversion obtained from oxide catalyst is more than 

sulfide catalyst.  

 

Fig. 4.14 Comparison between oxide and sulfide catalyst. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC and Hydrogen flowrate: 60 mL/min 
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4.7 Effect of continuous usage of catalyst  

               In this run, the catalyst was reused on the second day with same reduction and 

reaction time and the results are shown in the Fig. 4.15. It is found that the catalyst gets 

deactivated with time and there is negligible formation of green diesel and conversion also 

decreases. A plausible reason for this could be cooling of the reactor and the catalyst followed 

by heating thus resulting in some deactivation of the catalyst due to loss of surface area.  

 

 

Fig. 4.Effect of continuous usage of catalyst on overall conversion. 

Operating conditions: Reduction temperature: 300 ºC 

Reaction temperature: 400 ºC and Hydrogen flowrate: 60 mL/min 
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4.8 XPS catalyst loading results  

               From the results of XPS of all the catalysts, it is found that WO3/γ-Al2O3 catalyst also 

contains Al2(WO4)3 which is responsible for cracking of hydrocarbon chain. Moreover, the 

oxide form of Ni present in Ni-W/γ-Al2O3 (oxide) is NiO which confirms Ni-W oxide is present 

as NiWO4/γ-Al2O3. For the Ni-W sulfide catalyst, it is found that this catalyst also contains 

some traces of NiO because the precursor used to promote the W-sulfide catalyst had ‘O’ in it.  
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CHAPTER 5 

CONCLUSIONS AND 

RECOMMENDATIONS 

               In this research, hydrotreating tungsten catalyst was used to study the 

hydrodeoxygenation reaction for production of green diesel from biodiesel. Effects of 

feedstock, pretreatment (reduction) temperature, reaction temperature, hydrogen flowrate, 

promoter, anion (oxide vs sulfide) and prolonged usage were tested. Pretreatment temperature 

is the most important parameter for green diesel selectivity and yield. It is concluded that 

pretreatment temperature of 300ºC-350ºC and reaction temperature of 400ºC is ideal for 

carrying out hydrodeoxgenation reaction with W catalyst because at 300ºC, C18/C17 ratio is 

maximum but at reduction temperature of 350ºC, green diesel yield is maximum. It is found 

that at low reduction temperature (250ºC), hydrodeoxygenation is also favored along with 

decarbonylation and decarboxylation. At higher reduction temperatures (300ºC and 350ºC) 

more selectivity towards green diesel is achieved indicating only two reaction pathways i.e. 

decarbonylation and decarboxylation. 

               Addition of Ni increases the selectivity, yield and overall conversion thereby 

preventing the formation of lower hydrocarbons (C10-C15). It is found that overall conversion 

with oxide catalyst is a little more than sulfide catalyst (98.5% vs 92.4%). But the green diesel 

yield with sulfide catalyst is approximately 10 times more than oxide catalyst.  
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               This is because WO3 forms Al2(WO3)4 with the alumina support which is also acidic 

in nature, and thereby cracks the hydrocarbon chain of the FAME and hence decreases the 

yields of green diesel (forming kerosene range hydrocarbons as shown in the Appendix A). 

But with sulfide catalyst, there is no interaction with the support so sulfide catalyst turns out 

to be more superior than oxide catalyst. Moreover, with Ni promoted sulfide catalyst (NiWS4), 

the conversion is a little less than NiWO4. 

Recommendations 

               When using W catalyst for hydrodeoxgenation of biodiesel to produce green diesel, 

the ideal pretreatment (reduction) temperature should be about 300ºC-350ºC and reaction 

temperature should be 400ºC. Highest conversion (~ 100%), yields and selectivity for green 

diesel can be obtained when Ni is added to WS2 catalyst. The precursor used for adding Ni 

must be devoid of O and other impurities and must only contain sulfide ions. If it desired to 

produce mixture of hydrocarbons (C10-C19) then WO3 /γ-Al2O3 works best and if only green 

diesel is desired then NiWS4 is the best catalyst according to this research. Future runs should 

include longer reaction times (10-12 h) to determine if activity of catalyst can be sustained to 

produce same level of conversion. Thus, Ni promoted W sulfide seems to be a promising 

catalyst for hydrodeoxgenation to produce green diesel from biodiesel in the near future.  
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APPENDIX A 

Product peaks at different reduction 

temperatures 

 

 

 

Product peaks at reduction temperature of 250 ºC. Catalyst: WO3 /γ-Al2O3. 
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Product peaks at reduction temperature of 300 ºC. Catalyst: WO3 /γ-Al2O3. 
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Product peaks at reduction temperature of 350 ºC. Catalyst: WO3 /γ-Al2O3. 
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Product peaks at reduction temperature of 400 ºC. Catalyst: WO3 /γ-Al2O3. 
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APPENDIX B 

GC Calibration Curves 

Calibration curves were prepared as follows: 

               20 μl of sample to be calibrated was added into 2 ml iso-octane to get the “specimen 

0”. After adequate shaking of specimen 0, 0.8 ml mixture was extracted and mixed with 1 ml 

iso-octane to get the “specimen 1”. 1 ml of mixture specimen 1 was extracted and mixed with 

1ml iso- octane to get “specimen 2”. 1 ml of mixture was extracted from specimen 2 and mixed 

with 1 ml iso-octane to get “specimen 3”; (v) 1 ml of mixture was extracted from specimen 3 

and mixed with 1 ml iso-octane to get “specimen 4.” 

Except the specimen 0, the mass concentration of specimen 1-4 was calculated by Equation: 

iii

ii
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IWm

mW
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
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Wi (g/g) and Wi-1 (g/g) is the mass concentration of specimen i and specimen i-1, respectively 

mi (g) is the weight of mixture extracted from specimen i-1 

Ii (g) is the weight of iso-octane added to the mixture, while concentration of specimen 0 is 

calculated by weight of methyl oleate divided by added iso-octane. 

               3 μl samples of specimen 1-4 were extracted and test by GC machine. Software 

Origin was used for calculating the area of peaks. Finally, these area values were correlated 

with the corresponding the mass concentration to the calibration curve as shown below. 
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APPENDIX C 

CALCULATION OF BIODIESEL 

CONVERSION AND GREEN DIESEL 

YIELD 

               3 mL of gas sample from the bubbler outlet or reactor outlet was injected into the GC 

via a 5 mL pressure-lock syringe. The resulting curve was designated as FAME inlet and outlet, 

as well as heptadecane and octadecane outlet. The area of peaks was integrated by OriginPro. 

A sample calculation of green diesel conversion is shown below: 

• FAME inlet GC area = 2.3763 x 108
 

• FAME outlet GC area = 8.3049 x 106
 

• Heptadecane GC area = 1.988 x 106
 

• Octadecane GC area = 3.323 x 106
 

• Calibration cure slope of FAME = 3 x 1012
 

• Calibration cure slope of heptadecane = 5 x 1012
 

• Calibration cure slope of octadecane = 2 x 1012
 

• FAME inlet mass = (2.3763 x 108)/(3 x 1012) = 7.921 x 10-5 g 
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• FAME outlet mass = (8.3049 x 106)/(3 x 1012) = 2.7683 x 10-6 g 

• Heptadecane outlet mass = (1.988 x 106)/(5 x 1012) = 3.976 x 10-7 g 

• Octadecane outlet mass = (3.323 x 106)*(2 x 1012) = 1.6616 x 10-6 g 

Overall green diesel conversion = [(FAME inlet mass) - (FAME outlet mass)] / (FAME inlet 

mass) = [(7.921 x 10-5 g) - (2.7683 x 10-6 g)] / (7.921 x 10-5 g) = 96.5% 

C18/C17 Ratio = (Octadecane outlet mass) / (Heptadecane outlet mass) = (1.6616 x 10-6 g) / 

(3.976 x 10-7 g) = 4.18.
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