
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

12-20-2018

Efficient Computation and FPGA implementation of Fully Efficient Computation and FPGA implementation of Fully

Homomorphic Encryption with Cloud Computing Significance Homomorphic Encryption with Cloud Computing Significance

Qiang Zeng
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zeng, Qiang, "Efficient Computation and FPGA implementation of Fully Homomorphic Encryption with
Cloud Computing Significance" (2018). Electronic Theses and Dissertations. 7609.
https://scholar.uwindsor.ca/etd/7609

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/215521952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7609?utm_source=scholar.uwindsor.ca%2Fetd%2F7609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Computation and FPGA Implementation of Fully

Homomorphic Encryption with Cloud Computing

Significance

by

Qiang Zeng

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2018

c© 2018, Qiang Zeng

Efficient Computation and FPGA Implementation of Fully

Homomorphic Encryption with Cloud Computing Significance

by

Qiang Zeng

APPROVED BY:

H. Hu

Department of Mechanical, Automotive & Materials Engineering

C. Chen

Department of Electrical and Computer Engineering

H. Wu, Advisor

Department of Electrical and Computer Engineering

Oct 11, 2018

AUTHOR’S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii

ABSTRACT

Homomorphic Encryption provides unique security solution for cloud computing. It

ensures not only that data in cloud have confidentiality but also that data processing

by cloud server does not compromise data privacy. The Fully Homomorphic Encryp-

tion (FHE) scheme proposed by Lopez-Alt, Tromer, and Vaikuntanathan (LTV), also

known as NTRU(Nth degree truncated polynomial ring) based method, is considered

one of the most important FHE methods suitable for practical implementation.

In this thesis, an efficient algorithm and architecture for LTV Fully Homomorphic

Encryption is proposed. Conventional linear feedback shift register (LFSR) structure

is expanded and modified for performing the truncated polynomial ring multipli-

cation in LTV scheme in parallel. Novel and efficient modular multiplier, modular

adder and modular subtractor are proposed to support high speed processing of LFSR

operations. In addition, a family of special moduli are selected for high speed com-

putation of modular operations. Though the area keeps the complexity of O(Nn2)

with no advantage in circuit level. The proposed architecture effectively reduces the

time complexity from O(NlogN) to linear time, O(N), compared to the best existing

works.

An FPGA implementation of the proposed architecture for LTV FHE is achieved

and demonstrated. An elaborate comparison of the existing methods and the pro-

posed work is presented, which shows the proposed work gains significant speed up

over existing works.

iv

DEDICATION

To my loving parents:

Father: Heping Zeng

Mother: Qing Ping

v

ACKNOWLEDGMENTS

I would like to express my faithful gratitude to everyone who helped me. First of all,

I appreciate my parents’ deep love and full support, as well as the encouragement

and financial support from them. Without them, I could not overcome all difficulties

and accomplish my study.

Furthermore, I am quite grateful to my supervisor Dr. Huapeng Wu from de-

partment of Electrical and Computer Engineering at University of Windsor. He has

instructed me throughout my research and this thesis. As one of best teachers I

have ever had, Dr. Wu impressed upon me that a brilliant teacher edifies students

in matters far beyond those in books and academy. His extensive knowledge and

logical thinking are invaluable; without his elaborate and constructive comments on

my research, this thesis could be impossible.

I thank my friends, Ruiqing Dong, Liyuan Liu, Xiaolin Duan, Siyu Zhang and

Pengzhao Song. They gave me their help and time during the adversity of my study.

Ultimately, I hope to show my appreciation to the faculties of Electrical and

Computer Engineering at University of Windsor since their efforts during my study

for the master degree. Furthermore, I pretty appreciate the financial support from

the University of Windsor and my supervisor Dr. Huapeng Wu.

Qiang Zeng

vi

TABLE OF CONTENTS

AUTHOR’S DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ALGORITHMS xii

LIST OF ACRONYMS xiii

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Contribution . 5

1.3 Organization of the Thesis . 5

2 MATHEMATICAL PRELIMINARIES 7

2.1 Truncated Polynomial Ring . 7

2.1.1 Ring . 7

2.1.2 Truncated polynomial ring . 8

2.2 LTV Fully Homomorphic Encryption 12

2.2.1 Parameter sets . 13

2.2.2 Encrption . 13

vii

2.2.3 Evaluation . 16

3 HOMOMORPHIC ENCRYPTION AND CLOUD SECURITY 18

3.1 Homomorphic Encryption . 18

3.1.1 Patially Homomorphic Encryption 20

3.1.2 Somewhat Homomorphic Encryption 21

3.1.3 Fully Homomorphic Encryption 21

3.2 LTV Fully Homomorphic Encryption 25

3.3 Homomorphic Properties . 27

3.4 Cloud Computing and Homomorphic Encryption 30

3.4.1 Security threat . 33

3.4.2 Application of security system 34

3.4.3 FHE scheme over cloud: a scenario 36

4 AN OVERVIEW OF RECENT RELATED WORKS 39

5 PROPOSED ARCHITECTURE FOR FULLY HOMOMORPHIC

ENCRYPTION 44

5.1 LFSR Based Structure . 45

5.1.1 Linear Feedback Shift Register 45

5.1.2 Proposed truncated polynomial ring multiplier 46

5.2 Mersenne Number for Moduli . 48

5.3 Modular Adder . 51

5.4 Modular Subtractor . 55

5.5 Modular Multiplier . 58

6 COMPLEXITY ANALYSIS AND FPGA IMPLEMENTATION 66

6.1 Complexity Analysis . 66

6.2 FPGA Implementation Results . 68

viii

6.2.1 Implementation results . 68

6.2.2 Implementation comparison 69

7 CONCLUSIONS 74

7.1 A Summary of Contributions and Significance 74

7.2 Possible Future Works . 75

REFERENCES 76

VITA AUCTORIS 84

ix

LIST OF TABLES

4.1 Truncated polynomial ring multiplier performance in [1] 43

5.1 Regsiter Contents . 49

5.2 A list of some known Mersenne prime 50

5.3 Selected parameter sets . 51

5.4 An adder performance comparison . 52

5.5 A comparison of different prefix adders[2] 53

5.6 Truth table for Modular subtractor module 57

5.7 Formation of the partial products . 61

5.8 Truth table for Booth Encoder(BE) 61

5.9 Truth table for Booth Selector(BS) 62

6.1 Modules used in proposed architecture 66

6.2 Space complexity for each module . 67

6.3 Time complexity for each module . 67

6.4 Space complexity of proposed multiplier in Rq[x] 67

6.5 Time complexity comparison . 68

6.6 FPGA results for the proposed system 69

6.7 Cryptosystem implementation types and comparison 71

6.8 Implementation speed comparison . 72

6.9 FPGA implementations and comparison 73

x

LIST OF FIGURES

2.1 Encryption process for LTV FHE . 15

3.1 An overview of HE applications . 19

3.2 An overview of FHE timeline . 22

3.3 Cloud computing applications . 30

3.4 Cloud service delivery model . 32

3.5 Cloud security scheme model . 35

3.6 FHE over cloud: a scenario . 37

5.1 Linear Feedback Shift Register . 46

5.2 LFSR Based LTV FHE Architecture 48

5.3 General structure of prefix adder . 53

5.4 Prefix adder logic operators and implementation 55

5.5 Parallel prefix structure with n=8 . 56

5.6 Modular 2n − 1 subtractor . 56

5.7 Modular 2n − 1 subtractor submodule 57

5.8 Implementation of Booth Encoder(BE) 61

5.9 Implementation of Booth Selector(BS) 62

5.10 Modular Multiplier . 63

5.11 Multiplication Partial Product Generation(MPPG) 64

5.12 Multiplication Partial Product Accumulation(MPPA) 65

xi

LIST OF ALGORITHMS

5.1 Multiplication in Rq[x] for LTV FHE 47

xii

LIST OF ACRONYMS

FPGA Field Programmable Gate Array

Z The set of integers

Q The set of rational numbers

R The set of real numbers

Rq Polynomial ring taken modulo q

Z[x] the set of polynomial of arbitrary degree with integer coefficients

q Integer coefficient modulo

R A polynomial ring

N The degree of a polynomial

R Ring

χ Discrete Gaussian distribution

LFSR Linear Feedback Shift Register

m message encoded as polynomial (plaintext)

LTV Lopez-Alt, Tromer, and Vaikuntanathan cryptosystem

c Encryption result represented as polynomial (ciphertext)

HE Homomorphic Encyption

FHE Fully Homomorphic Encyption

PHE Partially Homomorphic Encyption

SWHE Somewhat Homomorphic Encyption

xiii

RSA Ron Rivest, Adi Shamir, and Leonard Adleman public key cryptosystem

LWE Learning with error problem

R-LWE Ring-Learning with error problem

SVP Shortest vector problem

NTRU Nth degree truncated polynomial ring cryptosystem

BE Bit Encoder

BS Bit Selector

xiv

1 INTRODUCTION

1.1 Motivation

Internet is a worldwide electronic network providing access to millions of informational

resources. The ubiquity of Internet proves that it plays an indispensable role in our

daily life. Internet has revolutionized the computer and communication world like

nothing before. While telegraph, telephone, radio, and computer had set stage for the

unprecedented integration of capabilities, subsequent medium as wireless handheld

electronic devices such as smartphone, tablet, PDA, wearable tech, are also in need

of internet for next generation and future world.

With the rapid increase in the amount of Internet information and data in recent

years, the processing and computing ability of current information technology infras-

tructure has also grown simultaneously. As of September 2018 there were over 1.8

billion web servers in the world reported estimated and reported by Netcraft[3]. Ac-

cording to data and marketing services company IDC, scale of Internet data is going

to reach 63ZB by 2025[4]. One of the reasons why web data grow rapidly is that they

are increasingly stacked up by low budget and numerous number of devices such as

mobile devices, cameras, radio-frequency-identification(RFID) readers and wireless

sensor networks. These small Internet of Things devices capable of information sens-

ing and data processing provide great convenience and unlimited contents for people

to access from anywhere at anytime.

To deal with the explosively growing amount of data, Internet communication

bandwidth and capability of Internet based data processing are being expanded and

optimized. Researchers at Bell labs have reached Internet speed of over 100 petabit

× kilometer per second using fiber optic communication[5]. In addition, quantum

computing technologies continues to advance, which is aimed to significantly improve

upon the data processing capabilities of today’s most formidable electronic machines.

1

With that said, people nowadays have growing needs for access of more data contents

and higher amount of information along with the development of technologies such

as video of 4K resolution and VR games.

When people are using their mobile phones and wearable gadgets, they also re-

quire to have access to worldwide resourses and powerful computational ability to cope

with their data on handheld devices. That is when the concept of cloud computing

inevitably came to draw public’s attention in early 2000s[6]. In the history of net-

work technology and communication engineering development, computing paradigm

transformed from massing big load of work for large processor scheme, to distributed

assignment processing scheme based on computer network, to demand processing

cloud computing scheme recently. Cloud computing virtualizes and integrates service

resources on Internet and has specialist responsible for coordination, management

and maintenance, while clients are not necessarily knowledgeable about the internal

realization of cloud. Therefore, cloud computing is a brand new effective computing

paradigm.

Recent development in cloud computing field demonstrates that such a system

providing massive computation and remote data management service has brought

us into a revolutionary digital era. Cloud service has become a major source for

personal users and enterprises when requesting a reliable system to deal with their

data, usually sensitive and private. The cloud offers numerous advantages in costs and

functionality with huge potential and while it is gaining rapidly rising popularity, on

the other hand it also raises grave questions of cloud security and data confidentiality,

since data stored in the cloud could be vulnerable to snooping by the cloud provider

or even by other cloud clients[7].

The vulnerability of cloud computing security results from following reasons:

Multi-tenancy and elasticity are two important feature of cloud model. Multi-tenancy

is the reason why different tenants could share the same service instance. Elasticity

2

enables scaling up and down resources allocated to service based on current service

demands. These two properties increase the attackers’ interests in continually finding

and taking advantage of the existing vulnerbilities for the cloud computing model.

When transfering processing data of user to a third party, it is essential to be aware

the responsibility associated with data privacy and compliance and bond a trust con-

nection between user and cloud provider when exploiting benefits of reduced costs,

easy maintainance and reprovisioning of resources.

Because cloud computing is distributed, the location of data stored is sometimes

unknown, different user could share storage or computing resources, which might

compromise the security and expose the information to other user in the same cloud

model. When the data is tranfered to the cloud, standard encryption methods are

used to secure the operations and the storage of data. The conventional security idea

is to encrypt the data before sending it to cloud provider while handing over private

key to the server to decrypt data before performing the calculations as requested

by the user, the assumption that the cloud provider is trustworthy might affect the

confidentiality and privacy of data stored in the cloud.

What is unique about cloud security is that clients or users demand security

against cloud provider or server. Since the cloud service provider could be any third

party company or enterprise, users intend to keep the data private and manage to

not compromise sensitive information to cloud server. Therefore, a new strategy

or countermeasure is required to provide solutions for the exclusive cloud security

problem.

Homomorphic encryption systems were proposed to allow operations on encrypted

data without decrypting the ciphertext, with user the only owner and holder of secret

key. After decryption by the user, the result is same as the operations carried out

on unencyprted data. In this way, a user gets the utmost out of cloud server’s com-

putation capability as well as obaining the expected calculation results, while cloud

3

provider correctly processed the data as requested under the premise of not knowing

the content of user data, as well as receiving the finantial support from user.

The term homomorphism appeared first time in history from paper by Rivest,Adleman

and Dertouzous[8] as a possible solution to computation on encrypted data and re-

mained encrypted the whole process. This innovative approach is called homomorphic

encryption. Since then, countless research works towards homomorphic encryption

piled up as trending in cryptography. Homomorphic encryption provides a novel way

to allow computation performed on encrypted data without having access of any por-

tion of plain text. Homomorphic encryption scheme offers a unique security measure

working decently against possible attacks and well suited with the exclusive features

of cloud computing.

In order to achieve practical homomophic encryption scheme, high speed and ef-

ficient algorithm and implementation are demanded. Since the proposal of first plau-

sible Fully homomophic Encryption scheme were given by Graig Gentry[9], numer-

ous papers and researchs were introduced aiming the efficient realization of different

method of fully homomorphic encryption system. This paper explore one of the most

researched and practical fully homomophic schemes, LTV[10] proposed by Lopez-Alt,

Tromer and Vaikuntanathan, and present an efficient architecture and FPGA imple-

mentation of the scheme. In addition, cloud computing system with application of

fully homomophic encryption is discussed.

In this thesis we focus on efficient computation and FPGA implementation of LTV

method. A new algorithm for truncated polynomial ring multiplication algorithm

is proposed. Then a LFSR based architecture is designed for high speed process-

ing of truncated polynomial multiplication. Finally a FPGA implementation of the

proposed architecture is achieved with complexity compared favorably to the recent

existing works.

4

1.2 Contribution

The contributions of this thesis are summarized below:

Conventional linear feedback shift register (LFSR) structure is expanded and mod-

ified for computation of the truncated polynomial ring multiplication in LTV cryp-

tosystem. The proposed structure enables parallel computation while keeps compact

and pipelined structure. In addition, a set of unique moduli were chosen to be used in

the computation of modular operations. Calculation speed is much increased results

from the highly efficient modulo computation introduced by the proposed moduli.

Novel and efficient modular multiplier, modular adder and modular subtractor are

proposed for high speed processing of LFSR operations. While parallel prefix adder

structure provide efficient modular addition, Booth algorithm are used to perform

modular multiplication. Our proposed architecture and algorithm provides better

time complexity of linear time O(N) compared to existing works in the literature,

while maintain more or same space complexity. Time and sapce complexity of our

work are analyzed and presented in details. Comparison of FPGA implementation

performance and results of other related works are also given.

1.3 Organization of the Thesis

The rest of thesis is organized as follows: In Chapter 2, mathematical primitives and

fundamentals are introduced, which includes ring, polynomial rings, and modular

arithmetic in polynomial ring. In addition, the basic parameter sets of LTV Fully

Homomorphic Encyption scheme are shown, while the steps of encryption, decryption

and evaluation part is introduced and explained. In Chapter 3, a detailed introduction

to Homomorphic encryption and its related research works are provided. Also, the

contemporary trend of widely used cloud computing applications is analyzed. From

what is studied, the model of cloud computing and the application of intergration with

Homomorphic Encryption will be depicted. In Chapter 4 of the thesis, an overview

5

of several existing related works on LTV Fully Homomorphic Encryption scheme is

scrutinized. Chapter 5 presentsf our proposed work for LTV Fully Homomorphic En-

cryption scheme. In this chapter, an LFSR based multiplier architecture is proposed

to perform polynomial multiplication in set Rq[x]. Besides, proposed modular adder,

modular subtractor and modular multiplier will be explicitly described. In Chap-

ter 6, the complexities of proposed work is analyzed and summarized. The FPGA

implementation results are presented along with comparision of proposed work and

existing work. In Chapter 7, the conclusion and possible future work are discussed.

6

2 MATHEMATICAL PRELIMINARIES

This chapter first introduces truncated polynomial ring, as the mathematical back-

ground of LTV Fully Homomorphic Encryption scheme. Then, an overview of LTV

Fully Homomorphic Encryption system is given, which includes key generation, en-

cryption, decryption and evaluation. The parameter sets selection for LTV Fully

Homomorphic Encryption is also discussed.

2.1 Truncated Polynomial Ring

2.1.1 Ring

Definition A Ring is a non-empty set R together with binary operations + and ·

defined on R with two mappings:

+ : R×R→ R, (a, b) 7→ a+ b

· : R×R→ R, (a, b) 7→ a · b

such that addition operation satisfies:

Additive associativity: a+ (b+ c) = (a+ b) + c, for a, b, c, ∈ R.

Additive communitivity: a+ b = b+ a, for a, b ∈ R.

Additive identity: There is an identity element e in R such that for all a ∈ R,

a+ e = e+ a = a.

Additive inverse: For a ∈ R, there exists an inverse element a−1 ∈ R such that

a+ a−1 = a−1 + a = e.

Also multiplication operation satisfies:

Multiplicative associativity: For a, b, c ∈ R, we have a · (b · c) = (a · b) · c.

Distributivity: a · (b+ c) = a · b+ a · c, and (a+ b) · c = a · b+ b · c.

Examples of ring are populous and here is a few of them:

All of Z,Q,R and C under the operations of addition and multiplication are

commutative rings with identity (with the number 1 as the identity); Under the usual

7

matrix addition and matrix multiplication for collection of matrices over some ring

R form a matrix ring; Modulo 2 arithmetic on 0, 1 is a two element commutative

ring with identity. More generally, for addition and multiplication modulo n on

0, 1, ..., n− 1 considered, we also get a commutative ring with identity; Polynoimials

with real coefficients form a commutative ring with identity under the usual addition

and multiplication.

2.1.2 Truncated polynomial ring

Consider the polynomial ring that contains all the polynomials with degree up to

a certain value N − 1 taken modulo φ(x) = xN + 1 and with integer coefficients.

This is called truncated polynomial ring (with integer coefficients) and denoted by

R[x]/(xN + 1). Let a(x), b(x) ∈ R[x]/φ(x):

a(x) = a0 + a1x+ ...+ aN−1x
N−1 (1)

b(x) = b0 + b1x+ ...+ bN−1x
N−1 (2)

We must able to add and multiply elements of R[x]/φ(x) so that the axioms defining

a ring hold true.

Here are some basic properties of truncated polynomial ring:

• Equality

If a(x)a0 + a1x+ ...+ aN−1x
N−1 and b(x) = b0 + b1x+ ...+ bN−1x

N−1 are in ring

R , then a(x) = b(x) stands if and only if ai = bi, for every integer i ≥ 0.

In other words, two polynomials are declared to be equal if and only if their

corresponding coefficients are equal.

• Addition

If a(x) = a0 + a1x + ... + aN−1x
N−1 and b(x) = b0 + b1x + ... + bN−1x

N−1 are

8

both in ring R, then:

a(x) + b(x) = c0 + c1 + ...+ cN−1x
N−1 (3)

Where

ci = ai + bi, for each 0 ≤ i ≤ t.

To elaborate, definition of addition of two polynomila in polynomial ring is to

add two polynomial by adding their coefficients and collecting terms. To add

1 + x and 3 − 2x + x2 we consider 1 + x as 1 + x + 0x2 and add, according to

the given definition, to obtain as their sum 4− x+ x2.

The multiplication defined for R should be more complicated.

• Multiplication

if a(x) = a0 + a1x+ ...+ aN−1x
N−1 and b(x) = b0 + b1x+ ...+ bN−1x

N−1 , then

a(x)b(x) = c0 + c1 + ...+ cN−1x
N−1 (4)

where

ct = ±
m∑
i=0

t−i∑
j=0

aibj = ±atb0 ± at−1b1 ± at−2b2 ± ...± aobt, 0 ≤ t ≤ N − 1 (5)

This definition explain the multiplication in polynomial ring is to multiply two

polynomial by multipliying out the symbols formally, use the relation xαxβ =

xα+β. The kth coefficient ck is simply the dot product of the coefficients of a

and the coefficients of b except that coefficients of b are listed in reverse order

and are rotated around k positions.

Example: Let

a(x) = 1 + x− x2,

9

b(x) = 2 + x2 + x3

Thus

c0 = a0b0 = 1 · 2 = 2,

c1 = a1b0 + a0b1 = 1 · 2 + 1 · 0 = 2,

c2 = a2b0 + a1b1 + a0b2 = (−1) · 2 + 1 · 0 + 1 · 1 = −1,

c3 = a3b0 + a2b1 + a1b2 + a0b3 = 2,

c4 = a4b0 + a3b1 + a2b2 + a1b3 + a0b4 = 0,

c5 = a5b0 + a4b1 + a3b2 + a2b3 + a1b4 + a0b5 = −1,

c6 = a6b0 + a5b1 + a4b2 + a3b3 + a2b4 + a1b5 + a0b6 = 0,

c7 = c8 = ... = 0.

According to definition of multiplication rules,

(1 + x− x2)(2 + x2 + x3) = c0 + c1x+ c2x
2 + ...c6x

6

= 2 + 2x− x2 + 2x3 − x5.

The multiplication of polynomial ring is commutative and it has a unit element.

• Inverse

The inverse modulo q of a polynomial a(x) is a polynomial b(x) with the prop-

erty that

a(x) · b(x) = 1 mod q

It can be also written as:

b(x) = a(x)−1 mod q

10

Not every polunomial has an inverse modulo q in the ring, but it is easy to

determine if a(x) has an inverse or not, or to compute the inverse if it exists.

For example:

Take N = 7, q = 11, a(x) = 3 + 2x2 − 3x4 + x6.

The inverse of a(x) mod q is

b(x) = −2 + 4x+ 2x2 + 4x3 − 4x4 + 2x4 + 2x5 − 2x6

Since

a(x) · b(x) = (3 + 2x2 − 3x4 + x6) · (−2 + 4x+ 2x2 + 4x3 − 4x4 + 2x4 + 2x5 − 2x6)

= −10 + 22x+ 22x3 − 22x6

= 1 modulo 11

• Modular Operations

f(x) mod P (x) means “the remainder of (f(x)÷ P (x))” .

– It can be denoted f(x) = a(x)P (x)+b(x), where the degree of b(x) is lower

than that of P (x), then f(x) mod P (x) = b(x).

– Polynomial division: (f(x)÷ P (x)) to obtain the remainder.

Example:

1. Let f(x) = x8 + 1, P (x) = x3 + x2 + 1

f(x) mod P (x) = x8 + 1 mod x3 + x2 + 1

= 6x2 − 3x+ 5

where the quotient is x5 − x4 + x3 − 2x2 + 3x− 4.

11

2. Let f(x) = x10 , and P (x) = x2 + x+ 1

f(x) mod P (x) = x10 mod x2 + x+ 1

= x

and the quotient is x8 − x7 + x5 − x4 + x2 − x.

Truncated polynomial ring is the algebra primitive that LTV Fully Homomorphic

Encyprion defined over with. The truncated polynomial ring, which is denoted as

R = Z[x]/(xn + 1) in the literature. N is a prime number. In this notation, Z[x]

represent the set of polynomials of arbitrary degree with interger coefficients and

xn + 1 is the modulo that the polynomial is taken. It can be seen that the set of R

contains all the polynomials with integer coefficients of degree up to N − 1.

In addition to the limitation for the degree on polynomial in the truncated poly-

nomial ring, another particular restrain is also requested for LTV Fully Homomophic

Encryption scheme. The elements in truncated polynomial ring R for LTV Fully

Homomorphic Encryption scheme can be viewed as degree N polynomials with the

coefficients taken modulo of prime number q, which demonstrate that all integer coef-

ficients for the LTV truncated polynomial ring are supposed to be coming from range

[0, q].

So LTV Fully Homomorphic Encryption system works in the truncated polynomial

ring R taken modulo xN + 1 and q, which is expressed by Rq = Zq[x]/(xn + 1).

2.2 LTV Fully Homomorphic Encryption

Figure 2.1 shows the key generation, encryption, decryption and evaluation process

of LTV Fully Homomorphic Encyption scheme.

12

2.2.1 Parameter sets

For LTV Fully Homomorphic Encryption to be both secure and correct, concrete sets

of parameter need to be chosen carefully. An proven secure range of required param-

eters sets and values of selection for determined security level is shown below[11]:

• An integer N , fix N to be power of two.

• An integer p, fix p = 2. This choice provides a useful message space and cause

the least possible expansion on the noise.

• Set χ to be the discrete Gaussian distribution DZN ,r, for some standard de-

viation r > 0. Elements can be efficiently drawn from this distribution and

moreover.

• With N a power of two and a degree N polynomial φ(x) = xN + 1, the noise

distribution can be spherical and the worst case reduction still hold[12].

• Set r =
√

2N/π, so that ring-LWE is as hard as lattice problem in the worst

case[12].

• Choose a prime q ∈ [dN6ln(N), 2dN6ln(N)], such that q ≡ mod 2N . For

d = 25830, correctness of the scheme can be guaranteed. Experimentally, less

aggressive and lower value of d is obtained.

The parameters N, q, χ are public. The message space for the LTV Fully Homo-

morphic Encryption scheme is M = 0, 1 and all the operations are performed in the

ring Rq = Zq[x]/(φ(x)). We associate Zq with the set {− bq/2c , ..., bq/2c} throughout

the thesis, to satisfy the absence of wrap round error.

2.2.2 Encrption

The LTV Fully Homomorphic Encryption scheme is parametrized by a prime number

q and a bounded error distribution R = Z[x]/(xN + 1) over polynomials whose coef-

13

ficients are all at most q in absolute value. All operations in this scheme take place

in the ring Rq = R/qR.

• KeyGeneration

Sample bounded polynomial f ′, g ← χ

Set f := 2f ′ + 1 so that f ≡ 1(mod 2). If f is not invertible in Rq, re-sample

f ′.

Compute the public key as:

Kpub := h = 2gf−1 ∈ Rq. (6)

Set secret key as:

Kpri := f ∈ R. (7)

For all τ ∈ {0, ..., blogqc}, sample sτ , eτ ← χ .

Compute γτ = hsτ + 2eτ + 2τf ∈ Rq.

Set evaluation key as:

Keva = (γ0, ..., γblogqc) ∈ Rdlogqeq (8)

The public key h, counterpart secret key f and evaluation key are acquired

through above steps.

• Encryption(Kpub,m)

Kpub := h = 2gf−1 ∈ Rq , Kpri := f ∈ R

Sample polynomials s, e← χ. Output the ciphertext

c := hs+ 2e+m ∈ Rq (9)

Where all operations are done with modulo q and φ(x).

14

1.Parameter sets

2.Key Generation

3.Encryption

5.Decryption

User

4.Evaluation by server
(addition and multiplication)

Fig. 2.1: Encryption process for LTV FHE

When above two steps are done, ciphertext is computed and output as polyno-

mial c.

• Decryption(sk, c)

Output

µ = fc ∈ Rq (10)

m′ := µ (mod 2) (11)

Decrypted message m is obtained after the success completion of above compu-

tations.

Decryption works because:

fc (mod q) = f(hs+ 2e+m) (mod q)

= 2(gs+ ef) + fm (mod q)

= 2(gs+ ef) + fm

Where the last quality is true since |2(gs+ ef) + fm| < q/2. Taking this

quantity mod 2 then gives the message m since f ≡ 1 (mod 2).

15

2.2.3 Evaluation

In this section we show how to homomorphically add and multiply two elements.

Given two cihpertexts c1, c2, there are a series of different public keys connected with

each ciphertext. Public keys will be represented as K1, K2 respectively.

• Evaluation addition

– Two ciphertexts c1 and c2 are encrypted by the corresponding public key

sets K1,and K2.

– Output ciphertext:

cadd = c1 + c2 ∈ Rq (12)

– Output the set Kadd = K1 ∪K2 as its corresponding public key set.

• Evaluation multiplication

– Given two ciphertexts c1 and c2 with corresponding public key set K1,

K2, computing ciphertext c̃0 = c1 · c2 ∈ Rq ,and let K1 ∩ K2 =

{Kpubi1 , ..., Kpubir}

– If K1 ∩K2 = ∅, let cmult = c̃0.

– Otherwise for j ∈= [r] and τ = {0, ..., blog qc }, define c̃j−1,τ so that

c̃j−1 =

blog qc∑
τ

c̃j−1,τ2
τ (13)

is binary representation for c̃j−1

– Parse

Kevaij
= (rij ,0, ..., rij ,blog qc) (14)

let

c̃j =

blog qc∑
τ=0

c̃j−1,τrij ,blog qc (15)

16

– Output cmult = c̃ as encryption of product of messages, output the set

Kmult = K1 ∩K2 as it corresponding public key set.

17

3 HOMOMORPHIC ENCRYPTION AND CLOUD

SECURITY

This chapter introduce the concept of homomorphic encryption. In fact, all different

homomophic attempts can be generally categorized under three types of schemes with

respect to the allowed times of operations and supported type(s) of operations on

the encrypted data as Partially Homomorphic Encryption, Somewhat Homomophic

Encryption and Fully Homomorphic Encyption. The research timeline and history of

homomorphic encryption methods are given, as well as the important corresponding

homomorphic properties.

Cloud computing security in modern society is analyzed. Solutions to cloud secu-

rity based on applications of homomorphic encryption are discussed. Illustrations of

specific encyption process scheme that are applied in cloud computing scenario are

also presented.

3.1 Homomorphic Encryption

Homomorphic encryption is divided into three categories: Partially Homomorphic

Encryption(PHE), Somewhat homomorphic encryption (SWHE) and Fully Homo-

morphic Encryption(FHE) scheme. Partially Homomorphic Encryption support only

one type of operation with a unlimited time of usages. While Somewhat Homomor-

phic Encryption allow some type of computations such as addition or multiplication

operations carried on cipher text with a limited number of time, Fully Homomor-

phic Encryption supports securely unlimited time of arbitrary computations over

encrypted data without decrypting the data[9].

Due to its unique security properties, Homomorphic Encryption(HE) gained much

attention from various industries. A series of applications and potential areas of use

are illustrate in 3.1.

18

Cloud Computing
Electronic Voting

Financial Transaction

Medical records

Data mining

Electronic Cash

Encrypt with Homomorphic encryption
User

Data secure even
with untrusted cloud

HE enables cloud to perform directly
on encrypted data of client.

Fig. 3.1: An overview of HE applications

The idea of Homomorphic Encryption problem was first mentioned by Rivest,

Adleman[8] in 1978 with an alternative term of privacy homomorphism. The open

problem maintained a mirage for over 30 years since then and have been known to be

the“holy grail” of cryptography[13]. The construction and solution of such scheme

seemed to be even more impractical until Stanford PhD thesis proposed by Gentry[9]

was theoretically achieved in 2009.

There was an appreciable amount of homomorphic encryption schemes introduced

during this period: unpadded RSA[14] or ElGamal encryption scheme [15] and cryp-

tography of Goldwasser-Micali[16], Benaloh [17], Paillier[18], Damgard[19] and Regev

[20] [21]. The examples given above allow computation either one type of operation

or limited numner of operations such as addition or multiplication on cipher texts.

Huge breakthrough was made when first plausible homomorphic encryption scheme

proposed by Gentry[9] supports both addition and multiplication operations based on

ideal lattices. The long last question about whether it is possible to realize a fully ho-

momorphic encryption system is finally solved due to availability of arbitrary compu-

tation on cipher text in polynomial time. The paper initiate the research enthusiasm

in cryptography and computer science field carried out on fully homomorphic encryp-

tion. A list of extension of Gentry’s work can be found in [21], [12],[22],[23],[24],[25].

The security of these efficient schemes are mostly based on hardness of learning-with-

19

error (LWE) or ring-learning-with-error (RLWE) problems.

3.1.1 Patially Homomorphic Encryption

PHE schemes are often seen in particular application of electronic-voting or private

information retrieval. But the application of PHE method is restricted in terms of

the type of homomorphic evaluation opertions. In orther words, it can only be used

in some certain scenarios with only addtion or multiplication operation are required.

RSA is one of the representative public key cryptography systems introduced by

Rivest, Shamir, and Adleman[14] in 1978. Its security is based on hard problem of

large prime factorization. Using the term ‘privacy homomorphism’ for the first time in

history, the paper showed the homomorphic property over only multiplication, where

E(m1* m2) can be directly evaluated by using E(m1) and E(m2) without decrypting

them first. Apparently RSA does not support homomorphism of addition, thus it is

classified as partially homomorphic encrytion.

Given RSA public key (N, h) and two plaintext m1,m2, the multiplication of two

ciphertext returns a computed multiplication in the encrypted domain as follows:

Enc(m1)× Enc(m2) = (mh
1 mod N)× (mh

2 mod N)

= (m1 × m2)
h mod N

= Enc(m1 ×m2)

(16)

In 1985, based on original Diffie-Hellman key exchange algorithm, a new public key

encryption scheme called Elgamal were proposed by Taher Elgaml[15], which is based

on the hard mathmetic problem of discrete logarithm. The Elgamal cryptosystem is

multiplicatively homomorphic and not satisfy addtitive homomorphism.

Pailleir[18] proposed a novel probabilistic encryption scheme based on compos-

ite residuosity problem which is homomorphic over addition, while later work by

Damgard-jurik [19] presented another PHE scheme as a generalization and improve-

20

ment of Paillier system.

The Pailleir scheme [18] is limited to only additive homomorphism. Given the

public key (N, h), a random number (r1, r2) and two plaintext m1 and m2, the mul-

tiplication of two ciphertexts returns a computed addition in the encrypted domain

as follows:

Enc(m1)× Enc(m2) = [(gm1 · rN1)× (gm2 × rN2)]mod N2

= [(gm1+m2)(r1r2)
N]mod N

= Enc(m1 +m2)

(17)

3.1.2 Somewhat Homomorphic Encryption

There were SWHE researched before and after first FHE scheme came out in 2009.

Some major SWHE methods were used as stepping stone towards practical FHE,

while some were proposed with performance associated with FHE scheme.

BGN, one of the most significant SWHE, was introduced by Boneh-Goh-Nissim[26]

in 2005. The hardness of the scheme is based on subgroup decision problem. Homo-

morphism over addition and multiplication are satisfied but further operations are

not supported.

Sander[27] described a SWHE scheme supported a limited depth circuit evaluation

on a semi group, and Kawachi’s proposal[28] allow additive homomorphism.

3.1.3 Fully Homomorphic Encryption

If a encryption scheme allows unlimited number of arbitrary evaluation operation on

encrypted data, it is called Fully Homomorphic Encryption(FHE). 30 years after the

presentation of homomorphism concept by Rivest,etc[8] in 1978, Standford Univer-

sity graduate C.Gentry introduced the first plausible structure to construct a feasible

Fully Homomorphic Encryption scheme in his PhD thesis[9]. Plenty of research works

21

Second generation homomorphic cryptosystem
Early homomorphic
cryptosystem(First Generation)

First FHE by Gentry: lattice based cryptography

Cryptosystem over the integers

BGV—The Brakerski-Gentry-Vaikuntanathan cryptosystem

Scale-invariant cryptosystem

LTV——NTRU-like Homomorphic Encryption By Lopez-Alt,
Tromer, and Vaikuntanathan Cryptosystem

GSW– The Gentry-Sahai-Waters cryptosystem

2009

2010

2011

2012

2012

2013

Fig. 3.2: An overview of FHE timeline

afterwards indulged in creating new FHE system and improve Gentry’s innovation

from 2009. Most of the later efforts are generally based on the blueprint provided

by Gentry himself, that is, Gentry proposed a conventional framework for other re-

searchers to follow his basic design. Diagram 3.2 shows the history of development of

FHE researches.

Several new techniques that were developed starting 2011 led to the development

of much more efficient Fully Homomorphic Cryptosystems. These include:

• Lattice based FHE

Gentry’s first Fully Homomorphic Encryption, also known as ideal lattice based

FHE scheme, uses ideal lattice to make huge breakthrough from SWHE struc-

ture. An SWHE can only evaluate ciphertext homomorphically for limited

number of times. When dealing with a certain amount of calculations on ci-

phertext, decryption process is not available to retrieve the original message

accurately.

The increasing chunk of noise must be reduced to convert noisy ciphertext to

corresponding plaintext. Homomorphic operations can be applied to ciphertext

with only small amount of noise. When the noise parameter become close to

lattice point, or threshold, it is not feasible to decrypt cipher properly. Gentry

proposed a novel method named bootstrapping to support a particular amount

22

of homomorphic operations to be performed on ciphertext, which iterate works

for unlimited time. In this way, the scheme become fully homomorphic encryp-

tion.

The bootstrapping process basically works as follow: first the homomorphic

decryption of the noisy ciphertext removes the noise, then the new homomorphic

encryption introduces new small noise to the ciphertext. The ciphertext is now

like just encrypted. Further homomorphic operations can be computed on this

fresh ciphertext until reaching to a threshold again. This is where FHE become

impractical for its noticeably computation cost and result in a major drawback

for Fully Homomorphic Encryption.

A noticeable number of following FHE methods were presented to improve Gen-

try’s original work. Gentry himself introduced a advanced key generation al-

gorithm in [29] which improved the initial proposal’s security level based on a

quantum worst case reduction problem since the former one’s key generation

algorithm is used for a particular purpose only and the generation of an ideal

lattice with a good basis is left without a solution[30]. Another probabilistic

decryption algorithm with lower multiplicative degree, which is the aquare root

of previous decryption circuit degree, was gived by Stehle and Steinfeld[31]. In

addition, a new FHE scheme, which is a variant of Gentry’s scheme was intro-

duced in[32]. This scheme uses smaller ciphertext and key sizes than Gentry’s

scheme without sacrificing the security. Alternative works [33] [34] [35]focused

on the optimizations in the key generation algorithm in order to implement the

FHE efficiently.

• FHE over integers

After Gentry’s ideal lattice based scheme, a novel FHE scheme is presented in

[36] which used bootstrapoing method to construct Fully Homomorphic En-

23

cryption. The new proposed approach is over the integer and the hardness of

the method is based on Approximate Greatest Common Divisor(AGCD), with

the primary motivation behind the scheme having conceptual simplicity. The

paper[36] provide a way for transforming existing symmetric version of HE to

asymmetric HE scheme, which states that the scheme is a public key encryption

system.

While the relatively complex components of structure based on ideal lattice

is replaced by a uncomplicated architecture over integers, the simplicity at-

tained trade off for computation cost. A few following optimization works[37]

[38][39]concentrate on decreasing size of public keys.

Some subsequent methods for FHE schemes over integers are proposed too.

Scale invariant FHE over the integers [40], a new scheme with integer plaintexts[39],

a new SWHE scheme for computing arithmetic operations on large integer

numbers without converting them into bits[41], a new symmetric FHE without

bootstrapping[42], a new FHE for non binary message space[43]. All Schemes

mentioned above improved FHE over the integers scheme in their own way.

• LWE based FHE

Learing With Error(LWE) problem which is conjectured hard to be solved, is

as hard to solve as several worst case lattice problem even for post quantum

algorithm. The hardness of worst case lattice problem like SVP is reduced to

LWE, that is, the problem of SVP would be solved in polynomial time with

a particular algorithm if this algorithm could be used to work out LWE in

efficient time. The idea stimulate the growing researches over post quantum

cryptography with relatively small ciphertext size. A significant variant of LWE

problem was introduced by Lyubashvsky[12] regarding algebra structure of ring-

Learing with error. The ring-LWE is able to be reduced to worst case on ideal

24

lattice problem which is not efficiently breakable in polynomial time by quantum

algorithm and considered more efficient for practical applications and stronger

security level than original LWE problem.

Brakerski and Vaikuntanathan[44] constituted a SWHE scheme using efficient

feature of ring-LWE make it one step closer to practical FHE with Gentry’s

basic bootstrapping and squashing techniques, because ring-LWE is regarded

as better performance than LWE scheme. A leveled FHE scheme without us-

ing bootstrapping method was provided in [22], in respond to the fact that

bootstrapping process cost too much computation resource to finish. In Brak-

erski’s new scale invariant Fully Homomorphic Ecryption scheme, noise grows

linearly with evaluation of homomorphic operation instead of exponentially and

the scheme is based on hard problem of GapSVP. Some notable modifications

include [45] reducing overhead of key switching and faster evaluation of homo-

morphic operations and [46] using relinearization to improve efficiency.

In addition, some later proposal [23],[24],[25] are introduced to extend the per-

formance and achieved better optimization results.

3.2 LTV Fully Homomorphic Encryption

A more practical and applicable FHE scheme LTV was derived from an old and secure

cryptosystem NTRUEncrypt, which is a public key cryptography system proposed

by Hoffstein, J [47]. It was named after the initials of three authors of Lopez-Alt,

Eran Tromer, and Vinod Vaikuntanathan[10], who obtained a multi-key FHE scheme

based on NTRUEncrypt. Lopez-Alt discoverd the homomorphic properties hidden

in NTRUEncrypt scheme and developed LTV method with a few differences. First,

the variant add a set of noises from a discrete Gaussian distribution with bounded

support in stead of a deterministic set in original scheme. Second, the computation

environment is different, LTV method performs operations in polynomial ring set

25

Rq = Z[x]/(xN + 1) where N is power of 2, while in NTRUEncrypt cryptosystem

the base algebra structure is polynomial ring Rq = Z[x]/(xN − 1) where N is prime.

Third, more aggressive parameter sets provide higher security level and more complex

computation to support fully homomorphism.

One of the unique features of LTV Homomophic Encryption scheme is the multikey

homomorphism for two party computation. Let (h1, f1) and (h2, f2) be two different

public and secret key sets. Let c1 = h1s1 + 2e1 +m1 and c2 = h2s2 + 2e2 +m2 be two

ciphertexts encrypted under public key h1 and h2 respectively. The computation of

ciphertexts that decrypted to sum and the product of m1 and m2. Using the secret

key f1 · f2 the ciphertext cmult = c1 · c2 and cadd = c1 + c2 can be decrypted to the

product and the sum of m1 and m2 respectively.

The multikey homomorphism properties for two party computation is shown below

using joint secret key set k1, k2.

• Multikey Homomorphism over addition

f1f2(c1 + c2)(mod 2) = 2(f1f2(e1 + e2) + f2g1s1 + f1g2s2) + f1f2(m1 +m2)(mod 2)

= 2eadd + f1f2(m1 +m2)

= m1 +m2(mod 2)

(18)

• Multikey Homomorphism over multiplication

f1f2(c1c2)(mod 2) = 2(2g1g2s1s2 + g1s1f2(2e2 +m2) + g2s2f1(2e1 +m1)

+ f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)(mod 2)

= 2emult + f1f2(m1m2)

= m1m2(mod 2)

(19)

Since f1 ≡ 1(mod 2) and f2 ≡ 1(mod 2).

26

In other words, joint secret key f1f2 can be used to decrypt cadd = c1 + c2 and

cmult = c1 · c2. We can extend this argument to any combination of operations, with

ciphertexts encrypted under multiple public keys. It is also seen that multikey ho-

momoprhic operation increase noise more than a single key homomorphic evaluation.

However, m1 +m2 and m1m2 can still be recovered correctly using the joint obtained

secret key since f, g, s, e are all sampled from bounded ditribution χ. In other words,

the decryption part works well if the noise parameters eadd and cmult are smaller than

[−bq/2c , bq/2c].

3.3 Homomorphic Properties

Let c1 and c2 be two ciphertexts. When two messages m1 and m2 are both encrypted

by the shared secret key f , the homomorphic properties could be expess as:

• Addition

Define the sum of two ciphertexts as:

cadd = c1 + c2

For the additive homomorphic property, we have:

f · cadd mod 2 = f(c1 + c2) mod 2

= f · c1 + f · c2 mod 2

= µ1 + µ2 mod 2

= m1 +m2 mod 2

= m1 +m2

(20)

From above, the summation of two ciphertext can be decrypted as summation

of two plaintexts or messages with additive homomorphic property.

27

• Multiplication

Define the product of two ciphertext as:

cmult = c1 · c2

For multiplicative homomorphic property, we have:

f 2 · cmult mod 2 = f 2 · (c1 · c2) mod 2

= (f · c1) · (f · c2) mod 2

= µ1 · µ2 mod 2

= m1 ·m2 mod 2

= m1 ·m2 mod 2

(21)

So that the product of two ciphertext can be decrypted as product of two

plaintexts or messages with multiplicative homomorphic property.

• Addition and multiplication

From

f = 2f ′ + 1

we get

f ≡ 1 mod 2

Then

fk ·m mod 2 = m (22)

A combination of additions and multiplications can be reallized through mul-

tiplying the encrypted ciphertext by fk, f is the secret key and k is the depth

of the longest chain of multiplication. Noise in result ciphertext grows with the

increaing number of additions and multiplications.

28

One of the main challenges for extension of Somewhat Homomorphic Encryp-

tion to Fully Homomoprhic Encryption is the management and control of noise.

This is often the reason why fully homomorphic encryption schemes are con-

sidered less efficient. Noise grows linearly with addition operations and while

exponentially with multiplication operations. As long as the noise remains be-

low a certain threshold, the message will be recovered without failure. However,

if the magnitude of growing noise after each operation is over a certain level, it

is hard to obtain the correct result of homomorphic encryption operation, which

also affects the security and homomorphism. The importance of this trade off

between noise level and security becomes significant and apparent when consid-

ering the homomorpic properties of the scheme.

• Relinearization

The product ciphertext is supposed to be multiplied with the secret key for k

times in order to decrypt a product of k ciphertext. The depth of the circuit

will have to be kept track of, which is somehow turned out to be complex if the

circuit is complicated.

Relinearization enable multiplying the result ciphertext by secret key only for

one time, which make it possible to decrypt arbitrary combination of opera-

tions including additions and multiplications of the ciphertext. Evaluation key

introduced in Section 2.2.3 is used in this process.

• Modulus reduction

When an exponential gain on the depth of the computational circuit is gener-

ated in evaluation stage with the noise growth rapidly, modulus reduction offers

a noise management technique to control the noise after every time of the eval-

uation operation through scaling the ciphertext value. The maximum depth

of the computational circuit is therefore consequently increased by repeatedly

29

Fig. 3.3: Cloud computing applications

applying the process.

3.4 Cloud Computing and Homomorphic Encryption

Cloud computing is another evolution in information technology after the presence

of computer and Internet. According to NIST[48], cloud computing is a model for

enabling convenient, on demand network access to a shared pool of configurable

computing resources(e.g, networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimum management effort or service

provider interaction. Nowadays we see cloud as a set of solutions integrating multi-

ple technology and corresponding application. It incorporate distributed computing,

virtualization, grid computing, load balance and parallel computing into information

ecosystem. The application of cloud technology enable every enterprise and personal

user to make better and faster use of advanced information technology. The Graph 3.3

shows cloud computing technique connect differenct devices and terminal together.

The rise of cloud computing made it possible for public users to have access of

computation service of low cost, high performance, large quantity, and fast config-

uration. While the introductory of cloud computing benefits various IT fields with

30

economic scale and high scalability, it also expose certain latent threat in security

aspect due to its technical features. Based on the different service categorization that

cloud computing provides, it is classified as three basic service delivery modes:

• IaaS(Infrastructure as a Service):

Cloud provider deploy technique such as virtualization on fundamental platform

to coordinate infrastructure construction and improve utilization. Users are

able to get access to a virtual server (an IaaS provider), bypassing the time

and effort they contribute on establishing their own data centers or deploying

services. IaaS provide function of pay-as-you-go and mensurable resource pool

in heterogeneous resources environment, while satisfy user demand and fully

utilize hardware resources. Amazon web service’s elastic computer cloud, also

known as EC2, is a typical example for IaaS platform.

• PaaS(Platform as a Service):

PaaS provides enterprise development, operation interface and environment for

companies to realize self service and thus achieve unified service on platform

level. Cloud provider give customers platform and every business service they

need to build, dispatch and manage application of their own, omitting the pro-

cess of installing platforms and supporting environment on client side. PaaS lies

on top of IaaS hierarchy. Not only does it focus on integration of underlying

hardware resource, it is also required to accommodate platform environment

for tenants to implement developing and debugging applications. Therefore,

the security issue of PaaS is definitely a major concern for providers. Google

Apps and Microsoft Azure are most famous PaaS provider.

• SaaS (Software as a Service) :

SaaS offers users with uniformed service interface, for example, provide the

service using multi-user architecture with browser or other client application.

31

SaaS providers deliver applications hosted on the cloud infrastructure as Inter-

net based service for end users. While it take full advantage of utilizing lower

level resources, it is supposed to provide clients with customized application

service through deploying one or several software environment as well. Despite

the merits of operational efficiency and reduced costs, enterprises often ponder

on applying it into practice in term of the obscurity between security level and

data storage. SalesForce CRM is one of the prominent example of SaaS supplier.

Fig. 3.4: Cloud service delivery model

Each service type is based on distinct implementation layer, as shown in Figure

3.4 [49]. It can be seen from the figure that service resources provided by upper level

service provider, such as SaaS service, are able to set up service resource indepen-

dently. Also SaaS application developer can accommodate them on other leased PaaS

platforms.

While the innovative service mechanism make users obtain almost infinite com-

putation ability and wide range of information service, it is the evolvement of combi-

nation of distributed computing, parallel computing and grid computing. The novel

pattern use network to integrate and expand needed resources (hardware, platform,

software) to build a reliable high performance computation platform.

32

3.4.1 Security threat

Multiple categories of security threat over cloud computing system are listed below:

1. Privileged user access: With user data stored in server from cloud service

provider, processing data out of reign of user per se boost security risk to some

extent since administrator of service operator might have permission to access

and process of data.

2. Compliance: Cloud computing operator has obligation in supporting third party

institute to offer censorship of accuracy and security level. The security of data

will be threatened if some service provider turn down external audit and safe

authentication.

3. Data location: Cloud computing clients have no knowledge of the location where

data store at.

4. Data segregation: All users under cloud computing environment process their

data in shared pool of system. Total data safety requires not only encryption,

but also data segregation.

5. Data recovery: Providers are supposed to back up entire data chunk, in order to

recover user data shortly after occurrence of physical catastrophe and artificial

vandalism.

6. Investigative support: With multiple users data stored as a group, it will be

difficult to investigate when delinquent behaviors happens.

7. Long term viability: Service providers are not supposed to go bankrupt in terms

of avoiding influencing user data stability and sustainability.

8. Support in reducing risking: Instructions are provided to administrators and

33

managers for setting and monitoring policies to evaluate information and sup-

port customer staff to understand how to safely and reliably use their product.

3.4.2 Application of security system

With all users data stored on cloud, they lost absolute control over their private in-

formation on the fly. Therefore, cloud service provider must pledge secure and strong

guarantee to ensure authenticity, integrity and confidentialitty of those contents. In

order to do that, encryption over the data being transmitted and saved is inevitable

essential.

The homomorphism of Fully Homomorphic Encryption can perform any proces-

sion to sensitive data after encrypting original message without leaking contained

private information. Performing Fully Homomorphic Encryption algorithm on pro-

cessing data with enciphering bring us reliable safety measure during cloud compu-

tation. To put it in another way, encrypting sensitive data before synchronizing local

data to boost data security level. Even if these data were stolen, malicious users only

retrieve cipher text after encryption. One can not work out the plain text without

keys where processed by users instead of cloud side. Meanwhile, with the help of

homomorphism of Fully Homomorphic Encryption, cloud will possess the ability to

process cipher text data. The defects in wasting resources and low efficiency of tra-

ditional operations can thus be avoided. while normal encryption approaches need

to sent cipher data to user terminal, eventually transmit data back to cloud side on

decryption operation performed on them by users.

A data security scheme constructed by cloud computing based on Fully Homo-

morphic Encryption is consist of user terminal and cloud side as shown in Figure 3.5.

There are different role for user and cloud in the cloud computing sytem. For users,

personal computers, client machines, cell phones and other devices provide hardware

34

User Cloud

User terminal device

Encryption
module

Decryption
Module

Application
Management

system

Secure
channel

Data process
system

Data storage
system

Key management and authentication module

Fig. 3.5: Cloud security scheme model

conditions for users to implement information transactions through cloud computing

system login program. Users are also responsible for submitting user request over

the cloud, encrypting and decrypting user private data, uploading and downloading

cipher text.

The works by cloud include application managing system, data processing system,

data storage system, key management and authentication module. Most important

one of all is application manage system, which is obliged to coordinate process user

requests. For example, basic order over inquiry for encryption key or user authen-

tication is delivered to key management and authentication module, assignment for

computation upon raw data is handed over to data process system.

The data ready for direct saving is processed by data storage system waiting for

collaboration of information sharing between users. Data process system is made up

of data retrieval, data computation, data upgrading sections. Data storage system

perform storing of cloud data, which utilizing user data location recorded to store

and extract user data. Key manage and authentication system is responsible for key

generation and storing.

35

Below are specific steps for the scheme:

1. User access to cloud: After receiving user requests, application manage system

repost user information to key mange and authentication module, where a pair

of symmetry key based on user information from certain algorithm is generated

afterwards to bind user information and key together before finally encrypted

and stored. Application manage system send key pairs to users via safe channel.

2. User encrypt data on client terminal with keys, transmit encrypted cipher text

data towards cloud side. Application manage system store them in storage

system on receiving those data.

3. When user need to use the data, application manage system extract data back

to user from storage system upon receival of user requests before users obtain

the data, decrypt it and apply it for practical usage.

4. With the feature of Fully Homomorphic Encryption algorithm, data process

system perform direct retrieval in cipher text database for encrypted key words

when operations of data searching is needed.

5. It then deliver cipher text data retrieved to users, who will have access to it

after decryption without decrypting entire cipher database before retrieval. The

method discussed saves time, boost benefits for users and reduce system cost.

3.4.3 FHE scheme over cloud: a scenario

This scenario use Fully Homomorphic Encryption which has wide applications in

various fields:

(1) Privacy protection: User data is transmitted as cipher text to cloud and saved.

In this way, security of data during transmission process is assured, as well as storage

of data, for cloud service provider impossible to obtain plain text information.

36

𝐸𝑛𝑐 𝑎 , 𝐸𝑛𝑐 𝑏 , 𝑓()

Evaluates Enc a , Enc b
homomorphically with 𝑓()

𝑓(𝐸𝑛𝑐 𝑎 , 𝐸𝑛𝑐 𝑏)

Recover

𝑓 𝑚 = 𝐷𝑒𝑐(𝐸𝑛𝑐 𝑓 𝑚)

CloudClient

Using a cryptosystem based on
Fully homomorphic encryption

Fig. 3.6: FHE over cloud: a scenario

(2) Data process: Fully Homomorphic Encryption scheme let user and trusted

third party perform process operations directly on cipher text data, with absence of

original data. Having the computation results in hands, users start to decrypt and

thus retrieve data processed.

For example, in medical or health care information system, electronic prescriptions

are all stocked on cloud server in the format of cipher text. Sometimes hygiene de-

partment need to know distribution of geographic location and age from patients with

some particular diseases in certain areas for emergency measure taken against public

sanitation safety issue. Ciphered electronic prescription is handed over to professional

data process service business partner for desired correct data when decrypted after

dealing with results.

(3) Cipher text search: cipher text retrieving method can perform searching di-

rectly towards cipher data based on Fully Homomorphic Encryption technology. Not

only search privacy and retrieval efficiency can be assured and boosted, addition

and multiplication computation can be perform on data searched without amending

corresponding plain text as well.

An example of homomorphic operation between user and cloud is illustrated in

Figure 3.6.

In this scenario, firstly user encrypt his personal data a and b to Enc(a) and Enc(b)

with public key, and send the encrypted results towards cloud server. Next step, when

user wants to do computation on his data, he send a request and a function f() to

cloud provider. Now that the server got the encrypted data Enc(a) and Enc(b) and

37

function f(), it compute homomorphic operation f(Enc(a), Enc(b)) without knowing

actual contents of a or b using evaluation addition or evaluation multiplication.

After the cloud computing process, server send back encrypted results to the client.

Finally user use private key to decrypt the result f(Enc(a), Enc(b)) and recover f(),

which is the same as it carried out operations on raw data. From this example, we

can see that the homomorphic operation at server side does not require private key

of user and support arbitrary computation such as addition and multiplication on

encrypted client data.

38

4 AN OVERVIEW OF RECENT RELATED WORKS

In this chapter we briefly review the existing related works in the past few years.

In 2012, Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan[10] first proposed

LTV Homomorphic Encryption scheme. They use the NTRUEncrypt, one of the

earliest attempts towards encryption based on latiice problem, to obtain a practical

Fully Homomorphic Encryption scheme with several differences from original NTRU-

Encrypt.

In 2014, two years following proposal by Lopez-Alt, et al[10], LTV homomorphic

encryption is implemented in software complied C environment by K.Rohloff [50].

This method relied on the manipulation of very large integers so that the system was

both secure and capable of supporting the evaluation of sufficiently large circuits.

Prior implementations designs, for the most part, reckon on single threaded execu-

tion on commoditary CPU due to difficulty of lack of native support for multi-thread

execution with underlying software libraries. This case in addition to the inherent

computational cost of secure computing using known SWHE and FHE schemes, pre-

vented the practical use of SWHE and FHE.

Therefore, the paper reported a design, implementation and evaluation of a scal-

able Fully Homomorphic Encryption scheme which addresses the limitation for secure

arbitrary computation. It used multi-core processor as advantage of parallelism with

further support on key switching and modulus reduction. The basis of the design is a

layered software services stack to provide high level Fully Homomorphic Encryption

operations supported by lower level lattice based primitive implementations runnning

on a computing substrate. The Fully Homomorphic Encryption is implemented and

evaluated to run on a commodity CPU-based computing enviroment with Mathworks

Matlab environment and Matlab coder toolkit to generate an ANSI C representation.

This ANSI C using gcc to run as an executable in a Linux environment. Presented

experiment results of their performance show that their Fully Homomorphic Encryp-

39

tion implementation provide at least an order of magnitude improvement in runtime

as compared to recent publicly known evalution results of other software implemen-

tation.

Another work by Dai [51] in 2014 proposed a GPU optimized library to support

Fully homomorphic Encryption. Despite the active advances witnessed 5 years af-

ter Gentry’s first proposed plausible Fully Homomorphic Encryption scheme and 2

years after the introduction of LTV Fully Homomorphic Encryption scheme, FHE

still has not sufficiently prepared to directly benefit public. Motivated by some

main bottlenecks concentrated on practical FHE, this paper build a large polyno-

mial arithmetic library optimized for NVIDIA GPU to support Fully Homomorphic

Encryption scheme. In the experiment, a server equipped with Intel Xeon E5-2609

running @2.5GHz, 64 GBytes of memory, and a NVIDIA GeForce GTX 690 running

@915MHz with 3072 stream processors and 4 GBytes of memory are used.

To realize the large polynomial arithmetic library, they convert polynomial with

large coefficients using Chinese Remainder Theorem(CRT) into many polynomial

with small coefficients, and then carry out modular multiplication in the residue

space using custom developed Discrete Fourier Transform based library. The library

is further extended to support the homomorphic evaluation operations and Number

Theoretical Transform(NTT) is utilized to realize large polynomial arithmetic. This

method demonstrated significant speedups over previous reported results. Additional

conclusion is drawn that the efficiency is limited by the memory of the target GPU.

Hence, even greater speedup may be achieved simpley by moving to GPU with more

memory.

A new multiplier architecture introduced by Y.Doroz[52] in 2015. A custom hard-

ware accelerator optimized for a class of reconfigurable logic to bring LTV based Ho-

momophic encryption scheme on estep closer to deployment in real life application.

The accelerator achieved time complexity of O(NlogNloglogN) and space of O(Nn2)

40

in circuit level. The accelerator introduced is connected via a fast PCIe interface to

a CPU platform to provide homomorphic evaluation service to any application that

needed to support computations. A number theoretical transform based multiplier

architecture capable of effciently handling very large polynomials is introduced. The

gap between what is currently available on a CPU and what is practical in real life

is somehow too far to consider software only solutions. This trigger researchers to

study the use of alternative platforms such as graphic processing units (GPU) and re-

configurable logic such as FPGAs. What is more, even further domain specific ASIC

designs to accelerate homomorphic evaluations.

The main contributions of the paper are FPGA architecture presented to acceler-

ate LTV FHE scheme and FPGA device connected to PC with high speed interface.

This architecture may be considered as implementation of an external FHE acceler-

ator that will speedup homomorphic evaluations taking place on a CPU. AES block

cipher is used as an accelerator to homomorphic evaluation synthesized for the Xilinx

Virtex 7 family. Efficiency of large polynomial computation is improved on different

platforms as similar CPU and GPU implementations.

In 2016, an FPGA based computation accelerator as part of a homomorphic en-

cryption processing unit co-processor was designed to implement key computation

application [53]. In this paper, advanced designing and an FPGA based computa-

tion accelerator are implemented as part of a homomorphic encryption processing

unit co-processor. This hardware accelerator technology improves the practicality of

computing on encrypted data by reducing the computational bottleneck of lattice

encryption primitives that support homomorphic encryption scheme.

The strategy of the paper is to accelerate key computational bottleneck common

across Homomoephic Encryption schemes which can be much more rapidly executed

on FPGA architectures. Chinese Remainder Transform and inverse Chinese Remain-

der Transform are used to accelerate power of 2 rings and other basic ring arith-

41

metic such as ring addition, ring subtraction and ring multiplication. The paper

focus on experimental performance analysis on LTV Fully Homomorphic Encryption

scheme, instantiating this capability in a Xilinx Virtex-7 FPGA that can attached to

a host computer through either a PCI express port or Ethernet. They experimentally

compare performance with reference software implementation of the CRT and iCRT

bottleneck on a commodity CPU.

Anothe paper [62] provide a new potential of FPGAs for speeding up homomor-

phic encryption operations. In this work, a functional FPGA implementation of ho-

momorphic encryption multiplication operation of large polynomials in Zq[x]/(xN+1)

whose ring dimension is determined by N which is a positive integer of form 2k. While

the paper use NTT algorithm to perform polynomial multiplication, which has time

complexity of O(NlogN), it demonstrate architecture space complexity of O(Nn2). It

also provide results and performance measurement of implementation equipped with

Xilinx Spartan 6 LX100 FPGA.

A paper published in 2017 [1] proposed a software/hardware co-designed accel-

erator implemented through a high level synthesis flow to accelerate homomorphic

computation. They demonstrated a large modular polynomial multiplier configurable

in both degree and coefficients size, as well as proposed a modular polynomial reducer

based on polynomial with general form allowing optimization in the homomorphic

context.The hardware part implements the product of large coefficients in RNS do-

main, and the schoolbook multiplication algorithm at polynomial level resulting in

complexity of O(N2) in terms of time and O(n2) in terms of area. The designing and

implementation of the modular multiplier which integrates a multiplier on polynomial

with large coefficients and large degree with fast software computation are based on

the FPGA underlying computation accelerator.

The proposed high speed accelerator works in the same primitive as LTV cryp-

tosystem with polynomial ring of form Rq[x] = Zq[x]/(φ(x)) with respect to the

42

Table 4.1: Truncated polynomial ring multiplier performance in [1]

N n Platform # Register Latency(µs)
512 32 XC7V585T 102 66.41
1024 26 Spartan 6 114 69.1

φ(x) = xN + 1 where N is power of 2. The interface between hardware and software

can be performed through a high performance AXI bus or a PCI express bus in the

case of computer precessor. Results of their approach are demonstrated in Table 4.1.

43

5 PROPOSED ARCHITECTURE FOR FULLY

HOMOMORPHIC ENCRYPTION

This chapter gives a comprehensive presentation and explanation of our proposed

work. We put our minds into optimizing the process of encryption part where the

operations are performed on user side in the cloud computing model since the genera-

tion of public keys and secret keys are precomputed. Thus the calculations performed

by the server including evaluation or more, are beyond our focus.

A novel variant of LFSR arithmetic architecture is proposed to implement LTV

Fully Homomorphic Encryption. Conventional LFSR structure is expanded and mod-

ified for performing the truncated polynomial ring multiplication in Rq[x].

The specific part we are going to concentrate on is the encryption equation

c = hs + 2e + m where ciphertext c is derived from public key h, message m and

sample polynomial s, e. The efficiency of LTV system is significantly impacted by

the speed of multiplication of truncated polynomials with high degree and large co-

efficients. Taking the advantage of parallelism for computation of multiplication in

LTV Fully Homomorphic Encryption scheme, our proposed work based on LFSR

structure reduced the time complexity of quasi-linear time O(NlogNloglogN) in [52]

and O(NlogN) in [62] to linear time O(N) for polynomial multiplication, which is

beneficial with large value of degree N .

As for the large integer multiplication, we then proposed to choose Mersenne

number q to further speedup the modular multiplication. The special moduli sets,

including 2n + 1,2n, 2n − 1,etc, which have drawn much more attention than normal

moduli when constructing modular adders and modular multipliers, offers a great

time reduction on modular reduction when performing modular multiplications as

well as modular additions.

Novel and efficient modular multiplier, modular adder and modular subtractor

44

are proposed for high speed processing of LFSR operations. We leverage to select

parallel prefix structure which provide efficient modular addition over other popular

adders. What is more, booth parallel multiplier are used to perform modular mul-

tiplication with reduced number of partial products during which the accumulation

process taking place.

5.1 LFSR Based Structure

In this section, firstly basic knowledge is introduced about LFSR(Linear Feedback

Shift Register) and its applications. Then the proposed LFSR based architecture is

presented to realize truncated polynomial ring multiplication in encryption part of

LTV Fully Homomorphic Encryption scheme. The details about the proposed archi-

tecture is explained with given algorithm and a architecture complexity analysis. A

table of register contents is shown for better understanding of how the multiplication

works in the LFSR-like multiplier system.

5.1.1 Linear Feedback Shift Register

LFSR (Linear Feedback Shift Register) is an elegant way to generate long pseudo-

random sequences with most applications in pesudo-random numbers, fast digital

counters, and cryptography which has cryptographically strong properties and un-

complicated hardware implementation advantages. An LFSR consisted of clocked

storage elements(flip-flop) and a feedback path. The number of storage elements rep-

resent the degree of LFSR, while feedback network computes the input for the last

flip-flop as XOR-sum of certain flip-flops in the shift register.

The stream value of outputs generated by registers and logic arithmetic is de-

pendent on its previous state with maximum length of 2N − 1 when initial state as

non-zero value, where N is highest degree of characteristic polynomial.

A example given in Figure 5.1 illustrate the basic structure of an LFSR initialized

45

Fig. 5.1: Linear Feedback Shift Register

by characteristic polynomial f(x). which is represented as:

f(x) = fNx
N + fN−1x

N−1 + ...+ f1x
1 + 1 (23)

In figure 5.1, a
⊕

refers to an adder, a
⊗

refers to a multiplier and � represents

a register. Assume that registers are initially loaded with coefficients of polynomial

A(x) = (a0, a1...aN−1), a shift to right operation of LSFR is equivalent to performing

A(x)× x mod f(x), where x is root of characteristic polynomial f(x).

5.1.2 Proposed truncated polynomial ring multiplier

The polynomial multiplication and addition in LTV Fully Homomorphic Encryption

scheme is taken modulo xN + 1, a modification of original LFSR is designed to ac-

commodate the truncated polynomial ring computation.

Specifically, original LFSR can complete the operation without substantial mul-

tiplication because the polynomial coefficients always have value from {−1, 0, 1} as

ternary polynomial. In our case, however, the coefficients integer has much larger

range of values in {0, q − 1}.

The contents of registers are initialized as integer coefficients of polynomial 2e+m,

let values of register be c(j),(j is from 0 to N)in clock cycle N , contents of each

register is denoted as c
(j)
N−1, c

(j)
N−2, ..., c

(j)
1 , c

(j)
0 . Specific steps to perform the truncated

polynomial ring multiplication is shown in Algorithm 5.1.

In this algorithm, three inputs are polynomial h(x) representing public key, s(x)

46

Algorithm 5.1 Multiplication in Rq[x] for LTV FHE

Input: h = hN−1, ..., h0 ; s = sN−1, ..., s0; e ; m
Output: c = cN−1, ..., c0 = hs+ 2e+m ∈ Rq

c(0) := 2e+m ∈ Rq

for j := 1 to N do
for i := 0 to N − 1 do

if i = N − 1 then
c
(j)
((i+1)) := −c(j−1)i + h((i+1)) × s((N−j)) mod q

else
c
(j)
((i+1)) := c

(j−1)
i + h((i+1)) × s((N−j)) mod q

end if
end for

end for
return c(N) := hs+ 2e+m ∈ Rq

*((A)) denote A mod N .

as one of the sample polynomials, and 2e(x) +m(x) comprised of sample polynomial

and message polynomial, each with N coefficients.

Because truncated polynomial rings in LTV Fully Homomorphic Encryption scheme

are taken modulo xN + 1, there are arithmetic scenarios of both addition and sub-

traction in this computation, in other words, either positive or negative value of

multiplication result could be added to next round of operation.

Based on above algorithm, an LFSR originated architecture to perform LTV Fully

Homomorphic Encryption scheme polynomial multiplication in Rq[x] is proposed as

Figure 5.2.

In this structure, it is required to lay out N − 1 modular q adders, 1 modu-

lar q subtractor, N modular q multipliers and N registers. Each register can store

value of [log2 q] bits length. The arithmetic of modular multiplication and mod-

ular addition are performed in modular q multiplier and modular q adder, which

also cause noticeable time delay and will be introduced in next section. Regis-

ters c = (cN−1, cN−2, ..., c1, c0) are initially loaded with coefficients of polynomial

2e(x) + m(x), the coefficients of polynomial h(x) are input to each modular multi-

plier in parallel manner while the coefficients of polynomial s(x) are input to every

47

modular multiplier in a serial fashion.

𝑐𝑁−1 𝑐1 𝑐0…

𝑠0, 𝑠1…𝑠𝑁−2, 𝑠𝑁−1

ℎ0ℎ1ℎ𝑁−2ℎ𝑁−1

𝑀𝑜𝑑 𝑞 multiplier 𝑀𝑜𝑑 𝑞 adder 𝑐𝑁 register 𝑀𝑜𝑑 𝑞 subtractor

Fig. 5.2: LFSR Based LTV FHE Architecture

The Registers c(x) = (cN , cN−1, ..., c1, c0) will store the result of multiplication

c(N) = h(x)s(x) + 2e(x) + m(x) at clock cycle N . Table 5.1 shows the register

contents in clock cycle 0, 1, ..., N − 1, N .

5.2 Mersenne Number for Moduli

The major cumbrance of architecture for performing modular reduction multipli-

cation of large coefficient truncated polynomial described above is the costly large

integer multiplication with additional long integer modulo computation which cause

significant hardware usage and may limit the clock frequency in terms of long critical

path.

We proposed a series of methods and optimization approaches to speedup the

process of large integer multiplication and addition, which easily takes up most of the

computation resourses in the proposed LFSR based structure for truncated polyno-

mial ring multiplication in LTV Fully Homomorphic Encryption scheme encryption

process.

Two basic operations are generalized in multiplication arithmetic, the generation

of partial product and their accumulation. In order to speed up the most time con-

suming process, two available approaches can be considered. Reducing the number of

48

T
ab

le
5.

1:
R

eg
si

te
r

C
on

te
n
ts

C
L
K

(j
)

c(
j) N
−
1

c(
j) N
−
2

..
.

c(
j) 1

c(
j) 0

0
2e
N
−
1
+
m
N
−
1

2
e N
−
2
m
N
−
2

2
e 1

+
m

1
2
e 0

+
m

0

1
2
e N
−
2
+
m
N
−
2
+

h
N
−
1
s N
−
1

2e
0
+
m

0
+
h
1
s N
−
1

2
e 0

+
m

0
+
h
1
s N
−
1

−
2e
N
−
1
−
m
N
−
1
+
h
0
s N
−
1

2
2
e N
−
3
+

m
N
−
3
+

h
N
−
2
s N
−
1
+
h
N
−
1
s N
−
2

2
e N
−
4
+
m
N
−
4
−

h
N
−
3
s N
−
1
+

h
1
s N
−
2

−
2
e N
−
1
−
m
N
−
1
+
h
0
s N
−
1
+

h
1
s N
−
2

−
2
e N
−
2
−
m
N
−
2
−

h
N
−
1
s N
−
1
+
h
0
s N
−
2

..
.

..
.

N
−

2
2
e 1

+
m

1
+
h
2
s N
−
1
+

h
3
s N
−
2
..
.+

h
N
−
2
s 3

+
h
N
−
1
s 2

2
e 0

+
m

0
+
h
1
s N
−
1
+

h
2
s N
−
2
..
.+

h
N
−
3
s 3

+
h
N
−
2
s 2

−
2
e 2
−
m

3
−
h
4
s N
−
1
−

h
5
s N
−
2
..
.+

h
0
s 3

+
h
1
s 2

−
2
e 2
−
m

2
−
h
3
s N
−
1
−

h
4
s N
−
2
..
.−

h
N
−
1
s 3

+
h
0
s 2

N
−

1
2
e 0

+
m

0
+
h
1
s N
−
1
+

h
2
s N
−
2
..
.+

h
N
−
2
s 2

+
h
N
−
2
s 1

2
e N
−
1
+
m
N
−
1
−
h
0
s N
−
1
+

h
1
s N
−
2
..
.+

h
N
−
3
s 2

+
h
N
−
2
s 1

−
2
e 2
−
m

2
−
h
3
s N
−
1
−

h
4
s N
−
2
..
.+

h
0
s 2

+
h
1
s 1

−
2
e 1
−
m

1
−
h
2
s N
−
1
−

h
3
s N
−
2
..
.−

h
N
−
2
s 2

+
h
0
s 1

N
c(
N
)
=

h
s
+
2
e
+

m

49

partial product is one of them. Several classical algorithms such as booth algorithm

is used to cover this part. Moreover, the goal of faster multiplication can be achieved

by accelerating the process of accumulation of partial products. Apparently, when

smaller number of partial products are generated, the complexity and time acquired

to accumulate partial results are both reduced eventually.

The special and well established moduli sets of 2n − 1, 2n and 2n + 1 are widely

Table 5.2: A list of some known Mersenne prime

p Mp Mp digits Mp bit length
2 3 1 2
3 7 1 3
5 31 2 5
7 127 3 7
13 8191 4 13
17 131071 6 17
19 524287 6 17
31 2147483647 10 31
61 2305843009213693951 19 61
89 618970019642...137449562111 27 89
107 162259276829...578010288127 33 107
127 170141183460...715884105727 39 127

...

used in digital and signal processing, Residue Number System(RNS), cryptography

areas due to its unique number theorectic properties. For example, a modulo 2n − 1

addition is equivalent to one’s complement. However, only modulo number in form

of 2n − 1 could be adopted in our design. Below are the reasons why.

In mathematics, a integer number with form of 2n+1 is named as Fermat number,

although there exist infinite amount of Fermat numbers, only a few of them are

prime numbers. As for now, the solely 5 Fermat prime are discovered and listed:

F0, F1, F2, F3, F4, where Fn has form of 22n + 1. Obviously, special moduli set of

2n + 1, 2n are not available for LTV scenario because it require modulo number q to

be a large prime number.

That left us with only choice of modulo 2n−1. The q needs to be a prime number

50

and also satisfy the formation of 2n − 1. In mathematics, a Mersenne prime is a

prime number that is one less than a power of two, that is a prime number of the

form Mn = 2n − 1 for some integer n. A list of some known Mersenne primes are

show in Table 5.2.

Modular 2n − 1 arithmetic is congruent to zero modulo 2n − 1, while zero can

be represented by an n-bit binary string of all zeros or all ones in modulo 2n − 1

arithmetic. Also the carry output at the most significant bit position of each stage

has a weight of 2n, which, in modulo 2n − 1 arithmetic, is equal to 1.

In LTV Fully Homomorphic Encryption scheme, one of the most crucial parts is

deciding the value of q. Mersenne prime number q can be utilized to optimize modulo

reduction operation on multiplier design level by selecting certain parameter sets from

existing Mersenne prime numbers shown in Table 5.3.

Table 5.3: Selected parameter sets

q bit length
M31 31
M61 61
M89 89
M107 107
M127 127

5.3 Modular Adder

An adder is an indispensable component for a processing system and integrated cir-

cuits. In our proposed work, a particular kind of adder is needed for modular 2n − 1

addition with good implementation performances.

In general cases, area and time delay has always been two most important factors

that should be taken in consideration when choosing the right adder. Theoretically,

prefix adder is much faster than carry look ahead adder, carry skip adder, etc. Com-

pared to other adder topologies, prefix adder has highly regular structure, it consists

51

of only a few sub-modules.

Integrated circuits have their own unique form of wiring to connect together the

micro miniature components they contain. Interconnection in a given layer can not

cross over each other without sorting out. So that the interconnection of one arith-

metic module topology plays important role in operation unit performance. Prefix

adder has simple layout and regular interconnections.

A comprehensive analysis of different adder topologies of different word size is

provided through existing works. The analysis and results are helpful for choosing a

specific adder for the application of our proposed architecture.

The performance comparison of different popular adders in the literature is shown

as Table 5.4[54][55][56][57].

Table 5.4: An adder performance comparison

Adder size(bit) 16 32 64 128 16 32 64 128
Adder type Delay(ns)[54][55][54] Area(µm2)[54] Area[57]

Kogge-Stone adder 0.42 0.49 0.87 1.21 1005.7 2254.98 481 1272
Ripple-carry-adder 1.14 2.23 - 1.61 285.33 570.67 418 9312

Carry lookahead adder 0.59 0.83 1.08 1.19 626.04 1360.50 - 410
Carry select adder 0.60 0.85 - - 610.55 1387.25 - -
Carry skip adder 0.65 0.96 1.59 2.50 445.7 780.28 - -

From the table, it is appropriate to use parallel prefix adder as modular adder

in the LFSR based multiplier. There are extra benefits of utilizing prefix adder.

It is discovered carry propagation in the modular addition of two n-bit number is

basically a prefix problem. The prefix structure is defined as the outcome of operation

depends on the initial inputs. Therefore parallel prefix adder could be used to perform

the efficient algorithm with execution of operations in parallel, which is done by

segmentation into smaller pieces computed in parallel.

Since there are a dozen of different types of prefix adders in the literature. Some of

the key architectures for carry calculations are Kogge-Stone adder, J.Sklansky adder,

Ladner-Fisher adder, Brent Kung adder, Han Carlson adder and S.Knowles adder.

52

According to the implementation analysis[2] of Table 5.5, it is obvious that Kogge-

Stone adder has the best results of time cost. So that Kogge-Stone style is used for

the build up of the parallel prefix adder.

Table 5.5: A comparison of different prefix adders[2]

Adder type Area(µm2) Total power (µW) Delay(ps)
Brent kung 1354.99 85.08 825.9
Han Carlson 1832.34 102.51 593.9
S.Knowles 2345.57 127.64 565.7

Lander Fischer 1512.49 90.21 676.8
J.Sklansky 1681.52 99.58 831.8

Kogge Stone 2669.91 137.22 561.5

The structure of an parallel prefix adder is illustrate as Figure 5.3. In order to

𝑎𝑛−2𝑎𝑛−1 𝑎1 𝑎0𝑏𝑛−1 𝑏𝑛−2 𝑏1 𝑏0

…

Carry computation(prefix
structure)

𝑠𝑛−1 𝑠𝑛−2 𝑠1 𝑠0

…

𝑐𝑜𝑢𝑡
𝑐𝑖𝑛

𝑐𝑛−2 𝑐1 𝑐0

𝑐0
′

𝑐𝑛−3
′𝑐𝑛−2

′

Fig. 5.3: General structure of prefix adder

describe the property of prefix problem, we define a operator •, for i = 0, 1, ..n,

suppose A = an−1an−2...a0 and B = bn−1bn−2...b0 represent two numbers to be added

and S = sn−1sn−2...s0 denote their output sum. Parallel prefix addition is staged

into three steps. The pre-processing stage, prefix computation and post processing

stage. In pre-processing stage, carry generate g, carry propagate p and half sum hi

53

is computed as:

gi = aibi

pi = ai + bi

hi = ai ⊕ bi

Carry computation can be transformed into a prefix problem using the operator •

defined as follows:

(gm, pm) • (gk, pk) = (gm + pm · gk, pm · pk). (24)

input is a vector of pairs of carry generate and carry propagate bits:

(gn, pn), (gn−1, pn−1), ..., (g1, p1), (g0, p0),

while the output is new pairs of vectors:

(Gn, Pn), (Gn−1, Pn−1), ..., (G1, P1), (G0, P0).

The carry bits ci for each bit position ci = Gi, where (g0, p0), if i = 0,

(gi, pi) • (Gi−1, Pi−1), if 1 ≤ i ≤ n− 1.

For i = 0 to n− 1,

ci = the first component of (gi, pi)• ...•(g0, p0)•(gn−1, pn−1)• ...•(gn+1, pn+1) (25)

In Figure 5.3, consider G
′
i, P

′
i be the group generate and group propagate in the next

level, then

(G
′

i, P
′

i) = (Gi + Pi · c−1, Pi) (26)

54

𝑎𝑖
𝑏𝑖

𝑔𝑖 𝑝𝑖ℎ𝑖

=

𝑔𝑖

𝑔𝑖−1 𝑝𝑖 𝑝𝑖−1

=

𝑔 𝑝

𝑝𝑖 𝑔𝑖

𝑔𝑝

=

ℎ𝑖 𝑐𝑖−1

𝑠𝑖

=

𝑎𝑖 𝑏𝑖

(𝑔𝑖, ℎ𝑖, 𝑝𝑖)

𝑔𝑖−1, 𝑝𝑖−1

𝑔𝑖 , 𝑝𝑖

𝑔, 𝑝𝑔, 𝑝

𝑐𝑖−1
ℎ𝑖

𝑠𝑖

𝑝𝑖 , 𝑔𝑖

𝑝𝑖 , 𝑔𝑖 𝑝𝑖 , 𝑔𝑖

Fig. 5.4: Prefix adder logic operators and implementation

We get c
′
i = the first component of (G

′
i, P

′
i) = (Gi + Pi · Gn−1, Pi), which means

that the parallel prefix adder is transformed into a modulo 2n − 1 adder using Gn−1

as cin.

After the computation of the carries ci, in the last step of post processing stage,

the sum bits si can be computed as follows where i = 0 to n− 1,

si = hi ⊕ ci−1

The Modular adder with prefix structure are represented in four modules implemented

by logic gates. The prefix adder logic operators are visualized in Figure 5.4.

The carry computation use Kogge and Stone style, which is the fastest among

other existing structure, shown in Figure 5.5.

5.4 Modular Subtractor

The design of modulo 2n− 1 subtractors is based on the modulo 2n− 1 adder. Figure

5.6 shows the structure of the proposed modular subtractor adapted from modular

adder.

Let A = an−1...a0 and B = bn−1...b0 denote two n-bit modulo 2n − 1 operands,

such that 0 ≤ A,B ≥ 2n − 1. The difference, D, of A and B modulo 2n − 1 is equal

55

… 𝑝0, 𝑔0𝑝7, 𝑔7 𝑝2, 𝑔2𝑝5, 𝑔5 ……

𝑐0𝑐1𝑐2𝑐3𝑐4𝑐5𝑐6𝑐7

Fig. 5.5: Parallel prefix structure with n=8

𝑎𝑛−2𝑎𝑛−1 𝑎1 𝑎0𝑏𝑛−1 𝑏𝑛−2 𝑏1 𝑏0

…

Carry computation(prefix
structure)

𝑠𝑛−1 𝑠𝑛−2 𝑠1 𝑠0

…

𝑐𝑜𝑢𝑡
𝑐𝑖𝑛

𝑐𝑛−2 𝑐1 𝑐0

𝑐0
′

𝑐𝑛−3
′𝑐𝑛−2

′

Fig. 5.6: Modular 2n − 1 subtractor

56

to

D = |A−B|2n−1 = |A+ (2n − 1)−B|2n−1 =
∣∣A+B

∣∣
2n−1 (27)

Where B denotes the one’s complement of operand B. It is obvious that the

difference D is actually an addition of A and B modulo 2n − 1, resulting that a

straightforward hardware implementation based on modulo 2n − 1 adder.

A combined modulo 2n − 1 adder or subtractor can also be easily derived by

replacing the � module in modular adder structure with a new module � where the

input XOR gates is amended to NXOR gate, and a NOT gate is added before the

inputs to AND and OR gates in order to invert the bits of operand B in case of

subtraction as shown in Figure 5.7.

𝑏𝑖

𝑔𝑖
′ 𝑝𝑖

′ℎ𝑖
′

=

Inputs:𝑎𝑖, 𝑏𝑖
Output:𝑔𝑖

′, ℎ𝑖
′, 𝑝𝑖

′

𝑎𝑖

Fig. 5.7: Modular 2n − 1 subtractor submodule

The truth table of the subtractor submodule is given by Table 5.6.

Table 5.6: Truth table for Modular subtractor module

ai bi h′i g′i p′i
0 0 1 0 1
0 1 0 0 0
1 0 0 1 1
1 1 1 0 1

57

5.5 Modular Multiplier

We adapted a radix-4 booth encoded modulo 2n−1 multiplier for our design. Numbers

of partial products are reduced through booth algorithm. Further reduction of the

partial product can be implemented by CSA arrays The two operands produced are

added in the parallel prefix modulo 2n − 1 adder which we covered previously. The

final product is the addition result of the prefix adder.

For modulo multiplication:

P = X · Y mod (2n − 1) (28)

Various ROM-based solutions using lookup table have been proposed befre so-

phisticated methods are introduced to reduce the table sizes by combining smaller

lookup table with simple arithmetic operations, such as additions. For word lengths

larger than particular bits, however, these solutions still require large ROM or too

many numbers of clock cycles for evaluation.

Efficient modulo 2n − 1 multiplier are widely researched in selected works of [58]

[59] [60] [61].

The major difference between conventional multiplier and modulo 2n−1 multiplier

is that the partial product array of normal binary multiplier is shaped as triangle,

while the partial product array of modulo 2n − 1 multiplier is shaped as rectangle.

All rows of partial product for the modulo 2n − 1 multiplier are located on the same

bit position.

The carry output at the most significant bit position of each stage has a weight

of 2n, which is equal to 1 in modulo 2n − 1 arithmetic. In other words, carry out of

the most significant bit should be shifted to the least significant bit position.

In traditional multiplier, the column size for different column is different, while for

modulo 2n − 1 multiplier, the column size of any column is the same, which provide

58

better regularity and easier implementation.

In this section, a proposed modified radix-4 booth algorithm modulo 2n − 1 mul-

tiplier. Supposed that A = an−1an−2an−3...a2a1a0 and B = bn−1bn−2bn−3...b2b1b0 are

two n-bit input of the modulo 2n − 1 multiplier. A is the multiplicand and B is

multiplier. Let |A|x denote the modulo x residue of A.

Using booth algorithm to reduce the number of partial products, the multiplicand

B can be represented by:

B =
n−1∑
i=0

bi2
i = (b0 − 2b1) +

bn2 c∑
i=1

(b2i−1 + b2i − 2b2i+1)2
2i (29)

Where bj = 0 for j ≥ n and bkc denote the largest integer smaller than or equal

to k.

The value of the product A×B modulo 2n− 1 can consequently be expressed by:

|AB|2n−1 =

∣∣∣∣∣∣∣A
bn+1

2 c−1∑
i=0

(b2i−1 + b2i − 2b2i+1)2
2i

∣∣∣∣∣∣∣
2n−1

=

∣∣∣∣∣∣∣
bn+1

2 c−1∑
i=0

∣∣A(b2i−1 + b2i − 2b2i+12
2i)
∣∣
2n−1

∣∣∣∣∣∣∣
2n−1

=

∣∣∣∣∣∣∣
bn+1

2 c−1∑
i=0

P (i)

∣∣∣∣∣∣∣
2n−1

(30)

Where P (i) = |A(b2i−1 + b2i − 2b2i+1)2
2i|2n−1

Since the term be,i = (b2i−1+b2i−2b2i+1) can take values in the set (−2,−1, 0,+1,+2)

, be,i2
2i = s2j, where

s =


+1, if be,i = +1,+2

0, if be,i = 0

−1, if be,i = −1,−2

59

j =


0, if be,i = 0

2i, if be,i = +1,−1

2i+ 1, if be,i = +2,−2

From this, we get P (i) = |sAj|2n−1.

Using the following expression, the partial products can derived as P (i) = |sA2j|2n−1,

in n bits, directly from multiplicand A.

For the three circumstances:

• s = +1. we get :

∣∣sA2j
∣∣
2n−1 = |an−1−jan−2−j...a0an−1an−2...an−j|2n−1

= an−1−jan−2−j...a0an−1an−2...an−j

• s = −1. Taking into account that |−Y |x = |x− Y |x, so that:

∣∣sA2j
∣∣
2n−1 = |(2n − 1)− (an−1−jan−2−j...a0an−1an−2...an−j)|2n−1

= |an−1−jan−2−j...a0an−1an−2...an−j|2n−1

= an−1−jan−2−j...a0an−1an−2...an−j

• s = 0. In this case, |sA2j|2n−1 = 0 = 000...000︸ ︷︷ ︸
nbits

To give a more detailed expression of the all cases, Table 5.7 is provided with the

formation of the partial products.

According to the first and the last row of Table 5.7, all 1s input and all 0s input

are supposed to be treated as a zero input.

A Booth Encoder (BE) and Booth Selector (BS) are used for input transform of

B to partial product bit bi with multiplicand A. The Booth Encoder(BE) produces a

signed digit represented by a sign bit s and two encoded magnitude bits ck and ck+1

60

Table 5.7: Formation of the partial products

b2i+1 b2i b2i−1 Meaning P (i)

0 0 0 0 000...000 or 111...111
0 0 1 |A22i|2n−1 an−1−2ian−2−2i...a0an−1an−2...an−2i
0 1 0 |A22i|2n−1 an−1−2ian−2−2i...a0an−1an−2...an−2i
0 1 1 |A22i+1|2n−1 an−1−(2i+1)an−2−(2i+1)...a0an−1an−2...an−(2i+1)

1 0 0 |−A22i+1|2n−1 an−1−(2i+1)an−2−(2i+1)...a0an−1an−2...an−(2i+1)

1 0 1 |−A22i|2n−1 an−1−2ian−2−2i...a0an−1an−2...an−2i
1 1 0 |−A22i|2n−1 an−1−2ian−2−2i...a0an−1an−2...an−2i
1 1 1 0 000...000 or 111...111

from 3 consecutive multiplier bits b2i−1,b2i,b2i+1. The leftmost bit of a BE bit slice

b2i−1 is shared with the rightmost bit of the preceding BE bit slice b2i+1. To generate

the P (i) vector given by Table 5.7, the encoded bits, ck,ck+1 are used to select either

the multiplicand or one bit shift multiplicand. The sign bit s determine if the selected

word need ot be complemented.

𝑏2𝑖−1

𝑏2𝑖

𝑏2𝑖+1

c𝑘

𝑐𝑘+1

𝑠

BE

Fig. 5.8: Implementation of Booth Encoder(BE)

Table 5.8: Truth table for Booth Encoder(BE)

b2i+1 b2i b2i−1 s ck+1 ck
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 0 1
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 1 0 0

A bit slice of the radix 4 Booth Encoder (BE) is given in Figure 5.8 with its truth

Table 5.8. A bit slice of the radix 4 Booth Selector (BS) is given in Figure 5.9 with

61

its truth Table 5.9.

BS
c𝑘

𝑐𝑘+1

𝑠

𝑎𝑖

𝑎𝑖−1
𝒅𝒊

Fig. 5.9: Implementation of Booth Selector(BS)

Table 5.9: Truth table for Booth Selector(BS)

s ck+1 ck di
0 0 0 0
0 0 1 ai
0 1 0 ai−1
1 0 0 ai−1
1 0 1 ai
1 1 0 1

For radix-4 Booth encoding scheme, the number of partial products will be reduced

to bn/2c+1 and bn/2c. where bac represent the smallest integer greater that or equal

to a.

To understand the essence of this algorithm, consider a multiplication operation

in which the multiplier is positive and has a single block of 1s, for example, 0011110.

To derive the product, we could adder four appropriately shifted versions of the

multiplicand, as in the standard procedure. However, we can reduce the numbe

of required operations by regarding this multiplier as the difference between two

numbers:

0100000 (32)

−0000010 (2)

0011110 (30)

62

This suggest that the product can be generated by adding 25 times the multipli-

cand to the 2’s complement of 21 times the multiplicand. For convenience, we can

describe the sequence of required operations by recording the preceding multiplier as

0 + 1000 − 10.

For high performance modulo multiplication, dedicated multipliers are required

which can be implemented as combinational or pipeline circuits. A modulo 2n − 1

multiplier architecture with modulo reduced, Booth recorded partial products and

with concurrent modulo reduction during carry save addition is improved in this

paper. In following paragraph, the proposed design for a modulo 2n−1 multiplier will

MPPG

𝑏7−5

MPPG

𝑏5−3

MPPG

𝑏3−1

MPPG

𝑏1,0,−1

𝑀𝑃𝑃𝐴

𝑝7−0
(3)

𝑝7−0
(2) 𝑝7−0

(1)
𝑝7−0
(0)

𝑎7−0 𝑎7−0 𝑎7−0 𝑎7−0

Fig. 5.10: Modular Multiplier

be presented. The Figure 5.10 shows the general structure of modular 2n−1 multiplier

with n = 8. The structure is consisted of modules of MPPG (Multiplication Partial

Product Generation) and MPPA(Multiplication Partial Product Accumulation). The

multiplicand B and multiplier A input to MPPG with output of partial product bits

fed into MPPA module.

In MPPG module, there are 4 Booth Encoders and 32 Booth Selectors. After the

multiplicand B and multiplier A inputs to Booth Encoder and Booth Selector and

undergo radix 4 Booth algorithm, the partial product bits are generated at each level

as p
(j)
i , where p

(j)
i means the i bit of the partial product at level j. Figure 5.11 shows

the structure of MPPG.

Note that all n-bit partial products p
(j)
i have the same magnitude, as opposed to

63

ordinary multiplication, where the partial products have increasing magnitude. The

number of products bits to be added is the same for all bit positions. This allows

their addition by a highly regular modulo carry save adder layout composed of (3,2)

counters.

BS BS BS BS… BE

𝑏5
𝑏6
𝑏7

𝑎2𝑎3𝑎0
𝑎1

𝑝0
(3)

𝑝1
(3)

𝑝6
(3)

𝑝7
(3)

333

…

Fig. 5.11: Multiplication Partial Product Generation(MPPG)

In the MPPA module, a carry save adder tree is used to accelerate the addition

of the partial products, which is a easily applicable technique to integrated with

modulo multiplier. The proposed carry save adder tree structure is more regular

than conventional multiplier, because the same number of bits is added for each bit

position and the carry outs are fed back into the carry ins. In cell based designs, the

lower regularity of tree structures compared to linear ones has a negligible impact on

circuit area, while considerable speedup is achieved.

Figure 5.12 depicts the MPPA module of the modular multiplier architecture.

Generated partial products bits are fed into n-operand carry save addition and go

through carry propagate addition steps, note that the carry out is directly fed into

carry in of next level. Final step is performing modulo (2n−1) addition with modular

adder proposed.

64

3,2

𝑝7
(0)

𝑝7
(1)

𝑝7
(2)

3,2

𝑝6
(0)

𝑝6
(1)

𝑝6
(2)

3,2

𝑝5
(0)

𝑝5
(1)

𝑝5
(2)

3,2

𝑝2
(0)

𝑝2
(1)

𝑝2
(2)

3,2

𝑝1
(0)

𝑝1
(1)

𝑝1
(2)

3,2

𝑝0
(0)

𝑝0
(1)

𝑝0
(2)

…

3,23,23,2 3,2 …3,2 3,2

Prefix modulo 2𝑛 − 1 adder

𝑝5
(3)

𝑝6
(3)

𝑝7
(3)

𝑝1
(3)

𝑝0
(3)

𝑝2
(3)

Final product

Fig. 5.12: Multiplication Partial Product Accumulation(MPPA)

65

6 COMPLEXITY ANALYSIS AND FPGA IM-

PLEMENTATION

This chapter gives a introduction for complexity in terms of area and time in pro-

posed architecture of multiplication in Rq[x] for LTV Fully Homomorphic Encryption

scheme. The complexity of sub modules comprised for the general architecture is first

given. For the different sub modules, we have a table shows the corresponding gate

count and critical path delay. A list of area cost and critical path delay are presented

in the next table on a general view for the LFSR based multiplier structure.

The results of implementations and simulations on FPGA paltform are also given

in this chapter. After a general measurement of several main implementation tech-

nologies, we compare our results with some of the existing implementations out-

come and analyzed the performance differences. We use device of Cyclone IV GX

EP4CGX15BF14C6 for compilation on Quartus II 13.1 web edition.

6.1 Complexity Analysis

Table 6.1: Modules used in proposed architecture

Module Modular
multiplier

Modular
adder

Register Modular
subtractor

Modules N N − 1 N 1

A brief estimation of complexity is presented in this section. This analysis assumes

that each gate counts as one elementary gate for both area and delay. The model

ignores fan in and fan out. The validation of the estimates that it produce will be

carried out later by FPGA implementation.

Table 6.1 gives the module complexity of proposed polynomial multiplier in Rq[x]

architecture. The structure require N − 1 modular q adders, 1 modular q subtractor,

N modular q multipliers and N registers. Each register stores value of [log2 q] bits

66

length.

Table 6.2: Space complexity for each module

Modular units
Space complexity

XOR # AND # OR # NXOR # NOT

Adder 2n− 1 2n dlog2ne+ 3n n+ n dlog2ne − 2dlog2ne + 1 0 0

Subtractor n− 1 2n dlog2ne+ 3n n+ n dlog2ne − 2dlog2ne + 1 n n
Multiplier 2n2 − 1 3n2 − 4n 3

2n
2 − n 0 0

For combination of different modules. The gate count is show in Table 6.2. We

use basic logic gate of XOR gate, AND gate, OR gate, NXOR gate and NOT gate

count to measure the space complexity. Each full adder (3,2 counter) is of two XOR

gates, 2 AND gates and 1 OR gate. From the table we can see that the number of

gate count of modular subtractor is close to that of modular adder with same amount

of XOR gate, AND gate, OR gate and more NXOR gate, NOT gate.

For time complexity, we show critical time delay in Table 6.3.

Table 6.3: Time complexity for each module

Modular units Critical path delay
Adder 2 dlog2ne+ 3

Subtractor 2 dlog2ne+ 4
Multiplier 3

2
n+ 2 · dlog2ne+ 4

In the end, we give the comprehensive presentation of time and space complexity

of proposed truncated polynomial ring multiplier in Rq[x] with Table 6.4 and 6.5.

Table 6.4: Space complexity of proposed multiplier in Rq[x]

XOR 2N(n2 + n− 1)− n
AND N(3n2 + 2n dlog2ne − n)

OR N(3
2
n2 + n dlog2ne − 2dlog2ne)

NXOR n
NOT n

Table 6.4 shows that the total area cost is the gate count accumulation of all

modular multiplier, modular adder and modular subtractor in the whole architecture

67

with AND gate, OR gate, XOR gate grow linearly with degree N and power of 2 with

modulo length n.

Table 6.5 gives a general comparison of time and space complexity for proposed

architecture and other related works, where the critical path go through modular

mulitplier and modular adder/subtractor. The critical path delay for proposed archi-

tecture is estimated as 3
2
n+4 dlog2ne−2dlog2ne+8. It requireN clock cycles to complete

all multiplication of the polynomials. While the time complexity of polynomial multi-

plication operation is O(N2) in [1], O(NlogNloglogN) in [52] and O(NlogN) in [62],

the architecuture level space complexity is O(n2) in [1], O(Nn2) in [52] and [62].

Table 6.5: Time complexity comparison

Work Space complexity(gate count) Time complexity (latency)
proposed O(Nn2) O(N)

[1] O(n2) O(N2)
[52] O(Nn2) O(NlogNloglogN)
[62] O(Nn2) O(NlogN)

6.2 FPGA Implementation Results

6.2.1 Implementation results

We choose FPGA as the implementation platform with our research tool. The soft-

ware is Altera Quartus II 13.1 web edition with target device of Cyclone IV GX

EP4CGX15BF14C6. The details of implementation results are shown below in Table

6.6.

We collected simulation result data on FPGA implementation for LTV FHE en-

cryption large polynomial multiplication with ring dimension of N ∈ {512, 1024, 2048,

4096}. A couple of representative integer word sizes n selected in range ∈ {31, 61, 89,

107, 127} are provided. Although latency is the most significant experiment perfor-

mance factor in our design, we manage to demonstrate a series of itmes in imple-

68

Table 6.6: FPGA results for the proposed system

N n Logic elements Memory bits Register Fmax Latency

512
31 2694 301568 129 41.05MHz 0.012ms
61 8442 593408 189 26.46MHz 0.019ms
107 23586 1040896 281 15.81MHz 0.032ms

1024
31 2712 349184 129 41.93MHz 0.024ms
61 8450 687104 189 25.68MHz 0.039ms
107 23591 1205248 281 16.20MHz 0.063ms

2048

61 8498 874496 189 25.98MHz 0.078ms
89 16965 1275904 245 18.98MHz 0.107ms
107 23023 1533952 281 16.37MHz 0.125ms
127 27805 1533952 281 14.99MHz 0.136ms

4096

61 8507 1249280 189 26.62MHz 0.153ms
89 16887 1822720 245 19.03MHz 0.215ms
107 23680 2191360 281 16.62MHz 0.243ms
127 27840 2191360 281 13.22MHz 0.309ms

mentation results in terms of logic elements, registers, memory bits and maximum

frequency.

From the Table 6.6 we can see that the latency grows when value of N or n

increases. We choose the sets of parameter according to the Mersenne number form

2n − 1 proposal.

6.2.2 Implementation comparison

The works on implementation of LTV methods can be roughly categorized into several

types, each has their advantages and drawbacks explained below:

CPU: This may be a classic desktop or laptop CPU or the one of the embedded

device. It usually has rather few computation cores (< 20), but it can use the ones

it has very fast and can execute arbitrary instructions (in mostly arbitrary order)

from its assembler language. Cryptography algorithms that run on CPUs are most

software-implemented because the algorithms are merely information given to the

CPU for execution. CPUs are best at running complex, linear algorithms.

GPU: This could be desktops or laptops graphics processor or it may be supercom-

puting computation accelerator. Its characteristics are the high number of cores, the

69

low speed of each core and the limited instruction set. GPUs are made to run simple

algorithms massively parallel. Much assemble to CPUs, they accept their algorithms

as pieces of information, so it’s the software that implements the algorithm.

FPGA: The FPGA is typically found in small embedded devices and is running

specialized algorithms. Its hardware can be configured post shipping, at the expense

of lower speeds of operation than with ASICs. With FPGAs, changing the hardware

layout of the integrated circuit to run the algorithm is possible. Hence algorithms run

by FPGAs are considered to be hardware implemented, because in its current state,

the hardware can run only this exact algorithm.

ASIC: This is an integrated circuit that is manufactured to run exactly one algo-

rithm. ASICs provide high speed for this algorithm usually and are used when speed

matters. An example application are Hardware Security Modules (HSMs) which

commonly use ASICs to accelerate the execution of cryptographic operations (like

AES encryption). Crypto processors commonly are simple processors with additional

crypto-specific ASICs. We are confident to see the implementation of LTV FHE

carried out on ASIC platform in the near future.

Next we generally discuss about the four types of implementation technologies in

terms of security level, speed and cost.

Security: For the security of each platform, the tendency is that the security will

increase if we go down the list from CPU to ASIC. CPUs are usually occupied by

many different processes, allowing side-channel attacks, GPUs are sometimes used for

cryptosystem, FPGAs should provide more security than CPUs and GPUs because

there are less noise of other operations on the chip and ASICs have the same benefit,

but with a bit more security assurance.

Speed: The speed increases similarly if we go down the list. CPUs must be capable

of doing many different things and can not be too much optimized in one direction,

some goes for GPUs although they have much more computation power if needed.

70

Table 6.7: Cryptosystem implementation types and comparison

Implementation types Security Risk Speed Cost

Software
CPU highest slowest lowest
GPU high slow low

Hardware
FPGA low fast high
ASIC lowest fastest highest

FPGAs are faster because it can provide more optimizations and ASICs are fastest

because it customized for a particular use.

Cost: The price has a similar order. CPUs are easy to obtain, cheap to program

and it can make program running quickly. GPUs are also quite easy to obtain, it

is a bit more expensive to effectively program and can run the code somewhat fast.

FPGAs are more expensive and require to design the algorithm using the hardware

language of FPGA, which cost a lot of time, expertise and money. ASICs need to be

planned before they are built, they have long design cycles, but once the design is

down. Manufacturing them is relatively easy, a low price is available.

Table 6.7 shows the differences between hardware implementation and software

implementation platforms.

We evaluate the performance of our FPGA simulation of LTV encryption mul-

tiplication operation. The Table 6.8, and Table 6.9 below show the proposed work

simulations compared with that of some existing works.

Table 6.8 collects accordingly some large combinations of parameters in the mul-

tiplication operation for polynomial degree N ∈ {512, 1024, 2048, 4096}. We provide

the experimental data for the same parameter sets of LTV Fully Homomorphic En-

cryption scheme with other works.

The table illutrate the comparison with implementation of several runtime/latency

results from existing experiments in[1],[50],[51],[62].

Compared to CPU implementation in [50], our work has huge speed advantage

71

Table 6.8: Implementation speed comparison

Work Parameter n Platform Latency(ms) Speedup
N=512

proposed 31 Cyclone IV 0.012 5.5×
FPGA[1] 32 Virtex 7 0.066 1×
proposed 61 Cyclone IV 0.019 3.5×

N=512
proposed 61 Cyclone IV 0.019 155×
CPU[50] 64 Matlab 3.27 1×

N=1024
FPGA [1] 26 Spartan 6 0.069 1×
proposed 31 Cyclone IV 0.024 2.9×

N=2048
FPGA [62] 58 Spartan 6 0.282 1×
proposed 61 Cyclone IV 0.078 3.6 ×

N=2048
CPU [50] 100 Matlab 7.94 1×
proposed 107 Cyclone IV 0.125 63.5×

N=4096
proposed 61 Cyclone IV 0.153 7.8×
GPU[51] 64 GeForce 690 1.2 1×

N=4096
proposed 107 Cyclone IV 0.243 71.5×
CPU [50] 109 Matlab 17.38 1×

of over 40 times for parameter N = 512, 1024, 2048, 4096. For the parameter of

N = 4096, n = 64 for truncated polynomial ring multiplier in Rq[x], work in [51] with

GPU based environment achieved latency of 1.2ms while we provide result of 0.153ms

for N = 4096, n = 61.

We measure the works in [1] and [62] which provide a certain experiment data

based on implmentation with different target devices in FPGA platform. For value

of N = 512 and N = 1024, [1] achieved latency of 0.066ms and 0.069ms respectively

for LTV Fully Homomorphic Encryption scheme encryption multiplication part. Our

work demonstrate 0.012ms for N = 512, n = 31, 0.019ms for N = 512, n = 61 and

0.024ms for N = 1024, n = 31.

The FPGA based experimental result in [62] shows a 0.282ms delay for N =

72

Table 6.9: FPGA implementations and comparison

Work n Platform
#Logic units

used/#logic units
total

Latency(ms) Speedup

N=512

proposed 31 Cyclone IV 2694/149k(1.8%) 0.012 5.5×
FPGA[1] 32 Virtex 7 171/91k(< 1%) 0.066 1×
proposed 61 Cyclone IV 8442/149k (5.6%) 0.019 3.5×

N=1024

FPGA[1] 26 Spartan 6 182/0.6k(30%) 0.069 1×
proposed 31 Cyclone IV 2712/149k(1.8%) 0.024 2.9×

N=2048

FPGA[62] 58 Spartan 6 3846/15k (24.3%) 0.282 1×
proposed 61 Cyclone IV 8498/149k (6%) 0.078 3.6×

2048, n = 58 in large truncated polynomial ring multiplication operation, while we

achieve 0.078ms for N = 2048, n = 61.

From the Table 6.9 we get brief idea about the different family of FPGA device

utilization.

For N = 512, n = 32 in [1], 171(< 1%) slice LUT are used, while in our work for

N = 512, n = 321, 2765 (1.8%) LE are used. In addition, for parameter of N=1024,

n=26, [1] used 182(30%) of the 0.6k slice LUT in total and we used 2712(1.8%) of

total 149k LEs for N = 1024, n = 31.

For parameter N = 2048, n = 58, 3846 (24.3%) of total 15k slice LUT are used

in [62] on Spartan 6. In our work for parameterN = 2048, n = 61, 8498(6%) of total

149k LEs are utilized on device Cyclone IV.

73

7 CONCLUSIONS

This chapter has folowing contents: an overview of research contributions, conclusions

based on the implementation comparisons, and possible future work.

7.1 A Summary of Contributions and Significance

After the first chapter on introduction, the thesis provides the mathematical pre-

liminaries of the Homomorphic Encryption, including truncated polynomial ring and

specific steps to accomplish the LTV Fully Homomorphic Encryption process, which

followed by an overview of existing works on LTV Fully Homomorphic Encryption.

Then the architecture to perform encryption algorithm of LTV Fully Homomorphic

Encryption are proposed. An elaborate comparison between the proposed works and

existing works in complexity and performance is also presented.

The research contributions presented in this thesis include the followings,

• The efficiency of LTV system is significantly impacted by the speed of multipli-

cation of truncated polynomials with high degree and large coefficients.

• An new architecture for computing encryption step in LTV Fully Homomorphic

Encryption are presented. The architectural design is based on a new extension

to LFSR, which provide compact and pipeline structure and is beneficial for

multiplication of truncated polynomials with high degree and large coefficients.

• We also proposed to select a family of special moduli for modular arithmetic

over modular reduction operations. Calculation speed is much improved due

to the highly efficient modulo computation introduced by the proposed moduli.

Within the architecture, novel and efficient modular multiplier, modular adder

and modular subtractor are proposed for high speed computation.

74

• We analyzed the complexity of the proposed architecure in terms of space and

time. Our proposed algorithm has great speed advantage obtaining linear time

complexity of O(N) over best result of O(NlogN) for previous works. How-

ever, the proposed architecture takes space in gate count of O(Nn2) with little

advantage in circuit area perspective.

• The simulation results of proposed architecrture implementation demonstrate

great advantage of time and speed for different sets of parameter selections and

various paltforms of implementation.

7.2 Possible Future Works

Based on the research works proposed in this thesis, the following research directions

may be worthy of further investigation:

• Design of efficient architecture for evaluation process in LTV Fully Homomor-

phic Encryption scheme.

• Design of algorithm for implementation of LTV Fully Homomorphic Encryption

system on ASIC.

• Applying the proposed structure and computation method for other Fully Ho-

momorphic Encryption schemes.

75

REFERENCES

[1] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki, “Hls design of a hardware

accelerator for homomorphic encryption,” in Design and Diagnostics of Elec-

tronic Circuits & Systems (DDECS), 2017 IEEE 20th International Symposium

on. IEEE, 2017, pp. 178–183.

[2] M. Talsania and E. John, “A comparative analysis of parallel prefix adders,” in

Proc. Int. Conf. Comput. Design, 2013, pp. 29–36.

[3] “September 2017 web server survey,” https://news.netcraft.com/archives/2017/

09/11/september-2017-web-server-survey.html, accessed: 2017-09-11.

[4] W. Yuan-Zhuo, J. XiaoLong, C. XueQ et al., “Network big datapresent and

future,” Ph.D. dissertation, 2013.

[5] G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012,

vol. 222.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Commu-

nications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[7] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my

cloud: exploring information leakage in third-party compute clouds,” in Proceed-

ings of the 16th ACM conference on Computer and communications security.

ACM, 2009, pp. 199–212.

[8] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

homomorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–

180, 1978.

[9] C. Gentry, A fully homomorphic encryption scheme. Stanford University, 2009.

76

[10] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty com-

putation on the cloud via multikey fully homomorphic encryption,” in Proceed-

ings of the forty-fourth annual ACM symposium on Theory of computing. ACM,

2012, pp. 1219–1234.

[11] D. Cabarcas, P. Weiden, and J. Buchmann, “On the efficiency of provably secure

ntru,” in International Workshop on Post-Quantum Cryptography. Springer,

2014, pp. 22–39.

[12] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning

with errors over rings,” in Annual International Conference on the Theory and

Applications of Cryptographic Techniques. Springer, 2010, pp. 1–23.

[13] D. Micciancio, “A first glimpse of cryptography’s holy grail,” Communications

of the ACM, vol. 53, no. 3, pp. 96–96, 2010.

[14] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-

natures and public-key cryptosystems,” Communications of the ACM, vol. 21,

no. 2, pp. 120–126, 1978.

[15] T. ElGamal, “A public key cryptosystem and a signature scheme based on dis-

crete logarithms,” IEEE transactions on information theory, vol. 31, no. 4, pp.

469–472, 1985.

[16] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental

poker keeping secret all partial information,” in Proceedings of the fourteenth

annual ACM symposium on Theory of computing. ACM, 1982, pp. 365–377.

[17] J. Benaloh, “Dense probabilistic encryption,” in Proceedings of the workshop on

selected areas of cryptography, 1994, pp. 120–128.

77

[18] P. Paillier, “Public-key cryptosystems based on composite degree residuosity

classes,” in International Conference on the Theory and Applications of Crypto-

graphic Techniques. Springer, 1999, pp. 223–238.

[19] I. Damg̊ard and M. Jurik, “A generalisation, a simpli. cation and some applica-

tions of paillier’s probabilistic public-key system,” in International Workshop on

Public Key Cryptography. Springer, 2001, pp. 119–136.

[20] O. Regev, “New lattice-based cryptographic constructions,” Journal of the ACM

(JACM), vol. 51, no. 6, pp. 899–942, 2004.

[21] ——, “On lattices, learning with errors, random linear codes, and cryptography,”

Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[22] Z. Brakerski, “Fully homomorphic encryption without modulus switching from

classical gapsvp,” in Advances in cryptology–crypto 2012. Springer, 2012, pp.

868–886.

[23] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning

with errors: Conceptually-simpler, asymptotically-faster, attribute-based,” in

Advances in Cryptology–CRYPTO 2013. Springer, 2013, pp. 75–92.

[24] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption

from (standard) lwe,” SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871,

2014.

[25] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic

encryption without bootstrapping,” ACM Transactions on Computation Theory

(TOCT), vol. 6, no. 3, p. 13, 2014.

[26] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas on ciphertexts,”

in Theory of Cryptography Conference. Springer, 2005, pp. 325–341.

78

[27] T. Sander, A. Young, and M. Yung, “Non-interactive cryptocomputing for

nc/sup 1,” in Foundations of Computer Science, 1999. 40th Annual Symposium

on. IEEE, 1999, pp. 554–566.

[28] A. Kawachi, K. Tanaka, and K. Xagawa, “Multi-bit cryptosystems based on

lattice problems,” in International Workshop on Public Key Cryptography.

Springer, 2007, pp. 315–329.

[29] C. Gentry, “Toward basing fully homomorphic encryption on worst-case hard-

ness,” in Annual Cryptology Conference. Springer, 2010, pp. 116–137.

[30] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homo-

morphic encryption schemes: Theory and implementation,” arXiv preprint

arXiv:1704.03578, 2017.

[31] D. Stehlé and R. Steinfeld, “Faster fully homomorphic encryption,” in Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security. Springer, 2010, pp. 377–394.

[32] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively

small key and ciphertext sizes,” in International Workshop on Public Key Cryp-

tography. Springer, 2010, pp. 420–443.

[33] C. Gentry and S. Halevi, “Implementing gentrys fully-homomorphic encryption

scheme,” in Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, 2011, pp. 129–148.

[34] P. Scholl and N. P. Smart, “Improved key generation for gentrys fully homomor-

phic encryption scheme,” in IMA International Conference on Cryptography and

Coding. Springer, 2011, pp. 10–22.

79

[35] N. Ogura, G. Yamamoto, T. Kobayashi, and S. Uchiyama, “An improvement

of key generation algorithm for gentrys homomorphic encryption scheme,” in

International Workshop on Security. Springer, 2010, pp. 70–83.

[36] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic

encryption over the integers,” in Annual International Conference on the Theory

and Applications of Cryptographic Techniques. Springer, 2010, pp. 24–43.

[37] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic

encryption over the integers with shorter public keys,” in Annual Cryptology

Conference. Springer, 2011, pp. 487–504.

[38] H.-M. Yang, Q. Xia, X.-f. Wang, and D.-h. Tang, “A new somewhat homomor-

phic encryption scheme over integers,” in Computer Distributed Control and In-

telligent Environmental Monitoring (CDCIEM), 2012 International Conference

on. IEEE, 2012, pp. 61–64.

[39] Y. G. Ramaiah and G. V. Kumari, “Towards practical homomorphic encryption

with efficient public key generation,” International Journal on Network Security,

vol. 3, no. 4, p. 10, 2012.

[40] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Scale-invariant fully homomorphic

encryption over the integers,” in International Workshop on Public Key Cryp-

tography. Springer, 2014, pp. 311–328.

[41] P. S. Pisa, M. Abdalla, and O. C. M. B. Duarte, “Somewhat homomorphic

encryption scheme for arithmetic operations on large integers,” in Global Infor-

mation Infrastructure and Networking Symposium (GIIS), 2012. IEEE, 2012,

pp. 1–8.

80

[42] N. Aggarwal, C. Gupta, and I. Sharma, “Fully homomorphic symmetric scheme

without bootstrapping,” in Cloud Computing and Internet of Things (CCIOT),

2014 International Conference on. IEEE, 2014, pp. 14–17.

[43] K. Nuida and K. Kurosawa, “(batch) fully homomorphic encryption over in-

tegers for non-binary message spaces,” in Annual International Conference on

the Theory and Applications of Cryptographic Techniques. Springer, 2015, pp.

537–555.

[44] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-

lwe and security for key dependent messages,” in Annual cryptology conference.

Springer, 2011, pp. 505–524.

[45] T. Wu, H. Wang, and Y.-P. Liu, “Optimizations of brakerski’s fully homomorphic

encryption scheme,” in Computer Science and Network Technology (ICCSNT),

2012 2nd International Conference on. IEEE, 2012, pp. 2000–2005.

[46] X. Zhang, C. Xu, C. Jin, R. Xie, and J. Zhao, “Efficient fully homomorphic

encryption from rlwe with an extension to a threshold encryption scheme,” Future

Generation Computer Systems, vol. 36, pp. 180–186, 2014.

[47] J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based public key cryp-

tosystem,” in International Algorithmic Number Theory Symposium. Springer,

1998, pp. 267–288.

[48] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.

[49] M. Almorsy, J. Grundy, and I. Müller, “An analysis of the cloud computing

security problem,” arXiv preprint arXiv:1609.01107, 2016.

81

[50] K. Rohloff and D. B. Cousins, “A scalable implementation of fully homomorphic

encryption built on ntru,” in International Conference on Financial Cryptogra-

phy and Data Security. Springer, 2014, pp. 221–234.

[51] W. Dai, Y. Doröz, and B. Sunar, “Accelerating ntru based homomorphic encryp-

tion using gpus,” in High Performance Extreme Computing Conference (HPEC),

2014 IEEE. IEEE, 2014, pp. 1–6.

[52] Y. Doröz, E. Öztürk, E. Savaş, and B. Sunar, “Accelerating ltv based homo-

morphic encryption in reconfigurable hardware,” in International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 2015, pp. 185–204.

[53] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an fpga-accelerated

homomorphic encryption co-processor,” IEEE Transactions on Emerging Topics

in Computing, vol. 5, no. 2, pp. 193–206, 2017.

[54] R. Uma, V. Vijayan, M. Mohanapriya, and S. Paul, “Area, delay and power

comparison of adder topologies,” International Journal of VLSI Design & Com-

munication Systems, vol. 3, no. 1, p. 153, 2012.

[55] D. H. Hoe, C. Martinez, and S. J. Vundavalli, “Design and characterization of

parallel prefix adders using fpgas,” in System Theory (SSST), 2011 IEEE 43rd

Southeastern Symposium on. IEEE, 2011, pp. 168–172.

[56] D. H. Hoe, L. Bollepalli, and C. D. Martinez, “Fpga fault tolerant arithmetic

logic: a case study using parallel-prefix adders,” VLSI Design, vol. 2013, p. 17,

2013.

[57] T. K. Kumar and P. Srikanth, “Design of high speed 128 bit parallel prefix

adders,” International Journal of Engineering Research and Applications, vol. 4,

no. 11, pp. 112–115, 2014.

82

[58] A. Skavantzos and P. B. Rao, “New multipliers modulo 2/sup n/-1,” IEEE Trans-

actions on Computers, vol. 41, no. 8, pp. 957–961, 1992.

[59] Z. Wang, G. A. Jullien, and W. C. Miller, “An algorithm for multiplication

modulo (2/spl and/n-1),” in Circuits and Systems, 1996., IEEE 39th Midwest

symposium on, vol. 3. IEEE, 1996, pp. 1301–1304.

[60] R. Zimmermann, “Efficient vlsi implementation of modulo (2/sup n//spl

plusmn/1) addition and multiplication,” in Computer Arithmetic, 1999. Pro-

ceedings. 14th IEEE Symposium on. IEEE, 1999, pp. 158–167.

[61] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Modified booth modulo 2/sup

n/-1 multipliers,” IEEE Transactions on Computers, vol. 53, no. 3, pp. 370–374,

2004.

[62] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung, D. Pao, and

I. Verbauwhede, “High-speed polynomial multiplication architecture for ring-lwe

and she cryptosystems.” IEEE Trans. on Circuits and Systems, vol. 62, no. 1,

pp. 157–166, 2015.

83

VITA AUCTORIS

NAME: Qiang Zeng

PLACE OF BIRTH: Yueyang, China

YEAR OF BIRTH: 1993

EDUCATION:

2011 - 2015 Wuhan University of Technology, Wuhan, China
Bachelor of Communication Engineering

2015 - 2018 University of Windsor, Windsor, Ontario, Canada
Master of Applied Science, Electrical and Computer En-
gineering

84

	Efficient Computation and FPGA implementation of Fully Homomorphic Encryption with Cloud Computing Significance
	Recommended Citation

	tmp.1545334568.pdf.TKKf7

