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Abstract

Mechanistic target of rapamycin (mTOR) controls global translation of mRNA into protein by
phosphorylating p70 S6 kinase (S6K) and eIF4E-binding protein-1. Akt and Rheb, a GTP-
binding protein, regulate mTOR protein kinase activity. Molting in crustaceans is regulated by
ecdysteroids synthesized by a pair of molting glands, or Y-organs (YOs), located in the
cephalothorax. During premolt, the YOs hypertrophy and increase production of ecdysteroids.
Rapamycin (1 M) inhibited ecdysteroid secretion in C. maenas and G. lateralis YOs in vitro,
indicating that ecdysteroidogenesis requires mTOR-dependent protein synthesis. The effects of
molting on the expression of four key mTOR signaling genes (mTOR, Akt, Rheb, and S6K) in
the YO was investigated. Partial cDNAs encoding green crab (Carcinus maenas) mTOR (4031
bp), Akt (855 bp), and S6K (918 bp) were obtained from expressed sequence tags.
Identity/similarity of the deduced amino acid sequence of the C. maenas cDNAs to human
orthologs were 72%/81% for Cm-mTOR, 58%/73% for Cm-Akt, and 77%/88% for Cm-S6K.
mTOR, Akt, S6K, and elongation factor 2 (EF2) in C. maenas and blackback land crab
(Gecarcinus lateralis) were expressed in all tissues examined. The two species differed in the
effects of molting on gene expression in the YO. In G. lateralis, GI-mTOR, Gl-Akt, and GI-EF2
mRNA levels were increased during premolt. By contrast, molting had no effect on the
expression of Cm-mTOR, Cm-Akt, Cm-S6K, Cm-Rheb, and Cm-EF?2. These data suggest that YO
activation during premolt involves up regulation of mTOR signaling genes in G. lateralis, but is

not required in C. maenas.



1. Introduction

Mechanistic target of rapamycin (mTOR) controls cellular growth and is up regulated in
mammalian cancers (Alayev and Holz, 2013; Cornu et al., 2013; Laplante and Sabatini, 2012;
Zoncu et al.,2011). mTOR is a serine/threonine protein kinase member of the phosphoinositide-
3-kinase (PI3K)-related kinase (PIKK) family (Laplante and Sabatini, 2012; Yang et al., 2013).
It associates with other proteins to form two complexes, designated mMTORC1 and mTORC2,
that differ in functions (Jewell and Guan, 2013; Magnuson et al., 2012). mTORC1 stimulates
protein and lipid synthesis, ribosome biogenesis, and energy metabolism and inhibits autophagy
and lysosome biogenesis (Foster, 2013; Laplante and Sabatini, 2012). mTORC?2 controls cell
division, apoptosis, metabolism, and cytoskeletal organization (Laplante and Sabatini, 2012).

mTORCI is regulated by various environmental and cellular cues. Stress and hypoxia are
inhibitory and growth factors, high energy levels, and amino acids are stimulatory (Laplante and
Sabatini, 2012; Roux and Topisirovic, 2012). Two targets of mTORC1 are p70 S6 kinase (S6K)
and eukaryotic initiation factor 4E (eIF4E)-binding protein-1 (4E-BP1), which control translation
of mRNA (Magnuson et al., 2012; Teleman, 2010). Initiation of mRNA translation is stimulated
when phospho-S6K phosphorylates the ribosomal S6 subunit and other translational-control
proteins and phospho-4E-BP1 releases eIF4E to bind to the 5° end of an mRNA (Laplante and
Sabatini, 2012; Magnuson et al., 2012; Roux and Topisirovic, 2012). Insulin and insulin-like
peptides (ILPs) stimulate cell growth by activating a signal transduction cascade involving PI3K,
3'-phosphoinositide-dependent kinase-1 (PDK1), and Akt protein kinases (Laplante and Sabatini,
2012; Teleman, 2010). mTORCI is directly regulated by Rheb (Ras homolog expressed in
brain), a member of the Ras superfamily of GTP-binding proteins. Rheb/GTP activates mTORC1

and is inactivated by Rheb-GTPase activating protein (Rheb-GAP or TSC1/2), which stimulates



the hydrolysis of GTP to GDP. Rheb-GAP is inhibited when phosphorylated by Akt. Thus,
insulin and ILP signaling prevents the hydrolysis of GTP by Rheb through the inhibition of
Rheb-GAP, which keeps mTORCI in the active state (Laplante and Sabatini, 2012; Teleman,
2010). Akt and S6K are members of the AGC Ser/Thr kinase family, which also includes PDK1
and protein kinases A, C, and G (Bayascas, 2010; Su and Jacinto, 2011).

Our knowledge of the insulin/mTOR pathway and its role in growth and development in
crustaceans is far from complete. ILPs were reported in shrimp and lobster hepatopancreas
(Gallardo et al., 2003; Hatt et al., 1997). An insulin-like growth factor expressed by the
androgenic gland determines male sexual characteristics in crayfish and prawn (Ventura et al.,
2011). Insulin receptor tyrosine kinase and phosphotyrosyl phosphatase are present in crustacean
tissues (Chuang and Wang, 1994; Kucharski et al., 1999, 2002; Lin et al., 1993). In the brine
shrimp, Artemia franciscana, S6K activity increases during pre-emergence development, when
protein synthesis is restored after quiescence (Santiago and Sturgill, 2001). Recently we reported
the cloning and characterization of cDNAs encoding Akt, mMTOR, Rheb, and S6K from the
blackback land crab, Gecarcinus lateralis, and Rheb from the green crab, Carcinus maenas, and
the American lobster, Homarus americanus (MacLea et al., 2012). An up-regulation of GI-Rheb
expression coincides with an increase in protein synthesis in the claw skeletal muscle associated
with molting (MacLea et al., 2012). These data indicate that mTOR has the same function in
crustaceans as it does in other organisms.

mTOR is crucial for growth, aging, development, reproduction, and metamorphosis in
insects (Bjedov et al., 2010; Gibbens et al., 2011; Gu et al., 2012; Mirth and Shingleton, 2012).
The ILP/mTOR pathway controls the size and ecdysteroidogenic capacity of the insect molting

gland, or prothoracic gland (PG) (Mirth and Shingleton, 2012; Rewitz et al., 2013; Teleman,



2010). Rheb and PI3K stimulate PG growth and protein synthesis (Colombani et al., 2005; Hall
et al., 2007; Mirth et al., 2005). In addition, PI3K inhibitors and the mTOR inhibitor rapamycin
block prothoracicotropic hormone (PTTH)-induced increases in ecdysteroid secretion in the PG
(Guetal.,2011a, 2012). Like insects, the crustacean molting gland, or Y-organ (YO),
hypertrophies and increases in ecdysteroidogenic capacity during premolt (Covi et al., 2012;
Lachaise et al., 1993; Skinner, 1985). Cycloheximide, an inhibitor of mRNA translation,
suppresses YO ecdysteroid secretion in vitro (Mattson and Spaziani, 1986). These data suggest
that sustained ecdysteroid synthesis and secretion in insect and crustacean molting glands require
mTOR-dependent protein synthesis.

The mTOR pathway is regulated by transcriptional and posttranslational mechanisms. In G.
lateralis, YO activation alters the levels of hundreds of proteins (Lee and Mykles, 2006). G.
lateralis and C. maenas differ in response to eyestalk ablation (ESA) and multiple limb autotomy
(MLA). ESA and MLA induce molting in adult G. lateralis (MacLea et al., 2012; Yu et al.,
2001). As adult C. maenas are refractory to ESA and MLA (Abuhagr et al., 2014), animals
undergoing natural molts were studied. G. lateralis adults were induced to molt by MLA, which
resembles natural molts in this species. In order to examine the role of transcriptional regulation
in the YO, cDNAs encoding mTOR, Akt, and S6K from C. maenas were characterized and the
effects of molting on the expression of mTOR, Rheb, Akt, S6K, and elongation factor 2 (EF?2)
were quantified using quantitative PCR (qPCR). The tissue expression of Akt, mTOR, S6K, and
EF?2 in both species was determined by endpoint RT-PCR. An in vitro YO assay was used to

quantify the effects of rapamycin on ecdysteroid biosynthesis.



2. Materials and Methods
2.1. Animals

Adult G. lateralis were collected in the Dominican Republic and shipped via commercial air
cargo to Colorado, USA. Animals were maintained at 27 °C in 75-90% relative humidity and a
12 h:12 h light:dark cycle (Covi et al., 2010). Molting was induced by multiple leg autotomy
(MLA) and animals were kept in individual containers with a quartz sand substrate moistened
with 10 ppt Instant Ocean (Covi et al., 2010; Skinner, 1985; Yu et al., 2002). Molt stage was
determined by hemolymph ecdysteroid concentration and limb regenerate growth (Covi et al.,
2010; Yu et al., 2002). Ecdysteroids were quantified by an enzyme-linked immunoassay
(ELISA)(Kingan, 1989). The ELISA was the same as that described in Abuhagr et al. (2014).
The regeneration (R) index (calculated as the length of the regenerate x 100/carapace width)
increases from O to ~23 and provides an external measure of the progress of premolt events in G.
lateralis (Yu et al., 2002).

Adult C. maenas were collected from Bodega Harbor, Bodega Bay, California. They were
maintained under ambient conditions at about 13 °C in the flow-through seawater system of the
Bodega Marine Laboratory. They were fed squid once a week. Green morphs undergoing
spontaneous molts during the winter to spring molting season were used for the molting study.
Molt stage was determined by hemolymph ecdysteroid concentration and integumentary
structure (membranous layer and setal development in maxillae (Moriyasu and Mallet, 1986).
Intermolt animals were shipped to Colorado and used for the YO assay, cDNA cloning, and
tissue expression analysis. They were kept in aerated 30 ppt Instant Ocean at 20 °C and a 16 h:8

h light:dark cycle and fed cooked chicken liver once a week.



2.2. Effects of rapamycin on Y-organ ecdysteroid secretion

The effect of rapamycin (Selleck Chemicals, Houston, TX), an inhibitor of mTOR, was
determined on YOs in vitro. The YO assay was the same as that described previously (Covi et
al., 2008; Lee et al., 2007). Intermolt G. lateralis and C. maenas were eyestalk-ablated on Day 0.
YO pairs were harvested 2 or 3 days post-ESA. One of each pair was incubated with 1% ethanol
in medium; the other was incubated with varying concentrations of rapamycin in medium (5-fold
serial dilutions, from 0.04 uM to 1 uM for C. maenas and from 0.008 uM to 1 uM for G.
lateralis) for 30 min. After the 30 min pre-incubation, the culture was replaced with fresh
medium with or without rapamycin and incubated for 4.5 h. Samples of the medium (100 pu1)

were combined with 300 x1 methanol and ecdysteroids were quantified with ELISA.

2.3. Cloning of cDNAs encoding Cm-mTOR, Cm-Akt, and Cm-S6K

RT-PCR and RACE were used to clone cDNAs encoding Cm-mTOR, Cm-Akt, and Cm-
S6K, based on the sequences of EST clones provided by the Mount Desert Island Biological
Laboratory (Towle and Smith, 2006). The ESTs were sequenced by Davis Sequencing (Davis,
CA) using vector and sequence-specific primers. All primers were synthesized by IDT
(Coralville, IA). Total RNA was isolated from tissues using TRIzol reagent (Life Technologies,
Carlsbad, CA) and cDNA was synthesized as described (Covi et al., 2010). The sequences of
cDNAs encoding Cm-Rheb and G. lateralis Rheb, mTOR, Akt, and S6K are reported in
(MacLea et al., 2012). Nested RT-PCR was used to extend the 5’ end for GI-mTOR using mTOR
C. maenas forward primers with mTOR G. lateralis reverse primers to obtain additional GI-

mTOR sequence (Table 1).



Additional Cm-mTOR, Cm-Akt, and Cm-S6K sequences were obtained using nested 3’
RACE. The FirstChoice RLM-RACE Kit (Applied Biosystems, Austin, TX) was used according
to the manufacturer’s instructions. RACE conditions were as follows: 0.4 ul RACE template
cDNA was used in each reaction, with 8 pmol of each primer (Table 1). After denaturation at 94
°C for 3 min, 35 cycles of 94 °C for 30 s, lowest annealing temperature of a primer pair (Table 1)
for 30 s, and 72 °C for 30 s to 1 min, were completed. Final extension was for 7 min at 72 °C.
PCR products were separated by 1% agarose gel electrophoresis, purified using the Gel
Extraction Kit (QIAEX II, Qiagen), and sequenced using direct sequencing with sequence-

specific primers by Davis Sequencing.

2 4. Tissue expression of EF2, mTOR, Akt, and S6K mRNAs

End-point PCR was used to qualitatively assess the distribution of Cm-EF2 (GenBank
GU808334), Cm-mTOR (JQ864248), Cm-Akt (JQ864249), and Cm-S6K (JQ864250) mRNAs in
C. maenas tissues and GI/-EF2 (GenBank AY552550), GI-mTOR (HM989973), Gl-Akt
(HM989974), and GI-S6K (HM989975) mRNAs in G. lateralis tissues. Total RNA was purified
from tissues harvested from intermolt adult male animals and cDNA was synthesized as
described above. Reactions contained 1 ul template cDNA and 5 pmol each of the appropriate
expression primers (Table 2) in GoTaq Green master mix (Promega). After denaturation at 94 °C
for 3 min, 30 (for EF2) or 35 (for all other genes) cycles of 94 °C for 30 s, 62 °C for 30 s, and 72
°C for 30 s, were completed. Final extension was for 7 min at 72 °C. PCR products were
separated on a 1% agarose gel containing 40 mM Tris acetate and 2 mM EDTA (pH 8.5). The

gels were stained with ethidium bromide and visualized with a UV light source.



2.5. Effects of molting on mTOR signaling gene expression in the YO

Molting was induced in G. lateralis by multiple leg autotomy. Animals were divided into
three premolt stages (early premolt, R index ~10; mid-premolt, R ~15; and late premolt, R ~22)
and two postmolt stages (2 days and 10 days postmolt). C. maenas green morphs were divided
into 4 molt stages: intermolt, early premolt, late premolt and postmolt (2-7 days postecdysis).
Hemolymph samples were collected for ecdysteroid ELISA and YOs were harvested for qPCR.

A Light Cycler 480 thermal cycler (Roche Applied Science, Indianapolis, IN) was used to
quantify levels of EF2, mTOR, Rheb, Akt and S6K mRNAs for G. lateralis and C. maenas.
Reactions consisted of 1 ul first strand cDNA or standard, 5 ul 2x SYBR Green I Master mix
(Roche Applied Science), 0.5 ul each of 10 mM forward and reverse primers (Table 2), and 3 ul
nuclease-free water. PCR conditions were as follows: an initial denaturation at 95 °C for 5 min,
followed by 45 cycles of denaturation at 95 °C for 10 s, annealing at 62 °C for 20 s, and
extensions at 72 °C for 20 s, followed by melting curve analysis of the PCR product. Transcript
concentrations were determined with the Light Cycler 480 software (Roche, version 1.5) using a
series of dSDNA standards produced by serial dilutions of PCR product for each gene (10 ag/ul
to 10 ng/ul). The absolute amounts of transcript in copy numbers per pg of total RNA in the
cDNA synthesis reaction were calculated based on the standard curve and the calculated

molecular weight of the dsSDNA products.

2.6. Analyses and software
Multiple sequence alignments were produced with ClustalX version 2.0.12 (Thompson et
al., 1997) using deduced amino acid sequences. Illustrator 10 (Adobe Systems, San Jose, CA)

was used for constructing/annotating graphs and figures. Statistical analysis was performed using



JMP 5.1.2, 6.0.0, or 8.0.2 (SAS Institute, Cary, NC). Means for different molt stages were

compared using analysis of variance. A matched pairs analysis was used to compare the means
of the control and rapamycin treatments in the YO assay. Data are represented as mean + 1 S.E.
and the level of significance was set at a. = 0.05. qPCR data were log transformed to reduce the

variance of the mean.

3. Results

3.1. Effects of rapamycin on Y-organ ecdysteroid secretion
Rapamycin, an inhibitor of mMTORC1, was a potent inhibitor of YO ecdysteroidogenesis in
vitro. YOs from G. lateralis and C. maenas showed a dose-dependent inhibition by rapamycin,

with maximum inhibition of ecdysteroid secretion (73% and 85%, respectively) at 1 uM (Fig. 1).

3.2. Cloning of C. maenas mTOR signaling components

cDNAs encoding Cm-mTOR, Cm-Akt, and Cm-S6K were obtained using RT-PCR and 3’
RACE and sequence-specific primers based on EST sequences (Towle and Smith, 2006). The
characteristics of the three partial cDNAs are summarized in Table 3.

RT-PCR for Cm-mTOR initially yielded two sequences of 1543 and 1624 base pairs (bp).
Nested RT-PCR was used to fill the gap between these two sequences and 3° RACE was used to
obtain the 3’ end of the open reading frame (ORF) and a part of the 3’ untranslated region
(3°’UTR). The DNA and translated amino acid sequence of Cm-mTOR is presented in Figure 2.
Multiple alignment of the deduced amino acid sequences of Cm-mTOR and GI-mTOR with
mTOR sequences of Daphnia pulex and 2 insect species (Drosophila melanogaster and Aedes
aegypti) identified highly conserved domains, from N-terminus to C-terminus: HEAT repeat,

FAT (for FRAP, ATM, and TRRAP), FKBP12-rapamycin-binding (FRB); kinase, and FAT C-
10



terminus (FATC) domains (Fig. 3). Additional sequence was obtained to extend the 5 end for
Gl-mTOR using nested RT-PCR with Cm-mTOR forward primers and Gl-mTOR reverse
primers (Table 1). As the human mTOR protein is 2549 amino acids in length, it is estimated that
about 43% of the ORF of GI-mTOR (3705 bp) and about 44% of the ORF of Cm-mTOR (4031
bp) were obtained. The deduced sequences shared high degrees of identity and similarity to the
human ortholog at the protein level (Table 3), with even higher identity and similarity to insect
orthologs (Fig. 3). The kinase domain included catalytic loop and activation loop motifs (Figs. 2,
3). Amino acids involved in rapamycin binding in the FRB domain (designated with an “r” in
Fig. 3) and amino acids involved in ATP binding in the kinase domain (designated with a “#” in
Fig. 3) were conserved. The FRB domain contained a phosphatidic acid binding motif (Fig. 3).
The sequences of GI-mTOR and Cm-mTOR were nearly identical, except for a 32-amino acid
sequence in Cm-mTOR (amino acids #704-#735) that included a phosphorylation site near the
start of the kinase domain (Fig. 3). This divergent sequence did not result from sequencing error,
as the chromatograms from the sequencing reactions were unambiguous and the deduced
sequence could not have resulted from a shift in the reading frame.

RT-PCR for Cm-Akt yielded a 728-bp product, which contained the pleckstrin homology
domain and a portion of the kinase domain. 3> RACE obtained an additional 127 bp of the kinase
domain. Attempts to obtain the rest of the open reading frame (ORF), 5’ UTR, and 3’ UTR by 3’
and 5° RACE were unsuccessful. The DNA and translated amino acid sequence of Cm-Akt is
presented in Figure 4. Multiple alignments compared the amino acid sequences of Cm-Akt with
Akt sequences from G. lateralis, D. pulex, D. melanogaster, and A. aegypti (Fig. 5). There were
high degrees of identity and similarity in the pleckstrin homology and kinase domains between

the orthologs from the 5 arthropod species (Fig. 5) and between Cm-Akt and human Akt (Table
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3). The kinase domain included an activation loop motif in the Gl-Akt (Figs. 4, 5). Amino acids
involved in ATP binding in the kinase domain (designated with a “#” in Fig. 5) were conserved.
An initial 869-bp cDNA of Cm-S6K was obtained by RT-PCR using primer sets from a
multiple sequence alignment of several C. maenas ESTs. 3> RACE was used to obtain an
additional 49 bp of the ORF; attempts to obtain the rest of the ORF,5” UTR, and 3’ UTR by 3’
and 5° RACE were unsuccessful. The cDNA encoded the kinase domain and linker region. The
DNA and translated amino acid sequence of Cm-S6K are presented in Figure 6. It showed high
degrees of identity and similarity to the human ortholog at the protein level (Table 3). Alignment
of the two decapod S6K sequences with Dp-S6K and insect S6Ks showed high sequence
identity/similarity (Fig. 7). In the kinase domain, the threonine in the activation loop and amino
acids involved in ATP binding were conserved (Fig. 7). In the linker region, the 7 amino acid
sequence of the turn motif, including the serine phosphorylation site, was identical between the 5
species (Fig. 7). However, the 6-amino acid sequence of the Cm-S6K hydrophobic motif
diverged from that of the other 4 species; a threonine in the phosphorylation site was replaced by
a serine in the Cm-S6K (Fig. 7). The sequence C-terminal to the hydrophobic motif contained a
S-amino acid inhibitory sequence followed by a region that varied in amino acid sequence and
length (Fig. 7). The GI-S6K inhibitory sequence differed in two amino acids (ESPRK) from that

(RSPRR) in the D. pulex and insect sequences (Fig. 7).

3.3. Tissue expression of mTOR signaling genes
Endpoint RT-PCR was used to determine the expression of EF2, mTOR, Akt, and S6K in
tissues from G. lateralis and C. maenas (Fig. 8). EF2 was included as a constitutively expressed

gene to assess RNA isolation and cDNA synthesis. All four genes were expressed in all tissues,
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including eyestalk ganglia, thoracic ganglion, YO, hepatopancreas, heart, skeletal muscle from

the claw and thorax, midgut, hindgut, and testis.

34. Effects of molting on expression of mTOR signaling genes

G. lateralis were multiple leg autotomized and entered premolt a few weeks later. Molt
stage was monitored by measuring the R index. The ecdysteroid titers in the hemolymph were
low during early premolt (R index ~10), increased in mid-premolt (R index ~15), and reached a
peak in late premolt (R index ~22) (Fig.9A). Ecdysteroid titers were lowest at 2 days and 10 days
postmolt, indicating that the YOs had returned to the basal state.

There were significant effects of molting on GI-EF2, GI-mTOR, and Gl-Akt expression in
the G. lateralis YO. GI-EF2 mRNA level increased during premolt, with the mean at late
premolt (R ~22) about 13-fold higher than the mean at early premolt (R ~10) (Fig. 9B). There
was a significant decrease in G/-EF2 mRNA levels at 2 and 10 days postmolt to levels that were
not significantly different from the GI-EF2 level at early premolt (Fig. 9B). GI-mTOR expression
was elevated during premolt, with the means at early, mid (R~15), and late premolt not
significantly different from each other (Fig. 9C). GI-mTOR mRNA levels decreased during
postmolt to a level at 10 days postmolt that was 40-fold lower than that at mid premolt and 42-
fold lower than that at late premolt (Fig. 9C). GI-Akt mRNA levels increased during premolt,
with the means at mid and late premolt significantly higher than the mean at early premolt (Fig.
9E). There was a significant decrease at 2 days postmolt, with the means at 2 and 10 days
postmolt not significantly different from the mean at early premolt (Fig. 9E). There was a trend
of increased GI/-Rheb and GI- S6K mRNA levels at mid and late premolt and decreased mRNA

levels at 10 days postmolt, but the means were not significantly different (Fig. 9D, F).
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As adult C. maenas are refractory to MLA (Abuhagr et al. 2014), gene expression in the
YOs was quantified in C. maenas green morphs undergoing natural molts. The hemolymph
ecdysteroid titers showed the characteristic pattern over the molt cycle: low levels during
intermolt, increasing levels during premolt, and lowest levels during postmolt (Fig. 10A).
Expression of Cm-mTOR, Cm-Rheb, Cm-Akt, Cm-S6K, and Cm-EF2 in YOs from intermolt,
early premolt, and late premolt animals was quantified. Gene expression at the postmolt stage
was not quantified, as the RNA concentrations were too low for cDNA synthesis. Unlike G.

lateralis, there was no effect of molting on the expression of the five genes (Fig. 10B).

4. Discussion

The mTOR signaling pathway is found in all metazoans and controls cellular growth in
response to a variety of environmental cues (Laplante and Sabatini, 2012; Su and Jacinto, 2011;
Zoncu et al., 2011). mTORCI1 stimulates translation of mRNA via phosphorylation of S6K and
4E-BP1 (Laplante and Sabatini, 2012; Magnuson et al., 2012; Zoncu et al., 2011). Akt is a
central component in the mTOR pathway, as it mediates the transduction of extracellular signals
to the translational machinery (Roux and Topisirovic, 2012). As members of the AGC protein
kinase family, Akt and S6K share structural similarities and mechanisms of activation (Su and
Jacinto, 2011). Full activation requires phosphorylation at two sites: the activation loop in the
catalytic domain and the hydrophobic motif located C-terminal to the kinase domain (Bayascas,
2010; Magnuson et al., 2012). PDK1 phosphorylates a threonine in the activation loop, but the
protein kinases that phosphorylate the hydrophobic domain differ among the different AGC
kinase substrates. For example, mMTORC1 phosphorylates the hydrophobic motif in S6K, but not

in Akt (Bayascas, 2010). By contrast, mMTORC2 phosphorylates the hydrophobic motif in Akt,

14



but not S6K (Bayascas, 2010). mTORCI is regulated by Rheb, a GTP-binding protein. Akt and
Rheb are linked in the pathway by Rheb-GAP, which inactivates mTORC]1 by promoting the
hydrolysis of the GTP bound to Rheb to GDP. Akt phosphorylates and inactivates Rheb-GAP.
Thus, inactivation of Rheb-GAP by Akt leads to the activation of mMTORC1 by keeping Rheb in
the active state.

mTOR-dependent protein synthesis is involved in PTTH-stimulated ecdysteroidogenesis in
the insect PG (Mirth and Shingleton, 2012; Rewitz et al., 2013; Teleman, 2010). Rapamycin
inhibits protein synthesis in Drosophila S2 cells (Hall et al., 2007). In Bombyx mori, rapamycin
inhibits PTTH-dependent phosphorylation of S6K and 4E-BP1 and ecdysteroid synthesis and
secretion (Gu et al., 2012). In Manduca sexta, feeding rapamycin to larvae delays molting and
reduces the growth and ecdysteroid production by the PG (Kemirembe et al., 2012). In
crustaceans, rapamycin inhibited ecdysteroid secretion in YO from G. lateralis and C. maenas in
vitro (Fig. 1). These data indicate that activation of the molting gland requires mMTORCI1 activity
in both insects and crustaceans.

Crustacean tissues express mTOR signaling genes. cDNAs encoding mTOR, Akt, and S6K
were characterized from C. maenas (Table 3; Figs. 2,4, and 6) and G. lateralis (Table 3; MacLea
et al.,2012). In addition, cDNAs encoding Rheb were obtained from H. americanus, C. maenas,
and G. lateralis (MacLea et al., 2012). The deduced sequences show high sequence identity and
domain organization to orthologs from insects and other species (Table 3; Figs. 3,5, and 7;
MacLea et al., 2012). mTOR, Rheb, Akt, and S6K were expressed in every tissue, indicating that
this pathway has essential cellular functions (Fig. 8; MacLea et al., 2012).

The mTOR protein has five domains: a large N-terminal HEAT (Huntington, Elongation

Factor 3, a subunit of PP2A and TOR) repeat, FRB (FKBP12 rapamycin binding), FAT
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(FRAP, ATM, and TRRAP), kinase, and FATC (FAT C-terminal) domains (Magnuson et al.,
2012; Su and Jacinto, 2011; Zoncu et al., 2011). The partial cDNAs of mTOR from G. lateralis
and C. maenas encoded part of the HEAT repeat domain and the FAT, FRB, kinase, and FATC

domains (Fig. 2). HEAT repeat units are characteristic of the PIKK family; each unit consists of
two antiparallel a-helices and multiple units occur in a series (Perry and Kleckner, 2003). The

FAT domain has 28 a-helices arranged in a-helix HEAT-like repeats, forming a solenoid
structure that clamps around the kinase domain; it may function as a protein interaction platform
(Yang et al., 2013). The kinase domain has a two-lobed structure with catalytic loop and
activation loop motifs characteristic of the PIKK family (Fig. 3; Su and Jacinto, 2011; Yang et
al., 2013). Phosphorylation of a serine and a threonine, located near the 5’ end of the kinase
domain, is associated with mTOR activation (Ekim et al., 2011); this site is highly conserved
between GI-mTOR, Dp-mTOR, and insect mTOR (Fig. 3; S710 and T715 in the GI-mTOR
sequence). The Cm-mTOR has a 32-amino acid sequence that includes the phosphorylation site,
which diverges from the other arthropod mTOR sequences; the serine and threonine in the
phosphorylation site are replaced with valine and aspartate, respectively (Fig. 3, amino acids
#728 and #734). However, the 32-amino acid sequence has a potential alternative
phosphorylation site that is immediately upstream of the conserved site. The sequence
PRSGHRST (Fig. 3, amino acids #704-711) shares features characteristic of phosphorylation
sites in various proteins: a serine and a threonine with similar spacing (5-6 amino acids apart),
arginines within 2 amino acids of the S706 and T711, and a nearby proline (Rust and Thmpson,
2011; Ubersax and Ferrell, 2007). Rapamycin, when complexed with FKBP12 and other FK506-
binding proteins, binds to the FRB domain to inhibit mMTORCI1 activity; the FRB protrudes from

the kinase domain and binding of FKBP12 to the FRB restricts access of substrates to the active
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site (Camargo et al., 2012; Marz et al., 2013; Yang et al., 2013). The FRB has a conserved
phosphatidic acid binding site and 12 highly conserved amino acids located in and around the
rapamycin binding site; 11 of the 12 amino acids are identical at their respective positions in the
arthropod sequences (Fig. 3; Foster, 2013; Yang et al., 2013). The FATC domain has an a-helix
and a disulfide bonded loop involving two cysteines near the C-terminus (Fig. 3); it is
structurally integral to the kinase domain and may stabilize the activation loop (Yang et al.,
2013). Reduction of the disulfide bridge increases the flexibility of the FATC region, which
destabilizes the protein and reduces mTOR protein level (Dames et al., 2005). Thus, the redox
potential may determine mTOR stability in the cell. There is a negative regulatory region located
between the kinase and FATC domains; it consists of helix ka9b at the end of the kinase domain,
followed by a nonstructured sequence that varies in amino acid sequence and length among
species (Fig. 3; Yang et al., 2013). It is thought that helix ka9b controls substrate recruitment to
the active site (Yang et al., 2013). Interestingly, the helix ka9b sequence of the GI-mTOR differs
from those in mTORs from C. maenas, D. pulex, and insects (Fig. 3); the functional significance
of this difference is unknown.

Akt is the central mediator of protein synthesis and cell survival in response to growth
factors (Fayard et al., 2010; Vasudevan and Garraway, 2011). The protein has four domains:
pleckstrin homology, a-helical linker, kinase, and regulatory C-terminal (RC) domains (Fig. 5;
Hanada et al., 2004; Vasudevan and Garraway, 2011). The pleckstrin homology domain interacts
with the membrane via phosphatidylinositol (3, 4, 5) trisphosphate produced by PI3K. The
kinase domain has the activation loop that is characteristic of AGC kinase family members
(Hanada et al., 2004). PDK1 phosphorylation of threonine in the activation loop (T320 in GI-

Akt; the Cm-Akt cDNA sequence ended before the activation loop; see Fig. 5) and
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phosphorylation of a serine in the hydrophobic motif by mTORC2 or DNA-dependent protein
kinase is required for full Akt activity (Fayard et al., 2010; Hanada et al., 2004; Vasudevan and
Garraway, 2011). The partial Akt from G. lateralis had the pleckstrin homology, helix, and
kinase domains and part of the RC domain (Fig. 4). The Cm-Akt cDNA had the pleckstrin
homology and helix linker domains and a portion of the kinase domain (Fig. 4). We were unable
to extend either sequence to include the hydrophobic motif.

S6K is a major target of mMTORCI1 and is also a member of the AGC protein kinase family
(Fenton and Gout, 2011; Magnuson et al., 2012). S6K consists of acidic N-terminal, kinase,
linker, and basic C-terminal tail domains (Magnuson et al., 2012). The deduced amino acid
sequences of G. lateralis and C. maenas S6K shared high identity and similarity with each other
and with other arthropod sequences (Fig. 7). The activation loop in the kinase domain contained
a threonine residue (T145 in the Cm-S6K and T192 in the G1-S6K sequences) that is
phosphorylated by PDK1 (Fenton and Gout, 2011; Magnuson et al., 2012). The linker domain
has two conserved phosphorylation sites that stabilize the active conformation: a serine in the
turn motif (S287 in Cm-S6K and S333 in GI-S6K; Fig. 7) and a threonine in the hydrophobic
motif (T351 in GI-S6K; the Cm-S6K had a serine, S305, at this position; Fig. 7) (Magnuson et
al., 2012). The threonine in the hydrophobic motif is phosphorylated by mTORC1 (Fenton and
Gout, 2011; Magnuson et al., 2012). S6K is phosphorylated at multiple sites, but, as is the case
for Akt, full activation of S6K requires phosphorylation of the sites in the activation loop and
hydrophobic motif (Fenton and Gout, 2011; Magnuson et al., 2012). The turn motif may be
phosphorylated co-translationally by a constitutive protein kinase (Magnuson et al., 2012). The
C-terminal sequences of arthropod S6K vary in length and amino acid sequence, but they do

have an inhibitory RSPRR motif that occurs in mammalian S6K (Fig. 7; Magnuson et al., 2012).
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The RSPRR motif may function as a binding site for phosphatases (Magnuson et al., 2012). We
were unable to extend the Cm-S6K sequence at the 3’ end to include the RSPRR motif.

mTOR is regulated posttranslationally via PI3K/Akt signaling in insects (Gu et al., 2011a,b,
2012). mTOR can also be regulated transcriptionally. Reduced expression of Rheb, mTOR, and
S6K inhibits protein synthesis and growth of Drosophila S2 cells, while reduced 7SC2
expression increases protein synthesis and cell growth (Hall et al., 2007). Over-expression of
Rheb-GAP inhibits PG growth (Layalle et al., 2008). By contrast, over-expression of PI3K, an
upstream activator of Akt, stimulates PG growth and protein synthesis in larvae (Colombani et
al., 2005; Hall et al., 2007; Layalle et al., 2008; Mirth et al., 2005). Over-expression of Rheb
increases protein synthesis in Drosophila larvae (Hall et al., 2007). PTTH decreases expression
of 4E-BP1 and S6K (Gu et al., 2012). In G. lateralis, an increase in Rheb expression coincides
with a molt-associated increase in protein synthesis in skeletal muscle (Covi et al., 2010; MacLea
et al., 2012). Molting increased expression of GI-mTOR and GI-Akt (Fig. 9C, E). Levels of Gl-
Rheb and GI-S6K mRNAs were highest at mid and late premolt, but the means were not
significantly different from those at early premolt and at postmolt stages (Fig. 9D, F). Expression
of GI-EF2 was also increased during premolt (Fig. 9B). EF2 is a constitutively expressed protein
that is essential for translation, as it promotes GTP-dependent translocation of the ribosomal
during elongation of a polypeptide (Greganova et al., 2011). As it is not a known substrate of
mTORCI, the increase in GI-EF2 mRNA level suggests that molting also increases the
translational machinery of the YO. Thus, YO hypertrophy and increased ecdysteroid synthesis in
G. lateralis involves the up regulation of mTOR signaling pathway genes and EF2 to stimulate
protein synthesis. By contrast, there was no effect of molting on gene expression in C. maenas

(Fig. 10B), suggesting that mTOR signaling is not regulated by transcriptional mechanisms.
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Regardless of the differences in gene expression between the two species, mMTORCI activity is
required for sustained ecdysteroidogenesis, as rapamycin inhibited YO ecdysteroid secretion in

both species (Fig. 1).

5. Conclusions

cDNAs encoding mTOR, Akt, and S6K were cloned from the green crab, C. maenas. The
sequences were highly conserved with orthologs from G. lateralis, D. pulex, insects, and human
and were expressed in all tissues examined. Molting processes are triggered by activation of the
YO, which hypertrophies to increase ecdysteroid synthesis and secretion during the premolt
stage. The mTOR signaling pathway, which controls translation of mRNA into protein, appears
to be involved in increased ecdysteroidogensis in the activated YO, as the mRNA levels of G-
mTOR and GI-Akt were significantly higher during premolt and rapamycin inhibited ecdysteroid
secretion by YO from eyestalk-ablated G. lateralis and C. maenas in vitro. The increase in Gl-
EF?2 indicates there was also an up regulation of translational capacity in the G. lateralis YO.
However, molting had no effect on the expression of Cm-mTOR, Cm-Rheb, Cm-Akt, Cm-S6K,
and Cm-EF2, suggesting that transcriptional up regulation of the four mTOR signaling genes is
not necessary for YO activation in C. maenas. The relative contributions of transcriptional and
posttranscriptional regulation of mMTORCI activity can vary among different species. It is
unlikely that the differences are due to naturally molting animals (C. maenas) vs. MLA-induced
molting animals (G. lateralis), as molting in MLA G. lateralis resembles that of intact animals
(Covi et al., 2010; Skinner, 1985). MLA stimulates precocious molts, but it usually takes 3-4
weeks before G. lateralis enter premolt, during which animals regenerate lost appendages

(Skinner, 1985; Yu et al., 2002). The duration of the premolt period (3-4 weeks) is the same
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between intact and MLA animals and MLA-induced G. lateralis successfully complete ecdysis
at the same rate as intact animals (Covi et al., 2010; Skinner, 1985). Thus, MLA accelerates the
decision to molt, but does not shorten the length of the premolt period. Taken together, these data
indicate that transcriptional regulation of mTOR-dependent protein synthesis is not necessarily

required for increased YO ecdysteroidogenesis during premolt.
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Table 1. Oligonucleotide primers used in the cloning of mTOR signaling genes from C.

maenas (Cm) and G. lateralis (Gl). Abbreviations: Akt, protein kinase B; EF2, elongation

factor 2; F, forward; IF, inner forward; IR, inner reverse; mTOR, mechanistic target of

rapamycin; OF, outer forward and OR, outer reverse R, reverse; S6K, p70 S6 kinase.

Annealing

Primer Sequence (5°-3’) Use Temperature
Cm-mTOR OF1 AACGGTGGCATGAGAAGC Nested PCR 55°C
Cm-mTOR OR1 AGAGATTACACAGACGCTCC Nested PCR
Cm-mTOR IF2  ATGTGCGTGCTCAGATGG Nested PCR 56 °C
Cm-mTOR IR2  TCTGCACTACAAGGAGGAGG Nested PCR
Cm-mTOR F1 CTTGGCAGAGTTCATGGAGC PCR 57°C
Cm-mTOR R1 ACAGGTCATGCGATACGTGC PCR
Cm-Akt F1 GATGATGCTCAACCTTAACGTG PCR 53°C
Cm-Akt R1 CACGTTAAGGTTGAGCATC PCR
Cm-S6K F1 GAAGGCGAAAGAAGAGTTCG PCR 57°C
Cm-S6KR1 ACGTCCGTCCCTTGACTCTC PCR
Cm-mTOR OF1 ACGAGAGCTGCTACAAGG Nested PCR 54°C
Cm-mTOR OR1 GTCTCTCCCATTACTACCCTTG Nested PCR
Cm-mTOR IF2 GAACTTTGAGGCAATAC Nested PCR 50 °C
Cm-mTOR IR2  ATCCTGCCTCAAGTCCTC Nested PCR
Cm-mTOR 3’F1 AAAGCGTTCTGTGGTGGGTGAG 3’RACE 60 °C
Cm-mTOR 3’F2 TCCTGACCTGCTATTGACACTGCC 3’RACE 60 °C
Cm-Akt 3’F1 ACTCACCACTACTACTACACTCGG 3’RACE 60 °C
Cm-Akt 3°’F2 TGATGGAGTATGTCAATGGTGGAG 3’RACE 60 °C
Cm-S6K 3°F1 TCTTGGGTAGTTCTCCGTAGACAA 3’RACE 60 °C
Cm-S6K 3°F2 GCGTAAAGATGTGATTATTGAGCG 3’RACE 60 °C
Cm-mTOR OF1 AACGGTGGCATGAGAAGC Nested PCR 56 °C
GI-mTOR OR1  CGAGTTGGTAGACAGCGGAAT Nested PCR
Cm-mTORIF2  ATGTGCGTGCTCAGATGG Nested PCR 57°C
GI-mTORIR2  TGATGAGCAGCGTGTTGACC Nested PCR
Cm-mTOR OF1  AGAGATTACACAGACGCTCC Nested PCR 53°C
GI-mTOR OR1  AACCAAACAGTCAGCAGG Nested PCR
Cm-mTOR IF2  TCTGCACTACAAGGAGGAGG Nested PCR 54°C
GI-mTOR IR2 GAGATGGAGCGGATGAAC Nested PCR
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Table 2. Oligonucleotide primers used in the expression analysis of mTOR signaling genes
from G. lateralis (Gl) and C. maenas (Cm). Abbreviations: Akt, protein kinase B; EF2,

elongation factor 2; F, forward; mTOR, mechanistic target of rapamycin; R, reverse; Rheb, Ras

homolog expressed in brain; S6K, p70 S6 kinase.

Product
Primer Sequence (5°-3’) Size (bp)
GI-EF2 F1 TTCTATGCCTTTGGCCGTGTCTTCTC 227
GI-EF2 R1 ATGGTGCCCGTCTTAACCA
GI-mTOR F2 AGAAGATCCTGCTGAACATCGAG 159
GI-mTOR R2 AGGAGGGACTCTTGAACCACAG
GI-Rheb F1 TTTGTGGACAGCTATGATCCC 119
GIl-Rheb R1 AAGATGCTATACTCATCCTGACC
Gl-Akt F2 AACTCAAGTACTCCAGCGATGATG 156
Gl-Akt R1 GGTTGCTACTCTTTTCACGACAGA
GI-S6K F2 GGACATGTGAAGCTCACAGACTIT 239
GI-S6K R1 TTCCCCTTCAGGATCTTCTCTATG
Cm-EF2 F1 CCATCAAGAGCTCCGACAATGAGCG 278
Cm-EF2 R1 CATTTCGGCACGGTACTTCTGAGCG
Cm-mTOR F2 CATCCCTCAAACCTCATGCT 319
Cm-mTOR R2 CACCCACCACAGAACGCTTT
Cm-Rheb F2 ATGGGCAAAGTCACAGTTCC 281
Cm-Rheb R2 GTCAGGAAGATGGTGGCAAT
Cm-Akt F1 GTGAAGCAATGCCAGATCCT 259
Cm-Akt R2 CGGGTGTATCATCATCATCG
Cm-S6K F2 TCTCCGTCATCTGAGCCGCT 258
Cm-S6K R2 GTACATGGCACCCGAGATCC
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Table 3. cDNA clones encoding mTOR signaling genes from C. maenas (Cm) and mTOR
from G. lateralis (Gl). Abbreviations: Akt, protein kinase B; Cm, C. maenas; mTOR,

mechanistic target of rapamycin; S6K, p70 S6 kinase.

Clone Accession  Completeness Size Identity
number (bp) (Similarity) to
human

ortholog
Cm-mTOR  JQ864248 Partial 4031 72% (81%)
Cm-Akt JQ864249 Partial 855 58% (73%)
Cm-S6K JQ864250 Partial 918 77% (88%)
GI-mTOR  HM989973 Partial 3705 69% (80%)
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Figure Legends

Fig. 1. Effects of mTOR complex 1 inhibitor rapamycin on YO ecdysteroidogenesis in vitro.
Paired YOs from eyestalk ablated G. lateralis (Gl) and C. maenas (Cm) were incubated with
rapamycin or 1% ethanol for 4.5 h and ecdysteroids secreted into the medium were quantified by
ELISA. The secretion with rapamycin was expressed as the % secretion of the paired control.
Data presented as mean + 1 SE. Gl P values and sample size (n) at each rapamycin
concentration: 0.008 uM, P =0.1523 (n =4); 0.04 uM, P =0.0239 (n = 6); 0.20 uM, P = 0.0030
(n=6);and 1 uM. P =0.0024 (n =5). Cm P values and sample size (n) at each rapamycin
concentration: 0.04 yM, P =0.2211 (n=6); 0.20 uM, P=0.0149 (n=6); and 1 uM. P =0.0018
(n = 8). Control ecdysteroid secretion of Gl YO was 10.58 £0.72 (n = 21) and of Cm YO was

9.17+£092 (n=20)in4.5h.

Fig. 2. Nucleotide and deduced amino acid sequences of cDNA encoding Cm-mTOR. The
cDNA encoded the 3’ end of the ORF and the complete 3’-UTR. Asterisk indicates stop codon.
The polyadenylation signal in the 3’-UTR is underlined. Font color indicates different domains,
from 5’ to 3’: red, HEAT repeats; orange, FAT and FATC; green, FRB; and blue, kinase. The
catalytic loop and activation loop sequences in the kinase domain are indicated by a double

underline and dashed underline, respectively.

Fig. 3. Multiple alignment of deduced amino acid sequences of mTOR proteins in three
crustacean species and two insect species. Abbreviations: Aa, Aedes aegypti (AAR97336);
Cm, C. maenas (JQ864248); Dm, Drosophila melanogaster (NP524891); Dp, Daphnia pulex

(EFX69318); and Gl, G. lateralis (HM989973). Amino acid residues that are identical or similar
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in all sequences are shaded in black; gray shading indicates identical or similar amino acids in
most of the sequences. Dashes indicate gaps introduced to optimize the alignment. The colored
solid lines above the sequences indicate the HEAT repeat (red), FAT and FATC (orange), FRB
(green), and kinase (blue) domains. In the kinase domain are the catalytic loop (CL) and
activation loop (AL). A negative regulatory region extends from helix ka9b (designated by the
dotted line under the sequence) at the end of the kinase domain through a variable unstructured
sequence to the FATC domain (Yang et al., 2013). The FRB domain has a phosphatidic acid
(PA) binding site; the “1” above the sequences indicates location of a serine essential for PA
binding (Foster, 2013). Asterisks (*) indicate phosphorylation sites; hashtags (#) indicate amino
acids involved in ATP binding; and “r” designates conserved amino acids located around the

rapamycin binding site in the FRB domain (Yang et al., 2013).

Fig. 4. Nucleotide and amino acid sequences of cDNA encoding Cm-Akt. The cDNA
encoded an incomplete ORF. Font color indicates different domains, from 5’ to 3’: red,

pleckstrin homology; blue, kinase.

Fig. 5. Multiple alignment of deduced amino acid sequences of Akt proteins in three
crustacean species and two insect species. Abbreviations: Aa, A. aegypti (AAP37655); Cm, C.
maenas (JQ864249); Dm, D. melanogaster (NP732114); Dp, D. pulex (EFX86288); and GlI, G.
lateralis (HM989974). Amino acid residues that are identical or similar in all sequences are
shaded in black; gray shading indicates identical or similar amino acids in most of the sequences.
Dashes indicate gaps introduced to optimize the alignment. The colored solid lines above the

sequences indicate the pleckstrin homology (red), kinase (blue), and regulatory C-terminal
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(green) domains. The kinase domain has the activation loop (AL) and the regulatory C-terminal
has the hydrophobic motif (HM). Asterisks (*) indicate phosphorylation sites; hashtags (#)

indicate amino acids in the kinase domain involved in ATP binding.

Fig. 6. Nucleotide and amino acid sequences of cDNA encoding Cm-S6K. Partial sequence
within the catalytic domain was obtained for C. maenas. Blue font color indicates the kinase
domain, with the activation loop indicated by the dashed underline. The hydrophobic motif is
indicated by the dotted underline; the serine that is phosphorylated is italicized. The putative

hydrophobic motif at the end of the sequence is underlined.

Fig. 7. Multiple alignment of deduced amino acid sequences of S6K proteins in three
crustacean species and two insect species. Abbreviations: Aa, A. aegypti (XP001650653); Cm,
C. maenas (JQ864250); Dm, D. melanogaster (AAC47429); Dp,. D. pulex (EFX86042); and Gl,
G. lateralis (HM989975). Amino acid residues that are identical or similar in all sequences are
shaded in black; gray shading indicates identical or similar amino acids in most of the sequences.
Dashes indicate gaps introduced to optimize the alignment. The blue solid lines above the
sequences indicate the kinase (blue) domain, which has the activation loop (AL). The linker
region has the turn motif (TM) and hydrophobic motif (HM) (Magnuson et al., 2012). An
inhibitory RSPRR motif is located C-terminal to the HM. Asterisks (*) indicate phosphorylation

sites; hashtags (#) indicate amino acids involved in ATP binding.

Fig. 8. Expression of EF2 and mTOR signaling genes in G. lateralis (A) and C. maenas (B)

tissues using endpoint RT-PCR. Elongation factor 2 (EF2) is a constitutively expressed gene
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that served as a control for RNA isolation and cDNA synthesis. PCR products after 30 cycles
(EF2) or 35 cycles (mTOR, Akt, and S6K) were resolved by agarose gel electrophoresis.
Inverted images of ethidium bromide-stained gels are shown. Sizes of expected PCR products
are indicated at left. All four genes were expressed in all tissues. Abbreviations, from left to
right: EG, eyestalk ganglia; TG, thoracic ganglia; YO, Y-organ; HP, hepatopancreas; H, heart;

CM, claw muscle; TM, thoracic muscle; MG, midgut; HG, hindgut; and T, testis.

Fig. 9. Effects of molt induction by MLLA on hemolyph ecdysteroid titers and YO
expression of GI-EF2 and mTOR signaling genes in G. lateralis. (A) Hemolymph ecdysteroid
levels were quantified by ELISA. GI-EF2 (B), GI-mTOR (C), Gl-Rheb (D), GI-Akt (E), and GI-
S6K (F) mRNA levels at early premolt (10-R), mid premolt (15-R), late premolt (22-R), 2 days
postmolt, and 10 days postmolt were quantified by qPCR. Data are presented as mean + 1 S.E. (n
= 6 for 10-R, 13 for 15-R, 6 for 22-R, 9 for 2 days postmolt, and 4 for 10 days postmolt). Means
that were significantly different from each other have the same letter (a, b, and c¢). There were no

significant differences in the means for GI-Rheb and GI-S6K.

Fig. 10. Effects of molting on hemolymph ecdysteroid titers and YO expression of Cm-EF?2
and mTOR signaling genes in C. maenas. Data are presented as mean + 1 S.E. (intermolt, n =
6; early premolt, n = 12; late premolt, n = 6; and postmolt, n = 8). (A) Hemolymph ecdysteroid
levels were quantified by ELISA. Means that were significantly different from each other have
the same letter (a, b, and ¢). (B) Cm-mTOR, Cm-Rheb, Cm-Akt, Cm-S6K, and Cm-EF2 mRNA

levels at intermolt, early premolt, and late premolt stages were quantified by qPCR. Postmolt
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YOs were not measured, as the RNA concentrations were too low for cDNA synthesis. There

were no significant differences in the means for all five genes at all the molt stages.
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Figure 2

gacataccagagattacacagacgctcctcaacttggcagagttcatggagcattgtgac
D I P E I T Q T L L N L A E F M E H C D
aagggtccgttgcccttggagctgcagectactcggggaaaaggeccatggagtgecgggceca
K 6 P L P L EL Q L L G E K AMTETCR A
tatgccaaggctctgcactacaaggaggaggagttccacaaggggcctacctctgaggte
Yy A K A L HY K EEEVFHIKGU®P T S E V
ttggagcacctcatctccatcaacaacaaactgggacagaaggaggcagctgectggtttg
L E H L I S I N N KL G Q K E A A A G L
ttggaatatgcacgcaagaacaaccgtacagacatgaaggtccaggaacggtggcatgag
L E ¥ A R K N N R T DMK V Q E R W H E
aagctgcacgactgggatcaggcactccaagcttactctaccaagctggagactcaacct
K L H D WD O AL O AY S T KL ET Q P
gatgaccttgccctcgtactgggtcaaatgaggtgtctagaggectctgggagaatggggt
D DL AL VL GOMM®RTGCULEA ATLTGEW G
gagttatacagcgtggcttgtgaccgctggatgggcacaatggctgaggatgtgegtget
E L ¥ s v A C DR WMGTMA AED V R A
cagatggctcgcgtggecctcagcatctgectgggecatgggggagtggagtatgatggag
O M ARV A S A S AW AMGEWSMME
gagtacagtcgatgcatcccaagagacaccaatgagggggctttctaccgtgetgtgcete
E ¥ s R C I P R D TNE G A F Y R A V L
tctgtacataaggatcaacatcacatggcccagcagtacatcgacacagcaagagattta
S V H K D Q H H M A Q Q Y I DT AR D L
ctagacacggagctcacagctatggttggggagagctaccagcgtgcctacaactccatg
L D T E L T A MV G E S ¥ 0 R A Y N S M
gtggcggtgcagatgttggctgagctggaggaggtgattcagtacaagctggtgeccagag
V AV O M L A EVLEE V I Q Y K L V P E
agaaggcgacccatcactcatatctggtgggagaggctgcaggggtgccagecgagtggtg
R R R P I T H I W W EURUL QO G C QO R V V
gaagactggcagaagatcctacaggtgcgctccctggtgectgtccecctcaggaagacatg
E D W Q K I L Q vV R S L V L S P Q E D M
cggccttggctcaagtttgecctecgetgtgtecgcaagtectggtegectggecctgteccac
R P W L K F A S L C R K S G R L A L S H
aagaccctggtgcggctactgggatgcgacccttectctcageccccacccageccactecca
K T L. VvV R L L G ¢C D P S L S P T Q P L P
gtcagtcacccccacgtcacttaccagtactgcaagcatatctacacctacccagacaga
V S H P HV T Y Q0 ¥ C K HI Y T Y P D R
cggcaggaggcctatggtcggctgcagaagttccteccagttecttggcaccggcagtggtg
R 0 E A ¥ G R L Q K F L 0 F L A P A V V
gtggtgggcggagggaaccaaaacggggacaacaagctgcgcaaactggtgtcececgtgtg
V VvV G G G N O NG DN KULI RI KIULV S R V
tacctcaagctgggtgaatggtacgagcagctacatggattgaacgaggagaacattgcecc
Yy L K L G E W Y E Q0 L H G L N E E NI A
aatatcctcacctactacacccacgccaaggatacagacgagagctgctacaaggcttgg
N I L T ¥ ¥ T H A K D T D E S C Y K A W
cacgcatacgcttatatgaactttgaggcaatactcttctataagaagggcttcatccgt
H A Y A ¥ M NF E A I L F Y K K G F I R
tcaatctccctgagtgacgggtacagecctgcaggacacccttecgecttectcacecgtetgg
s I s L s D G Y s L 0 D T L R L L T V W
ttcgaacacggccatcagtctggagtgtacgaggcgctggtggacggactcagaccatca
F E H G H Q9 s G v ¥ E A L V D G L R P S
gatatcgacacttggcttcaggtcattcctcagctcatcgecgegecattgacaccecctcge
D I DT WUL O VI P 0L I A R I DTP R
tccctecgtgtccaagectcatccaccagectgectcatggacattgggaaacaccacccacag
S L v s K L I H QL L M D I G K HUH P Q
gcactcatctaccctctcaccgtggcagccaagtcctecggtgeccggegegetecccaggea
A L I Y P L T V A A K S s V P A R S Q A
gccgagaagatcctgaagaacatgagggagcactcggccaacctcecgtccagcaggccatg
A E K I L K N M R E H S A N L V Q0 O A M
atggtctccgaggaactgatccgagtggctattctgtggcacgagacttggcatgagggg
M v s E E L I R V A I L W HE T W H E G
ttggaggaggccagtcgtttatactttggggaacgtaatgagtcaggcatgttccgecacc
L E E A S R L Y F G E R NUE S G M VF R T
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cttgacccactacacgctatgatggctcggggaccgcagaccctcaaagaaatgtceccectte
L D P L HA MMMARGU POTULI KEMMS F
aaccaggcttacgggcgtgacctgaacgaggcgcaggagtggtgccgccgctaccaacgt
N O A Y GR DU LNUEA AUOQEWTCIRI R Y O0R
tcaggtaatgtacgggagctgaaccaagcctgggatctctactaccacgtgtteccgecge
S G N V R EL NOA AWUDUL Y Y HV F R R
atctccagaacactaccgcagctcacctcecctcgaactgcagagtgtgtecccecgegecte
I S R T L P Q L T S L E L Q S VvV S P R L
ctcaaatgcccgagatctggacatcgcagtaccgggttcctatgctecccggtatceccagt
L K ¢ P R S G H R S TG F L C S R Y P S
tatttgtattcatcaggtgcagtcctcgttacaggtcttgacttcaaacagcgacctagg
Yy L ¥ §S S G A VL VvV T GG L D F K QO R P R
aaactctgcatcaagggtagtaatgggagagactttgtgtttctgctcaagggccacgag
K L C I K G S N G R D F VvV F L L K G H E
gacttgaggcaggatgaacgggtgatgcagctcttcgggttagtcaatactctgctcatt
D L R Q D ER VM OULVF G UL V NTULUL I
agtaaccctgacaccttcagacgtaatcttaccattcagaggttcgeccgtcatecececgetg
S N P DTF R RNILTTI QI RF A V I P L
tccactaactcgggtctcattgggtggatgcctcactgcgacactctacacgcactcatce
s T N S G L I G WMUPHCDTULUHA AIULTI
agagactggcgtgagaagaagaaaatcctcctcaacatcgagcacaggattatgttgagg
R D W IR E K K K I L L NI E HRIMMTULR
atggctcaggatttggaccatctaaccctcatgcagaaggtggaggtgtttgagcacgcec
M A Q@ DL D HUL TU LM GO I KV E V F E H A
ctggagcacacacaaggggatgacttagctcggttgctgtggtttaagagtccttecgtct
L E H T Q G D DL A RULULWU F K S P S S
gaggtgtggtttgatcgccggacgaattactccecgttcecctggetgtcatgteccatggta
E vV w F DR RTN Y S R S L A VM S MV
ggctacgtactgggactcggtgaccggcatccctcaaacctcatgctggatcaactgtct
G ¥ v L 6 L G D R H P S N L M L D O L S
gggaagatcatacacattgacttcggtgactgcttcgaagtggccatgatgcgtgaaaag
G K I I H I p_F. G D.GC_F _E _V A M M_R_E K
ttcccggagaagattccattccggectgacgegtatgttgatccacgecatggaggtcacce
F_P E_K_I1I P F R _L.T R M L I H A M E V T
gggattgacggcacgtatcgcatgacctgtgagagtgtcatggcactgatccgecgtaac
G I D G T ¥ R M T C E S V M A L I R R N
aaggactccctcatggccatgctggaagccttecgtgcatgacccactgectcaactggege
K p s LM A ML E A F V HD P L L N W R
ctcatggacaacacgcagccaaagggaaagcgttctgtggtgggtgagggcgaggcagga
L M D N T OQ P K G K R S V V G E G E A G
ccttcagctccagcctccacttctacaatcgectectgaccectgetattgacactgececg
P s A P A S T S T TI A P D P A I DT A P
gccatcacgccagcctecggtagggccacagagccagtcacgggaggacggtggggtgteg
A I T P A S V G P Q0 S 0 S R E D G G V s
gaagccctaaacaagaaagcagtcgccatcgtccaccgecgtcagggacaaactcacagge
E A L N K K A VvV A I V HR YV R DI KULT G
cgggacttctgcactgaggaacctcttgatgtgcaccgccaagtagagcttctcatcgceca
R D F C T E E P L D V HR Q V E L L I A
caggcaacatcacatgagaacctgtgtcagtgttacattggttggtgccccttectggtaa
Q A T S H E N L C Q C ¥ I G W C P F W *
caaccatacccaaacacacccacattcaccacactgcagggtaaagtgtggccaggactt
gtgaagctgaggtgccaagtttactcgtgtcttecgtgttgecgacagggttgttattettg
ttgttgttttcaccatgtaggaattccggtgtaatggtggtaaagagagaagcttgggca
ttgtttggtatcgatggagggaaggaggagaaggagaagggggtgttacgagagaagctt
aggcattgttttgtatcgatggaggagaaggagggaaggataaacatgaaggagcaggac
atcggtaatgagagaatcaccccatccccccacacatacatacaccataacaatgactac
ttttcaacatcgccattagataaatcaaacgaccagtgagtgaggcaggacaaggcaaaa
attcaaccaccatcacctcctgcagaatatctcgtaagtaatctgtctgtgagtaatgtt
gtgggaacttgtacattgttttataaagttacnattangcagaagaggaagaggagagga
tggtgatcatttcggtgttttagaaaggagggagtgtgtgaggtcaagtgcaactgatag
tttagtttanatttgggttattctgtanattaattaataaaaatanagttgagtgattgt
aaaaaaaaaaa
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Figure 3
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Figure 4
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Figure 5

Pleckstrin Homology
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Figure 6
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Figure 7
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Figure 8
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Figure 9

A. Hemolymph ecdysteroid

C. GI-mTOR
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Figure 10

A. Hemolymph ecdysteroid

Ecdysteroid level (pg/ul)

B. Gene expression

Log copy number/ug RNA
N

350

300 a,b,c

——

250
200
150
100 b

|
=

0

C

Intermolt Early premolt Late premolt Postmolt

Molt Stage

Ointermolt  [@Early premolt

EF2 mTOR Rheb Akt

Gene

49

[ Late premolt

NNNNNNNK-




	University of New Hampshire
	University of New Hampshire Scholars' Repository
	2-1-2014

	Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis
	Ali M. Abuhagr
	Kyle S. MacLea
	Ernest S. Chang
	Donald L. Mykles
	Recommended Citation


	Manuscript

