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Abstract   (100-150 words, max 250) 40 

While philosophers in ancient times had many ideas for the cause of contagion, the 41 

modern study of infective agents began with Fracastoro’s 1546 proposal that invisible 42 

“spores” spread infectious disease.  However, firm categorization of the pathogens of the 43 

natural world would need to await a mature germ theory that would not arise for three 44 

hundred years.  In the 19th century, the earliest pathogens described were bacteria and 45 

other cellular microbes.  By the close of that century, the work of Ivanovsky and 46 

Beijerinck introduced the concept of a virus, an infective particle smaller than any known 47 

cell.  Extending into the early-mid 20th century there was an explosive growth in 48 

pathogenic microbiology, with a cellular or viral cause identified for nearly every 49 

transmissible disease.  A few occult pathogens remained to be discovered, including the 50 

infectious proteins (prions) proposed by Prusiner in 1982.  This review discusses the 51 

prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-52 

based prions.  I discuss the essential biochemical properties of these agents and the 53 

application of this knowledge to diseases of protein misfolding and aggregation, as well 54 

as the utility of yeast as a model organism to study prion and amyloid proteins that affect 55 

human and animal health.  Further, I summarize the ideas emerging out of these studies 56 

that the prion concept may go beyond proteinaceous infectious particles and that prions 57 

may be a subset of proteins having general nucleating or seeding functions involved in 58 

non-infectious as well as infectious pathogenic protein aggregation. 59 

Key words: prion, amyloid, PrP, human, yeast, Sup35, [PSI+], Ure2, [URE3], nucleation, 60 

propagation, maintenance, composition, amino acids, bioinformatics, prionoid, quasi-61 

prion 62 



1. Introduction 63 

As long as there have been humans, curing and preventing illness in humankind has been 64 

a goal that crosses all cultural and geographic boundaries.  Key to any real understanding 65 

of how to heal the sick was careful study of illness, identification of true causes of 66 

diverse types of sickness, and experiments to assess methods of cure and prevention.  67 

This article explores the historical development of infectious disease etiology (section 2) 68 

culminating in the proposal of a purely protein-based infectious agent, the prion.  69 

Scientific evidence for the existence of infectious prions in animals and in yeasts and 70 

other species is presented in section 3.  While a subset of proteins were identified with 71 

this unusual pathogenicity and transmissibility, the essential question of why only some 72 

proteins displayed this behavior was the next big question, addressed in section 4.  Some 73 

answers of what makes a protein a prion grew out of basic structural characterization of 74 

prions, examining their amyloid structure, and further experiments in animals and yeasts 75 

have begun to fine-tune that understanding.  Finally, this growing understanding of prions 76 

has had implications for non-infectious protein aggregation diseases in humans and 77 

animals and has led to an enlargement of the prion concept, discussed in section 5. 78 

2. Pathogens and the Emergence of the Prion Hypothesis 79 

2.1 The causative agents of infectious disease 80 

Diseases of antiquity such as leprosy and plague left indelible marks on cultures and 81 

civilizations but also had no known and agreed-upon cause.  Some blamed supernatural 82 

forces, others vapors and miasmas, and still others diet, living conditions, and 83 



atmospheric climate.  The ancient Greek physician Galen, working in the 2nd century CE 84 

from the medical principles of Hippocrates and others, was the primary proponent of the 85 

idea of diseases caused by miasma (“pollution”) or poor quality air.  In 1546, Girolamo 86 

Fracastoro, the eminent Venetian physician, published his work De Contagione et 87 

Contagiosis Morbis promulgating the idea of “spores,” directly transmitted (contagion) 88 

and also distantly transmitted, and fomites ‘not themselves corrupt’ indirectly spreading 89 

these seeds of disease.  This work was published during the time he was serving as the 90 

elected physician of the Council of Trent and proved to be an influential counterpoint to 91 

the prevailing notion of miasmas.  However, Galen’s miasma theory of disease would not 92 

be fully supplanted in the minds of physicians and scientists until the last years of the 19th 93 

century with the advent of the germ theory of disease (Table 1). 94 

 95 

2.2 Cellular causes of infectious diseases 96 

A medieval Dutch draper who wanted to see his threads better, Antonie van 97 

Leeuwenhoek, became the celebrated lens and microscope maker that introduced the 98 

world to the first observations of microscopic organisms.  Beginning in 1673, van 99 

Leeuwenhoek’s 190 letters to the Royal Society described observations of the first cells 100 

that he termed animalculum (‘very small animals’).  In the course of his work, van 101 

Leeuwenhoek noted not only the first unicellular organisms (protists) but also the first 102 

bacteria and subcellular structures.  The English scientist Robert Hooke coined the term 103 

cell in his 1665 book Micrographia to describe the individual compartments in cork and 104 

living plants that were analogous to the animalcules of van Leeuwenhoek. 105 



Although microscopic cells and microbes were known from the 17th century, for nearly 106 

two hundred years after van Leeuwenhoek and Hooke doctors and scientists saw no 107 

connection between the cellular microbes and disease, even in some cases postulating 108 

that organisms found in diseased tissues were the effect, rather than the cause, of injury.  109 

A ‘germ theory’ arose in the 19th century, connecting the presence of infectious 110 

organisms with disease. Agostino Bassi (1838, silkworm disease) gained rapid 111 

acceptance for his work but Ignaz Semmelweis (1847-1861, childbed or puerperal fever) 112 

met with substantial resistance for a germ theory of disease.   113 

The French chemist Louis Pasteur firmly established the germ theory of disease with his 114 

experiments demonstrating a microbial cause for fermentation, disproving spontaneous 115 

generation, developing ‘pasteurization,’ and linking particular silkworm diseases to 116 

microbes (1857-1870).  German scientist Ferdinand Cohn soon formally described and 117 

classified the Bacteria (1875).  Visiting Cohn at Breslau, physician Robert Koch 118 

demonstrated the use of pure cultures of anthrax bacilli to cause the illness in previously 119 

healthy animals (1876 with refinements continuing in later years).  While developing his 120 

famous postulates for connecting specific microorganisms with specific diseases, Koch in 121 

the 1880s made several other connections between disease-causing or pathogenic 122 

organisms and their specific organic diseases, notably cholera and tuberculosis.  Many 123 

other scientists and physicians contributed their observations to the growing body of 124 

evidence that supported the germ theory of disease. 125 

 126 



2.3 Non-cellular causes of disease in animals 127 

Building on the work of Pasteur, Koch, and others in the mid-late 19th century, the 128 

microbiological agents responsible for the great diseases of antiquity were, one after 129 

another, systematically identified.  As described, the first pathogenic agents identified 130 

were those in which the organisms in question could be readily observed under the 131 

microscope, such as Pasteur’s discovery of a microsporidian parasite as the cause of the 132 

pébrine disease of silkworms and Koch’s discovery of the bacterium Bacillus anthracis 133 

as the cause of anthrax.   134 

However, some diseases stymied the efforts of even the giants of the new fields of 135 

bacteriology and microbiology.  Although Pasteur successfully developed a rabies 136 

vaccine in 1886, he could not identify the causative agent, speculating that it was too 137 

small to be visible through the use of the microscope.  Another French microbiologist, 138 

Charles Chamberland, developed a special porcelain filter that excluded anything as large 139 

as the known bacteria (1884).  The Chamberland Filter proved important for extending 140 

the germ theory of disease beyond the cellular parasites, protists, and bacteria.  Russian 141 

scientist Dmitri Ivanovsky used a Chamberland Filter to remove bacteria and isolate the 142 

tobacco mosaic virus (1892) although it was not initially perceived to be anything other 143 

than a bacterial toxin.  The Dutch microbiologist Martinus Beijerinck in 1898 realized 144 

that Ivanovsky’s filtrate actually contained a new infectious agent that he referred to both 145 

as a contagium vivum fluidum  (‘living fluid germ’) and as a virus (‘slimy poison liquid’).  146 

In the same year, Friedrich Loeffler and Paul Frosch discovered the first animal virus 147 

(aphthovirus for foot-and-mouth disease) using a similar filter.  148 



The composition of viruses was not immediately understood.  American virologist 149 

Wendell Stanley, working with Ivanovsky’s filtered agent, now known as tobacco mosaic 150 

virus (TMV), successfully crystallized it, proving it was not a liquid as Beijerinck has 151 

proposed.  However, Stanley initially believed that TMV contained only protein and only 152 

later realized the concomitant presence of a nucleic acid (Stanley 1935; Cohen, SS 1942).  153 

The scientific community had not yet firmly settled on nucleic acid as the particle of 154 

heredity by this time, but evidence was accumulating. 155 

Since Friedrich Miescher’s 1869 discovery of the nuclein or nucleic acid found in nuclei 156 

of eukaryotic cells, scientists had been probing its structure.  Phoebus Levene’s 1919 157 

tetranucleotide hypothesis of nucleic acid structure (Levene 1919) held sway in the 158 

scientific community for decades, suggesting nucleic acid would be a poor informational 159 

molecule and that therefore protein would be a superior basis for the particles of heredity.  160 

When Frederick Griffith’s 1928 pneumococcal ‘transforming principle’ (molecule of 161 

heredity) (Griffith 1928) was proven to be nucleic acid (Avery et al. 1944), the 162 

composition and structure of viral genetic information also became a point of intense 163 

interest.  It was Alfred Hershey and Martha Chase, working with bacteriophage (bacterial 164 

virus) T2, who demonstrated that the nucleic acid portion of the virus was its hereditary 165 

material as well (Hershey & Chase 1952).   166 

By this time, a host of viruses had been identified as the causative agents of plant and 167 

animal diseases, complementing the many cellular pathogens identified in the 19th and 168 

early 20th centuries.  By the mid-20th century, the majority of the pathogenic agents 169 

causing known infectious diseases had been identified (Brachman 2003).  All of these 170 

agents were cellular or viral in nature. 171 



   172 

2.4 Unusual disease traits in animals 173 

Despite success with identifying many cellular and viral pathogens, the cause of a few 174 

rare diseases remained stubbornly difficult to pinpoint.   175 

One of these diseases was a condition known as scrapie observed in Merino sheep in 176 

Spain in 1732 (Table 2, top).  This disease, in which sheep obsessively scrape themselves 177 

against trees, fence posts, and other obstacles, also manifests a variety of symptoms 178 

affecting the nervous system:  altered gait, lip smacking, and convulsions.  Although 179 

clearly infectious within flocks, long and variable incubation periods made determination 180 

of etiology difficult.  No virus or cellular cause had been identified as a cause of scrapie, 181 

but it had been hypothesized that the disease was caused by a ‘slow virus,’ an 182 

exceptionally slow-to-propagate virus with a long incubation period (Cuille & Chelle 183 

1938a; Sigurðsson 1954). 184 

Human diseases of unknown etiology were found with similarities to scrapie (Table 2, 185 

bottom).  A human neurological disorder that would come to be known as Creutzfeldt-186 

Jakob disease (CJD) was identified in 1920 (Creutzfeldt 1920; Jakob 1921).  Another 187 

human disease found among the Fore tribe of Papua New Guinea, called kuru or the 188 

‘laughing disease,’ was brought to the attention of the scientific community in 1959 189 

(Gajdusek & Zigas 1959; Klatzo et al. 1959). Immediately, the similarities in these 190 

diseases were noted (Hadlow 1959; Klatzo et al. 1959) and it was postulated that all of 191 

them were infectious (like scrapie) and due to a slow virus.  Later experiments proved 192 

their transmissible nature and these diseases came to be known as transmissible 193 



spongiform encephalopathies (TSEs) on the basis of their essential neuroanatomic effect 194 

of producing tiny holes in the brain cortex of affected individuals (Fig. 1).   195 

 196 

2.5 Non-Mendelian inheritance of characters in the baker’s yeast 197 

In 1965, yeast geneticist Brian Cox traced and described an unusual trait he called [ψ+] 198 

(now written as [PSI+]) in the baker’s yeast Saccharomyces cerevisiae.  The [PSI+] trait 199 

was a suppressor of a super-suppressor of stop codons, a gene now known as SUP35. 200 

What made the trait more puzzling was that in Cox’s meticulous studies of inheritance, 201 

[PSI+] did not obey Mendelian principles of inheritance (Cox 1965; reviewed in Tuite et 202 

al. 2015).  Cox identified (correctly) what he referred to as a ‘self-replicating particle’ in 203 

the cytoplasm that was involved in the inheritance of the trait.  In yeast, there were three 204 

known principle cytoplasmic components that were inherited:  mitochondrial DNA, yeast 205 

killer dsRNA plasmids, and 2-micron circle plasmids.  The [PSI+] trait was none of these, 206 

although its identity would remain a mystery for almost 30 years. 207 

Another strangely inherited trait in yeast was identified by Francois Lacroute in 1971 208 

(Lacroute 1971).  In this case the gene involved was called URE2 and the trait [URE3].  209 

Lacroute hypothesized that the trait was mitochondrially inherited, although several 210 

features would have been very unusual for a mitochondrial trait.  Lacroute also proposed 211 

an alternative to that idea, proposing that [URE3] was a ‘non-mitochondrial cytoplasmic 212 

replicon’ of unknown nature (Lacroute 1971).  Akin to [PSI+], the biochemical and 213 

genetic basis of [URE3] was not understood until the prion hypothesis had been in 214 

formulated.  Connection of these traits to the prion hypothesis (discussed next) will be 215 



described in section 3.7 below. 216 

 217 

2.6 The prion hypothesis 218 

In the animal TSEs, the hypothesis of a slow virus etiology was widely accepted, but data 219 

began to accumulate that put that etiology into question.  CJD in humans was clearly 220 

hereditary.  The scrapie agent was not inactivated by formalin or by UV radiation, which 221 

both inactivated known viruses (Alper et al. 1967; Pattison & Jones 1967).  Decades of 222 

struggle to find any nucleic acid in the scrapie agent continued to prove fruitless and 223 

several investigators suspected a purely proteinaceous infective nature for scrapie 224 

(Griffith 1967; Hunter et al. 1969; Prusiner, Hadlow, Garfin, et al. 1978; Prusiner, 225 

Hadlow, Eklund, et al. 1978; Prusiner, Groth, Cochran, McKinley, et al. 1980; Prusiner, 226 

Groth, Cochran, Masiarz, et al. 1980; Hadlow et al. 1980; Prusiner et al. 1981; Cho 1980; 227 

Merz et al. 1983). 228 

Despite the lack of evidence for nucleic acid playing a role in transmission for the TSEs, 229 

the scientists working in the field still had a healthy regard for the Central Dogma and 230 

were not ready to assume a protein-only inheritance for these diseases.  However, one 231 

scientist, Stanley Prusiner, was willing to push ahead with a formal hypothesis of a fully 232 

protein infective agent, something he called the ‘proteinaceous infectious particle’ or 233 

‘prion’ (Prusiner 1982).  This bold hypothesis, for which Prusiner would be awarded the 234 

Nobel Prize in Physiology or Medicine in 1997, was not proven overnight, and many 235 

lines of evidence were required to convince a skeptical scientific community.  This 236 

hypothesis would later be more widely applied to the inheritance of the unusual non-237 

Mendelian characters in yeast and what was learned in the study of prion diseases would 238 



prove applicable to the more general problem of human protein-misfolding diseases that 239 

were of a non-infectious nature as well. 240 

 241 

3. Evidence Found:  Identification of Animal, Yeast, and 242 

Other Prions 243 

3.1 Scrapie in sheep and goats 244 

TSEs have been found in a number of mammals, including humans (Table 2) with the 245 

longest studied being scrapie.  Sheep and goats affected with the neurological pathology 246 

of scrapie had been the subject of scientific investigation for centuries, with the first 247 

verified report published in Germany in 1750 (Leopoldt 1750) although cases were cited 248 

in other reports going back to 1732 in Spain and in England.  Leopoldt’s initial report 249 

postulates an infectious cause for scrapie although other scientists would debate whether 250 

hereditary or other causes were more likely for many years to come (reviewed in 251 

Schneider et al. 2008).  Experiments to prove transmissibility were undertaken many 252 

times, but had various deficiencies leading to continued disagreement.  Finally, beginning 253 

in 1936, Cuille and Chelle proved transmissibility by inoculating healthy animals with 254 

material from the central nervous systems of sick animals (Cuille & Chelle 1936; Cuille 255 

& Chelle 1938a; Cuille & Chelle 1938b; Cuille & Chelle 1938c; Cuille & Chelle 1939).   256 

Small wild sheep called mouflons are also susceptible to scrapie (J. Wood et al. 1992), as 257 

are goats (Cuille & Chelle 1939; J. N. Wood et al. 1992).   258 



Cuille and Chelle proposed a viral etiology for scrapie in their 1930s research, although 259 

other causes were still postulated by others.  A particular designation as a ‘slow virus’ 260 

disease (Sigurðsson 1954) became the common way to group this disease with CJD and 261 

Kuru as they were discovered.  As mentioned above, a protein-only transmission was also 262 

proposed by Griffith but did not immediately attract the support of the scrapie research 263 

community (Griffith 1967).  One difficulty in conducting this research was the long 264 

incubation in sheep, which was overcome by conducting experiments in mice (Chandler 265 

1961).  Although mice remained a workhorse in studying scrapie for decades, a later 266 

hamster model was also developed which dropped the incubation period from years in 267 

sheep to 150 days in mice to 60 days in hamsters (Kimberlin & Walker 1977). 268 

The prion protein was identified and called PrP, with the gene being called Prnp in sheep 269 

and goats.  Two forms were described:  PrPSc (scrapie form) and PrPC (cellular normal 270 

form).  Many strains of scrapie were identified, mutations in the genes were identified, 271 

and it was found that some strains/mutations delayed onset of disease and others 272 

shortened the time to disease progression. 273 

Scrapie modes of transmission have been debated for many years.  Although 274 

experimental transmission can take several forms, the natural transmission of scrapie 275 

horizontally between individuals occurs through direct contact between animals and 276 

through contact with environmental contamination (reviewed in Schneider et al. 2008).  277 

Scrapie is predominantly acquired through the oral route and the placenta and amniotic 278 

fluid are the most common sources of oral infection, although fetal parts, feces, and milk 279 

have all shown infectivity (see Schneider et al. 2008). 280 

 281 



3.2 Bovine spongiform encephalopathy 282 

With the substantial neuropathological understanding of scrapie going back decades, 283 

veterinarians and scientists in the United Kingdom quickly noticed the arrival of a new, 284 

related disease.  Bovine spongiform encephalopathy (BSE) in cattle was identified in 285 

1987 (Wells et al. 1987).  BSE was noted for the classic neurological symptoms typical 286 

of spongiform encephalopathies:  ataxia (contributing to ‘downer cattle’ that cannot stand 287 

well), behavioral changes, anorexia, and death.  The practice of using rendered meat and 288 

bone meal (MBM) product (which contains nervous tissue) from sheep and cattle to 289 

increase protein in animal feed was immediately suspected as a potential epidemiological 290 

cause of the BSE outbreak (Taylor 1989; Matthews 1990) and UK and other government 291 

inquiries agreed with that stance, leading to changes in feeding practices across the globe.  292 

It is still debated whether BSE may have arisen from sporadic BSE entering the MBM 293 

food chain or whether it may have been scrapie in slaughtered sheep in the MBM (with a 294 

subsequent rare evasion of the species barrier) that led to the widespread BSE outbreak in 295 

the United Kingdom.  It was quickly recognized, however, that since a scrapie origin to 296 

the BSE outbreak was plausible, the possibility that BSE might also cross the species 297 

barrier into humans was equally plausible (Taylor 1989; Matthews 1990).  This 298 

prediction proved prescient, with the discovery of an unusual cluster of younger 299 

Creutzfeldt-Jakob patients (“variant” CJD) in the United Kingdom only a few years later 300 

in 1996 (see the next section for a fuller description).    301 

 302 



3.3 Kuru, CJD, other prion diseases in humans 303 

The first description of a human TSE disease (Table 2, bottom) was Creutzfeldt-Jakob 304 

disease in 1920-21 (Creutzfeldt 1920; Jakob 1921).  This rare, neurodegenerative disease 305 

(CJD) was characterized in people by loss of memory and judgment and increasing 306 

dementia, concomitant with loss of muscular coordination, significant personality 307 

changes, and impaired vision.  The proximate cause of these neurological deficits was 308 

death of neurons (as seen in MRI, Fig. 1A) and holes in brain tissue with concomitant 309 

buildup of plaques (as shown in histologic section, Fig. 1B).  CJD was found to occur in 310 

families but most cases were not associated with heredity and were termed sporadic CJD 311 

(sCJD).  sCJD is the most common human prion disease with ~85% of all cases, with the 312 

balance made up of familial CJD and other diseases (Prusiner 1989). 313 

Kuru (Gajdusek & Zigas 1959; Klatzo et al. 1959) bore many of the same neurological 314 

features as CJD and scrapie when it was identified among the Fore people of the Eastern 315 

Highlands of Papua New Guinea.  Originating from a Fore word meaning “to shake,” 316 

kuru was also known among the Fore as the ‘laughing sickness.’  The Fore engaged in a 317 

practice of mortuary or funerary cannibalism wherein the internal organs, including the 318 

brain, of the dead would be consumed by living relatives for spiritual purposes (Alpers 319 

1968).   When Australian colonial administrators and Christian missionaries suppressed 320 

the practice of cannibalism, the epidemic levels of kuru observed in the 1950s rapidly 321 

declined, although because of the long and variable incubation period seen in many TSEs 322 

the last sufferer of kuru is reported to have died in 2005 (Alpers 2008; Lindenbaum 2008; 323 

Anon 2009). 324 



Beginning in the 1990s, it was recognized that human disease caused by prions went 325 

beyond the sporadic or familial forms of CJD and the exotic and largely extinct kuru.  326 

Variant CJD (vCJD) was noted in the United Kingdom in 1996, with features consistent 327 

with a CJD diagnosis, but an earlier average age of onset (Will et al. 1996).  It was 328 

rapidly shown that the cause of the vCJD outbreak was consumption of food products 329 

from cattle infected with the BSE agent (Bruce et al. 1997).   330 

Iatrogenic CJD (iCJD) has been recognized since the 1980s.  In this form of CJD, 331 

improperly disinfected medical equipment, especially instruments used in brain surgeries, 332 

and also improperly prepared medicines, e.g., human growth hormone, have resulted in 333 

cases of CJD (Rappaport 1987; Marzewski et al. 1988; Mocsny 1991). 334 

Finally, a few other distinctive human diseases with a prion basis are recognized.  Fatal 335 

insomnia is a disease characterized by thalamic degeneration, progressive loss of 336 

neurological characteristics required for sleep, motor abnormalities, and hyperactivation 337 

of the autonomic nervous system (Lugaresi et al. 1986).  First identified was a familial 338 

form of this disorder referred to as fatal familial insomnia (FFI) (Lugaresi et al. 1986) 339 

although later work found evidence of sporadic cases (sFI) as well (Montagna et al. 2003; 340 

Barash 2009; Moody et al. 2011).   Gerstmann–Sträussler–Scheinker (GSS) syndrome 341 

(reviewed in Liberski 2012) is a very rare hereditary disease inherited in autosomal 342 

dominant fashion originally noted over 100 years ago in Austria (Dimitz 1913) and more 343 

fully described in the 1920s and 1930s (Gerstmann 1928; Gerstmann et al. 1936).  GSS 344 

features dysarthria, ataxia, and progressive dementia, and its causative mutations in the 345 

human PRNP gene were identified in 1989 (Hsiao et al. 1989).  The disease effects were 346 

experimentally recreated in mice shortly thereafter (Hsiao et al. 1990).  Other variations 347 



in PRNP associated with disease in human families have been reported in unrelated 348 

groups around the world (e.g., Hsiao et al. 1991; Dlouhy et al. 1992). 349 

 350 

3.4 Prion diseases in other mammals 351 

Other mammalian prion diseases have been described (Table 2, top) (reviewed in 352 

Greenlee & Greenlee 2015).  An infectious encephalopathy affecting ranched mink 353 

appeared as early as 1947 in the United States with a formal description in 1965 354 

(Hartsough & Burger 1965; Burger & Hartsough 1965; Marsh & Hanson 1969; Barlow 355 

1972).  A disease of abnormal behavior, severe anorexia, and rapid death was observed 356 

1967-1979 in cervids (elk and deer) in Colorado and Wyoming (Williams & Young 357 

1980).  Because of the substantial wasting caused by the anorexia in these animals, it was 358 

named Chronic Wasting Disease (CWD).  Despite its different name, it was immediately 359 

recognized, based on distinctive histopathology, as a spongiform encephalopathy in the 360 

same line as scrapie.  Feline spongiform encephalopathy (FSE) was identified in 361 

domestic cats (Wyatt et al. 1991; Pearson et al. 1991; Pearson et al. 1992) and later in 362 

many wild cats including lions, puma, ocelot, and cheetah (e.g., Eiden et al. 2010).  An 363 

abstract from the Prion 2012 meeting in Amsterdam reported the case of a 9 week old 364 

Rottweiler with canine spongiform encephalopathy (David & Tayebi 2012).  However, 365 

no further reports on canine spongiform encephalopathy have been published.  Even 366 

though the list of species with documented cases (Table 2) is small, it remains likely that 367 

yet-undiscovered spongiform encephalopathies exist in all mammals. 368 

 369 



3.5 Prions in other eukaryotes 370 

Prion-based TSEs have only been reported in mammals.  However, homologues of the 371 

PrP-encoding gene have been identified in birds, reptiles, amphibians, and fish (reviewed 372 

in Schätzl 2007 and Málaga-Trillo et al. 2011).  It is unknown whether the variant PrP 373 

sequences in these species (which have several divergent features depending on 374 

taxonomic grouping) can form bona fide prions, amyloids, or whether TSE-like disease is 375 

present in these animals.   376 

A protein with prion characteristics, when expressed in the yeast system, was also 377 

recently found in Arabidopsis, making it the first potential plant prion-like protein 378 

(Chakrabortee et al. 2016; discussed in Chernoff 2016). 379 

 380 

3.6 Evidence in support of the prion hypothesis in mammalian disease 381 

The proposal of a fully proteinaceous infectious agent and the coining of the term prion 382 

for that agent (Prusiner 1982) did not coincide with irrefutable proof of the prion 383 

hypothesis, and certainly did not immediately satisfy all criticisms with the hypothesis.  384 

Instead, the formal statement of the prion hypothesis as the causative agent of scrapie 385 

built upon the steady framework of evidence from earlier studies (Griffith 1967; Hunter 386 

et al. 1969; Prusiner, Hadlow, Garfin, et al. 1978; Prusiner, Hadlow, Eklund, et al. 1978; 387 

Prusiner, Groth, Cochran, McKinley, et al. 1980; Prusiner, Groth, Cochran, Masiarz, et 388 

al. 1980; Hadlow et al. 1980; Prusiner et al. 1981; Cho 1980; Merz et al. 1983) and 389 

provided a scaffold upon which to place further empirical data to support or refute it.  390 

Some of the major lines of support are provided here, although other texts provide a more 391 



complete picture of the supporting arguments (Hörnlimann & Riesner 2007; Colby & 392 

Prusiner 2011b; Zabel & Reid 2015) 393 

The laboratories of Charles Weissmann, Stanley Prusiner, and Leroy Hood, together 394 

published the identification of the gene responsible for scrapie, which encoded a protein 395 

in sheep for which several normal functions have since been determined, but no single 396 

well-determined role has been pinpointed.  The gene, Prnp in animals and PRNP in 397 

humans, encoded the PrP (prion) protein (Oesch et al. 1985).  The Prnp gene in mice was 398 

found to be co-located with a previously identified marker of mouse scrapie called Sinc 399 

(Dickinson et al. 1968), which provided evidence that a normal cellular (non-viral) gene 400 

locus was associated with the disease protein (Carlson et al. 1986; Hunter et al. 1987; 401 

Carlson et al. 1988).  Mice that were devoid of the PrP gene proved to be resistant to 402 

scrapie (Büeler et al. 1993).  Mice that were modified to express their Prnp gene with the 403 

mutation corresponding to human FFI were spontaneously stricken with prion disease 404 

(Jackson et al. 2009).  Prions can be made in bacteria and cause disease in mice 405 

(Legname et al. 2004).  Reconstitution of the prion using a cyclic amplification technique 406 

was possible with both partially purified substrates (Deleault et al. 2005) and with 407 

infectious particles created in vitro (Barria et al. 2009).  Further studies building on this 408 

theme show that it is possible to make recombinant infectious particles de novo in 409 

bacteria and without amplification in a clean laboratory that has never seen prions (Zhang 410 

et al. 2013).   411 

The prion hypothesis holds that a natively folded cellular protein can assume an 412 

abnormal, infectious and pathological shape that can be propagated between cells and 413 

between organisms without the need for any nucleic acid or viral structures.  Although 414 



some scientists remain doubtful (Manuelidis 2007; Bastian et al. 2007; Manuelidis et al. 415 

2009; Somerville & Gentles 2011; Manuelidis 2013), with the evidence above and other 416 

lines of evidence, most scientists are now convinced of the validity of the prion 417 

hypothesis in mammals (and, as seen below, in yeast). 418 

 419 

3.7 Reed Wickner’s keen observations in yeast 420 

The yeast traits (discussed in section 2.5 above) that resulted from Cox and Lacroute’s 421 

mysterious non-mitochondrial cytoplasmic particles in the baker’s yeast Saccharomyces 422 

cerevisiae (Cox 1965; Lacroute 1971) had long been on the mind of Reed Wickner, yeast 423 

geneticist and virologist.  He began studies in 1989 (Wickner 2012) to see if Prusiner’s 424 

proposed framework of protein-only inheritance (Prusiner 1982) could be applied to the 425 

[URE3] trait. 426 

In 1994, Reed Wickner published this work of careful and keen observation, showing that 427 

[URE3] trait resulted from a heritable conformation of the Ure2 protein, wherein it took 428 

on a prion form that was passed to daughter cells (Wickner 1994).  This elegant 429 

hypothesis accounted for all of the unusual features of the non-Mendelian cytoplasmic 430 

inheritance of [URE3] that had vexed scientists for 30 years and immediately also 431 

suggested a mechanism for the inheritance of [PSI+] as well (Wickner 1994; reviewed in 432 

Tuite et al. 2015).  [PSI+] proved to be a heritable prion state of the Sup35 protein in 433 

yeast (Doel et al. 1994; Ter-Avanesyan et al. 1994; Patino et al. 1996; Paushkin et al. 434 

1996). 435 



In establishing the prion hypothesis for yeast proteins, Wickner had laid out three genetic 436 

criteria for a prion that should readily distinguish them from agents containing nucleic 437 

acid, such as viruses (Wickner 1994; Wickner 2012):  (a) the infection should be curable 438 

but reversible, (b) the overproduction of the relevant cellular gene should increase the 439 

frequency of prion formation, and (c) the prion-positive phenotype, inactivating a cellular 440 

protein’s normal function, should match that of the loss-of-function mutant form of the 441 

same protein.  All three of these criteria are met in [URE3] and [PSI+], where, first, low 442 

concentrations of guanidine HCl can cure prions (Tuite et al. 1981; Lund & Cox 1981; 443 

Ferreira et al. 2001), but prions can then arise de novo in cured strains because the normal 444 

protein is still present.  (Viruses would need to have nucleic acid reintroduced from 445 

outside the cell.)  Secondly, overproduction of prion proteins increases the concentration 446 

of these proteins in the cell resulting in more prion formation (Chernoff et al. 1993; 447 

Wickner 1994; Derkatch et al. 1996), presumably due to an increase in the probability of 448 

the misfolding event that initiates prion or oligomer formation. Finally, the URE2 and 449 

SUP35 genes, respectively, are necessary for the formation of the [URE3] and [PSI+] 450 

prions, and the prion phenotype is the same as that of loss-of-function mutations for each 451 

gene (Aigle & Lacroute 1975; Cox et al. 1988; Wickner 1994). 452 

With these criteria satisfied, further characterization of the nature of these prion proteins 453 

could begin.  Through the work of Wickner’s laboratory and the labs of Michael Ter-454 

Avanesyan, Susan Lindquist, and Susan Liebman, and others, [URE3] and [PSI+] began 455 

to reveal their secrets.  Comparisons with the structures of animal prions would show 456 

many commonalities. 457 

 458 



3.8 Other fungal and invertebrate prions 459 

Although they are not further discussed in this review, prions in other fungi and 460 

invertebrates have also been identified, which differ in some way from the known yeast 461 

and animal prions.  For example, there is another fungal prion that differs somewhat in 462 

structure from the well-characterized yeast prions:  [Het-s] the prion form of the HET-s 463 

protein in Podospora anserina (Coustou et al. 1997; Baxa et al. 2007; Mathur et al. 2011; 464 

Wan & Stubbs 2014; Wickner et al. 2016).  Enzymatic and non-amyloid prions have also 465 

been identified, e.g., the yeast protease B (Jones 1991; Roberts & Wickner 2003) and the 466 

poly-A binding protein CPEB in Aplysia californica (Si, Lindquist, et al. 2003; Si, 467 

Giustetto, et al. 2003; Si et al. 2010; Stephan et al. 2015; Si & Kandel 2016).   468 

 469 

4. What Makes a Prion:  Features that Define Prions 470 

4.1 Defining features of prions 471 

In the course of finding evidence for the prion hypothesis in animals and fungi (see 472 

section 3 above), many other characteristics about their biochemical and biophysical 473 

nature were also noted.   474 

The primary physical characteristic of prions found in prion diseases is that these diseases 475 

exhibit amyloid deposits in nervous tissue (detailed below).  In the course of early studies 476 

of these diseases, the amyloid deposits were found to be stainable with agents such as 477 

Congo red.  After the identity of amyloid as protein rather than either carbohydrate or 478 



lipid, amyloid proteins were also found to be insoluble, protease and detergent resistant, 479 

beta-sheet rich, and prone to assemble into aggregate and fibril structures.  480 

In this section, I detail the work that uncovered the overall amyloid structures of the 481 

animal (section 4.2) and yeast (section 4.3) prions.  Knowledge of the essential structural 482 

and functional nature of prions (PrP and the yeast prions, chiefly) has logically led to the 483 

search for other prions in mammals and in yeasts (section 4.4), although the success rate 484 

for finding new prions has been much greater in yeast.  Other characteristics that define 485 

prions have also been noted over years of study (section 4.5) and these characteristics are 486 

leading to insight into prion, amyloid, and similar diseases and their pathophysiologies. 487 

 488 

4.2 Structural features of animal prions 489 

Animal prions are characterized by certain structural and biochemical features.  The well-490 

characterized mammalian PrP prion is known to form amyloid fibrils.  Amyloids 491 

(misidentified by Rudolf Vircow in 1854 as related to starch—amylum—because amyloid 492 

is stained by iodine like starch) were found in nervous tissue and associated with all of 493 

the prion diseases above as well as with other amyloidoses including Alzheimer’s disease 494 

(Sipe & Cohen 2000).  Amyloids were found to be different from starch under light 495 

microscopy on the basis of a green/yellow/orange birefringence when stained with Congo 496 

red dye and illuminated under polarized light (Howie 2015).  In 1959 the first electron 497 

micrographs of amyloids showed fibrils of 80-100 Å in width and of variable length (Sipe 498 

& Cohen 2000).   Amyloids were resistant to protease treatment (McKinley et al. 1983; 499 



Oesch et al. 1985; Manuelidis et al. 1985; Kitamoto et al. 1986) and detergent treatment 500 

(Glenner et al. 1969; Prusiner et al. 1987). 501 

Native PrP protein has been crystallized (Antonyuk et al. 2009) and solved by NMR 502 

(Riek et al. 1996; James et al. 1997; Riek et al. 1998; Zahn et al. 2000), but working with 503 

non-native and insoluble amyloid forms of proteins is problematic for traditional 504 

structural techniques.   The secondary conformations found in amyloids were first 505 

elucidated in the 1960s and showed a beta-sheet rich structure with the beta-sheet axes 506 

perpendicular to the long axis of each fibril (the so-called cross-beta structure) (Eanes & 507 

Glenner 1968).  Many subsequent studies have borne out the basic conclusion for 508 

different animal amyloid and prion proteins (Harper et al. 1997; Sunde et al. 1997; 509 

Lyubchenko et al. 2012; Tycko & Wickner 2013; Groveman et al. 2014) with the latter 510 

papers clarifying a parallel in-register intermolecular beta-sheet structure for the amyloid 511 

forms of these proteins.  512 

Amyloid proteins self-assemble into large, complex aggregates and fibrils on the basis of 513 

their unusual beta-sheet rich tertiary conformations (Fig. 2).  The process of fibril 514 

formation has a number of steps (Dobson 2003; Gregersen et al. 2005; Chiti & Dobson 515 

2006; Tanaka et al. 2006; Maji et al. 2009; Naeem & Fazili 2011; Eisenberg & Jucker 516 

2012; Knowles et al. 2014).  One model is presented here, although other models have 517 

been proposed (Colby & Prusiner 2011b).  In this model, conversion of native to amyloid 518 

form is a rare event (Fig. 2A) where the misfolded proteins can associate and cause 519 

conformational conversion of other natively-folded proteins (Fig. 2B).  Through this 520 

process, oligomers are formed (Fig. 2C) that eventually assemble into longer fibrils (Fig. 521 

2D).  Chaperone proteins and other proteins may be involved in cleaving long fibrils into 522 



smaller pieces (Fig. 2D to Fig. 2C).  It has been noted that the amyloid oligomer stage 523 

(Fig. 2C) is likely the most toxic to cells and tissues (reviewed in Kayed & Lasagna-524 

Reeves 2013 and Verma et al. 2015).  It is also worth noting that while amyloid 525 

formation is clearly a process that involves cytotoxicity and histotoxicity, production of 526 

rod-type and other non-amyloid aggregates is also possible with PrP and disease can still 527 

result (Wille et al. 2000). 528 

The Prnp/PRNP genes in animals and humans encode the PrP protein (Oesch et al. 1985; 529 

Basler et al. 1986) and the domain structure of the translated PrP protein (Fig. 3A) has 530 

been long studied and dissected for interesting and notable features (reviewed in Colby & 531 

Prusiner 2011).  The mammalian prion protein, PrP, as shown in Fig. 3A, contains five 532 

octarepeats (consensus sequence: PHGGGWGQ) (Brown et al. 1997).  The similar length 533 

of each repeat and number of repeats found in each protein is suggestive of some 534 

important function.  The importance of the repeats in PrP is underscored because PrP 535 

repeat expansion is associated with dominant inherited prion disease (Wadsworth et al. 536 

2003; Prusiner et al. 1998) and removal of the repeats in a mouse model of disease slows 537 

progression (Flechsig et al. 2000).  The profile of the repeat structures in PrP rose further 538 

when it was noted that there are compositional similarities between the repeats in PrP and 539 

in the yeast prion Sup35 (Fig. 3B, with similar prevalence to PrP of the amino acids 540 

proline, glycine, and glutamine in the repeats, for example, as detailed in the next 541 

section).  Indeed, in the context of yeast Sup35, its oligopeptide repeat domain (ORD) 542 

repeats can even be functionally replaced with PrP repeats and propagation is unimpaired 543 

(Parham et al. 2001).  And in a result analogous to the in vivo repeat expansion 544 

experiment, Sup35 aggregates with increasing numbers of PrP repeats have reduced times 545 



to fiber formation in vitro (Kalastavadi & True 2008).  Given the similarity between 546 

Sup35 and PrP repeats and the presence of repeat elements in other yeast prion 547 

domains—Rnq1 and New1 (Osherovich et al. 2004; Vitrenko et al. 2007)—primary 548 

sequence effects could be an important consideration for propagation of prions.  549 

However, as discovered in yeast prions (section 4.3 below), primary sequence elements 550 

like repeats may instead represent a convenient genetic method of rapidly expanding 551 

amino acid compositional biases that lead to prion formation. 552 

Other structural features have been noted for PrP as well (Fig. 3A).  It is doubly-553 

glycosylated near the cysteines involved in a disulfide bridge and has a GPI-anchor for 554 

cell membrane attachment.  Unlike the repeat structures noted above, these features have 555 

not been generally noted in the yeast prions and so may represent less commonly found 556 

domains or characteristics of prion proteins.  557 

 558 

4.3 Structural characterization of yeast prions 559 

Although the non-Mendelian cytoplasmic characters [URE3] and [PSI+] from yeast were 560 

shown to be prions in 1994, many aspects of their fundamental biology remained to be 561 

worked out.  Though Wickner had shown a protein-only inheritance in the yeast prions 562 

consistent with that previously proposed in mammalian PrP, whether the yeast prions 563 

would share the basic protein structure of an abnormal amyloid fold was not known.  The 564 

amyloid structure would first be noted for [PSI+] (King et al. 1997) and [URE3] (Taylor 565 

et al. 1999) and the predicted (Ross, Minton, et al. 2005) parallel in-register beta-sheet 566 

structure observed for PrP would be noted for [URE3] (Baxa et al. 2007), [PSI+] 567 



(Wickner et al. 2008; Shewmaker et al. 2009; Chen et al. 2009) and others (Chen et al. 568 

2009; Engel et al. 2011).  Yeast prions, found to generally form amyloid structures, were 569 

also protease and detergent resistant (Masison & Wickner 1995).   570 

The full history of yeast prion characterization is outside of the scope of this review (for a 571 

fuller discussion see Wickner 2012), but I will discuss several key structural and 572 

biochemical features of yeast prions beyond amyloid structure in this section. 573 

Shortly after Wickner’s 1994 paper, it was rapidly noted by Yury Chernoff in Susan 574 

Liebman’s lab in collaboration with Susan Lindquist’s lab, that the chaperone protein 575 

Hsp104 was involved in propagating the [PSI+] prion to daughter cells and cells that mate 576 

with [PSI+] cells (Chernoff et al. 1995; Lindquist et al. 1995) and this process would be 577 

mediated by Hsp104’s ability to cleave fibrils into smaller pieces (reviewed in Sweeny & 578 

Shorter 2016, see also the arrow from Fig. 2D to 2C).  579 

The function of yeast prions is a matter of some debate.  Unlike the TSEs which greatly 580 

hamper neurologic function and are uniformly fatal when symptoms begin, prions in 581 

yeast, due to short generation time and rapid growth, could be beneficial (True & 582 

Lindquist 2000; Suzuki & Tanaka 2013) or harmful (Nakayashiki et al. 2005; 583 

McGlinchey et al. 2011; Wickner et al. 2011).  In fact, there is no reason to expect that 584 

prions could not be both sometimes beneficial and sometimes harmful to the cell. 585 

The normal function of each host protein, Sup35 and Ure2, were exploited as assays for 586 

the detection of prion activity as well.  Detection of [URE3] relies on growth 587 

characteristic of the cells in the presence of a good nitrogen source.  [URE3] cells in this 588 

circumstance would be able to take up ureidosuccinate, an intermediate compound in 589 



uracil biosynthesis, while cells without the [URE3] prion cannot uptake ureidosuccinate 590 

(Lacroute 1971). This ability has been used to assay for the presence of the [URE3] prion 591 

but it can be a difficult assay to work with (Brachmann et al. 2006).  Assaying for [PSI+] 592 

is a much easier-to-interpret test.  Because Sup35 is an ‘omnipotent suppressor’ that can 593 

read-through stop codons (Ter-Avanesyan et al. 1994), in a cellular background 594 

containing an ade2-1 (or similar) mutant with a premature stop codon, suppression by the 595 

eRF3 function of Sup35 will lead to read-through in prion-containing cells and no read-596 

through in prion-negative cells (Fig. 4A).  Because the ade2 mutant is non-functional 597 

without read-through, oxidized P-ribosylaminoimidazole in the adenine biosynthetic 598 

pathway will accumulate and the cells will be red in color when plated on limiting 599 

adenine (Fig. 4B, right).  If the prion state removes active Sup35 from the cell by 600 

sequestering it in fibrils, read-through will occur and the cell will remain wild-type in 601 

color (Fig. 4B, left).   602 

Unusually, both [URE3] and [PSI+] were found in genetic screens where, uncommonly, 603 

a loss of function event for either protein was advantageous to the cell (Lacroute 1971; 604 

Cox 1965).  In most cases, detecting such a rare loss of function event would be 605 

extremely difficult.  However, structural studies of [URE3] and [PSI+] revealed an 606 

exploitable feature of these proteins that could help identify other, similar, prions.   607 

Sup35, the protein that forms the [PSI+] prion, features three domains (Fig. 3B): an N-608 

terminal (N) domain that is responsible for prion formation (also called a prion forming 609 

domain—PFD—or prion-like domain—PrLD), a charged middle domain (M) and a C-610 

terminal catalytic domain (C) responsible for the nonsense-suppression (eRF3) function 611 

of Sup35 (Ter-Avanesyan et al. 1993).  The N domain is rich in glutamine and asparagine 612 



(Q/N) amino acid residues.  Within the N domain, the nucleation domain (ND), the first 613 

39 amino acids, is more Q/N-rich than the portion of the N domain immediately after 614 

(DePace et al. 1998).  This section, the oligopeptide repeat domain (ORD), is also 615 

enriched in glutamine and asparagine, but is primarily noted for having a series of 5 ½ 616 

imperfect repeats (Fig. 3B) (Osherovich et al. 2004; Shkundina et al. 2006).  Ure2 also 617 

has a substantial Q/N-tract that is required for prion formation (Masison & Wickner 618 

1995).  What made these Q/N-rich domains of even greater interest was that these 619 

domains were modular (the compact Q/N-rich portion of the protein enabled the protein 620 

to assume an amyloid shape without contribution from the rest of the three-dimensional 621 

structure) and also transferrable (that amyloid/prion forming ability could be fused to 622 

many other proteins and cause them to also become amyloid/prion forming) (Li & 623 

Lindquist 2000; Baxa et al. 2002).  In both the Sup35 and Ure2 yeast prion proteins, the 624 

prion domain was also dispensable, and could be deleted without affecting catalytic 625 

functions (domains reviewed in Ross et al. 2005).   626 

The prion domains of the [URE3] and [PSI+] prions have a curious conformational 627 

property as well.  For almost all known proteins, three-dimensional structure and function 628 

are inextricably linked to the primary sequence, the ordered series of amino acids.  In the 629 

beta-sheet rich [URE3] and [PSI+] prions, it is possible to actually scramble the order of 630 

the amino acids in each PFD (using a random number generator) and retain both the 631 

amyloid structure and the prion function/effects in the cell (Ross, Edskes, et al. 2005; 632 

Ross et al. 2004; Ross, Minton, et al. 2005; Shewmaker et al. 2006).   633 

The ability to scramble amino acid order while retaining structure and function is an 634 

especially curious property given that, as detailed in section 4.2, Sup35 has been utilized 635 



as a model for examining the role of prion protein repeats in formation and propagation 636 

of aggregates (Parham et al. 2001; Dong et al. 2007; Tank et al. 2007; Kalastavadi & 637 

True 2008) and the mammalian PrP repeats have been repeatedly suggested to be 638 

important for disease (Wadsworth et al. 2003; Prusiner et al. 1998; Flechsig et al. 2000).   639 

In the case of [PSI+], the two portions of the PFD (the N-terminal ND region and the C-640 

terminal ORD region) have distinct amino acid compositions (Toombs et al. 2011).  The 641 

distinct compositions seem to relate to different functions of each subdomain:  the ND is 642 

required for nucleation or formation of the prion and the ORD is required to propagate or 643 

maintain the prion (DePace et al. 1998; Osherovich et al. 2004; Shkundina et al. 2006).  644 

The ability to scramble prion primary sequence and still generate functional prions led to 645 

important experiments, discussed below, useful in understanding yeast prions and in 646 

identifying new candidate prions. 647 

 648 

4.4 Making predictions:  Using biochemical knowledge of known prions to 649 

identify other prions and understand the prion structure-function 650 

relationship 651 

Given the longer history of study of the animal prions, it might be expected that after 652 

Prusiner’s prion hypothesis (Prusiner 1982) gained traction, other animal prions would be 653 

rapidly discovered.  That has not been the case, although some (bottom part of Table 2), 654 

including the alpha-synucleinopathies, appear to form bona fide infectious prions.  655 

Alpha-synuclein, which has no sequence similarity to PrP, has recently been reported 656 

using mouse animal and cell culture models of human multiple system atrophy (MSA) as 657 



a prion (Watts et al. 2013; Woerman et al. 2015; Prusiner et al. 2015; reviewed in 658 

Supattapone 2015).  Alpha-synucleinopathies aggregate alpha-synuclein with other 659 

proteins in pathological structures called Lewy bodies (Spillantini et al. 1997; Mezey et 660 

al. 1998) that are found in Parkinson’s disease, MSA, Lewy-body dementia, and some 661 

cases of Alzheimer’s disease (Yokota et al. 2002).  It is likely that other human prion or 662 

prion-like diseases may still await discovery.  True infectious prions in mammals have 663 

not been easily found, but as noted in section 5 below, the enlargement of the prion 664 

concept may instead show that other prion-like diseases have been hiding, perhaps, in 665 

plain sight. 666 

Despite difficulties in identifying new animal prions, a whole host of new candidate and 667 

verified yeast prions have been found since Wickner’s 1994 recognition of the prion 668 

hypothesis in Saccharomyces.  The ease of genetic screens and manipulation in yeast has 669 

made a host of different approaches possible.  These studies in turn have led to greater 670 

structural insights and each new observation has improved methods for identifying other 671 

prions, resulting in more discoveries.  The current list of likely yeast prions is ~18 in S. 672 

cerevisiae alone.  And because prions are a subset of aggregative proteins that form a 673 

major new class of human diseases and the proteins responsible for these human diseases 674 

share characteristics with yeast prions, identifying new prions in yeast (reviewed in 675 

MacLea & Ross 2011) is a topic of considerable interest with applications in human 676 

disease.   Several techniques have been used or proposed to identify new prions in yeast:  677 

(1) Prion-prion interactions; (2) Q/N-content or other composition; and (3) Other 678 

bioinformatics and proteomics methods.   679 

 680 



4.4.1 Prion-prion interactions help reveal new prions 681 
 682 

Prions interact frequently with other prions in yeast, and these interactions can have 683 

variable effects on prion formation and propagation (Gonzalez Nelson & Ross 2011).  684 

The [PIN+]/[RNQ+] prion has been most well-studied in its effects on other prions, 685 

particularly its ability to promote formation of the [PSI+] prion (Derkatch et al. 1997; 686 

Derkatch et al. 2000; Derkatch et al. 2001).  The identification of [PIN+]/[RNQ+], 687 

described below, allowed Irina Derkatch to perform a genetic screen to identify factors 688 

that could substitute for [PIN+] in allowing [PSI+] formation (Derkatch et al. 2001).  This 689 

method identified 11 candidate prions, of which one was shown to be prion-like in certain 690 

assays but has not been shown to form prions in its native state (New1), and two were 691 

identified as likely prions (Swi1 and Cyc8) (Derkatch et al. 2001; Du et al. 2008; Patel et 692 

al. 2009).  This genetic screen was unique to [PIN+] and given that little is known about 693 

the seeding or other mechanism responsible for the behavior of [PIN+] in the cell, this 694 

method has not been used in additional screens. 695 

 696 

4.4.2 Q/N or other amino acid composition as a tool for prion identification 697 
 698 

[PSI+], encoded by the SUP35 gene in yeast, has a prion-forming domain (PFD) that is 699 

both modular and transferable and has an extremely easy-to-use and robust assay for 700 

prion formation (Fig. 4 and see above), making it the ideal platform on which to test other 701 

candidate prions.  A classical experimental scheme using Sup35 in this manner involves 702 

replacing the N domain (PFD) of Sup35 (see Fig. 3B) with any candidate ORF and then 703 

assessing its function in the ade2-1 assay conventionally used to monitor [PSI+] function 704 



(Fig. 4).  Using this scheme, additional prions would soon be identified in yeast, 705 

including [NU+] encoded by New1 (Michelitsch & Weissman 2000) and [PIN+]/[RNQ+] 706 

encoded by Rnq1 (Santoso et al. 2000; Sondheimer & Lindquist 2000; Derkatch et al. 707 

2001).  The PFDs of New1 and Rnq1 were also Q/N-rich and also transferrable, 708 

conferring the ability to aggregate even on the green fluorescent protein (GFP) in the 709 

absence of Sup35 (Sondheimer & Lindquist 2000; Osherovich & Weissman 2001; 710 

Osherovich et al. 2004).  The New1 PFD has additional similarities to Sup35, including 711 

separation of the formation and propagation functions within the PFD (Osherovich et al. 712 

2004, discussed below for Sup35). 713 

When New1 and Rnq1 were identified and shown to have similar Q/N content and 714 

characteristics to Sup35 and Ure2, two large-scale bioinformatics screens looking for 715 

Q/N-rich predicted prions in the yeast proteome were undertaken, in Jonathan 716 

Weissman’s lab (Michelitsch & Weissman 2000) and by Paul Harrison and Mark 717 

Gerstein (2003).  Melissa Michelitsch found 107 candidate yeast prion proteins, including 718 

most (8/11) found by Irina Derkatch, all four of the previously identified prions (Ure2, 719 

Sup35, New1, Rnq1) and four that were later shown to be bona fide prions (Swi1, Cyc8, 720 

Mot3, Sfp1) (Michelitsch & Weissman 2000; Du et al. 2008; Patel et al. 2009; Alberti et 721 

al. 2009; Rogoza et al. 2010).  Paul Harrison found 172 prion candidates of which 722 

101/172 were found by Michelitsch and 9/11 of the proteins found by Irina Derkatch in 723 

her genetic screen (Harrison & Gerstein 2003).  All 8 of the proven/likely prions found 724 

above were also found in this study (Ure2, Sup35, Rnq1, Swi1, Cyc8, Mot3, Sfp1).  725 

Michelitsch and Harrison both identified a large number of candidate prion proteins, but 726 

determining which of these candidates to examine further was not obvious given the 727 



methods used.  A combination of the bioinformatics screen with an experimental 728 

approach was necessary. 729 

The method of fusing prospective candidate PFDs to Sup35 to test prionogenicity and 730 

three other aggregation assays were used in a major study out of Susan Lindquist’s lab to 731 

address this central criticism of previous bioinformatics screens.  In this study (Alberti et 732 

al. 2009), a computational tool called a hidden Markov model (HMM) was first used to 733 

identify the 100 most-similar proteins to Ure2, Sup35, Rnq1, and New1.  In a mammoth 734 

experiment, each of those 100 ORFs was then tested in four different tests of prion-like 735 

activity, and 23 proteins were found that could induce prion formation in the context of 736 

Sup35 (Alberti et al. 2009).   This method did not identify all potential prions since two 737 

known prion proteins, Cyc8 and Mot3, did not show prion activity in this assay.  Showing 738 

the utility of this combined bioinformatics/empirical approach, although 67/100 of the 739 

ORFs had been previously implicated by Michelitsch and Harrison (Michelitsch & 740 

Weissman 2000; Harrison & Gerstein 2003), most did not have prion activity in one, two, 741 

three, or four of the prion candidate testing methods (Alberti et al. 2009).   742 

The enormous combined screen of Simon Alberti and Randal Halfmann in Susan 743 

Lindquist’s lab (Alberti et al. 2009) provided a data set of immense value, adding in the 744 

experimental results for all four assays of aggregative/prion activity to the computational 745 

screens previously conducted.  Still, within the data set generated, there was found to be 746 

no substantial relationship between the degree of similarity of each of the 100 ORFs to 747 

previously known prion sequences with their results in the four assays (Alberti et al. 748 

2009; Toombs et al. 2010; Ross & Toombs 2010).  While at first blush this suggests that 749 

amino acid composition may not be the main determinant of prion propensity, the 750 



incompleteness of previous knowledge on what made a prion and the small sample size 751 

likely meant that the algorithm was not optimized for this situation.  What was needed 752 

was an experiment that would give scoring values for each amino acid so that an increase 753 

or decrease in propensity to form prions could be calculated, without relying on 754 

previously discovered yeast prions.       755 

In Eric Ross’s laboratory, Trey Toombs used a scrambled version of Sup35 and replaced 756 

two short segments with a random sequence to generate two libraries of mutants (Toombs 757 

et al. 2010; Ross & Toombs 2010). For each library, different regions of the Sup35 758 

protein nucleation domain were modified and he then compared (in each library) the 759 

amino acid composition for a naïve subset of clones (with no selection) with a subset that 760 

could form prions and generated a prion-propensity score for each amino acid.  This 761 

allowed regions and whole ORFs and proteomes to be scanned and scored to evaluate 762 

overall predicted prion propensities.  Using another algorithm, FoldIndex, that measures 763 

order/disorder propensity (Prilusky et al. 2005), Toombs found that known yeast PFDs 764 

had extended disordered regions with only modest prion propensities (Toombs et al. 765 

2010; Ross & Toombs 2010).  Although not a perfect predictor, this method did improve 766 

(Toombs et al. 2010) on the blind HMM method used in Lindquist’s lab and was 767 

reasonably effective at predicting prion propensities for the proteins examined in the four 768 

assays of aggregative/prion function (Alberti et al. 2009).  The resulting algorithm for 769 

screening yeast proteins for prion propensity was named PAPA (Toombs et al. 2010; 770 

Ross & Toombs 2010; Ross et al. 2013).   771 

The Toombs experiment measured, by its design, the combined processes of prion 772 

formation and prion propagation or maintenance.  A follow-up study showed that the two 773 



subdomains within the PFD of Sup35 had amino acid compositions that were not 774 

identical.  That is, the composition of the ND (nucleation domain responsible for 775 

formation) and the ORD (responsible for maintenance) of Sup35 were different, and 776 

therefore propagation of prions to daughter cells had slightly different compositional 777 

requirements than nucleation (Toombs et al. 2011).  Further work addressed this 778 

compositional bias and allowed calculation of separate prion maintenance propensities 779 

(MacLea et al. 2015), which may in the future allow these processes to be better dissected 780 

and lead to more accurate prediction algorithms for fully-functional prions. 781 

 782 

4.4.3 Other bioinformatics and proteomics methods for prion identification 783 
 784 

Numerous algorithms have been developed to predict protein aggregation propensity, 785 

chiefly using the mammalian amyloids as a basis.  Algorithms including TANGO 786 

(Fernandez-Escamilla et al. 2004), Zyggregator (Tartaglia et al. 2008), BETASCAN 787 

(Bryan et al. 2009), Waltz (Maurer-Stroh et al. 2010) and ZipperDB (Goldschmidt et al. 788 

2010) have been somewhat successful at finding known amyloids in mammalian 789 

databases, but have had less utility in identifying yeast prions.  Although there is 790 

probably more to the story, the amyloidogenesis in both systems is thought to be rather 791 

different.  Mammalian amyloids appear to require a shorter, highly amyloidogenic 792 

stretch, while yeast prions appear to require longer stretches of modest prion propensity 793 

with intrinsic disorder as estimated by FoldIndex (Esteras-Chopo et al. 2005; Prilusky et 794 

al. 2005; Ross & Toombs 2010).  Newer algorithms focused on yeast prions, such as 795 

ArchCandy, which incorporates three-dimensional modeling, may prove useful as well 796 



(Bondarev et al. 2013) but at the moment no verified new prions have been identified 797 

using these methods.   798 

Simulations of molecular dynamics for short peptide stretches found commonly in 799 

mammalian prions were used in the creation of some of the algorithms above and have 800 

shed some light on how the conformational conversion process from native to amyloid 801 

shape may occur at the molecular level.  Similar simulations for the Q/N-rich prions have 802 

also been undertaken (Halfmann et al. 2011; Berryman et al. 2011).  Proteomics methods 803 

including two-dimensional gels and mass spectrometry have been proposed and used in 804 

small studies, but the insolubility of the amyloidogenic proteins makes these kinds of 805 

techniques very tricky to interpret.  Other methods may prove useful in the future for 806 

identification of more amyloid and prion proteins.  Any such method developed will need 807 

to work around difficult intrinsic properties of these proteins, including insolubility, 808 

protease and detergent resistance, and more.  Methods that are not biased in the same 809 

ways as earlier studies (looking only at Q/N-rich proteins, relying on fusion to Sup35 for 810 

an assay, etc.) will likely yield the most fruit in years to come.  One such study that 811 

exploits the difficult intrinsic properties of prion and amyloid proteins was recently 812 

published (Kryndushkin et al. 2013) and may be a useful template for future proteomics 813 

experiments to identify new prions or similar proteins. 814 

 815 

4.5 Strains 816 
 817 

In the previous parts of section 4, overall physical structures of animal (4.2) and yeast 818 

(4.3) prions have been examined, showing key features of these proteins, e.g., amyloid 819 



structure, staining properties, protease and detergent resistance, domain structures, repeat 820 

sequences, and amino acid compositions.  These properties of ‘what makes a prion’ were 821 

the initial seeds upon which further studies have been built.  In learning to identify new 822 

prions, chiefly in yeast (4.4), new features of both yeast and animal prions and amyloids 823 

have been noted, further expanding the field’s knowledge of the essential characteristics 824 

and diversity of prions and amyloids.  One key, but unusual, feature of prions has not yet 825 

been discussed:  distinct prion strains. 826 

Like other pathogens, prions have strain differences and these strain differences are 827 

propagated when the prions are transmitted.  This was first noted in scrapie (Dickinson & 828 

Meikle 1969; Fraser & Dickinson 1973).  Animal prion strains appear to be caused by 829 

conformational diversity (different stable forms with tertiary conformational variability) 830 

being inherited more or less faithfully (Bessen & Marsh 1994; Telling et al. 1994; 831 

Collinge et al. 1996; Peretz et al. 2001; Colby & Prusiner 2011a).  Yeast prions have 832 

widely appreciated strain differences as well (King & Diaz-Avalos 2004; Tanaka et al. 833 

2004; Tanaka et al. 2006; Marcelino-Cruz et al. 2011; Huang et al. 2013) that appear to 834 

be passed vertically and can be passed ex vivo cell to cell using traditional experimental 835 

techniques as well.  Because prions are not easily passed horizontally in yeast it is unclear 836 

whether strains can be naturally transmitted this way.   837 

 838 

 839 



5. The Enlarging Prion Concept in Disease and Beyond  840 

5.1 Introduction 841 
 842 

Prion diseases such as the TSEs were ultimately identified and set apart from other 843 

diseases on the basis of their etiology by a ‘proteinaceous infectious particle’ or prion.  844 

While this was a useful designation in the early years of prion studies, when scientific 845 

consensus on the existence of prions was far from sure, it is now becoming clear that the 846 

segregation of prions from other agents of pathological protein aggregation is 847 

inappropriate.  For example, non-infective amyloids such as amyloid precursor protein 848 

(APP) and tau, when injected directly into the central nervous system of other animals, 849 

appear to be able to cause disease (Haass et al. 1995; Clavaguera et al. 2009).  Human 850 

patients have also acquired Lewy-body type pathologic inclusions from brain grafts 851 

(Kordower et al. 2008).  From these and other observations (e.g., Jucker & Walker 2011; 852 

Eisenberg & Jucker 2012), it appears clear that the line separating the infectious prions 853 

from the non-infectious amyloids or pathologic aggregates is thinner than previously 854 

thought.  As a result, the consensus is that the prion concept itself is enlarging to 855 

encompass other diseases of aberrant protein aggregation as well (Colby & Prusiner 856 

2011b; Walker & Jucker 2015).  857 

5.2 Developing a definition of a general category of prion-like conformational 858 
states 859 

 860 

It was recently proposed that a new category of prion and prion-like diseases should 861 

together share certain essential characteristics (Colby & Prusiner 2011b).  (1) A post-862 

translational conformational change occurs in a native protein to a form with high beta-863 



sheet content; (2) Oligomers are formed from the high beta-sheet protein forms and are 864 

toxic to cells; (3) Polymerization into fibrils results in reduced toxicity of the high beta-865 

sheet forms; (4) ‘Plaques,’ ‘tangles,’ or ‘bodies’ result from sequestration of the fibrils 866 

inside and outside of cells, in the central nervous system; and (5) Mutations in these 867 

proteins may cause familial heritability of these traits. 868 

5.3 Prion-like proteins, quasi-prions, and prionoids 869 
 870 

A growing awareness of the broad swath of prion-like phenomena has necessitated some 871 

new terms to distinguish these categories.  Paul Harrison’s lab has suggested the 872 

categories of prion and prion-like proteins, with the latter category made up of quasi-873 

prions and prionoids (Harbi & Harrison 2014).  Briefly, prions have firm evidence of 874 

prion behavior, with fully infective particles made in vitro (strongest evidence, e.g., 875 

Sup35) or not (weaker, e.g., Cyc8).  Quasi-prions behave similarly to prions but do not 876 

meet the infection requirements of a prion, but can still pass the quasi-prion to progeny 877 

(for example, the likely prionogenic proteins from the Alberti et al. 2009 study or RepA-878 

WH1 in bacteria).  Prionoids have been shown to propagate between cells in multicellular 879 

organisms (for example, Tau in Alzheimer’s disease).  Regardless of the specific 880 

nomenclature, the rising realization in the aggregation and prion communities that there 881 

is overlap and crosstalk between the fields that may allow leaps in one area to rapidly 882 

cross-pollinate to another area across these categories make an understanding of the 883 

relatedness of the concepts especially apt and timely.  For example, in the next section, 884 

the application of discoveries in the yeast realm to studies of familial human diseases 885 

illustrate that these prion-like phenomena clearly share a biochemical and cellular basis. 886 

 887 



5.4 The intersection of animals and yeast:  Studies of yeast prions have lead to 888 
understanding of human amyloid diseases 889 

Yeast prions have helped us to find amyloid proteins in humans.  Although PrP is by far 890 

the most well-studied human prion protein, Q/N-rich proteins are overrepresented in the 891 

human proteome (Michelitsch & Weissman 2000; Harrison & Gerstein 2003) and study 892 

of these proteins in the context of yeast has been useful for identifying aggregating 893 

proteins in humans (reviewed in Cascarina & Ross 2014).  All of the following suspect 894 

amyloid proteins were tested in the yeast prion model.  For example, amyloidogenic 895 

proteins generated from mutant TDP-43 alleles were linked with amyotrophic lateral 896 

sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer’s and Parkinson’s 897 

diseases (Neumann et al. 2006; Lagier-Tourenne et al. 2010; Johnson et al. 2009; Da 898 

Cruz & Cleveland 2011; Johnson et al. 2008).  Mutations in FUS/TLS, EWSR1, and 899 

hnRNPA1 and hnRNPA2B1 were shown to cause ALS in some families (Sun et al. 2011; 900 

Kwiatkowski et al. 2009; Vance et al. 2009; Daigle et al. 2013; Couthouis et al. 2012; 901 

Kim et al. 2013).  Additional human amyloid proteins have been found in this way as 902 

well (reviewed in Cascarina & Ross 2014), and it is extremely likely that additional 903 

discoveries will be made in the coming years by fusing advanced genetic and pedigree 904 

analysis of humans with the experimental virtues of the simple, well-worn yeast prion 905 

analysis system.  In undertaking studies such as these, it is interesting to note that these 906 

human proteins, in large part, share more sequence/structure characteristics with the yeast 907 

prions than they do with PrP, demonstrating that fundamental biology is at work, 908 

probably for all eukaryotic cells and perhaps for all cells. 909 

 910 



5.5 What ties together prion-like phenomena 911 
 912 

Abnormal accumulation of disease-specific protein aggregates is a hallmark of most 913 

neurodegenerative disorders.  These include Parkinson’s disease (PD), amyotrophic 914 

lateral sclerosis (ALS), multiple system atrophy (MSA), frontotemporal lobar 915 

degeneration (FTLD), and others.  The proteins implicated in these disorders are 916 

numerous (reviewed in Walker & Jucker 2015) but they all involve aggregation-prone 917 

proteins, many with prion-like domains, ability to form beta-sheet rich secondary 918 

conformations, and the ability to spread locally within brain regions and form plaques or 919 

similar deposits with concomitant toxicities.  In short, they meet the requirements set 920 

above for prion-like behavior (section 5.2) (Colby & Prusiner 2011b).  What all of these 921 

disease-causing proteins fundamentally share is that they are based on seeded aggregation 922 

of proteins.  As the field moves forward, grouping the diseases together that are caused 923 

by seeded abnormal protein aggregation is perhaps the best starting place for a new 924 

understanding of the prion concept.  What Walker and Jucker have referred to as a 925 

‘proteinaceous nucleating particle’ (Walker & Jucker 2015) brings the prion diseases and 926 

the non-prion amyloid diseases together with yet-to-be-discovered variants under the 927 

umbrella term ‘prion.’  While this term has not yet been widely used to encompass 928 

infectious and non-infectious aggregating proteins (and indeed whether the term is ever 929 

used in that fashion), the enlargement of the prion concept and the acknowledgement that 930 

there is relatively little difference between prions and non-infectious amyloids has 931 

already begun. 932 



6. Concluding Remarks 933 

In this review, I have discussed the history of the discovery of prions in mammals and the 934 

resulting recognition that previously discovered but unexplained non-Mendelian traits in 935 

the baker’s yeast Saccharomyces cerevisiae represented prions as well.  The essential 936 

genetic, biochemical, and biophysical features of the mammalian prions and amyloids, 937 

and the yeast prions and prion-like molecules, while broadly similar, show significant 938 

differences as well.  Despite this, understanding of the simple yeast prion system has 939 

allowed for major health and basic science discoveries in the mammalian context and 940 

insights from mammals have informed the studies of prion proteins in yeast.  The 941 

collective discoveries in this area have grown larger through a recognition that 942 

aggregative proteins form a larger constellation of related phenomena (including many 943 

diseases).  Because of this, the scientists and physicians studying aggregating proteins 944 

responsible for human and animal disease, whether infective or not, would do well to 945 

familiarize themselves with the literature across the whole gamut of prion, prion-like, and 946 

amyloid proteins, because these phenomena clearly demonstrate fundamental similarity at 947 

the cellular level that can be exploited to solve problems in all parts of the field. 948 

 949 
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Table 1.  Prevailing notions of natural causes of disease with notable milestones. 1933 

Time frame Agent Advocate(s) Physical Basis 

Ancient until 19th 
century 

Miasma Galen of 
Pergamon, Indian 
and Chinese 
philosophers 

Bad airs 

Ancient until 19th 
century 

Contagion Fracastoro and 
others 

Direct contact with 
sick people 

1836 Living germ or seed Bassi Fungal pathogen, no 
microscopic 
evidence 

1865-1870 Microbe Pasteur Fungal pathogen 

1876 Bacterium Koch Anthrax bacillus 

1898 Virus Beijerinck, 
Loeffler and 
Frosch 

Tobacco mosaic 
virus (TMV), 
Aphthovirus 

1942 Virus Cohen and 
Stanley 

TMV composed of 
nucleic acid and 
protein 

20th century Slow virus Many Virus composed of 
nucleic acid and 
protein with long 
incubation period 

1982 Prion Prusiner Animal disease 
caused by protein 
only (no nucleic 
acid) 

1994 Prion Wickner Yeast infectious 
protein (no nucleic 
acid) explains 
unusual genetics of 
[PSI+], [URE3] traits 

 1934 



Table 2.  Prion diseases in non-human mammals and humans (After Colby & Prusiner 1935 
2011). 1936 
 1937 

Animal Disease Mechanism Animal(s) 

Scrapie Somatic mutation in Prnp 

gene or spontaneous 

conversion of normal PrPC 

to abnormal PrPSc or 

infection from other 

infected animals 

Sheep, goats 

Bovine spongiform 

encephalopathy (BSE) 

Infection or sporadic Cattle 

Transmissible mink 

encephalopathy (TME) 

Infection from sheep or 

cattle 

Mink 

Chronic wasting disease 

(CWD) 

Infection or possibly 

sporadic 

Cervids (deer, elk) 

Exotic ungulate 

encephalopathy 

Infection with prion-

contaminated meat and 

bone meal (MBM) 

Ungulates (oryx, nyala, 

greater kudu, etc.) 

Feline spongiform 

encephalopathy (FSE) 

Infection with prion-

contaminated meat or MBM 

Domestic cats, various wild 

cats 

Proposed canine 

spongiform encephalopathy 

Unknown, based on a single 

case report 

Domestic dogs 

 

Human Disease Mechanism Specific Hosts 

Kuru (extinct?) Ritual funerary cannibalism Fore tribe, Papua New 

Guinea  

Sporadic Creutzfeldt-Jakob 

Disease (sCJD) 

Somatic mutation in PNRP 

gene or spontaneous 

conversion of normal PrPC 

to abnormal PrPSc 

All humans 



Familial CJD Germline mutation in PNRP 

gene 

Humans from CJD families 

Variant CJD (vCJD) Infection from consumption 

of meat from BSE cattle 

All humans 

Iatrogenic CJD (iCJD) Infection from 

contaminated medicines or 

medical equipment 

All humans 

GSS Germline mutation in PNRP 

gene 

Humans from GSS families 

Fatal Familial Insomnia 

(FFI) 

Germline mutation in PNRP 

gene 

Humans from FFI families 

Sporadic fatal insomnia 

(sFI) 

Somatic mutation in PNRP 

gene or spontaneous 

conversion of normal PrPC 

to abnormal PrPSc 

All humans 

Multiple system atrophy  Mutant alpha-synuclein 

infection in mice/cultured 

cells (artificial model) 

(reviewed in Supattapone 

2015) 

Unknown 

Other diseases Growing recognition of 

prion-like and amyloid 

proteins in disease and other 

pathological changes in 

protein conformation 

Unknown 
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Figure Legends 1939 
 1940 

Figure 1.  Brain effects of CJD, a transmissible spongiform encephalopathy, in humans.  1941 

(A) Diffusion-weighted magnetic resonance (MRI) image of a patient who presented with 1942 

a rapidly-progressive dementia, with initial hallucinations and behavioral change that 1943 

progressed to a mute, akinetic state with myoclonus. Right cortical and striatal high 1944 

signal is consistent with a diagnosis of sporadic-type Creutzfeldt-Jakob disease (sCJD).  1945 

Photo courtesy of Dr. Laughlin Dawes and Wikimedia user Filip em, 2008.  (B) 1946 

Hematoxylin-eosin stained cortex of patient with variant Creutzfeldt-Jakob (vCJD) 1947 

disease with florid plaques.  Photo is in the public domain. 1948 

Figure 2.  Process of assembly of toxic oligomers, protofilaments, and fibrils in amyloid-1949 

based diseases, including prion diseases.  (A)  Spontaneous conversion between a native 1950 

or normally-folded protein state into an abnormal or amyloid state (beta-sheet rich) are 1951 

very rare.  Both forms are stable states.  (B)  Once an abnormal amyloid form of a protein 1952 

is present in a cell, when it encounters a natively-folded protein it is capable of causing a 1953 

conformational change in which the native protein assumes an amyloid structure.  (C)  1954 

When amyloid-structured proteins encounter each other, they have a tendency to 1955 

aggregate and form, initially, short stretches of dimers, trimers, and oligomers.  Evidence 1956 

suggests these oligomers are more toxic to the cell than monomers or larger filaments 1957 

(e.g., Simoneau et al. 2007; reviewed in, e.g., Verma et al.).  (D)  Oligomers that pick up 1958 

additional monomers or oligomers may assemble into larger protofilaments and then 1959 

fibrils that can be extremely large.  These fibrils are often hallmarks of amyloidoses and 1960 

can be visualized in histopathologic sections with various straining and imaging 1961 

techniques.  Chaperones (such as Hsp104 in yeast) are capable of cleaving larger fibrils 1962 



into shorter pieces, which appears to be required for proper maintenance of the prion 1963 

during cell division.   1964 

 1965 

Figure 3.  Domain structures of canonical mammalian and fungal prions.  Repeat 1966 

domains are noted with single-letter amino acid abbreviations for repeat structures in the 1967 

protein sequences.  (A) Human Prion Protein (PrP), which can interconvert between 1968 

normal PrPC and abnormal PrPSc protein variants.  Abbreviations:  SP, signal peptide; S-1969 

S, disulfide bridge; GPI, Glycophosphatidylinositol anchor.  (B) Yeast prion protein 1970 

Sup35 (eRF3) which can give rise to the [PSI+] prion.  Abbreviations:  N-domain, prion 1971 

domain; ND, nucleation domain region of the N-domain; ORD, oligopeptide repeat 1972 

domain region of the N-domain; M domain, middle domain; C domain, catalytic domain.  1973 

 1974 

Figure 4.  Assay for presence of the yeast [PSI+] prion using the ade2-1 mutant nonsense 1975 

suppression (eRF3) function of Sup35.  (A) Schematic diagram for ade2-1 generation of 1976 

color phenotypes in the presence or absence of the [PSI+] prion. (B) Examples of 1977 

red/white color selection using the ade2-1 assay.  Left, mutant forms of Sup35 that are 1978 

[PSI+] in this assay are compared with the control wild-type [PSI+] prion, plus or minus 1979 

curing with guanidine hydrochloride (GdHCl).  Right, mutant forms of Sup35 that are 1980 

[psi-] (non-prion) are shown. 1981 

  1982 



Figure 1. 1983 
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