
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2006

Modeling of a soft sensitive marine silty clay
deposit for a landfill expansion study
John Roche
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Roche, John, "Modeling of a soft sensitive marine silty clay deposit for a landfill expansion study" (2006). Master's Theses and
Capstones. 243.
https://scholars.unh.edu/thesis/243

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/243?utm_source=scholars.unh.edu%2Fthesis%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


MODELING OF A SOFT SENSITIVE MARINE SILTY 
CLAY DEPOSIT FOR A LANDFILL EXPANSION STUDY

BY

JOHN ROCHE 
B.S. Civil Engineering, University of New Hampshire, 2004

THESIS

Submitted to the University of New Hampshire 
in Partial Fulfillment of 

the Requirements for the Degree of

Master of Science 
in

Civil Engineering

December, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 1439288

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1439288 

Copyright 2007 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This thesis has been examined and approved.

Thesis Director, Dr. Jean BenoTt
Professor and Chair, Civil Engineering

Dr. Pedro de Alba 
Professor, Civil Engineering

Researc tant Professor, Civil Engineering

(J Ias

Mr. Stephen Rab^gca, P.E.
Geotechnical Engineer, Soil Metrics, LLC.

u / lS '/o Q
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DEDICATION

To my parents, Dave and Carol Roche, who have provided never-ending support 
and encouragement to all of their children.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

Many thanks to all of my family and friends who have provided incredible support 
during this research.

For his unending support and guidance, my sincere thanks to my advisor, Professor 
Jean BenoTt.

Many thanks for Stephen Rabasca of Soil Metrics, LLC. for providing the opportunity 
to perform this research, and for providing a wealth of data from the RWS site.

For their assistance during the research program, and service on my thesis 
committee, I thank Professors Pedro de Alba and Jeffrey Melton.

Thanks to the employees of ARA/Vertek for their assistance in preparation of the 
piezocone system.

For their patience and assistance providing drilling support, thanks to Great Works 
Test Borings, Inc.

Thanks to my fellow graduate students Steve Hall and Marc Grenier for their 
assistance in the field, and to the many undergraduates who assisted during 
laboratory testing.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

DEDICATION..................................................................................................................... iii

ACKNOWLEDGEMENTS................................................................................................ iv

LIST OF TABLES.............................................................................................................. x

LIST OF FIGURES............................................................................................................ xi

ABSTRACT........................................................................................................................ xx

CHAPTER PAGE

INTRODUCTION.............................................................................................................1

I. IN SITU TESTING....................................................................................................3

1.1 Introduction....................................................................................................3

1.2 Field Shear Vane Testing............................................................................3

1.2.1 Field Vane History............................................................................ 3

1.2.2 The Geonor H-10 Vane Borer........................................................ 4

1.2.3 General Mechanics of the Field Vane........................................... 6

1.2.4 Factors Influencing the Field Vane.................................................8

1.3 Cone Penetration Testing............................................................................12

1.3.1 Piezocone H istory.............................................................................12

1.3.2 Piezocone Mechanics......................................................................20

1.3.2.1 Tip and Friction Sleeve Load Measurement........................20

1.3.2.2 Pore Pressure Measurement Location.................................21

1.3.2.3 Filter Element Considerations...............................................26

1.3.3 Piezocone Testing System.............................................................. 27

1.3.3.1 The Hogentogler 10 Ton Cone............................................. 27

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3.3.2 Depth/Velocity Transducer.................................................... 30

1.3.3.3 Data Acquisition System.........................................................31

1.3.4 Filter Element Saturation................................................................. 34

1.4 Dilatometer Testing....................................................................................... 36

1.4.1 Dilatometer History........................................................................... 36

1.4.2 Operating Principle of the Dilatometer.......................................... 38

II. SITE CHARACTERISTICS..................................................................................... 42

2.1 Site History..................................................................................................... 42

2.2 Subsurface Conditions..................................................................................46

2.2.1 Stratigraphy....................................................................................... 46

2.2.2 The Presumpscot Formation...........................................................49

2.2.3 Groundwater Conditions...................................................................50

2.2.4 Soil Properties................................................................................... 51

2.3 Geotechnical Monitoring...............................................................................56

2.4 Geotechnical Monitoring Assessment........................................................58

III. IN SITU TESTING PROGRAM...............................................................................61

3.1 Purpose of the Site Investigation................................................................ 61

3.2 Testing Locations...........................................................................................62

3.3 Field Shear Vane Testing Procedure..........................................................64

3.4 Piezocone Testing Procedure......................................................................65

3.4.1 Introduction........................................................................................ 65

3.4.2 Summary of the CPTu Procedure.................................................. 66

3.5 Dilatometer Testing Procedure....................................................................68

3.6 Laboratory Testing Procedures...................................................................68

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IV. INTERPRETATION OF IN SITU TEST DATA.................................................... 72

4.1 Field Shear Vane D ata ................................................................................. 72

4.1.1 Data Reduction.................................................................................. 72

4.1.2 Undrained Shear Strength Correction............................................74

4.1.2.1 Corrections Used.....................................................................74

4.1.2.2 Index Properties of the S o il................................................... 75

4.2 Piezocone and Dilatometer Data................................................................ 76

4.2.1 Introduction.........................................................................................76

4.2.2 Corrections to Piezocone Point and Friction Resistance............77

4.2.3 Preparation of the Dilatometer Data...............................................82

4.2.4 Stratigraphy....................................................................................... 82

4.2.4.1 Introduction...............................................................................82

4.2.4.2 Interpretation Using the Piezocone..................................... 83

4.2.4.3 Interpretation Using the Dilatometer.................................... 97

4.2.5 Undrained Shear Strength (Su) .......................................................100

4.2.5.1 Introduction...............................................................................100

4.2.5.2 Interpretation Using the Piezocone..................................... 100

4.2.5.3 Interpretation Using the Dilatometer.................................... 112

4.2.6 Stress History (OCR)........................................................................ 116

4.2.6.1 Introduction...............................................................................116

4.2.6.2 Interpretation Using the Piezocone..................................... 116

4.2.6.3 Interpretation Using the Dilatometer.................................... 124

4.2.7 Preconsolidation Pressure (a’p) .......................................................127

4.2.7.1 Introduction...............................................................................127

4.2.7.2 Interpretation Using the Piezocone...................................... 127

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.7.3 Interpretation Using the Dilatometer.....................................135

4.2.8 Coefficient of Lateral Earth Pressure At-Rest (K0) ....................... 138

4.2.8.1 Introduction...............................................................................138

4.2.8.2 Interpretation Using the Piezocone...................................... 138

4.2.8.3 Interpretation Using the Dilatometer..................................... 140

4.2.9 Coefficient of Horizontal Consolidation (ch) ................................... 142

V. FINITE ELEMENT MODELING............................................................................ 148

5.1 Introduction.....................................................................................................148

5.2 Plaxis Finite Element Software....................................................................149

5.2.1 Introduction.........................................................................................149

5.2.2 Plaxis Soil Models........................ 150

5.2.2.1 Introduction...............................................................................150

5.2.2.2 The Soft Soil Model (SSM ).................................................... 151

5.2.2.3 The Mohr-Coulomb Model (MC Model)................................157

5.3 Finite Element Model.................................................................................... 160

5.3.1 Introduction.........................................................................................160

5.3.2 Model Geometry................................................................................161

5.3.3 Material Properties........................................................................... 165

5.3.4 Initial Conditions................................................................................170

5.3.5 Model Calculation Phases............................................................... 171

5.4 Finite Element Model Validation..................................................................175

5.5 Prediction of Future Soil Strengths............................................................. 187

VI. SUMMARY AND CONCLUSIONS....................................................................... 196

6.1 Summary.........................................................................................................196

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 Conclusions....................................................................................................197

6.3 Future W ork....................................................................................................199

LIST OF REFERENCES............................................................................................... 201

APPENDICES.................................................................................................................213

APPENDIX A FIELD SHEAR VANE TEST D ATA................................................ 214

APPENDIX B CALIBRATION OF THE VANE APPARATUS...............................226

APPENDIX C CALIBRATION OF THE PIEZOCONE........................................... 229

APPENDIX D PLAXIS MATERIAL PROPERTIES.................................................238

APPENDIX E PLAXIS MODEL VALIDATION FIGURES......................................240

APPENDIX F UNDRAINED SHEAR STRENGTH GAIN FIGURES...................258

APPENDIX G LABORATORY CONSOLIDATION CURVES............................... 274

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Page

Table 2.1 Results of 2006 Atterberg Limits Tests..........................................51

Table 2.2 Results of 2006 One-Dimensional Consolidation Tes ts .............54

Table 2.3 Consolidation Properties of the Soft Gray Silty Clay Layer....... 55

Table 3.1 Summary of In Situ Tests Performed.............................................64

Table 3.2 One-dimensional Consolidation Test Load Increments.............. 71

Table4.1 Borehole B-11 Field Shear Vane Results....................................72

Table 4.2 Index Properties for Correction of Undrained Shear Strength
From the Field Shear Vane............................................................ 76

Table 4.3 Proposed Soil Classification Based on DMT lD Values
(After Marchetti, 1980) ..................................................................98

Table 4.4 Modified Time Factors (T*) from Houlsby and Teh (1988).........144

Table 4.5 Results of CPTu Dissipation Tests; Ch estimated using
method of Teh and Houlsby (1991)..............................................144

Table 5.1 Compacted Ash Unit Weight by Cell.............................................. 170

Table 5.2 East/West Profile Calculation Phases............................................173

Table 5.3 North/South Profile Calculation Phases.........................................174

Table D.1 Plaxis Material Cluster Properties.................................................. 239

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Page

Figure 1.1 Geonor H-10 Vane Borer and Torque Measuring Head
(Geonor, Inc.)................................................................................... 5

Figure 1.2 Shear Stress Distribution on Cylindrical Surface of Field
Vane (Chandler 1988).....................................................................8

Figure 1.3 Disturbance of Soft Soils Due to Vane Borer Advancement
(Top) and Vane Blade Insertion (Bottom)
(Ahnberg et al., 2004).....................................................................9

Figure 1.4 Influence of Consolidation on Undrained Shear Strength
(Roy and Leblanc, 1988)................................................................ 10

Figure 1.5 Vane Shear Correction Factor (After Aas et al., 1986)...............12

Figure 1.6 Dutch Cone with Conical Mantle (Sanglerat, 1972).....................14

Figure 1.7 Begemann Type Cone with Friction Sleeve
(Sanglerat, 1972).............................................................................15

Figure 1.8 Electric Friction Cone (Lankelma Cone Penetration
Testing, L td.).................................................................................... 16

Figure 1.9 Standard Designs and Filter Locations of Piezoprobes (1-2)
and Piezocones (3-11) (Campanella et al. 1988).......................18

Figure 1.10 Typical Filter Element Location Nomenclature
(After Mayne and Chen, 1994)..................................................... 22

Figure 1.11 Effect of Filter Element Location on Measured Pore
Pressures in Normal to Moderately Overconsolidated Clay 
(After Powell and Quaterman, 1991)............................................23

Figure 1.12 Effect of Filter Element Location on Measured Pore
Pressures in Heavily Overconsolidated Clay 
(After Lunne et al., 1997)............................................................... 24

Figure 1.13 Unequal End Areas of the Piezocone
(Jamiolkowski et al., 1985)............................................................25

Figure 1.14 60 Degree Cone Tip and Filter Element.......................................28

Figure 1.15 Photograph of 10 Ton Hogentogler Cone..................................... 30

Figure 1.16 Schematic of the Data Acquisition System for Piezocone 32

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.17 Screen Capture of the Aligent BenchLink Software.................... 34

Figure 1.18 Flat Dilatometer Blade with Flexible Steel Membrane................36

Figure 1.19 Effect of Geometry on Distortions in Clay
(after Baligh, 1975)......................................................................... 38

Figure 1.20 Schematic of Membrane Displacement Mechanism
(Marchetti et al., 2001)....................................................................39

Figure 1.21 Disassembled View of Dilatometer Blade Membrane
(Marchetti, 2001)............................................................................. 40

Figure 1.22 Dilatometer Control Unit.................................................................. 41

Figure 2.1 Location Map, RWS Ashfill/Balefill Facility....................................42

Figure 2.2 RWS Landfill Schem atic.................................................................44

Figure 2.3 Undrained Shear Strength of Virgin (unloaded) Soil at the
RWS Ashfill/Balefill.........................................................................48

Figure 2.4 Summary of the Natural Moisture Content, Preconsolidation
Pressure, Overconsolidation Ratio and In Situ Void Ratio 
from Laboratory Tests.....................................................................53

Figure 2.5 Example Results of CK0UDSS Test Indicating Strain
Softening Past 2% Shear S tra in ................................................... 60

Figure 3.1 Exploration Location Plan for Current Research.........................62

Figure 3.2 Method for Assembly of the Piezocone Filter Element
in the Field (After Larsson, 1992)..................................................67

Figure 3.3 Floating-ring Consolidation Apparatus.......................................... 70

Figure 4.1 Uncorrected, Corrected and Remolded Undrained Shear
Strength with Sensitivity Profile from Field Shear Vane 
Profile at B -11 ..................................................................................73

Figure 4.2 Vane Shear Correction Factor (After Aas et a I., 1986).............. 75

Figure 4.3 Piezocone Output at CPTu B-11, Corrected Tip Resistance
(qt), Friction Sleeve Resistance (fs), Pore Pressure (U2) ............79

Figure 4.4 Piezocone Output at CPTu P-3, Corrected Tip Resistance
(qt), Friction Sleeve Resistance (fs), Pore Pressure (u2) ............80

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.5 Piezocone Output at CPTu I-3/I-4, Corrected Tip Resistance
(qt), Friction Sleeve Resistance (fs), Pore Pressure (u2) ............81

Figure 4.6 Normalized CPTu Data for Soil Classification; Pore Pressure
Ratio (Bq), Normalized Friction Ratio (Fr), Normalized Cone 
Resistance (Qt) (After Wroth, 1984, 1988)...................................85

Figure 4.7 Proposed Soil Behavior Classification Chart from CPTu Data
(After Roberston et al., 1986).........................................................86

Figure 4.8 Soil Behavior Classification Chart Based on Normalized CPTu
Data (After Robertson, 1990).........................................................87

Figure 4.9 Soil Behavior Classification at CPTu B-11, Using Method of
Robertson (1990).............................................................................89

Figure 4.10 Soil Behavior Classification at CPTu P-3, Using Method of
Robertson (1990)............................................................................ 90

Figure 4.11 Soil Behavior Classification at CPTu I-3/I-4, Using Method of
Robertson (1990)............................................................................ 91

Figure 4.12 Proposed Soil Behavior Classification Chart for Fine-Grained
Soils (After Larsson and Mulabdic, 1991)....................................92

Figure 4.13 Soil Behavior Classification at CPTu B-11, Using Method of
Larsson and Mulabdic (1991)........................................................94

Figure 4.14 Soil Behavior Classification at CPTu P-3, Using Method of
Larsson and Mulabdic (1991)........................................................95

Figure 4.15 Soil Behavior Classification at CPTu I-3/I-4, Using Method of
Larsson and Mulabdic (1991)........................................................96

Figure 4.16 Soil Behavior Classification at DMT B-11, Based on DMT lD
Values (After Marchetti, 1980)...................................................... 99

Figure 4.17 Results of Undrained Shear Strength from Direct Shear Tests
Against Excess Pore Pressure Generated at the Face of the 
Cone Tip in Swedish and Norwegian Clays Indicating a Linear 
Relationship (After Larsson and Mulabdic, 1991)....................... 107

Figure 4.18 Undrained Shear Strength Profile at CPTu B-11 Based on
Methods of Excess Pore Pressure and Total Cone Resistance 
........................................................................................................... 109

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.19 Undrained Shear Strength Profile at CPTu P-3 Based on
Methods of Excess Pore Pressure and Total Cone Resistance 
 110

Figure 4.20

Figure 4.21

Figure 4.22 

Figure 4.23

Figure 4.24 

Figure 4.25

Figure 4.26 

Figure 4.27 

Figure 4.28

Figure 4.29

Figure 4.30 

Figure 4.31

Undrained Shear Strength Profile at CPTu I-3/I-4 Based on 
Methods of Excess Pore Pressure and Total Cone Resistance 
 111

Comparison Between Undrained Shear Strength Measures 
by DMT and by other Methods at the National Research Site 
of Bothkennar, UK (After Nash et al., 1992)................................113

Undrained Shear Strength Profile at DMT B-11 Based on Kd .. 115

Relationship between Overconsolidation Ratio and the Ratio 
of Excess Pore Pressure (ui) to Effective Vertical Stress in 
Swedish and Norwegian Clays
(After Larsson and Mulabdic, 1991)..............................................117

Relationship between Effective Tip Resistance and 
Overconsolidation Ratio with Pore Pressure Recorded behind 
The Cone Tip (u2) (After Larsson and Mulabdic, 1991)............. 119

Relationship between Effective Tip Resistance, Normalized for 
the Effects of Plasticicty and Overconsolidation Ratio with Pore 
Pressure Recorded behind the Cone Tip (u2) (After Larsson and 
Mulabdic, 1991)................................................................................119

Piezocone OCR Profile at CPTu B-11 based on methods of 
Larsson and Mulabdic (1991), Houlsby (1988) and Chen and 
Mayne (1994)................................................................................... 121

Piezocone OCR Profile at CPTu P-3 based on methods of 
Larsson and Mulabdic (1991), Houlsby (1988) and Chen and 
Mayne (1994)................................................................................... 122

Piezocone OCR Profile at CPTu I-3/I-4 based on methods of 
Larsson and Mulabdic (1991), Houlsby (1988) and Chen and 
Mayne (1994)................................................................................... 123

Correlation between KD and OCR for Cohesive Soils at Various 
Geographical Locations (After Kamei and Iwasaki, 1995).........125

Overconsolidation Ratio Profile at DMT B-11 ..............................126

Relationship between Net Tip Resistance and the 
Preconsolidation Pressure in Swedish and Norwegian Clays 
(After Larsson and Mulabdic, 1991)..............................................129

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.32 Linear Relationship between Net Tip Resistance, Normalized 
For the Effects of Soil Plasticity and Preconsolidation Pressure 
(After Tavenas and Leroueil, 1987)...........................   130

Figure 4.33 Estimation of the Preconsolidation Pressure Profile at CPTU B-11 
Based on Methods of Kulhawy and Mayne (1990), Larsson and
Mulabdic (1991), and Tavenas and Leroueil (1987)...................132

Figure 4.34 Estimation of the Preconsolidation Pressure Profile at CPTU P-3 
Based on Methods of Kulhawy and Mayne (1990), Larsson and 
Mulabdic (1991), and Tavenas and Leroueil (1987)...................133

Figure 4.35 Estimation of the Preconsolidation Pressure Profile at CPTU I-3/I-4
Based on Methods of Kulhawy and Mayne (1990), Larsson and 
Mulabdic (1991), and Tavenas and Leroueil (1987)...................134

Figure 4.36 Profile of the Preconsolidation Pressure at DMT B-11
Calculated from Site Specific OCR by Dilatometer.....................136

Figure 4.37 Comparison of Preconsolidation Pressure determined by
CPTU B-11, DMT B-11 and Laboratory D ata ..............................137

Figure 4.38 Estimates of Ko based on CPTu and DMT Data at CPTu B-11
And DMT B-11 Respectively.......................................................... 141

Figure 4.39 Dissipation of Excess Pore Pressure at 3.68 m (12.07 ft)
Depth..................................................................................................146

Figure 4.40 Dissipation of Excess Pore Pressure at 7.96 m (26.11 ft)
Depth..................................................................................................147

Figure 5.1 Logarithmic Relationship between Volumetric Strain and Mean
Effective Stress (Plaxis Material Models Manual).......................154

Figure 5.2 Schematic of Soft Soil Model Yeild Function (Plaxis, 2002)...... 156

Figure 5.3 Soft Soil Model Yield Contour in Principal Effective Stress
Space (Plaxis, 2002)....................................................................... 157

Figure 5.4 Elastic Perfectly Plastic Behavior................................................... 158

Figure 5.5 Mohr-Coulomb Failure Envelope................................................... 159

Figure 5.6 Mohr-Coulomb Yield Envelope.......................................................159

Figure 5.7 RWS Landfill Schematic..................................................................160

Figure 5.8 15-Node Triangular Element........................................................... 161

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.9 East/West Plaxis Profile........................................................... 163

Figure 5.10 East/West Profile -  Plaxis Mesh.................................... Attached CD

Figure 5.11 North/South Profile -  Plaxis M esh................................. Attached CD

Figure 5.12 Undrained Shear Strength Profiles for Modeling,
East/West Profile..............................................................................166

Figure 5.13 Undrained Shear Strength Profiles for Modeling,
North/South Profile.......................................................................... 167

Figure 5.14 Overconsolidation Ratio Profile for Modeling,
East/West Profile..............................................................................168

Figure 5.15 Overconsolidation Ratio Profile for Modeling,
North/South Profile.......................................................................... 169

Figure 5.16 East/West Profile with Historic Monitoring Installations..............176

Figure 5.17 North/South Profile with Historic Monitoring Installations...........177

Figure 5.18 SPL-1 (Cell 1b) -  Plaxis Predicted vs. Measured
Settlements...................................................................................... 180

Figure 5.19 Piezometer P-2 (Cell 1 b) -  Plaxis Predicted vs. Measured
Pore Pressures................................................................................181

Figure 5.20 Piezometer P-5 (Cell 5b) -  Plaxis Predicted vs. Measured
Pore Pressures................................................................................ 182

Figure 5.21 Inclinometer l-3a Cumulative Displacement -  Plaxis Predicted
Vs. Measured Displacement..........................................................184

Figure 5.22 SPL-4 (Cell 2) - Plaxis Predicted vs. Measure Settlements....... 185

Figure 5.23 Piezometer P-1 (Cell 1b) - Plaxis Predicted vs. Measure
Pore Pressures................................................................................186

Figure 5.24 Locations of Strength Change Analysis.......................................188

Figure 5.25 Plaxis Predicted Change in Effective Overburden Pressure
with Time (B-4 Location).................................................................190

Figure 5.26 Change in Undrained Shear Strength at B-1 (1994-2002).........191

Figure 5.27 Change in Undrained Shear Strength at B-1 (2002-2030).........193

Figure 5.28 Change in Undrained Shear Strength at I-3/I-4 (2002-2030).... 194

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure B.1 Geonor H-10 Calibration Equipment (Geonor, Inc .)....................227

Figure C.1 Geotest S5710 Load Frame with Piezocone................................230

Figure C.2 Cone Tip Support for Laboratory Loading.................................... 231

Figure C.3 Friction Sleeve Support for Laboratory Loading.......................... 232

Figure C.4 Point Load Cell Calibration............................................................. 234

Figure C.5 Friction Sleeve Load Cell Calibration.............................................235

Figure C.6 Effect of Tip Resistance on Friction Sleeve Load Cell................ 236

Figure C.7 Pore Pressure Transducer Calibration...........................................237

Figure D.1 East/West Plaxis Profile................................................... Attached CD

Figure D.2 North/South Plaxis Profile................................................Attached CD

Figure E.1 Pizezometer P-4 (Cell 2) Plaxis Predicted vs. Measured Pore
Pressures North/South Model........................................................241

Figure E.2 SPL-1 (Cell 1b) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 242

Figure E.3 SPL-11 (Cell 4) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 243

Figure E.4 SPL-12 (Cell 4) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 244

Figure E.5 SPL-15 (Cell 5a) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 245

Figure E.6 SPL-16 (Cell 5a) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 246

Figure E.7 Piezometer P-1 (Cell 1b) Plaxis Predicted vs. Measured
Pore Pressures East/West Model................................................. 247

Figure E.8 Piezometer P-3 (Cell 3b) Plaxis Predicted vs. Measured
Pore Pressures East/West Model................................................. 248

Figure E.9 Piezometer P-I3a (Cell 3b) Plaxis Predicted vs. Measured
Pore Pressures East/West Model................................................. 249

Figure E.10 Piezometer P-I5a (Cell 5b) Plaxis Predicted vs. Measured
Pore Pressures East/West Model................................................. 250

XVII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure E.11 SPL-2 (Cell 1b) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 251

Figure E.12 SPL-7 (Cell 3b) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 252

Figure E.13 SPL-8 (Cell 3b) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 253

Figure E.14 SPL-9 (Cell 5b) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 254

Figure E.15 SPL-10 (Cell 5b) Plaxis Predicted vs. Measured Settlement
North/South M odel.......................................................................... 255

Figure E.16 Inclinometer l-5a Plaxis Predicted vs. Measured Displacement
North/South M odel.......................................................................... 256

Figure E.17 Inclinometer l-6a Plaxis Predicted vs. Measured Displacement
North/South M odel.......................................................................... 257

Figure F.1 Change in Undrained Shear Strength at I-3/I-4 (2002-2006)
........................................................................................................... 259

Figure F.2 Change in Undrained Shear Strength at B-4 (2002-2030)
 260

Figure F.3 Change in Undrained Shear Strength at B-11 (2006-2030)
 261

Figure F.4 Change in Undrained Shear Strength at P-3 (1994-2002)
 262

Figure F.5 Change in Undrained Shear Strength at P-3 (2002-2030)
........................................................................................................... 263

Figure F.6 Change in Undrained Shear Strength at P-5 (1994-2002)
........................................................................................................... 264

Figure F.7 Change in Undrained Shear Strength at P-5 (2002-2030)
........................................................................................................... 265

Figure F.8 Plaxis Predicted Change in Effective Overburden Pressure
with Time (B-1 Location)................................................................ 266

Figure F.9 Plaxis Predicted Change in Effective Overburden Pressure
with Time (B-11 Location).............................................................. 267

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure F.10 Plaxis Predicted Change in Effective Overburden Pressure
with Time (I-3/I-4 Location)............................................................268

Figure F.11 Plaxis Predicted Change in Effective Overburden Pressure
with Time (P-3 Location)................................................................ 269

Figure F.12 Plaxis Predicted Change in Effective Overburden Pressure
with Time (P-5 Location)................................................................ 270

Figure F.13 Plaxis Predicted Change in Pore Pressure with Time
(B-11 Location).................................................................................271

Figure F.14 Plaxis Predicted Change in Pore Pressure with Time
(I-3/I-4 Location)...............................................................................272

Figure F.15 Plaxis Predicted Change in Pore Pressure with Time
(P-3 Location)...................................................................................273

Figure G.1 Results of One-dimensional Consolidation Test
(B-11 Location, El. 17.1 m ).......................................................... 275

Figure G.2 Results of One-dimensional Consolidation Test
(B-11 Location, El. 15.1 m ).......................................................... 276

Figure G.3 Results of One-dimensional Consolidation Test
(B-11 Location, El. 13.6 m ).......................................................... 277

Figure G.4 Results of One-dimensional Consolidation Test
(B-11 Location, El. 10.5 m ).......................................................... 278

xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

MODELING OF A SOFT SENSITIVE MARINE SILTY CLAY DEPOSIT FOR A
LANDFILL EXPANSION STUDY

by

John Roche 

University of New Hampshire, December, 2006

An in situ testing program and finite element modeling of Presumpscot Formation 

glaciomarine clays in South Portland, Maine was undertaken as part of a landfill 

expansion feasibility study. The very soft sensitive silty clay foundation soils have 

been monitored during the 20 year lifespan of the landfill facility by an array of 

settlement platforms, inclinometers, piezometer clusters and periodic field shear 

vane tests. During this time large horizontal displacements have been observed at a 

discrete elevation corresponding to a zone of reduced undrained shear strength. 

Proposals call for a vertical expansion at the site above existing landfill cells. While 

this proposal will require field corroboration that sufficient strength gain of the 

foundation soils has occurred to maintain minimum safety factors, a preliminary 

estimate of future strength conditions will aid the planning and design processes.

An in situ testing program consisting of piezocone, field shear vane and dilatometer 

profiles was performed along with laboratory testing of undisturbed samples to 

determine the geotechnical properties of the landfill foundation soils. These 

properties were then used with historical data to create two-dimensional finite 

element models of the landfill, and to simulate waste loading rates over the lifespan 

of the facility. The models were then used to project the strength properties and 

behavior of the soil as additional waste is placed in the proposed vertical expansion.
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A comparison between historical data from the site and the modeling results 

demonstrated that the finite element models provide a good indication of the current 

behavior of the foundation soils with regards to the changes in pore pressure and 

magnitude of settlement due to loading. While the finite element soil behavior model 

did not work well in the zones of large displacement; results demonstrated that the 

calculated increase in undrained shear strength based on the dissipation of excess 

pore pressure closely matches the changes observed in field shear vane tests during 

the past ten years throughout the remainder of the profile. The conclusions drawn in 

this research program is hoped to provide useful information for the site engineer, as 

well as a strong basis for continuing research.

xxi
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INTRODUCTION

The Regional Waste Systems, Inc. (RWS) Ashfill/Balefill landfill facility accepts for 

storage nearly half of the 500,000 tons of incinerator ash produced annually at the 

RWS “waste-to-energy” plant. The soils underlying the RWS site consist primarily of 

soft sensitive marine silty clays. In order to maintain adequate factors of safety with 

regards to global stability at the site, a comprehensive knowledge of the foundation 

soil properties is required to ascertain their response under continued loading.

Throughout the 20 year life of the RWS facility laboratory and in situ testing 

programs have been completed in order to determine acceptable waste loading 

rates and slope geometry in newly constructed cells. In addition, long-term 

monitoring of an extensive instrumentation array in conjunction with periodic 

assessments of in situ undrained shear strength have been conducted to evaluate 

the performance of the foundation soils.

Monitoring of the site conditions has revealed a zone, 1.8 to 2.4 meters (six to eight 

feet) thick, of large horizontal displacement has developed in the last 13 years within 

the soft gray silty clay layer. The shear strains within this zone are approaching or 

are within the range where peak shear stress is expected. Additional strain levels 

within this layer may result in a reduction of the undrained shear strength of the soil, 

a condition known as strain softening. Field shear vane profiles completed in 2002 

adjacent to profiles completed in 1994 indicate that less strength gain has occurred 

than expected, and in some cases strength loss has been observed in these zones.
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These observations have led to concern with regards to the reliable evaluation of the 

changing properties of the foundation soils as well as the safety factor of the landfill 

slopes.

A fourth phase of construction and filling at the facility has been proposed, which 

would place a layer of waste over the existing landfill. While this phase is not 

proposed to begin for 20 to 25 years, the underlying clay stratum will require strength 

gain to make this proposal feasible from a stability standpoint.

The objectives of this research project were to determine the increase of undrained 

shear strength in the future of the foundation soils for preliminary design of the fourth 

phase of ash filling, and to investigate the potential causes of the zone of large 

horizontal displacement. To that end a finite element model of the landfill was 

constructed to forecast the subsurface conditions in the future. Three in situ test 

devices were used to profile the subsurface at the RWS site and develop a set of soil 

properties for use in modeling. Piezocone profiles were completed at the site, with 

additional dilatometer and field shear vane tests carried out in a virgin area of the 

site in a K0 environment. With a complete set of virgin soil properties, the model was 

constructed to match the loading of the landfill, with the model performance 

assessed through comparison to the records from site instrumentation data.

2
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CHAPTER I

IN SITU TESTING

1.1 - Introduction

Three in situ test methods were used at the RWS landfill during the course of this 

research. The field shear vane, which has been used at the site in the past, was 

used to provide a baseline profile of the undrained shear strength. The piezocone 

and the dilatometer were used across the site to create profiles of multiple 

geotechnical parameters in a near-continuous manner. This chapter describes the 

development of these devices, factors influencing the quality of their data, and the 

general testing procedures.

1.2 - Field Shear Vane Testing

1.2.1 - Field Vane History

The field shear vane test was developed to determine the undrained shear strength 

and sensitivity to disturbance of saturated fine grained soils comprised primarily of 

clay sized particles. The field shear vane test, commonly referred to as the field 

vane, is a relatively simple test to perform and the data reduction to develop the 

undrained shear strength is minimal. The test consists of the slow rotation to failure 

of a vane blade connected with rods to a torque measuring device at the surface of a

3
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Figure 1.1 - Geonor H-10 Vane Borer and Torque Measuring Head (Geonor, Inc.)

The vane borer houses the vane blades, and can be directly advanced through soft 

fine-grained materials and some stiff clays or hard sand layers. The vane borer 

protects the vane blades, which are sized 55 mm x 110 mm or 65 mm x 130 mm, 

during advance, and cleans the blades as they are retracted into the vane borer 

housing following the completion of a test.

The vane borer system adheres to the recommendations for equipment design 

originally recommended by Calding and Odenstad (1950) with the vane blade having 

four wings and a height to diameter ratio of 2:1. The system also follows 

recommendations calling for the vane to be advanced a minimum of 5 vane 

diameters from the protective housing during testing to decrease the effects of 

disturbance.

A set of inner and outer drill rods are used in the system to eliminate measurement 

errors due to rod-soil friction. This provides a better indication of the undrained

5
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shear strength of fine-grained cohesive soils than methods using thicker unprotected 

vane blades with hand held torque wrenches for measurement.

The system is advanced to the desired test depth and the vane blades are extended 

from the vane borer. A crank handle is then inserted into the torque head and 

rotations begin with a rate of 0.1 degrees per second, although variation within a 

range of 0.05 to 2.0 degrees per second is permissible. The torque measuring head 

displays the torque applied to the vane blades on a dial gauge. A calibration of the 

torque head, as described in Appendix B, is performed prior to testing allowing the 

user to directly correlate the instrument reading to undrained shear strength values.

1.2.3 - General Mechanics of the Field Vane

The undrained shear strength is measured from the maximum observed torque 

applied to the vane blades at the time of failure. This torque can then be 

manipulated to determine the undrained shear strength of the soil, using certain 

assumptions. When the failure surface of the soil is assumed to be cylindrical and 

equal to the vane diameter, the shearing forces are assumed to be uniform across 

the blade surfaces on both the vertical and horizontal axis. This assumption 

provides a rectangular stress distribution. In addition the assumption is made that 

an isotropic stress distribution exists along the edges of the vane blade, which 

implies that the strength developed is equal on the vertical and horizontal sides of 

the vane despite different failure mechanisms. An important assumption which is 

made is that no drainage occurs during the shearing of the soil. Finally the 

interpretation of field vane test data assumes that there is no progressive failure, but

6
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instead rapid failure of the soil. Following these assumptions, a vane with an H/D 

ratio of 2 would use the following equation to determine undrained shear strength:

Su = (6M) /  (7ttD3) [1-1]

Where Su represents the undrained shear strength, M represents the maximum 

applied torque and D is the vane blade diameter. Further analysis of the validity of 

these assumptions was performed by Donald et al. (1977) using a three dimensional 

finite element analysis. The distributions of stresses along the horizontal and vertical 

sides of the vane were examined, and while it was determined that the vertical 

distribution is nearly rectangular, the stress distribution along the horizontal surfaces 

is not, as shown in Figure 1.2. The stress distribution here was found to vary with 

distance from the center of the vane. Further analysis has revealed however that 

the strength mobilized during shearing is primarily from the vertical shearing. A 

standard vane with H/D equal to 2 would have approximately 86% of the shearing 

resistance along the vertical surfaces. While the non-rectangular stress distribution 

along the top of the vane is not ideal, the large percentage of the total shear 

resistance provided by the vertical edges of the blades reduces the impact of the 

incorrect initial assumptions on the calculated undrained shear strength.
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Figure 1.2 - Shear Stress Distribution on Cylindrical Surface of Field Vane
(Chandler 1988)

1.2.4 - Factors Influencing the Field Vane

The soft soils that are tested using the field shear vane are by nature sensitive to 

disturbance caused by the insertion of the vane blades, as shown in Figure 1.3. 

While factors such as these are likely to have an effect on the peak undrained shear 

strength determined at each test interval, the assumption that no disturbance occurs 

typically governs the interpretation approach. Further assumptions, such as the 

shape of the failure surface, the size and thickness of the vane, the stress 

distribution along the edges of the vane, a constant rate of strain and that failure 

occurs before significant drainage also may over simplify the interpretation of field 

vane test data.
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Figure 1.3 - Disturbance of Soft Soils Due to Vane Borer Advancement (Top) and 
Vane Blade Insertion (Bottom) (Ahnberg et al., 2004)

Methods to correct the raw field vane strength profile to account for some of these 

effects were used in this report. Other effects are accounted for in the construction 

and use of the field vane, which has been standardized based on the results of 

extensive laboratory tests and simulations. For example the disturbance of the soil 

is minimized by the standardized thickness of the vane blade and the distance the 

blade is extended from the vane borer. Corrections were applied to the field vane 

profile at boring B-11 to account for the time to failure (Chandler, 1988) and for the
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plasticity and overconsolidation ratio (Aas et al., 1986). This section will report the 

theory supporting the correction factors while the specific numerical process used to 

calculate the correction factor is reported in Section 4.1.2.1.

At the standard vane rotation rate of 6 degrees per minute failure should typically 

occur within 5 minutes from the start of the test, as noted in ASTM D-2573 “Standard 

Test Method for Field Vane Shear Test in Cohesive Soil” and by Chandler (1988). If 

failure of the soil at the test depth is not observed within this time, the clay may begin 

to consolidate as it is being sheared which will affect the strength of the soil. Tests 

conducted on low plasticity Canadian clays by Roy and Leblanc (1988), which 

allowed consolidation over periods ranging from 15 to 10,000 minutes before rotation 

of the vane reveal a significant increase in strength when the time prior to shearing is 

increased, as shown in Figure 1.4. Additionally, the time to failure was increased in 

these tests by altering the vane rotation rate at test locations incrementally from 1 to 

6 degrees per minute.

1 day 7 days
1.3

1.2

O Saint-Louis de Bonsecours 
•  Saint-Alban

1.0
1 10 100 1000 io;ooo

Time Lapse (min)

Figure 1.4 - Influence of Consolidation on Undrained Shear Strength
(Roy and Leblanc, 1988)

Similar work has been performed by Torstensson (1977) and Wiesel (1973) on high 

plasticity Swedish clays. The findings from these researchers helped to develop a
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



relationship that closely matches Bjerrums (1972) curve which corrects the strength 

based on the plasticity index of the soil. It is important to note however that these 

correction factors for time to failure are only applicable to soils with a plasticity index 

greater than or equal to 5.

Further studies (Aas et al., 1986) have been performed that were based upon the 

work initially performed by Bjerrum (1972). The foundation of this work was the 

relationship between the void ratio and the overburden stress with time. As 

consolidation occurs locally around the vane blade following insertion, the material 

can gain strength above the true in situ value. The work by Aas et al. (1986) 

hypothesized that the overconsolidation ratio might be a better indicator to correct 

the vane strength rather than the method described in the original work by Bjerrum 

(1972). Aas et al. (1986) used the ratio of undrained shear strength to vertical 

overburden stress as a factor to correct the vane strength, as it was found to fit 

closely with the trend of the overconsolidation ratio. The factor of safety of 

embankment failures was then back calculated and plotted against this ratio, 

revealing a linear trend. Clays with different plasticity indexes however plotted along 

different lines. Therefore the correction factor p proposed by Aas et al., (1986), and 

shown in Figure 1.5 relates both the plasticity index and the undrained shear 

strength to vertical overburden stress ratios.

11
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Figure 1.5 - Vane Shear Correction Factor (After Aas et al., 1986)

1.3 - Cone Penetration Testing

1.3.1 - Piezocone History

The cone penetration test (CPT) consists of a cylindrical probe with a conical tip that 

is attached to drill rods and pushed into the ground at a constant rate of 2 cm/sec 

while taking either continuous or intermittent measurements of the resistance to 

penetration. Often times the probe is advanced using a conventional drilling rig or a 

specialized cone penetration truck, though lightweight anchored trailer or frame

12
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mounted hydraulic pistons are used in practice as well. The advancements in CPT 

technology from simple mechanical cones to advanced electronic cones are briefly 

described in this section.

The first cone penetration tests were conducted in Holland during the early 1930’s by 

a Rijkwaterstaat (Dept, of Public Works) engineer P. Barentsen (Barentsen, 1936). 

These early tests consisted of a system of inner and outer rods, with a cone tip 

attached to the inner rods in an attempt to eliminate the frictional resistance of the 

soil acting against the drill rods and impacting the overall resistance values. The 

penetration resistance was measured using a manometer at the ground surface, and 

corrected by subtracting the weight of the rods to give a true indication of tip 

resistance. Successful implementation of the penetration resistance data in 

evaluating pile capacity by engineers and researchers including Buisman (1935), 

Huizinga (1942) and others encouraged the further development of the mechanical 

cone penetrometer.

Shortly after the Second World War an improvement on the original Dutch cone 

design was proposed and subsequently implemented by Vermeiden (1948). As in 

earlier iterations this design only provided a measure of the tip penetration 

resistance; however it employed a significant change in the penetrometer geometry. 

This change added a conical section just above the cone, with the intent of 

preventing soft or loose soils from entering the gap between the inner and outer 

rods. In such conditions earlier designs were susceptible to this infiltration, thus 

contributing to erroneous measurements or inability to continue advancing the cone. 

This design, as seen in Figure 1.6, became known as the Dutch Mantle Cone.

13
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Figure 1.6 - Dutch Cone with Conical Mantle (Sanglerat, 1972)

Along with the Dutch Mantle Cone, a second type of mechanical penetrometer 

remains in use. The Begemann Friction-Cone was first used in 1953 and improved 

upon the Dutch Mantle cone by adding the ability to measure the local frictional 

resistance along the shaft of the cone, commonly referred to as the sleeve or skin 

resistance. The probe, as shown in Figure 1.7 is advanced by pushing both the 

inner and outer rods to a new measurement depth, and then pushing the inner rods 

and tip ahead of the system and measuring the point resistance. After 35.5 mm of 

movement the friction sleeve is engaged and both the point and friction sleeve 

advance in unison. The force required to advance the combined system is 

measured, and the difference between the initial point resistance and the combined 

resistance is recorded as the sleeve resistance. The advantage of measuring the 

sleeve resistance as well as the tip resistance is evidenced in the greater analytical 

power of CPT data, as discussed in the later sections of this report.

14
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Figure 1.7 - Begemann Type Cone with Friction Sleeve (Sanglerat, 1972)

Mechanical cone penetrometers have remained in use since their development, 

especially in developing countries because they are relatively rugged, inexpensive 

and simpler devices. The use of mechanical cones is limited though, as they do not 

perform well in very soft soils or soils with large variations in penetration resistance, 

especially highly stratified deposits.

Development of electric cone penetrometers, as seen in Figure 1.8, is believed to 

have begun in Berlin, Germany during the Second World War (Broms and Flodin, 

1988). This cone used a cable to transmit electric signals to the surface. De Ruiter 

(1971) is generally credited however with introducing the first true electric cone 

penetrometer capable of continuous measurement of both the point and friction 

resistance. The electric cone uses load cells or strain gauges to measure the tip and 

sleeve resistance, and transmit information to a user at ground surface using cables

15
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strung through the center of the drill rods. This design is advantageous as it allows 

for continuous measurements and electronic recording of resistance, and eliminates 

the need for two sets of rods. Electric cone penetrometers also allow for a 

continuous push of the drill string, whereas mechanical cones required the operator 

to advance the inner and outer sections of the cone separately. Advancement in the 

design of load cells and electronics also allowed for accurate measurements in very 

soft soils.

Figure 1.8 - Electric Friction Cone (Lankelma Cone Penetration Testing, Ltd.)

The many advantages of electric cone penetrometers lead to the rapid advancement 

in research and design of these devices. A significant amount of studies were 

conducted by the Delft Soil Mechanics Laboratory, as well as manufacturers and 

individual researchers in order to compare the performance of the electric cones with 

mechanical cones, and to optimize the geometry of the electric cone. As a result of 

this development most cone penetrometers currently in use conform to standardized 

dimensions and tolerances such as those outlined in ASTM D 5778, “Standard Test 

Method for Performing Electronic Friction Cone and Piezocone Penetration Testing 

of Soils” . This standard describes the cone penetrometer as a cylindrical probe 35.7 

mm in diameter having a conical tip with a 60 degree apex angle. Standard cones
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have a 10 ton tip capacity with a projected tip area of 10 cm2 and immediately behind 

the tip is a 13 cm long friction sleeve with a surface area of 150 cm2. In certain 

cases the projected area of the tip can vary from 5 to 15 cm2. A smaller projected 

area is advantageous in soft soils, as the tip capacity is reduced, allowing an 

increase in the sensitivity of the tip load cells. Larger cones are more rugged in 

design, and have the ability to house additional sensors. ASTM recommends that 

the friction sleeve dimensions for non-standard cones retain the proportions of 

friction sleeve of the 10 cm2 cone.

Following the development of the electric cone penetrometer the next major 

advancement in cone penetration testing came from the first European Conference 

on Penetration Testing (ESOPT-1) in 1974. At this conference a pair of papers were 

presented (Janbu and Senneset, 1974; Schmertmann, 1974) and in the years 

immediately following subsequent work was presented (Wissa et al., 1975; 

Torstensson, 1975) detailing the use of piezometer cones. These cones, while 

shaped and operated in a similar manner as electric cones, measured pore water 

pressure as they are advanced. These piezometer cones were used in combination 

with tip and friction resistance provided by electric cones by using the probes in 

adjacent boreholes. Baligh et al. (1980) suggested that the combination of these 

parameters could provide relatively good indications of the stratigraphy and 

overconsolidation ratio in fine grained deposits.

The successful use of these two probes led to the development of an electric cone 

capable of measuring the pore pressure as well (Roy et al., 1980; de Ruiter, 1981; 

Baligh et al., 1981; Campanella and Robertson, 1981). This combination of the two
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probe types is known as the piezocone, with the piezocone test referred to using the 

acronym CPTu. Piezocones use filters to allow the soil pore water pressure to be 

transmitted through a hydraulic circuit to a pressure transducer. Early piezocones 

had this filter element installed at various locations on the probe. Typical installation 

locations were at the tip of the cone, midway along the face of the cone, immediately 

after the shoulder of the cone, and along the shaft of the probe following the friction 

sleeve as shown on Figure 1.9.

rq ro OQ pq pq pq “ rq pq pq pq pc

3 4 5 6 7 8 9 ' 10 11

Figure 1.9 - Standard Designs and Filter Locations of Piezoprobes (1-2) and 
Piezocones (3-11) (Campanella et al. 1988)

Each location of the filter element has various advantages and disadvantages. For 

instance, a filter located at the tip of the cone is very sensitive to the changes in pore 

pressure as the cone is advanced, though this location also poses a significant 

threat of damage to the filter should a coarse layer be encountered.

It is important to note that the measured pore pressure, Uj, during penetration is a 

combination of two pressures. The first pressure which contributes to Ui is the

18
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hydrostatic pore pressure, a function of the groundwater conditions at the test 

location. The hydrostatic pore pressure is commonly referred to as the u0 condition. 

The second component of the pore pressure measured by the cone is the excess 

pore pressure (Au) generated in the soil during penetration of the probe. The excess 

pore water pressure is described in greater detail in Section 1.3.2.2.

A unanimous agreement on an optimal location for the filter element has yet to be 

reached, though the general trend in practice has shifted from the mid-face (ui) filter 

placement to the location immediately behind the cone (u2) as the preferred filter 

configuration. For research and special projects certain cones are available with 

elements at two or three locations, allowing the user to determine the effect of pore 

pressure on the measured tip and sleeve resistances.

Further development of the piezocone has focused on the optimization of geometry 

and operational functionality of the probe. Piezocone manufacturers and 

researchers have successfully implemented additional sensors into the piezocone 

for specialty testing purposes. Of these sensors, temperature and inclination 

sensors are often used to ensure that the standard piezocone is operating normally. 

For geotechnical applications these specialty cones include the seismic cone, lateral 

stress cone, acoustic cone, dynamic cone, miniature cone and the vibratory cone. 

As cones are able to continuously log data, specialty cones have been developed for 

geo-environmental site characterization as well. These cones are able to measure 

the electrical resistivity, pH, redox potential (Ollie et al., 1992) and the presence of 

hydrocarbons through laser-induced fluorescence (Hirshfield et al., 1984).

19
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Manufacturers have developed video cones as well, allowing the operator to see the 

material that the cone is advancing through.

1.3.2 - Piezocone Mechanics

1.3.2.1 - Tip and Friction Sleeve Load Measurement 

The point load and friction sleeve load measurements are determined by changes in 

the resistance of strain gauges attached to the cylindrical strain element within the 

cone. This change in resistance causes a change in the voltage output from the 

load sensors and is interpreted into units of force and pressure using calibration 

factors.

There are two general configurations for load cells found in commonly available 

piezocones. The independent load cell configuration features load cells that 

measure the effects from one specific source, either the point load or the friction 

sleeve load. Subtraction type cones are available as well; in such cones the load 

cells work in series on the same strain element. The point load cell is measured 

from the load cell at the base of the strain element. A step in the strain element then 

transfers the load from the friction sleeve to the upper portion of the strain element, 

which records the combined effect of point and friction loads. The sleeve resistance 

is then electronically evaluated by subtracting the measurement of the point load 

cell.

Schapp and Zuidberg (1982) indicate that the subtraction type cone is a more 

rugged design, as the strain element can be much larger than that of an independent 

type. However it must be noted that because of the larger forces the combined load
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cell must measure, there is a potential for the reduction of the accuracy of this 

friction sleeve measurement.

1.3.2.2 - Pore Pressure Measurement Location 

As mentioned in Section 1.3.1 of this report, piezocones have been developed with 

filters at various locations on the probe, as no consensus for a standardized location 

has been reached. It is however important to take into account the location of the 

pore pressure filter element when selecting a particular cone for use at a site, and for 

interpretation of the data.

For ease of communication, a standard nomenclature has been developed to 

describe the location of the filter element on the piezocone. As illustrated in Figure 

1.10, these locations have been denoted ui, u2 and u3, and likewise cones are 

referred to by their respective filter locations as Type 1, Type 2 or Type 3. The Ui 

location is used however to refer to a filter located at the tip of the cone or at the mid

face of the cone. Additionally some literature refers to the tip location as ut, the mid

face location as UfaCe, and the u2 location as ubt-
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Figure 1.10 - Typical Filter Element Location Nomenclature 
(After Mayne and Chen, 1994)

While the hydrostatic pore pressure (u0) is generally known, the filter location is 

known to affect the pore pressures measured, and therefore cause a 

misinterpretation of the excess pore pressures that are generated during advance. 

During advance in free draining materials, the excess pore pressure generated is 

typically negligible. When advancing the cone in low permeability soils high excess 

pore pressures can be generated at the tip. Shear stresses (deviatoric stresses) are 

exerted as well as the soil fails around the cone tip, and these stresses can yield an 

increase or decrease in pore pressure. Lunne et al. (1986a) have reported findings 

that indicate the pore pressures measured at the tip of the cone are very similar to 

those measured along the face of the cone. For cones measuring the pore pressure 

in the u2 or u3 locations the pore pressures measurements can vary greatly from the 

pressure at the tip or face of the cone.

In soft normally to moderately over consolidated soils this shear stress will yield a 

positive pore pressure as the soils contract, while decreases in pore pressure have
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been noted in heavily overconsolidated soils due to their dilative nature. In either 

case, the pore pressures will generally decrease past the shoulder of the cone as 

the normal stress is reduced. For the case of the contractive soils the excess pore 

pressures gradually dissipate with distance from the tip. This behavior is noted in 

Figure 1.11, which compares the pore pressures measured at various locations 

along the piezocone in lightly overconsolidated Bothkennar clay (Powell and 

Quarterman, 1991) as the pore water pressure recorded at the tip is greater than 

that measured at the U2 location, which in turn is greater than that measured at the u3 

location.

Pore water pressure (MPa) 
0.2 0.4 0.60.0 0.8 1.0

&  10

20
Figure 1.11- Effect of Filter Element Location on Measured Pore Pressures in 

Normal to Moderately Overconsolidated Clay (After Powell and Quaterman, 1991)

In dilative soils this behavior is especially pronounced, and can lead to difficultly in 

interpretation and further computation. In some cases a negative pore pressure has
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been recorded due to this behavior (Campanella et al., 1982; Torstensson, 1982). 

Figure 1.12 presents a comparison of the pore pressures recorded at various 

locations on the piezocone in a heavily overconsolidated Gault clay as an example 

of the extreme pore pressure gradient which can occur (after Lunne et al, 1997). 

The pore pressure measured at the u2 location is significantly less than that 

measured in the Ui position, while the pressure measured at the u3 location is near 

zero.

Pore water pressure (MPa)
= .0 .5 0 0  0.5 1.0 1.5 2.0 2.5 3.0

B  10

18 •

Figure 1.12 - Effect of Filter Element Location on Measured Pore Pressures in 
Heavily Overconsolidated Clay (After Lunne et al., 1997)

The choice of filter location for a particular piezocone also has an effect on the pore 

pressure dissipation characteristics, the effectiveness in defining stratigraphy and 

the end area corrections to the tip and sleeve resistance measurements. End area 

corrections account for the water pressure acting on the different projected areas of
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the tip and friction sleeve that can impact the true penetration resistance. Figure 

1.13 schematically presents the unequal areas which impact the piezocone tip.

FRICTION SLEEVE

Figure 1.13- Unequal End Areas of the Piezocone (Jamiolkowski et al., 1985)

When conducting a dissipation test with the piezocone, by halting the penetration 

and allowing for the decay of excess pore pressures, a pressure gradient such as 

that observed in heavily overconsolidated soils can result in an initial rise in pore 

pressure when measured in the u2 location. In normally consolidated fine grained 

soils, such as those found at the research site, the pressure gradient is not as 

drastic, and it has been reported that dissipation data behind the tip is in good 

agreement with data measured at the tip.

When a detailed stratigraphic profile is required, it is suggested that the pore 

pressure be measured on the face or tip of the cone, especially in heavily 

overconsolidated soils (Baligh and Levadoux, 1980). Filters in this location will

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



provide sharp definitions of changes in pore pressure, which can be beneficial in 

determining changes in stratigraphy. Some authors suggest that because the pore 

pressures are only reduced by between 10% and 30% at the shoulder in normally 

consolidated clays, as reported by Mayne et al. (1990), that the advantages of this 

filter location for reasons such as a reduced possibility for damage to the filter 

element justifies the use of a Type 2 cone for stratigraphic definition (Campanella 

and Robertson, 1988).

While the selection of the filter element location may be a compromise depending on 

the available equipment and the purpose of the investigation, it is important to note 

that the filter location can affect the data and therefore the interpretation of soil 

properties. It is therefore critical that the end users of data from piezocone profiles 

are aware of the filter location and its potential effect on measured pore pressures.

1.3.2.3 - Filter Element Considerations 

The filter element also plays an important role in the quality of data produced during 

the advancement of the piezocone. A fast response time to changes in pore 

pressure is important, and research has suggested that this is a function of the 

compressibility and viscosity of the saturation fluid, the permeability of the porous 

element, the area to wall thickness ratio of the element, the rigidity of the element 

and finally the air entry resistance of the filter element (Smits, 1982).

No significant difference in pore pressure response has been found between water 

and glycerin, or water and silicone oil (Bruzzi and Battaglio, 1989; Larsson and 

Mulabdic, 1991), therefore an optimization of the filter material must be considered. 

A high permeability of the filter element material is desirable as this can allow the
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pressures to be transmitted quickly; as is a high air entry resistance, to maintain 

element saturation. These two properties are conflicting though, as most filters 

cannot exhibit high values for both.

An element with a high rigidity is crucial as well, especially for piezocones with the 

filter element at the tip. In such cases, when advancing the probe through stiff soils 

the filter can compress, leading to artificially high pore pressures. A 30 percent 

increase in pore pressure has been reported in such cases (Battaglio et al., 1986). 

Both steel and rigid ceramic filters are available for use when these conditions are 

encountered, however if penetrating through coarse grained materials, low ductility 

steel filters are subject to abrasion and reduction in permeability.

Piezocones with filters located at the u2 or u3 locations can take advantage of filter 

elements manufactured with polypropylene, a low rigidity porous plastic material, 

with less concern for the compressibility affecting pore pressure measurements. 

Polypropylene filters saturated with a high viscosity fluid have the advantage of high 

permeability and high air entry resistance.

It has been suggested by Campanella and Robertson (1988) that filter elements be 

changed following each completed profile, as clogging or a reduction in permeability 

may occur due to abrasion.

1.3.3 - Piezocone Testing System

1.3.3.1 - The Hoaentoaler 10 Ton Cone 

The piezocone used for this investigation was an electric 10 ton subtraction cone 

purchased from Hogentogler & Co., Inc. Since the purchase of the piezocone the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CPT division of Hogentogler & Co., Inc. has been acquired by Applied Research 

Associates (ARA)A/ertek. All references to the manufacturer imply ARA/Vertek 

unless otherwise noted.

During the work performed at the RWS site, the piezocone was equipped with four 

sensors, enabling the measurement of tip resistance, sleeve resistance, pore water 

pressure and probe inclination. This cone has is also equipped with a geophone for 

seismic use; however this feature was not used during the testing program. The 

piezocone uses a standard 60 degree tip with a 10 cm2 projected area, and a 13 cm 

long friction sleeve with a total surface area of 150 cm2. The pore water pressures 

are measured behind the tip, in the u2 position.

The cone tip is machined to allow the saturation fluid to transmit soil pore water 

pressures through the filter to the pore pressure transducer, which is housed within 

the strain element. The pore pressure transducer has a capacity of 3450 kPa (500 

psi) through a range of 7.5 volts. The probe uses a polypropylene filter element 

available from the probe manufacturer which is 5 mm thick (Figure 1.14).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Paths to pressure transducer

Figure 1.14 - 60 Degree Cone Tip and Filter Element
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The cone tip threads through an equal end area adaptor into the strain element. 

The lower portion of the strain element is fitted with strain gauges that capture only 

the tip resistance. The friction sleeve is fitted over the strain element prior to the 

installation of the cone tip and has a stepped inner diameter such that it can apply a 

load to the upper portion of the strain element. Strain gauges are fitted to this upper 

portion as well and record the combined tip and sleeve resistance. The friction 

sleeve is secured to the probe with the cone tip (Figure 1.15).

Wires from the strain gauges and pore pressure transducer run through the center of 

the strain element as well as through a collar above the friction sleeve and into the 

electronics housing. The electronics housing contains the inclinometer, which has a 

range of +/- 15 degrees. The cone tip has a capacity of 100 MPa while the friction 

sleeve capacity is 1000 kPa, each over a span of 7.5 volts. This housing can be 

disassembled by the user to inspect or repair the strain gauge wiring, however the 

manufacturer recommends against this as disassembly and reassembly could easily 

damage the electronics. Above the electronics housing is the coupler housing to 

which an electronic cable is connected to transmit data to the ground surface.

At the ground surface the cable is connected to a junction box which is equipped 

with a 15 volt DC linear power supply powering all sensors in the cone. Rather than 

having a ground for each sensor output (channel) the junction piezocone has a 

common ground for all channels. The power supply is a low-noise unit to help 

prevent interference between channels.
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Figure 1.15 - Photograph of 10 Ton Hogentogler Cone 
(Scale in inches)

1.3.3.2 - Depth/Velocity Transducer 

To allow the operator to correlate piezocone output to the depth of the probe, and 

monitor the advance rate of the drill string, a combination position and velocity
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transducer is installed within the data acquisition chain. At the RWS site a model 

DV301 Cable Extension Transducer, manufactured by Celesco Transducer 

Products, Inc. was used for this purpose. This transducer uses a precision 

potentiometer to measure position, and a self generating DC tachometer to provide 

the velocity of a thin stainless steel cable.

The transducer is mounted at the drill head of a drilling rig, and the cable is attached 

to a stationary point on the drill rig. As the drill rods are advanced via pushing by the 

drill head the stainless steel cable is retracted into the transducer. The 

potentiometer outputs a voltage correlating to the cable extension distance, while the 

tachometer outputs a separate voltage correlating to the angular velocity of the spool 

of stainless steel cable.

1.3.3.3 - Data Acquisition System 

A data acquisition system is required to receive, process and store the outputs from 

the sensors in the piezocone and from the position/velocity transducer. The data 

acquisition system consists of three major devices; a junction box; a data switch / 

analog to digital converter; and a portable computer. A schematic of the data 

acquisition system is presented in Figure 1.16.
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Figure 1.16- Schematic of the Data Acquisition System for Piezocone

The junction box is externally powered and directly receives the voltage output of 

sensors from both the piezocone and the position/velocity transducer. Each output 

voltage is treated as a separate channel in the junction box and is sent via a single 

cable to the data acquisition unit.

The data switch unit is a model HP 34970A, manufactured by Hewlett Packard. This 

unit uses a high-precision 16-Channel Reed Multiplexer module to accept and 

process each channel, and is capable of high speed scanning of active channels. 

The data switch unit captures six analog data outputs from the junction box; sleeve 

resistance, tip resistance, pore pressure, inclination, depth and penetration rate. 

The individual output voltages of these six channels are then scaled according to the
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calibration factor of each sensor and digitized for further processing by the computer. 

While the data switch is capable of handling 600 readings per second on an 

individual channel, the RS-232 interface from the HP 34970A to the computer has a 

limited data transfer rate. It was determined that a scanning interval of 0.2 seconds 

per channel would provide sufficient accuracy without overloading the buffer of the 

RS-232 interface.

A portable computer was used to accept and store incoming data from the HP 

34970A unit. Data collection was handled by the Agilent BenchLink Data Logger 

v1.5 software. This software allows the operator to interface with and adjust 

scanning properties of the data switch. In addition to storing the incoming data the 

software displays the measurements from each data channel in real time as shown 

in Figure 1.17. At the conclusion of a piezocone profile the data is then saved in a 

spreadsheet format for further manipulation.
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Figure 1.17 - Screen Capture of the Agilent BenchLink Software

1.3.4 - Filter Element Saturation

Accurate pore pressure response during a piezocone test is recognized to be 

dependent on the complete saturation of the hydraulic circuit leading to the pore 

pressure transducer (Campanella et al., 1981; Battaglio et al., 1981; Lacasse and 

Lunne, 1982). Proper saturation of the filter element and the hydraulic circuit is 

critical for accurate measurement of pore pressures. A loss of complete saturation 

allows air to mix with the saturation fluid. Air is approximately 10,000 times more 

compressible than water, as well as silicone oil. As a result the piezocone will not 

accurately measure the pore pressure as the pressure at the transducer cannot 

reach equilibrium with the external pressure due to the volume change from the 

compression of air and the continuous advance of the probe. Incomplete saturation 

of the filter element or entrapped air within the circuit will lead to a delay in the
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response of the sensor to both increases and decreases in the soil pore water 

pressure.

Common saturation fluids are de-aired water, glycerin and silicone oil. Each fluid 

has been used with success, however the low viscosity of de-aired water can cause 

the filter element to become unsaturated in coarse grained materials, in unsaturated 

clays, or prior to insertion in the borehole. For work performed in soft, low 

permeability clays, as are found at the test site, the piezocone manufacturer 

recommended the use of silicone oil with polypropylene filter elements. This 

combination combines a high permeability filter element, allowing faster response to 

pore pressure changes, with a low viscosity saturation fluid, which provides a high 

air entry resistance.

Silicone oil is not miscible with water, and generally requires a more complex 

saturation process when compared to the use of de-aired water. The laboratory filter 

saturation process consisted of a sealed vacuum chamber, connected to a high- 

vacuum pump with a dessicator and vacuum gauge inline. New unsaturated 

elements were placed in the vacuum chamber alongside a container of silicone oil. 

The silicone oil used for saturation was Methyl Silicone 10,000CS, manufactured by 

Nye Lubricants. After a period of 18-24 hours the vacuum chamber was jarred, 

causing the elements to fall into the silicone oil, where they remained for upwards of 

48 hours under continued vacuum. A set of pre-saturated filters was purchased from 

the manufacturer as well to provide an additional supply for field use.
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1.4 - Dilatometer Testing

1.4.1 - Dilatometer History

The Flat Dilatometer Test (DMT) was developed in Italy in 1980 by Silvano Marchetti 

and is currently used in more than 40 countries, both for research and in practice. 

The dilatometer is a thin blade with a flexible circular steel membrane on one face 

which is advanced into the ground for testing at 15 to 20 cm intervals (Figure 1.18). 

The dimensions of the blade have been standardized (ASTM D 6635) to be 15 mm 

thick and 96 mm wide. The taper of the blade is 50 mm with an apex angle of 24 to 

32 degrees. The thin steel membrane is mounted flush to the surface of the blade, 

and held in place with a retaining ring and small machine screws. The membrane is 

60 mm in diameter and is typically 0.20 mm thick, though 0.25 mm thick membranes 

are available.

Figure 1.18- Flat Dilatometer Blade with Flexible Steel Membrane
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The dilatometer has proven successful in determining basic geotechnical soil 

properties, and performs especially well in settlement analyses. The test is defined 

as a penetration test rather than a pressuremeter test by Marchetti (1980), as the 

test distorts the in situ stress and strain conditions by displacement during advance 

of the probe. This test advances a thin steel blade through the soil, and at test 

depths expands a thin steel membrane using pressurized gas. The pressures 

required to expand the membrane to specific displacements can then be used to 

estimate soil properties. The expansion of the membrane during the flat dilatometer 

test does not bring soil to a failure state, but instead records pressures at specific 

displacements.

An advantage to using the DMT is that the shallow angle of the blade (20 degrees) 

reduces disturbance during penetration relative to the CPT, therefore there is less 

disturbance of the in situ stress-strain state the soil adjacent to the membrane. This 

effect is presented in Figure 1.19, created by Baligh (1975) to display the amount of 

disturbance caused during penetration of a cone shaped object, and a wedge 

shaped object.
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CONE WEDGE

Figure 1.19 - Effect of Geometry on Distortions in Clay (after Baligh, 1975)

Few changes have been made to the overall design or operation of the device since 

its introduction, with the exception of special research probes equipped with pore 

water pressure transducers and/or sensors to monitor the continuous displacement 

of the membrane. The devices which have been instrumented with these 

components allow for a better understanding of the response of the soil during the 

expansion of the membrane.

1.4.2 - Operating Principle of the Dilatometer

The Flat Dilatometer test equipment consists of two major systems, the control unit 

at surface level and the dilatometer blade below ground. These two systems are 

joined using a pneumatic-electrical cable that is strung through the drill rods. The 

drill rods used are generally those used for CPT soundings, and the dilatometer 

blade may be advanced using conventional drilling rigs, cone penetrometer rigs, or a 

portable frame with hydraulic ram. In some cases the equipment may be driven 

through especially hard or cemented strata, though this must be done with caution to 

not damage the equipment.
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Within the dilatometer blade, housed behind the membrane are components of the 

buzzing alarm system that indicates the position of the membrane at specific 

displacements (Figures 1.20 and 1.21). The pneumatic-electrical cable is used to 

provide pressure to the membrane, and the electrical signal for the buzzer. The test 

begins as pressure is applied and the membrane lifts off of the sensing disk (typically 

0.05 mm displacement) this displacement the A reading is made. With increased 

pressure the membrane expands further and at 1.1 mm displacement, the B reading 

is recorded. As the pressure is released after the B reading the membrane returns 

to the lift off displacement of 0.05 mm. At this point the C reading is recorded from 

the pressure gauges.
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Figure 1.20 - Schematic of Membrane Displacement Mechanism 
(Marchetti et al., 2001)
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Figure 1.21 - Disassembled View of Dilatometer Blade Membrane (Marchetti, 2001)

The control unit consists of both low-range (0 to 10 bar) and high-range (0 to 60 bar) 

dial gauges that are used to record the A, B and C pressures (Figure 1.22). Two 

ranges are used to allow for better accuracy when measuring very soft materials. 

The two gauges are connected in parallel, enabling the user to monitor both gauges 

where needed. Should the low-range gauge reach its maximum measurable 

pressure the system will automatically exclude the gauge to prevent damage. 

Valves are housed within the unit to control gas flow to the dilatometer blade, and to 

vent the system to deflate the membrane. A main valve is used to isolate the control 

unit from the gas source, while secondary valves are used to control the rate of flow 

in small increments. The pressure source to inflate the dilatometer membrane is 

connected to the control unit with pneumatic tubing. The gas pressure tank is fitted 

with a regulator as a safeguard against over inflation and dry nitrogen is the 

recommended gas (ASTM D 6635). A buzzing signal alarm is mounted in the 

control unit housing, which also contains the connections for the pneumatic-electrical 

cable, an electrical ground cable, and calibration equipment.
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Figure 1.22 - Dilatometer Control Unit
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CHAPTER II

SITE CHARACTERISTICS

2.1 - Site History

The Regional Waste Systems, Inc. (RWS) Ashfill/Balefill Facility in South Portland, 

Maine as shown in Figure 2.1 is located approximately 3.2 kilometers (2 miles) west 

of the Portland International Jetport, and 3.2 kilometers to the north and west of the 

I-95/I-295 interchange.

a

|||:

t§i

Figure 2.1 - Location Map, RWS Ashfill/Balefill Facility

The site has used phased design and filling operations throughout its lifespan to 

account for changes in the strength of the underlying soft silty clays and to maintain
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adequate factors of safety against failure. In addition to the phased operation of the 

facility, the site has been well instrumented to monitor the behavior of the clay 

stratum with time. The site wide monitoring installations are discussed in greater 

detail in later sections of this report.

The original design and permitting process for the RWS facility was completed in 

1985 by E.C. Jordan, Co. This design planned for a 20 year operating life span at 

the facility, with three distinct filling phases. The Maine Department of 

Environmental Protection (MeDEP) approved the multi-stage design and granted 

permits for the construction and filling of the Phase I cells in 1988. The Phase I cells 

consisted of Cells 1a, 1b and 2, which are located in the central portion of the site, 

as seen in Figure 2.2. During Phase I a stability berm was constructed along the 

east and west sides of cell 1b to counteract the driving forces of the ash fill, thus 

maintaining a minimum factor of safety against a deep rotational slope failure.
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Southern Expansion

Figure 2.2 - RWS Landfill Schematic

Phase II consists of two separate filling operations, referred to as Phase lla and lib. 

Slope stability analysis and design for Phase II began in 1993, and in the spring of 

that year MeDEP approved the construction of the Phase II cells. Approval for the 

placement of waste in these cells was granted between June of 1994 and January of 

1995.

Phase lla consisted of the filling of cells 3a, 3b, 4, 5a, 5b, and 6. In addition stability 

berms varying between 2.75 and 3.1 meters high were constructed north of cell 1a 

and across the entire southern side of the landfill to resist the driving forces 

additional ash fill would create and maintain adequate factors of safety. Material 

required to construct these new berms was largely taken from the berms to the east
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and west of cell 1b. While the cell 1b berms were necessary during the initial filling 

phase of the landfill, the placement of ash in cells adjacent to cell 1b allowed for the 

safe removal of these berms. Phase lib consisted of placing a layer of waste over 

the entire landfill, with a peak thickness of approximately 9.75 meters (el. 31.3 m) in 

the center of cell 1b. Stability berms were once again required at the site to increase 

the factor of safety for side slopes and in hopes of reducing the rate of shear strain in 

the soft clay stratum. These berms were constructed on both the north and east 

sides of the facility during Phase lib filling. This phase was completed during the 

winter of 2005.

Phase III is another vertical expansion similar to Phase lib. In Phase III the slopes 

were once again designed to meet or exceed a minimum factor of safety against 

global failure of 1.3. The final maximum elevation proposed in this phase is 36.2 

meters, in the center of cell 1 b.

An application for a 20-acre Southern Expansion was completed and approved by 

the MeDEP in 2000. This proposed expansion will be required for the continued 

operation of the RWS facility in the upcoming years, as the end of the 20 year 

projected life span is nearing. Construction activity began at this location in the fall 

of 2005 with a stability berm placed along the southern side of the existing landfill. A 

fourth phase of construction and filling at the facility has been proposed. This final 

phase would place a layer of waste over the southern portion of the existing landfill. 

While Phase IV is not proposed to begin for 20 to 25 years, the underlying clay 

stratum will require strength gain to make this proposal feasible from a stability 

standpoint.
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2.2 - Subsurface Conditions

2.2.1 - Stratigraphy

Geotechnical investigations conducted by E.C. Jordan, Co. (1985) for the initial 

design and a subsequent supplemental investigation prior to the Phase lla stability 

analyses, performed by Peterson-Rabasca Geoengineers (1994) have characterized 

the subsurface conditions at the site in a series of boreholes. This data has been 

supplemented with various in situ tests and laboratory testing of undisturbed 

samples. The overburden soils generally consist of glacio-marine silty clays with 

interbedded fine sand layers at depth. These overburden soils overlie glacial tills 

and bedrock.

The silty clays present at the site consist of a weathered stiff olive-brown crust over a 

near normally consolidated soft gray clay layer. Both of these layers are of the 

Presumpscot Formation. The weathered crust typically extends to a depth of 3.05 

meters across the site, while the soft gray silty clay varies between 9.15 and 21.3 

meters thick within the footprint of the landfill. The soft clay is generally 9.15 to 12.2 

meters thick in the northern portion of the site, increasing in thickness towards the 

center of the landfill. Field shear vane profiles have classified this gray clay as 

sensitive to very quick. The soft layer gradually tapers to the south of the site, and is 

not present in the Southern Expansion area.

Towards the lower extent of the soft gray silty clay layer sand lenses of gradually 

increasing thickness are observed. The granular material and glacial till is generally

1.5 to 9.15 meters thick across the site and consists of dense moderately stratified 

fine sands with varying amounts of gravel and silt. Boring logs from the 1994
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exploration program note bedrock surface elevations varying between +6.1 meters to 

-1.2 meters with an average ground surface elevation of 21.3 meters.

The weathered olive-brown crust is generally stiffer than the soft gray clay, with 

undrained shear strengths ranging from 143.6 kPa (3000 psf) at the surface to 

approximately 23.9 kPa (500 psf) at the interface with the soft gray clay. Previous 

investigations have shown that the soft gray clay has an undrained shear strength 

varying between 12 and approximately 33.5 kPa (250 and 700 psf). An uncorrected 

field shear vane strength profile from tests performed at locations which have not 

been influenced by the loading at the RWS Facility is shown in Figure 2.3. 

Laboratory testing has indicated that the soft gray clay generally has a moisture 

content on the order of 10 to 15 percent greater than the weathered crust. The lower 

measured undrained shear strengths within the clay control the global stability at the 

site.
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Figure 2.3 - Undrained Shear Strength of Virgin (unloaded) Soil at the RWS
Ashfill/Balefill
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2.2.2 - The Presumpscot Formation

The Presumpscot Formation clays found at the site were deposited in the 

Pleistocene era, towards the end of the last great ice age. As the glaciers which 

covered much of New England formed, the immense weight of the ice caused a 

depression in the earths crust. With the increase in global temperatures the glaciers 

retreated and the depressed crust did not immediately rebound. This allowed the 

low lying areas to be flooded with seawater forming a large relatively shallow sea. 

Melt water from the retreating ice sheets carried sediment into this sea, where it 

deposited over time forming the Presumpscot Formation.

The formation is characterized by its soft clays overlying relatively thin layers of 

glacial till over bedrock. Silt size particles, rather than clay sized particles are the 

dominant material in this formation. These particles fall into the category of rock 

flour, as they originate from the bedrock of the region which was finely ground by 

glacial action. Minerals present in the fine grained portions of the formation include 

quartz, feldspars, muscovite, biotite and orthoclase (Beem, 2004). Presumpscot 

Formation clays have been noted to include higher amounts of quartz and feldspar in 

relation to the silt size particles, which tend to include higher amounts of micas.

While the formation may appear to be one massive unit throughout its depth, at 

shallower depths it has been observed to be comprised of alternating thin layers of 

very fine sands, silts and clays. Deeper in the formation this layering has not been 

observed and it appears to be a relatively uniform clay deposit. At the RWS facility 

there have been no observations of layering, though this does not entirely rule out 

the presence of alternating thin layers. Typically the layering within the shallower
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depths is directly observed in the exposed faces of roadway cuts. Large cuts have 

not been made at the RWS site exposing the clay, and in situ testing methods used 

at the site were not able to detect the boundaries of these very thin layers. At the 

RWS facility a discontinuity has been observed in shear strength profiles for areas 

where clay thickness is greater than 15.25 meters. This anomalous zone is 

generally 1.8 to 2.4 meters thick and occurs between 7.6 and 12.2 meters elevation. 

This zone may be an occurrence of a large variation within the stratum or be 

indicative of the change to the deeper unit of the Presumpscot Formation.

2.2.3 - Groundwater Conditions

Initial design investigations performed by E.C. Jordan, Co. in 1985 noted two 

groundwater units that exist at the landfill site. An upper unit exists in the clay 

stratum and is generally near the original ground surface. Groundwater 

observations at the location of the field shear vane testing (Boring B-11) noted a 

depth to groundwater of 0.15 meters (el. 21.03 m). The lower unit exists in the 

granular material and is confined by the overlying clay stratum and the underlying 

glacial till and bedrock. Across the landfill site the piezometric head measured at the 

interface of the clay stratum and the granular material has been observed to vary 

between 2.1 and 3.05 meters above the ground surface.

The general trend of groundwater flow across the site is in an east-northeast 

direction, while the two groundwater units at the site contribute to an overall vertical 

upward flow.
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2.2.4 - Soil Properties

The results of laboratory testing performed on undisturbed piston samples have 

been provided by Soil Metrics, LLC for the RWS site. This testing was performed in 

1985 and 1994 by Haley & Aldrich, Inc. and MIT. Testing included the determination 

of Atterberg limits, natural moisture content, consolidated undrained triaxial tests, 

direct simple shear tests and one-dimensional consolidation tests. Additional testing 

has been performed in 2006 at the University of New Hampshire (UNH) from 

samples recovered at the B-11 test location. This work included several 

determinations of Atterberg limits and natural moisture content. In addition one

dimensional consolidation and unconfined unconsolidated triaxial tests were 

performed. The laboratory testing procedures are discussed in Section 3.6.

Samples from the B-11 test location were found to have liquid limit (wL) ranging 

between 39.6 and 48% with an average value of 43.7%, and a plastic limit (wP) 

varying between 20.0 and 29.4% with an average of 24.2%. Table 2.1 presents the 

results of the Atterberg limits tests performed specifically for this research.

Table 2.1 - Results of 2006 Atterberg Limits Tests

Liquid Plastic Plastici|p
El. (m) Limit Limit ln d ex |||

(wl) (wP) (PI) 1 1

18.4 48.0% 25.1% 22.9%
17.5 47.0% 28.6% 18.4%
16.6 42.8% 20.0% 22.8%
14.8 43.8% 20.1% 23.7%
13.6 44.4% 29.4% 15.0%
12.0 39.6% 23.9% 15.7%
10.5 40.3% 22.2% 18.1%
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The natural moisture (wN) content is typically well above the liquid limit indicating a 

sensitive clay, and varies from 41 to 56.2%. These properties generally agree with 

the results of the previous testing conducted at the site, with the exception of the 

liquid limit. The UNH samples were found to be within the range of liquid limits 

previously reported, though the average value of 43.7% is approximately 8.5% 

greater than the earlier work. The results of the index tests are provided in Figure

2.4, with data from the 2006 laboratory testing highlighted in red.
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Figure 2.4 - Summary of the Natural Moisture Content, Preconsolidation Pressure, 
Overconsolidation Ratio and In Situ Void Ratio from Laboratory Tests
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The stress history, as determined by one-dimensional consolidation tests are also 

shown in Figure 2.4. The maximum past pressure, o ’p, decreases in magnitude from 

the stiff brown silty clay to a minimum of 57.5 kPa at approximately 15.5 meters 

elevation where it then increases in a near linear fashion. The range of maximum 

past pressures in the soft gray silty clay observed in laboratory testing is 57.5 kPa to

134.1 kPa. From the maximum past pressure the overconsolidation ratio (OCR) is 

determined, as shown in Figure 2.4. In situ tests indicate the OCR is above 10 in the 

stiff brown silty clay crust. The OCR decreases in the soft gray silty clay to an 

elevation of approximately 12.2 meters, below which the OCR remains steady at an 

average value of 1.35.

Consolidation properties, as determined by the one-dimensional consolidation tests 

performed in 2006 are shown in Table 2.2, while an overall summary of 

consolidation tests is presented in Table 2.3. Also included in this table are the input 

parameters presented in the 2002 In-Situ Vane Shear Testing Report prepared by 

Soil Metrics, LLC for a settlement analysis performed at the site using the TCON 

software developed by TAGAsoft, LTD. Consolidation curves from the 2006 

laboratory tests are presented in Appendix G.

Table 2.2 - Results of 2006 One-Dimensional Consolidation Tests

El. (m)
Compression

Index
Recompression 

Index (C,)
Overconsol dation 

Ratio (OCR)

Precon solidatidaS 
Pressure (ct'p] M

17.1 0.586 0.012 2.75 86.2
15.1 0.529 0.014 1.50 79.5
13.6 0.118 0.002 1.35 91.0
10.5 0.565 0.018 1.55 106.8
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Table 2.3 - Consolidation Properties of the Soft Gray Silty Clay Layer

Summary^ of 1-Dimensiona Consolidation Tests 1
Range Average

Modified Compression Index (Cce) 
UNH (2006) 

Haley & Aldrich (1994) 
Haley & Aldrich (1985) 
TCON Analysis (2002)

0.366 to 0.439 
0.320 to 0.460 
0.356 to 0.562 
0.350 to 0.400

0.392
0.375
0.433
0.372

Modified Recompression Index (Cre) 
UNH (2006) 

Haley & Aldrich (1994) 
Haley & Aldrich (1985) 
TCON Analysis (2002)

0.008 to 0.014 
0.002 to 0.014 
0.015 to 0.027 
0.010 to 0.015

0.010
0.009
0.022
0.014

Modified Creep Index (Cae) 
UNH (2006) 0.0030 to 0.0046 0.0036

Horizontal Permeability (kh) (ft/day)
EC Jordan (1985) 2.27*1 O'3

Vertical Permeability (kv) (ft/day)
UNH (2006)

EC Jordan (1985)
3.7*1 O'5 to 3.5*1 O'4 

2.83*1 O'3 to 2.55*1 O’4
1.81*10‘4

Coeff. Of Consolidation (cv) (ft2/day) 
UNH (2006)

TCON Analysis (2002)
0.048 to 0.155 0.096

0.060

Where the modified compression indices are expressed as:

C.
Cce = — — [2-1]

ce 1 + e 1 J

C „ = ^ 7  P-2]1 + e

1 + e
[2-3]
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2.3 - Geotechnical Monitoring

Monitoring of the RWS site has been performed for over 10 years to aid in the 

design of each construction and filling stage, as well as providing an early indicator 

of potential failure. There are three types of installations monitored at the site; 

inclinometers, piezometers and settlement platforms. Waste placement locations 

and waste loading rates have been recorded as well. Data collected at each 

installation can then be reduced to determine the stability of the landfill and to verify 

that maximum rates of displacement are not surpassed. Each installation is 

recorded at regular intervals, and when data recovered is outside of the expected 

range of results a system is in place to increase the frequency of monitoring. 

Though instrumentation locations have changed to accommodate construction 

activity, current instrumentation consists of six inclinometers, 30 vibrating wire 

piezometers, and 14 settlement platforms.

With regards to stability at the site, the inclinometer, piezometer and settlement 

platform information is critical. Of these three monitored parameters the inclinometer 

data is perhaps most important as it can provide magnitudes and rates of 

displacement continuously with depth. Inclinometers therefore can identify the 

general location of a failure surface as it develops. As waste is placed at the landfill 

the values recorded from these three installations is expected to change, and as 

waste loading slows or ends, a reduction in the rate of change is expected to occur.

Inclinometers have been installed around the perimeter of the landfill, and record the 

amount of horizontal displacement with time across the entire clay stratum. With the
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measurement of horizontal displacement a shear strain can be calculated and 

compared to the strength of clay measured in laboratory tests. Laboratory testing of 

clay samples recovered from the RWS facility exhibit strain softening. As the 

laboratory sample is loaded it will exhibit a peak strength, after which the material 

does not catastrophically fail, but it begins to lose strength. Multiple laboratory tests 

have indicated that the range of maximum shear strains above which the specimen 

will begin to lose strength is 2 to 4 percent. If an unexpected rate change is 

observed, or the cumulative amount of shear strain has surpassed the 2 to 4 percent 

maximum within the clay stratum, failure may be imminent. Settlement platforms 

measure the vertical deformation in the clay layer as a result of settlement due to 

waste loading. The reactions to loading measured at settlement platforms and 

piezometers, which measure the pore pressure increase and rate of dissipation, can 

be predicted to a relative degree. These values are monitored as a sudden and 

unexpected change in the rate of settlement or pore pressure dissipation after 

loading has stopped may also be indicative of progressive failure.

Stability at the site will be heavily dependent on the unit weight of the material being 

placed into cells, as well as the geometry of these cells. If unit weights or slopes 

exceed the maximum values used in design, failure may occur. It is therefore vital 

that these values be measured and construction activity be monitored on a periodic 

basis. The geometry of each cell is checked periodically by a survey of the landfill 

site. The unit weight of the ash and baled waste that is being placed is quite 

variable. Two methods are in use at the RWS facility to monitor the unit weight of 

the material being placed. The first method is a direct calculation based on the 

surveyed geometry of the landfill and the weight recorded as being placed. The
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weight of material placed in each cell is determined by recording the loaded and 

unloaded weights of vehicles transporting ash to the landfill. Cell volumes can be 

calculated from this information, and the general unit weight of a cell can be 

calculated. In conjunction with this method, the pore pressure response, as 

measured with the piezometers is observed as a cell is loaded. While the pore 

pressures may not respond fully to the weight of the material due to stress 

dissipation and the locations of piezometers, this second method is generally useful 

for comparison to other calculated information.

While the strength gain in the clay stratum is not monitored through the five means 

described previously, this data is important for future design considerations. Field 

Shear Vane testing programs have been conducted in 1994 and 2002 at the site to 

determine the change in strength over time. An additional analysis of the change in 

strength at the site will be possible using the undrained shear strength calculated 

through CPTu profiles conducted during this study.

2.4 - Geotechnical Monitoring Assessment

The geotechnical monitoring installations have thus far performed well in indicating 

areas of concern in the clay stratum at the site. Periods during which rates of 

displacement, or pore pressure dissipation have exceeded guidance criterion set by 

the design engineers have accompanied periods of activity in specific cells. When 

such events occur the concerning data has been shown to return to expected values 

at the conclusion of filling activities. This is important to note as an example of 

successful monitoring of the stability of the landfill. These installations have served
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as early warning systems and if the response in the clay stratum had continued to 

increase at unacceptable rates, corrective action could be taken before failure. Had 

the installations not been present the potential for failure may not be known until 

after failure had occurred.

During the lifespan of the landfill stability berms have been constructed to control the 

rate of shear strain in the clay. These berms have been constructed prior to 

additional filling in adjacent cells in response to large strains observed from the 

inclinometer measurements. Large shear strains have been observed at the RWS 

facility since the monitoring began in 1993. The cumulative shear strain observed in 

certain layers of the clay stratum is approaching the maximum shear strain before 

failure occurs, as denoted by substantial strength loss. Inclinometer data has 

observed this behavior, and has found that it occurs within discrete 1.8 to 2.45 meter 

(6 to 8 feet) thick zones between 7.6 and 12.2 meters (25 and 40 feet) elevation. 

Current cumulative shear strains across the site are approaching, or have exceeded 

the peak range of 2% to 4%, ranging from 2.1% in the North to 3.4% in the East. An 

example of the results from a direct dimple shear laboratory test displaying the strain 

softening behavior is presented in Figure 2.5.
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Figure 2.5 - Example Results of CKoUDSS Test Indicating 
Strain Softening Past 2% Shear Strain

Shear vane strength profiles have observed a lower than expected strength in these 

zones of large horizontal displacement. Comparisons between the 1994 and 2002 

investigations show a 1.2 to 3.6 kPa (approximately 8% to 18%) strength loss in 

these zones. This information may indicate that the clay stratum is experiencing 

strain softening, which is important to account for in stability analyses. At the current 

time the rate of shear strain has decreased, as a result of a change in filling 

operations. The typical range of incremental shear strain varies from 0.01 to 0.03% 

per month, with the exception of the northern side of the landfill which experiences 

much less than 0.01% per month. Settlement of the clay stratum across the site 

varies from 30.5 to 96.5 centimeters (12 to 38 inches).
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CHAPTER III

IN SITU TESTING PROGRAM

3.1 - Purpose of the Site Investigation

The overall goal of the investigation is to determine the change in undrained shear 

strength with time at select locations at the site. To complete this task a computer 

model was required and the development of a set of soil properties for use in the 

computer model was therefore necessary. The computer model will enable all of the 

conditions at this large and complex site to be accounted for, allowing the site 

owners to forecast future soil conditions at the site, and to adjust the time scale and 

size of proposed construction and filling accordingly.

To help characterize the properties of the foundation soils at the RWS site, 

piezocone profiles were completed at three locations within the RWS facility, in 

conjunction with one Field Shear Vane (FV) profile and one Flat Dilatometer (DMT) 

profile. The piezocone profiles were performed at the B-11, P-3 and I-3/I-4 locations, 

along with two dissipation tests, performed using the piezocone, at the B-11 location. 

Several undisturbed thin-walled tube samples were recovered adjacent to the Field 

Shear Vane and Flat Dilatometer profiles at the B-11 area for laboratory testing. 

Figure 3.1 displays these test locations on a schematic diagram of the RWS landfill.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B-11

I-3/I-4

B-10

Southern Expansion

Figure 3.1 - Exploration Location Plan for Current Research

3.2 - Testing Locations

The location of Borehole B-11 was chosen with the intent that this unloaded area 

would provide strength results comparable to initial unloaded K0 conditions. The 

location is over 60 meters from the toe of the northern slope of the landfill, and 15 to 

18 meters from a stability berm that is approximately 2 meters in height. The finite 

element analyses performed at the RWS site, as discussed in Chapter 5 have 

confirmed that the location of Borehole B-11 is not influenced by the existing landfill.
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The field vane and dilatometer profiles at the B-11 location were used to assess the 

most suitable empirical relationships correlating CPTu measurements to the 

undrained shear strength, the stress history and the at-rest lateral earth pressure 

coefficient. The chosen empirical relationships were then adjusted to closely match 

the FV for undrained shear strength and DMT profiles for stress history and lateral 

earth pressure, creating site specific relationships that were then used at other 

piezocone test locations within the landfill to assess the current properties of the soft 

clay stratum. These properties were also used to develop parameters for the finite 

element models of the site. The change in undrained shear strength prior to 2006 at 

Borehole B-11 cannot be measured, as previous testing programs have not included 

field vane profiles at or near this location. A prediction of the future conditions will 

however be possible through finite element analysis.

The remaining two piezocone profiles, at Boreholes P-3 and I-3/I-4 were chosen as 

field vane testing had been completed at each location in the past. An initial field 

vane strength profile was completed at Borehole P-3 in 1994 prior to loading in the 

immediate area. This profile was considered to be representative of “initial 

conditions” at the site (Rabasca, 2003). A second field vane profile was conducted 

in 2002 to assess strength changes in the soft clay stratum after a loading of up to 

23 feet of ash. During the 2002 field shear vane testing program a profile was 

completed at the I-3/I-4 location at the toe of Cell 3b. The piezocone profiles at 

these locations will be compared to the field shear vane profiles from 2002 and used 

to assess the strength change with time in the clay stratum.
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Table 3.1 provides a summary of the tests performed at each location during the 

course of this research.

Table 3.1 - Summary of In Situ Tests Performed

I Profile General In Situ I Date Total Elevation a

CPTu B-11 
CPTu B-11 

FV B-11 
DMT B-11 
CPTu P-3 

CPTu I-3/I-4

Virgin Area 
Virgin Area 
Virgin Area 
Virgin Area 

Cell 3b 
Toe of Cell 3b

Piezocone 
Dissipation 
Field Vane  
Dilatometer 
Piezocone 
Piezocone

1/17/2006
1/20/2006
1/18/2006
4/7/2006
1/16/2006
1/17/2006

14.21
7.96
11.84
12.60
27.30
20.10

6.97
13.22
9.34
8.58
-0.94
3.82

3.3 - Field Shear Vane Testing Procedure

Field vane testing of the soft clay stratum at the RWS facility was conducted at 

location B-11. In situ testing was performed using the Geonor H-10 Vane Borer with 

drilling support provided by Great Works Test Borings, Inc of Rollinsford, NH. 

Summary plots of the peak and remolded strengths, along with sensitivity versus 

elevation are presented in Section 4.1.1. The results from individual tests are 

provided in Appendix A.

Boring B-11 was advanced to 3.7 meter depth using standard wash boring 

techniques and a 10.2 cm (4 inch) (ID) casing. This depth was chosen as this is the 

approximate interface between the weathered stiff silty clay crust and the gray soft 

silty clay.

The vane borer apparatus was advanced to the bottom of the cased borehole and 

pushed into the clay, where the vane blade was extended 50 cm (19.7 in.) out of the
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vane borer for the first test. The vane blade used in this profile had dimensions of 

65mm by 130mm.

The torque measuring head was then installed at the surface and torque was applied 

to the frictionless rod system at a constant rate of rotation. Standard test methods 

specify a rotation rate of 0.1 deg/second; this was applied by maintaining one 

rotation of the handle every two seconds. The test was conducted for two to three 

minutes past failure, with torque measurements recorded at intervals varying 

between 15 and 30 seconds. At the completion of the test the vane was rotated ten 

times and the test procedure restarted to measure the remolded strength. After the 

remolded strength was found the torque head was removed and the vane was then 

retracted into vane borer. The borer was then advanced to the next test depth and 

this procedure was repeated. A total of eleven tests were performed at this location 

generally at 0.76 meter (2.5 ft) intervals.

3.4 - Piezocone Testing Procedure

3.4.1 - Introduction

The standard cone penetration testing method is described in ASTM standard D- 

5778. The test procedure used at the RWS facility is described herein, with the 

addition of alternative test procedures when necessary. A rubber-tracked drilling rig, 

CME model 850, was used at the RWS site and subsequent references to the 

means of piezocone advance will reference this equipment. The use of a specialty 

CPTu vehicle or lightweight, portable rig will require minor variations in procedure, 

though test methodologies should be similar.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.2 - Summary of the CPTu Procedure

Preparation of the borehole is a critical step to ensure that the piezocone remains 

saturated prior to the start of advancement. A pre-drilled and water-filled borehole is 

adequate in locations with a shallow depth to groundwater. In cases where the 

groundwater table is at a significant depth, the probe can be encased in a water filled 

rubber sheath and lowered into a pre-drilled borehole. Penetration of probe into soil 

would then puncture the sheath and allow it to tear away from the equipment. In 

certain circumstances the pre-drilling may be required to prevent damaging or 

overloading the equipment, as in the case of a fill material with cobbles or other 

obstructions.

At the RWS facility the boreholes at the P-3 and I-3/I-4 locations were situated over 

ash fill, and therefore were required to be cased and cleaned to a depth penetrating 

into the clay stratum. At the B-11 location the borehole was cased and cleaned to a 

depth of approximately 2 meters in order to penetrate part of the stiff 

overconsolidated crust. At the remaining locations the borehole was cased and 

cleaned through the ash and into the crust material. All boreholes at the test site 

were filled with water to the height of the casing above ground.

While the borehole was being prepared, the complete data acquisition system, 

including the piezocone was assembled and powered for 30 to 45 minutes prior to 

recording zero load measurements. During this time the saturated filter element was 

installed on the piezocone. To assemble and saturate the hydraulic circuit the cone 

was turned upside down and a funnel with a tight fitting rubber gasket was placed 

over the cone and slowly filled with de-aired water, as seen in Figure 3.2. The cone
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tip was then removed and a plastic syringe was used to remove air from the 

channels machined within the tip. The filter was then removed from a sealed 

container and inserted onto the tip while underwater. The silicone oil was found to 

have the tendency to trap air bubbles on surfaces such as the threads of the cone 

tip, and therefore the plastic syringe was used to force the air bubbles from all such 

surfaces. Additionally it was found that assembling the apparatus completely 

following insertion of the saturated filter element, could create additional entrapped 

air bubbles. Removing the tip and again using the syringe to remove any remaining 

air bubbles a second time appeared to provide a saturated hydraulic circuit.

Filter

Cone
Funnel

Rubber
Hose

Cone
Penetrometer

Figure 3.2 - Method for Assembly of the Piezocone Filter Element in the Field
(After Larsson, 1992)

Following the preparation of the cone and the borehole, the cone is inserted into the 

borehole and initial zero-load readings are recorded for all data channels. The 

piezocone was then advanced through the clay stratum at a rate of 2 +/- 0.5 cm/sec,
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with additional drill rods added at 1 m (3.28 feet) intervals. Advance of the 

piezocone was terminated after the probe penetrated into the stratified fine sand 

layers underlying the clay deposit. The probe was then retracted to the ground 

surface and final zero-load readings were recorded.

3.5 - Dilatometer Testing Procedure

A single dilatometer profile of the soft gray silty clay stratum was completed adjacent 

to the piezocone profile in the virgin testing area. This sounding started at a depth of 

2.6 meters, in a pre-bored, uncased hole. The test equipment was advanced using a 

hydraulic ram with a 1.22 meter stroke mounted to a portable steel load frame. Sand 

bags were used to stabilize the frame and resist the uplift forces caused by blade 

advancement. The sounding was terminated within the transition zone between the 

soft gray silty clay and the underlying glacial sands, with a refusal depth of 12.6 

meters.

Individual tests were conducted at 20 cm intervals, and the test equipment was 

advanced to the next test depth at a rate of approximately 2 cm/sec. Data was 

recorded using the procedure outlined in Section 1.4.2 of this report.

3.6 - Laboratory Testing Procedures

Laboratory testing was performed on the soft gray silty clay to complement existing 

geotechnical information and to help in the analysis of piezocone and dilatometer 

data, and for use in the finite element modeling. Testing consisted of four one

dimensional consolidation tests, and seven Atterberg limits tests. Due to the very
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sensitive nature of the soft gray silty clay, care was taken to minimize disturbance 

during sampling, as well as during sample preparation and testing. When compared 

to data from previously conducted laboratory tests on the soft gray silty clay in Figure

2.4, the data from this research is generally in agreement. This indicates that the 

quality of the 2006 data is at a minimum equivalent to the previously reported data.

A total of seven thin wall tube samples of the soft gray silty clay were recovered 

using a piston sampler at the B-11 location. To minimize disturbance and allow for a 

dissipation of excess pore pressures generated during the advance of the piston 

sampler, a period of 15 minutes was allowed to pass before the samples were 

extracted from the borehole. These samples were transported to the University of 

New Hampshire and stored in a temperature and humidity controlled environment 

until testing was to be performed.

The one-dimensional consolidation tests were performed using a floating-ring 

consolidation apparatus (Figure 3.3), following the methods outlined in ASTM D2435 

“Standard Test Methods for One-Dimensional Consolidation Properties of Soils 

Using Incremental Loading”.
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Figure 3.3 - Floating-ring Consolidation Apparatus 

The samples from elevation 17.1, 15.1 and 10.5 meters were loaded at 24 hour 

increments according to the schedule presented in Table 3.2. The load increments 

for the sample recovered at 13.6 meters elevation were selected based upon the 

increments from previously reported testing, and are presented in Table 3.2 as well. 

During each 24 hour loading increment, the deformation of the sample was recorded 

at elapsed times of 0, 6 , 15, 30 and 60 seconds; 2, 4, 8 , 15, 30 minutes; and 1, 2, 4, 

8 , and 24 hours.
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Table 3.2 - One-dimensional Consolidation Test Load Increments

Samples rec 
17.1 15. 
Load

overed at El. 
1.10 5 m 

Equivalent 

pressure 

fkPal

Sample re
El. 1:

Load

(kg)

covered d jl 
3.6 m 1  
Equivalel 

pressure! 

fkPal 1
1 31 0.24 7.51
2 61.9 0.53 16.55
3 92.9 1 31
6 185.8 2 61.9
12 371.6 4 123.8
24 743.2 8 247.6
6 185.8 16 495.2

24 743.2 4 123.8
48 1486.4 16 495.2
12 371.6 32 990.4

8 247.6

The Atterberg Limits of seven samples were determined using the test methods for 

determining both the liquid limit and plastic limit and were performed in accordance 

with ASTM D4318-00 “Standard Test Method for Liquid Limit, Plastic Limit, and 

Plasticity Index of Soils”. The results of these tests are presented in Table 2.1.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV

INTERPRETATION OF IN SITU TEST DATA

4.1 - Field Shear Vane Data

4.1.1 - Data Reduction

The raw data from each of the eleven tests conducted at boring B-11 were reduced 

to plots of shear stress versus rotation of the vane blades in degrees. The maximum 

values from each of these tests correspond to the undrained shear strength. Table

4.1 displays the undrained shear strength, remolded strength, sensitivity and 

elevation information for each test, this data is presented graphically in Figure 4.1. 

The reduced data from each of the eleven individual tests can be found in Appendix

Table 4.1 - Borehole B-11 Field Shear Vane Results

wm§giia S tt^M V an ej&hearSNG0Data - 2Ql6 P  S  1
Test No. Depth

(m)
Elevation

(m)
Su (peak) 

(kPa)
Su (remolded) 

(kPa)
Sensitivity

(peak/remolded)
B-11.1 4.3 16.9 13.44 1 .2 1 11

B-11.2 5.0 16.2 14.77 1.36 11

B-11.3 5.8 15.4 15.55 1.81 9
B-11.4 6.5 14.6 15.55 1.69 9
B-11.5 7.3 13.9 17.78 1.51 1 2

B-11.6 8 .1 13.1 14.77 1 .6 6 9
B-11.7 8 .8 12.3 17.18 1 .2 1 14
B-11.8 9.6 1 1 .6 18.75 1.87 1 0

B-11.9 10.3 1 0 .8 18.39 1.51 1 2

B-11.10 1 1 .1 1 0 .1 21.70 2 .8 6 8

B-11.11 1 1 .8 9.3 23.51 2.56 9
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with Sensitivity Profile from Field Shear Vane Profile at B-11
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4.1.2 - Undrained Shear Strength Correction

4.1.2.1 - Corrections Used 

Correction factors have been examined for application to the undrained shear 

strength values found in boring B-11. A relationship for correcting each data point 

has been developed for the time to failure (tf), as well as the effect of aging and 

OCR. A detailed discussion of these corrections can be found in Section 1.2.4. To 

preserve continuity with previous work conducted at the site, further use of the field 

vane data in this research will reference uncorrected strengths.

The correction for time to failure, as described by Chandler (1988) is required for 

those tests where failure was reached after 1 0  minutes time had elapsed from the 

beginning of rotation of the vane blade. In such cases, the correction proposed by 

Chandler to reduce the strength has been used, as the measured strength is 

expected to rise with increasing time to failure. It should be noted that the correction 

as reported by Chandler (1988) appears to have an incorrect sign associated with 

the factor “b” based on further examples used in the literature. The correction factor 

used in this report is shown below:

For clays with a Plasticity Index (lp) > 5%

pR = 1.05 -  b(lp) 0'5 [4-1]

Where b is equal to:

b = 0.015 + 0.0075(log tf) [4-2]

The effects of aging and OCR on the clay were corrected using the Aas et al. (1986)

reinterpretation of the charts created by Bjerrum (1972), as seen in Figure 4.2.
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Correction values from these figures were interpolated as closely as possible. Each 

point along the strength profile at boring B-11 was corrected using this manner.
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4 Onsey IBerre , 1973)
5 Kimola (Kankare, 1969)
6 Postg iro  (Aas, 1979)
7 Malma (Pusch, 1968)
8 EUingsrud (Aas, 1979)
9-17 MIT cases (Lacasse e t al, 1978)

(15.16.17 no fa ilu re )

Figure 4.2 - Vane Shear Correction Factor (After Aas et al., 1986)

4.1.2.2 - Index Properties of the Soil 

The corrections described in Section 4.1.2.1 were performed by dividing the entire 

profile into discrete 0.75 meter thick layers and using the average soil properties for 

each layer to compute the correction. The results of laboratory and field tests during 

the 1994 field exploration program at the site were used to determine the required 

index properties. These properties, as well as both the uncorrected and corrected
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values for undrained shear strength are presented in Table 4.2. The corrected 

undrained shear strength profile is presented in Figure 4.1 alongside the uncorrected 

profile.

Table 4.2 - Index Properties for Correction of Undrained Shear Strength
From the Field Shear Vane

Test No.
Depth

(m)
Elevation

(m)
Su (peak) 

(kPa) Ip
O'p

(kPa)

X
(Aas et al. 

1986)

SUcORR
(kPa)

B-11.1 4.3 16.7 12.93 13.6 83.8 0.95 12.29
B-11.2 5.0 16.0 14.21 16.0 74.7 0.90 12.79
B-11.3 5.8 15.2 14.96 11.0 62.2 0.76 11.37
B-11.4 6.5 14.5 14.96 10.5 83.4 0.87 13.02
B-11.5 7.3 13.7 17.11 10.8 86.2 0.84 14.37
B-11.6 8.1 12.9 14.21 11.2 89.0 0.92 13.07
B-11.7 8.8 12.2 16.53 13.5 92.3 0.90 14.88
B-11.8 9.6 11.4 18.04 21.1 96.9 0.89 16.05
B-11.9 10.3 10.7 17.69 21.9 99.6 0.90 15.92

B-11.10 11.1 9.9 20.88 20.0 101.7 0.86 17.96
B-11.11 11.8 9.2 22.62 18.1 103.7 0.85 19.23

Where S uc o r r  is equal to:

^ ucorr = Su {peak) ■ fj.R • X [4-3]

And where Tf is equal to the time to failure from insertion of the vane blades.

4.2 - Piezocone and Dilatometer Data

4.2.1 - Introduction

For each soil property there exist multiple theoretical and empirical relationships to 

interpret the CPTu data. The relationships for both CPTu and DMT analysis have 

been developed from a large data set, often from multiple sites around the world, 

and can have a significant amount of scatter in the results. Therefore when 

possible, it is advisable to adjust the empirical relationship to suit a specific location
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using an agreed upon baseline data set. The goal of this section is to introduce the 

reader to the methods of data reduction, the empirical relationships used at the RWS 

test site and to present the data from the B-11 location.

4.2.2 - Corrections to Piezocone Point and Friction Resistance

In addition to the application of calibration factors to translate the output voltages to 

usable values and where applicable corrections for inclination and temperature 

effects, the piezocone data must also be corrected for the effect of pore pressure on 

the probe. Pore pressures generated during advance of the cone can impact the 

loads recorded by the friction and point resistance load cells. This phenomena, 

known as the “unequal area effect” is due to both the geometry of the probe, and the 

pore pressure differential along the shaft of the piezocone.

The point resistance (qc) is corrected using the cone area ratio (a). The ratio is 

equal to the ratio of the cross-sectional area of the piezocone shaft to the projected 

area of the cone tip and typically ranges from 0.9 to 0.55. The manufacturer of the 

piezocone used in this work has reported the cone area ratio to be 0.8. The 

corrected tip resistance value (qt) is found as follows.

qt = qc + u2(1 - a) [4-4]

The friction sleeve resistance (fs) is similarly impacted due to the unequal end areas 

at either end of the sleeve. The pore pressure differential between the U3 and u2 

positions can falsely increase the sleeve resistance value. For this research no pore 

pressure measurements are available at the u3 location, therefore the uncorrected 

friction sleeve resistance (fs) value was used rather than the corrected value (ft) as it
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is not recommended to correct the resistance without those pore pressures (Lunne 

et al., 1997)

At the CPTu B-11 sounding (el. 21.18 m) a hole was pre-drilled to a depth of 

approximately 2 meters. The piezocone was advanced through the soft gray silty 

clay into the glacial sands to a refusal depth of 14.21 meters. The piezocone 

outputs of corrected tip resistance, sleeve resistance, pore pressure and a profile of 

estimated stratigraphy from these results is displayed in Figure 4.3. The same 

outputs are presented for the CPTu P-3 and CPTu I-3/I-4 soundings in Figures 4.4 

and 4.5 respectively.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



u

(0

00

CO

CDa.

CM

O

Oin

o

± ±

co

o</)
CD
Q

c
5
o

DO

i t
to

, , . 1 , . .
1

.......... , 1 , 1 . 1 1 ■ 1 < 1 ■ 1 1

1 w 1

111,1

1
-5  1

^  > •  CO JO 1 Y  '
1 1 o

o  1 o  O 1 CO 1 o

^  1 
CO 1

o  =  
CO CO

1 lo  1
1 1 1 «0 1

T3
0)

m

CM
CM

O
CM

T

CO

CO
■ i ■
CO

' I '
CM

' I '
O

' I ' 
00

T

CO

' I '
mT

1 I '
CM

(w ) UOHEA0 I3

Figure 4.3 - Piezocone Output at CPTu B-11, Corrected Tip Resistance (qt), 
Friction Sleeve Resistance (fs), Pore Pressure (u2)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



oo

(0
DL

<N
Z5

Omr-

ooin

om
CM

o
oo

in

ro
CL om

in
CM

o

co

o
.— rJ

c
o
Q.
"i_
Oin
0
□

C N O C O C O - s f C M O C O C O ' M - C M O C M  
CM CM t -  t -  t-  r -  t -  ■

( i l l )  U0!1BA8|3

Figure 4.4 - Piezocone Output at CPTu P-3, Corrected Tip Resistance (qt), 
Friction Sleeve Resistance (fs), Pore Pressure (U2)

ro ro 
CD O

CO CO

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CO
Q_

cs3

oo

omr̂ -

ooin

oinCNI

O
o

mr̂ -

(0
Q_ o ^ in

in
CM

(0
CL

cr

oo

CD

o

c
o

ov>
<u
Q

CO CO

( i l l )  UO!1BA0|3

Figure 4.5 - Piezocone Output at CPTu I-3/I-4, Corrected Tip Resistance (qt), 
Friction Sleeve Resistance (fs), Pore Pressure (u2)

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.3 - Preparation of the Dilatometer Data

In order to manipulate the DMT data into usable soil properties, the raw field data of 

A, B and C pressure measurements must first be corrected for the membrane 

stiffness (AA and AB), gage zero offset (ZM), and feeler pin elevation. These 

corrected values, p0, pi and p2, are referred to as objective parameters (Marchetti, 

2001) and can then be used to calculate the DMT indices which are then used to 

determine soil properties. The formulas to perform this correction are expressed as:

Po = 1 . 0 5 ( A - Z m + A A ) - 0 . 0 5 ( B - Z m - A B )  [4-5]

P\= B ~ Z M -  AB [4-6]

p2 = C - Z M+AA  [4-7]

4.2.4 - Stratigraphy

4.2.4.1 - Introduction

Though the piezocone and dilatometer do not recover samples for later examination 

and classification, each tool can be used to create a stratigraphic profile. General 

observations of the soil type can be made by observing the instrument outputs even 

when little processing has been performed. For example Figure 4.3 displays low tip 

resistance and high pore pressure values, indicative of soft clays. Additional

processing of the data can successfully yield further information about the soil at a

specific depth. The continuous profile provided by the piezocone, or near 

continuous profile from the dilatometer can be useful tools to quickly and effectively 

characterize the stratigraphy at a test site.
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It is important to note however that the classifications provided by these tools is 

indicative of soil behavior, as opposed to an actual classification based upon grain 

sizes and distributions.

4.2.4.2 - Interpretation Using the Piezocone 

The behavior of soil can generally be interpreted using a combination of the 

corrected tip resistance, sleeve resistance and pore pressures measured by the 

piezocone. Studies have shown that the sleeve resistance is often a less accurate 

indicator of soil behavior type (Lunne et al., 1986; Gillespie, 1990). This is especially 

true for soft soils, where the friction sleeve resistance is very small, and the load cell 

resolution is not capable of detecting small changes accurately. While the friction 

sleeve resistance is typically not solely used for classification, it is used in 

conjunction with the tip resistance and the pore pressure in compound parameters. 

These compound parameters typically relate the tip resistance (qt) and the friction 

resistance (fs), or relate the tip resistance (qt), pore pressure (u) and overburden

stress (ctvo). Three such parameters, proposed by Wroth (1984, 1988) are often

used in soil classification charts. The parameters, a pore pressure ratio (Bq), 

normalized friction ratio (Fr) and normalized cone resistance (Qt) are shown in Figure 

4.6 and are expressed as:

B U j- U ^  [4 8 ]

Fr = — ^ —  [4-9]
Q t a vo
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Qt = VL_^vo [4-10]

This figure displays the close agreement between the parameters, indicating 

relatively little difference in the material behavior across the site.

Robertson et al. (1986) proposed a three-dimensional classification chart, shown in 

Figure 4.7. The classification system uses the friction ratio (fs/qt) and the pore 

pressure ratio (Bq) both plotted against the corrected tip resistance (qt). Each chart 

has a series of numbered cells which correspond to soil behavior. The charts also 

offer an insight to the stress history (OCR), sensitivity (St) and void ratio, expressed 

in terms of the relative density (Dr). In the event that a soil layer falls within different, 

unrelated zones between the two charts, the interpretation must be made based on 

other observation of behavior.
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Pore pressure parameter Bq

Zone: Soil Behaviour Type:

1. Sensitive fine grained
2. Organic material
3. Clay
4. Silty clay to clay

5. Clayey silt to silty clay
6. Sandy silt to clayey silt
7. Silty sand to sandy silt
8. Sand to silty sand

2 3 4 5 6 7

Friction ratio

9. Sand
10. Gravelly sand to sand
11. Very stiff fine grained*
12. Sand to clayey sand*

* O v e rc o n s o lid a te d  o r  c e m e n te d .

Figure 4.7 - Proposed Soil Behavior Classification Chart from CPTu Data
(After Robertson et al., 1986)

The classification method of Robertson et al. (1986) works well, provided the 

piezocone sounding does not extend past 30 meters (98.4 ft) depth. As the 

overburden pressure increases, so do the tip resistance (qt), friction sleeve 

resistance (fs) and the pore pressure (u). The increase of these values could change 

the zone within which a soil falls, despite the fact that the material is uniform with 

depth.

To remedy this, a revision of this system was proposed by Robertson (1990) that 

normalizes the values of qt and the friction ratio with the overburden stress at the 

measurement depth. The classification system is once again three dimensional, 

plotting both the normalized friction ratio (Fr) and pore pressure ratio (Bq) against the 

normalized friction ratio (Qt). The modified classification system by Robertson
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(1990), presented in Figure 4.8 is used in the same manner as the system by 

Robertson et al. (1986).

The piezocone profiles at the RWS site are less than 30 meters deep, and therefore 

either classification system could be used. The method by Robertson (1990) was 

selected for use to avoid any minor variations in classification due to a change in the 

overburden stress. Figures 4.9, 4.10 and 4.11 present the classification results from 

the RWS site as separate data points for the stiff brown weathered silty clay crust, 

the soft gray silty clay and the glacial sands at the B-11, P-3 and I-3/I-4 locations 

respectively.

1000
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Increasing 
OCR, age.

Increasing
sensitivity
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f) (%)
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5. Sand mixtures; silty sand to sand silty
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Zone soil behaviour type
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8. Very stiff sand to clayey sand
9. Very stiff fine grained

Figure 4.8 - Soil Behavior Classification Chart Based on Normalized CPTu Data
(After Robertson, 1990)
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The chart to the left (Qt vs. Fr) in these figures classifies the soft gray silty clay as 

having behavior of a sensitive, near normally consolidated clay/silt mixture. The 

charts to the right (Qt vs. Bq) verify this behavior as the material falls within Zones 1 

(Sensitive, fine grained) and 3 (Clays-clay to silty clay). The glacial sands, which 

have been observed to be medium to fine sand with varying amounts of silt and clay 

fall within Zones 5 and 6  on both charts at CPTu B-11. These zones indicate the 

material generally behaves as sand with varying amounts of silt, from clean sand to 

sandy silt. At CPTu P-3 and I-3/I-4 the glacial sands are classified as behaving as a 

fine grained silt/clay mixture.

The data points from the brown silty clay crust fall within multiple zones on the chart. 

Data points from this material exhibit behavior of material in Zones 3 and 4, 

indicating a overconsolidated silt/clay mixture and Zones 5 and 6 , indicating a sandy 

material. Zones 3 and 4 accurately describe the composition stiff brown silty clay 

crust. To refine the behavior classification of the material, the interpretation of must 

be supported by other factors, such as the stress history. The high OCR of the crust 

material supports the Zone 4 (Clayey Silt to Silty Clay) and Zone 9 (Very stiff fine 

grained) classification of the soil behavior type.
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A second classification system has been proposed by Larsson and Mulabdic (1991) 

for clays and gyttjas based on a large database of piezocone soundings from test 

sites in Sweden and Norway. Gyttjas are highly organic muds deposited in lakes, 

and are commonly encountered in Sweden. The classification method is based on 

the pore pressure parameter (Bq) and the net cone resistance (qt-avo), and is 

depicted in Figure 4.12.

4000n

H 3000

(» '
55
S f i  2000

O I  
u  ?

. §  1000

Heavily
overcon-
solidatec

Overconsolidated or Normally
very s ilty  clay

Very s tiff

S tiff

jconsolidated 
clays or 
{slightly 
joverconsolidatei 
Isilty clays

Medium s tiff  

Soft
i f.—&0._Gytt]_as an 

Very soft organic clays!
—i—t— i—r—I— r—•—-i— •—r"—I-

Low plastic 
and/or highly 
sensitive clays

-i— .____
i ■  ...o

- 0 . 2 - 0 . 1  0 . 0 0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9  1.0 1.1 1.2 1.2

PARAMETER Bq

Figure 4.12 - Proposed Soil Behavior Classification Chart for Fine-Grained Soils
(After Larsson and Mulabdic, 1991)

Figure 4.12 distinguishes the overconsolidation ratio, the stiffness, the sensitivity and 

the type of clay. The same data points presented in Figures 4.9, 4.10 and 4.11 and 

classified using the method of Robertson (1990) are classified using the method of 

Larsson and Mulabdic (1991) in Figures 4.13, 4.14 and 4.15.
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The brown silty clay crust is classified as medium stiff to very stiff overconsolidated 

or very silty clay using this method. The soft gray silty clay material is generally 

classified as very soft to soft clay which is near normally consolidated and highly 

sensitive. Three points within the soft gray silty clay stratum in the CPTu B-11 profile 

are classified as soft to medium stiff overconsolidated or very silty clay. Further 

examination of the data reveals that at these test depths a sharp increase in tip 

resistance occurs, which may indicate lenses of coarse grained material. Many of 

the data points from the glacial sands fall outside of the boundaries of this 

classification chart, indicating that most of the material is likely sand or a sand 

mixture with silt. Some data points from the glacial sands do plot within the 

classification system of Larsson and Mulabdic (1991). These data points likely 

represent thin layers of silt or clay within the sand.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

4000

CD

T 1

C D 'C
C  CD

i *
CD —>■

2 - co =y o o —
03 

O  CD ZT 
I-  0)a < 
55 o' c/> “■
S Q
Q> %D W
O- S

o

0) o
5- =>
Q_  Q) 
O* ^
— o

2  =
^  00

Heavily
overcon
solidated

0
o
c
ro
w
to
0
O'
0
c
o
O
-I—*
0

3000

2000

1000

Overconsolidated or 
very s i l ty  clay

Very s t i f

Normally 
{consolidated 
clays or 
{slightly 
joverconsolidatetf 
is ilty  clays j 

t 
i

S t i f f

♦
♦

Medium s t i f f

Low plastic  
{ and/or highly 
j sensitive clays

so f t  r ‘r _ r r _ r ^ ~ i —
nP•------------------aQ.^ytti_as__an(]

Very soft organic clays!

♦  W eathered Brown C lay 

a  Soft Gray Clay

•  G lacial Sands

i

! " "
I

II-T-
I
I
I

~ . I t T —

0 0.4
B,

0.8 1.2



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

CD
cn

cq'

w <3 
5 ' A

CQ L j.  

CD 15  cn 
o  2.Q. —
a ?
£ T |
—* V

°  Q
Q) Q>
a s .
S  o 
E.SS. 
a> o'

o SI 
d  o
CD "0  
CD —I C
^  u

I
CO

4000 Heavily 
overcon- 
solidatec

Q)o
c
(C

4—1

w
w
0
CC
0c
o
O
4-40

3000

2000

1000

0

Overconsolidated or 
very s i l ty  clay

Normally 
{consolidated 
clays or 
slightly  
overconso 
s ilty  clays

Very s t i f f

S t i f f
♦
♦

Medium s t i f f

Low plastic  
{ and/or highly 
i sensitive clays

♦
A

W eathered Brown Clay 

Soft Gray Clay 

Glacial Sands

----------- ----------

S o f t  r-_______
  JtiCjSyttias an{l

i ----------- j— -
Very soft organic claysi

ii

ii
iiiii—t—

— A  A

0 0.4 0.8 1.2
Br



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

CDo>

31
cq'c

c <3W
3 ' Ik 

on
S  '
CD CD

3= 2.o
Q.
o

□0
CD

1 -9
55 0  « o3 O 

o>Q) (/>
3
Q.

c  =■■

O- 3  
Q_ 01

l o
^  u
CD H  
CD C

w  do

4000 Heavily 
overcon
solidated

0o
c
CO

+ J
CO
CO0
CZ
0c
o
O

3000

2000

<n
=fi m o -Z03 Z

1000

0

Overconsolidated or 
very s i l ty  clay

Normally 
jconsolidated 
clays or 
'slightly 
[overconsolidatecj 
{silty clays I

Very s t i f f

S t i f f

♦♦

Medium ^ jjiff

Soft j •---------------- i — -_—
------------------ &C jG^tt^as_ an{l ^  ^
Very so f t  iorganic c lays!

Low plastic  
} and/or highly 
1 sensitive clays

♦
A

W eathered Brown Clay 

Soft Gray Clay 

G lacial Sands

ii
1
1-f-

i

* L . A _ A

0 0.4 0.8 1.2



It appears that the soil classification system proposed by Robertson (1990) performs 

very well for a wide range of soils. Despite the multiple soil behavior types indicated 

for the crust material, a successful interpretation of the soil behavior is possible 

throughout the profile. The effect of the high overconsolidation ratio on pore 

pressures measured in the u2 position and the large tip resistance recorded within 

the crust understandably contribute to the uncertainty between the behavior of 

heavily overconsolidated clay and a coarse grained material which contains some 

fines. Therefore the method of Larsson and Mulabdic (1991) may be better suited 

when classifying such material.

The method of Larsson and Mulabdic (1991) performs well when classifying the 

behavior of the fine grained material within each of the three piezocone profiles as 

well. The ability to reveal a change in material behavior even in very thin layers 

indicates that the method of Larsson and Mulabdic (1991) may play an important 

role in determining the cause of the anomalous zone in deeper profiles, as a thin 

layer of coarse grained material may affect the behavior of the soil.

4.2.4.3 - Interpretation Using the Dilatometer 

Marchetti observed that in initial profiles completed using the dilatometer, the 

material index (lD) is closely related to the prevailing grain size fraction. The 

parameter lD provides a relationship between the spacing of p0 and pi, which 

describes the soil stiffness. The expression for ID is presented in Equation 4.11:
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The material index does not indicate the soil type based on a grain size analysis; 

however like the piezocone, it provides an indication of the behavior of the soil. 

Marchetti (1980) noted that the value lD increases rapidly as the percentage of fines 

decreases, and does not appear to be influenced by the overconsolidation ratio. 

Table 4.3 summarizes the ranges of lD which correspond to various soil types 

proposed by Marchetti (1980).

Table 4.3 - Proposed Soil Classification Based on DMT lD Values
(After Marchetti, 1980)

! Clays Silts Sands

I Clay Silty Cloy Clayey Silt Silt Sandy Silt Silty Sand Sand
Values 

of lD
0.10 to 

0.35
0.35 to 

0.60
0.60 to 

0.90
0.90 to 

1.20
1.20 to 

1.80
1.80 to 

3.30
3.30+

Following the ranges defined in Table 4.3, the dilatometer profile at B-11 of lD is 

presented in Figure 4.16. Throughout the soft gray silty clay layer the material is 

classified as behaving as clay with little to no silt. Within the interface zone of the 

stiff brown silty clay crust and the soft gray silty clay the material varies classification 

from silty clay to clayey silt. At the interface between the soft gray silty clay and the 

glacial sands the classification indicates that the material behaves as silty clay. 

While the dilatometer does provide a good indication of the soil behavior, it does 

have limitations. Detection of thin layers, which may be critical for design, is not 

possible as the test is not conducted continuously. In addition the dilatometer is 

known to incorrectly classify clays as silts or clays with sand fractions as silt 

(Marchetti et al., 2001).
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4.2.5 - Undrained Shear Strength (S„)

4.2.5.1 - Introduction

The undrained shear strength (Su) of a soil can depend on many factors, and 

therefore there is no single method appropriate for determining the in situ strength of 

a soil. The rate of strain, the stress path, stress history, plasticity and mode of failure 

are some of the characteristics that will contribute to how the soil will respond to an 

imposed stress (Campanella et al., 1988).

In order to develop site specific relationships to aid in the interpretation of the 

undrained shear strength, a set of baseline strengths must be developed for this site. 

While no general consensus exists on what method is best suited for developing this 

baseline, recommendations for a unified test method for correlation do exist, such as 

using the undrained triaxial compression test (Wroth, 1988). Commonly used 

methods include the field vane, triaxial compression tests (CAUC), direct simple 

shear (DSS) and the average of triaxial compression, triaxial extension and DSS 

tests. At the RWS site the uncorrected undrained shear strength profiles from field 

shear vane tests have been used as baselines for both the piezocone and 

dilatometer profiles.

4.2.5.2 - Interpretation Using the Piezocone

A wide variety of theoretical and empirical relationships have been developed in 

order to estimate the undrained shear strength using the piezocone. Of the 

theoretical relationships, Lunne et al. (1997) have grouped the available methods 

into five classes:
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• Classical bearing capacity theory

• Cavity expansion theory (Vesic, 1975; Konrad and Law, 1987)

• Conservation of energy combined with cavity expansion theory (Baligh, 

1975)

• Linear and non-linear stress-strain relationships (Ladanyi, 1963)

• Strain path theory (Baligh, 1985; Teh and Houlsby, 1991)

While each method uses different theory, each adapts a single relationship to 

express the undrained shear strength in terms of piezocone data. The relationship 

in Equation 4.12 is developed from the bearing capacity relationship for deep 

foundations and is expressed as:

s „ = ^  [4-12]
•*c

Where Nc is a theoretical cone factor and q may be the in situ total stress (o0), the 

vertical total stress (av0), the horizontal total stress (oh0) or the octahedral total stress 

(Oi). Using a relationship such as this would indicate that for a certain soil, knowing 

the correct value of Nc would help determine the Su. Typical values for Nc range 

between 15 and 20, however values as low as 10 in soft normally consolidated 

clays, and as high as 30 in stiff overconsolidated clay have been reported. The 

solutions which are based directly upon the classical bearing capacity theory 

assume failure of a rigid plastic material (Lunne et al., 1997).

Vesic (1975) expanded on the theoretical manner in which Nc is determined by 

relating the bearing capacity of the soil to the pressure required to expand a
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spherical cavity in an infinite elasto-plastic material. This cavity would represent the 

failure surface ahead of the cone tip. This theoretical representation results in the 

following expression, where lr is the rigidity index (G/Su) of the soil:

A/c = — • (1 + In /r ) + 2.57 [4-13]
3

Konrad and Law (1987) employ the cavity expansion theory as well to determine the 

undrained shear strength, however a hemispherical failure zone is assumed at the 

tip of the cone.

Baligh (1975) approached the problem in a similar manner by using cavity expansion 

theory, however the theoretical value Nc accounts for conservation of energy. This 

theory assumes that the work required to advance the cone a unit distance is equal 

to the work required to expand a cylindrical cavity and to advance the cone at a 

constant rate over a unit distance.

Estimating the theoretical cone factor using strain path theory provides a good 

example of the many factors which can influence the undrained shear strength, while 

also illustrating the cumbersome nature of many theoretical relationships. The strain 

path method, first proposed by Baligh (1985) and further expanded upon by Teh and 

Houlsby (1991) develops a set of stress and strain paths representative of soil 

advancing past a stationary cone. The theoretical cone factor developed by Teh and 

Houlsby (1991) using this approach accounts for several factors, many of which may 

not be commonly available:
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Nkt = Ns • (1.25 + — !j— ) + 2.4af -  0.2as - 1,8A [4-14]

Where: A/s = 4/3 [1 + ln(/r )]

af = cone roughness factor = [fez ) )/(2Sty)

Where 0 < Of <1 and Tf is the shear stress on the cone face boundary 

as = shaft roughness factor

A = (vvo- (Tho)l2 S u

It should be noted that Nkt is normally used when the cone factor is derived 

empirically (Konrad and Law, 1987).

As can be observed, the method for computing Nkt using the relationship developed 

by Teh and Houlsby (1991) can become very intensive. Using empirical 

relationships to determine Su or Nkt can provide a good correlation with the baseline 

data set. These empirical relationships are often based on total point resistance (qt), 

effective point resistance (qi and u) or based on excess pore pressure Au).

The value of Nkt can be directly calculated from the classical bearing capacity 

relationship by using the corrected point resistance and the overburden stress at the 

depth of a known undrained shear strength. The bearing capacity relationship is 

rearranged to give this relationship:

[4-15]
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Using the undrained shear strength from field vane data at borehole B-11 the 

average value for Nktw as determined to be 21.34. This method was not examined 

further as the field vane data would influence the interpretation of the zone of 

reduced strength using the piezocone. The piezocone and field vane undrained 

shear strength profiles must remain independent when assessing whether the zone 

of reduced strength is real or an artifact from testing.

Estimation of the undrained shear strength using the total cone resistance has been 

studied by many researchers using the relationship expressed in Equation 4.15. The 

value of Nkt will be specific to each test site; however typical ranges have been 

reported for certain material types. In non-fissured overconsolidated clays Kjekstad 

et al. (1978) reports an average value of 17 when using triaxial compression tests for 

reference values. In normally consolidated marine clays, such as those found at the 

RWS site, Lunne and Kleven (1981) report Nkt as having a range of 11 to 19 with an 

average of 15 when using the field vane for reference strengths. Research by Aas 

et al. (1986) indicates that the cone factor can be influenced by the plasticity index of 

the soil. A similar trend observed by Powell and Quarterman (1988) confirms this 

influence. A relationship developed by Larsson and Mulabdic (1991) accounts for 

the plasticity of the soil using the liquid limit, and has been examined for this 

research. This relationship expresses Nkt as:

Nkt = 13.4 + 6.65 • wL [4-16]

Where wL is the liquid limit expressed in decimal form.
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Estimation of the undrained shear strength using effective cone resistance has been 

suggested using Senneset (1982), and further examined by Campanella et al. 

(1982). The relationship from Campanella et al. (1982) is expressed as:

s “ = S lK r k  [4' 171' ’’ /ce

Although this method has been observed to correlate well with the pore pressure 

parameter Bq, Lunne et al. (1997) recommends that it generally not be used in soft 

normally consolidated clays. In such circumstances the pore water pressure 

measured in the u2 position can be close to 90% of the tip resistance. In this case 

the value in the numerator of the relationship can become very small, and thus 

increasingly subject to errors in the tip resistance of pore pressure measurements.

Estimating the undrained shear strength using the excess pore pressure (Au = u2-u0) 

can produce good correlations with the baseline values due to the generation of 

large pore pressures in clays. In this scenario the pore pressure transducer is 

typically operating in its higher range, where the accuracy of the transducer is 

typically greater. Many relationships using excess pore pressure to determine the 

undrained shear strength are semi-theoretical; however the most basic relationship 

is described as:

[4-18]
Au

The semi-theoretical relationships using both theory and the excess pore pressure 

are based upon cavity expansion theory. Results from this work have been reported
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by Vesic (1972), Massarch and Broms (1981), Campanella et al. (1985), Mayne and 

Holtz (1988), and Kulhawy and Mayne (1990) and others.

In a fully empirical approach, using results from Swedish and Norwegian clays, 

Larsson and Mulabdic (1991) determined that the relationship is dependent on the 

plasticity of the material. This dependency appears to be quite small however, as a 

clear trend is observed in the data presented in Figure 4.17 despite the fact that the 

plasticity has not been accounted for.

Based on this observation from the data presented by Larsson and Mulabdic (1991) 

the undrained shear strength was examined at the RWS site using a value of NAu 

that was not corrected for effects of plasticity.
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EXCESS PORE PRESSURE AT CONICAL FACE 
OF THE TIP (AUtoo), (kPa)

Figure 4.17 - Results of Undrained Shear Strength from Direct Shear Tests against 
Excess Pore Pressure Generated at the Face of the Cone Tip in Swedish and 

Norwegian Clays Indicating a Linear Relationship 
(After Larsson and Mulabdic, 1991)

The undrained shear strength at the three piezocone profiles was determined using 

the total cone resistance method from Equation 4.16 (Larsson and Mulabdic, 1991) 

and using the excess pore pressure method presented in Equation 4.18 These 

profiles are presented in Figures 4.18, 4.19 and 4.20 for the CPTu B-11, P-3 and I- 

3/I-4 locations respectively. As the relationship developed by Larsson and Mulabdic 

(1991) is based upon data from European clays and is not specific to this test 

location, a relationship was developed for soils at this site using the same format. 

The constants in Equation 4.16 were adjusted to fit the piezocone data to the field 

vane strength profile. This relationship expresses Nkt as:
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Nkt =15.4 + 11.48-wL [4-19]

The excess pore pressure relationship closely matches the reference field vane 

strength data; while the site specific relationship based on total tip resistance, 

developed from the B-11 data, tends to slightly under predict the strength in the P-3 

and I-4/I-4 profiles. One disadvantage of the total tip resistance method is that 

sandy lenses and layers will produce a high tip resistance, and therefore high 

undrained shear strength. While the strength of the soil may increase in these 

layers, displaying this as a higher undrained shear strength, rather than the 

appropriate friction angle term may lead to improper interpretation when interpreting 

the data for design.
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Figure 4.18 - Undrained Shear Strength Profile at CPTu B-11 Based on 
Methods of Excess Pore Pressure and Total Cone Resistance
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Methods of Excess Pore Pressure and Total Cone Resistance

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D)
C0
i _

C/D „

(0 Cl 0Jd '—'
CO - 3
T3 C/D 
0 ' c
ro
L _~o
c
3

o
CO

Sw
<5 co .o

o'M-
O)
SJJ o
+3 CO
CO —,
rod . _  

^  °  
co -3  
T3 CO o

"O
c

COQ_

CM3

O

o

CO

CO
CL

CM

CM
CM

O
CM

1 I 1
CO

• 1 

CO

T '-
M-

SO0s
LO

s°
I

sP
1 w * 11 o  1

sP
0s
lO

sP s°  
10s- 0s  I
LO O  1

s°
0s
o

sP
10s
' q

CO
CO CO

i o  1 CO 
M- M"

10>  |LO 1 
CO CO

CO
CO ĉo
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4.2.5.3 - Interpretation Using the Dilatometer 

Interpretation of the undrained shear strength from the dilatometer arose from the 

known correlation between the stress ratio (Su/a ’v0) and the OCR of a soil. Marchetti 

(1980) observed that the dilatometer intermediate parameter KD, the horizontal 

stress index, was closely related to the OCR as well. This prompted an investigation 

by Marchetti into a possible relationship between the ratio of undrained shear 

strength and effective vertical stress to the value of Kd. Based upon observations at 

multiple test sites, Marchetti (1980) derived a relationship relating the value of KD to 

the undrained shear strength:

S„ =  0 .2 2 < r ' j0 .5 K j !S [4 -2 0 ]

Where KD is:

Kd=E!l̂ l [4-21]
G VO

In this relationship the 0.22 value is taken from the ratio of Su to a ’vo observed at

these sites. Further investigations performed by Nash et al. (1992) and Burghignoli

et al. (1991) have reported that the initial relationship performs well when compared 

to reference strength values, as seen in Figure 4.21.
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Figure 4.21 - Comparison Between Undrained Shear Strength Measured by DMT 

and by other Methods at the National Research Site of Bothkennar, UK
(After Nash et al., 1992)

Marchetti (1980) notes that the estimated undrained shear strength is typically 

underestimated by up to 30% when using this approach.

A profile of undrained shear strength at the B-11 location using the original 

relationship by Marchetti (1980) is presented in Figure 4.22 alongside the reference 

uncorrected field vane strength data. The original equation clearly overestimates the 

undrained shear strength; however it does fit the general trend of the reference data 

well. Models of the RWS site have incorporated a stress ratio (Su/a ’vo) between 0.1 

and 0.15 (Rabasca, 2002). Using this data a site specific relationship was 

developed to best fit the reference data. The site specific relationship was 

determined to be:
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S „= 0 .1 3 7 o V (0 .5 K j25 [4-22]

This relationship is plotted in Figure 4.22 as well, with error bars showing the stress 

ratio range of 0.1 to 0.15, and a solid line indicating the value of 0.137. The 

undrained shear strength very closely matches the reference strength values, 

indicating that the dilatometer is a very useful tool for determining the strength of fine 

grained soils.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

01

(Qc
(3

hoN>
■
c
2 
Q.—1
CD
2 ’

CD
Q.
a)
z r
CD
CD-1
a>
CD2(2
2"
-0
3

c
o
CD
>
CD

CD
CD ___

D  L ii

H
CD

CD 
CD cn 
CD 
Q.
O
2

*a

Instrument Readings 
(Bar)

Kd Undrained Shear Strength
(Su) [kPa]

0 4  8 12 0 10 2 0  30  40
I 11 1 1 I 1 11  1 .....  1 I

•  FV B-11 (2006)
Su from DMT ”
(Marchetti, 1980) !

  Su from DMT
(Site Specific) ;

Note: Error Bars show range of Site J  
Specific Strength from previously ~ 

reported strength ratios 
(0.1 to 0.15)

I ! I I I I . . .  I'



4.2.6 - Stress History (OCR)

4.2.6.1 - Introduction

The stress history plays a critical role in the finite element modeling at the RWS site. 

It is important to note that the OCR of a soil can be affected due to aging and 

environmental effects, and this can be observed in the stiff weathered brown crust 

material at the site. In cases such as this, the OCR best describes the ratio of the 

yield stress to the current effective overburden pressure (Lunne et al., 1997).

4.2.6.2 - Interpretation Using the Piezocone

In saturated clay, the magnitude of pore water pressures generated during the 

advance of the piezocone is influenced by the overconsolidation ratio. Heavily 

overconsolidated clays will exhibit dilative behavior, which can result in negative 

pore water pressures. For a specific clay and conditions, as the OCR decreases the 

excess pore pressure generated will increase. Because of this observed behavior, 

most research has focused on pore pressures and tip resistance for describing the 

trend of the OCR throughout a profile. Many of these relationships are based on the 

following parameters:

• u/qf

• Bq

•  A u /a ’vo

• Au/qt

These relationships often account for the plasticity of the material, as this factor 

influences the OCR. Of the many relationships developed for the estimation of the
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OCR from piezocone data, three empirical relationships were examined and 

compared to the baseline values available from oedometer tests.

Larsson and Mulabdic (1991) have presented a relationship based upon data 

collected from well documented test sites in Sweden, Norway and Scotland. 

Analysis of this data suggested a relationship between OCR and Au/a’v0, and in 

addition, the ratio of excess pore pressure to the effective overburden pressure was 

found to correlate with the plasticity of the soil. Figure 4.23 presents the data set 

normalized for the effects of soil plasticity, from which the empirical relationship is 

developed:

\ogOCR = 0.24
A u fa \

2.8 + 2.65- w L
-0 .1 4 [4-23]
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Figure 4.23 - Relationship between Overconsolidation Ratio and the Ratio of Excess 
Pore Pressure (u0 to Effective Vertical Stress in Swedish and Norwegian Clays

(After Larsson and Mulabdic, 1991)
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The second method of interpretation uses both the tip resistance and the pore 

pressure measured by the cone. This method, suggested by Houlsby (1988), 

incorporates a relationship between (qt-u) l a \ 0 and the OCR. As discussed in 

Section 4.2.7 of this report, the q e f f e c t i v e  parameter (qt-u) is an effective method for 

estimation of the preconsolidation pressure. Like the method of Larsson and 

Mulabdic (1991), this method also accounts for the soil plasticity. Figure 4.24 shows 

a considerable scatter in the data set when plotted against the OCR. However, a 

better correlation is observed in Figure 4.25 when the pore pressure is recorded at 

the U2 position, and the data set is normalized for the plasticity of the soil. It is 

important to note the scale of the vertical axes in Figures 4.24 and 4.25 to observe 

the effect of the normalization for the soil plasticity. The relationship from Houlsby 

(1988) is presented numerically as:

Chen and Mayne (1994) examined a number of empirical relationships to correlate 

CPTu data with the OCR, and report that the parameter (qt-u) /o ’V0 shows a strong 

statistical trend. From the data set analyzed, Chen and Mayne (1994) recommend 

that a good first order estimate of the overconsolidation ratio is provided by:

\ogPCR = 0.167 [4-24]

OCR  = 0.53 5b— J k
a \ o

[4-25]
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The OCR profiles at each piezocone test location as determined by the methods of 

Larsson and Mulabdic (1991), Houlsby (1988) and Chen and Mayne (1994) are 

presented in Figures 4.26, 4.27 and 4.28 alongside baseline oedometer values. At 

the B-11 location each method appears to provide a good prediction of the stress 

history throughout the profile. At the remaining locations the overconsolidation ratio 

is expected to be less than the baseline values, and closer to the value of 1 in the 

upper portion of the soft gray clay, as waste loading has occurred between the time 

the laboratory and in situ tests were performed. At these locations the method of 

Houlsby (1988) performs very well. The method of Larsson and Mulabdic (1991) 

generally provides a good indication of the overconsolidation ratio above 15.5 

meters elevation in the P-3 and I-3/I-4 profiles. The overconsolidation ratio is 

greatly underestimated at the I-3/I-4 location by the method of Chen and Mayne 

(1994). It is important to note that none of the three methods have been modified 

into site specific relationships, as they each closely match the reference OCR values 

from laboratory oedometer tests in the B-11 location. While the methods of Houlsby 

(1988) and Larsson and Mulabdic (1991) both account for the liquid limit, as well as 

the effective vertical overburden stress and the u2 pore pressure, the method of 

Houlsby (1988) is perhaps the most suitable of the three methods for interpretation 

of the overconsolidation ratio this site. Based upon the trends observed in Figures 

4.26, 4.27 and 4.28 it appears that the incorporation of the tip resistance by Houlsby 

is especially important when the u2 pore pressure is low.
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Figure 4.26 - Piezocone OCR Profile at CPTu B-11 based on methods of Larsson 
and Mulabdic (1991), Houlsby (1988) and Chen and Mayne (1994)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i n

0£ co  

O
O CM

i n

O X01 00 
o
O  CM

o

m

O J3S

O
o

(0
£ L  o  
^  o  

i n
CM3

O

CO

CO
CL

i n
cd
co

05 m o o o

CO CO CO CO CO

o 00 CO o CO CO CM o
CM CM T - T - T - T - T -

(lU ) U0 HBA9 I3

Figure 4.27 - Piezocone OCR Profile at CPTu P-3 based on methods of Larsson and 
Mulabdic (1991), Houlsby (1988) and Chen and Mayne (1994)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o  
o

LO

CO

si O)o o

o

O
O

to

CO

o

o

LO

CO

CN

o

(TJ

CND

O
T“*

o
o
LO

o

Q_

CO

0s ps'
LO O

o>
CO CO

oLO
00o CO

COCO CO

CN

o
oCN o 00 CO 00 CO CN o

CN CN

( l u ) u o ! } B A 0 |3

Figure 4.28 - Piezocone OCR Profile at CPTu I-3/I-4 based on methods of Larsson 
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4.2.6.3 - Interpretation Using the Dilatometer 

The horizontal stress index (KD) parameter of the dilatometer can be used to 

compute the overconsolidation ratio when the value of lD is less than 1.2, indicating a 

cohesive material. A direct correlation between the value of KD and the OCR has 

been observed by Marchetti (1980), where a KD value of 2 indicates normally 

consolidated clay. This understanding may be useful in another manner at the RWS 

site as well, as Totani et al. (1997) notes that a sudden change in the value of KD 

equal 2 would indicate a slip surface. This behavior may be evident within the 

anomalous zone, where large shear strains have been noted. The relationship used 

to initially estimate the OCR at the RWS test site is the original correlation proposed 

by Marchetti (1980)

OCR = (0.5 • K j 56 [4-26]

This correlation has been examined by various researchers (Jamiolkowski et al., 

1988; Kamei and Iwasaki, 1995), and has been confirmed with minor variations to 

account for variations from site to site, one example of which is observed in Figure 

4.29.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r  i i i i i n  i " 
OCR -  0.34KjMm (0 .5 V  
(Marchetti, 1980)

o a t - 0 3 4 V  
(Kamei and 
Iwasaki, 1995)

4«i,a

0 *  Marchetti (1980)
O ;  M a y n e  (1 9 8 7 )

□  :Lacasse and Lunne (1988) 
A  ;Chang (1991)
41; Kamei and Iwasaki (1995)

1 10 100
Kd

Figure 4.29 - Correlation between KD and OCR for Cohesive Soils at Various 
Geographical Locations (After Kamei and Iwasaki, 1995)

The original relationship from Marchetti (1980) appears to overestimate the OCR by 

60 to 80% at the RWS site, as observed in Figure 4.30. As a result, a site specific 

relationship was developed to estimate the OCR by modifying the relationship 

originally presented by Marchetti. The site specific relationship for estimating the 

OCR is expressed as:

OCR = (0.375 -KDf 25 [4-27]

The site specific relationship is based upon the baseline values from multiple 

oedometer tests across the test site, and appears to provide a good indication of the 

OCR.
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4.2.7 - Preconsolidation Pressure (g’n)

4.2.7.1 - Introduction

Though there exist relationships to directly estimate the OCR, which relates the 

preconsolidation pressure (a’p) and the current effective vertical stress, an estimation 

of a ’p remains useful for the analysis of the RWS test site. The change in strength in 

the anomalous zone, as observed in the FV P-3 and FV P-5 profiles in Figure 2.3, 

may be linked with a change in the OCR. The effective stresses within the stratum 

appear to be one cause for this change; it is possible that a change in the 

preconsolidation pressure may be a contributing factor as well. An examination of 

the preconsolidation pressure with depth may indicate the cause of this zone is due 

to changes in geologic conditions.

4.2.7.2 - Interpretation Using the Piezocone

Typical relationships directly relate the tip resistance and the excess pore pressure 

generated during advance of the piezocone to the preconsolidation pressure. 

Larsson and Mulabdic (1991) indicate that the estimation of the preconsolidation 

pressure using excess pore pressure produces better results than relationships 

using the tip resistance. These relationships are based upon theory describing the 

generation of pore pressures with loading, which has been related to forces 

generated by the piezocone by Konrad and Law (1987). The general theory relates 

the preconsolidation pressure to an effective tip resistance, P e f f e c t i v e -  For clays with 

an OCR of less than 15-20 this relationship becomes:

a ’p = P e f f e c t i v e  = Pt -  U f a c e  [4-28]
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In this research the pore pressures were not recorded at the face of the cone tip, 

therefore the net tip resistance (qt -  avo), as suggested by Larsson and Mulabdic 

(1991), was instead used to determine the preconsolidation pressure.

Larsson and Mulabdic (1991) describe the logic behind using the net tip resistance in 

the following manner. The preconsolidation pressure and the soil plasticity are 

contributing factors when interpreting the undrained shear strength of a soil. 

Likewise, relationships correlating the net tip resistance and the excess pore 

pressure generated during advance of the piezocone are successful in estimating 

the undrained shear strength. Therefore is likely that there exists a relationship 

between these factors and the preconsolidation pressure. Three relationships based 

upon the net tip resistance have been examined and compared to the baseline 

values from oedometer tests conducted by Haley & Aldrich, Inc. and at the University 

of New Hampshire.

The relationships by Larsson and Mulabdic (1991) and Kulhawy and Mayne (1990) 

are quite similar and do not directly account for the soil plasticity. The relationship 

by Larsson and Mulabdic (1991) was developed from tests conducted on Swedish 

and Norwegian clays, and provides a good fit as seen in Figure 4.31. This 

relationship is displayed numerically as

c'p = 0.292 • (qt -  crvo) [4-29]
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Figure 4.31 -  Relationship between Net Tip Resistance and the Preconsolidation 
Pressure in Swedish and Norwegian Clays (After Larsson and Mulabdic, 1991)

The relationship from Kulhawy and Mayne (1990) is very similar, and is displayed 

numerically as

v 'p = 0-33 • (qt -  <j v0) [4-30]

Tavenas and Leroueil (1987) compiled data from tests performed in clays in eastern 

Canada. The data from Figure 4.32 is from soft clays with overconsolidation ratios 

less than two, and displays a good fit. In this figure the net tip resistance is 

normalized by the liquid limit by the following equation
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(After Tavenas and Leroueil,1987)

The preconsolidation pressure estimated by each of these three relationships is 

presented in Figures 4.33, 4.34 and 4.35 plotted alongside the baseline values from 

the oedometer, the tip resistance (qt) and the pore pressure recorded by the 

piezocone (u2). The preconsolidation pressure at the P-3 and I-3/I-4 locations is 

expected to be greater than the baseline values, as up to 7 meters of waste loading 

has occurred at these locations after the laboratory testing was performed. At the B- 

11 location the methods of Kulhawy and Mayne (1990) and Larsson and Mulabdic 

(1991) overestimate the value, though the Larsson and Mulabdic data does show a
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close match below 10.7 meters (35 feet) elevation. The method of Tavenas and 

Leroueil (1987) overestimates the preconsolidation pressure as well; however it 

appears to match the trend of the baseline values closer. All three methods for 

determining the preconsolidation pressure at the P-3 location match the oedometer 

values closely, indicating the value is under predicted. The preconsolidation 

pressure is underestimated by all three methods in the I-3/I-4 profile as well. A 

modified version of the method of Tavenas and Leroueil (1997) specific to the RWS 

site and optimized for the B-11 profile is also presented in those Figures using the 

following equation:

. =  — ( 9 , - 0 —  [4 -3 2 ]
p 1.65 + 5 .35 -wL

Of the three methods used to determine the preconsolidation pressure from the 

piezocone data at the RWS site, no single method appears to perform better than 

the others.
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Based on Methods of Kulhawy and Mayne (1990), Larsson and Mulabdic (1991),

and Tavenas and Leroueil (1987)
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Figure 4.35 - Estimation of the Preconsolidation Pressure Profile at CPTu I-3/I-4 
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4.2.7.3 - Interpretation Using the Dilatometer 

There are no existing relationships between dilatometer output and the 

preconsolidation pressure. The preconsolidation pressure can be determined at the 

B-11 dilatometer test location however by using the OCR determined in Section 

4.2.6.3 of this report and the vertical effective overburden pressures. Figure 4.36 

presents a plot of the preconsolidation pressures determined using the site specific 

OCR relationship. It is therefore logical that the preconsolidation pressure closely 

matches the oedometer data in Figure 4.36. For comparison purposes Figure 4.37 

presents the site specific relationship for determining the preconsolidation pressure 

from CPTu data, the values calculated based on OCR from DMT data and 

preconsolidation pressure determined by laboratory oedometer tests. With the 

exception of two oedometer data points at 15.8 and 9.2 meters elevation, the 

preconsolidation pressure from the piezocone at CPTu B-11 and the dilatometer 

closely match the laboratory data.
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4.2.8 - Coefficient of Lateral Earth Pressure At-Rest (K„)

4.2.8.1 - Introduction

The coefficient of lateral earth pressure at-rest (Ko) is the ratio of the effective 

horizontal stress to the vertical effective stress at a given depth. The estimate of Ko 

values within the soft gray silty clay at the RWS test site is also an important factor in 

modeling the subsurface conditions in the finite element software. Both the 

dilatometer and the piezocone are capable of providing estimations of Ko; however 

obtaining accurate values is a difficult task. The dilatometer does have an 

advantage over the piezocone though, as it directly measures the horizontal 

resistance to load; where the piezometer measures the vertical resistance to load, 

which is influenced by oh (Kulhawy and Mayne, 1990).

Where other soil properties analyzed in this research using both the CPTu and DMT 

data have readily available baseline values to develop site specific equations, no 

such baseline exists for Ko values. Relationships for determining the at-rest lateral 

earth pressure coefficients of normally consolidated soils using the drained peak 

friction angle of the soil are available from Jaky (1944) and Brooker and Ireland 

(1965) among others. Using these relationships a reasonable value for Ko in 

normally consolidated clay would be in the range of 0.5 to 0.6.

4.2.8.2 - Interpretation Using the Piezocone

Three ideologies have developed for interpreting K0 using piezocone data, based 

either upon measured pore pressure differentials, friction sleeve measurements or 

tip resistance.
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The few relationships for estimating Ko using piezocone pore pressure data are 

typically suited for piezocones with filter elements in either the u-i, or both the Ui and 

U2 locations.

Estimates of K0 have been provided based on the difference between the pore 

pressure at the Ui and u2 locations by Sully and Campanella (1991). The difference 

of these two values, normalized by the effective overburden stress plotted against Ko 

from other means o f testing shows promising results, however it does have a high 

degree of scatter. Kulhawy and Mayne (1990) have estimated Ko using the 

normalized excess pore pressure from the ui position as well. Neither of these 

methods however is suitable for this research, as pore pressures were measured at 

the u2 location.

Correlations measuring the lateral stress on the friction sleeve have been 

unsuccessful in correlating this value to the horizontal stress, and no reliable 

relationships have been created (Jefferies et al., 1987; Campanella et al., 1990; 

Masood et al., 1990). The friction sleeve measurements are typically quite low, 

especially in soft clays, and therefore using this value to determine Ko is not as 

reliable as the tip resistance or pore pressure.

Kulhawy and Mayne (1990) developed a relationship relating the normalized net tip 

resistance to the K0 as determined from self-boring pressuremeter tests in adjacent 

boreholes. This formula, as follows, will be used for interpreting Ko from piezocone 

data at the RWS test site:
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4.2.8.3 - Interpretation Using the Dilatometer 

Marchetti (1980) presented a correlation for Ko in uncemented clays using the DMT 

which provides a generally satisfactory estimate of the coefficient (Marchetti et al., 

2001).

Other researchers (Lacasse and Lunne, 1988; Kulhawy and Mayne, 1990) have 

reported using slightly modified forms of this equation. The estimate of K0 from DMT 

data was based on the original equation by Marchetti (1980). The estimates of K0 

from both the DMT and CPTu data are presented in Figure 4.38. The piezocone 

data appears to slightly underestimate Ko between 32 and 40 feet elevation, while the 

DMT data appears to slightly overestimate the value throughout the entire profile. 

Because no baseline values are available for this site, no site specific correlations 

were developed for the CPTu and DMT data.

[4-34]
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4.2.9 - Coefficient of Horizontal Consolidation (ch)

An estimate of the horizontal coefficient of consolidation (C h) can be made in fine 

grained soils by monitoring the dissipation of excess pore pressures following 

stoppage of steady piezocone penetration. Torstensson (1975, 1977) provided the 

initial framework for computing the dissipation of pore pressures using cavity 

expansion theory and linear uncoupled one-dimensional consolidation theory. Using 

this model Torstensson suggested that the coefficient is best determined at 50% 

dissipation of excess pore pressures using the following formula:

Where t5o is the measured time for 50% excess pore pressure dissipation, r0 is the 

penetrometer radius and T50 is the time factor found using the theoretical models. 

The appropriate time factor for this model is dependent on the location of the pore 

pressure filter element.

Further research conducted by Baligh and Levadoux (1980, 1985, 1986) analyzed 

the dissipation of pore pressures in normally consolidated Boston Blue Clay using 

the strain path method to predict the initial pore pressure distribution. Among the 

findings of the research conducted by Baligh and Levadoux (1985) is that the 

consolidation taking place past 50% dissipation is primarily secondary compression, 

and that the dissipation is primarily in the horizontal plane.

Houlsby and Teh (1988) developed a formula to determine the horizontal coefficient 

of consolidation using a large strain finite element analysis that is similar to the
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Baligh and Levadoux derived theory. The Houlsby and Teh method is based on an 

elastic plastic soil model, and therefore incorporates the rigidity index (lr) as well. 

Robertson et. al. (1992) predicted the coefficient of consolidation from multiple 

piezocone tests using the method of Houlsby and Teh (1988) and found that it 

provided reasonable estimates of Ch when compared to reference data from field 

observations and laboratory tests. This research also found that the u2 filter location 

provided pore pressure data with considerably less scatter than other filter element 

locations.

The dissipation tests conducted at the RWS site were interpreted at 50% decay of 

excess pore pressure using the method of Houlsby and Teh (1988) and the following 

formula:

[4-36,

Where r is the radius of the piezocone, t is the time to 50% decay of excess pore 

pressure and the modified time factor (T*) as determined using Terzaghi-Rendulic 

theory is given in Table 4.4. The rigidity index (lr) has been taken as 500, which is 

the value for normally consolidated Boston Blue Clay.
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Table 4.4 - Modified Time Factors (T*) from Houlsby and Teh (1988)

Degree of 
Consolidation

P

Location £1

Cone (u^

a....

Above
Cone

Five radii 
above

co« base

Ten ra c f l
a b o v e !

20% 0.014 0.038 0.294 0.378
30% 0.032 0.078 0.503 0.662
40% 0.063 0.142 0.756 0.995
50% 0.118 0.245 1.110 1.458
60% 0.226 0.439 1.650 2.139
70% 0.463 0.804 2.430 3.238
80% 1.040 1.600 4.100 5.240

The two piezocone dissipation tests were performed in a borehole adjacent to CPTu 

B-11 at depths of 3.68 meters and 7.96 meters respectively. Plots of the pore 

pressure dissipation with time are presented in Figure 4.39 for the first test depth 

and Figure 4.40 for the second test depth. The results of the two tests, including 

time to 50% decay of excess pore pressure and estimated horizontal coefficient of 

consolidation are presented in Table 4.5. At the first test depth a ch of 0.215 m2/day 

(2.319 f^/day) was found using the method of Teh and Houlsby (1988), while at the 

second deeper test location a ch of 0.242 m2/day (2.603 ft2/day) was estimated.

Table 4.5 - Results of CPTu Dissipation Tests;
Ch estimated using method of Teh and Houlsby (1991)

Horizont;il Coefficie
l r s

Death fm)

nt of Cons
500; T* = ( 

El fmt

olidation al
5.245 

Un (sec)

:CPTu B-111

ch (m '/dav)l

1
2

3.68
7.96

17.5
13.2

2803.5
2493.0

0.215
0.242
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While no estimate o f the horizontal coefficient of consolidation is available for the 

RWS test site for comparison, a similar marine clay deposit in Portsmouth, New 

Hampshire has been examined by Murray (1995). These analyses used the same 

rigidity index value of 500; however the dissipation tests were conducted using a 

Wissa piezocone, with the filter element in the Ui location. Though much of this 

data appears to be influenced by silty lenses within the clay stratum, there are two 

distinct ranges of ch for locations outside the influence of lenses of 0.182 m2/day 

(1.956 ft2/day) and 0.057 m2/day (0.609 ft2/day). Though these values are lower 

than those found at the RWS test site, they provide a good indication that the results 

are reasonable; with differences accounted for by the filter location and the soil itself.

Further observation of the dissipation test data reveals a small spike in pore 

pressure within a few seconds after the test has begun. This spike is likely attributed 

to a minimal increase in downward pressure on the cone tip caused by clamping the 

drill rods at the surface to prevent slippage as the test is being conducted. This 

increase highlights the importance of stopping and immediately securing the cone. 

Should further penetration occur, even to the small degree observed in these tests, 

the pore pressures may be significantly changed and the test results affected.
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Figure 4.39 -  Dissipation of Excess Pore Pressure at 3.68 m (12.07 ft) Depth
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CHAPTER V

FINITE ELEMENT MODELING

5.1 - Introduction

For the proposed Phase IV cell, planned to be constructed 15 to 25 years in the 

future, a computer model of the RWS site was created to determine the strength 

characteristics of the soft gray silty clay. Finite element computer models of the 

virgin conditions at the RWS landfill were developed incorporating data from the 

current field and laboratory testing programs as well as data from previous site 

investigations. Loading of the landfill was simulated using survey data to 

approximate actual loading rates and, historical data from site instrumentation in 

terms of pore pressures and settlement were then compared to initial model outputs. 

To simulate actual in situ conditions, parameters within the model were adjusted to 

match the historical data as closely as possible. The completed models allow for a 

prediction of soil strengths across the site in preparation for the proposed Phase IV 

“piggy-back” layers. The change in the strength of the gray silty clay stratum at 

various future dates will aid in the design of Phase IV with regards to when loading 

may begin, the acceptable rate of waste loading and, geometry of the landfill cells to 

maintain a minimum factor of safety.
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5.2 - Plaxis Finite Element Software

5.2.1 - Introduction

The finite element models of the RWS landfill were created using Plaxis 2D 

Professional Version, which is a finite element code specifically created for 

geotechnical applications. The Plaxis software package has four programs, each of 

which performs a different role in the analysis. The Input program allows users to 

define the geometry and material properties of a model, and automatically generates 

the finite element mesh and the initial pore water pressures. Prescribed loads or 

displacements are then applied in the Calculation program. Finally the post

processing of the Plaxis models is performed using the Output and Curves 

programs, which allow the user to generate data sets of several model parameters.

The level of functionality, as well as previous modeling experience at UNH using 

Plaxis were factors in the selection of this software for use at the RWS site. Plaxis 

incorporates many features which allow for the modeling of complex geotechnical 

problems, such as the availability of multiple soil behavior models and control over 

groundwater conditions, including the ability to model steady-state flow when 

creating models. Additional functionality is added with automatic mesh generation, 

staged construction inputs and updated Lagrangian analysis, which continually 

updates mesh geometry during calculation phases to account for large deformations.

The initial modeling of the RWS site was performed using release 8.2.7 of the 2D 

Professional package. An update, version 8.4, was released in July of 2006 to fix 

known errors in the previous software codes, and final modeling was performed 

using this latest release.
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5.2.2 - Plaxis Soil Models

5.2.2.1 - Introduction

The Plaxis finite element software package requires that the user define specific 

regions, called clusters in which the soil properties are similar enough that the 

cluster can be modeled as a continuum despite the fact that soil is inherently 

heterogeneous. The degree to which the model replicates the true in situ conditions 

is then in part limited by the amount of individual clusters that the user creates, 

which is typically limited by the users knowledge of the material properties for the 

site in question.

The numerical models used to define the response of the soil clusters due to 

changes in stress states vary with regard to how closely the model can simulate in 

situ conditions. Multiple soil models are made available for use in the Plaxis 

software package, and the user may use multiple soil models throughout the finite 

element model in order to best fit the in situ conditions. The Mohr-Coulomb Model, 

the Soft Soil and Soft Soil Creep Models and the Hardening Soil Model are included 

in the Plaxis software package and are the most commonly used models. Plaxis 

also allows the user to create a soil model using FORTRAN programming language, 

and makes select user-defined models available for online downloads. Specific soil 

models may provide a more rigorous calculation than others, or be better suited to 

specific soil types and loading conditions. The material properties required for each 

soil model vary, and therefore the user must also determine if the soil model can be 

used with the available laboratory or field data.
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Certain material properties are common to all of the soil models, and are defined 

using the same input as the model specific properties. These common material 

properties include the wet and saturated unit weights, the horizontal and vertical 

permeability, the overconsolidation ratio, and the at-rest lateral earth pressure 

coefficient. In addition the user must designate that the material behaves as a 

drained or undrained material.

5.2.22  - The Soft Soil Model (SSM)

The soft soil model was selected to model the behavior of both the stiff weathered 

clay crust as well as the soft silty clay at the RWS site. This model is well suited for 

modeling primary compression during embankment loading of near normally- 

consolidated clayey soils. It combines both the traditional Cam-Clay and Mohr- 

Coulomb type models to define the behavior of the soil. An advantage of the SS 

model when compared to the more advanced soil models available is that the model 

uses material properties which are available from common laboratory tests and the 

in situ test methods already performed at the RWS site.

The material propertied required for the Soft Soil model are:

*
A Modified Compression Index [-]

*
K Modified Swelling Index [-]

C Cohesion [kN/m2 or psf]

<P Friction Angle n
Dilatancy Angle [°]
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The compression and swelling indices are modified versions of the Cam-Clay 

parameters A and k as they are defined by the volumetric strain (ev) as opposed to 

the void ratio (e). The modified indices were obtained by one-dimensional 

consolidation tests performed on undisturbed samples recovered from the RWS site, 

The relationships presented in Equations 5.1 and 5.2 display the relationship 

between the values of Cc and Cr obtained the laboratory tests and the values of A* 

and k*.

x - m ^ )  [5-11

K ' = ^ k )  15-21

Plaxis requires a value greater than zero to be input for the friction angle and for the 

cohesion in order to properly complete the calculation phases. At the RWS site the 

friction angle of the clays was input as 5 degrees to fulfill this requirement. The 

value of 5 degrees was chosen to ensure that the friction angle was large enough to 

avoid calculation errors, while remaining relatively small such that excessive 

additional strength was not added to the soil. The soils typically modeled by the SS 

model would have a dilatancy angle of zero, and therefore the software can accept a 

value of zero when required.

The response of the soil due to changes in stress in the SS model is handled using 

the assumption that a logarithmic relationship exists between the volumetric strain 

(ev) and the mean effective stress (p’) as shown in Figure 5.1. This relationship is
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expressed in Equation 5.3 for virgin compression and in Equation 5.4 for unloading 

and reloading.

sv - e v = -X  In
v P ' y

s i  - s l °  = -/c *  In

[5-3]

[5-4]

Where p’ is the current mean effective stress and p° is the initial mean effective 

stress. The mean effective stress is often used to describe the stress state in 

numerical modeling and is based on the three principal effective stresses, a<\, o2 and 

a3. The mean effective stress is defined in Equation 5.5.

[5-5]

In addition to the mean effective stress, the equivalent shear stress, q is used to 

define the stress state. In conditions where a ’2=a’3, the value of q can be expressed 

as:

q = c r \ - a ' . [5-6]
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Figure 5.1- Logarithmic Relationship between Volumetric Strain 
and Mean Effective Stress (Plaxis Material Models Manual)

The yield function used in the SS model describes the boundary of the region in 

which elastic strains occur. Plastic strains, which are irreversible, occur due to 

changes in stress outside of this region. The SS model assumes that the soil 

response during unloading and reloading is completely elastic, and that plastic 

strains only develop once the stresses during primary compression reach the yield 

surface.

In the case where a ’2=a’3 Plaxis describes the yield function (f) using Equation 5.7.

f  = f - p p [5-7]

Where /  is a function of p’ and q, and pp is the preconsolidation pressure, which is 

a function of the plastic strain. These values are expressed using Equations 5.8 and 

5.9
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f =  q~  r + p' [5-8]
M 2(p'+c cot (f>)

Pp =P°p exP
—  €P

X ~K
[5-9]

The yield function in the Soft Soil model creates an ellipse, as seen in Figure 5.2 in 

when plotted on the p’,q plane, and forms the cap of the yield contours. This cap 

increases during primary compression. The peak of the ellipse is located on a line in 

the p’, q plane which has a slope of M. The parameter M is found in Equation 5.8, 

and is a function of the user defined value of K0. The line which has the slope of M 

in p’,q space is referred to as the critical state line (CSL) in the Cam-Clay model. 

The CSL defines the stresses within a particular soil at failure. In the soft soil model 

the critical state line does not indicate failure of the soil; instead the failure state is 

defined by the Mohr-Coulomb failure envelope. The Mohr-Coulomb failure envelope 

is a function of the soils friction angle and cohesion. The slope of the CSL is greater 

than or equal to the angle of the Mohr-Coulomb failure envelope; therefore the 

failure state is reached before stresses within the soil reach the CSL.

The threshold ellipse defined in Figure 5.2, defines a minimum value of c cotcp to 

ensure that the cap of the yield contours exists only in compression (p’ > 0).
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c cot cp
Figure 5.2 - Schematic of Soft Soil Model Yield Function (Plaxis, 2002)

In the principal effective stress space the SS model yield contour is expressed using 

a combination of three Mohr-Coulomb functions and three yield functions, as shown 

in Figure 5.3. The three dimensional object defined by these functions 

encompasses all of the stress states which may exist for a particular soil. 

Combinations of the principal effective stresses which fall along the boundary of this 

object occur when the soil is at failure, while stress states outside of the bounds of 

this object are not possible.
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Figure 5.3 - Soft Soil Model Yield Contour in Principal Effective Stress Space
(Plaxis, 2002)

5.2.2.3 - The Mohr-Coulomb Model (MC Model)

The Mohr-Coulomb model was used to model the ash, the drainage sand, the glacial 

sands and the glacial till in the finite element model of the RWS site. The Mohr- 

Coulomb model is the least rigorous soil model available in the Plaxis software 

package; however these materials do not require an advanced soil model in this 

analysis. The Mohr-Coulomb model describes elastic perfectly-plastic behavior in 

the material, which is accounted for using five parameters. An example of elastic 

perfectly-plastic behavior is displayed in Figure 5.4.

E Young’s Modulus [kN/m2 or psf]

v Poisson’s Ratio [-]

c Cohesion [kN/m2 or psf]
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<p Friction Angle

ip Dilatancy Angle

[°]

[°]

,5O"

£

Figure 5.4 - Elastic Perfectly Plastic Behavior 

The Young’s modulus and the Poisson’s ratio govern the material behavior within the 

yield surface, during which the material acts as a linear elastic material. The 

remaining three material properties govern the plastic behavior of the soil. The 

friction angle and the cohesion value also govern the Mohr-Coulomb failure 

envelope as depicted in Figure 5.5.

The material properties of the MC model are used in six yield functions and six 

plastic potential functions to describe the soils behavior with a change in stress. 

Figure 5.6 displays the Mohr-Coulomb yield envelope, which is a hexagonal cone 

when the cohesion is equal to zero. Stress states within this cone behave 

elastically, and as the stresses extend past the boundary, the failure state has been 

reached and the soil behaves plastically.
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a
Mohr-Coulomb Failure Envelope

C =  0

I
Figure 5.5 - Mohr-Coulomb Failure Envelope

-C 2

Figure 5.6 - Mohr-Coulomb Yield Envelope

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 - Finite Element Model

5.3.1 - Introduction

The RWS site was modeled using two profiles, one running across the site in a 

North/South direction and the other in an East/West direction as shown in Figure 5.7. 

The two profiles capture a larger portion of this site, which will provide multiple 

locations to be analyzed for strength changes with time. The predominant direction 

of horizontal displacement and zones of apparent shear softening are captured in 

the East/West profile as well.

\  North/South Profile

East/West Profile

;

Southern Expansion

Figure 5.7 - RWS Landfill Schematic
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The plane strain model was used in each of the profiles at the RWS site. In a plane 

strain problem, the geometry and loading conditions in the perpendicular plane (z- 

axis) to the cross-sectional profile must be fairly uniform and extend for a large 

distance.

The RWS profiles were modeled using 15-Node triangular elements. A 15-Node 

element provides a fourth order analysis of displacement due to the increased 

number of nodes when compared to the 6-Node triangular elements which are 

available as well. This results in a more accurate model with regards to 

displacements and stresses. A diagram of the node positions for a 15-Node element 

is presented in Figure 5.8.

Figure 5.8 - 15-Node Triangular Element 

5.3.2 - Model Geometry

The geometry of the Plaxis models was based upon data from boring logs available 

in site design reports (E.C. Jordan, Co., 1985; Rabasca, 1995) as well as the logs 

from the 2006 in situ testing program. Features identified in these logs include the 

original ground surface elevation, the elevation at which transitions in material type 

occur and in some log the elevation of the surface of the upper groundwater unit.
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Linear interpolations of these elevations between the boring locations were then 

made to create a basic model.

To further refine the model geometry, the soft gray silty clay was divided into multiple 

sub-layers based on the undrained shear strength of the soil. This allows for a more 

accurate model, as the material properties are averaged within thin layers. In both 

East/West and North/South models the undrained shear strength profiles appear to 

vary slightly from one side of the model to the other. For the East/West model a 

division was made through the soft gray silty clay at the center of the site, allowing 

each side to be discretized more thoroughly. The surface of the bedrock slopes 

upwards towards the North at the RWS site, and in situ tests indicate that in the 

North where the bedrock is shallowest the strength of the soft gray silty clay is 

greater than that at equivalent depths in the rest of the profile. Therefore the 

North/South model was divided into a Northern section, and a section covering the 

Southern and central portion of the profile. Figure 5.9 displays the East/West profile 

created in Plaxis. High resolution versions of this figure, as well as the North/South 

profile are available on the accompanying CD as Figures D.1 and D.2 to allow for a 

detailed view of the model geometry.
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Figure 5.9 -  East/West Plaxis Profile
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During the construction of the landfill a layer of drainage sand, approximately 0.6 

meters (2 ft), thick was placed at the surface of the stiff brown weathered clay. This 

layer was also placed in the models, in order to provide a drainage path for vertical 

flow of groundwater from the clay.

In order to replicate the actual conditions of the site within the model, boundary 

conditions were assigned in the form of fixities. A fixity assigns a prescribed 

displacement of zero to a geometry line in the Plaxis model. The bottom plane in the 

model runs horizontally through bedrock and both horizontal and vertical fixities 

(<Vx=uy=0) were assigned to this plane, as it is assumed that no displacements occur 

within the bedrock. Horizontal fixities (ux=0) were assigned to the vertical planes 

along the sides of the model, as it was assumed that the conditions on each side of 

the plane are the same, and therefore no horizontal displacement should occur. 

This assumption required that the edges of the RWS models extend a sufficient 

distance from the landfill so as to not be affected by any loading. The default 

boundary condition for groundwater flow in Plaxis assigns a value of zero to the 

excess pore pressures at the edges of the model, which once again requires the 

edges of the model to extend sufficiently far past the landfill.

Plaxis automatically generates the finite element mesh based on the global 

coarseness selected by the user. Five degrees of coarseness are available, ranging 

from very coarse to very fine. The element sizes in the mesh are a function of the 

global coarseness and the overall dimensions of the model. A very fine mesh will 

provide a greater number of nodes and result in a more accurate calculation than a 

very coarse mesh, however the very fine mesh requires a greater calculation time.
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For the RWS profiles a medium mesh was used to reduce the calculation time while 

still providing a high degree of accuracy. A complete analysis of either profile using 

the medium mesh required less than 50 minutes to perform, increasing to over 2 

hours when using a very fine mesh. The East/West and North/South profile meshes 

are presented in Figures 5.10 and 5.11, and are found in the CD which accompanies 

the text.

5.3.3 - Material Properties

As discussed in Section 5.3.2 the soft gray silty clay was divided into multiple layers, 

each based on undrained shear strength. Figures 5.12 and 5.13 present the 

undrained shear strength used in each model along with reference uncorrected field 

vane strength values for the East/West and North/South profiles respectively. The 

soil properties in each layer were then finalized within the range of reported values 

during the model validation.
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Figure 5.12 - Undrained Shear Strength Profiles for Modeling, East/West Profile
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Figure 5.13 - Undrained Shear Strength Profiles for Modeling, North/South Profile

The initial void ratio and the overconsolidation ratio were not adjusted in the 

validation stages as these values are fairly well defined through one dimensional 

consolidation laboratory tests and cone penetration tests. The overconsolidation
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ratio used in the East/West profile is presented in Figure 5.14, while the values used 

in the North/South profile are presented in Figure 5.15. A complete summary of the 

layers used in the Plaxis models and the material properties for each layer is 

presented in Appendix D.

Overconsolidation Ratio - EAN  PLAXIS Profile

25

20

15

10
♦♦

5

0 PLAXIS (East) 
PLAXIS (West) 
CPTu P-3 (2006) 
Oedometer

5

0 2 4 6 8
Overconsolidation Ratio (OCR)

Figure 5.14 - Overconsolidation Ratio Profile for Modeling, East/West Profile
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Overconsolidation Ratio - N/S PLAXIS Profile
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Figure 5.15 - Overconsolidation Ratio Profile for Modeling, North/South Profile

The permeability and the elastic properties of the ash at the RWS site were 

estimated using the assumption that the material behaved similar to poorly graded 

silty sand based on results of grain size analyses and Atterberg limits tests of 

municipal solid-waste incinerator fly ash as reported by Goh and Tay (1993) and
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Poran and Ahtchi-Ali (1989). Goh and Tay (1993) report that direct shear tests 

performed on unsaturated incinerator fly ash compacted to maximum dry density 

indicate a drained friction angle of 43 degrees and no apparent cohesion, while 

Poran and Ahtchi (1989) report a friction angle of 45 degrees with an apparent 

cohesion of 65 kPa based on UU triaxial tests. Based on these results the value of 

the friction angle and cohesive strength were selected for the RWS site. The unit 

weight of the ash is the most important property however, as this value will 

determine the amount that the soft gray silty clay is loaded. The compacted ash unit 

weight has been determined based upon survey data and the weight of ash hauled 

to the RWS site, and is presented on a cell by cell basis in Table 5.1.

Table 5.1 - Compacted Ash Unit Weight by Cell

Cell
Ash Uni 
kN/mJ

Weight 1  
pcf *

1a 11.8 75
1b 16.7 125

2 Upper 16.5 104.9
2 Lower 18.4 117.2

3b 17.2 109.6
4 15.2 96.8
5a 16.1 102.7
5b 17.3 110

5.3.4 - Initial Conditions

The initial conditions must be input into the Plaxis model after the model geometry is 

defined, material properties assigned to clusters and a mesh is generated. Material 

clusters which represent the waste in the landfill were inactivated as this material 

does not exist at the beginning of the calculation phases. The initial vertical
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overburden stresses were then generated using the Calculation program in the 

Plaxis software package.

The two groundwater units at the site were then defined in the model. The upper 

unit, encountered within the stiff brown weathered clay, was manually input into the 

model using a line to define the phreatic level, which varied between 0.15 and 1 

meter below the ground surface. The second groundwater unit was assigned as a 

total piezometric head to the boundary between the glacial sands and the soft gray 

silty clay. The piezometric head at this boundary was interpolated from the 

equipotential lines of vertical groundwater flow nets created by E.C. Jordan Co. for 

initial design at the RWS facility. The pore water pressures were then generated by 

the Plaxis software based on the piezometric head as defined by these two input 

sources.

5.3.5 - Model Calculation Phases

The Calculation program is used to define the loading phases of the landfill once the 

Input program had been completed. Each phase requires the user to define the 

calculation type, and the manner of loading input. Two calculation types were used 

for the RWS models: a Plastic analysis for the first stage and Consolidation analysis 

for all subsequent phases.

A Plastic analysis performs an elasto-plastic deformation calculation and does not 

consider the effect of the decay of excess pore pressures. The consolidation 

analysis allows the model to generate pore pressures with loading, and models the 

decay of excess pore pressures with time. This type of analysis was used for the 

construction of the landfill in phases after the initial phase, as the consolidation
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behavior of the clays at the RWS facility was an important factor to consider when 

determining the future soil properties. The option to update the mesh and the water 

pressure during calculation phases was selected during the Consolidation analyses. 

Updating the mesh and water pressures during calculation phases accounts for 

changes in the mesh geometry or phreatic levels due to large deformations which 

lead to computational difficulties.

Unlike the initial pore pressures, which were generated in the Input program, the 

initial vertical overburden stresses were generated by gravity loading during the first 

calculation phase. To generate the vertical overburden stresses the weight of the 

soil is applied to the model by using a Plastic calculation during which undrained 

behavior is ignored. Displacements occur during the gravity loading phase which 

must be reset to zero in the first phase to follow the procedure. The beginning of this 

second calculation phase represents the initial unloaded conditions at the site.

The landfill was constructed in the Calculation program by activating ash layers and 

using an updated Consolidation analysis with a staged construction loading input. 

Activating a layer applies the self weight of the material to the model, and the staged 

construction input allows the load to be incrementally activated over a user defined 

time period. The loading rate of the landfill, which was determined by periodic 

surveys of the RWS site, was matched by activating ash layers at specific times. 

The stage construction input was also used in phases where no additional loads 

were activated to simulate the decay of excess pore pressures with time.

The calculation phases for the East/West and North/South models are summarized 

in Tables 5.2 and 5.3 respectively.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.2 - East/West Profile Calculation Phases

*hase Clusters Activated

2
3
4
5
6
7
8
9
10 
11 
12
13
14

15

16

17

18

19

20 

21 

22

23

24

25
26
27
28

Gravity Loading

Cell 1b, Layer 1 
No Additional Loading 

Cell 1 b, Layer 2 
Berm at SPL 5 

Cell 1b, Layer 3 
No Additional Loading 

Cell 1b, Layer 4 
No Additional Loading 

Cell 1b, Layer 5 
No Additional Loading 

Berm at SPL 6 
No Additional Loading 

Cell 3b, Layer 1 
Cell 1b, Layer 6; Cell 3b, 
Layer 2; Cell 5b, Layer 1 
Cell 1b, Layer 7; Cell 3b, 
Layer 3; Cell 5b, Layer 2 
Cell 1b, Layer 8; Cell 3b, 
Layer 4; Cell 5b, Layer 3 
Cell 3b, Layer 5; Cell 5b, 

Layer 4 
Cell 1b, Layer 9; Cell 3b, 
Layer 6; Cell 5b, Layer 5 

Cell 1b, Layer 10; Cell 3b, 
Layer 7; Cell 5b, Layer 6 
Cell 3b, Layer 8; Cell 5b, 

Layers 7 and 8 
Cell 3b, Layers 9 and 10; 

Cell 5b, Layer 9

Cell 1b, Layer 11; Cell 3b, 
Layer 11; Cell 5b, Layer 10

Cell 1b, Layer 12; Cell 3b, 
Layers 12 and 13; Cell 5b, 

Layer 11 
No Additional Loading 
No Additional Loading 
No Additional Loading 
No Additional Loading

Calculation
Type

Plastic

Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation
Consolidation

Consolidation

Consolidation

Consolidation

Consolidation

Consolidation

Consolidation

Consolidation

Consolidation

Consolidation

Consolidation

Consolidation
Consolidation
Consolidation
Consolidation

Load Input

Total
Multipliers

Staged
Staged
Staged
Staged
Staged
Staged
Staged
Staged
Staged
Staged
Staged
Staged
Staged

Staged

Staged

Staged

Staged

Staged

Staged

Staged

Staged

Staged

Staged

Staged
Staged
Staged
Staged

Length
(Days)

214
211
286
261
241
243
238
119
26
284
29
117
425

230

517

326

310

418

266

282

545

175

542

105
5098
1826
1826

Start Dc

6/1/1988
1/2/1989
8/2/1989

5/16/1990
2/2/1991
10/2/1991
6/2/1992
1/27/1993
5/27/1993
6/22/1993
4/3/1994
5/3/1994

8/28/1994

10/29/1995

6/17/1996

5/1/1997

6/18/1999

10/7/1999

11/30/2000

7/6/2001

4/16/2002

10/14/2003

4/7/2004

10/3/2005
1/17/2006
1/3/2020
1/2/2025
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Table 5.3 - North/South Profile Calculation Phases

■Phase Clusters Activated
Calculation

Tvoe Load Input
Length
(Davs) Start D a | |

Plastic
Total

Multipliers
- -

Consolidation Staged 214 6/1/1988
Consolidation Staged 211 1/2/1989
Consolidation Staged 286 8/2/1989
Consolidation Staged 261 5/16/1990
Consolidation Staged 241 2/2/1991
Consolidation Staged 243 10/2/1991
Consolidation Staged 238 6/2/1992
Consolidation Staged 119 1/27/1993
Consolidation Staged 26 5/27/1993
Consolidation Staged 79 6/24/1993
Consolidation Staged 40 9/12/1993
Consolidation Staged 106 10/23/1993

Consolidation Staged 168 2/7/1994

Consolidation Staged 189 7/27/1994
Consolidation Staged 279 2/2/1995
Consolidation Staged 233 11/9/1995
Consolidation Staged 133 6/30/1996
Consolidation Staged 263 11/11/1996
Consolidation Staged 355 8/2/1997
Consolidation Staged 355 7/24/1998
Consolidation Staged 355 7/15/1999
Consolidation Staged 234 7/5/2000

Consolidation Staged 235 2/25/2001

Consolidation Staged 202 10/19/2001

Consolidation Staged 267 5/10/2002

Consolidation Staged 106 2/2/2003

Consolidation Staged 110 5/20/2003

Consolidation Staged 64 9/8/2003
Consolidation Staged 91 11/12/2003
Consolidation Staged 86 2/12/2004
Consolidation Staged 113 5/9/2004
Consolidation Staged 75 8/31/2004
Consolidation Staged 357 11/15/2004
Consolidation Staged 69 11/8/2005
Consolidation Staged 5098 1/17/2006
Consolidation Staged 1826 1/3/2020
Consolidation Staged 1826 1/3/2025

2
3
4
5
6
7
8
9
10 
11 
12
13

14

15
16
17
18
19
20 
21 
22
23

24

25

26

27

28

29
30
31
32
33
34
35
36
37
38

Gravity Loading

Cell 1 b, Layer 1 
No Additional Loading 

Cell 1b, Layer 2 
No Additional Loading 

Cell 1 b, Layer 3 
No Additional Loading 

Cell 1b, Layer 4 
No Additional Loading 

Cell 1b, Layer 5 
Cell 2, Layer 1 

No Additional Loading 
Cell 2, Layer 2 

Cell 1b, Layer 6; Cell 2, 
Layer 3 

Cell 2, Layer 4 
Cell 2, Layer 5 

Cell 1b, Layer 7 
Cell 2, Layer 6 

No Additional Loading 
Cell 4, Layer 1 
Cell 4, Layer 2 

No Additional Loading 
Cell 5a, Layer 1 

Cell 5a Layer 2; Cell 4, 
Layer 3 

Cell 5a Layer 3 
Cell 5a, Layer 4; Cell 4, 

Layer 4 
Cell 2, Layer 7; Cell 4, Layer

5
Cell 2, Layer 8; Cell 4, Layer

6
No Additional Loading 

Cell 1b, Layer 8 
Cell 1 b, Layer 9 

No Additional Loading 
Cell 1b, Layer 10 

No Additional Loading 
No Additional Loading 
No Additional Loading 
No Additional Loading 
No Additional Loading
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5.4 - Finite Element Model Validation

To increase the reliability of the forecasted soil behavior for Phase IV waste 

placement it was necessary that the Plaxis finite element models could accurately 

predict the behavior of the soil during the initial construction and filling phases at the 

RWS landfill.

In order to validate the Plaxis models, the historical data available from settlement 

platforms, piezometers and inclinometers was compared to the model outputs. 

Based on these comparisons the model was then adjusted to correct the 

discrepancies between the historical data and the model output. The East/West 

model was adjusted first, as a greater number of settlement platforms and 

piezometers were available for comparison than in the North/South model. Figures 

5.16 and 5.17 provide schematics of the locations of the available historical data for 

the East/West and North/South profiles respectively. Settlement data is available at 

locations marked “SPL”, piezometer data is indicated by “P”, and inclinometer data is 

indicated by “ I” .
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SPL-8, l-6aL .  P-1, SPL-1 ,

P-2, SPL-21 l p -3 SPL-7 I

P-5, SPL-9
P-I3a, l-3aP-I5a, SPL-10, l-5a

Southern Expansion

Approximate Test Location

P-# Piezometer Installation

SPL-# Settlement Platform Installation 

I-# Inclinometer Installation

Figure 5.16 - East/West Profile with Historic Monitoring Installations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



\
N

SPL-16

SPL-15

P-1, SPL-1

P-4, SPL-4

SPL-12

Southern Expansion

Approximate Test Location 

P-# Piezometer Installation 

SPL-# Settlement Platform Installation

Figure 5.17 - North/South Profile with Historic Monitoring Installations

The initial optimization of the E/W model was based on the data available from the 

piezometers. Adjustment of the horizontal and vertical permeability values in the soft 

gray silty clay was required to match as closely as possible the rate of decay of 

excess pore pressures during periods without loading. The model was then 

optimized with regards to settlements by adjusting the compression indices of the
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foundation soils and by small adjustments to the waste loading rates. The 

adjustments were made on only one parameter at a time to determine the effect 

which the change would make on the model outputs. The soil parameters from the 

final optimized East/West model were used in the North/South model without any 

changes. Optimization of the North/South model consisted of adjustments in the 

waste loading rates to match as closely as possible the predicted settlement and 

pore pressures to the historical data. Adjustments of the waste loading rates were 

made by increasing or decreasing the length of individual calculation phases, which 

were initially based on the time between changes in ash elevation at survey points 

across the site.

The final optimized East/West profile settlements and pore pressures matched very 

closely with the historical data however some variance is expected as the models 

cannot completely replicate the complexity of the site conditions and waste loading 

sequence. Figure 5.18 provides an example of the settlements predicted by Plaxis 

and the settlement platform data at the SPL-1 location in Cell 1-b. The historical 

settlement and pore pressure data is unavailable prior to 1992; however the Plaxis 

predictions are presented from the initial time of waste loading in this figure, as well 

as others in Section 5.4. The Plaxis results typically vary from the actual settlement 

data by less than 7% at all locations with the exception of SPL-10, which over 

predicts the settlement by up to 210%. The over prediction may be a result of 

erroneous interpolation of ash thicknesses between survey points, which resulted in 

a greater ash thickness than is actually present. In addition the error may be a result 

of incorrect ash loading rates within the area near SPL-10.
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The East/West model was generally able to accurately predict the pore pressures at 

all depths towards the center of the model as presented in Figure 5.19 at the location 

of the P-2 piezometer in Cell 1b. Towards the edges of the landfill footprint the 

model overpredicted the pore pressures after 2001. The pore pressures at the P-5 

location in Cell 5b at the western edge of the landfill are presented in Figure 5.20. 

Plaxis both over predicts and under predicts the pore pressures at the P-5 location, 

which is in part due to minor differences in the rate of waste loading used in the 

model when compared to reality. The model does not perform well deeper within the 

soft silty clay stratum. This error may be a result of a lower than expected 

permeability in the glacial sands, resulting in a reduced capacity for drainage from 

the clay. No test data is available from these sands to confirm this theory.
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Figure 5.18 - SPL-1 (Cell 1b) - Plaxis Predicted vs. Measured Settlements
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Figure 5.20 - Piezometer P-5 (Cell 5b) - Plaxis Predicted vs. Measured Pore
Pressures

Historical data from inclinometers was available for the East/West Profile, though 

adjustments to the soil properties or waste loading rates were not performed based 

on this data. The Plaxis model over predicted the horizontal displacement by over
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500% (over 21 cm) in some locations, as presented in Figure 5.21. One concern for 

future expansion of the RWS facility are the zones of higher than expected horizontal 

displacement observed in inclinometer data. Despite the large displacements which 

were predicted in the model, especially near the original ground surface, these 

zones were not present.

The settlements predicted by Plaxis for the North/South model did not match the 

historical data as well as those in the East/West Model. As observed in the 

East/West profile the settlements predicted by Plaxis matched the historical data well 

towards the center of the site at SPL-1, with an average variance of approximately 

8%. Plaxis increasingly over predicts the settlements as the location moves further 

away from the center of the landfill. Figure 5.22 presents the settlement at SPL-4, 

which is located in Cell 2 at approximately the mid-point from the center to the edge 

of the landfill. While Plaxis significantly over predicts the magnitude of the 

settlement at this location, the general trend of the predicted settlements matches 

the historical data.

The North/South profile predicts the pore pressures equally as well as the East/West 

profile in the center of the landfill at the P-1 location (Figure 5.23). The data 

available for the P-4 location indicates that Plaxis also models the pore pressure well 

at this location.

The final optimized models for both the North/South and East/West profiles 

performed well during the initial phases of operation at the RWS landfill. Though 

some variation from historical data exists in each profile, this can be expected as the 

site is relatively large and difficult to accurately model.
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Figure 5.22 - SPL-4 (Cell 2) - Plaxis Predicted vs. Measured Settlements
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5.5 - Prediction of Future Soil Strengths

A previous comparison of the actual and theoretical strength change in the soft gray 

silty clay stratum at the RWS site had been performed at the B-1, P-3 and P-5 

locations (Figure 5.24) for the period of 1994 to 2002 (Rabasca, 2003). During this 

period the test locations were loaded with up to 7 meters of ash. At each location 

the change in undrained shear strength measured using the field shear vane agreed 

well with the theoretical change, as determined using the TCON analysis discussed 

in Section 2.2.3. The tests generally observed strength gains varying between 1.2 

and 3.6 kPa (25 and 75 psf) with the exception of an approximately 1.5 meter thick 

zone between 7.6 and 12.2 meters elevation, where a strength loss of 1.2 to 3.6 kPa 

was noted. The zone of strength loss was not attributed to any one specific factor, 

though it was noted by Rabasca (2003) that both strain softening and normal 

variations in test procedures were likely contributors.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B-11
\

P-3
1-3/I-4

B-4

Southern Expansion

Figure 5.24 - Locations of Strength Change Analysis

To analyze the change in strength at specific locations for the Plaxis analysis as well 

as the previous analysis in 2003, the change in vertical effective overburden stress 

(Ao’v) due to consolidation was used in conjunction with the known ratio of field 

shear vane strength to effective stress Sû )/a ’vo. At the RWS site this ratio has been 

reported as varying between 0.10 and 0.15 (Rabasca, 2003) and the Plaxis analysis 

assumed a ratio of 0.125. The change in effective stress measured in the Plaxis 

analysis was then multiplied by the strength ratio to determine the change in 

undrained shear strength from the baseline values.
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The effective stress at each location was recorded using Plaxis at the time of any 

previous field shear vane investigation, as well as during January of 2006, 2020, 

2025 and 2030. Figure 5.25 provides an example of the increase in effective 

overburden pressure at the B-4 location. In order to forecast the theoretical 

undrained shear strength the Plaxis model assumes that no additional loading will 

occur at the site after October of 2005. Three initial analyses were performed using 

Plaxis data at the B-1, P-3 and P-5 locations from the period of 1994 to 2002 in order 

to determine the ability of the model to predict strength changes. The comparison of 

actual and calculated strengths at the B-1 location is presented in Figure 5.26. The 

calculated strength determined by Plaxis appears to agree fairly well with the actual 

change in strength below 8.8 meters (29 feet) elevation, though above 11 meters (36 

feet) elevation the Plaxis model tends to over predict the change in strength by 

approximately 14%. The over prediction may be the result of the combination of a 

shorter drainage path and high excess pore pressures, resulting in a greater degree 

of consolidation than that experienced in lower depths. In zones where an apparent 

strength loss occurs, such as that between 8.8 and 11 meters in the B-1 profile, 

Plaxis does not predict such strength loss. This is likely due to the inability of the 

Soft Soil Model to account for strain softening.
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Figure 5.25 - Plaxis Predicted Change in Effective Overburden Pressure with Time
(B-4 Location)
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Figure 5.26 - Change in Undrained Shear Strength at B-1 (1994-2002)
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The 2002 field shear vane strength profile was used as the baseline value for 

strength estimation to 2006, 2020, 2025 and 2030 at the B-1, B-4, P-3, P-5, and I- 

3/I-4 locations. An additional analysis was performed at the B-11 location using the 

2006 field shear vane strength profile as a baseline.

Figures 5.27 and 5.28 present the theoretical strength gains at the I-3/I-4 location 

and the B-1 location respectively and are indicative of the theoretical strength gains 

observed at the RWS site. The theoretical strength gain in the B-1 profile is 

approximately 40% over the 2002 strength at the top of the profile (approximately 15 

meters elevation), which is the interface between the soft gray silty clay and the stiff 

brown weathered crust clays. The theoretical strength increase gradually reduces to 

approximately 21% in the lower regions of the B-1 profile. This distribution agrees 

with anticipated results, as the excess pore pressures developed due to additional 

loading is less, as the change in vertical overburden pressure is reduced with depth. 

The minimal strength gain within the weathered crust may be due the high OCR and 

lower initial void ratio, resulting in a lower overall amount of consolidation in this 

layer.

While it was expected that the greatest theoretical strength gain would correlate with 

the locations of the greatest amount of ash loading, the degree to which the loading 

would extend horizontally was overestimated both in terms of horizontal and vertical 

stresses. This may be due to the very shallow slopes of the landfill. The strength 

increase at the I-3/I-4, which is located along the eastern edge of the landfill, is 

presented in Figure 5.28. The strength increase predicted for 2020 in the upper 

portions of this profile is only 4% greater than the 2002 baseline strength. In the
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lower portions of the profile the increase is approximately 2% greater than the 2002 

strength. Allowing an additional 10 years of consolidation, to 2030 has little effect on 

the theoretical strength gain.
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While the Plaxis models appear capable of modeling the theoretical strength gain at 

the RWS site, shear softening of the soils cannot be accounted for in these analyses 

as the Soft Soil model is not capable of simulating this behavior. The 2002 field 

shear vane investigation revealed localized regions, typically no more than 1.5 

meters thick, of apparent strength loss within multiple profiles. These losses ranged 

from 7 to 16% of the baseline 1994 strength. These regions of apparent strength 

loss do correlate with regions of high shear strain, which indicates the likely 

occurrence of post-peak shear softening. Therefore the Plaxis output may 

overestimate the theoretical strength gain in these locations.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 - Summary

In preparation for a proposed vertical expansion of the RWS Ashfill/Balefill facility in 

South Portland, Maine, a prediction of the long term strength gain in the underlying 

soft, sensitive marine silty clays was required to evaluate the overall stability of the 

landfill. To facilitate this requirement, a finite element analysis was used to replicate 

the phased construction of the landfill site. North/South and East/West profiles were 

created using both survey data and boring logs to determine model geometry, with 

the survey data also used to determine waste loading rates on a cell by cell basis. 

The material properties for the modeling study were primarily gathered during an in 

situ testing program consisting of piezocone, field shear vane and dilatometer 

profiles and laboratory testing. Additional information was provided from previous 

site investigations in 1985, 1994 and 2002. Historical data from settlement 

platforms and piezometers installed at the site was used to tune the models to more 

accurately represent the in situ conditions.

Strength gain within the soft grey silty clay stratum was calculated based on the ratio 

of vertical effective stress to undrained shear strength. The strength gain was first 

calculated between 1994 and 2002 and compared to measured strength gain during 

the same period to validate the model. Calculations were then performed to
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determine the strength gain to 2020, 2025 and 2030 for the landfill expansion 

analysis.

6.2 - Conclusions

The following conclusions can be drawn from the field work performed at the RWS 

landfill, and using the Plaxis finite element software to model the site.

The Plaxis finite element modeling generally provided a good indication of the 

behavior at the RWS landfill in terms of settlement and excess pore pressures from 

initial waste loading in 1988 to 2006. The models successfully estimated the 

settlement towards the center of the site with less than 8% error, though 

overestimation of settlement was observed towards the edges of the landfill by more 

than 200%. Consideration of both the development of excess pore pressures from 

loading and the dissipation of pore pressures under no-load conditions was 

necessary for accurate modeling at the site. The pore pressures estimated from the 

finite element model generally agreed with the historical data, varying only by 

approximately 10% on average. However, deeper within the soft gray silty clay 

stratum the model estimated the pore pressure to within +/- 30%. Though both 

settlement and pore pressures vary from historical data at some locations or depths, 

the general trend of the predicted behavior closely follows the recorded

The long term behavior of the site may not be as accurately depicted in the finite 

element modeling a result of the computational limitations of the Soft Soil Model 

used to describe soil behavior. The strength changes predicted to the years 2020, 

2025 and 2030, using 2002 field shear vane profiles as baseline strengths, indicate
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that a strength gain of up to 40% may be realized within the center of the site by the 

year 2020 due to the consolidation of the soft gray silty clay stratum. Extending 

outward from the perimeter of the landfill the calculated strength gain is significantly 

less, on the order of 2 to 4% above the 2002 strengths. No strength losses, similar 

to those observed in the field, were noted based on the change in effective stresses 

from Plaxis. This model does not account for strain softening of the soil, a behavior 

which has previously been observed within localized depths of the soft gray silty clay 

stratum. Under no-load conditions the rate of strain throughout the soft gray silty 

clay profile is expected to decrease during the period from 2006 to 2020 from the 

current rate of 0.02 to 0.03% per month. Therefore, while strength loss may not be 

significant within the zones of large displacement within the stratum, the change in 

strength calculated from the results of the Plaxis finite element models may be 

slightly overestimated.

Where comparisons were made between horizontal displacement within the Plaxis 

models and inclinometer data, the finite element model significantly overestimated 

the displacement throughout the site. The displacement in the stiff silty clay crust 

was overestimated by over 600% at some locations, while displacements within the 

upper portions of the soft gray silty clay were overestimated by nearly 500%. 

Additionally the 1 to 2 meter thick locations of large horizontal displacement 

observed in the inclinometers, at elevations varying between 11 and 15 meters, were 

not observed in the finite element model. The zones of greatest horizontal 

displacement at the site occur at the depths where a discontinuity was observed in 

virgin field shear vane strength profiles at the site. The sudden drop in undrained 

shear strength was accounted for in the finite element models. While the cause for

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this error is not readily apparent, the over prediction of the horizontal displacement in 

the clays at the site does not appear to affect the models ability to estimate 

settlement and development of excess pore pressures. This lends to the conclusion 

that the Soft Soil model is not well suited for accurate analysis of horizontal 

displacements.

6.3 - Future Work

To account for the Soft Soil Models limitations with regards to strain softening 

behavior, it is recommended that the Hardening Soil Model be used in further 

analyses of the site. This model is capable of handling the effects of strain 

softening. For the Hardening Soil Model, further laboratory and in situ testing would 

be required to obtain the necessary input material properties. It is also 

recommended that the material properties of the glacial sands be confirmed through 

in situ or laboratory testing to supplement the material properties reported by E.C. 

Jordan, Co. (1985). These properties may impact the dissipation of excess pore 

pressures in the soft gray silty clay.

Strength profiles from field shear vane tests, and the large horizontal displacements 

observed at the site seem to suggest the presence of a historic slip surface which 

may have been re-activated due to waste placement. Further investigation at the 

site using the dilatometer may be warranted to ascertain the extent of a slip surface, 

if one exists. A sudden change in the dilatometer horizontal stress index, KD, has 

been reported by Totani et al. (1997) as an indicator of slip surfaces. Dilatometer 

profiles adjacent to inclinometer installations where the large displacements have 

been observed may confirm the presence of the slip surface.
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Unlike the field shear vane, the piezocone profiles completed at the site did not 

indicate a change in the undrained shear strength, overconsolidation ratio and 

preconsolidation pressure at the depths where large horizontal displacements are 

observed in the P-3 and I-3/I-4 locations. Likewise the soil behavior classifications 

by the methods of Larsson and Mulabdic (1991) and Robertson (1990) do not 

indicate a zone of material which behaves differently than the remainder of the soft 

gray silty clay stratum. Therefore additional piezocone profiles may be beneficial at 

the site to help determine why the piezocone does not indicate changes.
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FIELD SHEAR VANE TEST DATA
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 1
Depth to center of vane (ft): 14.0 
Elev. to center of vane (ft): 54.9

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
0.5 3.1 3 37.6
1.0 7.0 6 84.8
1.5 11.5 9 139.3
2.0 15.0 12 181.7
2.3 17.0 14 205.9
2.5 18.5 15 224.1
2.8 20.5 17 248.3
3.0 22.0 18 266.5
8.4,^ : -'SO.,:' / 27&T" :
4.0 16.5 24 199.9
4.3 16.0 26 193.8
4.5 16.0 27 193.8
4.8 15.5 29 187.8
5.0 15.0 30 181.7
5.3 14.5 32 175.7
5.5 14.0 33 169.6

Field Vane Shear Test Results
600
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I
tow£300v>
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Angular Rotation (degrees)

Elapsed time from insertion to rotation for undisturbed test (min): 5:22
Calculated undrained shear strength (psf): 270
Instrument reading for remolded: 2
Calculated remolded shear strength (psf): 24
Sensitivity: 11

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments:
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 2
Depth to center of vane (ft): 16.5 
Elev. to center of vane (ft): 52.4

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
0.3 0.0 2 0.0
0.5 0.0 3 0.0
0.8 0.0 5 0.0
1.0 0.0 6 0.0
1.3 0.0 8 0.0
1.5 0.0 9 0.0
2.0 0.5 12 6.1
2.5 0.5 15 6.1
3.0 1.0 18 12.1
3.5 4.5 21 54.5
3.8 6.5 23 78.7
4.0 8.5 24 103.0
4.25 10.0 26 121.1
4.5 11.5 27 139.3
4.8 12.5 29 151.4
5.0 14.5 30 175.7
5.3 16.5 32 199.9
5.5 18.0 33 218.1
5.8 19.5 35 236.2
6.0 20.5 36 248.3
6.3 22.0 38 266.5
6.5 23.5 39 284.7
6.8 24.0 41 290.7
7.0 - • !24i6 *• ' - 296 8
7.3 23.0 44 278.6
7.5 20.5 45 248.3
7.8 19.5 47 236.2
8.0 18.5 48 224.1
8.3 18.0 50 218.1
8.5 17.5 51 212.0
8.8 17.5 53 212.0
9.0 17.0 54 205.9
9.3 17.0 56 205.9
9.5 16.8 57 203.5
9.8 16.5 59 199.9
10.0 15.5 60 187.8
10.5 15.3 63 185.3
11.0 15 66 181.7
11.5 14.5 69 175.7
12.0 14.5 72 175.7

Field Vane Shear Test Results
600

500

300

200

100

40

Angular Rotation (degrees)

Elapsed time from insertion to rotation for undisturbed test (min): 3:00
Calculated undrained shear strength (psf): 297
Instrument reading for remolded: 2.25
Calculated remolded shear strength (psf): 27
Sensitivity: 11

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments:
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11 
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 3
Depth to center of vane (ft): 19.0 
Elev. to center of vane (ft): 49.9

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
0.3 0.0 2 0.0
0.5 0.0 3 0.0
1.0 1.5 6 18.2
1.3 2.8 8 33.3
1.5 4.5 9 54.5
1.8 6.0 11 72.7
2.0 8.5 12 103.0
2.3 9.0 14 109.0
2.5 10.5 15 127.2
3.0 13.0 18 157.5
3.3 15.0 20 181.7
3.50 16.5 21 199.9
3.8 18.0 23 218.1
4.0 19.0 24 230.2
4.3 20.0 26 242.3
4.5 21.0 27 254.4
4.8 22.0 29 266.5
5.0 22.8 30 275.6
5.3 23.5 32 284.7
5.5 24.3 33 293.8
5.8 25.0 35 302.9
6.0 25.8 36 311.9
6,3 25 8 38 . 312.S-
6.5 20.0 39 242.3
7.0 19.5 42 236.2
7.5 18.8 45 227.1
8.0 18.0 48 218.1
8.5 17.8 51 215.0
9.0 17.3 54 209.0
9.5 17.0 57 205.9
10.0 16.5 60 199.9

Field Vane Shear Test Results
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Angular Rotation (degrees)

Elapsed time from insertion to rotation for undisturbed test (min): 3:00
Calculated undrained shear strength (psf): 313
Instrument reading for remolded: 3
Calculated remolded shear strength (psf): 36
Sensitivity: 9

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments:
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11 
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 4
Depth to center of vane (ft): 21.5 
Elev. to center of vane (ft): 47.4

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
0.3 0.3 2 3.0
0.5 0.3 3 3.0
0.8 0.3 5 3.0
1.0 0.3 6 3.0
1.3 0.3 8 3.0
2.0 0.3 12 3.0
3.0 0.5 18 6.1
3.3 2.0 20 24.2
3.5 4.0 21 48.5
3.8 6.0 23 72.7
4.0 8.0 24 96.9
4.50 11.5 27 139.3
4.8 13.0 29 157.5
5.3 16.0 32 193.8
5.5 18.0 33 218.1
5.8 19.8 35 239.3
6.0 21.3 36 257.4
6.3 22.5 38 272.6
6.5 24.0 39 290.7
6.8 25.0 41 302.9
7.0 25.5 42 308.9

7.5 20.0 45 242.3
7.8 19.0 47 230.2
8.0 18.3 48 221.1
8.3 17.0 50 205.9
8.5 16.8 51 202.9
9.0 16.3 54 196.9
9.5 15.5 57 187.8
10.0 15.0 60 181.7

Field Vane Shear Test Results

500

300

200

100

20 40

Angular Rotation (degrees)

80

Elapsed time from insertion to rotation for undisturbed test (min): 3:00
Calculated undrained shear strength (psf): 313
Instrument reading for remolded: 2.8
Calculated remolded shear strength (psf): 34
Sensitivity: 9

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments:
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 5
Depth to center of vane (ft): 24.0 
Elev. to center of vane (ft): 44.9

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
0.3 2.0 2 24.2
0.5 3.8 3 45.4
0.8 5.5 5 66.6
1.0 7.3 6 87.8
1.3 9.0 8 109.0
1.5 10.8 9 130.2
1.8 12.3 11 148.4
2.0 13.8 12 166.6
2.3 15.5 14 187.8
2.8 18.5 17 224.1
3.00 20.8 18 251.4
3.5 23.0 21 278.6
3.8 24.3 23 293.8
4.0 25.5 24 308.9
4.3 26.5 26 321.0
4.5 27.5 27 333.1
4.8 28.5 29 345.2
5.0 29.3 30 354.3

-.vr 357 4
5.5 19.5 33 236.2
5.8 18.8 35 227.1
6.0 17.5 36 212.0
6.5 16.8 39 202.9
7.0 16.3 42 196.9
7.5 15.8 45 190.8
8.0 15.0 48 181.7
8.5 14.5 51 175.7
9.0 14.0 54 169.6

Elapsed time from insertion to rotation for undisturbed test (min): 5:30
Calculated undrained shear strength (psf): 357
Instrument reading for remolded: 2.5
Calculated remolded shear strength (psf): 30
Sensitivity: 12

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments:
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 6
Depth to center of vane (ft): 26.5 
Elev. to center of vane (ft): 42.4

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
0.5 0.0 3 0.0
1.0 0.0 6 0.0
1.5 1.8 9 21.2
1.8 3.5 11 42.4
2.0 5.3 12 63.6
2.3 7.0 14 84.8
2.5 8.8 15 106.0
2.8 10.8 17 130.2
3.0 12.0 18 145.4
3.3 14.0 20 169.6
3.5 15.5 21 187.8
3.8 17.3 23 209.0

4.25 19.5 26 236.2
4.5 21.8 27 263.5
4.8 23.0 29 278.6
5.0 24.0 30 290.7

'
5.5 18.0 33 218.1
5.8 17.5 35 212.0
6.0 16.5 36 199.9
6.5 15.8 39 190.8
7.0 15.0 42 181.7
7.5 14.5 45 175.7
8.0 13.3 48 160.5
8.5 12.8 51 154.5
9.0 12.0 54 145.4

Elapsed time from insertion to rotation for undisturbed test (min): 1:45
Calculated undrained shear strength (psf): 297
Instrument reading for remolded: 2.75
Calculated remolded shear strength (psf): 33
Sensitivity: 9

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments:
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 7
Depth to center of vane (ft): 29.0 
Elev. to center of vane (ft): 39.9

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
0.5 0.0 3 0.0
1.0 0.0 6 0.0
1.5 0.0 9 0.0
1.8 1.8 11 21.2
2.0 3.5 12 42.4
2.3 5.5 14 66.6
2.5 6.5 15 78.7
2.8 7.8 17 93.9
3.0 9.3 18 112.1
3.3 11.0 20 133.3
3.50 12.5 21 151.4
3.8 14.3 23 172.6
4.0 15.5 24 187.8
4.3 17.0 26 205.9
4.5 18.5 27 224.1
4.8 20.0 29 242.3
5.0 21.3 30 257.4
5.3 22.5 32 272.6
5.5 24.0 33 290.7
5.8 25.0 35 302.9
6.0 26.3 36 318.0
6.3 27.5 38 333.1
6.5 28.3 39 342.2

... -■•:&$<> ... 28.5 : . . -  , 4 i 345 2
7.0 18.0 42 218.1
7.3 17.0 44 205.9
7.5 17.0 45 205.9
8.0 16.8 48 202.9
8.5 16.3 51 196.9
9.0 15.0 54 181.7
9.5 14.0 57 169.6
10.0 13.0 60 157.5

Elapsed time from insertion to rotation for undisturbed test (min): 2:00
Calculated undrained shear strength (psf): 345
Instrument reading for remolded: 2
Calculated remolded shear strength (psf): 24
Sensitivity: 14

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments:
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 8
Depth to center of vane (ft): 31.5 
Elev. to center of vane (ft): 37.4

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
1.0 0.0 6 0.0
2.0 0.0 12 0.0
3.0 0.0 18 0.0
4.0 0.0 24 0.0
5.0 0.0 30 0.0
5.5 1.0 33 12.1
5.8 3.5 35 42.4
6.0 6.0 36 72.7
6.5 10.0 39 121.1
6.8 12.0 41 145.4
7.0 13.8 42 166.6
7.3 15.3 44 184.7
7.5 17.0 45 205.9
7.8 18.5 47 224.1
8.0 19.5 48 236.2
8.3 20.5 50 248.3
8.5 21.8 51 263.5
8.8 23.3 53 281.7
9.0 24.5 54 296.8
9.3 26.0 56 315.0
9.5 27.3 57 330.1
9.8 28.5 59 345.2
10.0 30.0 60 363.4
10.3 30.8 62 372.5

V:! 10,6 jSfc... 376 7
11.0 17.5 66 212.0
11.3 16.5 68 199.9
11.5 16.0 69 193.8
12.0 15.0 72 181.7
12.3 15.0 74 181.7
12.8 14.5 77 175.7
13.0 14.5 78 175.7
13.3 14.3 80 172.6
13.5 14 81 169.6

Elapsed time from insertion to rotation for undisturbed test (min): 5:00
Calculated undrained shear strength (psf): 377
Instrument reading for remolded: 3.1
Calculated remolded shear strength (psf): 38
Sensitivity: 10

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments: Gritty feeling when cranking
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 9
Depth to center of vane (ft): 33.9 
Elev. to center of vane (ft): 35.0

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
1.0 0.0 6 0.0
1.5 0.0 9 0.0
2.0 1.3 12 15.1
2.3 3.8 14 45.4
2.5 4.3 15 51.5
2.8 5.5 17 66.6
3.0 7.5 18 90.9
3.3 9.0 20 109.0
3.5 10.8 21 130.2
3.8 12.3 23 148.4
4.0 13.8 24 166.6
4.3 15.3 26 184.7
4.5 16.5 27 199.9
4.8 18.0 29 218.1
5.0 19.5 30 236.2
5.3 21.0 32 254.4
5.5 22.0 33 266.5
6.0 25.0 36 302.9
6.3 26.8 38 324.0
6.5 27.8 39 336.2
6.8 29.0 41 351.3
7.0 30.3 42 366.4

30 5 369 5
7.5 15.0 45 181.7
8.0 13.8 48 166.6
8.5 13.8 51 166.6
9.0 13.0 54 157.5
9.5 12.3 57 148.4
10.0 12.3 60 148.4
10.5 12.0 63 145.4
11.0 11.3 66 136.3
11.5 10.5 69 127.2
12.0 10.3 72 124.2

Field Vane Shear Test Results
600
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Angular Rotation (degrees)

Elapsed time from insertion to rotation for undisturbed test (min): 3:00
Calculated undrained shear strength (psf): 369
Instrument reading for remolded: 2.5
Calculated remolded shear strength (psf): 30
Sensitivity: 12

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments: Hard layer encounteredapprox. 6-12" after start of vane push. 
Pushed through to soft clay.
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 10
Depth to center of vane (ft): 36.4 
Elev. to center of vane (ft): 32.5

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
1.0 1.0 6 12.1
1.3 2.3 8 27.3
1.5 4.0 9 48.5
1.8 5.5 11 66.6
2.0 7.0 12 84.8
2.3 8.5 14 103.0
2.5 10.0 15 121.1
2.8 11.8 17 142.3
3.0 13.0 18 157.5
3.3 14.8 20 178.7
3.5 16.3 21 196.9
3.8 17.5 23 212.0
4.0 19.0 24 230.2
4.3 20.8 26 251.4
4.5 22.0 27 266.5
4.8 23.0 29 278.6
5.0 24.5 30 296.8
5.3 26.3 32 318.0
5.5 27.3 33 330.1
6.0 29.8 36 360.4
6.3 31.0 38 375.5
6.5 31.8 39 384.6
6.8 32.8 41 396.7
7.0 33.5 42 405.8
7.3 34.3 44 414.9
7.5 35.0 45 424.0
7.8 35.5 47 430.0

49 436 1
8.5 15.5 51 187.8
8.8 16.8 53 202.9
9.0 16.0 54 193.8
9.3 16.0 56 193.8
9.5 15.8 57 190.8
10.0 14.8 60 178.7
10.5 14.3 63 172.6
11.0 14.3 66 172.6
11.5 13.5 69 163.5
12.0 13.3 72 160.5

Field Vane Shear Test Results
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Angular Rotation (degrees)

Elapsed time from insertion to rotation for undisturbed test (min): 4:00
Calculated undrained shear strength (psf): 436
Instrument reading for remolded: 4.75
Calculated remolded shear strength (psf): 58
Sensitivity: 8

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments: Probable sand lense 15-18” from bottom of vane borer
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Regional Waste Systems
Ash/Bale Fill Facility

South Portland, Maine

University of New Hampshire 
Geonor H-10 Vane Borer Testing

Boring No.: B-11
Ground surface elev. (ft): 68.9
Test date: 1/18/2006
Calibr. factor (psf/reading): 12.114

Test No.: 11
Depth to center of vane (ft): 38.8 
Elev. to center of vane (ft): 30.1

Time
(min)

Instrument
Reading

Rotation
(degrees)

Shear
Stress
(psf)

0.0 0.0 0 0.0
1.0 0.0 6 0.0
2.0 0.0 12 0.0
3.0 0.0 18 0.0
3.3 1.5 20 18.2
3.5 2.0 21 24.2
3.8 3.0 23 36.3
4.0 3.8 24 45.4
4.3 5.0 26 60.6
4.5 6.3 27 75.7
4.8 7.3 29 87.8
5.0 8.3 30 99.9
5.3 9.5 32 115.1
5.5 10.8 33 130.2
5.8 11.8 35 142.3
6.0 12.5 36 151.4
6.3 14.0 38 169.6
6.5 15.0 39 181.7
7.0 15.8 42 190.8
7.3 17.0 44 205.9
7.5 18.0 45 218.1
7.8 20.8 47 251.4
8.0 21.0 48 254.4
8.3 22.3 50 269.5
8.5 23.3 51 281.7
9.0 26.0 54 315.0
9.3 27.0 56 327.1
10.0 27.8 60 336.2
10.3 29.0 62 351.3
10.5 30.0 63 363.4
10.8 31.0 65 375.5
11.0 33.5 66 405.8
11.3 35.0 68 424.0
11.5 35.5 69 430.0
11.8 36.5 71 442.2
12.0 37.0 72 448.2
12.3 38.0 74 460.3
12.5 38.5 75 466.4

13.0 16.0 78 193.8
13.3 17.5 80 212.0
13.5 18.3 81 221.1
14.0 20.0 84 242.3
14.3 21.8 86 263.5
15.0 20.0 90 242.3
15.5 20.3 93 245.3
16.0 18.0 96 218.1
16.5 16.8 99 202.9
17.0 16.5 102 199.9

Field Vane Shear Test Results
600

500

400

300

200

100

0
0 20 40 60 80 100

Angular Rotation (degrees)

Elapsed time from insertion to rotation for undisturbed test (min): 2:00
Calculated undrained shear strength (psf): 472
Instrument reading for remolded: 4.25
Calculated remolded shear strength (psf): 51
Sensitivity: 9

Vane shape: Rectangular
Vane height (mm): 130
Vane diameter (mm): 65
Vane blade thickness (mm): 2
Vane rotation rate (degree/sec): 0.1
Number of revolutions for remolded test: 10

Comments: Probable sand lense 15-18" from bottom of vane borer
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CALIBRATION OF THE VANE APPARATUS

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A check of previous calibrations of the torque measuring head of the vane shear 

apparatus was most recently conducted in the fall of 2005 in the laboratory using a 

device similar to that shown in Figure B.1. Use of the apparatus was minimal in the 

period between the calibration and use at the RWS facility, and a check of the 

calibration was deemed unnecessary for this testing program.

Figure B.1 - Geonor H-10 Calibration Equipment (Geonor, Inc.)

The calibration is performed by attaching the torque measuring head to an aluminum 

disc with a known diameter that is supported by the frame of the calibration 

equipment. A thin wire is attached at opposite ends of the disc, and is threaded 

through a pulley system. Weight is then suspended from the wire and the reading 

on the torque head is noted along with the calculated torque applied. Several 

measurements are made through the range of the Geonor H-10 equipment and 

plotted with a linear trend line. Based on this trend line the calibration factor used for 

the vane shear apparatus during this testing program was 0.580 kPa per dial 

increment on the torque measuring head. This value is based on a best fit line 

applied to the instrument readings less than 40. Over the full range of the equipment
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the calibration factor was found to be 0.603 kPa per dial increment; however the 

calibration factor for the lower range of the instrument was used due to the soft 

nature of the clays at the RWS site. Previous calibrations of the equipment in 1994 

and 2002 resulted in factors varying between 0.575 and 0.591 kPa per increment for 

the instrument range of 0 to 100.
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CALIBRATION OF THE PIEZOCONE
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In order to convert the piezocone sensor outputs into load and pressure values the 

probe was calibrated in the laboratory. Although the manufacturer supplied a 

calibration report correlating the sensor output voltages to engineering units, a check 

on this calibration was performed on the new cone penetrometer using an Instron 

Model 1350 loading machine with a 90 kN capacity. In addition a Geotest Strain 

Controlled Load Frame, Model S5710 with a 4.5kN capacity load cell (Figure C.1) 

was used to test the lower range output from the friction sleeve. The pore pressure 

transducer was spot checked against the manufacturer calibration report using a 

water column 1.22 meters in height.

Figure C.1 - Geotest S5710 Load Frame with Piezocone
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To check the calibration of the point and sleeve load cells the probe was fully 

assembled, less the saturation fluid and was powered for 20 minutes to allow 

sensors to stabilize. The complete data acquisition system was used during the 

testing. A stainless steel adaptor, as seen in Figure C.2, was machined to support 

the cone and apply loads through the tip only. Loads were then applied at 

approximately 5.34 kN increments up to the maximum test load, and then back to 

zero in similar increments. The check of the friction sleeve load cell is performed in 

a similar manner. The cone tip and filter element are removed during this test while 

a second stainless steel adaptor, as seen in Figure C.3 supports and loads the 

friction sleeve. Loads were applied in 2.22 kN increments to 90 percent of the 

maximum friction sleeve load cell capacity. The probe was then unloaded in similar 

increments back to zero load.

Figure C.2 - Cone Tip Support for Laboratory Loading
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Figure C.3 - Friction Sleeve Support for Laboratory Loading

Results from each of the load cell calibration checks are plotted alongside the 

manufacturer calibration data in Figures C.4 and C.5. A linear best fit curve was 

applied to both data sets, which reveal that the calibration data supplied by the 

manufacturer is accurate. In addition the manufacturers’ crosstalk data is presented 

in Figure C.6. Crosstalk is defined as the effect of the tip pressure on the friction 

sleeve output. While the crosstalk was not checked in the lab, it was accounted for 

during data reduction.

The pore pressure transducer did not receive a full check of the calibration data 

provided by the manufacturer. Instead the system was checked in a 1.22 meter 

column of water for a good response to the change in pore pressure, indicating 

saturation of the hydraulic circuit between the pressure transducer and the filter 

element. The probe was held at mid-depth and full depth of the column repeatedly, 

and the calculated water pressure was compared to the output from the cone, 

incorporating the manufacturers’ calibration equation. Though this method does not 

test the full range of the pressure transducer, the piezocone output closely matched
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the calculated pressure. The manufacturers’ calibration data, with a linear best fit 

curve is presented in Figure C.7.
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Figure C.4 -  Point Load Cell Calibration
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Figure C.5 -  Friction Sleeve Load Cell Calibration
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Figure C.1 -  Pore Pressure Transducer Calibration
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Table D.1 -  Plaxis Material Cluster Properties

N>wCO

LayerfJame ,3‘ Soil Model"1
Drained or 
Undrained 
Behavior

OCR K)
Unsaturated 

Unit Weight 
(kWm*)

Saturated 
Unit Weight 

(kN/m3)

Horizontal Vertical 
Permeability IkJ Permeability [k j  

(cm/sec) (cmfecc)

Compression Recompression 
Index {CJ . Index [C,]

Initial 
Void Ratio 

fee]
;

Undratncd 
Shear 

Strength (kPa)

Friction Dilatency ,T ° jn?* PolssojY 
Angie [*] Angle M  Ratio [v

Stiff Clay Crust Soft Soil Model Undrained 8 2 17.3 17.3 3.39E-07 1.04E-07 0.59 0.015 0.85 143.6 10 2
Glacial Till Mohr-Coulomb Undrained - - 18.9 19.7 1.41E-06 1.41E-06 - 21.5 35 0 22408 0.35

Glacial Sand Mohr-Coulomb Drained - 18.1 18.1 3.00E-05 3.00E-05 0.5 35 0 22408 0.4
Drainage Sand Mohr-Coulomb Drained 18.1 18.1 1.76E-02 1.76E-02 - - 0.5 35 0 22408 0.4

Ash Mohr-Coulomb Drained - Varies Varies 1.50E-04 1.50E-04 0.5 43 0 12410 0.35
NS-1(B-10) SSM Undrained 4 1.8 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.60 16.6 5 0 -

NS-2(B-10) SSM Undrained 2.5 1.2 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.60 13.8 5 0
NS-3(B-10) SSM Undrained 1.45 0.92 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.48 12.4 5 0 -

NS-4(B-10) SSM Undrained 1.3 0.65 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.37 14.4 5 0
NS-5(B-10) SSM Undrained 1.326 0.5 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.32 13.2 5 0 -

NS-A SSM Undrained 1.23 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.34 15.7 5 0 -

NS-B SSM Undrained 1.2 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.33 20.6 5 0 - -

NS-C SSM Undrained 1.35 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.34 25.6 5 0 -

NS-D SSM Undrained 1.41 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.35 30.6 5 0 - -

NS-E SSM Undrained 1.55 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.36 33.0 5 0
NS-1(B-11) SSM Undrained 4 1.3 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.30 20.8 5 0 -

NS-2(B-11) SSM Undrained 2.5 1.12 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.58 16.5 5 0 -

NS-3(B-11) SSM Undrained 2 0.88 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.55 14.4 5 0 -

NS-4(B-11) SSM Undrained 1.5 0.7 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.47 15.8 5 0 -

NS-5(B-11) SSM Undrained 1.23 0.6 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.45 17.2 5 0 - -

NS-6(B-11) SSM Undrained 1.326 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.43 18.4 5 0
NS-7(B-11) SSM Undrained 1.38 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.32 21.5 5 0 - -

EW-Top-1 SSM Undrained 4 1.8 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.34 17.2 5 0
EW-Top-2 SSM Undrained 2.5 1.1 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.55 14.4 5 0 -

EW-Top-3 SSM Undrained 1.6 0.85 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.394 13.2 5 0 -

EW-Top-4 SSM Undrained 1.3 0.68 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.37 12.0 5 0 -

EW-Bot-1 SSM Undrained 1.42 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.33 16.5 5 0 - -

EW-Bot-2 SSM Undrained 1.44 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.357 18.0 5 0 - -

EW-Bot-3 SSM Undrained 1.46 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.36 21.5 5 0 -

EW-Bot-4 SSM Undrained 1.5 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.37 23.9 5 0 -

EW-Bot-5 SSM Undrained 1.7 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.38 32.3 5 0 -

EW-P3-1 SSM Undrained 1.25 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.4 13.2 5 0 -

EW-P3-2 SSM Undrained 1.2 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.325 18.0 5 0 -

EW-P3-3 SSM Undrained 1.25 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.352 19.9 5 0 -

EW-P3-4 SSM Undrained 1.38 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.33 17.2 5 0 -

EW-P5-1 SSM Undrained 1.26 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.4 15.3 5 0 -

EW-P5-2 SSM Undrained 1.25 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.506 17.7 5 0 -

EW-P5-3 SSM Undrained 1.18 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.325 13.4 5 0 -

EW-P5-4 SSM Undrained 1.25 0.55 17.2 17.2 8.01 E-07 6.39E-08 0.845 0.03 1.36 11.3 5 0 -

EW-P5-5 SSM Undrained 1.33 0.55 17.2 17.2 8.01E-07 6.39E-08 0.845 0.03 1.346 12.9 5 0 - -

Notes:
1) SSM denotes the Soft Soil Model
2) Figures D.1 and D.2 are provided on the attached CD, and provide the East/West and North/South Plaxis profiles with labeled layers.
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APPENDIX F

UNDRAINED SHEAR STRENGTH GAIN FIGURES
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Figure F.9 - Plaxis Predicted Change in Effective Overburden Pressure with Time
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Figure F.10 - Plaxis Predicted Change in Effective Overburden Pressure with Time
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Figure F.11 - Plaxis Predicted Change in Effective Overburden Pressure with Time
(P-3 Location)
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Figure F.13 - Plaxis Predicted Change in Pore Pressure with Time
(B-11 Location)
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APPENDIX G

LABORATORY CONSOLIDATION CURVES
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Figure G.1 - Results of One-dimensional Consolidation Test 
(B-11 Location, El. 17.1 m)
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Figure G.2 -  Results of One-dimensional Consolidation Test 
(B-11 Location, El. 15.1 m)
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Figure G.3 - Results of One-dimensional Consolidation Test 
(B-11 Location, El. 13.6 m)
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Figure G.4 - Results of One-dimensional Consolidation Test 
(B-11 Location, El. 10.5 m)
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