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ABSTRACT 

 

SYNTHESIS OF POLYCYCLIC AROMATIC HYDROCARBONS: STUDIES OF ARYNE 

CYCLOADDITION, ACID-CATALYZED REARRANGEMENT, AND COUPLING PATHWAYS 

by 

Caitlin L. Hoffman 

University of New Hampshire, December 2016 

 

 Various synthetic routes towards polycyclic aromatic hydrocarbons dibenzo[g,p]chrysene 

(DBC), chrysene, zethrene, and their derivatives were studied.  All of these compounds are not 

readily available and the literature lacks facile, efficient, and scalable syntheses.  Microwave 

flash pyrolysis (MFP) was used for the synthesis of benzyne and phenanthryne, both of which 

have the ability to undergo a Diels-Alder reaction at the bay region of polycyclic aromatic 

hydrocarbons.  Phthalic anhydride was used as a benzyne precursor and 9,10-

dicarboxyphenanthrene anhydride as a phenanthryne precursor.  DBC was observed after the 

MFP of biphenyl and 9,10-dicarboxyphenanthrene anhydride, signifying phenanthryne 

generation.  Fluoride-induced elimination and Grignard pathways were also explored for 

phenanthryne formation, but no indication of phenanthryne was seen.  DBC was efficiently 

prepared via a synthetic sequence that is the functional equivalent of the Stone-Wales 

rearrangement.  This sequence is referred to as the pinacol-pinacolone Stone-Wales sequence, 

which provides DBC in high yield under mild reaction conditions.  This is one of the most 

efficient and scalable syntheses of DBC with all of the steps providing high yields in short 

reaction times.  Calculations for the rearrangement steps using density functional theory (DFT) 

further support the conclusion of a very efficient synthetic pathway.  The same conditions were 

not successful for the synthesis of chrysene, however treatment of 1-indanopinacol with 
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polyphosphoric acid (PPA) did provide chrysene, suggesting an alternative mechanism from the 

pinacol-pinacolone Stone-Wales route.  For the synthesis of zethrene, the pinacol-pinacolone 

Stone-Wales sequence was applied to 1-acenaphthenopinacol, but like 1-indanopinacol, no 

pinacolone structure was observed.  Treatment of 1-acenaphthenopinacol with PPA in a 

microwave reactor generated a small amount of zethrene.  This suggests that the reaction 

between aromatic pinacols and PPA is an alternative and simple route towards polycyclic 

aromatic hydrocarbons.  Other pathways for zethrene synthesis were also studied.  Although 

further work needs to be completed to optimize the syntheses of chrysene and zethrene, these 

reactions show promise as mild, simple pathways towards these compounds.  
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General Introduction 

 This thesis consists of three separate chapters: (I) cycloaddition chemistry: synthetic 

routes using aryne precursors, (II) pinacol-pinacolone Stone-Wales sequence, (III) progress 

towards zethrene.  Each chapter is self-contained with its own introduction, results and 

discussion, and conclusion. 
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Dibenzo[g,p]chrysene: A History Lesson 

  Background 

 In the field of polycyclic aromatic chemistry, dibenzo[g,p]chrysenes are of interest due to 

their optical and electronic properties which arise from a nonplanar geometry.  

Dibenzo[g,p]chrysene (DBC, 1) is one of the smallest nonplanar polycyclic aromatic 

hydrocarbons (PAHs).  Its twisted conformation enhances solubility; this has attracted attention 

from the field of materials science.1-3   

 In 1964, Clar4 reported the synthesis of 1, however the yield was only 8.1%, concluding 

this reaction pathway was not an efficient route (Scheme 1).  The reaction involves treatment of 

9-fluorenone (2) with a zinc melt to yield the spiroketone (3), which after treatment with a 

second zinc melt provides 1. 

 

Scheme 1.  Clar’s synthesis of 1.
4
 

In 1975, Alder and Whittaker5 reported the thermal Stone-Wales rearrangement of 

bifluorenylidene (4) at 400 oC to afford 1 (Scheme 2).  This synthetic pathway required high 

temperature and was conducted only on a small scale. 
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Scheme 2.  Thermal Stone-Wales rearrangement of 4.
5
 

 In more recent years, there have been reports of DBC synthesis by intramolecular 

oxidative carbon-carbon bond formation,6-8  metal catalysis,9-10 and super acid conditions.11-13  

None of these routes are suitable for a large scale, efficient preparation.  Previous research in 

our group has explored a cationic Stone-Wales pathway,12 as well as a radical pathway towards 

1.12, 14  The proposed radical pathway involves the use of microwave flash pyrolysis (MFP) with 

fluorene (5), generating 9,9’-bifluorene (6) which, after the loss of two hydrogens, can undergo a 

rearrangement to afford 1 (Scheme 3).  The cationic Stone-Wales route involves the treatment 

of 4 with trifluoromethanesulfonic acid (TfOH) to give a product mixture containing 1.  Although 

there are many synthetic routes towards 1, the literature lacks a facile, efficient, and scalable 

route which affords a high yield of this simple structure. 

 

Scheme 3.  Proposed radical pathway towards 1.
14

 

Route Towards Dibenzochrysenes: Origin of The Research 

 Exploring alternative pathways towards 1 that require mild reaction conditions, while 

producing high yields would make 1 more readily available and more affordable.  By avoiding 

syntheses involving expensive reagents, long reaction times, high temperatures, and multiple 
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steps, more research can be done investigating the applications of 1.  A similar synthetic route 

might then be applied to prepare other larger or more elusive PAHs. 

Discovering an efficient pathway towards 1 could lead to the synthesis of an array of 

dibenzochrysene homologues.  Extension along the bay region of 1 creates a π-extended PAH 

which can adopt a twisted conformation.  The synthesis of unsubstituted 

hexabenzo[a,c,fg,j,l,op]tetracene (7) has been very recently reported by Itami et.al.15 via a 

palladium catalyzed annulative π-extension reaction from pyrene (8) and dibenzosilole (9) in 

refluxing 1,2-dichloroethane (DCE) (Scheme 4).  Analysis using X-ray crystallography revealed 

a helically twisted structure. 

 

Scheme 4.  Synthesis of helically twisted 7.
15

 

 Further extension along the bay region should enhance the helical structure.  Density 

functional theory (DFT) calculations done in our group at the M052x/6-31G(d) level of theory 

reveal that a helical structure is preferred over other nonplanar conformations (Figure 1).  The 

staggered conformation is 2.4 kcal/mol higher in energy than the helical, while the zigzag 

conformation is 3.2 kcal/mol higher in energy than the helical.  Although these energy 

differences are not very large, they do show preference for the helical structure and this is 

further supported by the report15 of helically twisted 7.  In these helical structures, a full 360 o 

turn is completed every six units. 
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Figure 1.  Twisted conformations of π-extended dibenzo[g,p]chrysene. 

 Major goals of this research were to develop a short, efficient, low cost synthetic route 

towards 1 and to investigate possible pathways to extend 1 along the bay region to form larger 

homologues, as shown in Figure 1. 
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Chapter I.  Cycloaddition Chemistry: Synthetic Routes Using Aryne 

Precursors 

Introduction 

Aryne Synthesis via Pyrolysis 

 Aryne chemistry has been widely studied for the use in cycloaddition reactions.  Aryne 

species are highly reactive, so they are not isolable and are typically generated in situ.  There 

are numerous routes for aryne generation;16-17 however, many of them require harsh reaction 

conditions like extreme temperatures.  Some of the most commonly reported pathways for 

aryne synthesis involve pyrolysis.  Pyrolysis reactions typically involve the loss of carbon 

monoxide and carbon dioxide from anhydride precursors.18 

Pyrolysis of anhydrides is one common route to benzynes.  In 1980, Straetmans and 

Grutzmacher19 reported the very low pressure pyrolysis (VLPP) of 9,10-dicarboxyphenanthrene 

anhydride (10), which generates phenanthryne (11) in situ as a precursor to phenanthrene (12) 

(Scheme 5a).  In a similar way, Scott and Fort20 report the flash vacuum co-pyrolysis (FVP) of 

perylene (13) and phthalic anhydride (14), where 14 acts as a benzyne (15) precursor.  A Diels-

Alder reaction with 13 at the bay region yields aromatic compound 16 (Scheme 5b). 
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Scheme 5.  (a) Generation of phenanthryne via VLPP.
19

 (b) FVP of phthalic anhydride and perylene.
20

 

 MFP offers another route for aryne generation.  Our techniques followed earlier work by 

Laporterie who developed a method where graphite is used to transmit thermal energy to the 

compounds in the reaction mixture, without being reactive itself.21  This application was further 

reviewed by Besson.22  Our research group developed an MFP procedure23 using graphite or 

carbon nanotubes, which generates 15.  One of the examples involves the reaction of 

anthracene (17) with 14.  Benzyne is generated by the loss of carbon monoxide and carbon 

dioxide from 14, and can undergo a Diels-Alder reaction with 17, to form trypticene (18) 

(Scheme 6).23 

 

Scheme 6.  Synthesis of trypticene via MFP.
23
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 Pyrolysis is a useful pathway towards aryne formation, however it requires harsh 

reaction conditions.  There are many alternative routes which don’t involve extreme 

temperatures, pressures, or power.  Examples include fluoride induced elimination, formation in 

aprotic media solution, lithium-halogen exchange, and many others.16-17 

Fluoride Induced Elimination Pathway Towards Aryne Synthesis 

 The fluoride-induced elimination of organosilanes to yield cumulenes,24 strained alkenes, 

and enynes25 has been reported previously.  Utilizing these more mild reaction conditions, aryne 

generation has been reported using this technique.  Kobayashi et. al.26 reported the formation of 

15 via the fluoride-induced desilylation and triflate elimination of o-trimethylsilylphenyl triflate 

(19) at room temperature using various fluoride sources.  Commonly used fluoride sources are 

tetramethylammonium fluoride (TMAF), potassium fluoride (KF), cesium fluoride (CsF), 

tetrabutylammonium fluoride (TBAF), and a KF/18-crown-6 combination.  Due to the fact 15 is 

not isolable, its formation was investigated by introducing furan (20) as a trapping agent.  This 

can undergo a Diels-Alder reaction with 15 to form adduct 21 (Scheme 7). 

 

Scheme 7.  Benzyne formation and reaction with 20.
26

 

 Shakespeare and Johnson25 reported the fluoride-induced elimination of dienes 22 and 

23 for the synthesis of 1,2,3-cyclohexatriene (24) and cyclohexen-3-yne (25), respectively 

(Scheme 8).  Both reactions used CsF as a fluoride source and proceeded at room temperature, 

using furan derivatives as trapping agents.  In the case of 22, the fluoride attacks the silicon and 

the triflate group leaves, where in the case of 23, a halide is used as the leaving group. 



9 
 

 

Scheme 8.  Synthesis of 24 and 25 via fluoride-induced elimination.
25

 

 In more recent work, Castedo et. al. utilized these fluoride elimination conditions for the 

synthesis of several arynes.  They report that 19 will react with CsF to form 15, which in the 

presence of a palladium catalyst undergoes cyclotrimerization, forming triphenylene (26).27  A 

similar report involves generating 15 in situ which can undergo a co-cyclization in the presence 

of an alkyne to form phenanthrene and naphthalene derivatives.28  In 1999, Castedo et. al.29 

reported the fluoride-induced elimination of triflates 27 and 28 to generate naphthalyne (29) and 

11 respectively, followed by cyclotrimerization to their triphenylene derivatives 30, 31, and 32 

(Scheme 9).  Given the results of these reactions, it can be said the fluoride-induced elimination 

pathway is a useful route towards strained and/or reactive intermediates. 
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Scheme 9.  Cyclotrimerization of arynes.
29

 

Aryne Formation Using Dihaloarenes 

 Dihaloarenes have been reported to act as aryne precursors via a reaction with metals.  

When compared to the fluoride-induced elimination pathway, this route commonly requires 

higher temperatures.  There have been many reports of using metals such as lithium,30-32 

magnesium,33-34 nickel,35 along with several others.  In an early example, Wittig33 reported using 

o-fluorobromobenzene (33) in the presence of magnesium in tetrahydrofuran (THF) as a 

benzyne precursor (Scheme 10).  The formation of 15 was confirmed because in the presence 

of bicyclo[2.2.1]heptadiene (34), the cycloaddition product 35 was observed in 15-21% yield.  

Wittig applied these conditions to other dienes such as 20 and 17, again observing the Diels-

Alder product from 15.36-39  Following this work, Simmons34 used Wittig’s conditions for benzyne 

formation in the presence of bicyclo[2.2.1]heptene (36) and observed cycloaddition product 37 

in 10% yield (Scheme 10). 
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Scheme 10.  Benzyne reaction with 34 and 36.
33-34

  

 Another commonly used approach for metal promoted aryne generation involves 

treatment of a dibromo-substituted arene with n-butyllithium (n-BuLi).  As one example, Müllen 

and Herwig30 demonstrated that treatment of 1,2-dibromobenzene (38) with n-BuLi generates 

15 which can react with tetraene 39, to form pentacene precursor 40 in moderate yield (Scheme 

11).  These conditions were also applied to form a nonacene precursor in 58% yield. 

 

Scheme 11.  Synthesis of a pentacene precursor via benzyne generation.
30

 

 It has also been reported that nickel is able to generate arynes from o-dihaloarenes and 

catalyze cycloaddition reactions.  Cheng and Hsieh35 reported a nickel-catalyzed cycloaddition 

of 15 with various alkynes and nitriles.  The synthesis involves using 1,2-diiodobenzene (41) as 

the benzyne precursor.  Treatment of 41 and diethylacetylene (42) with dibromo[1,2-

bis(diphenylphosphino)ethane]nickel(II) (Ni(dppe)Br2), bis(diphenylphosphino)ethane (dppe), 

and zinc powder, yields 1,2,3,4-tetraethylnaphthalene (43) in high yield (Scheme 12).  Synthesis 
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of many substituted naphthalenes, phenanthridines, and even triphenylenes were reported 

using this method.  These results prove dihaloarenes are useful precursors to aryne generation 

when treated with a nickel catalyst, providing good to high yields of cycloaddition products.  

However, even with the report of the reaction conditions being efficient, the aryne precursors 

are not always readily available. 

 

Scheme 12.  Tetraethylnaphthalene synthesis using nickel-catalyzed cycloaddition chemistry.
35

 

Research Objective 

 One goal of this project was to explore various reaction conditions, such as microwave 

flash pyrolysis (MFP), with different aryne precursors to generate PAHs.  Using MFP to 

generate arynes in situ, one could potentially produce a wide variety of PAHs in one step with 

short reaction times.  Another goal of this research was to investigate alternative phenanthryne 

precursors for cycloaddition chemistry.  These precursors could be subjected to pyrolysis, 

fluoride-induced elimination, or metal-catalyzed aryne formation conditions to test their 

efficiency. 

Results and Discussion 

Aryne Generation Using Microwave Flash Pyrolysis (MFP) 

 The technique of MFP for benzyne formation was previously studied in our group.14, 23  

The use of 14 as a benzyne precursor is commonly reported in the literature because of its 

ability to lose CO2 and CO under pyrolysis conditions.18  Previous work in our group reports 

MFP of 14 which affords a product mixture of starting material, benzene (44), biphenylene (45), 
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naphthalene (46), biphenyl (47), and 26, all derived in one or more steps from 15 (Scheme 13).  

Using MFP conditions, the ability of 15 and 11 to undergo Diels-Alder cycloaddition at the bay 

region of various PAHs was investigated. 

 

Scheme 13.  MFP of 14.
23

 

 Although the addition of 15 to 13 has been previously reported,20, 40-41 the MFP approach 

offers greater simplicity.  Using the MFP conditions developed by our group, 14 and 13 were 

reacted in a quartz tube at 150 W for 1 minute.  Using graphite as a thermal sensitizer, a 2:1 

ratio of reactant 13 to the cycloaddition product 16 was observed via 1H NMR (Scheme 14).  

The reaction was repeated at 300 W in an attempt to increase the conversion to product.  The 

maximum pressure threshold, or safe point, of the CEM microwave was reached after 30 

seconds, so the reaction was automatically shut down.  The same 2:1 reactant:product ratio 

was observed. 

 

Scheme 14.  MFP of 13 with 14. 

 This result led us to explore a similar addition to phenanthrene (12).  The same 

conditions were applied to the reaction between 12 and 14 (Scheme 15).  It was observed there 
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was only about a 5% yield of the cycloaddition product 48.  The amount of 14 was increased in 

hopes of forming more desired product; however this did not improve the conversion. 

 

Scheme 15.  MFP of 12 with 14. 

This reaction was repeated using maleic anhydride (49) to determine if it could add to 

the bay region of 12 to afford 8 under MFP conditions; however only approximately 2% 

conversion to product was observed (Scheme 16).  This reaction presumably proceeds by initial 

cycloaddition of 49 to the bay region of 12. 

 

Scheme 16.  MFP of 12 with 49. 

 In an attempt to further explore aryne addition to the bay region of PAHs using MFP,  

alternative aryne precursors were investigated.  Anhydride 10 was synthesized as a 

phenanthryne precursor using a method reported by Fields et. al.42  The reaction proceeds 

through an oxidative photochemical cyclization of diphenylmaleic anhydride (50) in the presence 

of iodine in acetone (Scheme 17). 
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Scheme 17.  Photochemical cyclization of 50. 

 With 10 in hand, MFP was used to determine if it had the ability to act as a phenanthryne 

precursor to add to various PAHs.  To explore this possibility, a reaction between 47 and 10 in 

the MW at 300 W for 1 minute was completed (Scheme 18).  Analysis via 1H NMR indicates the 

product mixture contains mostly 12, starting material 47, and NMR resonances which 

correspond to 1, in a 5:2:1 ratio respectively.  There was also indication of oligomerization in the 

NMR baseline. 

 

Scheme 18.  MFP of 10 in the presence of 47. 

To determine whether MFP could be used to synthesize larger PAHs via aryne addition 

to the bay region, a reaction between commercially available 1 and 10 was completed (Scheme 

19).  In this reaction, mostly 1 and 12 were observed, but a small amount of cycloaddition 

product 7 was detected.  Analysis by 1H NMR shows a 20:1.5:1 ratio of 1 to 12 to 7.  This 

indicates the generation of 11 and suggests that after optimization, these reaction conditions 

could serve as a route to 7. 
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Scheme 19.  MFP of 1 and 10. 

9-(Dibromomethylidene)fluorene: A Potential Phenanthryne Precursor 

 Phenanthryne precursors have received little attention.  Some previously reported 

compounds which act as phenanthryne precursors are 10-trimethylsilylphenanthryl 9-

trifluoromethanesulfonate (28),29 10,19 triazole 51,43 and 9-bromophenanthrene (52)44-46 (Figure 

2).   All of these precursors have the basic skeleton of 11 which can be formed by elimination of 

leaving groups. 

 

Figure 2.  Phenanthryne precursors. 

An alternative way to form an aryne is through rearrangement of a carbene.  Thermal 

interconversion of vinylidene 53 and 15 is well known (Figure 3).47  With this in mind, it was 

predicted that a fluorene derivative could potentially rearrange to generate 11. 
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Figure 3.  Interconversion of 53 to benzyne. 

 The rearrangement of carbene 54 was studied computationally in Gaussian 0948 with 

DFT at the B3LYP/6-31+G(d,p) level of theory (Figure 4).  The calculations for the free-energies 

of the carbene rearrangement show a transition state barrier of 10.9 kcal/mol.  Due to the fact 

this barrier is not very high, a facile rearrangement of 54 might provide an efficient route to 11. 

 

Figure 4.  Free-energies of carbene rearrangement (B3LYP/6-31+G(d,p)). 

9-(Dibromomethylidene)fluorene (55) was synthesized using dibromoolefination 

conditions to act as a potential phenanthryne precursor.  The reaction involves the treatment of 

9-fluorenone (2) with carbon tetrabromide (CBr4) and triphenylphosphine (PPh3) in DCM 

(Scheme 20).49  This compound can act as a precursor to carbene 54, which can theoretically 

rearrange to 11.  There was also the question of whether 55 itself could act as phenanthryne 

precursor, or if it would require a transformation into one of the more common silyl-substituted 

precursors. 
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Scheme 20.  Dibromoolefination of 9-fluorenone (2). 

 The first route to generating 11 involved treatment of 55 with n-BuLi in the presence of 

trimethylsilyl chloride (TMSCl) to afford 56, which has not been previously reported (Scheme 

21).  It was identified via 1H NMR through correlation with predicted chemical shifts calculated in 

Spartan 08.50  The replacement of a bromine with a TMS group provides a substituent that can 

easily undergo nucleophilic attack by a fluoride.  Isolation of pure 56 proved difficult because 

separation of the crude product mixture containing 56 by column chromatography was 

challenging.  Analysis of column fractions via 1H NMR indicated the presence of 56, but also 

resonances which correspond to the reported NMR51 of the monobromo-compound 57 in a 1.5:1 

ratio, respectively.  In attempt to get a better yield, the equivalents of n-BuLi were increased and 

various temperatures were used, however only mixtures of 56 and 57 were obtained. 

 

Scheme 21.  Silylation of 55. 

 The crude reaction mixture of 56 and 57 was utilized to determine if a fluoride-induced 

elimination pathway could lead to 11.  Although 56 was not pure, the goal was to investigate if 

any conversion to 11 occurred to react with a trapping agent.  Fluoride sources tested were 

CsF, TBAF, and KF with 18-crown-6.  In these experiments, KF provided the most promising 

results.  The crude mixture was heated in THF in the presence of KF and 18-crown-6, with 17 
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as a trapping agent (Scheme 22).  Analysis via 1H NMR displayed 56, 57, 17, and very minor 

peaks within the baseline which correspond to the predicted resonances calculated using DFT 

at B3LYP/6-31G* level for the desired product 58.  The yield was too low to deem this reaction 

efficient in phenanthryne generation.  Variations of temperature, concentration, time, and order 

of addition were explored, but no major improvements were observed.  Further purification of 56 

could lead to enhanced reactivity, however with the results obtained, the fluoride-induced 

elimination of crude 56 is not a promising route for phenanthryne generation. 

 

Scheme 22.  Fluoride-induced elimination of 56 and 57 mixture. 

Direct use of 55 as a phenanthryne precursor was investigated.  Previous reports of 

using magnesium in the presence of dihaloarenes to generate arynes have been efficient,33-34 

so similar conditions were applied to 55.  This Grignard type reaction could produce a carbenoid 

which could rearrange to 11.  A stirring suspension of magnesium in refluxing THF was treated 

with 55.  After 90 minutes, workup afforded a bright red solid which was highly insoluble 

(Scheme 23).  The proposed structure of the product was biphenylene derivative 59 due to its 

intense color, insolubility, mass spectrometry (MS) results, and calculated 1H NMR spectrum 

obtained from DFT using B3LYP/6-31G(d).  Attempts at obtaining a 13C NMR were unsuccessful 

due to the compound’s low solubility. 
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Scheme 23.  Grignard reaction of 55. 

 Tetrabenzobiphenylene (59) has been reported to be unstable,43 so to prove this was the 

compound isolated, further analysis was done.  The 1H NMR chemical shifts corresponded to 

the calculated spectrum, along with the MS value of 352.1 m/z.  A UV/vis analysis displayed a 

spectrum which did not match the predicted maximum absorbance values of 335 m and 419 m, 

but instead showed them as more red shifted.  This discredited the proposed structure, 

therefore other possibilities were explored.  The red substance was identified as cumulene 60 

which has been described previously.24, 52  This compound has the same mass value and a 

similar 1H NMR splitting pattern to 59.  The previously reported 1H NMR of 60 is an exact match 

to the isolated product, and it is described as a red, very insoluble solid.24, 52  With these results, 

it can be concluded the Grignard route for phenanthryne formation is not efficient due to rapid 

dimerization of the carbenoid intermediate (Scheme 24). 
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Scheme 24.  Synthesis of cumulene 60. 

Conclusions 

 Microwave flash pyrolysis provides a general route for aryne generation.  The Diels-

Alder reaction between arynes and the bay region of various PAHs can be applied to the 

synthesis of larger PAH derivatives.  Phthalic anhydride (14) was utilized as a benzyne 

precursor, while the anhydride 10 was utilized as a phenanthryne precursor.  MFP reactions of 

biphenyl (47) and dibenzo[g,p]chrysene (1) with 9,10-dicarboxyphenanthrene anhydride (10) 

displayed compounds 1 and 7, respectively.  This signifies MFP conditions are useful for aryne 

generation.  Further optimization of these reactions could lead to higher conversion to Diels-

Alder products, serving as a useful route to polycyclic aromatics.  In search of a precursor which 

generates phenanthryne under more mild conditions, the attempted synthesis of 56 was done, 

which has the potential to be used in fluoride-induced elimination, however the reaction requires 

further optimization and purification.  An alternative precursor for fluoride-induced elimination 

could be explored if the bromine of 56 was replaced with a triflate.  TMS/triflate substituted 
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arenes have proven to be efficient in aryne generation.  It was discovered that under Grignard 

conditions, 55 does not generate phenanthryne, but instead the carbenoid dimerizes to form a 

cumulene (60).  Alternative phenanthryne precursors might be investigated.  
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Chapter II.  Pinacol-Pinacolone Stone-Wales Sequence 

Introduction 

Pinacol Coupling and Pinacol Rearrangement 

 Pinacol coupling has been widely studied by researchers since 1859 when Fittig 

described the coupling of acetone using sodium.53-54  The reaction involves forming a carbon-

carbon bond between carbonyl compounds to generate 1,2-diols.  The commonly accepted 

mechanism proceeds through radical-radical coupling (Scheme 25).  The efficiency of the 

coupling depends on reaction conditions, such as what type of metal is used, temperature, time, 

and concentration.  Commonly used metals are zinc,55-58 aluminum,59-60 and magnesium61-63 due 

to their low cost and efficiency.  Other metals like titanium are highly efficient, but expensive and 

potentially lead to olefination.64-66  Pinacol coupling via photochemistry is also well known.67-68  

Certain pinacol coupling methods require anhydrous and inert reaction conditions because 

reagents needed are moisture and air sensitive.  Recently, a focus has been placed on 

improving the pinacol reaction by utilizing low cost metals, as well as  aqueous media which has 

economical and environmental advantages.61, 69-71  These 1,2-diols are useful precursors in a 

variety of other reactions involving ring expansions and rearrangements. 

 

Scheme 25.  General pinacol coupling mechanism. 

 Using a classic carbocation rearrangement approach, pinacolone synthesis is achieved 

by the acid-catalyzed loss of water and a 1,2-shift within a pinacol (Scheme 26).  Pinacolone 

formation can be catalyzed using acids such as H2SO4,
72-75 AcOH,76-77 p-TsOH,76, 78 and there 

have also been reports of using solid state chemistry in the presence of a Lewis acid like 
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AlCl3.
78-79  The rearrangement is of interest in cyclic systems because instead of an alkyl group 

migration, the carbon of the ring migrates, leading to a ring expanded product.  This is useful for 

the synthesis of compounds such as spiroketones.   

 

Scheme 26.  Pinacol-pinacolone rearrangement. 

Stone-Wales Rearrangement of Polycyclic Aromatic Hydrocarbons 

 Alder and Whittaker reported the thermal rearrangement of 4 to 1 (Scheme 2) via a 

radical pathway in 1975.5  In 1986, Stone and Wales80 proposed the isomerization of fullerene 

molecules via a similar 1,2-carbon rotation of 90o.  This is an uncommon thermal rearrangement 

which transposes a two carbon fragment.  The best studied example studied in the literature is 

the rearrangement of pyracyclene (61) (Figure 5).80   

 

Figure 5.  Stone-Wales rearrangement of pyracyclene (61). 

The Stone-Wales rearrangement has been used to hypothetically describe fullerene 

synthesis,81-83 isomerization,84-89 as well as possible graphene precursor formation.90-94  The 

exact mechanism of this reaction is still under scrutiny, however several different pathways have 

been proposed.  Stone and Wales80 suggested the concerted reaction would involve a 4 

electron process to reach the transition state, which is a forbidden transformation according to 

orbital symmetry (Figure 6a).95  Scuseria et. al.  described a stepwise carbene, or sp3, 

mechanism, but calculations concluded the energy barriers were similar to the concerted 

pathway (Figure 6b).96-97  More recently, Karney et.al.98 reported a computational study that 
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suggests compounds that do not contain a pyracyclene moiety are more likely to follow the 

carbene mechanism, while those which do contain a pyracyclene moiety follow a stepwise 

mechanism by means of a cyclobutyl intermediate.  Although the computational results 

displayed lower energy barriers than what was previously reported, they are still high.  In search 

of lower energy barrier pathways, investigators have discovered this rearrangement can occur 

under radical-catalyzed99-101 and cationic conditions.5, 12   

 

Figure 6.  (A) Concerted and (B) stepwise Stone-Wales rearrangement pathways. 

 Previous work by Cahill12 supported a cationic pathway for the Stone-Wales 

rearrangement of 4 to 1.  This was first investigated with DFT using the B3LYP/6-31+G(d,p) 

level of theory (Figure 7).  It was found that the highest transition state barrier was 24.2 kcal/mol 

above the initial cation 62, which is much lower than the 43.8 kcal/mol barrier for the radical-

catalyzed pathway calculated by Alder and Harvey for the same transformation.100  This 

indicates the cationic pathway is plausible. 
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Figure 7.  Cationic Stone-Wales rearrangement towards DBC.
12

 

 When 4 was treated with TfOH in DCE and heated in the microwave, Cahill reported a 

30% yield of 1 (Scheme 27).  This proves the cationic Stone-Wales rearrangement is feasible, 

however it is not an efficient route towards 1. 

 

Scheme 27.  Cationic Stone-Wales rearrangement of 4.
12

 

Research Objective 

 While the pinacol-pinacolone reaction and the Stone-Wales rearrangement have been 

widely studied, utilizing the three reactions together as a stepwise approach to polycyclic 

aromatic hydrocarbons has only been explored a few times.102-103  One goal of this research was 
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to utilize acid-catalyzed rearrangements under mild conditions to efficiently synthesize 1.  It was 

observed that the pinacol-pinacolone Stone-Wales (PPSW) sequence was a scalable and 

efficient route towards 1.  This synthetic route could then be applied to synthesize other PAHs 

from aromatic ketones. 

Results and Discussion 

Synthesis of Dibenzo[g,p]chrysene 

 Synthesis of 1 from 4 was previously studied in our group by Cahill12 using a cationic 

pathway under superacid conditions.104  The cationic oxidative cyclization of tetraphenylethylene 

(65) to 1 was also studied.  Using 3 equivalents of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

(DDQ) and 1.3 M TfOH in room temperature DCE for 4 hours, conversion to 1 was observed in 

a 58% yield (Scheme 28).  Although this reaction reported a higher yield than the cationic 

Stone-Wales route, the yield could still be improved, as well as exploring a more scalable 

synthetic route.   

 

Scheme 28.  Cationic oxidative cyclization of 65.
12

 

 In search of a more efficient acid-catalyzed route towards 1, it has been reported that 9-

fluorenyl alcohols can rearrange to PAHs under acidic conditions.  Brown and Bluestein have 

reported the rearrangement of 9-fluorenylmethanol to 12 in high yield using Wagner-Meerwein 

rearrangement conditions.105  Yang et. al.  expanded this reaction to include benzofluorene 

methanols which rearrange to phenanthrene derivatives using phosphorus pentoxide (P2O5) in 

xylene (Scheme 29).106 
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Scheme 29.  Wagner-Meerwein rearrangement of a fluorenyl alcohol (66).
106

 

 We explored the synthesis of 1 starting from a pinacol precursor.  Homocoupling of 2 

using zinc powder and zinc chloride (ZnCl2)
107 led to the formation of 9, 9’-bifluorenyl-9, 9’-diol 

(68) (Scheme 30). 

 

Scheme 30.  Pinacol coupling of 2. 

Reaction of 68 with P2O5 led to a mixture of products (Scheme 31).  Dehydration and 

pinacol rearrangement were observed.  This mixture also included the expected ketone from 

pinacol rearrangement, along with small amounts of 1. 

 

Scheme 31.  Wagner-Meerwein rearrangement of 68. 

 Sōda et. al. reported the synthesis of a DBC derivative from the pinacolone after 

reduction to the spirofused alcohol, followed by rearrangement (Scheme 32).108  Using this 



29 
 

technique, the pinacolone 3 could be isolated to explore if rearrangement to the parent DBC 

would occur. 

 

Scheme 32.  Synthesis of dibromo-substituted DBC.
102

 

Free-energy calculations of this rearrangement pathway were investigated with DFT at 

B3LYP/6-31+G(d,p) level of theory.   As shown in Figure 8, the barrier for the transition state is 

7.9 kcal/mol, indicating a facile rearrangement. 

 

Figure 8.  Free –energies of the cationic rearrangement towards DBC (B3LYP/6-31+G(d,p)). 

This combined approach yielded an efficient and scalable route to 1 as shown in 

Scheme 33.  All of the synthetic steps give high yields, do not require harsh reaction conditions, 
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and can be scaled up, making this the most efficient pathway to 1, with an overall yield of 64%.  

In the largest scale reaction to date, 4 g of pinacol 68 yielded 2 g of DBC (1). 

 

Scheme 33.  Pinacol-pinacolone Stone-Wales route towards 1. 

Progress Towards Polycyclic Aromatic Hydrocarbons via PPSW Pathway 

 With these results in hand, the next question was whether the same pinacol-pinacolone 

Stone-Wales sequence would yield other polycyclic aromatics.  Following the same approach, 

these conditions were applied to 1-indanone (73).  The pinacol was not successfully isolated 

using the conditions for the coupling of 2, so another variation of the pinacol reaction was 

used.60  In the presence of aluminum powder, potassium hydroxide (KOH), and methanol 

(MeOH), 1-indanopinacol (74) was isolated in a 72% yield (Scheme 34). 

 

Scheme 34.  Synthesis of 1-indanopinacol (74). 

 Ourisson et. al.103 previously studied the rearrangement of 74 via treatment with m-

cresol and 2,4-dinitrosulfonic acid (2,4-DNSA) to yield pinacolone 75 (Scheme 35).  It should be 

noted that these are quite unusual reaction conditions.  The pinacolone 75 was reduced and the 

spirofused alcohol 76 was treated with acid at reflux to afford tetrahydrochrysene (77).  

Dehydrogenation with selenium yields chrysene (78). 
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Scheme 35.  Synthesis of chrysene from pinacol 74.
103

 

Attempts to synthesize 75 using acetic acid (AcOH) and sulfuric acid (H2SO4) were not 

successful.  Cyclization of aromatic alcohols using polyphosphoric acid (PPA) has been studied 

in our group.  Using this approach, 74 was added to PPA and placed in a CEM microwave (MW) 

at 100 oC for 5 minutes.  After a work up and characterization via 1H NMR, both 75 and 

chrysene (78) were observed.  With these results, the next step was to determine if the reaction 

could be completed on a larger scale without the MW and to provide a higher conversion to 78.  

As shown in Scheme 36, 74 can rearrange to 78 in about a 10% yield.  An oxidation with DDQ 

is needed because after purification of the reaction, the column fraction containing 78 also 

contains the tetra- and dihydro-derivatives.  The yield of 78 could be improved by transforming 

75 to 78 using the PPSW conditions. 

 

Scheme 36.  Rearrangement of 74 using PPA. 

 To further explore if these conditions could be applied to other pinacol cyclizations, the 

reaction was also completed with 68 (Scheme 37).  Similar results were observed, where 3 and 
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1 were isolated in a 2:1 ratio respectively.  Although this is an interesting result and is another 

way to synthesize 1, the pinacol-pinacolone Stone-Wales sequence is a more efficient route for 

this pinacol. 

 

Scheme 37.  PPA reaction with 68. 

 Scheme 38 summarizes the strategy that developed in this work.  The Stone-Wales 

rearrangement can be thermal, or hydrogen radical catalyzed, as shown by Alder5, or cationic, 

as shown by Cahill.12  A synthetically efficient, but more complex route starts with a pinacol and 

proceeds by two consecutive aryl group migrations to cationic centers.  This sequence can be 

accomplished in one step (Scheme 37), but affords low yields.  A stepwise pathway (Scheme 

33) is longer, but higher yields are obtained.  This provides a scalable and efficient synthesis of 

1.  We have shown that a similar route yields chrysene (78) beginning from 1-indanone (73). 
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Scheme 38.  Comparison of Stone-Wales and pinacol-pinacolone Stone-Wales sequence. 

Conclusions 

 The acid-catalyzed rearrangement of pinacols can be used as a facile and efficient route 

to synthesize certain PAHs which typically are expensive or difficult to isolate.  In particular, the 

pinacol-pinacolone Stone-Wales sequence can be applied to synthesize 1 in high yield without 

harsh reaction conditions.  Another pathway involves the rearrangement of pinacols using PPA, 

which can generate their pinacolone, as well as an aromatic hydrocarbon derivative, as seen 

with chrysene (78).  These reaction conditions are still under investigation to optimize the yield.  

Alternatively, the pinacolone could be easily separated, submitted to the conditions in the last 

two steps of the PPSW sequence, and produce the PAH.  Applying these pathways to various 

aromatic ketones is under investigation to generate a variety of PAHs. 
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Chapter III.  Progress Towards Zethrene 

Introduction 

Synthesis of Zethrene and Zethrene Derivatives 

 Zethrene (79) is a PAH which gets its name from the fact its structure appears as a z-

shape.  Zethrenes are of interest due to their potential diradical character and for applications in 

non-linear optics, organic semiconductors, and near-infrared dyes.109-111  The center rings lack 

aromaticity, with fixed double bonds as in 79.  The diradical character (79a) suggests 

applications in organic electronics; however this substance is reported to be oxygen sensitive.  

Expanding along the m- or n-axis of 79 generates larger homologues such as heptazethrene 

(80) and 1,2:9,10-dibenzooctazethrene (81), which are also of interest (Figure 9). 

 

Figure 9.  Extension of 79. 

 Zethrene was first synthesized by Clar in 1955.112  More convenient cross-coupling 

routes were reported by Ipaktschi et. al.113 in 1968 and again by Sondheimer and Mitchell114 in 

1970 while both were attempting to synthesize tetradehydrodinaphtho[10]annulene (82).  

Annulene 82 is not stable and it undergoes transannular cyclization to 79 after hydrogen 

abstraction by an intermediate diradical.  In 2009, coupling of 1,8-diiodonaphthalene (83) and 
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1,8-bis(trimethylsilylethynyl)naphthalene (84) produced 82 as a pure compound which was 

characterized by Tobe et. al.111  After treatment with iodine, this undergoes transannular 

cyclization to zethrene derivative 85 (Scheme 39).  The majority of zethrene syntheses in the 

literature involve substitution at the bay region or peri-position because it enhances the stability, 

as well as solubility.  With this being said, reports of the synthesis of the parent zethrene 79 are 

scarce. 

 

Scheme 39.  Synthesis of zethrene derivative 85.
111

 

 In 2010, Wu et. al.115 reported a metal-catalyzed annulation of halonaphthalenes to 

afford zethrene derivatives.  The reaction involves treatment of 1-iodo-8-

(phenylethynyl)naphthalene (86) with Pd(OAc)2, Ag2CO3, and ligand tri-(2-furyl)phosphine (TFP) 

in o-xylene to form phenyl-substituted zethrene 87 in 73% yield (Scheme 40).  These conditions 

were applied to various other iodoarenes to synthesize a collection of substituted zethrenes.115 

 

Scheme 40.  Metal-catalyzed annulation to afford zethrene derivatives.
115
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Another route towards zethrene derivatives was developed by Wu and Sun.116  This 

Stille cross-coupling of dihaloarene 88 and bis(tri-n-butylstannyl)acetylene (89) to form an 

annulene which undergoes transannular cyclization to afford dicarboximide-substituted zethrene 

90 (Scheme 41).  Substitution at the peri-position makes 90 a stable compound with interesting 

photophysical properties. 

 

Scheme 41.  Stille cross-coupling route for zethrene synthesis.
116

 

Parent zethrene 79 was prepared by Miao et. al.117 using a Wittig-Heck pathway.  The 

bis(triphenylphosphonium) salt 91 undergoes a Wittig reaction with 8-bromo-1-naphthaldehyde 

(92) to yield dinaphthyl-derivative 94, which under Heck reaction conditions is treated with 

Pd(OAc)2 to generate 79 in 67-72% yield (Scheme 42).  Applying the Heck conditions from 

Scheme 42 to 83 and 1,8-divinylnaphthalene, 79 was isolated in only a 10% yield.  This same 

reaction failed with more typical Heck conditions which involve only a catalytic amount of 

palladium catalyst.  It was concluded that more than one equivalent of Pd(OAc)2 is required to 

isolate an acceptable yield of 79 for this reaction pathway. 
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Scheme 42.  Synthesis of 79 via a Wittig-Heck approach.
117

 

 Experimental and computational studies provide conflicting information on the biradical 

character of zethrenes.  Early theoretical calculations predict 79 and its substituted derivatives 

to be closed-shell.118-120  More recently, Wu et. al.121 report an experimental study which 

concludes 79 actually possesses singlet open-shell biradical character.  The study reports 

analysis via X-ray crystallography shows bond shortening and a slight enhancement in 

aromaticity of the center rings, along with electron spin resonance measurements showing 

signals characteristic of compounds with singlet open-shell biradical character.  The 

electrochemical and photophysical properties were also studied to further confirm the biradical 

character.  Analysis of substituted zethrenes and π-extended derivatives has also been 

reported. 

 Factors which influence if a zethrene derivative is open- or closed-shell are ring 

substituents and the extended π-conjugation.  Substitution at the bay region of 79 reportedly 

favors a closed-shell compound.121  By contrast, vertical or horizontal π-extension enhances the 

singlet open-shell biradical character of the molecule.119-124  These extended zethrenes have 

larger biradical character because aromaticity is being reestablished in the biradical resonance 

form (Figure 10).  In general, extending along the m- or n-axis of zethrene creates an increase 

in biradical character, but this decreases the kinetic stability. 
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Figure 10.  Open- versus closed-shell zethrenes. 

 Dibenzozethrene 94 exemplifies the impact substituents and π-extension have on the 

biradical properties of a molecule.  The biradical resonance form 94a contains three sextets, 

while parent 94 contains two.  The synthesis involves the nickel-catalyzed cyclodimerization of 

ethynyl-iodoanthracene analogs 95a and 95b (Scheme 43).121  The phenyl and TMS-substituted 

dibenzozethrenes (96a and 96b) display closed-shell character, while unsubstituted 94 is 

believed to be singlet open-shell.  Computational studies support these conclusions. 

 

Scheme 43.  Synthesis of dibenzozethrene derivatives.
121

 

 Computational analysis can predict electronic character using biradical character indices 

as well as the relative energies of open and closed-shell compounds.  Wu et. al.121 

demonstrated using DFT at the CAM-B3LYP/6-31G** level, the open-shell biradical form of 94 is 

lower in energy than the closed-shell, which signifies the open-shell is more stable.  The same 
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is observed with 79, however the difference is not as great.  The biradical character indices 

display the same trend, supporting the conclusion that 79 and 94 are singlet open-shell 

biradicals.  Open-shell biradical character would make these compounds candidates for two-

photon absorption (TPA) which is very useful for nonlinear optical materials, near-infrared dyes, 

and organic photovotalics. 

Research Objective 

 There have been various reports of the successful synthesis of substituted zethrenes, 

however isolation of parent zethrene 79 has proven to be difficult.  Also, although zethrene 

derivatives can be obtained in moderate yields, the syntheses are typically long because of the 

requirement to prepare 1,10-disubstituted naphthalenes.  The goal of this research was to 

develop a facile, efficient, low cost synthetic pathway towards 79.  This would make 79 more 

readily available for studies in the field of nonlinear optics and near-infrared dyes.  Once 

optimized, the synthesis could be applied to generate larger homologues of 79, which have not 

received as much attention in the literature. 

Results and Discussion 

A Pinacol Precursor to Zethrene 

 The synthesis of 79 has proven to be difficult and has not been as widely reported as its 

substituted homologues.  In an attempt to avoid the use of metal catalysts or long synthetic 

procedures, alternative routes towards 79 were explored.  Another aspect to avoid from 

previously reported syntheses is using 82 as an intermediate.  The synthesis of 82 is not 

efficient and the compound itself is not very stable, so developing a synthesis without it is 

desired.  The first step in most reported syntheses of 79 and its derivatives involves various 

coupling reactions of naphthalene compounds using metal catalysis, however there are other 

coupling reactions that have not yet been investigated. 



40 
 

Following our successful synthesis of dibenzo[g,p]chrysene (1) via the pinacol-

pinacolone Stone-Wales sequence, the same process can provide a plausible route to 79.  The 

synthesis would involve the pinacol coupling reaction of readily available 1-acenaphthenone 

(97), followed by a pinacol rearrangement, reduction, and acid-catalyzed rearrangement to 101, 

followed by aromatization (Scheme 44).   

 

Scheme 44.  Proposed synthetic pathway towards 79. 

Efficient pinacol coupling of 97 proved to be elusive.  The previous conditions used for 2 

and 73 were unsuccessful, as were various other methods such as Mg/MgI2,
125 sonication,62 and 

photochemical coupling.126  Applying pinacol coupling conditions reported by Li et. al.127 using 

titanium(IV) chloride (TiCl4) and Mg, the pinacol 98 was successfully isolated in a 31% yield 

(Scheme 45). 
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Scheme 45.  Pinacol coupling of 97. 

To determine if the pinacol-pinacolone Stone-Wales sequence was feasible for 98, 

calculations for the pinacol rearrangement were completed.  The computations were done with 

DFT at the B3LYP/6-31+G(d,p) level.  The calculations show the free-energies, where the 

barrier for the transition state is 17.5 kcal/mol (Figure 11).  This barrier is not high; however this 

is larger than what was observed for the rearrangement of 68 which underwent a facile 

rearrangement.  This suggested that 98 may not rearrange to its pinacolone 99 as readily as 68.  
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Figure 11.  Free-energies of the cationic rearrangement of 98. 

The next step was the synthesis of 99.  Typical conditions using AcOH and H2SO4 were 

applied for pinacol rearrangement of 98, however the desired product was not observed and 

instead a very dark, insoluble solid was isolated (Scheme 46).  The Wagner-Meerwein 

rearrangement conditions with P2O5 were applied and 98 was observed in 1H NMR, but 

purification by column chromatography was unsuccessful because of oligomerization (Scheme 

46).  Attempts to alter both reaction routes in Scheme 46 for the formation of 99 did not provide 

any improvements in isolating pure product.  Although the pinacol-pinacolone Stone-Wales was 

very successful for the synthesis of 1, the conditions need to be altered and optimized for 

synthesis of 79 by improving the pinacol coupling of 97 and the pinacol rearrangement of 98. 
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Scheme 46.  Pinacol rearrangement of 98. 

 As this project neared completion, polyphosphoric acid catalyzed reactions were further 

explored in our research group.  PPA cyclization of 74 to 78 was observed.  Pinacol 98 was 

treated with PPA in the MW at 100 oC for 5 minutes (Scheme 47).  Analysis via 1H NMR 

displayed 97, 99, and peaks which correspond to 79 in a 1:1:1.5 ratio respectively, however 

many impurities were also observed.  The presence of 79 within the 1H NMR was identified by 

comparing to the reported spectrum.115  The reaction was run on a small scale and the yield was 

so low that the crude product mixture was not submitted to further purification.  Further 

optimization of these reaction conditions could lead to a simple route towards 79. 
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Scheme 47.  Microwave PPA reaction with 98. 

Route Towards Zethrene: An Acylation Approach 

 Previously reported syntheses of 79 involve coupling of substituted naphthalenes.  There 

have not been reports of coupling naphthalene (46) with some type of linker.  It was predicted 

that acylation of 46 could lead to a precursor to 79.  The acylated compound 104 could undergo 

acid-catalyzed cyclization to enedione 105, followed by reduction to dihydrozethrene 101, and 

lastly aromatization leading to 79 (Figure 12). 

 

Figure 12.  General proposed route towards 79. 

The Friedel-Crafts reaction is one of the most common acylation pathways.  Kong et. 

al.128 reported the sodium sulfinate mediated coupling of 2-bromo-1’-acetonaphthone (106) to 

generate acylated compound 104 in a 54% yield (Scheme 48).  Due to the fact 106 is expensive 

and the sodium sulfinate mediated route only gave a moderate yield, the Friedel-Crafts acylation 

pathway was first investigated for synthesis of 104. 
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Scheme 48.  Sodium sulfinate mediated route towards 104.
128

 

 In order to synthesize 104 using a Friedel-Crafts approach, an acyl chloride needed to 

be chosen.  Fumaryl chloride (107) contains two acyl chloride moieties, allowing for the reaction 

to occur for two naphthalene units at once.  Naphthalene 46 and 107 were treated with 

aluminum chloride (AlCl3) in DCE to yield a crude reaction mixture containing starting material, 

1,1-isomer 104, and a substance believed to be the 1,2-isomer 108.  This was tentatively 

identified by comparison to the predicted 1H NMR using Spartan ’08.  This may be formed from 

isomerization of 104 (Scheme 49).  Various other Lewis acids, temperatures, reaction times, 

and orders of addition were tested, however the conditions in Scheme 49 provided the best 

results.  The issue with this reaction is the synthesis of the two isomers of the acylated 

compound.  Both are observed under all reaction conditions and did not separate via column 

chromatography.  A cyclization of the isomer mixture was attempted using iron (III) chloride 

(FeCl3), however mostly starting material was recovered. 

 



46 
 

 

Scheme 49.  Friedel-Crafts acylation of 46. 

 Going back to Kong’s synthesis of 104, the sodium sulfinate mediated approach was 

investigated.  The first route involved bromination of 1-acetonaphthone (109) using liquid 

bromine (Br2) in AcOH or Et2O,129 however a mixture of 106, the dibromoketone 110, and 

starting material were observed in a 11:1:1 ratio respectively (Scheme 50).  Separation of the 

starting material from the brominated compounds was not difficult, but isolating pure 106 from 

110 was unsuccessful.  Another route involved bromination using N-bromosuccinimide and 

pTsOH in acetonitrile (MeCN),130 where 106 and 110 were observed in a 2:1 ratio via 1H NMR 

(Scheme 50).  Again, obtaining a pure sample of 106 proved elusive.  Altering the reaction 

conditions of both routes did not improve the conversion to 106. 
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Scheme 50.  Attempted bromination routes of 109. 

 The bromination pathways require optimization before proceeding to the sodium 

sulfinate mediated coupling.  Attempts of submitting the crude mixtures to the coupling 

conditions only provided complex product mixtures.  This reaction route does show promise due 

to the reported synthesis of 104, however more work needs to be done. 

Conclusions 

 In this research, two routes were explored for the synthesis of the elusive hydrocarbon 

zethrene (79).  The first route involved our pinacol-pinacolone Stone-Wales method.  To start, 

the pinacol coupling of 1-acenaphthenone was studied.  This proceeded in only modest (31%) 

yield.  The anticipated pinacol rearrangement (Scheme 46) was inefficient as the pinacolone 

was difficult to isolate.  In search of an alternative approach, a brief investigation of the 

cyclization of 98 in PPA provided a low yield of 79; this route needs to be further explored.  The 

second route involved formation of an acylated naphthalene compound which would undergo 

cyclization.  This began with a Friedel-Crafts acylation of naphthalene (46) with fumaryl chloride 

(107) to provide a mixture of acylated naphthalenes 104 and 108, where 108 may be due to 
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isomerization of 104.  The separation of isomers by chromatography proved inefficient.  Another 

acylation pathway used a sodium sulfinate mediated coupling of α-bromoketone 106 to acylated 

compound 104, which was previously isolated in a 54% yield.128 Several approaches to isolate 

106 proved unsuccessful because both mono- and dibromination occurred.  The bromination 

conditions need to be optimized and applied to the synthesis of enedione 104, which can 

potentially be cyclized (Figure 12).131  Once optimized, these conditions can potentially be 

applied to the synthesis of larger zethrene homologues. 
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Chapter IV.  Experimental 

General Experimental Section 

Solvents 

 Anhydrous solvents [diethyl ether, dichloromethane (DCM), tetrahydrofuran (THF), 

toluene, and dimethylformamide (DMF)], passed through drying agent with nitrogen pressure, 

were obtained from an Innovative Technology, Inc. Solvent Delivery System prior to use and 

stored over 4 Å molecular sieves. Other solvents, including 1,2-dichloroethane (DCE), hexanes, 

ethyl acetate, benzene, and methanol were purchased from EMD Serono, Inc. or Pharmco-

AAPER. 

Reagents 

 All reagents were received from commercial sources and were used as received unless 

otherwise noted. Reagents were obtained from the following sources: Fisher Scientific (Acros), 

Alfa Aesar, TCI America, Sigma-Aldrich, and Cambridge Isotope Laboratories. Note: Many of 

the polycyclic aromatic hydrocarbons used here have some level of carcinogenicity. All 

reactions were carefully conducted in a hood to limit exposure. 

Reactions 

 Glassware and magnetic stir bars were dried in an oven at 75 oC prior to use. Sigma-

Aldrich natural rubber septa were used. Unless otherwise noted, nitrogen gas was introduced to 

the reaction vessel through a Tygon® tube with a needle or glass inlet adapter. Henke Sass 

Wolf Norm-ject® plastic syringes were used for volumetric addition of reagents with oven-dried 

Popper & Sons needles, Precision Glide sterile needles, or Sterican® sterile needles unless 

otherwise noted. 
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Chromatography 

 Flash column chromatography was performed with Silicycle SiliaFlash P60 Flash Silica 

Gel or with a Teledyne Isco CombiFlash Rf 200 purification system. Purifications using 

CombiFlash Rf used RediSep® pre-packed silica gel columns (20-70 µm particle size). 

Preparative chromatography was completed with Analtech Uniplate Silica Gel GF 100 micron 

UV 254 glass-backed plates. Thin Layer Chromatography (TLC) analysis used Whatman 

polyester-backed Silica Gel, 60 Å, 250 µm thickness, on flexible plates with a fluorescent 

indicator. Mobile phases were prepared per-use as described in the detailed experimental 

section. 

Instrumentation 

 Nuclear Magnetic Resonance (NMR) spectra were measured on a Varian Mercury Plus 

400 FT-NMR operating at 400 MHz for 1H and 100 MHz for 13C spectroscopy.  Deuterated 

solvents for NMR analysis were purchased from Cambridge Isotope Laboratory and stored over 

4 Å molecular sieves. All 1H resonances were reported relative to an internal standard 

tetramethylsilane (TMS, δ 0 ppm), unless otherwise noted.   Microwave-assisted reactions were 

conducted in a CEM Discover single-mode microwave reactor in capped 10 mL or 35 mL 

vessels. Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-

TOF-MS) was performed on a Shimadzu Kratos Axima-CFR running in reflection mode. 

Detailed Experimental Section 

Chapter I 

General Procedure for MFP. 

The substrate (0.05 g) and phthalic anhydride (14) (0.034 g, 0.23 mmol) were combined with 

graphite (ca. 0.25 g) in a quartz tube.  Glass wool was placed above the mixture and the quartz 

tube was inserted into a Pyrex tube where it was purged with nitrogen and capped.  The 
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reaction mixture was heated in a MW reactor at a constant power.  Reaction time was typically 

30 s to 1 min, but depended on how fast the reaction mixture reached the MW temperature limit 

(300 oC).  The crude product mixture was extracted with CDCl3 and filtered through a small 

silica plug before being characterized by 1H NMR. 

Microwave Flash Pyrolysis of Perylene (13) and Phthalic Anhydride (14). 

Compound 13 (54 mg, 0.21 mmol) and 14 (34 mg, 0.23 mmol) were mixed with graphite (0.25 

g) and reacted following the general MFP procedure at 150 W for 1 minute.  Analysis via 1H 

NMR indicated 13 and 1,12-phenyleneperylene (16) in a 2:1 ratio.  The crude product was 

concentrated under vacuum to a yellow solid (34 mg, 63% recovery). 

Microwave Flash Pyrolysis of Phenanthrene (12) and Phthalic Anhydride (14). 

Compound 12 (51 mg, 0.28 mmol) and 14 (51 mg, 0.34 mmol) were mixed with graphite (0.25 

g) and reacted following the general MFP procedure at 150 W for 50 s.  Analysis via 1H NMR 

indicated 12 (95%) and benzo[e]pyrene (5%).  The crude product was concentrated under 

vacuum to a light yellow solid (26 mg, 51% recovery). 

Microwave Flash Pyrolysis of Phenanthrene (12) and Maleic Anhydride (49). 

Compound 12 (52 mg, 0.28 mmol) and maleic anhydride (56 mg, 0.56 mmol) were mixed with 

graphite (0.24 g) and reacted following the general MFP procedure at 300 W for 30 s.  The 

reaction vessel was allowed to cool and again, the general MFP procedure was followed at 300 

W for 30 s.  Analysis via 1H NMR indicated 12 (98%) and pyrene (8, 2%).  The crude product 

was concentrated under vacuum to a light yellow solid (17 mg, 33% recovery). 

Photochemical Reaction of Diphenylmaleic Anhydride (50).42 

Diphenylmaleic anhydride (50) (1.01 g, 3.9 mmol) and iodine (4.1 mg, 15.9 mmol) were 

dissolved in acetone (60 mL) in a Pyrex tube.  The tube was inserted into a photochemical 

reactor with 300 nm lamps for 4 days.  A yellow solid precipitated which was collected via 
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vacuum filtration (0.251 g, 26% yield).  1H NMR (400 MHz, DMSO-d6) δ 9.13 – 9.07 (m, 2H), 

8.89 – 8.83 (m, 2H), 8.07 – 7.93 (m, 4H). 

Microwave Flash Pyrolysis of Biphenyl (47) and 9,10-Dicarboxyphenanthrene Anhydride 

(10). 

Compound 47 (0.301 g, 1.9 mmol) and 9,10-dicarboxyphenanthrene anhydride (10) (0.105 g, 

4.2 mmol) were mixed with graphite (0.29 g) and reacted following the general MFP procedure 

at 300 W for 1 minute.  Analysis via 1H NMR indicated 47, phenanthrene (12), and 

dibenzo[g,p]chrysene (1) in a 2:5:1 ratio respectively.  The crude product was concentrated 

under vacuum to an off-white solid (0.01 g, 3.5 % recovery). 

Microwave Flash Pyrolysis of Dibenzo[g,p]chrysene (1) and 9,10-Dicarboxyphenanthrene 

Anhydride (10). 

Compound 1 (20 mg, 0.061 mmol) and 10 (23 mg, 0.091 mmol) were mixed with graphite (0.12 

g) and reacted following the general MFP procedure at 100 W for 1 minute.  Analysis via 1H 

NMR indicated 1, phenanthrene (12), and hexabenzo[a,c,fg,j,l,op]tetracene (7) in a 20:1.5:1 

ratio respectively.  The crude product was concentrated under vacuum to an off-white solid (12 

mg, 60% recovery).  The crude product was analyzed by MALDI-TOF-MS, confirming the 

presence of hexabenzotetracene (7, m/z = 501.4), as well as DBC (1, m/z = 328.5) and higher 

oligomers (m/z = 627.2). 

Dibromoolefination of 9-Fluorenone (2). 

9-Fluorenone (2) (1.05 g, 5.8 mmol) and carbon tetrabromide (3.41 g, 10.2 mmol) were added 

to an oven dried 250 mL round bottom flask.  Dry dichloromethane (50 mL) was added.  

Triphenylphosphine (5.36 g, 20.4 mmol) was added portionwise and the reaction was stirred at 

room temperature for 24 hours.  Hexanes (100 mL) was added and the mixture was filtered 

through a silica pad and concentrated to a yellow solid.  The crude product was purified via 
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CombiFlash with hexanes to yield 55 as a light yellow solid (1.82 g, m.p. 119-121 oC, lit. 122-

123 oC, 96% yield).  1H NMR (400MHz, CDCl3) δ 8.62 (d, 2H), 7.69 (d, 2H), 7.42 (t, 2H), 7.30 

(td, 2H). 

Silylation of 9-(Dibromomethylidene)fluorene (55). 

Compound 55 (0.801 g, 2.4 mmol) was added to an oven dried 250 mL round bottom flask and 

purged with nitrogen.  Anhydrous THF (80 mL) was added via syringe.  The flask placed in a dry 

ice bath (-78 oC) and 2.5 M n-BuLi in hexanes (1.0 mL, 2.5 mmol) was added slowly via syringe.  

After stirring under nitrogen for 40 minutes, TMSCl (1.2 mL, 9.5 mmol) was added slowly via 

syringe and the solution was stirred at room temperature for 24 hours.  Sat. aq. NaHCO3 (80 

mL) was added and reaction extracted with ethyl acetate (3 x 30 mL).  The combined extracts 

were dried over Na2SO4 and concentrated to an orange solid.  The crude product was purified 

via column chromatography using silica and hexanes as an eluent to yield a yellow solid (0.182 

g).  Analysis via 1H NMR indicated desired product 56 by correlation with predicted chemical 

shifts, however 57  was also present in a 1.5:1 ratio.  Compound 57 was identified from the 

reported 1H NMR.51 

Fluoride-Induced Elimination for Phenanthryne Formation. 

Potassium fluoride (0.075 g, 1.25 mmol), 18-crown-6 (0.341 g, 1.25 mmol), and anthracene 

(0.095 g, 0.52 mmol) were added to an oven dried 25 mL round bottom flask which was purged 

with nitrogen.  Anhydrous THF (2 mL) was added via syringe and the flask placed in ice bath.  

The crude mixture of 56 and 57 (0.182 g) was dissolved in anhydrous THF (0.5 mL) and added 

to the flask via syringe.  The solution was stirred at room temperature for 15 hours.  Water (15 

mL) was added to the reaction which was then extracted with dichloromethane (3 x 15 mL).  

The combined extracts were dried over Na2SO4 and concentrated to a yellow residue (0.440 g).  

Analysis via 1H NMR displayed starting material with very minor peaks which correspond to the 

predicted chemical shifts of Diels-Alder product 58 in the baseline. 
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Grignard Reaction of 9-(Dibromomethylidene)fluorene. 

Magnesium turnings (44 mg, 1.7 mmol) ground with a mortar and pestle were transferred to an 

oven dried 25 mL two-neck round bottom flask and purged with nitrogen.  Anhydrous THF (2 

mL) was added and the solution was brought to reflux.  9-(Dibromomethylidene)fluorene (55) 

(0.513 g, 1.49 mmol) dissolved in anhydrous THF (2 mL) was added dropwise via an addition 

funnel and the reaction was stirred at reflux for 90 minutes.  After cooling to room temperature, 

10% aq. HCl (10 mL) was added and the reaction was extracted with dichloromethane (4 x 20 

mL).  The combined extracts were dried over Na2SO4 and concentrated to yield 60 as a red 

solid (0.364 g, 69% yield).  The product was analyzed by MALDI-TOF-MS, which showed m/z = 

352.1.  1H NMR (400 MHz, CDCl3) δ 7.86-7.84 (m, 4 H), 7.72-7.70 (m, 4H), 7.42-7.36 (8 H). 

Chapter II 

Synthesis of 9,9’-Bifluorenyl-9,9’-diol (68). 

9-Fluorenone (2) (1.03 g, 5.70 mmol) and 50% aq. THF (10 mL) were added to a 250 mL round 

bottom flask, followed by zinc chloride (1.07 g, 7.80 mmol).  The reaction flask was placed into a 

water bath and zinc powder (5.0 g, 0.076 mol) was added portionwise over 5 minutes.  The 

reaction was stirred for 1 hour under nitrogen.  3M HCl (5 mL) was added and the reaction 

stirred for 20 minutes, where it was then filtered to remove the residual zinc, which was rinsed 

with toluene, followed by water.  The filtrate was extracted with toluene (4 x 10 mL) and the 

combined organics were dried over MgSO4.  The solution was filtered and concentrated to yield 

a white solid (0.82 g, m.p. 180-183 oC, lit. 190-192 oC, 83% yield).  1H NMR (400 MHz, CDCl3) δ 

7.39-7.37 (m, 5H), 7.27-7.26 (m, 6H), 7.07 (m, 5H), 3.16 (s, 2H). 

Pinacol Rearrangement to Form Spiro[9H-fluorene-9,9'(10'H)-phenanthren]-10'-one (3). 

9,9’-Bifluorenyl-9,9’-diol 68 (0.79 g, 0.0022 mol) was put in a 250 mL round bottom flask.  

Concentrated sulfuric acid (0.1 mL) and acetic acid (10 mL) were added to the reaction flask.  
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The solution was stirred at reflux for 30 minutes.  After cooling to room temperature, a white 

solid formed which was isolated by vacuum filtration (0.66 g, m.p. 248-252 oC, lit 256-258 oC, 

88% yield).  1H NMR (400 MHz, CDCl3) δ 8.20 (d, 1H), 8.10 (d, 1H), 7.99 (dd, 1H), 7.82-7.75 (m, 

3H), 7.45 (td, 1H), 7.41-7.34 (m, 3H), 7.18 (td, 2H), 7.10-7.02 (m, 3H), 6.62 (dd, 1H). 

Synthesis of Spiro[9H-fluorene-9,9'(10'H)-phenanthren]-10'-ol (72). 

Compound 3 (0.94 g, 2.6 mmol) was dissolved in THF (15 mL) and water (0.5 mL) in a 50 mL 

round bottom flask.  Sodium borohydride (0.22 g, 5.8 mmol) was added slowly.  The solution 

was stirred at reflux under nitrogen for 90 minutes.  After cooling to room temperature, water 

was added (15 mL) and the solution was stirred for 5 minutes.  The reaction was extracted with 

dichloromethane (3 x 10 mL) and the combined extracts were dried over Na2SO4 and 

concentrated to a white solid (0.87 g, m.p. 164-167 oC, lit. 174-175 oC,132 92% yield).  1H NMR 

(400 MHz, CDCl3) δ 7.94 (td, 2H), 7.79 (dt, 1H), 7.74 (dt, 1H), 7.53-7.49 (m, 2H), 7.44-7.19 (m, 

7H), 7.02 (dtd, 2H), 6.80 (d, 1H), 6.67 (dd, 1H), 5.31 (d, 1H). 

Synthesis of Dibenzochrysene (1). 

Compound 72 (1.97 g, 5.7 mmol) and toluene (50 mL) were added to a 250 mL round bottom 

flask.  p-Toluenesulfonic acid (2.98 g, 17.3 mmol) was added to the reaction mixture, and it was 

stirred at reflux under nitrogen for 90 minutes.  After cooling to room temperature, water (5 mL) 

was added, and the reaction solution was extracted with toluene (4 x 15 mL).  The combined 

extracts were dried over Na2SO4.  The crude product showed very minor impurities and was 

recrystallized in ethanol to yield a white solid (1.38 g, m.p. 216-217 oC, lit. 218 oC, 74% yield).  

1H NMR (400 MHz, CDCl3) δ 8.73 – 8.67 (m, 8H), 7.66 (dddd, 8H). 

Pinacol Coupling of 1-Indanone (73). 

1-Indanone (73) (0.51 g, 3.8 mmol), potassium hydroxide (1.91 g, 34.0 mmol), and methanol (10 

mL) were added to a 25 mL round bottom flask.  The solution was stirred while aluminum 
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powder (0.31 g, 11.5 mmol) was added slowly.  The flask was placed in a water bath where it 

stirred under nitrogen for 20 hours.  The solution was filtered to remove excess aluminum and 

water (25 mL) was added to the filtrate.  A solid formed which was filtered off and the filtrate was 

extracted with dichloromethane (3 x 15 mL).  The combined extracts were dried over MgSO4 

and concentrated to a white solid (0.36 g, m.p. 139-142 oC, lit. 154-156 oC, 72% yield).  1H NMR 

(400 MHz, CDCl3) δ 7.82-7.80 (m, 1H), 7.31-7.21 (m, 6H), 7.14-7.12 (d, 1H), 3.09-3.01 (m, 2H), 

2.98 (s, 2H), 1.97-1.93 (td, 4H). 

Reaction of 1-Indanopinacol (74) in PPA. 

PPA (18 mL) were added to an oven dried 100 mL round bottom flask.  The flask was heated in 

an sand bath to 120 oC with stirring.  Pinacol 74 (1.20 g, 4.5 mmol) was added to the flask and 

the reaction was heated to 180 oC under nitrogen.  After 45 minutes, the reaction was cooled to 

room temperature, quenched with sat. aq. NaHCO3, and extracted with ethyl acetate (5 x 40 

mL).  The combined extracts were dried over Na2SO4.  The crude material was purified via 

CombiFlash with 100% hexanes to yield a light yellow/orange solid (0.903 g).  Analysis via 1H 

NMR displays a mixture of chrysene (78), dihydrochrysene, and tetrahydrochrysene in a 1:3.5:2 

ratio, respectively. 

 The crude mixture (0.091 g) was dissolved in benzene (5.5 mL) and purged with 

nitrogen.  2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 0.17 g, 0.78 mmol) was added and 

the mixture was stirred at reflux for 20 h.  The reaction mixture was concentrated under vacuum 

and filtered through a silica plug with hexanes to yield chrysene (78) as an off-white solid (0.086 

g, 8.4% overall yield).  1H NMR (400 MHz, CDCl3) δ 8.80-8.78 (d, 2H), 8.74-8.7 (d, 2H), 8.02-

7.98 (dd, 4H), 7.73-7.69 (t, 2H), 7.66-7.62 (t, 2H). 

Reaction of 9,9’-Bifluorenyl-9,9’-diol (68) in PPA. 

Pinacol 68 (0.104 g, 0.29 mmol) and PPA (4 mL) were added to an oven dried 35 mL quartz 

MW tube.  The viscous mixture was stirred with a glass stir rod to evenly disperse solid and the 
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quartz tube was placed in a Pyrex tube.  The reaction vessel was purged with nitrogen, capped, 

and heated in the MW reactor at 100 oC for 5 minutes.  Once cool, the reaction was quenched 

with sat. aq. NaHCO3 and extracted with ethyl acetate (4 x 15 mL).  The combined extracts were 

dried over Na2SO4 and concentrated to a tan solid (0.067 g).  Analysis via 1H NMR displayed a 

mixture of pinacolone (3) and dibenzo[g,p]chrysene (1) in a 2:1 ratio. 

Chapter III 

Synthesis of Acenaphthenopinacol (98). 

An oven dried 50 mL 2-neck round bottom flask was charged with dry ethyl acetate (7 mL) and 

titanium tetrachloride (0.4 mL, 3.7 mmol).  The flask was placed in an ice water bath and 

magnesium turnings (0.23 g, 8.9 mmol) were added.  The flask was purged with nitrogen and 

allowed to warm to room temperature.  1-Acenaphthenone (97) (0.25 g, 1.5 mmol) dissolved in 

dry ethyl acetate (1 mL) was added via syringe.  After 90 minutes, 10% aq. potassium 

carbonate (15 mL) was added to quench.  A solid formed which was filtered off and the filtrate 

was extracted with ethyl acetate (3 x 15 mL).  The combined organics were washed with sat. aq. 

NaHCO3 and brine respectively and dried over MgSO4.  The crude material was purified via 

CombiFlash with 10% EtOAc:hexanes to yield a white solid (0.079 g, 31% yield). 1H NMR(400 

MHz, CDCl3) δ 7.98-7.96 (d, 2H), 7.82-7.80 (d, 2H), 7.67-7.65 (d, 2H), 7.62-7.58 (t, 2H), 7.43-

7.40 (dd, 2H), 7.06-7.04 (d, 2H), 3.48 (s, 2H), 3.13-3.03 (d, 2H), 2.92-2.87 (d, 2H). 

Reaction of Acenaphthenopinacol (98) in PPA. 

Pinacol 98 (0.068 g, 0.201 mmol) and PPA (2.1 mL) were added to an oven dried 35 mL quartz 

MW tube.  The viscous mixture was stirred with a glass stir rod to evenly disperse solid and the 

quartz tube was placed in a Pyrex tube.  The reaction vessel was purged with nitrogen, capped, 

and heated in the MW reactor at 100 oC for 5 minutes.  Once cool, the reaction was quenched 

with sat. aq. NaHCO3 and extracted with ethyl acetate (3 x 20 mL).  The combined organics 
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were dried over Na2SO4 and concentrated to a dark orange/red solid (0.036 g).  Analysis via 1H 

NMR displayed a mixture of 1-acenaphthenone (97), pinacolone 99, and zethrene (79) in a 

1:1:1.5 ratio, as well as oligomers. 

Friedel-Crafts Acylation of Naphthalene. 

Aluminum chloride (1.03 g, 7.6 mmol) and DCE (50 mL) added to oven dried 250 mL round 

bottom flask.  The flask was purged with nitrogen and placed in an ice bath.  Fumaryl chloride 

(107) (0.45 mL, 4.2 mmol) was added via syringe and the solution was stirred for 10 min.  

Naphthalene (46) (1.07 g, 8.2 mmol) was added and the reaction was stirred at room 

temperature for 24 hours.  Water (150 mL) was added and the mixture was diluted with DCE (50 

mL).  The organics were washed with 2 M HCl (2 x 25 mL), dried over Na2SO4, and 

concentrated to dark brown residue.  The crude material was purified via CombiFlash with 5% 

EtOAc:hexanes to yield a pale yellow solid (0.15 g).  Analysis via 1H NMR indicated the 1,1’-

isomer (104) and 1,2’-isomer (108) in a 3.5:1 ratio respectively. 
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