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ABSTRACT 
 

THE RATE, SPECTRUM AND EFFECTS OF SPONTANEOUS MUTATION IN 
BACTERIA WITH MULTIPLE CHROMOSOMES 

 
by 
 

Marcus Michael Dillon 
 

University of New Hampshire, May, 2016 
 

 Despite their essentiality for evolutionary change and role in many diseases, 

spontaneous mutations remain understudied because of both biological and technical 

barriers. Prokaryotic mutation biases are especially understudied and no studies have 

been conducted on bacteria with multiple chromosomes, leaving major gaps in our 

understanding of the role of genome content and structure on mutation. The application 

of mutation accumulation lines to whole-genome sequencing offers the opportunity to 

study spontaneous mutations in a wide range of prokaryotic organisms. Here, we present 

a genome-wide view of molecular mutation rates and spectra in Burkholderia 

cenocepacia, Vibrio fischeri, and Vibrio cholerae, three bacterial species that harbor 

multiple chromosomes but differ dramatically in %GC-content. We demonstrate both 

general and species specific biases in spontaneous mutation rates and spectra, while 

also highlighting how some mutational biases vary within within genomes. We then study 

the distribution of effects of spontaneous mutations in B. cenocepacia, illustrating that 

most mutations have little or no effect on fitness and those that do are mostly deleterious 

across multiple environments. Overall, this body of work offers unprecedented insight into 

the rate, spectrum, and fitness effects of spontaneous mutations in three prokaryotic 

organisms whose genomes harbor multiple circular chromosomes, a common but 

underappreciated bacterial genome architecture.   
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CHAPTER I 
 
 
 
 

RATE AND MOLECULAR SPECTRUM OF SPONTANEOUS MUTATIONS IN THE GC-
RICH MULTI-CHROMOSOME GENOME OF BURKHOLDERIA CENOCEPACIA 
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INTRODUCTION 

 As the ultimate source of genetic variation, mutation is implicit in every aspect of 

genetics and evolution. However, as a result of the genetic burden imposed by 

deleterious mutations, remarkably low mutation rates have evolved across all of life, 

making detection of these rare events technologically challenging and accurate 

measures of mutation rates and spectra exceedingly difficult (Kibota and Lynch 1996; 

Lynch and Walsh 1998; Sniegowski et al. 2000; Lynch 2011; Fijalkowska et al. 2012; 

Zhu et al. 2014). Until recently, most estimates of mutational properties have been 

derived indirectly using comparative genomics at putatively neutral sites (Graur and Li 

2000; Wielgoss et al. 2011) or by extrapolation from small reporter-construct studies 

(Drake 1991). Both of these methods are subject to potentially significant biases, as 

many putatively neutral sites are subject to selection and mutation rates can vary 

substantially among different genomic regions (Lynch 2007). 

 To avoid the potential biases of these earlier methods, pairing classic mutation 

accumulation (MA) with whole-genome sequencing (WGS) has become the preferred 

method for obtaining direct measures of mutation rates and spectra (Lynch et al. 2008; 

Denver et al. 2009; Ossowski et al. 2010; Lee et al. 2012; Sung et al. 2012a; b, 2015; 

Heilbron et al. 2014; Foster et al. 2015; Long et al. 2015). Using this strategy, a single 

clonal ancestor is used to initiate several replicate lineages that are subsequently 

passaged through repeated single-cell bottlenecks for several thousand generations. 

The complete genomes of each evolved lineage are then sequenced and compared 

with the other lines to identify de novo mutations occurring over the course of the 

experiment. The bottlenecking regime minimizes the ability of natural selection to 
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eliminate deleterious mutations, and the parallel sequencing provides a large enough 

body of information to yield a nearly unbiased picture of the natural mutation spectrum 

of the study organism (Lynch et al. 2008).  

 The MA-WGS method has now been used to examine mutational processes in 

several model eukaryotic and prokaryotic species, yielding a number of apparently 

generalizable conclusions about mutation rates and spectra. For example, a negative 

scaling between base-substitution mutation rates and both effective population size (NE) 

and the amount of coding DNA supports the hypothesis that the refinement of 

replication fidelity that can be achieved by selection is determined by the power of 

random genetic drift among phylogenetic lineages (Lynch 2011; Sung et al. 2012a). 

This “drift-barrier hypothesis” therefore predicts that organisms with very large 

population sizes such as some bacteria should have evolved very low mutation rates 

(Lee et al. 2012; Sung et al. 2012a; Foster et al. 2013). Strong transition and G:C>A:T 

biases have also been observed in nearly all non-mutator MA studies to date (Lind and 

Andersson 2008; Lynch et al. 2008; Denver et al. 2009; Ossowski et al. 2010; Lee et al. 

2012; Sung et al. 2012a; b), corroborating previous findings using indirect methods 

(Hershberg and Petrov 2010; Hildebrand et al. 2010). However, several additional 

characteristics of mutation spectra vary among species (Lynch et al. 2008; Denver et al. 

2009; Ossowski et al. 2010; Lee et al. 2012; Sung et al. 2012a; b), and examining the 

role of genome architecture, size, and lifestyle in producing these idiosyncrasies will 

require a considerably larger number of detailed MA-WGS studies. Among bacterial 

species that have been subjected to mutational studies, genomes with high %GC-

content are particularly sparse and no studies have been conducted on bacteria with 
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multiple chromosomes, a genome architecture of many important bacterial species (e.g 

Vibrio, Brucella, Burkholderia). 

 Burkholderia cenocepacia is a member of the Burkholderia cepacia complex, a 

diverse group of bacteria with important clinical implications for patients with cystic 

fibrosis (CF), where they can form persistent lung infections and highly resistant biofilms 

(Coenye et al. 2004; Mahenthiralingam et al. 2005; Traverse et al. 2013). The core 

genome of B. cenocepacia HI2424 has a high %GC-content (66.80%) and harbors 

three chromosomes, each containing rDNA operons (LiPuma et al. 2002), although the 

third chromosome can be eliminated under certain conditions (Agnoli et al. 2012). The 

primary chromosome (chr1) is  ≈ 3.48 Mb and contains 3253 genes; the secondary 

chromosome (chr2) is ≈ 3.00 Mb and contains 2709 genes; and the tertiary 

chromosome (chr3) is ≈ 1.06 Mb and contains 929 genes. In addition, B. cenocepacia 

HI2424 contains a 0.16 Mb plasmid, which contains 157 genes and lower %GC-content 

than the core genome (62.00%). Although the %GC-content is consistent across the 

three core chromosomes, the proportion of coding DNA declines from chr1 to chr3, 

while the synonymous and non-synonymous substitution rates increase from Chr1 to 

chr3 (Cooper et al. 2010; Morrow and Cooper 2012). Whether this variation in 

evolutionary rate is driven by variation in non-adaptive processes like mutation bias or 

variation in the relative strength of purifying selection remains a largely unanswered 

question in the evolution of bacteria with multiple chromosomes. 

 Here, I applied whole-genome sequencing to 47 MA lineages derived from B. 

cenocepacia HI2424 that were evolved in the near absence of natural selection for over 

5550 generations each. I identified a total of 291 mutations spanning all three replicons 
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and the plasmid, enabling a unique perspective of inter-chromosomal variation in both 

mutation rate and spectra, in a bacterium with the highest %GC-content studied with 

MA-WGS to date.   

 

MATERIALS AND METHODS 

Mutation accumulation. Seventy-five independent lineages were founded by single 

cells derived from a single colony of Burkholderia cenocepacia HI2424, a soil isolate 

that had only previously been passaged in the laboratory during isolation (Coenye and 

LiPuma 2003). Independent lineages were then serially propagated every 24 hours onto 

fresh high nutrient Tryptic Soy Agar (TSA) plates (30 g/L Tryptic Soy Broth (TSB) 

Powder, 15 g/L Agar). Two lineages were maintained on each plate at 37°, and the 

isolated colony closest to the base of each plate half was chosen for daily re-streaking. 

Following 217-days of MA, frozen stocks of all lineages were prepared by growing a 

final colony per isolate in 5 ml TSB (30 g/L TSB) overnight at 37°, and freezing in 8% 

DMSO at -80°.  

 Daily generation times were estimated each month by placing a single 

representative colony from each line in 2 ml of Phosphate Buffer Saline (80 g/L NaCl, 2 

g/L KCl, 14.4 g/L Na2HPO4 � 2H2O, 2.4 g/L KH2PO4), serially diluting to 10-3 and spread 

plating 100 ul on TSA. By counting the colonies on the resultant TSA plate, I calculated 

the number of viable cells in a single colony and the number of generations between 

each transfer. The average generation time across all lines was then calculated and 

used as the daily generation time for that month. These generation-time measurements 

were used to evaluate potential effects of declining colony size over the course of the 
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MA experiment as a result of mutational load, a phenotype that was observed (Figure 

A.1). Final generation numbers per line were estimated as the sum of monthly 

generation estimates, which were derived by multiplying the number of generations per 

day in that month by the number of days between measurements (Figure A.1). 

 

DNA extraction and sequencing. Genomic DNA was extracted from 1 ml of overnight 

culture inoculated from 47 frozen derivatives of MA lines and the ancestor of the MA 

experiments using the Wizard Genomic DNA Purification Kit (Promega Inc.). Following 

library preparation, sequencing was performed using the 151-bp paired-end Illumina 

HiSeq platform at the University of New Hampshire Hubbard Center for Genomic 

Studies with an average fragment size between paired-end reads of ≈ 386 bps. All 

forward and reverse reads for each isolate and the ancestor were individually mapped 

to the reference genome of Burkholderia cenocepacia HI2424 (LiPuma et al. 2002), with 

both the Burrows-Wheeler Aligner (BWA) (Li and Durbin 2009) and Novoalign 

(www.novocraft.com), producing an average sequence depth of 43x. 

 

Base-substitution mutation identification. To identify spontaneous base-substitution 

mutations (bpsms), I used SAMtools to convert the SAM alignment files to mpileup 

format (Li et al. 2009), and in-house perl scripts to produce the forward and reverse 

read alignments for each position in each line. A three-step process was then used to 

detect putative bpsms. First, pooled reads across all lines were used to generate an 

ancestral consensus base at each site in the reference genome. This allows me to 

correct for any differences that may exist between the reference genomes and the 
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ancestral colony of each my MA experiments. Second, a lineage specific consensus 

base was generated at each site in the reference genome for each individual MA 

lineage using only the reads from that line. Here, a lineage specific consensus base 

was only called if the site was covered by at least two forward and two reverse reads 

and at least 80% of the reads identified the same base. Otherwise, the site was not 

analyzed. Third, each lineage specific consensus base that was called was compared to 

the overall ancestral consensus of the MA experiment and a putative bpsm was 

identified if they differed. This analysis was carried out independently with the 

alignments generated by BWA and Novoalign, and putative bpsms were considered 

genuine only if both pipelines independently identified the bpsm and they were only 

identified in a single lineage.  

 Using relatively lenient criteria for identifying lineage specific consensus bases, I 

was able to analyze the majority of the genome in all lineages, but increase my risk of 

falsely identifying bpsms at low coverage sites. Therefore, I generated a supplementary 

dataset for all genuine bpsms identified in this study, which includes the read coverage 

and consensus at each site where a bpsm was identified (Table A.1). I do not see 

clusters of bpsms at the lower limits of my coverage or consensus requirements. In fact, 

the vast majority of bpsms in my MA experiment were covered by more than 25 reads 

and were supported by more than 95% of the reads that covered the site. Furthermore, I 

verified that none of the bpsms that I identified were present in the ancestral B. 

cenocepacia HI2424 strain that I sequenced, so I am confident that nearly all of the 

bpsms identified in this study were genuine spontaneous bpsms that arose during the 

mutation accumulation experiments. 
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Insertion-deletion mutation identification. For insertion-deletion mutations (indels), 

inherent difficulties with gaps and repeat elements can reduce agreement in the 

alignment of single reads using short-read alignment algorithms, even in the case of 

true indels. Simple-sequence repeats (SSRs) are an especially difficult challenge, as 

reads that are not anchored on both sides of the SSR will just align to the next repeated 

sequence of bases and fail to identify SSR variants, even if they are genuine. Therefore, 

I employed more lenient criteria to extract all putative indels from the raw alignments, 

requiring that the indel was covered by at least two forward and two reverse reads, and 

that 30% of those reads identified the exact same indel (size and motif). Among these 

putative indels, all indels that were independently identified by both BWA and 

Novoalign, where 80% of the reads identified the exact same indel were considered 

genuine indels. For indels where only 30-80% of the reads identified the exact same 

indel, I parsed out only reads that had bases on both the upstream and downstream 

regions of the SSR (if the indel was in an SSR), and on both the upstream and 

downstream regions of the indel itself (if the indel was not in an SSR). Using only this 

subset of reads, I reassessed the number of reads that identified the exact same indel 

(size and motif), and considered these initially low confidence putative indels genuine if 

more than 80% of these sub-reads identified the exact same indel. In addition, I 

passaged the alignment output through the pattern-growth algorithm PINDEL to identify 

any large genuine indels using paired-end information (Ye et al. 2009). Here, I required 

a total of 20 reads, with at least 6 forward and 6 reverse reads, and 80% of the reads to 

identify the exact same indel for the indel to be considered genuine. This summative 
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collection of indels was then compared to the analysis of the ancestral B. cenocepacia 

HI2424 strain, and any indel that was identified in the ancestor or more than 50% of the 

other MA lineages was excluded from subsequent analyses.  

 My initial filters for indels were even more lenient than those for bpsms, which 

may have lead to false positive indel identification in the putative indel phase. However, 

I subsequently required at least 80% consensus for all genuine indels identified in this 

study among reads that had bases at both the upstream and downstream regions of 

putative indels that were not in SSRs and among reads that had bases at both the 

upstream and downstream regions of the SSR of putative indels that were in SSRs. 

Further, I verified that all indels identified were not present in the ancestral B. 

cenocepacia HI2424 strain and were not identified in more than 50% of the other 

lineages analyzed in the same MA experiment. As with my bpsms, I generated a 

supplementary dataset containing all genuine indels analyzed in this study, which 

includes the read coverage and consensus at each site where an indel was identified, 

as well as the read coverage and consensus among reads with bases covering both the 

upstream and downstream regions of the indel or SSR if the initial consensus among 

reads covering the indel was below 80% (Table A.2). Thus, I am confident that nearly all 

indels identified in this study were genuine spontaneous indels that arose during the 

mutation accumulation process.   

 

Mutation-rate analysis. Once a complete set of mutations had been identified in each 

lineage, I calculated the substitution and indel mutation rates for each line using the 

equation: 
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! = #/%&, 

where μ represents the mutation rate (μbs for bpsms, μindel for indels), # represents the 

number of mutations observed, %  represents the number of sites that had sufficient 

depth and consensus to analyze, and & represents the total generations over the course 

of the MA study for an individual line. The standard error of the mutation rate for each 

line was measured as described previously  (Denver et al. 2004, 2009), with the 

equation: 

'() = !/%&. 

The final μbs and μindel for B. cenocepacia were calculated by taking the average 

mutation rates of all sequenced lineages, and the total standard error was calculated as 

the standard deviation of the mutation rates across all lines (s) divided by the square 

root of the number of lines analyzed (N): 

'(*++,-. = // 0. 

Specific base-substitution mutation rates were further divided into conditional rates for 

each substitution type, again using the equation: 

!12 = #/%&, 

where # is the number of substitutions of a particular type, and % is the number of 

ancestral bases that can lead to each substitution with sufficient depth and consensus 

to analyze. The conditional substitution rates at seven MLST loci (atpD, gltB, gyrB, lepA, 

phaC, recA, and trpB) were calculated under the assumption that the most common 

nucleotide was the ancestral state and any deviation from that ancestral state occurred 

only once and spread through the population (Jolley and Maiden 2010). I then estimated 

conditional substitution rates as: 
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!12 = #/%, 

as described above. 

 

Calculation of GE, πs, and NE. Effective genome size (GE) was determined as the total 

coding bases in the B. cenocepacia genome. Silent site diversity (πs) was derived using 

the MLST loci described above, which were concatenated and aligned using BIGSdb 

(Jolley and Maiden 2010), and analyzed using DNAsp (Librado and Rozas 2009). Using 

the value of μbs obtained in this study, NE was estimated by dividing the value of πs by 

2μbs (32 = 205!12) (Kimura 1983). 

 

Statistical analyses. All statistical analyses were performed in R Studio Version 

0.99.489 using the Stats analysis package (R Development Core Team 2013).  

 

RESULTS 

 A classic mutation-accumulation experiment was carried out for 217 days with 75 

independent lineages all derived from the same ancestral colony of B. cenocepacia 

HI2424 (LiPuma et al. 2002). This method founds a new population each day by a 

single cell, which limits the efficiency with which natural selection can purge deleterious 

and enrich beneficial mutations. Measurements of generations of growth per day were 

taken monthly and varied from 26.2 ± 0.12 to 24.9 ± 0.14 (mean ± 95% CI of highest 

and lowest measurements, respectively) (Figure A.1), resulting in an average of 5554 

generations per line over the course of the MA experiment. Thus, across the 47 lines 
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whose complete genomes were sequenced, I was able to visualize the natural mutation 

spectrum of B. cenocepacia HI2424 over 261,047 generations of MA.  

From the comparative sequencing data, I identified 245 bpsms, 42 indels, and 

four plasmid-loss events spanning the entire genome. With means of 5.21 bpsms and 

0.89 indels per line, the distribution of bpsms and indels across individual lines did not 

differ significantly from a Poisson distribution (bpsms: χ2 = 1.81, p = 0.99; indels: χ2 = 

0.48, p = 0.92), indicating that mutation rates did not vary over the course of the MA 

experiment (Figure A.2).  

 Mutation-accumulation experiments rely on the basic principle that when NE is 

sufficiently reduced, the efficiency of selection is minimized to the point at which nearly 

all mutations become fixed by genetic drift with equal probability (Kibota and Lynch 

1996). NE in this mutation accumulation study was calculated to be 12.86, using the 

harmonic mean of the population size over 24 hours of colony growth (Hall et al. 2008). 

The threshold selective coefficient below which genetic drift will overpower natural 

selection is: 

NE • s = 1 (Lynch 2007). 

 Thus, only mutations conferring adaptive or deleterious effects of s>0.078 would be 

subject to the biases of natural selection in this study, which is expected to be a very 

small fraction of mutations (Kimura 1983; Elena et al. 1998; Zeyl and de Visser 2001; 

Hall et al. 2008). 

Given the codon usage and %GC-content of synonymous and non-synonymous 

sites in B. cenocepacia HI2424, 27.80% of coding substitutions are expected to be 

synonymous in the absence of natural selection. The observed percentage of 
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synonymous substitutions (25.51%) did not differ significantly from this null-expectation 

(χ2 = 0.54, df = 1, p = 0.46). Further, I found limited evidence of positive selection since 

parallel evolution among base-substitution mutations was rare in this study; no gene 

was hit more than twice across any of the 47 independently derived lineages, excluding 

indel hotspots in SSRs (Table A.1; Table A.2). Although both bpsms (χ2 = 4.20, df = 1, p 

= 0.04) and indels (χ2 = 21.3, df = 1, p < 0.0001) were biased to non-coding DNA, 

evidence exists that mismatch repair preferentially repairs damage in coding regions, 

which can create artificial signatures of selection in MA experiments (Lee et al. 2012). 

Thus, my overall observations are consistent with this MA experiment inducing limited 

selection on the mutation spectra; at least as far as bpsms are concerned.  

 

Low base-substitution and indel mutation rates. The preceding results imply that 

bpsm and indel rates for B. cenocepacia are 1.33 (0.08) • 10-10 /bp/generation and 2.19 

(0.30) • 10-11 /bp/generation (SEM), respectively. Based on the 7.70 Mb genome size, 

these per-bp mutation rates correspond to a genome-wide bpsm rate of only 

0.001/genome/generation, and a genome-wide indel rate of only 

0.0002/genome/generation. Although the ratio of synonymous to non-synonymous 

substitutions is consistent with negligible influence of selection on base-substitution 

mutations in this study, it is impossible to know for certain whether the lack of non-

coding indels was generated by purifying selection or non-adaptive mutation biases, but 

their scarcity could reflect some selective loss of genotypes with loss-of-function 

mutations (Foster et al. 2013; Heilbron et al. 2014; Zhu et al. 2014; Dettman et al. 

2016).  
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Base-substitution mutations are not AT-biased. One of the central motivations for 

studying the molecular mutation spectrum of B. cenocepacia was its high %GC-content 

(66.80%). The vast majority of wild-type MA-WGS studies to date have demonstrated a 

mutation bias in the direction of AT (Table 1), and a similar bias has also been inferred 

in comparative analyses of several bacterial species, including Burkholderia 

pseudomallei (Lynch et al. 2008; Denver et al. 2009, 2012; Keightley et al. 2009; 

Hershberg and Petrov 2010; Hildebrand et al. 2010; Lynch 2010a; Ossowski et al. 2010; 

Sung et al. 2012a; b; Lee et al. 2012; Schrider et al. 2013; Zhu et al. 2014). Thus, 

biased gene conversion and selection have been invoked to explain the high %GC-

content realized in many genomes (Lynch et al. 2008; Duret and Galtier 2009; 

Raghavan et al. 2012; Zhu et al. 2014; Lassalle et al. 2015). These data for B. 

cenocepacia are inconsistent with prior published studies showing a mutation bias in the 

direction of AT (Table 1), but also suggest that biased gene conversion and/or selection 

must have mostly generated the realized %GC-content of B. cenocepacia, which is 

substantially higher than expected based on mutation pressure alone. 
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Table 1. Burkholderia cenocepacia AT-mutation bias comparison against seven 
other organisms. The strength of the AT-mutation bias is calculated as the ratio of the 
conditional mutation rates in the in the G:C>A:T direction to the conditional mutation 
rates in the A:T>G:C direction, which is substantially higher in all other species than it is 
in B. cenocepacia.  

ORGANISM (%GC)a TRANSITIONS TRANSVERSIONS   
AT - BIAS 

A:T>G:C G:C>A:T A:T>T:A G:C>T:A A:T>C:G G:C>C:G 
B. cenocepacia (0.67) 6.88 7.51 2.67 2.44 5.35 2.38 0.81 
E. coli (0.51)b 8.74 13.71 2.80 5.08 6.64 2.88 1.22 
M. florum (0.27)b 50.93 640.83 15.67 360.14 11.75 185.36 15.97 
H. sapiens (0.45) 429.00 961.00 129.00 258.00 152.00 295.00 2.10 
D. melanogaster (0.42)b 101.13 513.19 98.06 130.76 48.01 74.52 4.32 
S. cerevisiae (0.38)b 7.13 17.86 3.03 9.69 5.30 7.82 2.22 
A. thaliana (0.36)b 104.54 896.30 43.56 139.08 60.98 123.63 6.26 
C. elegans (0.35)b 16.47 57.23 17.50 44.09 7.72 16.89 4.19 
a Data was obtained from the following studies: E. coli - Lee et al., 2012; M. florum - Sung et al., 2012a; 
H. sapiens - Lynch, 2010; D. melanogaster - Schrider et al., 2013; S. cerevisiae - Zhu et al., 2014; A. 
thaliana - Ossowski et al., 2010; C. elegans - Denver et al., 2012. 
b Conditional mutation rates (×1011) are calculated as the number of each mutation type, divided by the 
product of the number of generations and the total A:T or G:C sites in each respective reference genome 
if the raw data is not directly available in the cited reference (Wei et al. 2014). 
 
 In comparing the relative rates of G:C>A:T transition and G:C>T:A transversion 

mutations with those of A:T>G:C transitions and A:T>C:G transversions, corrected for 

the ratio of G:C to A:T sites analyzed in this study, I found that substitutions in the G:C 

direction were 17% more frequent than substitutions in the A:T direction per base pair, 

although the conditional rates were not significantly different (χ2 = 0.91, df = 1, p = 

0.33). The lack of mutational bias in the A:T direction can largely be attributed to 

A:T>C:G transversions occurring at significantly higher rates than any other 

transversion type, most notably the G:C>T:A transversions (χ2 = 8.68, df = 1, p = 

0.0032). However, A:T>G:C transitions also occurred at nearly the same rate as 

G:C>A:T transitions, the latter of which have been the most commonly observed 

substitution in other studies, putatively due to deamination of cytosine or 5-methyl-

cytosine (Figure 1) (Lee et al. 2012; Sung et al. 2012b; Zhu et al. 2014).  
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Figure 1. Conditional base-substitution mutation (bpsm) rates of Burkholderia 
cenocepacia mutation accumulation (MA) lines across all three chromosomes. 
Conditional base-substitution mutation rates per conditional base-pair per generation, 
estimated by dividing the number of observed mutations by the product of the analyzed 
sites capable of producing a given mutation and the number of generations of mutation 
accumulation. Error bars indicate one standard error of the mean. 
 
 Using the ratio of the conditional rate of mutation in the G:C direction to that in 

the A:T direction (x), the expected %GC-content under mutation-drift equilibrium is 

x/(1+x) = 0.539 (0.043) (SEM). Therefore, although mutation pressure in B. 

cenocepacia does not favor AT-bases, it is clear that the observed mutation bias is not 

sufficient to elicit the realized %GC-content of 66.80%. Thus, either the B. cenocepacia 

genome is still moving towards mutation-drift equilibrium, or GC-biased gene conversion 

and/or natural selection are contributing substantively to the observed %GC-content 

(Lynch et al. 2008; Duret and Galtier 2009; Raghavan et al. 2012; Zhu et al. 2014; 

Lassalle et al. 2015). 
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Deletion bias favors genome-size reduction and AT composition. Although my 

lower bound estimates of the insertion and deletion mutation rates are both ≈ 10-fold 

lower than the base-substitution mutation rate, many indels affect more than one base. 

Specifically, the 21 deletions observed in this study result in the deletion of a total of 414 

bases, while the 21 insertions result in a gain of 164 bases. Therefore, the number of 

bases that are impacted by indels in this study is more than twice the number impacted 

by bpsms, indicating that indels may still play a central role in the genome evolution of 

B. cenocepacia if they are not purged by natural selection.  

Although I observed the exact same number of deletions and insertions in this 

study, the per base-pair deletion rate (1.97 (0.86) • 10-10/bp/generation (SEM)) was 

substantially higher than the insertion rate (6.11 (1.90) • 10-11/bp/generation (SEM)), 

since the average size of deletions was greater than the average size of insertions. 

Thus, there is a net deletion rate of 1.34 • 10-10/bp/generation (Table 2). Although no 

indels >150 bps were observed in this study, examining the depth of coverage of the B. 

cenocepacia HI2424 plasmid relative to the rest of the genome revealed that the 

plasmid was lost at a rate of 1.53 × 10-5 per cell division, while gains in plasmid copy 

number were not observed (Table 2).  

Table 2. Parameters of insertion-deletion mutations (indels) in the Burkholderia 
cenocepacia mutation accumulation experiment.  
Parameter Deletions Insertions 
Events Observed 21 21 
Total Nucleotides Affected 414 164 
Total GC Bases Affected 311 110 
Total AT Bases Affected 103 54 
Proportion of GC Bases Affected 75.12 67.07 
Plasmid Copy Number Loss/Gain 4 0 
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The base composition of deletions was also biased, with GC bases being deleted 

significantly more than expected based on the genome content (χ2 = 12.92, df = 1, p = 

0.0003). In contrast, no detectable bias was observed towards insertions of GC over AT 

bases (χ2 = 0.55 • 10-2, df = 1, p = 0.9408) (Table 2). Thus, indels in B. cenocepacia are 

expected to reduce genome wide %GC-content, further supporting the need for other 

population-genetic processes to account for the composition of high-GC genomes 

(Lynch et al. 2008; Duret and Galtier 2009; Raghavan et al. 2012; Zhu et al. 2014; 

Lassalle et al. 2015). Overall, the observed mutation spectra in this study suggest that 

the natural indel spectrum of B. cenocepacia causes both genome-size reduction and 

increased %AT-content. 

 

Non-uniform chromosomal distribution of mutations. Another major goal of this 

study was to investigate whether mutation rates and spectra vary among chromosomes 

and chromosomal regions. The three core chromosomes of B. cenocepacia vary in size 

and content but are sufficiently large to have each accumulated a considerable number 

of mutations in this study (Morrow and Cooper 2012). Chromosome 1 (chr1) is the 

largest chromosome (both in size and in gene count), with more essential and highly 

expressed genes than either chromosome 2 (chr2) or 3 (chr3) (Figure A.3). Expression 

and number of essential genes are second highest on chr2 and lowest on chr3 (Cooper 

et al. 2010; Morrow and Cooper 2012). In contrast, average non-synonymous and 

synonymous variation among orthologs shared by multiple strains of B. cenocepacia, as 

well as fixed variation among Burkholderia species (dN and dS), are highest on chr3 

and lowest on chr1 (Figure A.3) (Cooper et al. 2010; Morrow and Cooper 2012). 
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 The overall bpsm rates of the three core chromosomes differ significantly based 

on a chi-square proportions test, where the null expectation was that the number of 

substitutions would be proportional to the number of sites covered on each 

chromosome (χ2 = 6.77, df = 2, p = 0.0340) (Figure 2A; Figure 3A). Specifically, bpsm 

rates are highest on chr1, and lowest on chr2, which is the opposite of observed 

evolutionary rates on these chromosomes (Figure A.3) (Cooper et al. 2010). In addition, 

a second chi-squared test was performed to test whether the observed bpsm rates 

differed from the conditional bpsm rates expected on each chromosome given their 

respective nucleotide contents, which are similar (%GC: Chr1-66.8%; Chr2-66.9%; 

Chr3-67.3%). Here, the null expectation for the total number of bpsms on each 

chromosome was calculated as the product of the number of GC bases covered, the 

total number of generations across lines, and the overall GC bpsm rate across the 

genome, added to the product of the same calculation for AT bpsms. The differences in 

the bpsm rates of the three core chromosomes remained significant when this test was 

performed (χ2 = 6.88, df = 2, p = 0.0320), indicating that the intra-chromosomal 

heterogeneity in bpsm rates cannot be explained by variation in nucleotide content.  
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Figure 2. Base-substitution (bpsm) and insertion-deletion (indel) mutation rates 
for the three chromosomes of Burkholderia cenocepacia. (A, B) Overall bpsm and 
indel rates. C) Conditional bpsm rates for each chromosome of B. cenocepacia 
estimated by dividing the number of observed mutations on each chromosome by the 
product of the analyzed sites capable of producing a given mutation on each 
chromosome and the number of generations of mutation accumulation. Error bars 
indicate one standard error of the mean. 
 

The conditional bpsm spectra were also significantly different in all pairwise chi-
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chr1/chr3: χ2=17.02, df=5, p=0.0043; chr2/chr3: χ2=13.44, df=5, p=0.0201) (Figure 2C). 

These comparisons further illustrate that the significant variation in conditional bpsm 

rates is mostly driven by a few bpsm types that occur at higher rates on particular 

chromosomes. Specifically, although their individual differences were not quite 

statistically significant, G:C>T:A transversions seem to occur at the highest rate on chr3 

(χ2 = 5.94, df = 2, p = 0.0511) and A:T>C:G transversions occur at the highest rate on 

chr1 (χ2 = 5.67, df = 2, p = 0.0590) (Figure 2C).  
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Figure 3. Intra-chromosomal variation in the base-substitution (bpsm) and 
insertion-deletion (indel) mutation rates from the Burkholderia cenocepacia 
mutation accumulation (MA) experiment. Overall bpsm (A) and indel (B) mutation 
rates are separated into 100 Kb (outer), 25 Kb (middle), and 5 Kb (inner) intervals 
extending clockwise from the origin of replication (oriC) to reveal broad and local 
properties of variation in mutation rates. Mutation rates were analyzed independently for 
each interval length, so color shades in shorter intervals do not directly compare to the 
same color shades in longer intervals. The 0.164 Mb plasmid is not to scale. 
 

Studies in Vibrio cholerae have suggested that in bacteria with multiple 

chromosomes, smaller secondary chromosomes delay their replication until there 

remains approximately the same number of bases to be replicated on larger 
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gradient is partially responsible for the patterns I observe in base-substitution mutation 

spectra between chromosomes, I binned chr1 and chr2 into late and early replicating 

regions, where the early replicating regions represent bases presumed to replicate prior 

to chr3 initiation, and the late replicated regions represent bases presumed to replicate 

following chr3 initiation (the last 1.06 Mb replicated).  

In support of this model, G:C>T:A transversions also occur at a slightly higher 

rate in late replicated regions of chr1 and chr2 than they do in early replicated regions of 

chr1 and chr2 (Figure 4A). However, when mutations are binned by overall replication 

timing (combining late replicating regions on chr1 and chr2 with chr3 and comparing 

them to early replicating regions on chr1 and chr2), the rate of G:C>T:A transversions is 

not significantly higher than it is in early replication-timing regions, likely due to small 

sample sizes (χ2 = 2.52, df = 1, p = 0.1127). A:T>C:G transversions occur at slightly 

higher rates in early replicated regions of chr1 and chr2 than they do in late replicated 

regions (Figure 4B), but again the difference is not statistically significant (χ2 = 1.26, df = 

1, p = 0.2621). Together, these findings suggest that late replicating DNA is 

predisposed to incur more G:C>T:A transversions and early replicating DNA is 

predisposed to incur more A:T>C:G transversions, but a larger collection of mutations 

will be necessary to fully address this question.  
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Figure 4. Conditional G:C>T:A and A:T>C:G transversion rates in the genome of 
Burkholderia cenocepacia, separated by replication timing regions. Conditional 
G:C>T:A (A) and A:T>C:G (B) transversion rates, normalized for base-composition as 
described in Figures 1 and 2, were calculated for regions on the primary and secondary 
chromosomes that are replicated prior to initiation of replication of the third chromosome 
(Early Chr1/2), regions on the primary and secondary chromosomes that are replicated 
simultaneously with the third chromosome (Late Chr1/2), and the third chromosome 
itself (Chr3), based on models from (Rasmussen et al. 2007). Error bars indicate one 
standard error of the mean. 
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df = 2, p = 0.0160), (Figure 2B; Figure 3B). No indels were observed on the 0.16 Mb 

plasmid, but as noted above, four plasmid loss events were observed. The latter events 

involve the loss of 157 genes, and are expected to have phenotypic consequences. The 

relative rarity of indels observed in this study limits my ability to analyze their intra-

chromosomal biases in great detail, but the repeated occurrence of indels in short 5kb 

regions, and particularly within microsatellites (57.6% of all indels) suggests that 

0 

1 

2 

3 

4 

5 

6 

7 

8 

0 

1 

2 

3 

4 

5 

6 

7 A B

Early
Chr1/2

Late
Chr1/2

Chr3 Early
Chr1/2

Late
Chr1/2

Chr3

C
on

di
tio

na
l G

:C
>T

:A
 T

ra
ns

ve
rs

io
n 

R
at

e 
(x

 1
0-1

1 )

C
on

di
tio

na
l A

:T
>C

:G
 T

ra
ns

ve
rs

io
n 

R
at

e 
(x

 1
0-1

1 )



	 25 

replication slippage is a common cause of indels in the B. cenocepacia genome (Figure 

3B). 

 

DISCUSSION 

 Despite their relevance to both evolutionary theory and human health, the extent 

to which generalizations about mutation rates and spectra are conserved across 

organisms remains unclear. Because of their diverse genome content, bacterial 

genomes are particularly amenable to studying these issues (Lynch 2007). In 

measuring the rate and molecular spectrum of mutations in the high-GC, multi-replicon 

genome of B. cenocepacia, I have corroborated some prior findings of MA studies in 

model organisms, but also demonstrated idiosyncrasies in the B. cenocepacia spectrum 

that may extend to other organisms with high %GC-content and/or multiple 

chromosomes. Specifically, B. cenocepacia has a relatively low mutation rate and is 

consistent with a universal deletion bias in prokaryotes (Mira et al. 2001). However, the 

lack of AT-mutation bias is inconsistent with all previous findings in mismatch-repair 

proficient organisms (Lynch et al. 2008; Denver et al. 2009; Hershberg and Petrov 

2010; Hildebrand et al. 2010; Ossowski et al. 2010; Lee et al. 2012; Sung et al. 2012b, 

2015), and both mutation rates and spectra differed significantly among chromosomes, 

in a manner suggesting greater oxidative damage or more inefficient repair in late 

replicated regions. 

 As a member of a species complex with broad ecological and clinical 

significance, B. cenocepacia is a taxon with rich genomic resources that enable 

comparisons between the de novo mutations reported here and extant sequence 
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diversity. With 7050 genes, B. cenocepacia HI2424 has a large amount of coding DNA 

(GE) (6.8 • 106 base pairs), and a high average nucleotide heterozygosity at silent-sites 

(πs) (6.57 • 10-2) relative to other strains (Watterson 1975; Mahenthiralingam et al. 

2005). By combining this πs measurement and the bpsm rate from this study, I estimate 

that the NE of B. cenocepacia is approximately 2.47 • 108, which is in the upper echelon 

among species whose NE has been derived in this manner (Figure A.4). Under the drift-

barrier hypothesis, high target size for functional DNA and high NE increase the ability of 

natural selection to reduce mutation rates (Lynch 2010b, 2011; Sung et al. 2012a). 

Thus, given the large proteome and NE of B. cenocepacia, it is unsurprising that B. 

cenocepacia has relatively low base-substitution and indel mutation rates when 

compared to other organisms (Sung et al. 2012a). However, the low base-substitution 

and indel mutation rates observed in this study need not imply limited genetic diversity 

among species of the Burkholderia cepacia complex. Rather, because of their high NE 

and evidently frequent lateral genetic transfer, species of the Burkholderia cepacia 

complex are remarkably diverse (Baldwin et al. 2005; Pearson et al. 2009), 

demonstrating that low mutation rates need not imply low levels of genetic diversity.  

 Burkholderia genomes also tend to be large in comparison to other 

Proteobacteria, but this is evidently not the product of more frequent insertions. Rather, 

insertions and deletions occurred at identical rates but deletions were larger than 

insertions, and plasmids were lost relatively frequently, which together add to the 

general model that bacterial genomes are subject to a deletion bias (Mira et al. 2001; 

Kuo and Ochman 2009). Ultimately, this dynamic has the potential to drive the 

irreversible loss of previously essential genes during prolonged colonization of a host 
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and may enable host dependence to form more rapidly in prokaryotic organisms than in 

eukaryotes, which do not have a strong deletion bias (Denver et al. 2004; Kuo and 

Ochman 2009; Dyall et al. 2014). Consistent with this dynamic, host-restricted 

Burkholderia genomes evolving at lower NE are indeed substantially smaller than free-

living genomes (Mahenthiralingam et al. 2005). 

A lack of mutational bias towards AT bases was also recently observed in the 

%GC-rich bacteria Deinococcus radiodurans (Long et al. 2015), but had not been 

previously observed in non-mutator MA lineages of any kind (Lind and Andersson 2008; 

Lynch et al. 2008; Denver et al. 2009; Keightley et al. 2009; Ossowski et al. 2010; Lee 

et al. 2012; Sung et al. 2012a; b). Yet even though bpsms are not AT-biased in B. 

cenocepacia, selection and/or biased gene conversion must still be invoked to explain 

their high %GC-content (Hershberg and Petrov 2010; Hildebrand et al. 2010). Of these 

two explanations, selection favoring %GC-content may be the more influential force, 

given that there is no evidence for increased %GC-content in recombinant genes of 

Burkholderia, despite its prevalence in other bacteria (Lassalle et al. 2015). It is also 

notable that similar substitution biases can be observed at polymorphic sites of several 

MLST loci shared across B. cenocepacia isolates (Jolley and Maiden 2010). 

Specifically, A:T>C:G transversions are more common than G:C>T:A transversions, and 

the rates of G:C>A:T and A:T>G:C transitions are nearly indistinguishable at six of the 

seven loci (Figure A.5). However, the evolutionary mechanism of these substitution 

biases are uncertain given the potential for ongoing recombination and/or natural 

selection to influence polymorphisms at these sites in conserved housekeeping genes 

(Lynch et al. 2008; Duret and Galtier 2009; Raghavan et al. 2012; Zhu et al. 2014). 
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In principle, a decreased rate of G:C>A:T transition mutation relative to other 

bacteria could be achieved by an increased abundance of uracil-DNA-glycosylases 

(UDGs), which remove uracils from DNA following cytosine deamination (Pearl 2000), 

or by a lack of cytosine methyltransferases, which methylate the C-5 carbon of 

cytosines and expose them to increased rates of cytosine deamination (Kahramanoglou 

et al. 2012). However, B. cenocepacia HI2424 does not appear to have an exceptionally 

high number of UDGs, and it does contain a cytosine methyltransferase homolog, 

suggesting that active methylation of cytosines does occur in B. cenocepacia. Extending 

these methods to more genomes with high %GC-content will be required to determine 

whether a lack of AT-mutation bias is a common feature of GC-rich genomes.  

 Perhaps the most important finding from this study is that both mutation rates 

and spectra vary significantly among the three autonomously replicating chromosomes 

that make up the B. cenocepacia genome (Figure 2). My data demonstrate that base-

substitution mutation rates vary significantly among chromosomes, but not in the 

direction predicted by comparative studies (Mira and Ochman 2002; Cooper et al. 2010; 

Lang and Murray 2011; Agier and Fischer 2012; Morrow and Cooper 2012). 

Specifically, I find that base-substitution mutation rates are highest on the primary 

chromosome (Figure 2A,B), where evolutionary rates are lowest. Thus, purifying 

selection must be substantially stronger on the primary chromosome to offset the effect 

of an elevated mutation rate. 

 The spectra of base-substitutions also differed significantly among 

chromosomes. Specifically, A:T>C:G transversions are more than twice as likely to 

occur on chr1 as elsewhere, and G:C>T:A transversions are more than twice as likely to 
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occur on the chr3 (Figure 2C). One possible explanation for the increased rate of 

G:C>T:A transversions on chr3 is that they can arise through oxidative damage 

(Michaels et al. 1992; Lee et al. 2012) and may be elevated late in the cell cycle when 

intracellular levels of reactive oxygen species are high (Mira and Ochman 2002; 

Stamatoyannopoulos et al. 2009; Chen et al. 2010). Thus, because tertiary 

chromosomes are expected to be replicated late in the cell cycle (Rasmussen et al. 

2007), I would expect these elevated rates of G:C>T:A transversions on chr3. Of 

course, if this explanation were accurate, I would also observe and increased rate of 

G:C>T:A transversions in late-replicated regions of chr1 and chr2. Although the low 

number of total G:C>T:A transversions observed in this study prevents me from 

statistically distinguishing G:C>T:A transversion rates between late and early replicated 

regions of chr1 and chr2, the rate of G:C>T:A transversions is higher in late replicated 

regions of chr1 and chr2 (Figure 4A), a remarkable finding considering that early 

replicated genes on chr1 and chr2 are expressed more, which has been shown to 

induce G:C>T:A transversions independent of replication (Klapacz and Bhagwat 2002; 

Kim and Jinks-Robertson 2012; Alexander et al. 2013). Thus, I suggest that late 

replicating DNA is inherently predisposed to increased rates of G:C>T:A transversions, 

possibly due to increased exposure to oxidative damage (Michaels et al. 1992), 

variation in nucleotide-pool composition (Kunkel 1992; Zhang and Mathews 1995), or 

variation in DNA-repair mechanisms (Hawk et al. 2005; Courcelle 2009). 

A mechanism of an increased A:T>C:G transversion mutation rate on the primary 

chromosome is less clear, but a decreased rate of A:T>C:G transversions in a late 

replicating reporter relative to that on an intermediate replicating reporter has been 
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demonstrated previously in Salmonella enterica (Hudson et al. 2002). Thus, it is 

possible that the rate of this form of transversion is increased in early replicating DNA, 

or that it is primarily caused by other forms of mutagenesis (Klapacz and Bhagwat 

2002). A:T>C:G transversion rates in early replicating regions of chr1 and chr2 support 

the former hypothesis, as early replicated regions of chr1 and chr2 experience the 

highest rates of A:T>C:G transversions (Figure 4B). The alternative mechanism of 

transcriptional mutagenesis seems less likely as A:T>C:G transversions occurred 

frequently in non-coding DNA relative to other substitution types (Figure A.6). 

 In summary, this study has demonstrated that the GC-rich genome of B. 

cenocepacia has a relatively low mutation rate, with a mutation spectrum that lacks an 

AT-bias and is biased toward deletion. Moreover, both the rate and types of base-

substitution mutations that occur most frequently vary by chromosome, likely related to 

replication dynamics, the cell cycle, and transcription (Klapacz and Bhagwat 2002; 

Cooper et al. 2010; Merrikh et al. 2012). Although this study has broadened our 

understanding of mutation rates and spectra beyond that of model organisms, whether 

the observed mutational biases are common to all GC-rich genomes with multiple 

replicons, or are merely species-specific idiosyncrasies will require a more thorough 

investigation across a more diverse collection of GC-rich and multi-replicon bacterial 

genomes. Ultimately, by better understanding the core mutational processes that 

generate the variation on which evolution acts, we can aspire to develop true species-

specific null hypotheses for molecular evolution, and by extension, enable more 

accurate analyses of the role of all evolutionary forces in driving genome evolution. 
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CHAPTER II 
 
 
 
 

GENOME-WIDE BIASES IN THE RATE AND MOLECULAR SPECTRUM OF 
SPONTANEOUS MUTATIONS IN VIBRIO CHOLERAE AND VIBRIO FISCHERI 
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INTRODUCTION 

 Spontaneous mutations generate the raw genetic variation on which evolution 

proceeds, but our knowledge of the biases associated with spontaneous mutations has 

been restricted because of technological challenges associated with accumulating and 

identifying mutations on a genome-wide scale. Mutation accumulation (MA) experiments 

paired with whole-genome sequencing (WGS) in microbes now offer an unprecedented 

opportunity to study genome-wide mutation rates and spectra in a diverse array of 

culturable microbes. Using the MA-WGS method, a single clonal ancestor is used to 

initiate many replicate lineages that are passaged through hundreds of single cell 

bottlenecks before each is subjected to WGS. The bottlenecking regime minimizes the 

efficiency of natural selection to operate on mutations and when the genome sequences 

are compared, we obtain a nearly unbiased picture of the natural mutation rates and 

spectra of the ancestor. A growing body of MA-WGS studies in microbes have began to 

reveal some general properties of spontaneous mutation, but unique properties of the 

spontaneous mutation rates and spectra in some taxa emphasize the importance of 

conducting detailed MA-WGS studies in a more comprehensive collection of species 

(Lynch et al. 2008; Denver et al. 2009; Ossowski et al. 2010; Sung et al. 2012a; b, 

2015; Lee et al. 2012; Schrider et al. 2013; Heilbron et al. 2014; Zhu et al. 2014; Long et 

al. 2014, 2015; Dillon et al. 2015; Dettman et al. 2016).  

 Base-substitution mutations (bpsms) can be categorized into six different types, 

which include A:T>G:C and G:C>A:T transitions, and A:T>T:A, G:C>T:A, A:T>C:G, and 

G:C>C:G transversions. Differences in the relative rates of these bpsms may exert 

pressure on genome-wide %GC content and cause different sites to experience 
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different bpsm rates. Evidence from indirect methods and MA experiments have 

supported nearly universal transition and AT biases in bpsm spectra across cellular life 

(Lind and Andersson 2008; Lynch et al. 2008; Denver et al. 2009; Hershberg and Petrov 

2010; Hildebrand et al. 2010; Ossowski et al. 2010; Lee et al. 2012; Sung et al. 2012b; 

Dillon et al. 2015; Dettman et al. 2016), although there are exceptions in wild-type and 

mutator MA experiments (Dillon et al. 2015; Long et al. 2015; Dettman et al. 2016). 

Furthermore, bpsms have been shown to be context-dependent, where neighboring 

nucleotides affect site-specific bpsm rates (Long et al. 2014, 2015; Sung et al. 2015; 

Dettman et al. 2016). Insertion-deletion mutations (indels) can be categorized into 

insertions or deletions, but can also be grouped based on their size. The indel spectra 

of bacterial genomes are thought to be universally biased towards deletion (Mira et al. 

2001; Kuo and Ochman 2009) but results have been mixed in wild-type and mutator MA 

experiments (Lee et al. 2012; Sung et al. 2012a; Long et al. 2014; Dillon et al. 2015; 

Dettman et al. 2016), possibly because it is the size rather than number of deletions that 

is greater (Dillon et al. 2015). Evidence is also mounting that the majority of indels 

involve the loss or gain of a single nucleotide and occur predominantly in simple-

sequence repeats (SSRs), where the number of repeats scales positively with the indel 

rate (Lee et al. 2012; Long et al. 2014; Dettman et al. 2016). These SSRs have gained 

attention not only because they vary sufficiently among strains to enable rapid 

genotyping (van Belkum et al. 1998; Danin-Poleg et al. 2007; Ghosh et al. 2008) but 

also because in some species they associate with variable heritable expression of 

genes related to host colonization and disease, begging the question of whether these 
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mutation-prone sequences have indirectly evolved to enable this plasticity (Moxon et al. 

1994, 2006; Field et al. 1999).  

 The mismatch repair system (MMR) helps detect and repair DNA replication 

errors by excising and resynthesizing the DNA, reducing both bpsm and indel rates 

(Kunkel and Erie 2005; Reyes et al. 2015). Consequently, strains defective in MMR will 

experience substantially higher bpsm and indel rates, allowing for an expanded 

collection of replication errors in a shorter time span. While these bpsm and indel rates 

and spectra are unlikely to be representative of the wild-type bpsm and indel rates and 

spectra, they can reveal biases that are generated by MMR and elucidate subtle 

polymerase error biases with the enhanced statistical power (Lee et al. 2012; Long et al. 

2014). Specifically, MA studies with MMR-deficient strains have shown that the majority 

of replication errors corrected by MMR are transitions and single-nucleotide indels 

because of the predominance of these types of mutations in MMR-deficient MA 

experiments (Lee et al. 2012; Long et al. 2014, 2015; Foster et al. 2015; Dettman et al. 

2016). Furthermore, bpsms have been shown to vary in a mirrored wave-like pattern on 

the two opposing replichores of bacteria with a single circular chromosome (Foster et al. 

2013; Long et al. 2014; Dettman et al. 2016), an analysis that is only enabled when a 

large number of bpsms that are distributed across the genome are available. Context-

dependent analyses, which have shown that bpsm rates are impacted by upstream and 

downstream base-pairs (Long et al. 2014; Sung et al. 2015; Dettman et al. 2016), have 

also benefited from MMR-deficient MA experiments because robust quantification of 

bpsm rates in 64 triplets requires a substantial number of bpsms.   
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 Vibrio fischeri and Vibrio cholerae are globally significant bacterial species 

because of their roles in marine symbiosis and pathogenesis, respectively (Goldberg 

and Murphy 1983; Thompson et al. 2004; Ruby et al. 2005). The core genome of V. 

fischeri has a low %GC content (38.35%) and harbors two chromosomes. Chromosome 

1 (chr1) is ≈ 2.90 Mb, containing 2584 protein coding genes with a %GC content of  

38.96%. Chromosome 2 (chr2) is smaller (≈ 1.33 Mb), has fewer protein coding genes 

(1174) and a slightly lower %GC content (37.02%). Furthermore, the V. fischeri ES114 

strain used in this study has a ≈ 45.85 Kb plasmid, which contains 57 genes and has a 

%GC content of 38.44% (Ruby et al. 2005). The core genome of V. cholerae is also 

divided into two chromosomes and has a relatively neutral %GC content (47.58%). Chr1 

is ≈ 2.99 Mb, containing 2605 protein coding genes and a %GC content of 47.85%. As 

was the case in V. fischeri, chr2 is smaller (≈ 1.10 Mb), has fewer protein coding genes 

(1001), and a slightly lower %GC content (46.83%). Importantly, replication of chr2 in 

bacteria with multiple circular chromosomes is initiated by different molecules and is 

delayed until late in the cell cycle so that chr1 and chr2 terminate replication 

synchronously, despite replicating at the same rate (Egan and Waldor 2003; Duigou et 

al. 2006; Rasmussen et al. 2007). Despite their broad relevance and peculiar genome 

architectures, no detailed MA-WGS studies have been performed on any Vibrio species.   

 Here, I performed a detailed MA-WGS experiment using 48 lineages derived 

from V. fischeri ES114 and 48 lineages derived from V. cholerae 2740-80. Each V. 

fischeri wild-type lineage was evolved in the near absence of natural selection for 5187 

generations, while each V. cholerae wild-type lineage was evolved for 6453 

generations. I then engineered MMR-deficient strains of V. cholerae and V. fischeri, 
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creating V. fischeri ES114 ΔmutS and V. cholerae 27040-80 ΔmutS, and performed a 

second pair of MA-WGS experiments using 19 lineages derived from V. fischeri ES114 

ΔmutS and 22 lineages derived from V. cholerae 27040-80 ΔmutS. Because of their 

elevated mutation rates, these MA experiments were only carried out for 810 and 1254 

generations per lineage, for V. fischeri ES114 ΔmutS and V. cholerae 27040-80 ΔmutS 

respectively. I identified a total of 439 wild-type mutations and 5990 ΔmutS mutations 

distributed across both chromosomes of V. fischeri and V. cholerae, enabling a unique 

perspective into the bpsm and indel biases in wild-type and MMR-deficient strains of 

these two significant bacterial species. 

 

MATERIALS AND METHODS 

Bacterial strains and culture conditions. The two wild-type MA experiments were 

founded from a single clone derived from V. fischeri ES114 and V. cholerae 2740-80, 

respectively. All MA experiments with V. fischeri were carried out on tryptic soy agar 

plates supplemented with NaCl (TSAN) (30 g/liter tryptic soy broth powder, 20 g/liter 

NaCl, 15 g/liter agar) and were incubated at 28°. Frozen stocks of each MA lineage 

were prepared at the end of the experiment by growing a single colony overnight in 5ml 

of tryptic soy broth supplemented with NaCl (TSBN) (30 g/liter tryptic soy broth powder, 

20 g/liter NaCl) at 28° and freezing in 8% DMSO at -80°. For V. cholerae, all MA 

experiments were carried out on tryptic soy agar plates (TSA) (30 g/liter tryptic soy broth 

powder, 15 g/liter agar) and were incubated at 37°. Similarly, frozen stocks were 

prepared by growing a single colony from each lineage overnight in 5ml of tryptic soy 
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broth (TSB) (30 g/liter tryptic soy broth powder) at 37° and were stored in 8% DMSO at -

80°.  

 Mutator strains of V. fischeri ES114 and V. cholerae 2740-80 were generated by 

replacing the mutS gene in each genome with an erythromycin resistance cassette, as 

described previously (Datsenko and Wanner 2000; Heckman and Pease 2007; Val et al. 

2012). Briefly, I used splicing by overlap extension (PCR-SOE) to generate two 

erythromycin resistance cassettes, one of which was flanked by ≈ 750 bps of the 

upstream and downstream regions of the mutS gene in V. fischeri ES114, while the 

second was flanked by ≈ 750 bps of the upstream and downstream regions of the mutS 

gene in V. cholerae 2740-80 (Heckman and Pease 2007).  Both the V. fischeri ES114 

and V. cholerae 2740-80 ΔmutS fragments were then cloned into the R6K γ-ori-based 

suicide vector pSW7848, which contains a ccdB toxin gene that is arabinose-inducible 

and glucose-repressible (PBAD) (Val et al. 2012). Both of these pSW7848 plasmids, 

henceforth referred to as pSW7848-VfΔmutS and pSW7848-VcΔmutS, were 

transformed into Escherichia coli pi3813 chemically competent cells and stored at -80° 

(Datsenko and Wanner 2000).  

 Conjugal transfer of the pSW7848-VfΔmutS and pSW7848-VcΔmutS plasmids 

was performed using a tri-parental mating with the E. coli pi3813 cells as the donors 

(Val et al. 2012), E. coli DH5α-pEVS104 as the helper (Stabb and Ruby 2002), and V. 

fischeri ES114 and V. cholerae 2740-80 as the respective recipients. For V. fischeri 

ES114, the chromosomally inserted pSW7848-VfΔmutS plasmid resulting from a single 

crossover at the ΔmutS gene was selected on LBS plates (Graf et al. 1994) containing 
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1% glucose and 1 ug/ml chloramphenicol at 28°. Selection for loss of the plasmid 

backbone from a second recombination step was then performed on LBS plates 

containing 0.2% arabinose at 28°, which induces the PBAD promoter of the ccdB gene 

and ensures that all cells that have not lost the integrated plasmid will die (Val et al. 

2012). For V. cholerae, the chromosomally inserted pSW7848-VcΔmutS plasmid was 

selected on LB plates (Sambrook et al. 1989) containing 1% glucose and 5 ug/ml 

chloramphenicol at 30°. Selection for loss of the plasmid backbone was performed on 

LB plates with 0.2% arabinose at 30°. Replacement of the mutS gene in V. fischeri 

ES114 and V. cholerae 2740-80 were verified by conventional sequencing, and V. 

fischeri ES114 ΔmutS and V. cholerae 2740-80 ΔmutS were used to found the two 

mutator MA experiments, under identical conditions to those described above for the 

wild-type MA experiments.  

 

Ancestral reference genomes. Prior to this study, the genome of V. fischeri ES114 

was already in completed form and annotated, consisting of three contigs representing 

chr1, chr2, and the 45.85 Kb plasmid (Ruby et al. 2005). Further, the location of the oriC 

on both chromosomes was available in dOriC 5.0, a database for the predicted oriC 

regions in bacterial and archaeal genomes (Gao et al. 2013). Fortunately, the oriC 

region on both chromosomes had been placed at coordinate zero, allowing me to 

proceed with this V. fischeri ES114 reference genome for all subsequent V. fischeri 

analyses. In contrast, when I initiated these MA experiments, the V. cholerae 2740-80 

genome was still in draft form, consisting of 257 scaffolds with unknown chromosome 

association. Therefore, to reveal inter-chromosomal variation and assess the effects of 
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genome location on bpsm and indel rates, I used single molecule, real-time (SMRT) 

sequencing to generate a complete assembly separated into the two contigs of V. 

cholerae 2740-80.  

 The Pacific Biosciences RSII sequencer facilitates the completion of microbial 

genomes by producing reads of multiple kilobases that extend across repetitive regions 

and allow whole-genomes to be assembled at a relatively limited cost (Koren and 

Phillippy 2015). Genomic DNA (gDNA) was prepared using the Qiagen Genomic-Tip Kit 

(20/G) from overnight cultures of V. cholerae 2740-80 grown in LB at 37° using 

manufacturers instructions. Importantly, this kit uses gravity filtration to purify gDNA, 

which limits shearing and increases the average fragment size of the resulting gDNA 

sample. Long insert library preparation and SMRT sequencing was performed on this V. 

cholerae 2740-80 gDNA at the Icahn School of Medicine at Mount Sinai according to 

the manufacturer’s instructions, as described previously (Beaulaurier et al. 2015). 

Briefly, libraries were size selected using Sage Science Blue Pippin 0.75% agarose 

cassettes to enrich for long-reads, and were assessed for quantity and insert size using 

an Agilent DNA 12,000 gel chip. Primers, polymerases, and magnetic beads were 

loaded to generate a completed SMRTbell library, which was run in a single SMRT cell 

of a Pacific Biosciences RSII sequencer at a concentration of 75 pM for 180 minutes.  

 As expected, the long insert SMRT sequencing library generated mostly long 

reads, with an average sub-read length of 8,401 bps and an N50 of 11,480 bps. I used 

the hierarchical genome-assembly process workflow (HGAP3) to generate a completed 

assembly of V. cholerae 2740-80 and polished the assembly using the Quiver algorithm 

(Chin et al. 2013). The resultant assembly consisted of two contigs representing chr1 
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and chr2, with an average coverage of 128x. I annotated this assembly using prokka 

(v1.11), specifying Vibrio as the genus (Seemann 2014). I then identified the location of 

the oriC on both contigs using Ori-finder, which applies analogous methods to those 

used by dOriC 5.0 to identify oriC regions in bacterial genomes (Gao and Zhang 2008; 

Gao et al. 2013). Of course, these oriC regions were not located at coordinate zero of 

the V. cholerae 2740-80 reference genome, so I re-formatted the reference genome to 

place each oriC region at the beginning of the chr1 and chr2 contigs, then stitched the 

contigs back together and re-polished the genome using Quiver. Prokka was then run a 

second time to update the location of all genes, and this re-formatted V. cholerae 2740-

80 genome was used as the ancestral reference genome for all subsequent V. cholerae 

analyses.  

 

MA-WGS Process. For the two wild-type MA experiments, seventy-five independent 

lineages were founded by single cells derived from a single colony of V. fischeri ES114 

and V. cholerae 2740-80, respectively. Each of these lineages was then independently 

propagated every 24 hours onto fresh TSAN for V. fischeri and fresh TSA for V. 

cholerae, and this cycle was repeated for a total of 217 days. For the two mutator MA 

experiments, forty-eight independent lineages were founded and propagated as 

described above from a single colony each of V. fischeri ES114 ΔmutS and V. cholerae 

2740-80 ΔmutS, respectively. However, because of their higher mutation rates, these 

lineages were only propagated for a total of 43 days. At the conclusion of the four MA 

experiments, each lineage was grown overnight in the appropriate liquid broth at the 

appropriate temperature (see above), and stored at -80° in 8% DMSO. 
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 Daily generations were estimated monthly for the wild-type lineages and bi-

monthly for the mutator lineages by calculating the number of viable cells in a 

representative colony from 10 lineages per MA experiment following 24 hours of growth. 

During each measurement, the representative colonies were placed in 2 ml of 

phosphate buffer saline (80 g/liter NaCl, 2 g/liter KCl, 14.4 g/liter Na2HPO4 • 2H2O, 2.4 

g//liter KH2PO4), serially diluted, and spread plated on TSAN or TSA  for V. fischeri and 

V. cholerae, respectively. These plates were then incubated for 24 hours at 28° or 37°, 

and the daily generations per colony were calculated from the number of viable cells in 

each representative colony. The average daily generations were then calculated for 

each time-point using the average of the ten representative colonies, and the total 

generations elapsed between each measurement were calculated as the product of the 

average daily generations and the number of days before the next measurement. The 

total of number of generations elapsed during the duration of the MA experiment per 

lineage was then calculated as the sum of these totals over the course of each MA 

study (Figure B.1).  

 At the conclusion of each of the four MA experiments, gDNA was extracted using 

the Wizard Genomic DNA Purification Kit (Promega) from 1 ml of overnight culture 

(TSBN at 28° for V. fischeri; TSB at 37° for V. cholerae) inoculated from 50 

representative stored lineages for Vf-wt and Vc-wt experiments, and all 48 stored 

lineages for the Vf-mut and Vc-mut experiments. For the wild-type MA experiments, 

gDNA from the ancestral V. fischeri ES114 and V. cholerae 2740-80 strains was also 

extracted. All libraries were prepared using a modified Illumina Nextera protocol 

designed for inexpensive library preparation of microbial genomes (Baym et al. 2015). 
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Sequencing of the Vf-wt and Vc-wt lineages and their respective ancestors was 

performed using the 101-bp paired-end Illumina HiSeq platform at the Beijing Genome 

Institute (BGI), while sequencing of the Vf-mut and Vc-mut lineages was performed 

using the 151-bp paired-end Illumina HISeq platform at the University of New 

Hampshire Hubbard Center for Genomic Studies.  

The raw fastQ reads were analyzed using fastQC, and revealed that 48 Vf-wt 

lineages, 49 Vc-wt lineages, 19 Vf-mut lineages, and 22 Vc-mut lineages were 

sequenced at sufficient depth to accurately identify bpsm and indel mutations. The 

failure to successfully sequence a high proportion of Vf-mut and Vc-mut lineages was 

mostly generated by a poorly normalized library, leading to limited sequence data for 

several of the mutator lineages. For the successfully sequenced lineages, all reads 

were mapped to their respective reference genomes with both the Burrows-Wheeler 

Aligner (BWA) (Li and Durbin 2009) and Novoalign (www.novocraft.com). The average 

depth of coverage across the successfully sequenced lineages of each MA experiment 

was 100x for Vf-wt, 96x for Vc-wt, 124x for Vf-mut, and 92x for Vc-mut.  

 

Base-substitution mutation identification. For all four MA experiments, bpsms were 

identified as described in the methods of Chapter 1. Briefly, a three-step process was 

used to identify bpsms. First, I identified an ancestral consensus base at each site in the 

reference genome using pooled reads across all lines from each MA experiment. 

Second, I identified a lineage specific consensus base at each site in the reference 

genome for each individual lineage using only the reads from that MA line. Here, I 

required a minimum of two forward and two reverse reads, and 80% consensus among 
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those reads. Third, lineage specific consensus bases for each lineage were compared 

to the overall ancestral consensus of the MA experiment to identify putative bpsms. 

Putative bpsms were considered genuine if they were independently identified by both 

the BWA and Novoalign alignments, and they were only identified in a single lineage. 

Any sites at which I did not identify an ancestral and lineage specific consensus base 

were not analyzed for mutations. As was the case in Chapter 1, I generated a 

supplementary dataset for all genuine bpsms identified in this study (Table B.1), 

demonstrating that the vast majority of bpsms in all four MA experiments from this study 

were covered by more than 50 reads and were supported by more than 95% of the 

reads that covered the site. Further, none of the bpsms identified in this study were 

present in any of the MA ancestral strains, which were also sequenced and analyzed. 

Thus, I am confident that all bpsms identified in this study represent true spontaneous 

bpsms that arose during the MA experiments.   

 

Insertion-deletion mutation identification. All indels identified in this study were also 

identified as described in the methods of Chapter 1. Briefly, I started by extracting 

putative indels using lenient filters so that I would not rule out genuine indels in long 

SSRs. These putative indels were extracted from both the BWA and Novoalign 

alignments as long as they were covered by at least two forward and two reverse reads, 

and 30% of those reads identified the exact same indel (size and motif). All putative 

indels that were called by more than 80% of the reads that covered the site and were 

independently identified by BWA and Novoalign were considered genuine indels. For 

putative indels that were supported by 30-80% of the reads that covered the site in both 
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the BWA and Novoalign alignments, I parsed out only reads that had bases on both the 

upstream and downstream regions of the SSR (if the indel was in an SSR), and on both 

the upstream and downstream region of the indel (if the indel was not in an SSR). If the 

indel was called by more than 80% of these sub-reads in both the BWA and Novoalign 

alignments, it was also considered genuine. Lastly, as described in Chapter 1, I 

employed PINDEL to all MA lineages to identify large genuine indels that went 

undetected with the short-read aligners (Ye et al. 2009), requiring a total of 20 reads (6 

forward and 6 reverse) and 80% consensus (size and motif). A supplementary dataset 

for all genuine indels identified in the four MA experiments described in this study is 

provided in Table B.2, which highlights that nearly all indels were covered by more than 

50 reads, with at least 80% consensus. Further, as with the bpsms, none of the indels 

that were identified in this study were present in the ancestral strains, so I am confident 

that nearly all of these indels represent genuine indels that arose during the MA 

experiments. 

 

Mutation-rate analyses. Overall bpsm and indel rates were calculated for each lineage 

using the equation: 

!	 = #/%&, 

where ! represents the mutation rate, # represents the number of mutations observed, 

% represents the number of ancestral sites analyzed, and & represents the total number 

of generations elapsed per lineage. Conditional bpsm rates for each lineage were 

calculated using the same equation, but with # representing the number of bpsms of 

the focal bpsm type, and % representing the number analyzed ancestral sites that could 
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generate the focal bpsm type. All summative bpsm and indel rates presented for each 

MA experiment were calculated as the average mutation rate across all analyzed 

lineages, while summative standard errors were calculated as the standard deviation of 

the mutation rate across all lines (/), divided by the square root of the total number of 

lines in the corresponding MA experiment (0):  

'(*++,-. = 	// 0. 

 For my interval analysis of bpsm and indel rates within chromosomes, I divided 

each chromosome into 100 kb intervals, starting at the origin of replication and 

extending bi-directionally to the replication terminus. Bpsm rates in each interval were 

measured by dividing the total number of bpsms or indels from this study by the product 

of the total number of analyzed sites in each interval across all lines and the number of 

generations per line, using the same formula described above for genome wide 

mutation rates: 

!	 = #/%&. 

Because none of the chromosomes were exactly divisible by 100 kb, the terminal 

intervals on each replichore were always less than 100 kb, but their mutation rates were 

calibrated to the number of of bases analyzed in those intervals.  

 

Statistical analyses. All statistical analyses were performed in R Studio Version 

0.99.489 using the Stats analysis package (R Development Core Team 2013).  
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RESULTS 

 Four MA experiments were carried out in this study using daily single-cell 

bottlenecks that limit the efficiency of natural selection to purge deleterious and enrich 

beneficial mutations. For the two wild-type (wt) experiments, V. fischeri ES114 (Vf-wt) 

and V. cholerae 2740-80 (Vc-wt) colonies were used to found 75 MA lineages, each of 

which was propagated for 217 days. For the two mutator (mut) experiments, V. fischeri 

ES114 (Vf-mut) and V. cholerae 2740-80 (Vc-mut) strains lacking a mutS gene were 

used to found 48 MA lineages, each of which was propagated for 43 days. The 

parameters of each MA experiment and the mutations that were identified from all of the 

final isolates are summarized in Table 1. In all four experiments, generations of growth 

per day declined over the course of the MA experiment, particularly in the mutator 

lineages, as a result of the fitness cost of bearing the acquired mutations (Figure B.1). 

Table 1. Parameters and observed mutations in the four Vibrio fischeri and Vibrio 
cholerae mutation accumulation experiments.  
MA 
Lines 

Sequenced 
Lines 

Gen. 
per 
line 

Gen. 
total 

No. 
of 
bpsm 

No. of 
indels 

Bpsm rate 
per 
nucleotidea 

Bpsm 
rate per 
genomeb 

Indel rate 
per 
nucleotidea 

Indel 
rate per 
genomeb 

Vf_wt 48 5187 248976   219   60 2.07⋅10-10 8.85⋅10-4 5.68⋅10-11 2.43⋅10-4 
Vc_wt 49 6453 316197   138   22 1.07⋅10-10 4.38⋅10-4 1.71⋅10-11 6.98⋅10-5 
Vf_mut 19   810   15390 4313 382 6.57⋅10-8 2.81⋅10-1 5.82⋅10-9 2.49⋅10-2 
Vc_mut 22 1254   27588 1022 273 9.09⋅10-9 3.72⋅10-2 2.43⋅10-9 9.93⋅10-3 
aBpsm and indel mutation rates/nucleotide/generation are calculated as the number of observed 
mutations, divided by the product of sites analyzed and number of generations per lineage. The above 
estimates represent the average rate across all sequenced lineages.   
bBpsm and indel mutation rates/genome/generation are calculated by multiplying the mutation 
rate/nucleotide/generation in each lineage by the genome size. The above estimates represent the 
average rate across all sequenced lineages. 
 

The properties of my MA experiments allowed me to assume that few mutations 

were subject to the biases of natural selection. The threshold selective coefficient (s) 

below which genetic drift will overpower natural selection is determined by:  

NE • s = 1 (Lynch 2007), 
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where 05 is the effective population size, estimated here as the harmonic mean of the 

population size (N) (Hall et al. 2008). By calculating 05  for each MA experiment, I 

estimate that only mutations conferring an adaptive or deleterious effect (s) greater than 

0.083, 0.067, 0.106, and 0.069 for Vf-wt, Vc-wt, Vf-mut, and Vc-mut, respectively, were 

subject to the biases of natural selection, which is expected to be a very small fraction 

of mutations (Kimura 1983; Hall et al. 2008). Furthermore, if I exclude indels that were 

identified at the same site or SSR, only four genes were hit more than once and no 

genes were hit more than twice across all wild-type lineages, suggesting that positive 

selection acting on common traits was minimal in these experiments. 

 Other metrics that have been used to test that the efficiency of purifying selection 

is minimized in MA experiments include the ratio of coding to non-coding mutations and 

the ratio of synonymous to nonsynonymous bpsms. However, both of these tests are 

problematic as preferential mismatch repair in coding regions (Lee et al. 2012), context-

dependent mutation biases (Sung et al. 2015), and a non-uniform distribution of 

mutation rates and spectra across the genome (Foster et al. 2013; Dillon et al. 2015; 

Dettman et al. 2016) can generate artificial signatures of natural selection. These issues 

were evident in my MA experiments, where chi-square tests comparing my observed 

mutations with the expected ratios of coding to non-coding DNA and synonymous to 

nonsynonymous sites in each genome were at times inconsistent.  

For each MA experiment, the expected ratio of coding to non-coding mutations 

was determined directly from each ancestral reference genome, and the expected ratio 

of synonymous to nonsynonymous bpsms was calculated from each ancestral 

reference genome, after accounting for codon usage and %GC content at synonymous 
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and nonsynonymous sites. In the Vf-wt lines, I observed an excess of non-coding indels 

and bpsms (Bpsm: χ2 = 4.01, d.f. = 1, p = 0.0451, Indels: χ2 = 61.43, d.f. = 1, p < 

0.0001), while the ratio of nonsynonymous to synonymous bpsms did not differ 

significantly from the null expectation (χ2 = 0.91, d.f. = 1, p = 0.3410). In the Vc-wt lines, 

non-coding bpsms were again in excess (χ2 = 8.74, d.f. = 1, p = 0.0028), while the ratio 

of coding to non-coding indels (χ2 = 1.48, d.f. = 1, p = 0.2240) and nonsynonymous to 

synonymous bpsms (χ2 = 1.47, d.f. = 1, p = 0.2262) did not differ from the null 

expectation. The excess of non-coding indels and bpsms could imply that selection 

played a small role in eradicating coding mutations or that mismatch repair is more 

active in coding regions, while all other lines of evidence support that minimal selection 

was operating in my wild-type MA experiments.  

In the Vf-mut lines, I observed an excess of coding bpsms (χ2 = 39.08, d.f. = 1, p 

< 0.0001) and non-coding indels (χ2 = 206.82, d.f. = 1, p < 0.0001), but the ratio of 

nonsynonymous to synonymous bpsms did not differ from the null expectation (χ2 = 

2.53, d.f. = 1, p = 0.1113). In the Vc-mut lines, I observed an excess of non-coding 

indels (χ2 = 123.71, d.f. = 1, p < 0.0001) and synonymous bpsms (χ2 = 5.60, d.f. = 1, p = 

0.0182), while the ratio of coding to non-coding substitutions did not differ from the null 

expectation (χ2 = 2.354, d.f. = 1, p = 0.125). The excess of coding bpsms and non-

coding indels observed in the Vf-mut MA experiment suggest contradictory forms of 

selection, since an excess of coding bpsms is a signature of positive selection, and an 

excess of non-coding indels is a signature of purifying selection. Both the excess of 

non-coding indels and synonymous bpsms observed in the Vc-mut MA experiment 

suggest the operation of purifying selection. Altogether, these observations suggest that 
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selection may have played a small role in eradicating some mutations during the 

mutator MA experiments, however, we should not rule out the possibility that these 

signatures of selection were generated by non-adaptive mutational biases (Foster et al. 

2013; Dillon et al. 2015; Sung et al. 2015; Dettman et al. 2016). 

 

Wild-type base-substitution mutation rates and spectra. The wild-type bpsm rates 

observed in this study are among the lowest per generation rates that have been 

observed in any organism (Figure B.2). The bpsm rate for V. fischeri is 2.07 (0.207) • 

10-10 /bp/generation (SEM), which is approximately twice the rate of bpsm in V. 

cholerae, 1.07 (0.094) • 10-10 /bp/generation (SEM). Based on genome sizes of 

4,273,718 bps for V. fischeri ES114 and 4,088,961 bps for V. cholerae 2740-80, these 

per-base bpsm rates correspond to genome-wide bpsm rates of 0.0009 

/genome/generation and 0.0004 /genome/generation, respectively (Table 1). When 

bpsms are separated by chromosome, I find that chr2 has a significantly higher bpsm 

rate than chr1 in V. fischeri where the null expectation was that the number of bpsms 

would be proportional to the number of sites analyzed on each chromosome (χ2 = 4.80, 

d.f. = 1, p = 0.0282), but I find no such difference in V. cholerae (χ2 = 0.56, d.f. = 1, p = 

0.4562) (Figure 1A). The increased bpsm rate on chr2 of V. fischeri cannot be explained 

by the relative nucleotide contents (%GC: chr1, 39.0%; chr2, 37.0%). In fact, when I 

conduct a chi-square test that accounts for AT-biased mutation in V. fischeri, the 

difference between the expected and observed bpsms between the two chromosomes 

is increased (χ2 = 5.75, d.f. = 1, p = 0.0171). Here, I use the product of the number of 

GC bps analyzed, the genome wide GC mutation rates, and the number of generations 
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across all lines, added to the product of the same variables for AT bps to generate the 

null expectation for the ratio of bpsms between chromosomes. Correcting for AT-biased 

mutation in V. cholerae (%GC: chr1, 47.9%; chr2, 46.8%) does not result a significant 

difference between the bpsm rates of chr1 and chr2 (χ2 = 0.12, d.f. = 1, p = 0.7260). 

 Base-substitution mutation spectra in both V. fischeri and V. cholerae were AT-

biased, as the combined rates of G:C>A:T transitions and G:C>T:A transversions, 

corrected for the ratio of G:C to A:T sites analyzed, were significantly higher than the 

combined rates of A:T>G:C transitions and A:T>C:G transversions (Vf: χ2 = 108.09, d.f. 

= 1, p < 0.0001 ; Vc: χ2 = 28.74, d.f. = 1, p < 0.0001) (Figure 1C). Interestingly, the AT-

bias is stronger in V. fischeri, which has the lower genome wide %GC-content. 

However, consistent with previous prokaryotic MA studies (Lind and Andersson 2008; 

Lee et al. 2012; Sung et al. 2012a, 2015; Dillon et al. 2015; Dettman et al. 2016), AT-

mutation bias alone fails to explain realized genome-wide %GC-contents. For V. 

fischeri, the expected %GC-content under mutation-drift equilibrium is 0.20 ± 0.03 

(SEM), 0.18 lower than the genome-wide %GC-content (0.38). This AT-bias is 

generated by both G:C>A:T transitions and G:C>T:A transversions, but it is the relative 

G:C>T:A transversion rate that is especially high in comparison to previous MA studies. 

With a rate of 9.19 • 10-9 /bp/generation, G:C>T:A transversions occur at a higher rate 

than any other bpsm, generating a transition/transversion ratio (TS/TV) of 0.85. Similarly, 

the expected %GC content of V. cholerae under mutation-drift equilibrium is 0.28 ± 0.04 

(SEM), 0.20 lower than the genome-wide %GC content (0.48). However, in V. cholerae, 

the AT-bias is generated mostly by G:C>A:T transitions rather than G:C>T:A 

transversions, resulting in a TS/TV of 1.59.  
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 To test whether the bpsm spectra on chr1 were significantly different from those 

on chr2, I used the conditional bpsm rates on chr1 to generate probabilities for each 

bpsm and tested these against the observed bpsm spectra on chr2, after correcting for 

%GC-content (Figure 1C). Neither the bpsm spectra of V. fischeri or V. cholerae varied 

significantly between chromosomes (Vf: χ2 = 7.80, d.f. = 5, p = 0.1681; Vc: χ2 = 6.52, 

d.f. = 5, p = 0.2594). However, the G:C>T:A transversion rate was significantly higher 

on chr2 of V. fischeri (Welch’s two tailed t-test; t = 2.35, df = 71.95, p = 0.0221) and the 

A:T>G:C transition rate was significantly lower on chr2 of V. cholerae (Welch’s two 

tailed t-test; t = -2.16, df = 95.75, p = 0.0340) (Figure 1C). Interestingly, late replicating 

regions of chr1 in V. fischeri (terminal 1,330,333 bp, equal to the size of chr2) also had 

elevated G:C>T:A transversion rates and late replicating regions of chr1 in V. cholerae 

(terminal 1,101,931 bp, equal to the size of chr2) had reduced A:T>G:C transition rates, 

relative to early replicating regions, though neither of these intra-chromosomal 

differences were significant (Welch’s two tailed t-test; Vf G:C>T:A TV: t = 1.79, df = 

81.65, p = 0.0767; Vc A:T>G:C TS: t = -0.72, df = 95.49, p = 0.4730). However, the rates 

of bpsm for other forms of bpsm in late replicating regions of chr1 do not appear to 

conform to the rates of the same bpsm of chr2 (Table B.3), suggesting that not all 

bpsms are impacted by replication timing. 
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Figure 1. Wild-type base-substitution (bpsm) and insertion-deletion (indel) 
mutation rates and spectra for the two chromosomes of wild-type Vibrio fischeri 
and Vibrio cholerae. (A and B) Overall bpsm and indel mutation rates per base-pair 
per generation. (C) Conditional base-substitution and indel mutation rates per 
conditional base-pair per generation, estimated by dividing the number of observed 
mutations by the product of the analyzed sites capable of producing a given mutation 
and the number of generations of mutation accumulation. Error bars indicate one 
standard error of the mean. 
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Wild-type insertion-deletion mutation rates. Indels occurred at approximately one-

fifth the rate of bpsm and occurred predominantly in simple sequence repeats. 

Cumulative indel mutation rates for V. fischeri and V. cholerae were 5.68 (0.691) • 10-11 

/bp/generation and 1.71 (0.337) • 10-11 /bp/generation (SEM), respectively (Table 1). 

These rates correspond to genome-wide indel rates of 0.0002 /genome/generation for 

V. fischeri and 0.00007 /genome/generation for V. cholerae (Table 1). In both species, 

indel spectra were biased towards deletions, with deletions occurring at approximately 

twice the rate of insertions in V. fischeri (χ2 = 4.27, d.f. = 1, p = 0.0391), and three-times 

the rate of insertions in V. cholerae (χ2 = 6.55, d.f. = 1, p = 0.0112) (Figure 1). In V. 

fischeri, indels occurred more frequently than expected on chr1 based on the total sites 

analyzed on each chromosome (χ2 = 9.07, d.f. = 1, p = 0.0027). However, although 

indels were also slightly more common than expected on chr1 in V. cholerae, the 

difference in indel rates between chr1 and chr2 was not significant (χ2 = 0.12, d.f. = 1, p 

= 0.7260) (Figure 1B). 

 In contrast with previous reports, I find many multi-nucleotide indels in both the 

Vf-wt and Vc-wt mutation accumulation experiments. In Vf-wt, only 20.00% of indels 

involved the insertion or deletion of a single-nucleotide, while 36.36% of the Vc-wt 

indels involved a single-nucleotide. The analytic challenges associated with identifying 

indels greater than 10-bps in length and the biases generated by identifying a single 

particularly long indel make the average indel lengths in each dataset misleading. 

However, the distribution of the number of indels identified for each length below 10-bps 

demonstrates that short multi-nucleotide indels were relatively common, particularly in 

V. fischeri (Figure 2). 
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Figure 2. Relative frequency of indels of different lengths observed in the wild-
type (wt) and MMR repair deficient (mut) strains of Vibrio fischeri (A) and Vibrio 
cholerae (B). The overall indel rates of Vf-mut and Vc-mut are 102-fold and 142-fold 
higher than the wild-type rates, respectively, but it is the relative frequencies of different 
indel lengths that are represented here.  
 

Of the 60 indels that were observed in V. fischeri, 41 (68.33%) occurred in 

simple-sequence repeats (SSRs) with three or more repeats, which is significantly more 

than I expected based on the frequency of bases in SSRs of three or more in the V. 

fischeri ES114 genome (χ2 = 82.92, d.f. = 1, p < 0.0001). Interestingly, the indel rate in 

SSRs scaled positively with the repeat length, varying over orders of magnitude and 

differing significantly from the null expectation based on the frequency of each repeat 

type in the genome (χ2 = 2.12 • 105, d.f. = 8, p < 0.0001) (Figure 3). The number of 

repeats in a SSR also scaled positively with the indel rate, differing significantly from the 

null expectation that the SSR indel rate would be proportional to the number of bases 

analyzed within each repeat length category (Chi-square test, repeat numbers 3-10; χ2 

= 5.59 • 102, d.f. = 7, p < 0.0001). Furthermore, a few SSRs were especially mutagenic, 
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with the same SSR being mutated independently in multiple lineages (Table B.2). I 

cannot ascertain whether similar SSR biases exist in V. cholerae because only 22 

indels were observed and only 8 of those were in SSRs with three or more repeats 

(36.36%). However, as was the case in V. fischeri, the occurrence of indels in SSRs is 

significantly higher than expected based on the frequency of SSRs with three or more 

copies in V. cholerae 2740-80 (χ2 = 4.55, d.f. = 1, p = 0.0329). 

 

Figure 3. Wild-type insertion-deletion mutation (indel) rates per run per 
generation and frequencies in simple-sequence repeats containing three or more 
repeats in Vibrio fischeri. Indel rates per run per generation were calculated as the 
number of observed indels in that simple-sequence repeat type, divided by the product 
of the occurrence of that simple-sequence repeat type in the genome, the number of 
generations, and the number of MA lineages analyzed. Expected frequencies were 
calculated based on the relative occurrence of each simple-sequence repeat type in the 
Vibrio fischeri ES114 genome.  
 
 

Effects of losing DNA mismatch repair. The deletion of the mutS gene results in a 

faulty MMR system and is expected to have dramatic consequences on the rates and 
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0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9
10-12

10-06

10-07

10-08

10-09

10-10

10-11

   
Fr

eq
ue

nc
y 

(E
xp

ec
te

d 
vs

. O
bs

er
ve

d)

   
R

ep
ea

t I
nd

el
 M

ut
at

io
n 

R
at

e 
(  

 ) 

Number of Base-Pairs in Each Repeat Unit

Observed

Expected



	 56 

317-fold increase in the bpsm rate and a 102-fold increase in the indel rate (Table 1). 

Furthermore, the deletion of the mutS gene abolished the chromosomal biases in both 

bpsm and indel rates observed in the Vf-wt lineages (bpsm: χ2 = 0.11, d.f. = 1, p = 

0.7413; indels: χ2 = 2.08, d.f. = 1, p = 0.1503). In V. cholerae, the deletion of the mutS 

gene resulted in an 85-fold increase in the bpsm rate and a 142-fold increase in the 

indel rate (Table 1). Although Vc-mut lineages still show no indel bias between 

chromosomes, slightly more bpsm occurred on chr1 than expected in this MA 

experiment (bpsm: χ2 = 4.54, d.f. = 1, p = 0.0331; indels: χ2 = 0.04, d.f. = 1, p = 0.8402).  

 The conditional bpsm spectra of both V. fischeri and V. cholerae also changed 

dramatically as a result of the loss of a functional MMR system (Figure 4). Interestingly, 

despite having widely different bpsm spectra when the MMR system was intact, the 

bpsm spectra of the Vf-mut and Vc-mut lineages are remarkably similar. Both mutator 

bpsm spectra are dominated by A:T>G:C and G:C>T:A transitions, generating an 

expected %GC-content of 0.482 ± 0.016 (SEM) in Vf-mut and 0.475 ± 0.011 (SEM) in 

Vc-mut at mutation-drift equilibrium. This slight AT-bias was significant for Vf-mut, but 

not for Vc-mut (Vf-mut: χ2 = 6.08, d.f. = 1, p = 0.0136; Vc-mut: χ2 = 2.59, d.f. = 1, p = 

0.1071). In addition, while V. fischeri continues to have a slight deletion bias in the 

absence of MMR, insertions actually occur at a slightly higher rate than deletions in the 

Vc-mut lineages, although not significantly so (Vf-mut: χ2 = 6.54, d.f. = 1, p = 0.011; Vc-

mut: χ2 = 0.297, d.f. = 1, p = 0.5860). Lastly, the bpsm spectra do not vary significantly 

between chromosomes for either MMR deficient species (Vf-mut: χ2 = 8.93, d.f. = 1, p = 

0.1120; Vc-mut: χ2 = 5.24, d.f. = 1, p = 0.3872).   
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Figure 4. Mismatch repair deficient conditional base-substitution (bpsm) and 
insertion-deletion (indel) rates per conditional base-pair per generation for Vibrio 
fischeri ΔmutS and Vibrio cholerae ΔmutS mutation accumulation lines. 
Conditional bpsm and indel rates were estimated by dividing the number of observed 
mutations by the product of the analyzed sites capable of producing a given mutation 
and the number of generations of mutation accumulation. Error bars indicate one 
standard error of the mean. 
 
 In contrast to the wild-type MA lines, single-nucleotide indels represent the vast 

majority of the indels observed in both the Vf-mut (93.62%) and Vc-mut (85.66%) MA 

experiments (Figure 2). While the single-nucleotide indel rate increased 473-fold as a 

result of the loss of MMR in V. fischeri, the multi-nucleotide indel rate increased only 13-

fold. The impact of the loss of a functional MMR system was similar in V. cholerae, as 

the single-nucleotide indel rate increased 334-fold and the multi-nucleotide indel rate 

increased 64-fold. Most of the increases in the multi-nucleotide mutation rate are the 

result of di- and tri-nucleotide indels, which were rarely observed in the wild-type MA 

experiments (Figure 2). As expected, the number of single-nucleotide indels observed in 

both Vf-mut and Vc-mut is significantly higher than their occurrence in the wild-type 
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experiments, based on the null-expectation that the observed number of indels would 

be proportional to the product of the total number of sites analyzed across all lineages 

and the number of generations in the wild-type and mutator experiments (Vf-mut: χ2 = 

5.46 • 103, d.f. = 1, p < 0.0001; Vc-mut: χ2 = 2.57 • 103, d.f. = 1, p < 0.0001). However, 

all indels that were observed in the mutator MA experiments up to 10-bps in length were 

significantly over-represented in mutator MA experiments (Table B.4), so the loss of a 

functional MMR system also had consequences for indels involving more than a single 

bp. 

Most single-nucleotide indels in Vf-mut and Vc-mut lines occurred in 

homopolymeric runs. Therefore, in the mutator lines, I can focus on these runs and 

show that the ancestral repeat number is positively correlated with the single-nucleotide 

indel mutation rate in both Vf-mut and Vc-mut (Figure 5), differing significantly from the 

null expectation that the SSR indel rate would be proportional to the number of bases 

analyzed in each homopolymer length category in the V. fischeri ES114 and V. cholerae 

2740-80 genomes, respectively (Chi-square test, repeat numbers 3-11; Vf-mut: χ2 = 

3.19 • 104, d.f. = 8, p < 0.0001; Vc-mut: χ2 = 6.85 • 104, d.f. = 8, p < 0.0001). In 

conjunction with SSR biases of the Vf-wt indels, this suggests that both the repeat 

length and number of repeats are positively correlated with indel rates.  
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Figure 5. Mismatch repair deficient insertion-deletion mutation (indel) rates per 
run per generation and frequencies in homopolymer repeats containing three or 
more repeats for Vibrio fischeri ΔmutS (A) and Vibrio cholerae ΔmutS (B). Indel 
rates per run per generation were calculated as the number of observed indels in each 
homopolymer length category, divided by the product of the occurrence of 
homopolymers of that length in the genome, the number of generations, and the 
number of MA lineages analyzed. Expected frequencies were calculated based on the 
relative occurrence of each simple-sequence repeat (SSR) type in the V. fischeri ES114 
and V. cholerae 2740-80 genomes, corrected for the number of bases in differently 
sized SSRs. 
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Genomic distribution of spontaneous mutations. To this point I have only discussed 

inter-chromosomal differences in mutation rates between two autonomously replicating 

chromosomes. However, the distribution of bpsms and indels in V. fischeri and V. 

cholerae may also vary among regions within these circular chromosomes. Therefore, I 

also analyzed the genome-wide distribution of bpsms by dividing each chromosome into 

100 kb intervals extending bi-directionally from the origin of replication. Despite 

apparent intra-chromosome variation in the bpsm rate of both the Vf-wt and Vc-wt MA 

experiments (Figure 6A,B), the observed number of bpsms in 100kb intervals does not 

differ significantly from the null expectation that they would reflect the number of sites 

analyzed in each interval on chr1 or chr2 (Vf-wt Chr1: χ2 = 31.25, d.f. = 29, p = 0.3541; 

Vf-wt Chr2: χ2 = 17.19, d.f. = 15, p = 0.3076; Vc-wt Chr1: χ2 = 29.61, d.f. = 29, p = 

0.4341; Vc-wt Chr2: χ2 = 12.83, d.f. = 11, p = 0.3050). However, the observed 

distribution of bpsms does differ significantly from this null expectation on chr1 of the Vf-

mut and Vc-mut experiments (Vf-mut: χ2 = 132.97, d.f. = 29, p < 0.0001; Vc-mut: χ2 = 

102.42, d.f. = 29, p < 0.0001) (Figure 6A,B). In these mutator lineages, both Vf-mut and 

Vc-mut lines experience similar bpsm patterns on chr1 (Figure 6A,B), where bpsm rates 

appear to be mirrored on the right and left replichores. However, these mirror images 

are not exact in either Vf-mut or Vc-mut, as the observed number of bpsms in each 100 

kb interval of the left replichore of chr1 does vary significantly from the expected 

distribution of bpsm predicted by the concurrently replicated intervals on the right 

replichore of chr1 (Vf-mut: χ2 = 46.68, d.f. = 14, p < 0.0001; Vc-mut: χ2 = 53.52, d.f. = 

14, p < 0.0001). Unlike chr1, the observed distribution of bpsms on chr2 of the mutator 

lineages does not differ from the null expectation generated by the number of sites 
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analyzed per interval (Vf-mut: χ2 = 17.46, d.f. = 15, p = 0.2920; Vc-mut: χ2 = 10.98, d.f. 

= 11, p = 0.4451), suggesting that bpsm rates are more consistent across chr2 than 

they are on chr1 in the mutator lineages (Figure 6A, B).  

Indels occur predominantly in SSRs and are thus also expected to vary 

significantly between genome regions. I also analyzed the distribution of indel rates 

across the 100kb intervals (Figure 6 C,D) and found that the observed distribution 

differed significantly from the null expectation in all MA experiments except Vc-wt, likely 

because only 22 indels were observed in this experiment (Vf-wt: χ2 = 83.08, d.f. = 43, p 

< 0.0001; Vc-wt: χ2 = 42.22, d.f. = 41, p = 0.4180; Vf-mut: χ2 = 96.38, d.f. = 43, p < 

0.0001; Vc-mut: χ2 = 157.24, d.f. = 41, p < 0.0001). However, I see no conserved 

patters of indel rates on opposing replichores of either chromosome, with regions of 

high indel rates occurring at different genome locations in each MA experiment.  
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Figure 6. Base-substitution (bpsm) and insertion-deletion (indel) mutation rates 
per base-pair per generation in 100kb intervals extending bi-directionally from the 
origin of replication (OriC) for all Vibrio fischeri and Vibrio cholerae mutation 
accumulation (MA) experiments. Outer rings on each chromosome represent the 
mutator MA experiment and inner rings represent the corresponding wild-type MA 
experiment. (A) Bpsm rates of Vf-wt and Vf-mut; (B) Bpsm rates of Vc-wt and Vc-mut; 
(C) Indel rates of Vf-wt and Vf-mut; (D) Indel rates of Vc-wt and Vc-mut. 
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my MA-WGS study of V. fischeri and V. cholerae are: (a) Base-substitution and 

insertion-deletion mutation rates are low, consistent with other bacterial species; (b) 

Base-substitution mutation biases contribute to, but don’t fully explain genome-wide 

%GC content; (c) Both the length of repeat units and the number of repeated units in 

simple-sequence repeats correlate positively with insertion-deletion rates; (d) Loss of a 

proficient mismatch repair system generates convergent mutation biases dominated by 

transitions and short insertions; and (e) Base-substitution mutations in strains deficient 

in mismatch repair vary in a mirrored wave-like pattern on opposing replichores on 

chromosome 1, but variation is limited on chromosome 2.  

 Vibrio species are abundant in marine environments worldwide and have high 

intraspecies genetic and phenotypic diversity (Thompson et al. 2004; Sawabe et al. 

2009). Both mutation and horizontal-gene transfer (HGT) are expected to contribute to 

Vibrio biodiversity, but evidence exists that mutation is the primary force driving 

diversification within Vibrio clades (Thompson et al. 2004; Sawabe et al. 2009; Vos and 

Didelot 2009). Therefore, it has been tempting to invoke high mutation rates in Vibrio 

species to explain their high genetic diversity. However, I show here that both bpsm and 

indel rates in V. fischeri and V. cholerae are low, even for bacteria (Figure B.2). In fact, 

V. cholerae has the lowest recorded genome-wide rates of bpsms (0.0004 

/genome/generation) and indels (0.00007 /genome/generation) of any bacterial species 

(Sung et al. 2012a, 2016). I suggest that the high genetic diversity and low mutation 

rates in these Vibrio species can be reconciled by the drift-barrier hypothesis, which 

states generally that any trait, including replication fidelity, may be refined by natural 

selection only to the point at which further improvement becomes overwhelmed by the 
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power of genetic drift (Lynch 2010b, 2011; Sung et al. 2012a). Natural selection is most 

powerful in large populations of organisms with genomes composed of a high amount of 

coding sequence. Although Vibrio genomes are not exceptionally large, most sites are 

coding and potentially subject to selection. Furthermore, synonymous sites in both 

Vibrio genomes exhibit high diversity (Wollenberg and Ruby 2012; Sung et al. 2016), 

which is consistent with very large effective population size. Thus, both high amounts of 

coding sequence and high effective population size increase the ability of natural 

selection to reduce both bpsm and indel rates (Lynch 2010b, 2011; Sung et al. 2012a), 

yet yield enormous allelic diversity at any given time in both of these Vibrio species 

(Thompson et al. 2004; Vos and Didelot 2009).  

 Bpsm and indel rates and spectra varied among genomic regions of V. fischeri 

and V. cholerae, which can generate local sequence biases. In the Vf-wt lines, both 

G:C>A:T transitions and G:C>T:A transversions occurred at higher rates on chr2, 

although only the rate of G:C>T:A transversions was significantly higher (Figure 1C). It 

is also noteworthy that late replicating regions of chr1 also experience elevated 

G:C>T:A transversion rates. These elevated G:C>A:T and G:C>T:A rates are expected 

to enhance AT-biased mutation on chr2. Although I lack a sufficient number of 

mutations per lineage to confidently estimate %GC-content at mutation-drift equilibrium 

on individual chromosomes, I can use experiment-wide estimates of each conditional 

bpsm rate to estimate genome-wide, chr1, and chr2 %GC-content at mutation-drift 

equilibrium. Using experiment-wide bpsm rates, I estimate an overall %GC-content of 

0.18 for V. fischeri at mutation-drift equilibrium. Surprisingly, the %GC-content of chr2 is 

expected to be 0.16 at mutation-drift equilibrium, 0.04 lower than expectations for chr1 
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(0.20). The actual %GC content of chr2 of the V. fischeri ES114 genome is also lower 

than chr1 (chr1: 0.39; chr2: 0.37) suggesting that mutation biases have contributed to 

this pattern. However, AT-mutation bias alone fails to explain realized %GC-contents on 

chr1 and chr2 in V. fischeri. Even stronger biases differentiating the chromosomes are 

seen in the Vc-wt lines, driven by significantly higher A:T>G:C transition rates on chr1 

and by non-significant increases in G:C>A:T and G:C>T:A rates on chr2 (Figure 1C). 

These spectra predict %GC-content of 0.29 for chr1 and 0.20 for chr2 at mutation-drift 

equilibrium and likely contribute to the lower realized %GC content of chr2 in V. 

cholerae 2740-80 (chr1: 0.48; chr2: 0.47). Overall, these findings suggest that bpsm 

pressures contribute to genome-wide and intra-genome variation in %GC contents, but 

indel biases (Dillon et al. 2015), selection (Hershberg and Petrov 2010; Hildebrand et al. 

2010), and/or biased gene conversion (Hershberg and Petrov 2010; Lassalle et al. 

2015) must also contribute to produce the realized %GC content in V. fischeri and V. 

cholerae.  

 The most surprising indel biases found in V. fischeri was their size-distribution 

and their propensity to occur in SSRs. Given that the vast majority of indels observed in 

previous bacterial MA-WGS studies have been single-nucleotide indels (Lee et al. 2012; 

Long et al. 2014; Dettman et al. 2016), I was amazed by the high relative occurrence of 

indels between four and eight base-pairs in V. fischeri (Figure 2). One possible reason 

for this discrepancy might be an increased occurrence of SSRs with long repeated units 

in the V. fischeri ES114 genome (Ruby et al. 2005), which I find to be highly mutagenic 

(Figure 3). There are 100 SSRs of three or more units in the V. fischeri ES114 genome 

where the repeated unit is at least 4-bps in length, and I find that both the length of the 
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repeated unit and the number of repeats in a SSR scale positively with the indel rate. A 

second possibility is that larger indels have gone undetected by prior MA-WGS 

analyses focused on MMR-deficient strains, in which single-nucleotide indels are 

evidently more common (Table B.2). I emphasize that this experiment demonstrates 

that the loss of MMR shifts the spectrum of indel mutations from a bias towards SSR’s 

within longer repeats towards single nucleotides in homopolymeric runs, a shift with 

potentially broad phenotypic consequences.  Lastly, longer indels, especially those in 

SSRs, are subject to increased false-negative rates due to the nature of short-read 

sequencing used in MA-WGS experiments. The majority of multi-nucleotide indels were 

supported with very low consensus in the initial alignments because of reads that only 

partly covered the SSR. Only when I filtered out reads that were not anchored by bps on 

both sides of the SSR did I achieve high consensus for these indels (Methods; Table 

B.2). It will be interesting to apply these sensitive detection methods for long SSR-

associated indels to future experiments to see whether other species also experience 

elevated indel rates in SSRs with longer repeat units. I lack a sufficient number of SSR-

associated indels to test for this correlation in V. cholerae, but it is worth noting that 

there are only 40 SSRs in the V. cholerae 2740-80 genome of three or more units 

where the repeated unit is at least 4-bps in length, which is less than half the number of 

long repeat SSRs in V. fischeri ES114. 

 Taken together, these long indels in SSRs generate localized hyper-mutation that 

may serve as contingency loci, enabling plasticity in both function and expression of the 

affected genes, and more accurate genotyping of closely related strains (van Belkum et 

al. 1998; Moxon et al. 2006; Danin-Poleg et al. 2007; Ghosh et al. 2008). These loci 
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have received fairly little attention for genotyping V. fischeri strains, which have mostly 

been analyzed by multi-locus sequence typing of housekeeping genes (Mandel et al. 

2009; Wollenberg and Ruby 2012). However, with a growing body of V. fischeri 

sequences becoming available, more fine-scale evolutionary relationships could be 

established using the highly-mutable long repeat SSRs identified in this study. 

Specifically, a number of intergenic regions in V. fischeri are especially mutagenic, with 

the same SSR being mutated in multiple independent lineages (Table B.2). Genotypic 

analyses using long SSRs are more common in V. cholerae, where establishing the 

evolutionary relationships between strains enables enhanced assessment of the 

epidemic risk (Danin-Poleg et al. 2007; Ghosh et al. 2008). Interestingly, of the nine 

long repeat SSRs that have been used as genotypic markers in these studies, only one, 

located in a secreted microbial collagenase, was mutated in this study. However, given 

that I observe only twenty-two total indels in the Vc-wt MA lineages, it is impossible to 

quantify whether these nine long repeat SSRs experience particularly high indel rates. 

 The mismatch repair pathway is a primary DNA repair pathway in diverse 

organisms across the tree of life (Kunkel and Erie 2005), but strains lacking MMR are 

not uncommon in nature (Hazen et al. 2009), chronic infections (Hall and Henderson-

Begg 2006; Mena et al. 2008; Oliver 2010; Marvig et al. 2013), or long-term evolution 

experiments (Sniegowski et al. 1997). Loss of a functional MMR system can elevate 

mutation rates anywhere from 5 to 1000-fold, depending on both the defective 

component of the pathway and the genetic background (Lyer et al. 2006; Long et al. 

2015; Reyes et al. 2015). The primary proteins involved in the MMR pathway in bacteria 

include the MutS protein, which binds mismatches to initiate repair, the MutL protein, 
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which coordinates multiple steps of MMR synthesis, and the MutH protein, which nicks 

the unmethylated strand to remove the replication error (Kunkel and Erie 2005). The 

removal of the mutS gene in this study resulted in a 317-fold increase in the bpsm rate 

and a 102-fold increase in the indel rate in V. fischeri ES114. The removal of the mutS 

gene in V. cholerae had a less dramatic effect on the bpsm rate (85-fold increase), but a 

more dramatic effect on the indel rate (142-fold increase). Overall, this suggests that 

MMR is more central to the repair of bpsms in V. fischeri, while it is more important for 

the repair of indels in V. cholerae.  

Despite the relatively wide range in the consequences of losing a functional MMR 

system for bpsm and indel rates, the changes in mutation spectra that result from MMR-

deficiency are relatively conserved. Namely, nearly all bpsms observed in the Vf-mut 

and Vc-mut MA lineages are transitions, and nearly all indels involve only a single-

nucleotide. Furthermore, an even higher proportion of single-nucleotide indels in both 

MMR-deficient MA experiments occur in homopolymers, where their rates scaled 

positively with the length of the homopolymer (Figure 5). These observations are 

consistent with previous reports in other bacterial MA experiments using MMR-deficient 

strains (Lee et al. 2012; Long et al. 2014; Dettman et al. 2016), and exert substantially 

stronger mutation biases at specific sites than genotypes with functional MMR. 

Importantly, this suggests that strong site-specific biases in the mutation spectra 

generated by the loss of MMR, along with the overall increase in mutation rates, may 

help to explain their evolutionary success. Couce et al. have found that mutator alleles 

can modify the distribution of fitness effects of individual beneficial mutations by 

enriching a specific spectrum of spontaneous mutations, and impact the evolutionary 
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trajectories of different strains (Couce et al. 2013, 2015). The strong spectra biases 

generated by loss of a functional MMR system in V. fischeri, V. cholerae, and other 

species (Lee et al. 2012; Long et al. 2014; Dettman et al. 2016) would inevitably 

generate such biases, which may permit more rapid access to specific beneficial 

mutations and impact the evolutionary trajectories of MMR-deficient strains in clinical 

and environmental settings (Hall and Henderson-Begg 2006; Mena et al. 2008; Hazen 

et al. 2009; Oliver 2010; Marvig et al. 2013). Furthermore, MMR-deficiency will enrich 

for polymorphism at traditionally more stable sites, which will affect evolutionary 

analyses that combine highly mutable long SSR’s with more stable mononucleotide 

repeats (Danin-Poleg et al. 2007). 

The loss of MMR also helps reveal subtle mutation biases associated with the 

replicative polymerase that cannot be observed using the low number of mutations 

generated in wild-type MA-WGS experiments (Lee et al. 2012; Sung et al. 2015; 

Dettman et al. 2016). A mirrored wave-like pattern of bpsm rates on opposing 

replichores has now been observed in multiple MMR-deficient species studied by MA-

WGS, although the exact shape of the pattern varies between species (Foster et al. 

2013; Long et al. 2014; Dettman et al. 2016). I find the same mirrored wave-like pattern 

of bpsm rates on the opposing replichores of chr1 in MMR-deficient V. fischeri and V. 

cholerae (Figure 6A, B), which suggests that bpsm rates are impacted by genome 

location and that regions replicated at similar times on opposing replichores experience 

similar bpsm rates, at least in MMR-deficient strains. However, I do not observe any 

significant variation in the bpsm rates on chr2 (Figure 6A, B). I suggest that bpsm rates 

are less variable on chr2 because of their delayed replication. Specifically, chr2 
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replication is not initiated until a large portion of chr1 has already been replicated (Egan 

and Waldor 2003; Duigou et al. 2006; Rasmussen et al. 2007), which means that chr2 is 

not replicated during the primary peaks in the bpsm rate on the opposing replichores of 

chr1, and thus experience more consistent bpsm rates across the chromosome. 

Mutation accumulation paired with whole-genome sequencing enables an 

unprecedented view of genome-wide mutation rates and spectra, revealing the 

underlying biases of spontaneous mutation. These underlying biases can explain why 

some genome regions evolve more rapidly than others and why the coding content of 

different genome regions varies. Moreover, the loss of a functional mismatch repair 

pathway can generate an entirely new spectrum of spontaneous mutations with different 

biases, which can have important consequences for our understanding of the 

evolutionary relationships between strains. As we continue to generate data on the 

properties of spontaneous mutation in diverse microbes, we can begin to assess the 

generality of mutational biases and more accurately evaluate the role of mutation bias in 

the molecular evolution.  
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CHAPTER III 
 
 
 
 

REPLICATION TIMING GENERATES CONSERVED BASE-SUBSTITUTION 
MUTATION RATES IN CONCURRENTLY REPLICATED REGIONS OF MISMATCH 

REPAIR DEFICIENT BACTERIAL GENOMES 
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INTRODUCTION 

  Although genome architecture varies markedly across the tree of life, some level 

of spatiotemporal organization of the genome is essential for all organisms because 

DNA must be compact but also available for gene expression, DNA replication, and 

chromosome segregation (Lynch 2007; Herrick 2011; Dorman 2013). Patterns of 

spatiotemporal organization are thus likely to influence a number of cellular processes 

(Dame et al. 2011; Sobetzko et al. 2012; Dorman 2013), and may impact mutation rates 

(Baer et al. 2007; Warnecke et al. 2012). Along these lines, a series of comparative 

studies in multicellular eukaryotes (Stamatoyannopoulos et al. 2009; Chen et al. 2010; 

Mugal et al. 2010; Herrick 2011), unicellular eukaryotes (Herrick 2011; Agier and 

Fischer 2012), archaea (Flynn et al. 2010), and bacteria (Mira and Ochman 2002; 

Cooper et al. 2010; Martincorena et al. 2012) have shown that substitution rates vary 

across the genome, correlating positively with replication timing. However, this 

correlation could result from higher base-substitution mutation (bpsm) rates or weaker 

purifying selection in late replicating regions (Ochman 2003; Cooper et al. 2010). Direct 

studies of bpsm rates using reporter constructs have also shown that mutation rates 

vary across the genomes of eukaryotes (Lang and Murray 2011) and bacteria (Hudson 

et al. 2002), but the latter study suggested that bpsm rates were highest at intermediate 

replicating regions. This within genome variation in mutation rates may have important 

implications for molecular clocks (Baer et al. 2007; Herrick 2011), horizontal gene 

transfer (Dorman 2013), and cellular disease (Schuster-Böckler and Lehner 2012; 

Donley and Thayer 2013; Lawrence et al. 2013; Liu et al. 2013), but a complete 
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understanding of the effects of genome architecture on mutation rates will require direct 

estimates of genome-wide rates in a considerably more diverse array of organisms  

 Mutation accumulation (MA) experiments paired with whole-genome sequencing 

(WGS) offer a unique perspective into genome-wide biases in mutation rates and 

spectra. By initiating several replicate lineages from a single clonal ancestor and 

passaging each lineage through hundreds of single cell bottlenecks, the lineages will 

accrue mutations in the near absence of natural selection. All of these mutations can 

then be identified by whole-genome sequencing, and their genome-wide distributions 

can be characterized to compare local mutation rates. Interestingly, a collection of 

bacterial MA-WGS studies that have been carried out in mismatch repair (MMR)-

deficient strains of Escherichia coli (Foster et al. 2013), Pseudomonas fluorescens 

(Long et al. 2014), Bacillus subtilis (Sung et al. 2015), and Pseudomonas aeruginosa 

(Dettman et al. 2016) have corroborated indirect evidence that bpsm rates are non-

uniformly distributed across the genome. Yet another MA-WGS study found that bpsms 

were uniformly distributed across the genome in MMR-deficient yeast (Lang et al. 

2013a), and most MMR-proficient MA experiments lack a sufficient number of bpsms to 

determine whether bpsm rates are non-uniform across their genomes (Ossowski et al. 

2010; Denver et al. 2012; Lee et al. 2012; Zhu et al. 2014; Dillon et al. 2015).  

 The most remarkable feature of the MMR-deficient bacterial MA-WGS studies 

that have found that bpsm rates are non-uniformly distributed across the genome is that 

the pattern of bpsm rate variation across these genomes is very similar (Foster et al. 

2013; Long et al. 2014; Dettman et al. 2016). Specifically, each of these genomes 

consists of a single circular chromosome and replication is initiated bi-directionally from 
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a single origin of replication (oriC). These two opposing replichores eventually meet at 

the replication terminus, at which point the daughter chromosomes are segregated prior 

to cell division (Ochman 2002; Egan et al. 2005). Bpsm rates are always low near the 

oriC and reach intermediate peaks at approximately the same distance from the oriC on 

each replichore. Bpsm rates then decline into valleys on each replichore, before rising 

again as they approach the replication terminus. Although the magnitudes of these 

bpsm rate peaks and valleys vary between species, they are near mirror images of one 

another on the opposing replichores within each genome (Foster et al. 2013; Long et al. 

2014; Dettman et al. 2016). It follows then that concurrently replicated regions in 

bacterial chromosomes appear to experience similar bpsm rates, either directly because 

of their concurrent replication or because other genomic features that impact bpsm 

rates are correlated with replication timing. Replication timing itself has long been 

expected to impact mutation rates because of the use of error prone polymerases 

(Courcelle 2009), error prone repair pathways (Lang and Murray 2011), and/or 

inconsistent nucleotide pools during late replication (Zhang and Mathews 1995; Cooper 

et al. 2010). However, other genomic features like compaction of the bacterial nucleoid, 

binding of nucleoid associated proteins (NAPs), and transcription may also impact 

mutation rates (Dame et al. 2011; Sobetzko et al. 2012; Warnecke et al. 2012; Dorman 

2013). Interestingly, a number of sigma factors and NAPs are temporally regulated and 

their activity appears to be mirrored on the right and left replichores of E. coli (Dame et 

al. 2011; Sobetzko et al. 2012), which suggests that they are correlated with replication 

timing. 
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 Although most well-studied bacterial genomes consist of a single circular 

chromosome, more complex bacterial genome architectures that consist of multiple 

circular chromosomes are not uncommon (Ochman 2002; Egan et al. 2005; Cooper et 

al. 2010; Val et al. 2014). Setting aside the distinction between chromosomes and 

megaplasmids (Agnoli et al. 2012), the V. cholerae and V. fischeri genomes are 

composed of two chromosomes, while the B. cenocepacia genome is composed of 

three. In all three of these species, the first chromosome (chr1) is largest, harbors the 

most essential genes and is expressed at the highest levels (Cooper et al. 2010; 

Morrow and Cooper 2012; Dillon et al. 2015). Yet, secondary chromosomes (chr2, chr3) 

do share similar structure, as they are also circular, initiate replication from a single 

origin of replication and are replicated bi-directionally on two replichores (Egan and 

Waldor 2003; Rasmussen et al. 2007; Val et al. 2014). However, while secondary 

chromosomes are replicated at the same rate as the first chromosome, their origins of 

replication (oriCII) have distinct initiation requirements from those of chr1 origins (oriCI) 

(Egan et al. 2005; Duigou et al. 2006). Importantly, chr2 (or chr3) replication is delayed 

relative to chr1, which ensures that replication of all chromosomes will terminate 

synchronously (Rasmussen et al. 2007; Baek and Chattoraj 2014; Val et al. 2014). The 

delayed initiation of chr2 replication means that the genome region near the origin of 

chr1 is always replicated prior to the replication of secondary chromosomes, while late 

replicated regions of chr1 are replicated concurrently with chr2. This general replication 

timing pattern in bacteria with multiple circular chromosomes begs the question of 

whether secondary chromosomes experience similar mirrored patterns of bpsm rate to 

the first chromosome, or are more similar to concurrent late replicating regions. 
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 Here, I analyze the genome-wide distribution of spontaneous bpsms generated 

by MA-WGS experiments with MMR-deficient strains of V. fischeri (4313 bpsms) and V. 

cholerae (1022 bpsms), and spontaneous bpsms generated by MA-WGS experiments 

with MMR-proficient strains of V. fischeri (219 bpsms), V. cholerae (138 bpsms), and B. 

cenocepacia (245 bpsms). The bpsm rates in MMR-deficient MA-WGS experiments 

reveal that the patterns of bpsm rates on chr1 share the mirrored wave-like pattern 

described in previous MMR-deficient MA-WGS experiments. Although the distribution of 

bpsms on chr2 is not significantly heterogeneous, their patterns of bpsm rates are 

similar to those of late replicated regions of chr1, suggesting that concurrently replicated 

regions on different chromosomes also experience similar bpsm rates. However, with 

nearly an order of magnitude fewer bpsms available in the MMR-proficient MA-WGS 

experiments, I do not find that bpsm rates vary significantly within any of the wild-type 

chromosomes.   

 

MATERIALS AND METHODS 

 Bacterial strains and culture conditions. The founding strains of the five MA 

experiments conducted in this study were V. fischeri ES114 ΔmutS (Vf-mut), V. 

cholerae 2740-80 ΔmutS (Vc-mut), V. fischeri ES114 wild-type (Vf-wt), V. cholerae 

2740-80 wild-type (Vc-wt), and B. cenocepacia HI2424 wild-type (Bc-wt). The mutator 

ancestors were generated by replacing the mutS gene in V. fischeri ES114 and V. 

cholerae 2740-80 with an erythromycin resistance cassette, as described previously 

(Datsenko and Wanner 2000; Stabb and Ruby 2002; Heckman and Pease 2007; Val et 

al. 2012). Completed genomes for V. fischeri ES114 and B. cenocepacia HI2424 were 
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downloaded from NCBI (LiPuma et al. 2002; Ruby et al. 2005) and the location of oriCI, 

oriCII, and oriCIII (if applicable) were downloaded from the dOriC 5.0 database (Gao et 

al. 2013). Because the V. cholerae 2740-80 genome was only in draft form, the V. 

cholerae 2740-80 ancestor was sequenced using a long-insert library on single SMRT 

cell of a Pacific Biosciences RSII sequencer at the Icahn School of Medicine at Mount 

Sinai (Beaulaurier et al. 2015). I then assembled the V. cholerae 2740-80 genome anew 

into two contigs, representing chr1 and chr2, using HGAP3, and polished the assembly 

with Quiver (Chin et al. 2013). The oriCI and oriCII regions of the resultant V. cholerae 

2740-80 assembly were identified using Ori-finder (Gao and Zhang 2008; Gao et al. 

2013). More detailed methods for ΔmutS mutant construction and V. cholerae 2740-80 

genome assembly are provided in Chapter 2.  

 MA experiments with Vf-mut and Vf-wt were carried out on tryptic soy agar plates 

supplemented with NaCl (TSAN) (30 g/liter tryptic soy broth powder, 20 g/liter NaCl, 15 

g/liter agar) and were incubated at 28°. MA experiments with Vc-mut, Vc-wt, and Bc-wt  

were carried out on tryptic soy agar plates (TSA) (30 g/liter tryptic soy broth powder, 15 

g/liter agar) and were incubated at 37°. Frozen stocks of each MA lineage were 

prepared at the end of the experiment by growing a single colony overnight in 5ml of 

tryptic soy broth supplemented with NaCl (TSBN) (30 g/liter tryptic soy broth powder, 20 

g/liter NaCl) at 28° for V. fischeri, and in 5ml of tryptic soy broth (TSB) (30 g/liter tryptic 

soy broth powder) at 37° for V. cholerae and B. cenocepacia. Final isolates from all MA 

lineages in each experiment were stored in 8% DMSO at -80°. 
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 MA-WGS Process. For each of the mutator MA experiments, forty-eight 

independent lineages were founded from single colonies of V. fischeri ES114 ΔmutS 

and V. cholerae 2740-80 ΔmutS. These lineages were independently propagated every 

24 hours onto fresh media for 43 days and daily generations were estimated bi-monthly. 

For each of the three wild-type MA experiments, seventy-five independent lineages 

were founded from single colonies of V. fischeri ES114, V. cholerae 2740-80, and B. 

cenocepacia HI2424. These lineages were independently propagated every 24 hours 

onto fresh media for 217 days and daily generations were estimated monthly. To 

estimate daily generation times, ten representative colonies following 24 hours of 

growth were placed in 2 ml of phosphate buffer saline, serially diluted, and spread 

plated on the appropriate media (see above) to calculate the number of viable cells in 

each colony. The number of generations elapsed over 24 hours of growth was then 

calculated, and the average number of generations across the ten representative 

colonies was used as the experiment-wide daily generations for each lineage at that 

time-point. The total generations elapsed between each measurement was calculated 

as the product of the average daily generations and the number of days before the next 

measurement, and the total of number of generations elapsed during the entire MA 

experiment, per lineage, was calculated as the sum of these totals. At the conclusion of 

each MA experiment, all lineages were stored at -80° in 8% DMSO and later revived for 

WGS.  

Genomic DNA was extracted from 1 ml of overnight culture (TSBN at 28° for V. 

fischeri; TSB at 37° for V. cholerae and B. cenocepacia) in 50 representative lineages 

from the three wild-type experiments and all 48 lineages from the two mutator 
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experiments using the Wizard Genomic DNA Purification Kit (Promega). All libraries 

were prepared using a modified Illumina Nextera protocol designed for inexpensive 

library preparation of microbial genomes (Baym et al. 2015). Sequencing of the Vf-mut, 

Vc-mut, and Bc-wt lineages was performed using the 151-bp paired-end Illumina HISeq 

platform at the University of New Hampshire Hubbard Center for Genomic Studies, 

while sequencing for the Vf-wt and Vc-wt lineages was performed using the 101-bp 

paired-end Illumina HiSeq platform at the Beijing Genome Institute (BGI). In sum, I 

analyzed 19 Vf-mut lineages, 22 Vc-mut lineages, 48 Vf-wt lineages, 49 Vc-wt lineages, 

and 47 Bc-wt lineages, as fastQC revealed that the depth of coverage for the other 

sequenced lineages was insufficient for accurate detection of polymorphism (Andrews 

2010). The reads from each of these lineages were mapped to their respective 

reference genomes with the Burrows-Wheeler Aligner (BWA) (Li and Durbin 2009) and 

Novoalign (www.novocraft.com). The average depth of coverage was 124x for Vf-mut, 

92x for Vc-mut. 100x for Vf-wt, 96x for Vc-wt, and 43x for Bc-wt.  

 

 Base-substitution mutation identification. For each MA experiment, bpsms 

were identified as described in Chapters 1 and 2. Briefly, I used SAMtools to convert the 

SAM alignment files from each lineage to mpileup format (Li et al. 2009), then in-house 

perl scripts to produce the forward and reverse read alignments for each position in 

each line. A three-step process was then used to detect putative bpsms. First, pooled 

reads across all lines were used to generate an ancestral consensus base at each site 

in the reference genome. This allows me to correct for any differences that may exist 

between the reference genomes and the ancestral colony of each my MA experiments. 
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Second, a lineage specific consensus base was generated at each site in the reference 

genome for each individual MA lineage using only the reads from that line. Here, a 

lineage specific consensus base was only called if the site was covered by at least two 

forward and two reverse reads and at least 80% of the reads identified the same base. 

Otherwise, the site was not analyzed. Third, each lineage specific consensus base that 

was called was compared to the overall ancestral consensus of the MA experiment and 

a putative bpsm was identified if they differed. This analysis was carried out 

independently with the alignments generated by BWA and Novoalign, and putative 

bpsms were considered genuine only if both pipelines independently identified the bpsm 

and they were only identified in a single lineage. All genuine bpsms analyzed in this 

study are summarized in Table C.1, which shows that nearly all bpsms were identified 

with high-confidence and were not clustered at my lower limits of detection.  

 

 Base-substitution mutation rate analysis at different interval lengths. 

Genomes were divided into intervals of 10 Kb, 25 Kb, 50 Kb, 100 Kb, 250 Kb, and 500 

Kb, and bpsms were categorized into those intervals based on their location. On chr1, 

these intervals started at the origin of replication (oriCI), and extended bi-directionally to 

the replication terminus to mimic the progression of the two replication forks. Therefore, 

in each analysis, the final interval on each replichore of chr1 was smaller than the rest, 

since each half of chr1 is not exactly divisible by any of the intervals lengths. For 

example, chr1 of V. fischeri is 2,897,536 bps in length, so there are 1,448,768 bps on 

each replichore. Therefore, when I analyze bpsm rates in 100 Kb intervals from oriCI, 
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the first fourteen intervals on each replichore are 100 Kb in length, while the final 

interval on each replichore is only 48.768 Kb in length.  

 On secondary chromosomes, bpsm rates were analyzed with the same interval 

sizes as chr1, where intervals were still measured relative to the initiation of replication 

of oriCI, rather than oriCII (Figure 1). This ensured that I could make direct comparisons 

between concurrently replicated intervals on chr1 and chr2, where the limits of each 

interval relative to oriCI initiation were identical. I achieved this by starting intervals bi-

directionally from the replication terminus in the opposite direction of the replication 

forks, starting with the smaller intervals used in the corresponding interval analysis on 

chr1. All intervals were thus exactly the same length as those of the concurrently 

replicated intervals on chr1, with the exception of the final two intervals on each 

replichore, which extended into the concurrently replicated interval of chr1 until they 

reached their own origin of replication (oriCII). In the example presented above for V. 

fischeri, chr2 is 1,330,333 bps in length. Therefore, for 100 Kb intervals, the final interval 

on each replichore of chr2 was 48.768 Kb in length, followed by six 100 Kb intervals 

extending away from the terminus on each replichore, and finishing with a single 16.398 

Kb interval on each replichore, until the two replichores meet at oriCII. Bpsm rates in 

each interval were calculated as the number of mutations observed in each interval, 

divided by the product of the total number of sites analyzed in that interval across all 

lines and the number of generations of mutation accumulation per line, so even the 

bpsm rates in the smaller intervals near the origin on chr2 could be directly compared to 

the larger concurrently replicated interval on chr1.  
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Statistical analyses. All statistical analyses were performed in R Studio Version 

0.99.489 using the Stats analysis package (R Development Core Team 2013). 

 

Figure 1. Interval analysis allowing direct comparisons of base-substitution 
mutation (bpsm) rates of concurrently replicated regions on chromosome 1 (chr1) 
and chromosome 2 (chr2). Chr2 is split at it’s origin of replication (oriCII), and mapped 
directly to concurrently replicated intervals in late replicating regions of chr1, since the 
two chromosomes terminate replication synchronously. All intervals on both 
chromosomes are thus relative to the initiation of replication of oriCI, and the boundaries 
of the intervals are at identical locations. 
 

RESULTS 

 Two MMR-deficient (mutator) and three MMR-proficient (wild-type) MA-WGS 

experiments were founded by five different ancestral strains: a) V. fischeri ES114 

ΔmutS (Vf-mut), b) V. cholerae 2740-80 ΔmutS (Vc-mut), c) V. fischeri ES114 wild-type 

(Vf-wt), d) V. cholerae 2740-80 wild-type (Vc-wt), and e) B. cenocepacia HI2424 wild-

type (Bc-wt). Forty-eight independent MA lineages were propagated for 43 days in the 

two mutator experiments and seventy-five MA lineages were propagated for 217 days in 

the three wild-type experiments. In total, I performed successful WGS on evolved 

clones of 19 Vf-mut lineages, 22 Vc-mut lineages, 48 Vf-wt lineages, 49 Vc-wt lineages, 

and 47 Bc-wt lineages. However, despite the fact that the mutator experiments were 

Chr1 Chr2

OriCI

OriCII
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shorter and involved fewer lineages, the vast majority of bpsms were generated in the 

Vf-mut and Vc-mut lineages, as their bpsm rates are 317-fold and 85-fold greater than 

those of their wild-type counterparts, respectively (Table 1). Consequently, I can study 

the effects of genomic position on bpsm rates in much greater detail in the mutator 

lineages, where I observe a reasonable number of bpsms distributed across the 

genome at intervals as low as 10 Kb in length (Table 1), the approximate length of 

bacterial microdomains (Dorman 2013).  

Table 1. Average number of base-substitution mutations (bpsms) in each of the 
interval lengths analyzed and corresponding standard errors (SEM) across all 
intervals of that length for all five MA experiments. 
MA 
Lines 

500 Kb 250 Kb 100 Kb 50 Kb 25 Kb 10 Kb 
Avg. SEM Avg. SEM Avg. SEM Avg. SEM Avg. SEM Avg. SEM 

Vf-mut 499.0 35.8 253.5 13.8 101.1 3.1 50.5 1.3 25.3 0.5 10.1 0.2 
Vc-mut 141.5 21.1 65.3 6.2 25.5 1.5 12.5 0.6 6.2 0.3 2.5 0.1 
Vf-wt 22.3 3.3 12.3 1.4 5.0 0.4 2.5 0.2 1.2 0.1 0.5 0.0 
Vc-wt 18.0 3.1 8.8 1.0 3.4 0.3 1.7 0.1 0.8 0.1 0.3 0.0 
Bc-wt 15.9 1.4 7.6 0.6 3.3 0.2 1.6 0.1 0.8 0.1 0.3 0.0 
 

To analyze the variation in bpsm rates on chr1 of the Vf-mut and Vc-mut 

lineages, I independently analyzed the bpsm rates in 10 Kb, 25 Kb, 50 Kb, 100 Kb, 250 

Kb, and 500 Kb intervals, with intervals extending bi-directionally from the oriCI, like the 

replication forks do when the chromosome is being replicated. For secondary 

chromosomes, I independently analyzed bpsm rates using the same interval sizes as 

chr1, but these chromosomes were analyzed relative to the initiation of replication of 

oriCI (See methods; Figure 1). This ensures that intervals on secondary chromosomes 

can be directly compared to late replicating intervals on chr1, allowing me to assess 

whether concurrently replicated regions on different chromosomes experience similar 

bpsm rates. The bpsm rates of different intervals may vary because of nucleotide 

context, methylation, heterogeneous DNA synthesis and repair, nucleoid structure, 
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NAPs, or transcription, but focusing on genome-wide concurrently replicated regions 

allows me to narrow my focus to the genomic features that contribute most 

substantively to global patterns of bpsm rate variation.  

 

 Patterns of mutator base-substitution mutation rate variation within single 

chromosomes. In the Vf-mut MA experiment, there was no significant difference in the 

bpsm rate between chr1 and chr2 based on the ratio of bpsm rates to the number of 

sites analyzed on each chromosome (Chi-square test; χ2 = 0.11, d.f. = 1, p = 0.7410). 

However, chr1 did experience a slightly higher bpsm rate than chr2 in the Vc-mut MA 

experiment (Chi-square test; bpsm: χ2 = 4.54, d.f. = 1, p = 0.0331). On a finer scale, I 

can reject the null hypothesis that bpsms were uniformly distributed across 500 Kb, 250 

Kb, 100 Kb, 50 Kb, and 10 Kb intervals on chr1 in both the Vf-mut and Vc-mut MA 

experiments (Table 2). Yet I cannot reject this null hypothesis on chr2 for either MA 

experiment, suggesting that although bpsm rates vary within chr1, they do not vary on 

chr2 (Table 2). 
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Table 2. Chi-square test statistics testing the null hypothesis that the observed 
number of bpsms in each interval simply reflects the number of sites analyzed in 
that interval, which would suggest that bpsms are uniformly distributed across 
the genome. Chi-square tests were conducted for each chromosome at each interval 
length for each MA experiment. 
MA 
Lines 

Interval 
Length 

Chr1   Chr2   
χ2 df p χ2 df p 

Vf-mut 500 Kb 25.89 5 <0.0001 7.53 3 0.057 
 250 Kb 89.27 11 <0.0001 8.59 5 0.127 
 100 Kb 132.97 29 <0.0001 17.46 15 0.292 
 50 Kb 172.15 57 <0.0001 28.19 27 0.401 
 25 Kb 223.93 115 <0.0001 52.56 53 0.491 
 10 Kb 432.48 289 <0.0001 110.89 133 0.919 
Vc-mut 500 Kb 43.28 5 <0.0001 7.18 3 0.066 
 250 Kb 76.02 11 <0.0001 7.82 5 0.166 
 100 Kb 102.42 29 <0.0001 10.98 11 0.445 
 50 Kb 139.26 59 <0.0001 17.84 23 0.766 
 25 Kb 208.58 119 <0.0001 35.50 45 0.844 
 10 Kb 398.74 299 <0.0001 90.72 111 0.921 
Vf-wt 500 Kb 5.02 5 0.414 5.24 3 0.155 
 250 Kb 13.62 11 0.255 6.00 5 0.306 
 100 Kb 31.25 29 0.354 17.19 15 0.308 
 50 Kb 64.18 57 0.240 34.38 27 0.155 
 25 Kb 121.33 115 0.325 49.86 53 0.597 
 10 Kb 308.56 289 0.205 120.31 133 0.777 
Vc-wt 500 Kb 8.39 5 0.136 4.77 3 0.190 
 250 Kb 14.43 11 0.210 5.18 5 0.394 
 100 Kb 29.61 29 0.434 12.83 11 0.305 
 50 Kb 56.36 59 0.574 19.31 23 0.683 
 25 Kb 113.63 119 0.622 35.06 45 0.857 
 10 Kb 269.45 299 0.889 106.40 111 0.606 
Bc-wta 500 Kb 6.32 7 0.503 13.39 7 0.063 
 250 Kb 9.86 13 0.706 16.16 13 0.241 
 100 Kb 27.33 35 0.819 35.30 31 0.272 
 50 Kb 58.42 69 0.814 63.11 61 0.402 
 25 Kb 153.51 139 0.189 129.01 121 0.292 
 10 Kb 411.34 349 0.012 327.15 301 0.144 
aB. cenocepacia also has a third chromosome and in all cases I cannot reject the null hypothesis that 
bpsms are uniformly distributed across the chromosome for any interval length. 
 

Interestingly, although bpsm rates are non-uniform on chr1 for both the Vf-mut 

and Vc-mut MA experiments, they both follow a remarkably similar wave-like pattern of 

bpsm rates extending bi-directionally from the origin of replication (Figure 2A, B). Bpsm 
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rates are low at the oriC, increase to bpsm rate peaks approximately 600 Kb from the 

oriC on both replichores, then decline into another valley before rising again as they 

approach the replication terminus. Furthermore, while the bpsm rate increases as the 

two replichores approach the replication terminus in both Vf-mut and Vc-mut, a narrow 

terminal valley in bpsm rate may also exist directly at the replication terminus (Figure 

2A, B), although this is only apparent in the 100 Kb analyses. This and other features of 

the mirrored wave-like pattern of bpsm rates become somewhat dampened when 

interval lengths exceed 100 Kb, while interval lengths lower than 100 Kb often obscure 

features of the pattern because of background noise. Thus I focus the majority of my 

analyses on 100 Kb intervals, where I achieve the best balance between the total 

number of intervals and the number of bpsms in each interval.  
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Figure 2. Patterns of base-substitution mutation (bpsm) rates at various size 
intervals extending clockwise from the origin of replication (oriC) in MMR-
deficient mutation accumulation lineages of Vibrio fischeri (A) and Vibrio 
cholerae (B) on chromosome 1. Bpsm rates are calculated as the number of 
mutations observed within each interval, divided by product of the total number of sites 
analyzed within that interval across all lines and the number of generations of mutation 
accumulation. 
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 As expected from the mirrored wave-like pattern of bpsm rates on opposing 

replichores of chr1, I find a significant positive relationship between the bpsm rates of 

right replichore intervals and the bpsm rates of concurrently replicated left replichore 

intervals at an interval length of 100 Kb in both the Vf-mut and Vc-mut experiments 

(Figure 3 A, B) (Linear regression; Vf-mut: F = 10.98, df = 13, p = 0.0060, r2 = 0.46; Vc-

mut: F = 6.76, df = 13, p = 0.0221, r2 = 0.34). This relationship is also positive in 

analyses at all other interval lengths, but is only significantly positive at intervals of 250 

Kb, 100 Kb, 50 Kb, 25 Kb, and 10 Kb for Vf-mut, and intervals of 100 Kb, 50 Kb, and 10 

Kb for Vc-mut (Table C.2; Table C.3). In contrast, I find no relationship between right 

replichore bpsm rates and concurrently replicated left replichore bpsm rates on chr2 at 

an interval lengths of 100 Kb for Vf-mut or Vc-mut (Figure 3A, B), nor is there a 

significant relationship in analyses at any other interval lengths for chr2 (Table C.2; 

Table C.3). Concurrently replicated regions on primary bacterial chromosomes and all 

regions on secondary bacterial chromosomes therefore appear to experience similar 

bpsm rates, either directly because of their concurrent replication or because other 

genomic features that impact bpsm rates are correlated with replication timing.  
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Figure 3. Relationship between base-substitution mutation (bpsm) rates in 100 Kb 
intervals on the right replichore with concurrently replicated 100 Kb intervals on 
the left replichore in MMR-deficient Vibrio fischeri (A) and Vibrio cholerae (B). 
Bpsm rates were calculated as the number of mutations observed within each interval, 
divided by product of the total number of sites analyzed within that interval across all 
lines and the number of generations of mutation accumulation. The range of bpsm rates 
between intervals on chromosome 1 is greater for both V. fischeri and V. cholerae and 
both linear regressions are significant (V. fischeri: F = 10.98, df = 13, p = 0.0060, r2 = 
0.46; V. cholerae: F = 6.76, df = 13, p = 0.0221, r2 = 0.34), while neither linear 
regressions on chromosome 2 are significant (V. fischeri: F = 0.02, df = 6, p = 0.8911, r2 

= 0.03 • 10-1 ; V. cholerae: F = 0.06, df = 4, p = 0.8141, r2 = 0.02). 
 
 
 Patterns of mutator base-substitution mutation rates of concurrently 

replicated regions on different chromosomes. Late replicated regions of chr1 may 

experience similar bpsm rates to chr2 because like the opposing replichores of chr1, 

they are replicated concurrently. To study this relationship, I mapped the patterns of 

bpsm rates in 100 Kb intervals on chr2 to those of late replicated 100 Kb intervals on 

chr1 for both Vf-mut and Vc-mut (Figure 1). Interestingly, because of its smaller size 

and delayed replication, chr2 narrowly avoids the high bpsm rate peaks on the right and 

left replichores of chr1 in both Vf-mut and Vc-mut (Figure 4A, B). The patterns of bpsm 
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rates on chr2 appear similar to the bpsm rates of the late replicated regions on chr1 in 

both species (Figure 4A, B), but the overall variation in bpsm rates between different 

intervals is relatively limited in late replicated regions. Consequently, there is not a 

significant correlation between chr2 bpsm rates and the bpsm rates of late replicated 

regions of chr1, despite their apparent similarity (Linear regression; Vf-mut: F = 0.62, df 

= 14, p = 0.4443, r2 = 0.04; Vc-mut: F = 0.072, df = 10, p = 0.7938, r2 = 0.01).  

Although the bpsm rates of chr2 and of late replicated regions on chr1 were 

poorly correlated, I also wanted to test whether the bpsm rates in 100 Kb intervals on 

chr2 were more similar to the concurrently replicated intervals on chr1 than they were to 

any other chr1 regions. Therefore, I mapped chr2 bpsm rates to all possible interval 

combinations on the right and left replichores of chr1, starting with the concurrently 

replicated terminal intervals and shifting back one interval per replichore until the origin 

of replication of chr1 was reached. I then calculated the sum of the residuals in each 

analysis to identify the best fit for chr2 bpsm rates. For Vf-mut, the lowest sum of the 

residuals (14.01 • 10-8) occurs when the chr2 intervals were mapped to the concurrently 

late replicated intervals on chr1 (Figure 4A; Table C.4). Similarly, the lowest sum of the 

residuals in Vc-mut (2.53 • 10-8) occurs when the chr2 intervals are mapped to their 

concurrently replicated intervals on chr1 (Figure 4B; Table C.4). This suggests that 

although I do not find a significant relationship between concurrently replicated 100 Kb 

intervals on chr1 and chr2, bpsm rates on chr2 are more similar to the bpsm rates of the 

late replicating concurrently replicated regions on chr1 than any other location on chr1.  
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Figure 4. Patterns of base-substitution mutation (bpsm) rates in 100 Kb intervals 
extending clockwise from the origin of replication (oriCI) on chromosome 1 (chr1) 
and patterns of bpsm of concurrently replicated 100 Kb intervals on chromosome 
2 (chr2) for MMR-deficient Vibrio fischeri (A) and Vibrio cholerae (B). Bpsm rates 
were calculated as the number of mutations observed within each interval, divided by 
product of the total number of sites analyzed within that interval across all lines and the 
number of generations of mutation accumulation. Patterns of bpsm rates on chr2 
appear to map to those of concurrently replicated regions on chr1 in both species, but 
the variance in bpsm rate between intervals is not sufficient to produce significant linear 
regressions between concurrently replicated intervals on chr1 and chr2 in either V. 
fischeri or V. cholerae (V. fischeri: F = 0.62, df = 14, p = 0.4443, r2 = 0.04; V. cholerae: F 
= 0.07, df = 10, p = 0.7938, r2 = 0.01). 
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reflect rates in the wild-type lineages. Therefore, I also attempted to analyze the effects 

of replication timing on the bpsm rates of chr1 and chr2 of the three wild-type MA 

experiments. Here, I have considerably fewer bpsms at all interval lengths and cannot 

confidently reject the null hypothesis that bpsms are uniformly distributed across chr1, 

chr2, or chr3 (for Bc-wt) in the Vf-wt, Vc-wt, or Bc-wt MA experiments (Table 2), 

although there is slightly more variation in bpsm rates than expected based on the 

number of sites analyzed in the 10 Kb intervals on chr1 of Bc-wt (Chi-square test; χ2 = 

411.34, d.f. = 349, p = 0.0122).  

The lack of significant variation in bpsm rates within chromosomes in wild-type 

MA lineages also means that mirrored wave-like patterns of bpsm rates were not 

observed (Figure 5A, B, C). Moreover, there is no significant relationship between the 

bpsm rates of 100kb intervals on the right replichore and concurrently replicated left 

replichore intervals of chr1 for Vf-wt, Vc-wt, or Bc-wt (Linear regression; Vf-wt: F = 0.82, 

df = 13, p = 0.3810, r2 = 0.06; Vc-wt: F = 0.11, df = 13, p = 0.7480, r2 = 0.01; Bc-wt: F = 

0.86, df = 16, p = 0.3670, r2 = 0.05). There does appear to be some similarity between 

the bpsm rates on chr2 and late replicating regions on chr1 (Figure 5), but a linear 

regression analysis found that this relationship was not significant (Linear regression; 

Vf-wt: F = 0.16, df = 14, p = 0.7001, r2 = 0.01; Vc-wt: F = 2.72, df = 10, p = 0.1300, r2 = 

0.21; Bc-wt: F = 0.32, df = 30, p = 0.5760, r2 = 0.01). It is nevertheless important to 

recognize that even at interval lengths of 100 Kb, I observe an average of only 4.65 

(0.38), 3.29 (0.28), and 3.08 (0.22) (SEM) bpsms per interval for the Vf-wt, Vc-wt, and 

Bc-wt MA lineages, respectively. Consequently, I emphasize that I may not have found 

any statistically significant relationships between the bpsm rates of concurrently 
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replicated regions in the wild-type MA experiments because the patterns are truly a 

phenomenon specific to MMR-deficient genotypes, or because I lack the statistical 

power to analyze true within-chromosome variation in bpsm rates in the wild-type MA 

lineages.  
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Figure 5. Patterns of base-substitution mutation (bpsm) rates in 100 Kb intervals 
extending clockwise from the origin of replication (oriC) on chromosome 1 (chr1) 
and concurrently replicated intervals of chromosome 2 (chr2) for MMR-proficient 
Vibrio fischeri (A), Vibrio cholerae (B), and Burkholderia cenocepacia (C). Bpsm 
rates were calculated as described in the MMR-deficient MA experiments. B. 
cenocepacia also has a third chromosome, which is not shown.   
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DISCUSSION 

Non-uniform genome-wide mutation rates have important implications for 

molecular evolution (Baer et al. 2007; Herrick 2011), genome organization (Dame et al. 

2011; Sobetzko et al. 2012; Dorman 2013), and cellular disease (Schuster-Böckler and 

Lehner 2012; Donley and Thayer 2013; Lawrence et al. 2013; Liu et al. 2013), but 

incorporating calibrated bpsm rates into evolutionary models requires that we 

understand the true patterns of non-uniform bpsm rates and the genomic features that 

govern them. Remarkably, there appears to be a relatively conserved pattern of bpsm 

rates in the genomes of single-chromosome bacteria that are MMR-deficient, where 

bpsm rates vary in a bimodal wave that is mirrored on each replichore (Foster et al. 

2013; Long et al. 2014; Dettman et al. 2016). I find MMR-deficient multi-chromosome 

bacteria display similar patterns of bpsm rates on chr1 (Figure 2A, B), and although I 

cannot reject the null hypothesis that bpsm rates are uniform chr2, the patterns of bpsm 

rates on chr2 appear to map to those of concurrently late replicating regions on chr1 

(Figure 4A, B). Elucidating the true patterns of bpsm in wild-type bacteria will require a 

larger collection of bpsms, as I was unable to rule out uniform bpsm rates in any of the 

three MMR-proficient MA experiments.  

 In principle, concurrently replicated genome regions within and between 

chromosomes may experience similar bpsm rates for a number of reasons. First, 

nucleotide context can generate heterogeneous bpsm rates because certain 

nucleotides or nucleotide sequences are more prone to incur bpsms than others (Baer 

et al. 2007; Dettman et al. 2014; Long et al. 2014; Sung et al. 2015). However, there is 

only minimal variation in the nucleotide composition between the intervals analyzed in 
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this study and I observe nearly all G:C>A:T and A:T>G:C transitions, occurring at 

statistically indistinguishable rates, in both the Vf-mut and Vc-mut experiments. 

Therefore, it is unlikely that nucleotide content generates substantial variation in the 

bpsm rates of the different genome intervals analyzed in this study. Second, the 

replication machinery itself may generate heterogeneous bpsm rates because of the 

use error prone polymerases (Courcelle 2009), error prone repair pathways (Lang and 

Murray 2011), or nucleotide pool inconsistency late in the replication cycle (Zhang and 

Mathews 1995; Cooper et al. 2010). These mechanisms have all been invoked to 

explain why substitution rates scale positively with replication timing (Mira and Ochman 

2002; Stamatoyannopoulos et al. 2009; Chen et al. 2010; Cooper et al. 2010; Flynn et 

al. 2010; Mugal et al. 2010; Herrick 2011; Lang and Murray 2011; Agier and Fischer 

2012; Martincorena et al. 2012), but it is difficult to imagine how they might create the 

mirrored wave-like patterns of bpsm rates observed in bacterial chromosomes. Lastly, a 

number of genomic features that are indirectly related to replication, like compaction of 

the bacterial nucleoid, binding of NAPs, and transcription may also generate 

heterogeneous bpsm rates (Schmidt et al. 2006; Dame et al. 2011; Sobetzko et al. 

2012; Warnecke et al. 2012; Dorman 2013). Indeed, negative DNA superhelicity does 

correlate positively with the mirrored wave-like patterns of bpsm rates on opposing 

replichores of E. coli (Foster et al. 2013), and patterns of extant sequence variation are 

impacted by NAPs in a growth phase-specific manner (Warnecke et al. 2012). 

Furthermore, sigma factors, DNA gyrase, and a number of NAPs have mirrored patterns 

of activity on the right and left replichores in the single chromosome of E. coli (Sobetzko 

et al. 2012), possibly resulting from their concurrent replication. Although transcription is 
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also expected to impact bpsm rates through gene expression and replication-

transcription conflicts (Martincorena et al. 2012; Merrikh et al. 2012), oscillations in 

expression patterns and gene density are not consistent with concurrently replicated 

regions experiencing similar expression levels (Allen et al. 2006), and expression was 

poorly correlated with the patterns of bpsm rates in E. coli (Foster et al. 2013). It seems 

likely that several of these factors contribute to non-uniform mutation rates within 

genomes, but evidence suggesting that DNA superhelicity and NAP activity are 

conserved among concurrently replicated regions is a particularly compelling 

explanation for the global patterns of bpsm rates observed in this study.  

 Bpsm rates of the Vf-wt, Vc-wt, and Bc-wt MA-WGS experiment did not vary 

significantly on either chromosome and concurrently replicated regions do not appear to 

experience similar bpsm rates in these studies. However, the small number bpsms that 

were obtained in these studies may inhibit me from elucidating the true patterns of bpsm 

rates across these wild-type genomes. Alternatively, it is possible that even with more 

comprehensive wild-type bpsm datasets, bpsm rates are truly uniform across the 

genomes of multi-chromosome bacteria. Evidence already exists that MMR 

preferentially repairs errors in coding regions (Lee et al. 2012; Dillon et al. 2015) and is 

more concentrated at replication forks (Lopez De Saro et al. 2006), so it is possible that 

the patterns of bpsm rates observed in MMR-deficient MA lineages are mitigated by a 

functional MMR pathway. Clearly, more robust wild-type MA-WGS studies will need to 

be carried out to elucidate the true patterns of bpsm rates in MMR-proficient bacterial 

genomes.  
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One important implication of this work is that both the sign and the strength of the 

relationship between bpsm rates and replication timing changes depending on the 

genome location. Specifically, starting at oriCI in Vf-mut and Vc-mut, bpsm rates 

increase with replication timing until the mirrored bpsm rate peaks at approximately 600 

Kb. Following these peak bpsm rates, however, bpsm rates decrease with replication 

timing until approximately 1100 Kb from oriCI. Bpsm rates are relatively stable in late 

replicating regions of chr1 and chr2, which suggests that replication timing as no affect 

on bpsm rates (Figure 4A, B). Consequently, studies that focus only on the relationship 

between replication timing and mutation rates in sub-regions of the genome may not 

reflect the genome-wide relationship. Although it is becoming relatively straightforward 

to study genome-wide mutation rates in smaller bacterial genomes, analyzing genome-

wide mutation rates in the larger genomes of higher organisms remains a substantial 

challenge. Therefore, until these genomes can be sequenced and assembled in a high-

throughput and cost-effective manner, reporter studies that analyze the relationship 

between replication timing and mutation rates at a number of sites will be most 

informative. 

 An enhanced understanding on the patterns of bpsm rates also has important 

implications for models of molecular evolution (Baer et al. 2007; Herrick 2011), genome 

organization (Dame et al. 2011; Sobetzko et al. 2012; Dorman 2013), and cancer 

biology (Schuster-Böckler and Lehner 2012; Donley and Thayer 2013; Lawrence et al. 

2013; Liu et al. 2013). First, traditional models of molecular evolution used to measure 

evolutionary rates and generate molecular clocks often assume uniform mutation rates. 

Yet even orthologous genes may be evolving at variable rates in different lineages 
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because they are located in genome regions exposed to different mutation rates 

(Ochman 2003; Baer et al. 2007; Herrick 2011). These models could be improved by a 

better understanding of how and why bpsm rates vary across genomes. Second, 

bacterial genomes are highly organized entities, and evidence now exists that one of 

the most conserved properties of this genome organization is their relative distance 

from the origin of replication and replication terminus (Sobetzko et al. 2012). Although 

gene regulation by various NAPs has been invoked to explain this spatial organization, 

heterogeneous mutation rates may also be key contributors to genome organization. 

Ideally, housekeeping genes would be organized in regions with low mutation rates 

while accessory genes suffer the burden of locations where mutation rate is elevated 

(Taxis et al. 2005; Donley and Thayer 2013; Dorman 2013). This may be particularly 

important in bacteria, where genes are often acquired horizontally and their evolutionary 

success can depend on whether they are inserted into regions of high or low expression 

and mutation rate (Dorman 2013). Third, if genomes are organized in such a way that 

optimizes gene expression and mutational burden, molecular modifications that change 

genome wide-patterns of expression and mutation rates may have dramatic 

consequences. Interestingly, alteration of the replication timing program appears to be a 

very early step in carcinogenesis and a number of other disease states (Donley and 

Thayer 2013). These alterations likely affect gene regulation and may lead to increased 

genomic instability in essential genes. A better understanding of the genomic features 

that govern patterns of genome-wide mutation rates in healthy cells may thus be a 

useful tool for forecasting disease risk.  
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 We have shown that in MMR-deficient lineages of bacteria with multiple 

chromosomes, bpsm rates are non-uniformly distributed on chr1, varying in a mirrored 

wave-like pattern extending bi-directionally from the origin of replication. In contrast, 

bpsm rates on chr2 are more constant, like those of late replicating regions on chr1. 

These observations suggest that concurrently replicated regions of bacterial genomes 

experience similar bpsm rates prior to MMR, which could be governed by a number of 

temporally regulated cellular processes. Differentiating the relative impact of these 

cellular processes on bpsm rates and identifying whether these patterns also apply to 

wild-type genomes will undoubtedly shed new light on the nature of intra-genome 

variation in bpsm rates. However, the generality of the mirrored wave-like pattern in 

bpsm rates in all MMR-deficient MA-WGS experiments to date (Foster et al. 2013; Long 

et al. 2014; Dettman et al. 2016) suggests that the underlying biases of bpsm rates prior 

to MMR are highly conserved in bacteria and that concurrently replicated regions 

experience similar bpsm rates.   
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CHAPTER IV 

 
 
 
 

DISTRIBUTION OF FITNESS EFFECTS OF SPONTANEOUS MUTATIONS IN 
BURKHOLDERIA CENOCEPACIA 
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INTRODUCTION 

 The extent to which spontaneous mutations contribute to evolutionary change 

largely depends on their rates and fitness effects. Both parameters are fundamental to 

several evolutionary problems, including the preservation of genetic variation 

(Charlesworth et al. 1993, 2009; Charlesworth and Charlesworth 1998), the evolution of 

recombination (Muller 1964; Kondrashov 1988; Otto and Lenormand 2002; Roze and 

Blanckaert 2014), the evolution of mutator alleles (Sniegowski et al. 1997; Tenaillon et 

al. 1999), and deleterious mutation accumulation in small populations (Lande 1994; 

Lynch et al. 1995, 1999; Schwander and Crespi 2009). However, while a number of 

studies have now obtained direct and robust estimates of mutation rates and spectra 

across diverse organisms, our understanding of the distribution of fitness effects of 

spontaneous mutations remains limited to mostly indirect estimates in classic model 

organisms (Eyre-Walker and Keightley 2007).  

 Mutation accumulation (MA) experiments offer an exceptional opportunity to 

perform detailed analyses of the fitness effects of spontaneous mutations that have not 

been exposed to the sieve of natural selection. Specifically, MA experiments limit the 

efficiency of natural selection by passaging replicate lineages through repeated single 

cell bottlenecks. These lineages accumulate mutations independently over several 

thousand generations, and the magnitude and variance in fitness between lineages can 

be used to estimate several properties of the distribution of fitness effects (Halligan and 

Keightley 2009). MA studies have been used to characterize the distribution of fitness 

effects in Drosophila melanogaster (Bateman 1959; Mukai 1964a; Keightley 1994; Fry 

et al. 1999), Arabidopsis thaliana (Schultz et al. 1999; Shaw et al. 2000, 2002), 



	 103 

Caenorhabditis elegans (Keightley and Caballero 1997; Vassilieva et al. 2000; Estes et 

al. 2004; Katju et al. 2015), Saccharomyces cerevisiae (Wloch et al. 2001; Zeyl and de 

Visser 2001; Dickinson 2008; Jasmin and Lenormand 2015), Escherichia coli (Kibota 

and Lynch 1996; Trindade et al. 2010), and other microbes (Heilbron et al. 2014; 

Kraemer et al. 2015). These studies have at times been inconsistent, but the majority of 

results suggest that most spontaneous mutations have mild effects (Eyre-Walker and 

Keightley 2007; Halligan and Keightley 2009; Agrawal and Whitlock 2012; Heilbron et 

al. 2014), that deleterious mutations far outnumber beneficial mutations (Keightley and 

Lynch 2003; Silander et al. 2007; Eyre-Walker and Keightley 2007), and that the 

distribution of effects of deleterious mutations is complex and multimodal (Zeyl and de 

Visser 2001; Eyre-Walker and Keightley 2007).  

 A more powerful approach for studying the distribution of fitness effects of 

spontaneous mutations is to pair MA experiments with whole-genome sequencing (MA-

WGS), so that both the genetic basis and fitness effects of a collection of mutations can 

be known. MA-WGS studies have been conducted in a diverse array of bacteria, 

generating a growing database of naturally accumulated mutations that has dramatically 

improved estimates of mutation rates and spectra (Lee et al. 2012; Sung et al. 2012a, 

2015; Heilbron et al. 2014; Long et al. 2014, 2015; Dillon et al. 2015; Foster et al. 2015; 

Dettman et al. 2016). Yet, only one of these studies has also characterized the fitness of 

MA-WGS lines (Heilbron et al. 2014), and that study was conducted with mutator 

lineages, which are known to have altered base-substitution and indel biases (Lee et al. 

2012; Sung et al. 2015). Our understanding of the distribution of fitness effects of 
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spontaneous mutations would benefit greatly from more direct estimates of fitness 

derived from MA lineages that harbor known mutational load.  

 Here, I measured the relative fitness of forty-three fully sequenced MA lineages 

derived from B. cenocepacia HI2424 in three laboratory environments after they had 

been evolved in the near absence of natural selection for 5554 generations. Following 

the MA experiment, each lineage harbored a total mutational load of between two and 

fourteen spontaneous mutations, including base-substitution mutations (bpsms), 

insertion-deletion mutations (indels), and whole-plasmid deletions. By correlating the 

relative fitness of these MA lineages with the particular mutations that they harbor, I 

present a comprehensive picture of the fitness effects of spontaneous mutations, and 

precise estimates of deleterious mutation rates and fitness effects in B. cenocepacia. 

  

MATERIALS AND METHODS 

Bacterial strains and culture conditions. All MA experiments were founded from a 

single colony of Burkholderia cenocepacia HI2424, which was isolated from the soil and 

only passaged in the laboratory during isolation (Coenye and LiPuma 2003). As a 

member of the diverse B. cepacia complex, Burkholderia cenocepacia can form highly 

resistant biofilms and has been associated with persistent lung infections in patients 

with cystic fibrosis (Mahenthiralingam et al. 2005; Traverse et al. 2013). The genome of 

B. cenocepacia HI2424 has been fully sequenced and is composed of three 

chromosomes (Chr1: 3.48-Mb, 3253 genes; Chr2: 3.00-Mb, 2709 genes; Chr3: 1.06-

Mb, 929 genes) and a plasmid (0.164-Mb, 157 genes), though the third chromosome 

can be eliminated under some conditions (Agnoli et al. 2012). To facilitate relative 
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fitness assays, I competed all B. cenocepacia HI2424 strains derived from the MA 

experiments with a B. cenocepacia HI2424 Lac+ strain, which is isogenic to B. 

cenocepacia HI2424, except for the introduction of the lacZ gene at the attTn7 site, 

which causes colonies to turn blue when exposed to 5-bromo-4-chloro-indolyl-β-

galactopyranoside (X-gal) (Choi et al. 2005). 

 MA experiments were conducted on tryptic soy agar plates (TSA) (30 g/liter 

tryptic soy broth powder, 15 g/liter agar) and were incubated at 37°. At the conclusion of 

the MA experiment, frozen stocks were prepared by growing a single colony from each 

lineage overnight in 5ml of tryptic soy broth (TSOY) (30 g/liter tryptic soy broth powder) 

at 37° and freezing at -80° in 8% DMSO. All relative fitness assays were conducted in 

18 x 150mm glass capped tubes with 5ml of liquid medium and were maintained at 37° 

in a roller drum (30 rpm). Relative fitness of each lineage was assayed in three different 

environments. First, I conducted relative fitness assays in TSOY, a medium that mimics 

the conditions of the MA experiment and is expected to be very permissive. Second, I 

conducted relative fitness assays in M9 Minimal Medium supplemented with 0.3% 

casamino acids (M9MM+CAA) (3 g/liter casamino acid powder, 1 g/liter glucose, 6 

g/liter sodium phosphate dibasic anhydrous, 3 g/liter potassium phosphate monobasic, 

1 g/liter ammonium chloride, 0.5 g/liter sodium chloride, 0.1204 g/liter magnesium 

sulfate, 0.0147 g/liter calcium chloride), a medium that is more nutrient restrictive than 

TSOY, but contains all essential amino acids except tryptophan. Lastly, I conducted 

relative fitness assays in M9 Minimal Medium (M9MM) (1 g/liter glucose, 6 g/liter 

sodium phosphate dibasic anhydrous, 3 g/liter potassium phosphate monobasic, 1 

g/liter ammonium chloride, 0.5 g/liter sodium chloride, 0.1204 g/liter magnesium sulfate, 
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0.0147 g/liter calcium chloride), which is a fully defined medium that is more restrictive 

than either TSOY or M9MM+CAA. Serial passaging during fitness assays was 

performed using 100-fold dilutions, so all relative fitness assays were conducted over 

the same number of generations, despite the moderately different carrying capacities of 

these mediums. All dilutions were performed using phosphate buffer saline (PBS) (80 

g/liter NaCl, 2 g/liter KCl, 14.4 g/liter Na2HPO4 • 2H2O, 2.4 g//liter KH2PO4) in 96-well 

plates. 

 

MA-WGS process. The mutation accumulation experiment that generated the 

mutational load for this study was reported in Chapter 1. Briefly, seventy-five 

independent lineages were founded from a single colony of B. cenocepacia HI2424 and 

independently propagated every 24 hours onto a fresh TSA plate for 217 days. Daily 

generations were estimated monthly by taking a single representative colony from each 

lineage following 24 hours of growth, placing it in 2 ml of PBS, then serially diluting and 

spread plating it on TSA. The number of viable cells in each colony was then used to 

calculate the number of generations elapsed between each transfer, and the average 

number of generations across all lineages was used as the number of generations per 

day for that entire month. By multiplying the number of generations per day for each 

month by the number of days in that month, then summing these totals over the course 

of the experiment, I calculated the total number of generations elapsed per MA lineage 

over the course of the MA experiment.  

 Genomic DNA was extracted from 1 ml of overnight TSB culture founded by 

forty-seven of the B. cenocepacia isolates that were stored at the conclusion of my MA 
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experiment. I used the Wizard Genomic DNA Purification kit for DNA extraction 

(Promega), all libraries were prepared using a modified Illumina Nextera protocol (Baym 

et al. 2015), and sequencing was performed with the 151-bp paired end platform on the 

Illumina HiSeq at the Hubbard Center for Genomic Studies at the University of New 

Hampshire (Chapter 1). Following fastQC analysis, all reads were mapped to the the B. 

cenocepacia HI2424 reference genome (LiPuma et al. 2002) with both the Burrows-

Wheeler aligner (BWA) (Li and Durbin 2009) and Novoalign (www.novocraft.com). The 

average depth of coverage across all forty-seven lines was 43x, but only forty-three of 

these lines were used in this study, and the average depth of coverage across these 

lines was 46x.  

 

Spontaneous mutation identification. All bpsms were identified as described in 

Chapter 1. Briefly, after using a combination of SAMtools and in house perl scripts to 

produce all read alignments for each position in each line (Li et al. 2009), a three step 

process was used to detect putative bpsms. First, pooled reads across all lines were 

used to generate an ancestral consensus base at each site in the reference genome, 

allowing me to correct differences between the published reference genome and the 

ancestral colony of this MA experiment. Second, reads from the individual lines were 

used to generate a lineage specific consensus base at each site in the reference 

genome for each lineage, as long as the site was covered by at least two forward and 

two reverse reads, and at least 80% of the reads identified the same base. Sites that did 

not meet these criteria were not analyzed in the respective lineage. Third, lineage 

specific consensus bases for each lineage were compared to the ancestral consensus 
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base at each site, and a putative bpsm was identified if they differed. This three step 

process was carried out independently using both the BWA and Novoalign alignments, 

and putative bpsms were considered genuine only if both pipelines independently 

identified the bpsm. Despite these lenient criteria, all of the bpsms that were identified at 

analyzed sites in this study had considerably greater coverage and consensus than the 

minimal criteria (Table D.1), demonstrating that they are unlikely to be false positives in 

low coverage regions. The frequency of sites that were not analyzed in each lineage 

varied from 0.01 to 0.18. Putative bpsms in these regions were estimated by multiplying 

the number of unanalyzed sites in each lineage by the overall B. cenocepacia bpsm rate 

calculated in this study (1.31 (0.08) • 10-10 /bp/generation) and the number of 

generations of mutation accumulation in each lineage (5554) (Table D.2).  

 Indels are inherently more difficult to identify than bpsms because gaps and 

simple sequence repeats (SSRs) reduce the accuracy of short-read alignment 

algorithms. To overcome these issues, I extracted all putative indels where at least 30% 

of the reads that covered the site identified the exact same indel (size and motif), as 

long as the site was covered by at least two forward and two reverse reads. These 

putative indels were then subject to a series of more strenuous filters based on 

consensus between the putative indels identified by the BWA alignment, the Novoalign 

alignment, and PINDEL (Ye et al. 2009; Dillon et al. 2015). Specifically, all putative 

indels where more than 80% of the reads identified the exact same indel in both the 

BWA and Novoalign alignments were considered genuine indels. For putative indels 

where only 30-80% of the reads identified the exact same indel, I parsed out only reads 

that had bases covering both the upstream and downstream regions of the indel (if it 
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was not in an SSR), and both the upstream and downstream regions of the SSR (if it 

was in an SSR). Using this subset of reads, I reassessed the frequency of reads that 

identified the exact same indel, allowing more accurate identification of indels involving 

the gain or loss of a single repeat within a SSR. These indels were considered genuine 

if more than 80% of the parsed reads identified the exact same indel and were 

discarded if they did not. Putative indels were also extracted using PINDEL, and were 

considered genuine if they were covered by at least six forward and six reverse reads, 

and at least 80% of the reads identified the exact same indel (Ye et al. 2009). Lastly, I 

analyzed the distribution of coverage between chromosomes and the 0.164-Mb plasmid 

to detect any plasmid copy number variants. As with bpsms, putative indels in regions 

that were not analyzed were estimated by multiplying the number of unanalyzed sites in 

each lineage by the overall indel rate calculated in this study (2.39 (0.34) • 10-11 

/bp/generation) and the number of generations of MA in each lineage (5554) (Table 

D.2). All indels identified in this study are also summarized in Table D.1. 

 

Quantifying relative fitness. To quantify the selection coefficients of each of the forty-

three derived MA lineages, I conducted three-day competitions between each MA 

lineage and the B. cenocepacia HI2424 Lac+ strain. These competitions were carried 

out independently in TSOY, M9MM+CAA, and M9MM, with four replicates being 

conducted for each lineage in each environment. The MA ancestral B. cenocepacia 

HI2424 strain was also competed against B. cenocepacia HI2424 Lac+ as a control, 

with four replicates for each environment. Selection coefficients were estimated as 

described previously, using the relative growth of the focal MA lineage and the B. 
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cenocepacia HI2424 Lac+ reference strain, normalized by the number of generations 

elapsed by the reference strain (7 ) (Chevin 2011; Perfeito et al. 2014). First, the 

difference in growth (Δ9:1) between the two strains was estimated as: 

Δ9:1 = ln 0=:
0>:

− ln 0=1
0>1

	 

where 0>: and 0>1 were the initial numbers of test and reference bacteria, respectively,  

and 0=:  and 0=1  were the final numbers of test and reference bacteria, respectively. 

Selection coefficients (/:1) were then calculated as:  

/:1 	= 	Δ9:1	/	7  

where 7, generations elapsed by the reference strain, is equal to:  

7	 = 	 @ABC
0=1
0>1

 

 For each replicate, all forty-three derived MA lineages, B. cenocepacia HI2424, 

and B. cenocepacia Lac+ were resurrected from frozen culture by inoculating them into 

5 ml of TSOY broth and incubating overnight in a roller drum at 30 rpm. Depending on 

which environment was being assayed, each strain was then transferred to fresh TSOY, 

M9MM+CAA, or M9MM via a 10,000-fold dilution and acclimated for 24 hours at 37° 

and 30 rpm. Following acclimation, forty-four competitions (forty-three MA lineages + 

control) were generated in the appropriate fresh medium at a 1:1 ratio via 100-fold 

dilution, and 30 ul from each was extracted to quantify the initial frequency of each 

competitor (0>:, 0>1). Competitions were then incubated for 72 hours at 37° and 30 rpm, 

being transferred to fresh media every 24 hours via a 100-fold dilution. At the conclusion 

of the 72 hour competition, 30 ul of the final culture was extracted to quantify the final 

frequency of each competitor (0=:, 0=1).  



	 111 

 To measure the initial frequency of each competitor, the extracted culture was 

diluted in PBS and 100 ul of the diluted sample was plated on a TSA + X-Gal plate. 

Specifically, in the TSOY competitions the samples were diluted to 10-4 and 1/3, in the 

M9MM+CAA competitions the samples were diluted to 10-4 and 1/2, and in the M9MM 

competitions the samples were diluted to 10-4. Following a 48 hour incubation, the 

number of white and blue colonies were quantified and used to calculate 0>: and 0>1, 

respectively, after accounting for the dilutions. Final frequencies were measured in the 

same way, except that an additional 10-2 dilution was required for each competition 

because the cultures were at carrying capacity. In addition, to calculate 0=: and 0=1, I 

had to account for the dilutions that were conducted prior to plating and the two 100-fold 

dilutions that were conducted during the three-day competition. Importantly, the 

selection coefficient of the B. cenocepacia HI2424 MA ancestor was not significantly 

different from 0 in any of environments (TSOY: s = -0.0002 (0.0020), M9MM+CAA: s = 

+0.0075 (0.0030), M9MM: s = -0.0016 (0.0034) (SEM)).  

 

Statistical analysis. All statistical analyses were performed in R Version 0.98.1091 

using the Stats analysis package (R Development Core Team 2013). For independent 

two-tailed t-tests, all p-values were corrected for multiple comparisons using a 

Benjamini-Hochberg correction (Table D.3), which ensures that my false positive rate 

remains below 5%, despite testing whether the selection coefficient differed significantly 

from 0 for forty-three lineages in each environment (Benjamini and Hochberg 1995). 

Corrected p-values that were below a threshold of 0.05 were considered significant. 

Linear regressions were used to evaluate the correlation between the number of 
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mutations in a lineage and its selection coefficient, as well as the correlation between 

the selection coefficients of lineages in different environments. Lastly, to test for effects 

of replicate, genotype, environment, and genotype*environment interaction on the 

fitness of each lineage, I performed an analysis of variance (ANOVA) on the cumulative 

dataset.  

 

RESULTS 

 We previously reported the rate and molecular spectrum of spontaneous 

mutations in wild-type B. cenocepacia, as determined from the cumulative results of a 

MA-WGS experiment involving forty-seven replicate lineages derived from B. 

cenocepacia HI2424 (Chapter 1). Each lineage was passaged through daily single-cell 

bottlenecks for 217 days, resulting in 5554 generations of MA per lineage. The average 

number of generations of growth per day within a colony declined from 26.16 (0.06) to 

24.92 (0.07) (SEM) over the course of the 5554 generations of MA, suggesting that 

some of the accumulated mutations had deleterious fitness effects. Here, I present a 

detailed picture of the distribution of fitness effects of the spontaneous mutations 

accumulated during this MA-WGS experiment using forty-three of replicate lineages, as 

the remaining four lineages were discarded because of a lack of sufficient coverage in 

the WGS data.  

 A detailed analysis of the mutations from the forty-three MA-WGS lineages used 

in this study is consistent with constant mutation rates and limited selection over the 

course of my MA-WGS experiment. Specifically, neither the distribution of bpsms or 

indels differed significantly from a Poisson distribution (bpsms: χ2 = 3.463, p = 0.943; 
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indels: χ2 = 0.280, p = 0.964), signifying that mutation rates did not vary across the forty-

three MA lineages. Limited purifying selection was supported by he fact that the ratio of 

synonymous to nonsynonymous bpsms did not differ from the expected ratio based on 

the codon-usage and %GC content at synonymous and non-synonymous sites in B. 

cenocepacia HI2424 (χ2 = 0.776, d.f. = 1, p = 0.378), while limited positive selection was 

supported by the lack genetic parallelism in the bpsm spectra across lineages (Table 

D.1). Both bpsms and indels were observed more frequently than expected in non-

coding DNA (bpsms: χ2 = 2.194, d.f. = 1, p = 0.139; indels: χ2 = 45.816, d.f. = 1, p < 

0.0001), but this pattern could be generated by selection against coding mutations, 

preferential mismatch repair in coding regions, or the mutation prone nature of repetitive 

DNA in non-coding regions, so has the potential to be misleading (Lee et al. 2012; 

Heilbron et al. 2014; Dillon et al. 2015). In any event, I estimate that the threshold 

selection coefficient below which genetic drift will overpower natural selection, as 

determined by 05	×	/	 = 1 in haploid organisms, is 0.078 (Chapter 1). Thus, while a 

small class of adaptive or deleterious mutations with effects in excess of s = +/- 0.078 

may be subject to the biases of natural selection (Kimura 1983; Elena et al. 1998; Zeyl 

and de Visser 2001; Hall et al. 2008), the vast vast majority of mutations that were 

observed in this study likely fixed irrespective of their fitness effects. 

 

Genetic basis of spontaneous mutations. The spontaneous bpsms and indels 

reported here are similar to those reported previously (Chapter 1), with two exceptions. 

First, I allowed for bpsms to be called in more than one lineage, resulting in the addition 

of two bpsms. These bpsms are assumed to have occurred in the ancestral colony, but 
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their presence in each lineage must be documented to accurately quantify the 

relationship between the fitness of each lineage and the mutations it harbors. Second, I 

did not analyze four of the lineages from the MA-WGS experiment in B. cenocepacia 

because less than 80% of their genomes had sufficient coverage to be analyzed for the 

presence of bpsms and indels (see Methods). This low coverage would render me blind 

to a considerable portion of the mutational load in these lineages, which warranted their 

exclusion.  

In sum, I have identified 233 bpsms, 42 short indels, and 4 plasmid-loss events 

distributed across the forty-three MA lineages analyzed in this study (Figure 1). The 

most common class of bpsms were missense bpsms (141), followed by synonymous 

bpsms (49), intergenic bpsms (37), and nonsense bpsms (6). Among indels, coding 

indels involving only a single gene (22) were slightly more common than intergenic 

indels (20), while loss of the 0.16-Mb plasmid, which encodes 157 genes, was observed 

in 4 lineages. Furthermore, I estimated false negative rates in each lineage as the 

number of sites that were not analyzed for mutations, multiplied by the product of 

experiment-wide bpsm and indel rates per base-pair per generation and the number of 

generations experienced by each lineage. However, because I cover the majority of 

each genome with sufficient depth to analyze both bpsms and indels, I estimate that an 

average of only 0.25 (0.03) additional bpsms and 0.05 (0.01) (SEM) additional indels 

would have been identified per lineage if the entire genome were analyzed (Table D.2). 

Overall, mutations were not uniformly distributed across the forty-three MA lineages, 

allowing me to analyze which mutation types are most likely to have fitness effects.  
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Figure 1. Distribution of base-substitution mutations (bpsms) and insertion-
deletion mutations (indels) across the forty-three Burkholderia cenocepacia 
mutation accumulation lineages analyzed in this study.  
 
 

Distribution of fitness effects. I measured the fitness effects of mutational load in 

each lineage following 5554 generations of MA by measuring their selection coefficients 

relative to the ancestral B. cenocepacia HI2424 strain in three different broth culture 

conditions. TSOY broth is a very permissive medium used to mimic the conditions of the 

MA experiment, M9MM+CAA is an amino-acid supplemented minimal medium that is 

less permissive than TSOY but more permissive than a strictly minimal medium, and 

M9MM is a fully defined minimal medium that is the least permissive of the three 

environments. In TSOY, 17 lineages had significantly reduced fitness and no lineages 

had significantly increased fitness (Figure 2A). The average fitness across all MA 

lineages in TSOY was -0.024 (0.005) (SEM), with a range of -0.111 to +0.037. Similarly, 

13 lineages had significantly reduced fitness in M9MM+CAA and none had significantly 

increased fitness (Figure 2B). The average fitness decline and the range across all MA 

lineages in M9MM+CAA were also similar to those observed in TSOY (Average: -0.020 
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(0.005) (SEM); Range: -0.116 to +0.006). Lastly, I observed 13 lineages with 

significantly reduced fitness in M9MM, but here, 4 other lineages had significantly 

increased in fitness (Figure 2C). Thus, the average fitness decline of the MA lineages in 

M9MM was only -0.013 (0.005) (SEM), despite having a similar overall range to TSOY 

and M9MM+CAA (-0.090 to +0.026). Overall, most MA lineages did not significantly 

decline in fitness in any of the environments after seven months of evolution under 

greatly minimized selection, despite accumulating substantial and variable mutational 

load (Figure 1).  

 
Figure 2. Distribution of the selection coefficients of each Burkholderia 
cenocepacia MA lineage relative to the ancestral B. cenocepacia HI2424 strain in 
tryptic soy broth (A), M9 minimal medium supplemented with casamino acids (B), 
and M9 minimal medium (C). Significance was determined from independent two-
tailed t-tests on four replicate fitness assays for each lineage. P-values were corrected 
for multiple comparisons using a Benjamini-Hochberg correction, and corrected p-
values that remained below 0.05 were considered significant.  
 

Significant correlations between the selection coefficients of individual MA 

lineages across environments suggests that experiment-wide mutational load was not 

especially pleiotropic (Figure 3). Specifically, linear regressions between the selection 

coefficients of each lineage in TSOY and both M9MM+CAA and M9MM demonstrated 

significantly positive relationships (TSOY-M9MM+CAA: F = 17.180, df = 41, p = 0.0002, 
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r2 = 0.2953; TSOY-M9MM: F = 8.613, df = 41, p = 0.0054, r2 = 0.1736). The relationship 

between selection coefficients of each lineage in M9MM+CAA and M9MM was also 

significant and explained a greater fraction of the variance than either of the TSOY 

regressions (F = 124.00, df = 41, p < 0.0001, r2 = 0.7515), which was expected given 

that these environments were more similar to each other than either is to TSOY (Figure 

3). However, there were examples of MA lineages that declined significantly in fitness in 

one environment but not others, suggesting that some mutations did have observable 

pleiotropic fitness effects in this study. A total of nine MA lineages only significantly 

reduced fitness in a single environment (four TSOY, two M9MM+CAA, three M9MM), 

eight MA lineages significantly reduced fitness in two of the environments, and six MA 

lineages significantly reduced fitness in all three environments. An experiment-wide 

ANOVA revealed significant effects of replicate (df = 3, SS = 0.0037, F = 10.0220, P < 

0.0001), genotype (df = 42, SS = 0.3302, F = 63.7212, P < 0.0001), environment (df = 2, 

SS = 0.0190, F = 76.9015, P < 0.0001), and genotype x environment interaction (df = 

84, SS = 0.1166, F = 11.2485, P < 0.0001). These findings highlight the environmental 

dependence of the fitness effects of several individual spontaneous mutations, despite 

the fact that the general properties of the distribution of fitness effects in my MA 

lineages are similar across the three environments that I tested (Figure 2; Figure 3). 
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Figure 3. Relationship between selection coefficients of all Burkholderia 
cenocepacia MA lineages in each of the different pairs of environments. All linear 
regressions are significant, but much of the variance is unexplained (A: F = 17.18, df = 
41, p = 0.0002, r2 = 0.2953; B: F = 8.613, df = 41, p = 0.0054, r2 = 0.1736; C: F = 
124.00, df = 41, p < 0.0001, r2 = 0.7515). 
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 Despite harboring multiple mutations, the majority of MA lineages did not have 

significantly different fitness from the ancestral reference strain and there was not a 

significant correlation between the number of spontaneous mutations in a line and their 

absolute selection coefficients in any environment (TSOY: F = 1.401, df = 41, p = 

0.2434, r2 = 0.0330; M9MM+CAA: F = 1.354, df = 41, p = 0.2513, r2 = 0.0320; M9MM: F 

= 2.957, df = 41, p = 0.0930, r2 = 0.0673) (Figure D.1). After adding the 11 additional 

mutations presumed to have been missed in the unanalyzed regions across all of my 

MA lines, I estimate that I accumulated 290 spontaneous mutations, with an average of 

6.73 (0.36) (SEM) mutations per lineage. Because each lineage harbored multiple 

mutations, this suggests that the majority of spontaneous mutations had undetectable 

fitness effects. Specifically, by dividing the average selection coefficient of each line by 

the number of mutations that it harbors, I estimate that the average fitness effect (s) of a 

single mutation was -0.0040 (0.0008) in TSOY, -0.0031 (0.0007) in M9MM+CAA, and -

0.0017 (0.0007) (SEM) in M9MM. 

The lack of significant fitness declines in many lineages harboring multiple 

mutations and the lack of significant correlation between the number of mutations in a 

lineage and its fitness suggest that most of the losses and gains in fitness were caused 

by rare, single spontaneous mutations with significant fitness effects. Therefore, I 

estimate that only 17/290 mutations significantly affected fitness in TSOY, 13/290 

mutations significantly affected fitness in M9MM+CAA, and 17/290 mutations 

significantly affected fitness in M9MM. Based on these estimates, the deleterious 

mutation rates (Ud) are 7.12 ×  10-5 /genome/generation in TSOY, 5.44 ×  10-5 

/genome/generation in M9MM+CAA, and 5.44 × 10-5 /genome/generation in M9MM. 
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Furthermore, in analyzing only lineages that experienced significant fitness declines, I 

estimate that the average effects of significantly deleterious mutations are -0.048 

(0.007) in TSOY, -0.053 (0.011) in M9MM+CAA, and -0.048 (0.009) in M9MM (SEM). 

Although I observe no significantly beneficial mutations in TSOY or M9MM+CAA, my 

data suggest that the beneficial mutation rate (Ub) is 1.68 × 10-5 /genome/generation 

and the average significantly beneficial mutation has a selection coefficient of 0.013 

(0.005) in M9MM, assuming that all gains in fitness were driven by a single beneficial 

mutation.  

 
 
Molecular basis of the distribution of fitness effects. Without sequencing and 

measuring fitness at intermediate time-points or genetically engineering B. cenocepacia 

HI2424 strains that harbor only single spontaneous mutations, it is difficult to pinpoint 

which mutations generate the fitness declines in my MA lineages. However, I can 

examine whether there is any relationship between the forms of mutational load 

harbored by each lineage and the fitness of those lineages. Specifically, I tested 

whether any of the mutation types from Figure 1 were overrepresented in lineages that 

had significantly reduced fitness (Table 1). Interestingly, the only mutation that was 

significantly overrepresented in lineages with reduced fitness in TSOY was the loss of 

the 0.164-Mb plasmid (χ2 = 6.118, d.f. = 1, p = 0.013). All four of the MA lineages that 

had lost the plasmid had significantly reduced fitness in TSOY, resulting in an average 

selection coefficient of -0.060 (0.007) (SEM). The four MA lineages that had lost the 

0.164-Mb plasmid were also significantly deleterious in M9MM (χ2 = 9.231, d.f. = 1, p = 

0.002), with an average selection coefficient of -0.043 (0.018) (SEM), but the 
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deleterious effects of plasmid loss appear to be mitigated in M9MM+CAA, where only 

one of the lineages that had lost the plasmid had significantly reduced fitness.  

 Although no other mutation types were significantly over-represented among 

lineages that had reduced fitness, it is worth noting that there were more coding indels, 

nonsense bpsms, and missense bpsms than expected in the lineages with reduced 

fitness for all three environments, with the exception of coding indels in M9MM+CAA 

(Table 1). In contrast, intergenic bpsms and indels appear to be evenly distributed 

between lineages with significantly reduced fitness and those where s was not 

significantly different from 0, suggesting that few if any intergenic mutations from this 

study have deleterious fitness effects. Similarly, the synonymous bpsms observed in 

this study do not appear to have deleterious effects, as they are observed less than 

expected in lineages with reduced fitness in TSOY and are evenly distributed between 

neutral and reduced fitness lineages in M9MM+CAA and M9MM (Table 1). Overall, 

these results support the notion that coding indels, nonsense bpsms, and missense 

mutations are more likely to have deleterious effects than intergenic and synonymous 

mutations.  
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Table 1. Chi-test statistics comparing the observed number of mutations in 
lineages with significantly reduced fitness to the expected number of mutations 
in lineages with significantly reduced fitness, as determined by the proportion of 
total lineages that had significantly reduced fitness.  
Mutation Type Environment Observed Expected χ2 df p 
Intergenic Bpsm TSOY 13 14.63 0.2996 1 0.5841 
Synonymous Bpsm TSOY 16 19.37 0.9708 1 0.3245 
Missense Bpsm TSOY 60 55.74 0.5374 1 0.4635 
Nonsense Bpsm TSOY 4 2.37 1.8477 1 0.1741 
Intergenic Indel TSOY 8 7.91 0.0018 1 0.9661 
Coding Indel TSOY 12 8.70 2.0736 1 0.1499 
Plasmid Loss TSOY 4 1.58 6.1176 1 0.0134 
Total Mutations TSOY 117 110.30 0.6726 1 0.4121 
Intergenic Bpsm M9MM+CAA 12 11.19 0.0849 1 0.7708 
Synonymous Bpsm M9MM+CAA 15 14.81 0.0033 1 0.9539 
Missense Bpsm M9MM+CAA 47 42.63 0.6427 1 0.4227 
Nonsense Bpsm M9MM+CAA 3 1.81 1.1115 1 0.2917 
Intergenic Indel M9MM+CAA 6 6.05 0.0005 1 0.9819 
Coding Indel M9MM+CAA 6 6.65 0.0914 1 0.7624 
Plasmid Loss M9MM+CAA 1 1.21 0.0519 1 0.8198 
Total Mutations M9MM+CAA 90 84.35 0.5427 1 0.4613 
Intergenic Bpsm M9MM 10 11.19 0.1803 1 0.6712 
Synonymous Bpsm M9MM 15 14.81 0.0033 1 0.9539 
Missense Bpsm M9MM 50 42.63 1.8274 1 0.1764 
Nonsense Bpsm M9MM 2 1.81 0.0274 1 0.8686 
Intergenic Indel M9MM 6 6.05 0.0005 1 0.9819 
Coding Indel M9MM 8 6.65 0.3921 1 0.5312 
Plasmid Loss M9MM 4 1.21 9.2308 1 0.0024 
Total Mutations M9MM 95 84.35 1.9278 1 0.1650 
 

 

DISCUSSION 

 Combining high-throughput fitness measurements with MA-WGS experiments 

can dramatically advance our understanding of the distribution of fitness effects of 

spontaneous mutations in diverse organisms. My study combined the results of a MA-

WGS experiment in B. cenocepacia with fitness measurements in three environments, 

allowing me to quantify the impacts of different forms of mutational load on fitness. I find 
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that many lineages in TSOY, M9MM+CAA, and M9MM did not have selection 

coefficients that were significantly different from s = 0 and that most lineages that did 

had reduced fitness. Given that each lineage harbors between two and fourteen 

spontaneous mutations, the most likely explanation for this observation is that the vast 

majority of spontaneous mutations have minimal effects on fitness across this range of 

environments. Under the assumption that the significant reductions in lineage fitness 

were driven mostly by single deleterious mutations (Davies et al. 1999; Heilbron et al. 

2014), I also obtain new estimates of the average effect of spontaneous mutations (s), 

the deleterious mutation rate (UD), and the average effect of deleterious mutations (sD) 

in all three environments, which suggests that the general features of the distribution of 

fitness effects do not differ significantly between these conditions. I also provide 

evidence that loss of the 0.164-Mb plasmid consistently reduces fitness in TSOY and 

M9MM but not M9MM+CAA, while nonsense bpsms, missense bpsms, and coding 

indels are more likely to have contributed to the deleterious mutational load than 

synonymous bpsms, intergenic bpsms, and intergenic indels.  

 Although a few select studies have claimed that a substantial fraction of 

spontaneous mutations are beneficial under certain conditions (Shaw et al. 2002; 

Silander et al. 2007; Dickinson 2008), evidence from diverse sources strongly suggests 

that the effect of most spontaneous mutations is to reduce fitness (Kibota and Lynch 

1996; Keightley and Caballero 1997; Fry et al. 1999; Vassilieva et al. 2000; Wloch et al. 

2001; Zeyl and de Visser 2001; Keightley and Lynch 2003; Trindade et al. 2010; 

Heilbron et al. 2014). My data on the selection coefficients of forty-three MA lineages in 

TSOY supports the notion that the majority of spontaneous mutations are neutral or 
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deleterious. Specifically, among lineages whose selection coefficients are significantly 

different from 0 in TSOY, all of them are negative, with selection coefficients ranging 

from s = -0.112 to s = -0.014. Selection coefficients in TSOY across these lineages also 

do not appear to have a clear mode, but whether this is the result of a complex and 

multimodal distribution of deleterious mutations (Zeyl and de Visser 2001; Eyre-Walker 

and Keightley 2007) or a lack of ability to detect deleterious mutations with especially 

small and/or large effects is uncertain. Specifically, peaks in the distribution of 

deleterious mutations may exist outside the detection range of this study, either 

because deleterious effects in excess of s = -0.078 were exposed to the sieve of natural 

selection or because I lacked the statistical power to distinguish a number of small 

deleterious selection coefficients from neutrality. Among lineages whose selection 

coefficients are not significantly different from 0, most are clearly negative (Chi-square 

test; χ2 = 7.54, df = 1, p = 0.0060) (Figure 2), which suggests that at least some of these 

lineages do harbor moderately deleterious mutations and there may be a peak in the 

distribution of deleterious mutations where mutations have very small deleterious 

effects. 

 Whether the environment affects the distribution of fitness effects of spontaneous 

mutations has also been the subject of considerable debate. Specifically, some studies 

have shown that larger declines in fitness are experienced in harsher environments, 

while others have not (Martin and Lenormand 2006; Halligan and Keightley 2009; 

Kraemer et al. 2015). In M9MM+CAA and M9MM, I was able to statistically distinguish 

selection coefficients from s = 0 with greater precision (s < -0.03 in M9MM+CAA and s < 

-0.01 or s>0.01 in M9MM) because the formulations for these mediums are more 
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defined than TSOY. These mediums are also expected to be harsher than TSOY 

because nutrients are more limited, but I found a similar distribution of effects among 

the selection coefficients of lineages in these environments (Figure 2). Specifically, most 

lineages that were not neutral had reduced fitness and there was no clear mode in the 

distribution of deleterious effects. However, in M9MM there are four lineages that have 

significantly increased fitness and there are as many lineages whose selection 

coefficients are non-significantly greater than 0 as there are lineage whose selection 

coefficients are non-significantly less than 0 (Figure 2). This suggests that fewer 

spontaneous mutations have deleterious effects on fitness in M9MM, possibly because 

a greater proportion of genes are unused when metabolizing only a single carbon 

substrate. Overall, these data support the notion that the environment can impact the 

fitness effects of some individual spontaneous mutations, despite the fact that the 

overall distribution of fitness effects is similar between the three environments assayed 

in this study.  

 Although I cannot fully discredit the possibility that lineages that did not 

experience significant declines in fitness simply contain both beneficial and deleterious 

mutations that cancel each other out, the most parsimonious explanation for these 

distributions is that most spontaneous mutations had very minimal affects on fitness, 

and a few, rare, large-effect mutations drove the significant fitness declines in some 

lineages (Davies et al. 1999; Heilbron et al. 2014). By dividing the selection coefficient 

in each lineage by the number of mutations that it harbors, I estimate that the mean 

fitness effect of mutations observed in this study was less than s = 0.01 in all three 

environments, and that the vast majority of mutations had near neutral affects on 
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fitness. These estimates are remarkably similar to estimates from prior MA studies that 

harbored fully characterized mutational load in P. aeruginosa and S. cereviseae (Lynch 

et al. 2008; Heilbron et al. 2014), but are lower than estimates derived from 

unsequenced MA lineages, where the number and type of mutations is unknown 

(Halligan and Keightley 2009; Trindade et al. 2010). However, while this suggests that 

the vast majority of spontaneous mutations in B. cenocepacia have very low selection 

coefficients in the laboratory, it should not imply that all of these mutations are 

effectively neutral in natural conditions. In fact, sequence analyses in enteric bacteria 

have revealed that fewer than 2.8% of amino-acid changing mutations are evolving 

neutrally, and this may be an overestimate due to the presence of adaptive mutations 

(Charlesworth and Eyre-Walker 2006; Eyre-Walker and Keightley 2007).   

Considering only lineages that have significantly reduced selection coefficients, I 

also estimated the deleterious mutation rates (UD) and the mean fitness effects of 

deleterious mutations (sD) in each environment. However, it is important to acknowledge 

three essential caveats to these estimates. First, I assume that only a single deleterious 

mutation per lineage contributed to the selection coefficient and that its effects are 

independent of the other mutations in the MA lineage. My data and a prior studies 

support that rare large-effect mutations will disproportionately drive the fitness declines 

in MA lineages, even when they harbor hundreds of mutations (Davies et al. 1999; 

Heilbron et al. 2014). The possibility of pervasive epistasis between spontaneous 

deleterious mutations does exist (Mukai 1964b; Dickinson 2008; Schaack et al. 2013), 

but a recent study in yeast showed that synergistic epistasis need not be invoked to 

explain accelerated fitness decline in MA experiments (Jasmin and Lenormand 2015). 
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Second, my inability to distinguish the fitness effects of a subset of spontaneous 

deleterious mutations from s = 0 will generate a slight downward biased in my estimates 

of UD and sD because selection coefficients with small magnitudes are excluded. Third, 

highly deleterious and lethal mutations that had an s < -0.078 were subject to the biases 

of natural selection in my MA experiment, which will generate a slight downward bias in 

my estimates of UD and a slight upward bias in my estimates of sD, because selection 

coefficients with high magnitudes are more likely to be purged by natural selection.  

In spite of these potential biases, my estimates of UD and sD in all three 

environments are similar to prior estimates in E. coli (Kibota and Lynch 1996; Trindade 

et al. 2010) in all environments (TSOY: UD = 7.12 × 10-5 /genome/generation, sD = -

0.048; M9MM+CAA: UD = 5.44 × 10-5, sD = -0.053; M9MM: UD = 5.44 × 10-5, sD = -

0.048). However, it is notable that my UD estimates are all slightly lower than the 

estimates from the previous studies and my sD estimates are of greater absolute 

magnitude, which is consistent with a failure to differentiate some moderately 

deleterious mutations from s = 0. Significantly beneficial mutations were only observed 

in M9MM and I did not observe any lineages where s was greater than +0.03. Although 

these limited observations prevent me from performing any detailed analyses on the 

rate and effects of beneficial mutations, they support the notion that beneficial mutations 

are rare relative to deleterious mutations (Keightley and Lynch 2003). Furthermore, they 

suggest that the majority of beneficial mutations likely provide moderate benefits, even 

though the beneficial mutations that often fix in experimental populations can have large 

beneficial effects (Lenski et al. 1991; Ostrowski et al. 2005; Lang et al. 2013b; Levy et 

al. 2015).  
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 It is a well-established dogma in evolutionary biology that mutations that disrupt 

coding sequences are most likely to have fitness effects, but this has never been 

quantitatively tested with naturally accumulated mutations. Specifically, mutations that 

frequently generate non-functional proteins, like nonsense bpsms or coding indels, are 

expected to have the most deleterious effects, followed by missense bpsms that mostly 

generate modified proteins, then synonymous and non-coding mutations that do not 

alter protein sequences. The fitness effects of plasmid gain and loss are less certain, as 

the size and genetic contents of plasmids vary, but they may be energetically expensive 

to maintain (Smith and Bidochka 1998). Consequently, plasmids may be selectively lost 

in permissive laboratory environments where maintenance of the plasmid has a fitness 

cost (Lenski and Bouma 1987; Smith and Bidochka 1998). My data suggest that 

although loss of the 0.164-Mb plasmid in B. cenocepacia occurs at an appreciable rate 

in the absence of selection during my MA experiments, it is universally deleterious to 

lose the plasmid in TSOY and M9MM. However, these effects appear to be mitigated in 

M9MM+CAA, suggesting that these fitness loses are related to amino acid synthesis. 

Overall, these data suggest that in permissive laboratory conditions, the loss of some 

plasmids can be deleterious and not just beneficially more efficient as is widely 

presumed. Other mutation types were not significantly overrepresented in lineages with 

significantly reduced fitness (Table 1), but I do find that there are slightly more 

nonsense bpsms, missense bpsms, and coding indels than expected in lineages with 

significantly reduced fitness. This supports the assertion that these protein modifying 

mutations are more likely to affect fitness than synonymous or intergenic mutations, and 

that most synonymous and intergenic mutations do not measurably affect fitness, even 
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though they can be under selective constraints (Eyre-Walker and Keightley 2007; Bailey 

et al. 2014).   

The rate and distribution of fitness effects of spontaneous mutations are 

fundamental evolutionary quantities that will help explain a number of evolutionary 

phenomena, including the preservation of genetic variation (Charlesworth et al. 1993, 

2009; Charlesworth and Charlesworth 1998), the evolution of recombination (Muller 

1964; Kondrashov 1988; Otto and Lenormand 2002; Roze and Blanckaert 2014), the 

evolution of mutator alleles (Sniegowski et al. 1997; Tenaillon et al. 1999), and the 

mutational meltdown of small populations (Lande 1994; Lynch et al. 1995, 1999; 

Schwander and Crespi 2009). By measuring the fitness effects of MA lineages with fully 

characterized mutational load, I provide a uniquely systematic study of the rate and 

fitness effects of naturally accumulated mutations with known genetic bases, 

demonstrating that the vast majority of spontaneous mutations accumulated in B. 

cenocepacia MA lines are neutral or deleterious for fitness, and that the fitness of 

individual mutations can be environmentally dependent, even though the general 

features of the distribution of fitness effects are similar in different environments. In 

concert with data from several other species (Kibota and Lynch 1996; Keightley and 

Caballero 1997; Fry et al. 1999; Vassilieva et al. 2000; Wloch et al. 2001; Zeyl and de 

Visser 2001; Keightley and Lynch 2003; Trindade et al. 2010; Heilbron et al. 2014) and 

my own preliminary analyses of the fitness of the Vibrio fischeri and Vibrio cholerae MA-

WGS from Chapter 2 (Figure D.2; Figure D.3), the deleterious nature of spontaneous 

mutations suggests a bleak outlook for asexual species at small population sizes 

(Sniegowski and Lenski 1995; Lynch et al. 1999). However, because the nature of a 
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number of deleterious mutations may depend on the environment or the genetic 

background, we must continue to consider the effects of spontaneous mutations across 

multiple environments to understand their true nature.  
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Appendix A Chapter I Supplemental Material 

 

Figures A.1-6 and Tables A.1-2 
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Figure A.1. Estimates of the average number of generations per day experienced 
by the Burkholderia cenocepacia mutation accumulation lineages. Each 
measurement was taken using the average of ten representative lineages per MA 
experiment and measurement error is such that error bars representing 95% confidence 
intervals are not visible outside the markers. 
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Figure A.2. Frequency distributions of the number of base-substitution (bpsm) 
and insertion-deletion (indel) mutations per lineage in the Burkholderia 
cenocepacia mutation accumulation (MA) experiment. Neither the distribution for 
bpsm (A) or indels (B) differs significantly from a Poisson distribution (bps: χ2 = 1.81, p = 
0.99; indels: χ2 = 0.48, p = 0.92).  
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Figure A.3. Chromosome size (A), expression (B), and evolutionary rate (C) 
differences between the three chromosomes of Burkholderia cenocepacia.  
Chromosome sizes were obtained from the complete B. cenocepacia H!2424 genome 
(NCBI), expression data was derived using RNAseq as described in (Gout et al. 2013), 
and evolutionary rates were obtained from (Morrow and Cooper 2012).  
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Figure A.4. Relationship between base-substitution mutation (bpsm) rate per 
effective genome size per generation with effective population size (NE). Base-
substitution mutation rates were measured in five multicellular eukaryotes (red), seven 
unicellular eukaryotes (black), and eight prokaryotes (blue; B. cenocepacia – green) 
(Sung et al. 2012a). The log-linear regression is highly significant (r2=0.85, p<0.0001, 
df=19).  
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Figure A.5. Conditional relative substitution rates at seven Burkholderia 
cenocepacia loci, including atpD, gltB, gyrB, lepA, phaC, recA, and trpB. Relative 
conditional substitution rates are estimated by assuming that the most common 
nucleotide at each site is ancestral and any deviation from that nucleotide is caused by 
a single mutation. Substitution rates were calibrated to the nucleotide content at 
polymorphic sites for each gene, whereby only covered sites capable of producing a 
given substitution are used in the denominator of each calculation.   
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Figure A.6. Ratio of coding (black) to non-coding (grey) base-substitution 
mutations (bpsms) for each Burkholderia cenocepacia bpsm type. 
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Table A.1. All base-substitution mutations (bpsms) identified in 47 independent 
MA lineages when aligned to Burkholderia cenocepacia HI2424 (NC_008542; 
NC_008543; NC_008544; NC_008545) with BWA and Novoalign. 

https://drive.google.com/drive/folders/0Bz0jXLefrfhaYWlnZUtkSXR4X00  
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Table A.2. All insertion-deletion (indel) mutations identified in 47 independent MA 
lineages when aligned to Burkholderia cenocepacia HI2424 (NC_008542; 
NC_008543; NC_008544; NC_008545). 

https://drive.google.com/drive/folders/0Bz0jXLefrfhaYWlnZUtkSXR4X00 
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Appendix B Chapter II Supplemental Material 

 

Figures B.1-2 and Tables B.1-4 
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Figure B.1. Estimates of the average number of generations per day experienced 
by the Vibrio fischeri wild-type, Vibrio cholerae wild-type, Vibrio fischeri ΔmutS, 
and Vibrio cholerae ΔmutS mutation accumulation lineages. Each measurement 
was taken using the average of ten representative lineages per MA experiment and 
measurement error is such that error bars representing 95% confidence intervals are 
not visible outside of the markers.  
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Figure B.2. Relationship between base-substitution mutation (bpsm) rate and 
insertion-deletion (indel) rate per effective genome size per generation with 
effective population size (NE). Four multicellular eukaryotes are shown in red, three 
unicellular eukaryotes are shown in black, and eight prokaryotes are shown in blue. 
Vibrio fischeri and Vibrio cholerae wild-type bpsm and indel rates rates estimated in this 
study are highlighted in green. The log-linear regressions are highly significant for both 
bpsm rate (r2 = 0.86, p < 0.0001, df = 14) and indel rate (r2 = 0.94, p < 0.0001, df = 14). 
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Table B.1. All base-substitution mutations (bpsms) identified in the V. fischeri 
wild-type, V. cholerae wild-type, V. fischeri ΔmutS, and V. cholerae ΔmutS MA 
lineages when aligned to their respective reference genomes.  

https://drive.google.com/drive/folders/0Bz0jXLefrfhaYWlnZUtkSXR4X00 
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Table B.2. All insertion-deletion mutations (indel) identified in the V. fischeri wild-
type, V. cholerae wild-type, V. fischeri ΔmutS, and V. cholerae ΔmutS MA lineages 
when aligned to their respective reference genomes. 

https://drive.google.com/drive/folders/0Bz0jXLefrfhaYWlnZUtkSXR4X00 
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Table B.3. Conditional base-substitution mutation (bpsm) rates for wild-type V. 
fischeri and V. cholerae in different replication timing regions. Early chr1 regions 
are regions on chr1 replicated prior to the initiation of chr2 replication, late chr1 regions 
are regions on chr1 replicated concurrently with chr2, and chr2 regions are the bpsm 
rates on chr2 itself. 
Species Bps Type Early chr1 Late chr1 Chr2 

Avg SEM Avg SEM Avg SEM 
V. fischeri A:T>G:C 4.25⋅10-11 1.37⋅10-11 3.57⋅10-11 1.28⋅10-11 5.43⋅10-11 1.47⋅10-11 
 G:C>A:T 1.69⋅10-10 3.24⋅10-11 1.43⋅10-10 3.74⋅10-11 2.24⋅10-10 4.43⋅10-11 
 A:T>T:A 4.25⋅10-12 4.30⋅10-12 9.78⋅10-12 6.91⋅10-12 4.80⋅10-12 4.85⋅10-12 
 G:C>T:A 1.10⋅10-10 2.73⋅10-11 1.98⋅10-10 4.12⋅10-11 2.78⋅10-10 4.86⋅10-11 
 A:T>C:G 3.83⋅10-11 1.18⋅10-11 3.91⋅10-11 1.47⋅10-11 3.84⋅10-11 1.44⋅10-11 
 G:C>C:G 4.54⋅10-11 1.87⋅10-11 1.58⋅10-11 1.12⋅10-11 8.17⋅10-12 8.26⋅10-12 
V. cholerae A:T>G:C  3.89⋅10-11 1.10⋅10-11 2.74⋅10-11 1.18⋅10-11 1.08⋅10-11 7.67⋅10-12 
 G:C>A:T 1.12⋅10-10 1.85⋅10-11 7.92⋅10-11 2.11⋅10-11 1.23⋅10-10 2.50⋅10-11 
 A:T>T:A 9.72⋅10-12 5.55⋅10-12 5.47⋅10-12 5.52⋅10-12 1.08⋅10-11 7.66⋅10-12 
 G:C>T:A 4.18⋅10-11 1.18⋅10-11 3.05⋅10-11 1.59⋅10-11 4.93⋅10-11 1.63⋅10-11 
 A:T>C:G 1.94⋅10-11 8.91⋅10-12 2.74⋅10-11 1.18⋅10-11 3.25⋅10-11 1.68⋅10-11 
 G:C>C:G 6.97⋅10-12 4.93⋅10-12 6.10⋅10-12 6.16⋅10-12 1.85⋅10-11 1.05⋅10-11 
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Table B.4. Relative frequencies of insertion-deletion mutations observed in the 
wild-type and mutator mutation accumulation experiments with V. fischeri and V. 
cholerae. Chi-square tests were conducted to test whether indels in each size category 
were significantly over-represented in the mutator lineages after correcting for 
differences in total number of sites analyzed across all lineages and the number of 
generations in the wild-type and mutator experiments. 
Species Indel Indels Observed Expected Frequencies 

χ2 df p Length Wt Mut Wt Mut 
V. fischeri 1 12 352 0.942 0.058 5460.000 1 <0.0001 
 2  0 11 0.942 0.058 177.200 1 <0.0001 
 3  0 5 0.942 0.058 80.542 1 <0.0001 
 4  1 0 0.942 0.058 0.062 1 0.803 
 5  2 0 0.942 0.058 0.124 1 0.725 
 6  4 2 0.942 0.058 8.238 1 0.004 
 7 19 4 0.942 0.058 5.572 1 0.018 
 8  3 0 0.942 0.058 0.186 1 0.666 
 9  0 0 0.942 0.058 - - - 
 10  0 2 0.942 0.058 32.217 1 <0.0001 
V. cholerae 1  8 233 0.920 0.080 2567.000 1 <0.0001 
 2  0 30 0.920 0.080 343.900 1 <0.0001 
 3  2 7 0.920 0.080 59.332 1 <0.0001 
 4  2 0 0.920 0.080 0.174 1 0.676 
 5  0 0 0.920 0.080 - - - 
 6  0 1 0.920 0.080 11.462 1 0.001 
 7  0 0 0.920 0.080 - - - 
 8  0 0 0.920 0.080 - - - 
 9  1 1 0.920 0.080 4.775 1 0.029 
 10  2 0 0.920 0.080 0.174 1 0.676 
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Appendix C Chapter III Supplemental Material 

 

Tables C.1-4 
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Table C.1. All base-substitution mutations (bpsms) identified in the V. fischeri 
ΔmutS, V. cholerae ΔmutS, V. fischeri wild-type, V. cholerae wild-type, and B. 
cenocepacia wild-type MA lineages when aligned to their respective reference 
genomes.  

https://drive.google.com/drive/folders/0Bz0jXLefrfhaYWlnZUtkSXR4X00 
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Table C.2. Linear regression statistics for correlations between the base-
substitution mutation (bpsm) rates in concurrently replicated regions of opposing 
replichores in Vibrio fischeri ΔmutS at various interval lengths. Bpsm rates are 
calculated as the number of mutations observed in each interval, divided by product of 
the total number of sites analyzed in that interval across all lines and the number of 
generations of mutation accumulation. 
Chromosome Interval Length + or - F df p r2 

Chr1a 500 Kb + 4.365 1, 1 0.284 0.814 
 250 Kb + 13.680 1, 4 0.021 0.774 
 100 Kb + 10.980 1, 13 0.006 0.458 
 50 Kb + 12.810 1, 27 0.001 0.322 
 25 Kb + 9.355 1, 56 0.003 0.143 
 10 Kb + 8.267 1, 143 0.005 0.055 
Chr2b 500 Kb      NA        NA      NA      NA     NA 
 250 Kb + 1.205 1, 1 0.470 0.546 
 100 Kb - 0.021 1, 6 0.891 0.003 
 50 Kb + 0.752 1, 12 0.403 0.059 
 25 Kb + 2.634 1, 25 0.117 0.095 
 10 Kb + 1.416 1, 65 0.238 0.021 
a The final intervals on each of the replichores of chr1 are of equal length, but shorter than the specified 
interval length to account for the fact that the size of the chromosome is not exactly divisible by the 
interval length.   
b The chr2 intervals are calibrated to reflect their concurrent replication with chromosome 1 intervals. As 
such, the final intervals on each replichore are shorter than the specified interval length but equal to each 
other and the final intervals of chr1, while the first intervals on each replichore are equal to each other but 
shorter than the specified interval length.  
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Table C.3. Linear regression statistics for correlations between the base-
substitution mutation (bpsm) rates in concurrently replicated regions of opposing 
replichores in Vibrio cholerae ΔmutS at various interval lengths. Bpsm rates are 
calculated as the number of mutations observed in each interval, divided by product of 
the total number of sites analyzed in that interval across all lines and the number of 
generations of mutation accumulation. 
Chromosome Interval Length + or - F df p r2 

Chr1 500 Kb + 61.550 1, 1 0.081 0.984 
 250 Kb + 4.445 1, 4 0.103 0.526 
 100 Kb + 6.759 1, 13 0.022 0.342 
 50 Kb + 4.441 1, 28 0.044 0.137 
 25 Kb + 5.083 1, 58 0.028 0.081 
 10 Kb + 0.722 1, 148 0.397 0.005 
Chr2 500 Kb NA        NA      NA     NA      NA 
 250 Kb + 3.698 1, 1 0.305 0.787 
 100 Kb - 0.063 1, 4 0.814 0.016 
 50 Kb - 4.267 1, 10 0.066 0.299 
 25 Kb - 1.948 1, 21 0.177 0.085 
 10 Kb + 0.091 1, 54 0.769 0.002 
a The final intervals on each of the replichores of chr1 are of equal length, but shorter than the specified 
interval length to account for the fact that the size of the chromosome is not exactly divisible by the 
interval length.   
b The chr2 intervals are calibrated to reflect their concurrent replication with chromosome 1 intervals. As 
such, the final intervals on each replichore are shorter than the specified interval length but equal to each 
other and the final intervals of chr1, while the first intervals on each replichore are equal to each other but 
shorter than the specified interval length.  
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Table C.4. Sum of the residuals between the bpsm rates on chromosome 2 (chr2) 
and the bpsm rates on chromosome 1 (chr1), when the 100 Kb intervals on each 
replichore of chr2 are mapped to every possible replication timing location on 
chr1 for all MA experiments. The lowest sum of the residuals, corresponding to the 
best fit for the chr2 intervals on chr1 for each analysis is bolded and underlined. 
Ma Lines First chr1 Intervala Last chr1 Intervala Sum of Residuals 
Vf-mut 1 8 19.69 
 2 9 18.14 
 3 10 19.45 
 4 11 22.14 
 5 12 26.70 
 6 13 25.25 
 7 14 18.13 
 8 15 14.01 
Vc-mut 1 6 3.84 
 2 7 3.88 
 3 8 5.21 
 4 9 5.76 
 5 10 5.33 
 6 11 5.46 
 7 12 5.06 
 8 13 4.86 
 9 14 3.45 
 10 15 2.53 
Vf-wt 1 8 19.34 
 2 9 18.98 
 3 10 19.86 
 4 11 18.09 
 5 12 21.47 
 6 13 19.45 
 7 14 18.14 
 8 15 19.69 
Vc-wt 1 6 3.84 
 2 7 3.88 
 3 8 5.21 
 4 9 5.76 
 5 10 5.33 
 6 11 5.46 
 7 12 5.06 
 8 13 9.95 
 9 14 9.00 
 10 15 6.74 
Bc-wt 1 16 29.45 
 2 17 28.68 
 3 18 26.97 
a The first chr1 interval for each analysis is the first bpsm interval on each replichore of chr1 that the chr2 
bpsm intervals are mapped to, while the last chr1 interval is where the the final chr2 interval in the 
analysis is mapped. 
  



	 167 

Appendix D Chapter IV Supplemental Material 

 

Figure D.1-3 and Tables D.1-3 
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Figure D.1. Relationship between the selection coefficients in Burkholderia 
cenocepacia MA lineages and the number of spontaneous mutations that they 
harbor for all three environments. All linear regressions are negative, but none are 
statistically significant (A: F = 1.401, df = 41, p = 0.2434, r2 = 0.0330; B: F = 1.354, df = 
41, p = 0.2513, r2 = 0.0320; C: F = 2.957, df = 41, p = 0.0930, r2 = 0.0673). 
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Figure D.2. Preliminary analysis of the selection coefficients of forty-five of the 
Vibrio fischeri MA lineages from Chapter 2 in tryptic soy broth supplemented with 
NaCl (A), and HEPES minimal medium supplemented with casamino acids (B). 
Fitness assays were carried out as described in Chapter 4, except that competitions 
were incubated at 28° and relative frequencies were measured with flow cytometry 
using a fluorescent reporter plasmid in the the V. fischeri ES114 ancestor. Significance 
was determined from independent two-tailed t-tests on four replicate fitness assays for 
each lineage. P-values were corrected for multiple comparisons using a Benjamini-
Hochberg correction, and corrected p-values that remained below 0.05 were considered 
significant. One lineage with significantly reduced fitness on panel A (s = - 0.23) and two 
lineages with significantly reduced fitness on panel B (s = - 0.38 and s = - 0.44) are not 
shown on the plot. 
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Figure D.3. Preliminary analysis of the selection coefficients of forty-two of the 
Vibrio cholerae MA lineages from Chapter 2 in HEPES minimal medium. Fitness 
assays were carried out as described in Chapter 4, except that relative frequencies 
were measured with flow cytometry using a fluorescent reporter inserted into the 
genome of V. cholerae 2740-80 ancestor. Significance was determined from 
independent two-tailed t-tests on four replicate fitness assays for each lineage. P-values 
were corrected for multiple comparisons using a Benjamini-Hochberg correction, and 
corrected p-values that remained below 0.05 were considered significant. One lineage 
with significantly reduced fitness (s = - 0.27) is not shown on the plot. 
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Table D.1. All base-substitution (bpsms) and insertion-deletion (indels) mutations 
identified in forty-three independent MA lineages when aligned to Burkholderia 
cenocepacia HI2424 (NC_008542; NC_008543; NC_008544; NC_008545) with BWA 
and Novoalign. 

https://drive.google.com/drive/folders/0Bz0jXLefrfhaYWlnZUtkSXR4X00 
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Table D.2. Estimates of the number of false negative base-substitution (bpsm) 
and insertion-deletion (indel) mutations from each of the Burkholderia 
cenocepacia mutation accumulation lineages. The number of missed bpsms and 
indels are calculated as the number of unanalyzed sites in each lineage, multiplied by 
the product of the number of generations experienced per lineage and the experiment-
wide estimates of bpsm and indel rates, respectively.  

Lineage 
Identified Mutations False Negative Mutations 
Analyzed 
Sites 

Verified 
Bpsms 

Verified 
Indels 

Unanalyzed 
Sites 

Missed 
Bpsms 

Missed 
Indels 

Total 
Mutations            

1 7540220 8 2 162620 0.12 0.02 10.14 
2 7545560 9 0 157280 0.11 0.02 9.13 
4 7414821 3 1 288019 0.21 0.04 4.25 
6 7205001 3 1 497839 0.36 0.07 4.43 
8 6974428 3 1 728412 0.53 0.10 4.63 
10 7160177 7 1 542663 0.39 0.07 8.46 
11 7261465 5 2 441375 0.32 0.06 7.38 
12 7305309 3 1 397531 0.29 0.05 4.34 
13 6587366 2 1 1115474 0.81 0.15 3.96 
14 7545418 7 1 157422 0.11 0.02 8.13 
15 7443040 4 2 259800 0.19 0.03 6.22 
20 7305503 4 0 397337 0.29 0.05 4.34 
23 7375775 9 0 327065 0.24 0.04 9.28 
24 7277839 5 1 425001 0.31 0.06 6.37 
26 6340689 3 2 1362151 0.99 0.18 6.17 
27 7372095 5 1 330745 0.24 0.04 6.28 
28 7250123 9 0 452717 0.33 0.06 9.39 
29 6790602 3 0 912238 0.66 0.12 3.78 
30 7519782 7 0 183058 0.13 0.02 7.15 
31 7657324 3 0 45516 0.03 0.01 3.04 
32 7097422 4 0 605418 0.44 0.08 4.52 
33 7591755 10 3 111085 0.08 0.01 13.09 
34 7507586 4 3 195254 0.14 0.03 7.17 
35 7374130 2 0 328710 0.24 0.04 2.28 
36 7422439 6 1 280401 0.20 0.04 7.24 
37 7376233 8 1 326607 0.24 0.04 9.28 
41 6859606 4 1 843234 0.61 0.11 5.72 
43 7526671 4 2 176169 0.13 0.02 6.15 
45 7299446 4 1 403394 0.29 0.05 5.34 
47 7578997 5 0 123843 0.09 0.02 5.11 
49 7474089 7 0 228751 0.17 0.03 7.2 
51 7657605 6 2 45235 0.03 0.01 8.04 
53 7588758 2 0 114082 0.08 0.02 2.1 
56 7532631 7 0 170209 0.12 0.02 7.14 
57 7504288 8 1 198552 0.14 0.03 9.17 
59 7455873 5 0 246967 0.18 0.03 5.21 
62 7421688 5 1 281152 0.20 0.04 6.24 
63 7554439 6 2 148401 0.11 0.02 8.13 
65 7632258 8 2 70582 0.05 0.01 10.06 
68 7459520 6 1 243320 0.18 0.03 7.21 
69 7496022 7 1 206818 0.15 0.03 8.18 
71 7599340 5 0 103500 0.08 0.01 5.09 
74 7663293 6 3 39547 0.03 0.01 9.04 
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Table D.3. Selection coefficients (s) and two-tailed t-statistics for each of the 
forty-three Burkholderia cenocepacia mutation accumulation lineages in each of 
the environments studied. Uncorrected p-values and Benjamini-Hochberg corrected 
p-values are both provided.  
Environment Lineage         s    SEM        T          DF    P    P (BH) 
T-Soy 1 -0.0117 0.0039 -3.4621 3 0.0406 0.0831 
T-Soy 2 -0.0445 0.0210 -2.4470 3 0.0919 0.1464 
T-Soy 4 0.0131 0.0111 1.3553 3 0.2683 0.3205 
T-Soy 6 -0.0739 0.0084 -10.2146 3 0.0020 0.0143 
T-Soy 8 -0.0265 0.0091 -3.3814 3 0.0430 0.0841 
T-Soy 10 -0.0432 0.0044 -11.3750 3 0.0015 0.0157 
T-Soy 11 0.0212 0.0103 2.3666 3 0.0988 0.1465 
T-Soy 12 -0.0278 0.0077 -4.1930 3 0.0247 0.0560 
T-Soy 13 0.0155 0.0089 2.0107 3 0.1379 0.1853 
T-Soy 14 -0.1001 0.0103 -11.2292 3 0.0015 0.0130 
T-Soy 15 -0.0519 0.0107 -5.5779 3 0.0114 0.0288 
T-Soy 20 -0.0039 0.0065 -0.7025 3 0.5330 0.5590 
T-Soy 23 -0.0049 0.0075 -0.7507 3 0.5073 0.5454 
T-Soy 24 -0.0079 0.0102 -0.8952 3 0.4366 0.4941 
T-Soy 26 -0.0648 0.0017 -43.7280 3 0.0000 0.0011 
T-Soy 27 -0.0270 0.0036 -8.6163 3 0.0033 0.0157 
T-Soy 28 -0.1115 0.0131 -9.8543 3 0.0022 0.0119 
T-Soy 29 -0.0144 0.0071 -2.3350 3 0.1017 0.1458 
T-Soy 30 -0.0097 0.0040 -2.7738 3 0.0693 0.1193 
T-Soy 31 -0.0037 0.0049 -0.8825 3 0.4425 0.4879 
T-Soy 32 -0.0354 0.0073 -5.5848 3 0.0113 0.0305 
T-Soy 33 -0.0323 0.0059 -6.2940 3 0.0081 0.0232 
T-Soy 34 -0.0143 0.0017 -9.9464 3 0.0022 0.0133 
T-Soy 35 -0.0503 0.0076 -7.6021 3 0.0047 0.0185 
T-Soy 36 -0.0113 0.0058 -2.2572 3 0.1092 0.1515 
T-Soy 37 -0.0125 0.0095 -1.5233 3 0.2251 0.2846 
T-Soy 41 -0.0046 0.0130 -0.4120 3 0.7080 0.7248 
T-Soy 43 -0.0147 0.0020 -8.2935 3 0.0037 0.0158 
T-Soy 45 -0.0426 0.0156 -3.1610 3 0.0508 0.0950 
T-Soy 47 -0.0381 0.0036 -12.2712 3 0.0012 0.0167 
T-Soy 49 -0.0726 0.0033 -25.5106 3 0.0001 0.0028 
T-Soy 51 -0.0178 0.0028 -7.2197 3 0.0055 0.0196 
T-Soy 53 -0.0092 0.0076 -1.3940 3 0.2576 0.3165 
T-Soy 56 -0.0152 0.0091 -1.9428 3 0.1473 0.1919 
T-Soy 57 -0.0114 0.0055 -2.3800 3 0.0976 0.1499 
T-Soy 59 0.0076 0.0096 0.9167 3 0.4269 0.4961 
T-Soy 62 0.0020 0.0094 0.2488 3 0.8196 0.8196 
T-Soy 63 -0.0338 0.0140 -2.7804 3 0.0690 0.1236 
T-Soy 65 -0.0171 0.0076 -2.5902 3 0.0811 0.1341 
T-Soy 68 -0.0486 0.0082 -6.8805 3 0.0063 0.0193 
T-Soy 69 -0.0148 0.0024 -7.1234 3 0.0057 0.0188 
T-Soy 71 -0.0233 0.0063 -4.2732 3 0.0235 0.0562 
T-Soy 74 0.0371 0.0104 4.1282 3 0.0258 0.0554 
M9-MM+CAA 1 -0.0026 0.0039 -0.7748 3 0.4949 0.5457 
M9-MM+CAA 2 0.0023 0.0023 1.1499 3 0.3335 0.5122 
M9-MM+CAA 4 0.0060 0.0061 1.1463 3 0.3348 0.4965 
M9-MM+CAA 6 -0.0397 0.0072 -6.3789 3 0.0078 0.0305 
M9-MM+CAA 8 0.0021 0.0025 0.9685 3 0.4042 0.5112 
M9-MM+CAA 10 -0.0888 0.0072 -14.1932 3 0.0008 0.0065 
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M9-MM+CAA 11 -0.0033 0.0046 -0.8372 3 0.4639 0.5392 
M9-MM+CAA 12 -0.0108 0.0059 -2.0927 3 0.1275 0.2610 
M9-MM+CAA 13 -0.0055 0.0058 -1.0929 3 0.3543 0.4762 
M9-MM+CAA 14 -0.0223 0.0043 -5.9552 3 0.0095 0.0339 
M9-MM+CAA 15 -0.0884 0.0078 -13.1076 3 0.0010 0.0059 
M9-MM+CAA 20 -0.0054 0.0038 -1.6581 3 0.1959 0.3509 
M9-MM+CAA 23 -0.0115 0.0020 -6.5474 3 0.0072 0.0311 
M9-MM+CAA 24 -0.0049 0.0051 -1.1067 3 0.3492 0.5005 
M9-MM+CAA 26 -0.0121 0.0029 -4.8932 3 0.0163 0.0502 
M9-MM+CAA 27 -0.0022 0.0030 -0.8359 3 0.4645 0.5257 
M9-MM+CAA 28 -0.1161 0.0072 -18.6177 3 0.0003 0.0145 
M9-MM+CAA 29 -0.0126 0.0069 -2.0962 3 0.1270 0.2731 
M9-MM+CAA 30 -0.0031 0.0059 -0.6168 3 0.5810 0.6093 
M9-MM+CAA 31 -0.0223 0.0055 -4.7190 3 0.0180 0.0517 
M9-MM+CAA 32 -0.0230 0.0022 -12.0361 3 0.0012 0.0066 
M9-MM+CAA 33 -0.0595 0.0042 -16.3089 3 0.0005 0.0054 
M9-MM+CAA 34 -0.0052 0.0065 -0.9169 3 0.4268 0.5098 
M9-MM+CAA 35 -0.0279 0.0041 -7.7713 3 0.0044 0.0212 
M9-MM+CAA 36 -0.0040 0.0034 -1.3567 3 0.2679 0.4267 
M9-MM+CAA 37 -0.0030 0.0034 -1.0005 3 0.3908 0.5092 
M9-MM+CAA 41 -0.0067 0.0038 -2.0392 3 0.1342 0.2622 
M9-MM+CAA 43 -0.0090 0.0029 -3.5854 3 0.0371 0.0841 
M9-MM+CAA 45 -0.0261 0.0023 -13.2371 3 0.0009 0.0067 
M9-MM+CAA 47 -0.0876 0.0059 -17.1446 3 0.0004 0.0062 
M9-MM+CAA 49 -0.0050 0.0038 -1.5533 3 0.2182 0.3752 
M9-MM+CAA 51 -0.0120 0.0075 -1.8478 3 0.1618 0.3025 
M9-MM+CAA 53 -0.0014 0.0021 -0.7709 3 0.4969 0.5342 
M9-MM+CAA 56 -0.0029 0.0009 -3.7905 3 0.0322 0.0770 
M9-MM+CAA 57 -0.0002 0.0041 -0.0587 3 0.9569 0.9569 
M9-MM+CAA 59 -0.0042 0.0043 -1.1056 3 0.3496 0.4849 
M9-MM+CAA 62 -0.0029 0.0034 -0.9682 3 0.4044 0.4968 
M9-MM+CAA 63 -0.0869 0.0056 -18.0102 3 0.0004 0.0080 
M9-MM+CAA 65 -0.0025 0.0053 -0.5290 3 0.6335 0.6485 
M9-MM+CAA 68 -0.0190 0.0053 -4.1269 3 0.0258 0.0653 
M9-MM+CAA 69 -0.0094 0.0020 -5.3254 3 0.0129 0.0428 
M9-MM+CAA 71 -0.0076 0.0021 -4.1397 3 0.0256 0.0688 
M9-MM+CAA 74 -0.0107 0.0082 -1.5130 3 0.2275 0.3762 
M9-MM 1 -0.0007 0.0051 -0.1551 3 0.8866 0.9775 
M9-MM 2 -0.0003 0.0070 -0.0512 3 0.9624 1.0346 
M9-MM 4 -0.0026 0.0024 -1.2488 3 0.3003 0.5166 
M9-MM 6 0.0079 0.0107 0.8525 3 0.4566 0.6770 
M9-MM 8 0.0259 0.0033 9.1263 3 0.0028 0.0133 
M9-MM 10 -0.0849 0.0051 -19.1123 3 0.0003 0.0045 
M9-MM 11 0.0063 0.0037 1.9570 3 0.1453 0.3123 
M9-MM 12 0.0036 0.0037 1.1119 3 0.3473 0.5531 
M9-MM 13 -0.0030 0.0073 -0.4674 3 0.6720 0.8757 
M9-MM 14 -0.0027 0.0074 -0.4144 3 0.7064 0.8934 
M9-MM 15 -0.0891 0.0104 -9.8618 3 0.0022 0.0119 
M9-MM 20 0.0048 0.0070 0.7841 3 0.4902 0.6800 
M9-MM 23 -0.0024 0.0076 -0.3674 3 0.7377 0.9063 
M9-MM 24 0.0049 0.0039 1.4337 3 0.2471 0.4427 
M9-MM 26 -0.0341 0.0064 -6.1857 3 0.0085 0.0305 
M9-MM 27 0.0068 0.0051 1.5296 3 0.2236 0.4180 
M9-MM 28 -0.0662 0.0063 -12.1133 3 0.0012 0.0104 
M9-MM 29 -0.0051 0.0011 -5.3954 3 0.0125 0.0358 
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M9-MM 30 0.0061 0.0024 2.9657 3 0.0593 0.1341 
M9-MM 31 0.0092 0.0109 0.9740 3 0.4019 0.6172 
M9-MM 32 -0.0190 0.0045 -4.8507 3 0.0167 0.0423 
M9-MM 33 -0.0812 0.0033 -28.5657 3 0.0001 0.0041 
M9-MM 34 0.0129 0.0028 5.3396 3 0.0128 0.0345 
M9-MM 35 -0.0146 0.0031 -5.3994 3 0.0125 0.0382 
M9-MM 36 -0.0276 0.0053 -5.9960 3 0.0093 0.0307 
M9-MM 37 -0.0002 0.0091 -0.0251 3 0.9816 1.0049 
M9-MM 41 -0.0031 0.0043 -0.8410 3 0.4621 0.6623 
M9-MM 43 0.0060 0.0010 6.7421 3 0.0067 0.0260 
M9-MM 45 0.0062 0.0020 3.6410 3 0.0357 0.0853 
M9-MM 47 -0.0903 0.0091 -11.4516 3 0.0014 0.0088 
M9-MM 49 -0.0163 0.0011 -16.6690 3 0.0005 0.0051 
M9-MM 51 0.0001 0.0035 0.0392 3 0.9712 1.0186 
M9-MM 53 0.0000 0.0060 -0.0083 3 0.9939 0.9939 
M9-MM 56 -0.0009 0.0056 -0.1963 3 0.8569 0.9697 
M9-MM 57 0.0024 0.0090 0.3065 3 0.7793 0.9308 
M9-MM 59 -0.0045 0.0029 -1.8087 3 0.1682 0.3444 
M9-MM 62 0.0064 0.0010 7.2277 3 0.0055 0.0235 
M9-MM 63 -0.0659 0.0063 -12.1051 3 0.0012 0.0087 
M9-MM 65 0.0038 0.0071 0.6175 3 0.5806 0.7802 
M9-MM 68 -0.0342 0.0016 -24.1572 3 0.0002 0.0033 
M9-MM 69 0.0016 0.0060 0.3034 3 0.7814 0.9081 
M9-MM 71 -0.0031 0.0023 -1.5408 3 0.2210 0.4320 
M9-MM 74 -0.0035 0.0035 -1.1631 3 0.3289 0.5439 
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