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1300, DNS (Schlatter and Örlü, 2010), ◦ : Reτ = 850, hot wire measure-
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ABSTRACT

SELF-SIMILAR PROPERTIES AND LEADING BALANCE SCALING

STRUCTURE OF WALL-BOUNDED TURBULENT FLOWS

by

Ang Zhou

University of New Hampshire, December, 2017

Wall-bounded turbulent flows are ubiquitous in numerous technological applications,

and thus much effort has been devoted to investigate their properties. Scaling analyses

involving the application multiple-scale approaches are effectively used to explore pa-

rameters (Reynolds, Prandtl numbers) dependent scaling behaviors of these flows. The

objective of this dissertation research is to firstly extend the analysis of self-similar behav-

iors on the inertial domain as admitted by the mean dynamics in wall-bounded turbulent

flows (WBTF). It then mathematically and physically characterizes the existence of a

leading order balance structure in both the kinetic energy and passive scalar transport

budgets, and subsequently uses this leading balance structure for scaling purposes.

Recent evidence indicates that, at sufficiently high Reynolds number, a number of the

statistical measures of wall-turbulence exhibit self-similar behaviors on an interior inertial

domain. Experimental measurements in the Flow Physics Facility at the University of

New Hampshire have been acquired, and well-resolved streamwise velocity measurements

up to high Reynolds number are used to investigate three measures of self-similarity

in turbulent boundary layers, and compare their behaviors with those revealed through

analysis of the mean momentum equation. The measures include the Kullback-Leibler

divergence (KLD), the logarithmic decrease of even statistical moments, and the so-called

diagnostic plot. The findings indicate that the approximately constant KLD profiles and

the approximately logarithmic moment profiles follow the same scaling but reside interior

xxxii
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to the bounds of the self-similar inertial domain associated with the mean dynamics.

Conversely, the bounds of the self-similar region on the diagnostic plot correspond closely

to the theoretically estimated bounds.

Multiple-scale analysis involving the consideration of the relative magnitude of terms

in the governing equation is applied to kinetic energy budgets for fully developed turbulent

flow in pipes and channels, and in the zero-pressure gradient turbulent boundary layer.

These analyses are based on available high-quality numerical simulation data. The mean

kinetic energy budget is analytically verified to exhibit the same four-layer structure as

the mean momentum equation, while the turbulence budget only shows either a two- or

three-layer structure depending on channel/pipe versus boundary layer flow. A distinct

four-layer structure is observed in position and size for the total kinetic energy budget.

Here the width of the third layer, which is located in the inertia domain of the mean

dynamics, is mathematically reasoned to scale with δ+−
√
δ+ at finite Reynolds number.

Like the velocity field, the passive scalar field equation in WBTF can also be quanti-

fied in terms of its leading balance structure. Both the mean scalar and scalar variance

equations with constant heat generation for fully-developed turbulent channel are ex-

plored. A similar four-layer structure is found using the same methodology. Both the

Reynolds number and Prandtl number dependent scaling of the layer thickness is empir-

ically quantified with available DNS data and verified through rigorous scaling analysis.

The analysis also indicates that the mean scalar equation can be cast into an invariant

form that properly reflects the local dominant physical mechanism, which uncovers the

governing effect of a small and constant parameter on an underlying scaling layer hier-

archy. There exists a linear region in the distribution of the inner-normalized widths of

this layer hierarchy. Like the momentum equation, analysis indicates that this region

coincides with where the mean scalar profile exhibits a logarithmic increase and leads

to a distinct expression for the scalar log law. The scalar variance equation manifests

itself like the total kinetic energy budget with a distinctive four-layer structure, in which

the third layer size has a special scaling under the effects of both Reynolds number and
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Prandtl Number. The underlying causes of the difference between the Kármán constant

and the scalar Kármán constant, i.e., kθ > k, are also investigated and clarified.



CHAPTER 1

INTRODUCTION

1.1 Background

Fluid flows (e.g., of air or water) are ubiquitous in nature. Generally, there are two

basic flow types, laminar flow and turbulent flow. Laminar flow is characterized by

smooth variations in parallel layers. For example, in a fully-developed laminar pipe

flow, the fluid particles move in straight lines that are parallel to the walls. In this

type of flow, the cross-stream transport of mass, momentum, and energy is attributed to

viscous (molecular) diffusion. In contrast, turbulent flow is both spatially disorganized

and unsteady. Seemingly chaotic motion is characteristic of all turbulent flows, and

the high rates of mixing of mass, momentum, and energy are related to the enhanced

diffusivity of the flow caused by the stirring motion of the turbulent eddies.

Wall turbulence is important to industry and human life applications. For industrial

applications, such as in oil pipelines, these flows require additional energy, relative to

laminar flow, to overcome the increased drag due to turbulence. The lowest portion

1
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of atmosphere, the troposphere, is vital to us where we breathe and live. Within the

troposphere, closest to the ground and sea level lies the atmospheric boundary layer, which

is about 1 km thick. It forms the layer where the atmosphere “feels” the contact with

the ground surface. The friction exerted by the wind against the ground surface causes

the wind to be sheared and creates turbulence. Process such as pollutant transport and

the advection of plant spores are largely dictated by the turbulence in the atmospheric

boundary layer.

Generally, wall-turbulence is characterized by a spatially complex vorticity field, which

advects itself in a chaotic manner. In iso-themral flow, the vorticity is generated at a solid

surface, owing to the pressure variation in the streamwise and spanwise directions. In

the classical picture the vortices/eddies of the largest integral scale obtain energy from

the mean flow. And this energy is passed down by eddies of Taylor microscale through

the energy cascade to the smallest eddies of Kolmogorov scale, where the kinetic energy

is dissipated into heat. Wall-bounded turbulent flows (fully-developed channel and pipe

flows and flat plate boundary layer) at high Reynolds number have become an increasingly

active area of research over the past several decades (Smits et al., 2011a; Marusic et al.,

2010; Klewicki, 2010). In this dissertation, I investigate the scaling behaviors of these

flows as function of Reynolds number. This accomplishes through the multiple-scale

analysis of the relevant mean equations. These analyses, however, are distinct from the

traditional approach.
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Figure 1.1: Sketch of the inner-normalized mean velocity profile.

1.1.1 Traditional Wall-Flow Description

The traditional description of turbulent wall-flow structure has direct connection to the

properties of the mean velocity profile (Tennekes and Lumley, 1972). A schematic of

this well-used structure is shown in Fig. 1.1. U is the streamwise mean velocity and y

is the wall-normal distance. This profile is typically made non-dimensional using inner

variables, uτ and ν, where uτ =
√
τw/ρ is the friction velocity, τw is the mean wall shear

stress and ν is the kinematic viscosity. The ’+’ denotes the inner-normalization. With this

description, the viscous sublayer flow, 0 . y+ . 5, is dominated by the effects of viscosity

and characterized by a linear mean velocity profile. In the buffer layer, 5 . y+ . 30, the

viscous and Reynolds stresses are both dynamically significant, and the profile transitions

from linear to approximately logarithmic. Under the mean profile description, these two

layers are associated with the direct effects of viscosity, and their thickness remains a fixed
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number of viscous lengths, independent of Reynolds number. Consistently, the velocity

increments across these layers are a fixed number in inner units. In the third classical

layer, the mean velocity has a logarithmic variation from near y+ ≃ constant to y/δ ≃ 0.2.

The dynamics here are seen to be dominated by the inertial effects of the turbulence. In

the wake layer, 0.2 . y/δ . 1, mean inertia (or mean pressure gradient) and turbulent

inertia comprise the predominant dynamical mechanisms. The logarithmic and wake

layers grow at a rate proportional to δ with their velocity increments approaching a fixed

fraction of U∞ as δ+ → ∞ (Pope, 2000; Davidson, 2015).

Wosnik et al. (2000) proposed a layer structure for turbulent channel and pipe flows.

Near the wall (y+ . 0.1δ+), there exist two separate regions: the viscous sublayer and

the overlap region. Each of these two regions has its two subregions. The linear sublayer

closest to the wall (y+ . 3) where the viscous stress dominates and the buffer layer

(3 . y+ . 30) where both the Reynolds stress and viscous stress are dynamically relevant

constitute the viscous sublayer. Above the near wall viscous sublayer, the overlap region

is composed of a mesolayer (30 . y+ . 300) where the viscous stress is negligible but

acts on the turbulence scale and produce the Reynolds stress, and an inertial sublayer

(300 . y+ . 0.1δ+) which is dominated by the inertia.
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1.1.2 Four-Layer Structure of Mean Momentum Balance and

Its Implications for Scaling

Over the past decades, an increasing number of studies have been focusing on an in-

creasing use of the Reynolds-averaged Navier-Stokes (RANS) equations to predict scaling

behaviors (Marusic et al., 2010; Klewicki, 2010). These include the use of the mean mo-

mentum equation to reveal the scaling properties of WBTF (Klewicki, 2010; Fife et al.,

2005b). The mean dynamical structure of these flows is quite distinct from laminar flow.

The dynamics of laminar wall-bounded flows is everywhere a balance between a driving

pressure force or inertia and a retarding viscous force. Instability occurs with increas-

ing Reynolds number and the turbulent inertia comes into being, and it represents the

non-linear interaction mechanism in the mean dynamics. This marks the appearance of

the transitional regime (Elsnab et al., 2011; Klewicki et al., 2011, 2012), and eventually

the onset of four-layer regime when the Reynolds number becomes large enough, i.e.,

δ+ & 180 for channel/pipe flow or δ+ & 370 for boundary layer flow (Elsnab et al., 2011;

Klewicki et al., 2011; Klewicki, 2013b). In contrast to the traditional layer structure

described above, direct analysis of the mean momentum equation reveals a different four-

layer structure for Reynolds numbers above the transitional regime. The relative mag-

nitude of the terms in the mean momentum equation are used to reveal this four-layer

structure. The inner-normalized mean momentum equations for statistically stationary,

fully developed, incompressible turbulent channel/pipe flow and zero-pressure gradient
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turbulent boundary layer flow are

d2U+

dy+2
+
dT+

dy+
+

1

δ+
= 0 (1.1)

and

∂2U+

∂y+2
+
∂T+

∂y+
+

(
−U+∂U

+

∂x+
− V +∂U

+

∂y+

)
= 0 (1.2)

respectively. Here, x denotes the streamwise direction, with the wall-normal direction

given by y. The x and y velocity components are given by variants of u and v respectively,

and the upper case letter denotes the averaged quantities. T+ = −⟨uv⟩+ is referred to

as the Reynolds stress. The first two terms are common in (1.1) and (1.2), and these

represent the viscous force (VF) term and turbulent inertia (TI) term. The third term

is mean pressure gradient (PG) term for the channel/pipe, and mean inertia (MI) term

for the boundary layer. By taking the ratio of VF/TI, one can reveal the leading balance

in (1.1) and (1.2) with wall-normal distance. A sketch of the resulting layer structure is

presented in Fig. 1.2. Close to the wall, layer I is reflected by the nominal balance between

the viscous stress gradient and the mean pressure gradient in the channel/pipe or mean

advection in the boundary layer. The next adjacent layer, layer II, exists where the viscous

stress gradient and the Reynolds stress gradient constitute the leading order balance.

Across layer III, the Reynolds stress attains its maximum value, and the zero-crossing

of the Reynolds stress gradient is associated with a balance breaking and exchange of

dominant terms. All the three terms in the relevant mean momentum equation are of the

equal order in layer III. The fourth layer represents a balance between the Reynolds stress
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Figure 1.2: Sketch of the ratio of the viscous stress gradient to the Reynolds stress
gradient in boundary layer, pipe, and channel flows at any given Reynolds number. The
dotted line in layer I is for a boundary layer, and the solid line is for a pipe or channel.

Table 1.1: Scaling behaviors of the layer thicknesses and velocity increments of the
four-layer structure of the mean momentum balance. (Note that the values in the
parentheses are asymptotically attained as δ+ → ∞.)

Physical layer ∆y increment ∆U increment
I O (ν/uτ ) (≃ 3) O (uτ ) (≃ 3)

II O
(√

νδ/uτ

)
(≃ 1.6) O (U∞) (≃ 0.5)

III O
(√

νδ/uτ

)
(≃ 1.0) O (uτ ) (≃ 1)

IV O (δ) (→ 1) O (U∞) (→ 0.5)

gradient and the mean pressure gradient or mean advection due the loss of the leading

order viscous stress. Quantitatively, the layer thicknesses and the velocity increments

across these layers have been shown both empirically and analytically to exhibit distinct

Reynolds number dependencies. Table 1.1 shows these scaling behaviors. As expected,

layer I and layer IV respectively comply with inner and outer scaling. However, an

intermediate length scale, i.e.,
√
νδ/uτ , is empirically observed and analytically shown to
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Figure 1.3: Schematic depiction of the scaling layer hierarchy described by continuous
distribution of widths. Figure is from Klewicki et al. (2014).

characterize the other two layers, with their thicknesses respectively given by 3 . y+II .

1.6
√
δ+ and 1.6

√
δ+ . y+III . 2.6

√
δ+. The velocity increment across layer II remains

about one half of U∞, independent of δ+, while there is only about a 1.0uτ increment

across layer III. With increasing Reynolds number, all the scaling properties of the four-

layer regime become increasingly well established (Wei et al., 2005a).

1.1.3 Lβ Hierarchy of Scaling Layer

A complementary structure of the mean equations that will be revisited in significant

detail herein is that the mean momentum equation admits an invariant form on each

layer of a hierarchy of scaling layers. (Fife et al., 2005b; Wei et al., 2005b; Fife et al.,

2005a; Klewicki, 2013b; Klewicki et al., 2014). A sketch of this hierarchy is depicted

in Fig. 1.3. This hierarchy resides between the inner and outer peak positions of the

turbulent inertia term, and is physically associated with the changing (increasing) size of

the momentum transporting motions with distance from the wall.
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The mathematical construction of this layer hierarchy begins by applying a transfor-

mation to T+ = −⟨uv⟩+

T+
β = T+ +

y+

δ+
− βy+, (1.3)

On each hierarchy layer, the parameter β has a small positive and constant value, and,

as depicted in Fig. 1.3, β is related to the value of the TI term and a specific y+. With

the transformation 1.3, the mean momentum equation for turbulent channel/pipe flow

becomes

d2U+

dy+2
+
dT+

β

dy+
+ β = 0. (1.4)

Across each scaling layer, the local mean dynamics undergoes a balance breaking and

exchange of terms analogous to what occurs across layer III. For each value of β, the T+
β

attains its maximum value T+
βm at a position y+βm. Thus on each layer, all three terms

in Eq. (1.4) are of the same order of magnitude. This motives the need to rescale the

Eq. (1.4) in such a way that each term is O(1) independent of β for all δ+. In the simplest

manifestation, rescalings can be shown to occur according to

y+ = y+βmβ
−1/2ŷ, T+

β = T+
βm + β1/2T̂ . (1.5)

Application of these rescalings leads to an invariant form of (1.4)

d2U+

dŷ+2
+
dT̂

dŷ
+ 1 = 0 (1.6)
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Figure 1.4: Distribution of W+ for channel flows. Figure is from Klewicki and Ober-
lack (2015).

that is operative on every layer of the Lβ hierarchy (Klewicki, 2013b; Klewicki et al.,

2014).

There is a function, W+(y+), quantifying the inner-normalized width of the layers on

hierarchy. Without loss of generality,W+ can be shown to equal β−1/2 = (−d2U+/dy+2)−1/2.

Distributions of W+(y+) are shown in Fig. 1.4. W+ is physically recognized as the av-

eraged size of the motions that are responsible for the net wallward flux of momentum

from layer to layer. It also quantifies the average size of motions responsible for the gen-

eration of T+ = −⟨uv⟩+. On the inertial portion of the hierarchy, i.e., y+ & 2.6
√
δ+ (See

Table 1.1), the W+ profile is well-approximated by a linear function with the accuracy

of this linear approximation increasing with increasing δ+. Subsequent analysis reveals

that the quantity

1

ϕ
=
A

2
= −1

2

d2T̂

dŷ2
= −1

2

d2T+

dy+2
β− 3

2 = −1

2

d2T+

dy+2

(
−d

2U+

dy+2

)− 3
2

(1.7)

is O(1) and approaches a constant over the inertial domain as δ+ → ∞, i.e., ϕ → ϕc
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as δ+ → ∞ (Fife et al., 2009; Klewicki et al., 2009; Klewicki, 2013b). The coordinate

stretching function, ϕ, is exactly given by

ϕ =
dW+

dy+
, (1.8)

and this function becomes constant on the inertial domain (See Fig. 1.4). Physically, ϕ

is the stretching of the y coordinate required to produce an invariant representation of

the flux of turbulent force as generated by the momentum transport of W sized eddies

(Klewicki et al., 2014). The invariance properties of ϕ just described provide a basis

for constructing a similarity solution on the inertial domain where ϕc is a constant. A

similarity solution to the mean velocity U+ is analytically found to be

U+ = ϕ2
c ln
(
y+ − y+0

)
+By+ + C. (1.9)

Eq. (1.9) is found by directly integrating the mean momentum equation (Klewicki and

Oberlack, 2015). As is apparent by comparing with the traditional log law, the Von

Kármán constant is given by k = ϕ−2
c . The coefficient B is tends to be 0 as δ+ → ∞,

since dU+/dy+ → 0 as y+ → ∞. With (1.9), T+ can be exactly determined from Eq. (1.1).

The theory and data analysis provides the evidence that the coefficient on the linear term,

i.e., B, should decay to zero as δ+ → ∞, since dU+/dy+ → 0 as y+ → ∞. And that k

should asymptotically attain constant value, i.e., k → (3−
√
5)/2 at sufficiently high δ+

(Klewicki and Oberlack, 2015). The region between 2.6
√
δ+ and 0.5δ is where the mean

momentum equation admits the self-similar behavior associated with ϕ = ϕc = constant
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on the inertial domain.

A similar approach has recently been applied to the mean momentum equation for

zero pressure gradient turbulent boundary layer flow (Morrill-Winter et al., 2017). This

analysis is complicated by the fact that, unlike the pressure gradient in the channel/pipe,

the mean inertia term in Eq. (1.2)is not constant. The mean inertia term, i.e., Ā+ =

−[U+(∂U+/∂x+) + V +(∂U+/∂y+)], can, however, be written as αĀ+
p , where 0 6 α 6 1

and Â+
p is the peak magnitude of Â+. An apparent integral property of α is that its

average value,

ᾱ =
1

δ+

∫ δ+

0

αdy+, (1.10)

is empirically found to be a constant, ᾱ = 0.57, over a large δ+ range (Morrill-Winter

et al., 2017). With this α can be normalized by α̂ such that α = α/ᾱ. Lastly, to obtain

a similar balance between constant terms in the outer region, the Reynolds stress, T+, is

transformed using

T̃ = T+ +
1

δ+

∫ y+

0

Λ
(
y+, δ+

)
dy+, (1.11)

where Λ(y+, δ+) = α − αm, αm is evaluated at y+m, and y+m is where the the turbulent

inertia term crosses zero from above. With these definitions, (1.2) becomes

∂2U+

∂y+2
+

∂T̃

∂y+
+
αm

δ+
= 0, (1.12)

which shows that the boundary layer equation admits the same self-similarity as the

channel/pipe.
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1.2 Dissertation outline

To data, the relative magnitudes of the terms in the mean momentum equation has been

shown to determine an underlying a self-similar structure that exists on a inertial domain

quantified by considering the leading balances of the mean dynamics equation. Based

on these previous studies, Chapter 2 herein provides the description of three recently

developed measures, i.e., the Kullback-Leibler divergence (KLD) (Tsuji et al., 2005), the

logarithmic decrease of even statistical moments (Meneveau and Marusic, 2013) and the

diagnostic plot (Alfredsson and Örlü, 2010), to quantify properties of the inertial domain.

New data are computed based on the high Reynolds number turbulent boundary layer

streamwise velocity measurements using hot-wire anemometry. Comparisons are made

between the domain where these measures provide evidence of self-similarity and the

domain where the mean momentum equation exhibits inertially dominated self-similar

behavior.

Chapter 3 provides a detailed description of the leading balance in kinetic energy

balance theory wall-bounded turbulent flows. A similar approach to previous study of

the mean momentum balance is used to explore the mean, turbulence, and total kinetic

energy balances in planar channels, circular pipes, and flat plate boundary layer flows.

The analytical treatment of the total kinetic budget is, however, more challenging than

the mean momentum equation, since there are more physical terms in the equation.

The Reynolds number dependent scaling behavior of the layer thicknesses are empirically

quantified using available numerical simulation data, and analytically reasoned using
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multiple-scale analysis. This analysis reveals a four-layer structure that is distinct from

that of the mean momentum balance.

Chapter 4 documents a study of the passive scalar transport equations involving both

the mean scalar and scalar variance for fully-developed turbulent channel flow. Unlike

previous studies of channel flow with constant surface heat flux, this flow has a uniform

heat generation. This configuration has distinct analytical advantages relative to precisely

elucidating the underlying self-similar structure admitted by the mean transport equation.

The leading balances of terms in the mean equation are empirically determined and

analytically described, while those in the variance equation is quantified based on available

simulation data. As expected, the scalar field shows a similar structure to the velocity

field, but it has a dependence on both the Reynolds number and Prandtl number.

The dissertation concludes with Chapter 5, which summaries the key findings from

the previous chapters. Here the present work is only able to present a small quantity

of results that support the theory of wall-bounded turbulent flows. With these facts in

mind, more analytical, experimental and computational results are needed to make the

wall-turbulence problem more analytically tractable.



CHAPTER 2

THREE MEASURES OF SELF-SIMILARITY AND THEIR

CONNECTIONS TO SELF-SIMILAR MEAN DYNAMICS IN

INERTIAL SUBLAYER OF TURBULENT BOUNDARY

LAYER

2.1 Background

The concept of an inertial sublayer is common to many empirical, phenomenological

and (semi) analytical approaches to describing the statistical structure of the turbulent

boundary layer. In the classical spectral representations of turbulence (not necessar-

ily wall-turbulence) the inertial sublayer is seen to exist in a spectral range where the

wavelengths are large relative to those associated with the dissipative motions, and simul-

taneously small relative to the integral scales of motion that are directly influenced by

the external boundary conditions (Kolmogorov, 1941). Analogously, the inertial layer of

wall-turbulence is seen to exist over an interior spatial domain that is sufficiently far from

from the wall, and simultaneously sufficeintly small relative to the overall width of the

15
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flow, e.g., Tennekes and Lumley (1972). The present study explores this spatial inertial

sublayer and its connections to the self-similarities formally admitted by the mean mo-

mentum equation. The broader aim is to advance a more unified theoretical framework

for describing turbulent boundary layer scaling and structure. To generate an appropri-

ate context, it is useful to recognize that there have traditionally been two predominant,

and in some respects complementary, descriptions of the flow structure within the spatial

inertial sublayer of the turbulent boundary layer.

2.1.1 Attached-Eddy Description and Logarithmic Mean Profile

As originally postulated by Izakson (1937) and Millikan (1938), one of these descrip-

tions assumes the existence of an overlap layer where respective functions of inner and

outer normalized distance from the wall are simultaneously valid. Here inner normalized

variables are rendered dimensionless using the kinematic viscosity, ν, and the friction

velocity, uτ =
√
τw/ρ (where τw is the mean wall shear stress and ρ is the mass density),

and outer normalizations use uτ and the boundary layer thickness, δ. For the mean ve-

locity profile, this set of assumptions promotes the further hypothesis that the gradients

of the inner and outer functions match across the overlap layer. The leading order term

in the proposed expansions describing this overlap leads directly to the familiar form of

the logarithmic mean velocity profile,

U

uτ
=

1

k
ln
(yuτ
ν

)
+B, (2.1)
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where where k is the von Kármán constant, and B is a constant that depends on the

boundary conditions. Borrowing heavily from the mathematical machinery of matched

asymptotic expansions, the notion that the inertial sublayer is where inner and outer

functions can be simultaneously matched has been used in similar formulations that seek

to describe the profiles of a number of other wall-flow statistics, e.g., Panton (2005).

The second description follows from the arguably less prescriptive hypothesis that

across the inertial sublayer the only dynamically relevant length scale is proportional to

the distance from the wall itself. Relative to the mean velocity gradient, the simplest

rendering of this hypothesis follows from dimensional analysis and is encapsulated in the

statement,

∂U

∂y
=
uτ
ky
, (2.2)

where U is the streamwise (x component) mean velocity, y is the coordinate normal to

the wall, and the equality holds owing to the appropriate specification of the von Kármán

constant, k. In effect, Eq. (2.2) is the basis for Prandtls construction of the logarith-

mic mean velocity profile (Prandtl, 1925). Perhaps more profoundly, following Townsend

(1961) a number of researchers (Perry and Chong, 1982; Perry and Marusic, 1995) have

demonstrated that this situation is physically consistent with the existence of a self-

similar internal hierarchy of motions, the attached eddy hierarchy, that, in a statistical

sense, is comprised of motions of characteristic wall-normal sizes that are proportional

to the distance from the wall. (It is in this sense that they are attached to the wall.)
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Owing to this, the attached eddy phenomenology is inherently consistent with the exis-

tence of a logarithmic mean velocity profile, and, as discussed further below, also leads

to the expectation that the streamwise velocity variance, ⟨u2⟩, exhibits a logarithmic

decrease across the spatial inertial sublayer. (Note that angle brackets denote the time

average.) The attached eddy paradigm is additionally attractive relative to observations

of instantaneous and conditional flow structure, as numerous observations over the past

three decades have revealed evidence of a hierarchical eddy structure in boundary layers;

perhaps most notably in the form of packets of hairpin-like vortices (Adrian et al., 2000;

Adrian, 2007), or self-similar vortex clusters (Del Álamo et al., 2006).

As is apparent, both the overlap and attached eddy (distance from the wall scaling)

based descriptions apply to an interior inertial domain of the flow. Neither of these

approaches, however, provide particularly specific insight into how or why the flow prop-

erties behave the way they do on this domain, or provide guidance regarding the bounds

of this inertial domain. Similarly, while both have a general descriptive capability, nei-

ther explicate the underlying dynamics. The fundamental reason for this is that both

the overlap layer framework and the attached eddy phenomenology rely upon additional

hypotheses and assumptions. These assumptions and hypotheses have, at best, limited

basis in the underlying equations of motion, and this lack of a firm theoretical foundation

presents challenges toward better predicting or controlling boundary layer dynamics.
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2.1.2 Primary Aims

The results of the analyses of the mean dynamical equation, described briefly below, are

leveraged for the present purposes by clarifying the mechanisms underlying how and why

the inertial domain of interest obtains its self-similar properties, and by revealing (predict-

ing) specific Reynolds number dependent spatial bounds for the domain over which this

self-similar behavior is expected to emerge with increasing Reynolds number. Given this,

the primary aims herein are to calculate and characterize recently developed measures

that quantify properties of the inertial domain, and compare the domain where these

measures provide evidence of self-similarity with the domain where the mean momentum

equation exhibits inertially dominated self-similar behavior.

2.2 Three Measures of Self-Similarity

In addition to the logarithmic region of the streamwise mean velocity profile itself, three

other heuristically/semi-empirically derived measures of self-similarity are developed and

quantified.
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2.2.1 KullbackLeibler Divergence

Building upon the ideas of information and entropy first introduced by Shannon and

Weaver (1949),Kullback and Leibler (1951) developed the KL divergence (KLD), or rel-

ative entropy. The KLD provides an objective measure of the degree to which two prob-

ability density functions (pdf) differ. For discrete pdfs, P and Q, the KLD is a measure

of the information lost when Q is used to approximate P . The KLD is calculated by

D (P ∥ Q) =
∑
si

P (si)ln(P (si)/Q(si)). (2.3)

KLD has a non-negative value for any P and Q, and it is zero only when P is exactly

equal to Q. The more the P and Q come to resemble each other, the smaller is the KLD.

Thus KLD indicates quantitatively the resemblance between P and Q.

Self-similar distributions are thus characterized by an invariant KLD, when measured

relative to a fixed reference pdf. The KLD was first used in a turbulence context by

Tsuji and Nakamura (1999), Lindgren et al. (2004), and Tsuji et al. (2005). In Tsuji

et al. (2005), for each velocity time series the experimentally determined pdfs, Py(s), are

compared to a Gaussian pdf, PG(s), having the same mean and variance. A primary

consideration of the analysis herein is the domain over which the KLD exhibits self-

similarity. For these analyses they employed boundary layer data up to Reynolds numbers

of about δ+ = 5200. Fig. 2.1 shows the representative divergence D (Py ∥ PG) as a

function of y+ together with the mean velocity profile at Reθ = 12633, where Reθ is the

Reynolds number based on the momentum thickness θ (Reθ =
U∞
uτ

θ
δ
δ+). There is a small
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Figure 2.1: (a) Inner-normalized mean velocity profile. The solid line is the log-law
profile, U+ = 1/0.38 ln (y+) + 4.1. The end of the logarithmic region is at y/δ = 0.15,
which is suggested by Österlund (1999). (b) KLD. Solid circles are the constant KLD
region. The starting and end points are expressed as y+s and y+e , respectively. Figures
are from Tsuji et al. (2005).

hump in mean velocity profile around y+ ≃ 50. Beyond this hump, the KLD is seen to

become constant. In this region, the KLD is self-similar. Tsuji et al. (2005) indicates

the starting point, y+s , of this constant KLD region is located closer to the wall than the

beginning of the logarithmic dependence of the mean velocity profile. And the ending

point y+e is beyond 0.15δ+. In-depth study denotes the starting point, y+s , is evaluated to

be 180 ± 15 independent of Reynolds number, when Reθ is greater than 5000. But the

ending point, y+e , is approximately a linear function of Reynolds number. The relation is

given by the least-square fit as y+e ≃ 0.3δ+.

A primary consideration of the analysis herein is the domain over which the KLD

exhibits self-similarity, as compared to the location of the inertial self-similar domain
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associated with the mean momentum equation.

2.2.2 Logarithmic Region for Higher-Order Even Moments

Based upon his attached eddy phenomenology, Townsend (1980) reasoned that as the

Reynolds number becomes large the inner-normalized variance of the streamwise velocity

fluctuations, ⟨u2⟩+, should exhibit a logarithmic decay over nominally the same region

where the mean velocity exhibits its logarithmic dependence.

Meneveau and Marusic (2013) provide substantive evidence that the reasoning log-

arithmic decay can be extended to the higher order even moments for the turbulent

boundary layers. Their analysis results in the equation below,

⟨(
u+
)2p⟩ 1

p
= Bp − Apln(

y

δ
) = Dp

(
δ+
)
− Apln

(
y+
)
. (2.4)

where p = 1, 2, ...,and, as with A1, the Ap are expected to approach universal constants

on the inertial domain as δ+ → ∞. Fig. 2.2 shows the higher-order even moments

for p = 1, 2, 3, 4 and 5 as a functions of inner-normalized distance from the wall at

Reτ = 19030. The range between y+ > 400 and y/δ < 0.3 is used to perform the

curve fits. The slope coefficients Ap for different Reynolds number are plotted in Fig. 2.3

as symbols. For 1p = 1, A1 appears to be independent of Reynolds number with an

approximately universal value of 1.25, with an accuracy of 5%. For p > 1, Ap tends to

values that fall below the Gaussian values.



Chapter 2. Three-measures of self-similarity and their connections to self-similar mean
dynamics in inertial sublayer of turbulent boundary layer 23

Figure 2.2: Higher-order even moments of order 2p = 2 (◦) , 4 (�) , 6 (⋄) , 8 (△) and
10 (∗) of streamwise velocity fluctuation as a function of inner-normalized wall distance
at Reτ = 19030. The lines show the fits in the range y+ > 400 and y/δ < 0.3. Figure
is from Meneveau and Marusic (2013).

Figure 2.3: Logarithmic coefficients Ap as a function of order 2p for different Reynold
numbers Reτ = 2800 (�) , 3900 (△) , 7300 (⋄) and 19030 (◦). The crosses and dashed line

show the results expected for Gaussian statistics, Ap = A1 [(2p− 1)!!]1/p. Figure is from
Meneveau and Marusic (2013).
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The analysis goal is to explore the behavior of Eq. (2.4), and especially the behavior

of the logarithmic coefficients Ap over the domain where the mean momentum admits its

self-similarity solution as δ+ → ∞.

2.2.3 Diagnostic Plot

The diagnostic plot presents the streamwise velocity variance profile in a manner that only

implicitly employs the distance from the wall. As first described by Alfredsson and Örlü

(2010), this involves plotting, urms/U∞ versus U/U∞ or similarly, urms/U versus U/U∞,

where urms =
√

⟨u2⟩ is the R.M.S. velocity, and U∞ is the free stream velocity. Although

originally developed to better understand the uncertainties associated wall turbulence

measurements, this plot has subsequently been used in attempts to better understand

scaling behaviors in both smooth and rough wall flows (Alfredsson et al., 2011; Castro

et al., 2013).

Fig. 2.4 and Fig. 2.5 respectively show the plots of urms/U∞ versus U/U∞ and urms/U

versus U/U∞ from Alfredsson et al. (2011). The plot of urms/U∞ versus U/U∞ is shown

to adhere closely to a quadratic function over the domain where U/U∞ & 0.6, which,

of course, corresponds to the outer portion of the boundary layer. Similarly, the plot of

urms/U versus U/U∞ exhibits a linear variation for U/U∞ & 0.6. In essence, the diag-

nostic plot provides evidence of statistical self-similarity between the streamwise velocity

fluctuations and the mean about which these fluctuations are measured. Herein, the re-

search is to explore the behavior of the diagnostic plot over a reasonably large Reynolds
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Figure 2.4: The diagnostic plot of urms/U∞ versus U/U∞. Solid lines: Reτ =
250 − 1300, DNS (Schlatter and Örlü, 2010), ◦ : Reτ = 850, hot wire measurement
(Örlü, 2009), ▽ : Reτ = 1700, ⋄ : Reτ = 4200, △ : Reτ = 9500, LDV measurements
(De Graaff and Eaton (2000)), × : Reτ = 18000, hot wire measurements (Fernholz
et al., 1995) (light symbols indicate same data corrected for spatial resolution effects
(Smits et al., 2011b). Thick dark line corresponds to the quadratic function between
U/U∞ & 0.6 and U/U∞ . 0.9. Figure is from Alfredsson et al. (2011).

Figure 2.5: The diagnostic plot of urms/U versus U/U∞. Data and symbols are the
same as in Fig. 2.4. Figure is from Alfredsson et al. (2011).
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number range, and, in particular, compare the domain of self-similarity indicated by this

measure with that predicted via analysis of the mean dynamical equation.

2.3 Experimental Measurements

2.3.1 Flow Physics Facility

The experimental measurements were conducted in the flow physics facility (FPF) at the

University of New Hampshire (UNH). The FPF is an open circuit suction tunnel that

draws from, and discharges to, the atmosphere. The flow speed is driven by two 2.6m

diameter vane-axial fans, powered by two 300KW AC motors. Speed control is attained

by two ultra low-noise variable frequency drives that are operated in a coupled leader-

follower configuration. The maximum flow speed in the FPF test section is currently

about 14.5m/s. This corresponds to a volume flow rate of about 252m3/s. The test

section of this wind tunnel has the dimensions of 72m × 6m × 2.8m. The height of

this test section, 2.8m, is approximately evaluated, since the upper wall is divergent

accounting for the displacement thickness growth downstream. This large test section

affords high Reynolds numbers at relative low wind speeds, and thus it retains the high

spatial resolution in measurements.

Fig. 2.6 shows the an exterior view of the FPF, and Fig. 2.7 give a cut-away schematic

of the FPF. Relative to Fig. 2.7, the flow is from left to right and is drawn through the

test section by the pair of fans located in the low pressure plenum. The flow enters the
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Figure 2.6: FPF wind tunnel, air flow enters the text section through the inlet at
the front and discharges into the atmosphere at the rear.

Figure 2.7: Cut-away schematic drawing of the FPF. Air flow is from left to right
through the test section.

test section through a constant area turbulence management section, which consists of

honeycomb followed by a series of five screens. The measurements were acquired in the

boundary layer that develops along the lower wall of the FPF test section. The floor

consists of three slabs of concrete separated by two expansion joints, at 25m and 50m

downstream, respectively. The slabs are 25.4cm thick and were poured in place 3m above

the ground plane using an extensive series of wooden frames. The mix of concrete was
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specially formulated to yield a dense micro-structure. This promotes dimensional stabil-

ity and produces an unusually flat and smooth surface. As verified by a professionally

conducted survey, the deviations from flat are everywhere less than 0.26mm/m.

The boundary layers on the lower wall and side walls of the FPF are tripped imme-

diately downstream of the turbulence management section, the floor boundary layer in

the FPF formally starts only about 1.4m in front of the trip. The trip consists of a 6mm

threaded rod raised about 1mm above the surface, i.e., so that there is flow both above

and below the trip. Previous low-speed studies found that this trip fixes the point of

transition, and that the artifacts associated with the trip rapidly diminish downstream

(Klewicki and Falco, 1990).

The flow quality and consistency in FPF is estimated by the streamwise free-stream

turbulence intensity, urms/U∞. The streamwise free-stream turbulence intensity generally

ranges between 0.2% and 0.5%, depending on different flow speeds. The atmospheric

wind conditions outside the FPF are monitored by a pair of tower-mounted 3D sonic

anemometers located outside and near the inlet. Except for storm-like conditions, the

effects of external gustiness are not detectable for flow speeds greater than 3m/s. For

U∞ & 7m/s, the streamwise free-stream intensity is less than 0.3%.

2.3.2 Experiments and Instrumentation

Experimental data were acquired in FPF (Vincenti et al., 2013; Zhou and Klewicki, 2015).

The profile measurements were conducted using a standard single wire hotwire sensor.
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L = 1 mm

Copper-plated Side 

Regions

Figure 2.8: Hot-wire single wire probe.

The copper-plated 5µm diameter tungsten wires contained within the probe are 3mm

in length with a 1mm active center region. A sketch of the probe is shown in Fig. 2.8.

The copper plating allows the wires to be soft-soldered to the support prongs and serves

to aerodynamically isolate the center sensing region. The probes were operated using

AA Lab Systems (AN-1004) anemometers at heating ratios between 1.5 and 1.7. The

frequency response of the sensor anemometer system was estimated using the impulse

response module on the anemometer and always exceeded 15kHz. This was always

significantly beyond the range of turbulent frequencies in the present flows. Pre- and post-

calibrations were performed in the free-stream flow. The velocities for the calibrations

were derived from a Pitot-static tube connected to an MKS-Baratron 10 Torr differential

pressure transducer. The barometric pressure and temperature was monitored throughout

each experiment used to calculate the air density and viscosity. Temperature data were
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Table 2.1: Turbulent boundary layer experimental data from Flow Physics Facility.

Symbol x(m) U∞(m/s) uτ (m/s) δ99(m) δ∗(m) θ(m) δ+ l+ TsU∞/δ
♢ 4 6.87 0.263 0.0861 0.0130 0.0096 1450 16.8 23940
◃ 8 6.95 0.252 0.1356 0.0216 0.0154 2180 16.1 15370
▹ 16 6.87 0.240 0.2456 0.0340 0.0295 3820 15.9 8390
▽ 32 7.01 0.234 0.4284 0.0572 0.0437 6430 15.0 3920
∗ 32 6.82 0.238 0.4274 0.0507 0.0391 6510 15.2 11490
△ 66 6.95 0.226 0.7363 0.0898 0.0697 10770 14.6 2260
I 66 6.78 0.223 0.7501 0.0890 0.0693 10750 14.3 6510
� 4 10.43 0.397 0.0838 0.0114 0.0088 2280 25.5 3730
I 8 10.52 0.374 0.1340 0.0185 0.0142 3270 24.4 3530
J 16 10.63 0.351 0.2336 0.0308 0.0235 5680 24.1 3640
H 32 10.72 0.345 0.3953 0.0482 0.0369 8970 22.7 3250
N 64 10.21 0.327 0.7439 0.0739 0.0585 15480 20.8 2470
� 66 10.33 0.330 0.7171 0.0792 0.0632 15740 22.0 3450
◦ 66 13.75 0.432 0.6885 0.0722 0.0574 19670 28.6 5990

measured with a thermocouple at each x station and were collected in concert with the

freestream dynamic pressure and hotwire time series. Temperature variations during any

given experiment were generally ±1.5oC. The hotwire data were sampled using a National

Instruments PXI-6221 16 bit analog-to-digital converter. The sampling durations depend

on the distance downstream and the free-stream velocity. The profiles were obtained using

a stepper motor driven Velmex 1.4m-high traverse fitted with a custom-built aerodynamic

shroud. The probe was attached to the end of a rod that extended 0.5m upstream of the

traverse. The friction velocity was found using the Clauser chart method employing log

law constants of k = 0.387 and B = 4.32 (Marusic et al., 2013).

Table (2.1) provides a summary of the flows studied. Here x denotes the distance from

the trip located at the start of the test section, δ∗ is the displacement thickness, θ is the

momentum deficit thickness, l+ is the inner-normalized length of the hotwire sensor, and

Ts is the sampling duration. As documented, the spatial resolution of the measurements
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is very good, and at fixed speed actually improves with increasing δ+. The polygonal

symbols (including the circle) in Table (2.1) are from the study of Vincenti et al. (2013),

while the star and asterisk represent additional measurements where I acquired the time

series with a longer sampling duration, 12mins for each elevation points in the profile, to

assess the effect of averaging time and reduce the convergence uncertainty. The respective

maximum standard deviations from the two corresponding same velocity measurements

are compared. The deviation was less than 4% of their average value. The effect of

statistical convergence uncertainty did not make a significant influence on the data, and

thus all the data listed in Table (2.1) were used in the analysis.

2.3.3 Experimental Results and Analyses

The measures of self-similar behavior discussed in Section (2.2) are now computed using

the data sets of Table (2.1), and their properties are compared with self-similarity ad-

mitted by the mean momentum equation. When reading the data presentation section

it is useful to keep in mind that the self-similar behaviors of present interest emerge as

an asymptotic property of the inertial layer. Owing to this, at any finite δ+ empirical

evidences of self-similarity will necessarily be approximate. Thus, for increasing δ+ the

mean profile will become increasingly well-approximated by a logarithmic function, as will

the higher order even moments of the u fluctuations. Similarly, the diagnostic plot will

increasingly adhere to its linear dependence and the KLD will increasingly approximate

constancy within the inertial domain. It is anticipated that the KLD will approach its

asymptotic behavior most slowly with δ+. This is because the KLD is a measure that
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Figure 2.9: Inner-normalized mean velocity profiles. Symbols are the same as in
Table (2.1).

effectively incorporates the information contained in the entire pdf (i.e., incorporates the

information in all moments), whereas, for example, the mean profile only reflects the

behavior of the first moment. Conversely, it is expected that the diagnostic plot will con-

vincingly express its self-similar behavior at the lowest δ+. This is because it essentially

constitutes the ratio of the two lowest order moments (second to first) of the underlying

pdf.

2.3.3.1 Mean Velocity Profiles

Mean velocity profile data are plotted in Fig. 2.9. All profiles in Fig. 2.9 exhibit good

agreement with logarithmic mean velocity profile, and particularly adhere to the logarith-

mic formula, U+ = (0.387)−1ln(y+) + 4.32, given by Marusic et al. (2013). These data

also consistently collapse onto each other down towards the wall. The analysis of high
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Figure 2.10: Deviation of the measured representative mean profiles from
0.387−1ln(y+); (a) versus y+, (b) versus y/δ. ▽, Reτ = 6430, △, Reτ = 10770,
◦, Reτ = 19670. Horizontal line denotes B = 4.32.

Reynolds number pipe and boundary layer data by Marusic et al. (2013) indicates that

the start of the logarithmic variation is empirically evaluated as 3
√
δ+. Klewicki (2013b)

revealed that the mean dynamics become wholly inertial near y+ ≃ 2.6
√
δ+, and over

the domain between this location and y+ ≃ 0.5δ+, the mean velocity profile exhibits a

logarithmic dependence associated with the self-similarity solution admitted by the mean

momentum equation as δ+ → ∞.

An unambiguous indication of the start point for the where U+ becomes logarithmic

cannot be discerned from the present mean profiles. By plotting the deviation of U+ from

the logarithmic line one can, however, assess this position to within an order of magnitude.

Figs. 2.10 (a) and (b) respectively show representative profiles of the deviation from the

logarithmic line under inner and outer normalized wall normal position. Here, the values

of k = 0.387 and B = 4.32 are used (Marusic et al., 2013). These data show that the

position where the data begin to approach the horizontal line moves outward under inner

normalization and inward under outer normalization with increasing Reynolds number,



Chapter 2. Three-measures of self-similarity and their connections to self-similar mean
dynamics in inertial sublayer of turbulent boundary layer 34

and thus at this level are in accord with the theoretical prediction. A distinctive Reynolds

number trend indicated by the present data is that the near-wall bump in the profile is

quite pronounced and rises above the logarithmic line at low δ+. With increasing δ+,

the bump flattens and the entire profile shifts downward such that the logarithmic line

is approached from below at higher Reynolds number. The evolution of the bump prior

to the logarithmic region is associated with the scale separation between the near-wall

region and outer region. It is where the inner length scale, ν/uτ , transitions to the outer

length scale, δ. This “bump” region has the intermediate length scale,
√
νδ/uτ .

2.3.3.2 KLD Analysis

The present KLD analysis generically adheres to the procedures used in previous studies

by Tsuji and Nakamura (1999), Lindgren et al. (2004), and Tsuji et al. (2005), but

with some differences in detail. Estimating the pdf from experimental data involves

normalizing the associated histogram. This histogram necessarily has a finite number of

bins, and thus care must be taken in selecting the bin width. Several bin width values

were tested to determine the range of sizes over which the final result remained invariant.

Figs. 2.11 shows the dependence of the KLD on bin size at δ+ = 6510. Based upon

analyses such as these, a bin size of 0.15σ (σ = standard deviation) was employed for the

present analysis of KLD. This is consistent with the study of Tsuji et al. (2005), as is the

range of u values employed to calculate the pdf, i.e., −10σ 6 u 6 10σ.
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Figure 2.11: Effect of relative bin size on the calculated value of the KLD profile at
Reτ = 6510; bin size= 0.1σ, ◦; 0.125σ,△; 0.15σ,�; 0.175σ, I; 0.2σ, ⋄.

Fig. 2.12 and Fig. 2.13 present example KLD profiles at δ+ = 6510 and δ+ = 10750

respectively. For reference, these figures also show the mean velocity profiles. Three

features are noted; the position where the KLD is a minimum, y+p , and the starting and

ending points of the (approximately) constant KLD region, y+s and y+e , respectively. At

y+p the pdf of u is closest to Gaussian. This position was quantified from the present data

by simply locating the position where the measured KLD is a minimum.

In the previous studies, the criteria employed to identify the starting and ending

points of the region where the pdfs of u are self-similar (approximately constant KLD)

was either not used or not explicitly indicated. In the present analysis, these positions are

self-consistently, yet subjectively defined. To do this, the region of the constant KLD was

approximately located, and the average value of this region was computed. This average

value is given by the horizontal dashed line in Fig. 2.11 and Fig. 2.12. The extent of the
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Figure 2.12: KLD (◦, left axis) profiles measured relative to a Gaussian pdf, and
mean velocity profiles (♢, right axis) at δ+ = 6510. The position of the minimum KLD
is given by y+p , while the starting and ending points of the region of approximately
constant KLD are given by y+s and y+e , respectively.
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Figure 2.13: KLD (◦, left axis) profiles measured relative to a Gaussian pdf, and
mean velocity profiles (♢, right axis) at δ+ = 10750. The position of the minimum
KLD is given by y+p , while the starting and ending points of the region of approximately
constant KLD are given by y+s and y+e , respectively.
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constant KLD region was then defined as those points that fell within±40% of this average

value. On face value, this criterion may seem somewhat large. The values of the average

KLD are, however, only about 0.1, and thus in absolute terms the admitted variations

are quite small (from about 0.07 to 0.14) relative to the orders of magnitude variation in

KLD across the boundary layer. The 40% criterion exceeds the maximum value of the

data scatter about the average line, and captures the scaling behaviors exhibited by the

emerging region of increasingly constant KLD. In this regard, it is further noted that the

vast majority of beginning and ending points easily fell within ±30% of the average value.

The data of Fig. 2.11 and Fig. 2.12 (and those at other δ+) also provide some evidence of

a non-zero slope through the inertial layer of interest. This non-constancy is consistent

with the finite δ+ effects discussed at the beginning of this section.

As might be expected, the measured values of y+s and y+e predictably changed for

variations in the criterion used to detect approximate constancy. For example, a smaller

percentage criterion caused the starting point to move to larger y+ and the ending point

to shift to smaller y+. For all reasonably defined criteria, however, these variations were

relatively small and the underlying scaling properties reported herein were preserved, see

below. Overall, the region of approximately constant KLD was always estimated to fall

interior to the range between 2.6
√
δ+ and 0.3δ+.

The measured values of y+p ranged from about 35 to 73, but did not exhibit any

discernible trend with Reynolds number. This relatively large scatter stems from the

minimum not occurring at a sharp peak, especially with increasing δ+. The overall

average value of y+p is about 52.7. These findings agree with those by Tsuji et al. (2005),
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Figure 2.14: Reynolds number dependence of the starting point estimate for the
constant KLD region. Curve fit is given by y+s = 2.95

√
δ+.

as well as with their observation that y+p correlates with the position where the U+(y+)

profile exhibits a shallow rise (bump) above the logarithmic line at least at lower δ+.

The y+s and y+e values for the profiles listed in Table (2.1) were computed as just

described. These values plotted versus Reynolds number in Fig. 2.14 and Fig. 2.15.,

reveals that the starting position of the self-similar region follows a
√
δ+ dependence,

with a measured multiplicative coefficient of about 2.95. This result is different from what

Tsuji et al. (2005) found, as they estimated that y+s is essentially constant for δ+ & 1500.

In this regard, it is noted that the y+s data in their study exhibits a mildly increasing

trend with Reynolds number, and that the highest Reynolds number on their plot was

δ+ ≃ 4400. The values of y+e in Fig. 2.14 follow an approximately linear trend with

increasing δ+. The leading coefficient in the linear curve fit is about 0.28. This result is

close to the value reported by Tsuji et al. (2005) of about 0.3. Here it is further noted
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Figure 2.15: Reynolds number dependence of the ending point estimate for the
constant KLD region. Curve fit is given by y+e = 0.27δ+.

that if a ±20% criterion is used to detect the constant KLD region, then y+s and y+e shift

to 3.21
√
δ+ and 0.19δ+, respectively. For either the 20% or 40% criteria, the increasing

domain width with increasing δ+ necessarily translates to a decreasing average slope, and

thus supports the KLD approaching a constant the inertial domain as δ+ → ∞. In regard

to these scaling behaviors, it is also relevant to note that the similarity solution of the

mean momentum equation reproduces the U+ and T+ profiles generated by low δ+ DNS

to within 0.1% over the domain 2.6
√
δ+ . y+ . 0.3δ+ (Klewicki, 2013b).

2.3.3.3 Higher-Order Even Moments Analysis

Statistical moments of the u signals were computed up to 2p = 10 for the data represented

in Table (2.1). In accord with the last equality in (2.4), the profiles of these statistical

moments were then plotted versus y+. Similar to the variance profile, the higher-order
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Figure 2.16: Statistical moment profiles of order 2p = 2(◦), 4(�), 6(△), 8(⋄) and
10(∗) of the u signals at two Reynolds numbers less than 5000. (a) δ+ = 2180 and (b)
δ+ = 3820.

even moments exhibit an inner peak near y+ = 5, and an emerging mid-layer peak

with increasing δ+. Vincenti et al. (2013) demonstrated with the present data sets that

the mid-layer peak in the variance profile emerges near y+ = 2.3
√
δ+ to within about

±0.4
√
δ+ . Given this, and the results of the KLD analysis, the moment profiles were

fit to logarithmic decay curves over the domain 2.6
√
δ+ . y+ . 0.3δ+. Note that the

lower limit used here is different from the fixed value of y+ = 40 used by Meneveau and

Marusic (2013).

Representative profiles of the even moment profiles for δ+ . 5000 are shown in

Fig. 2.16, while representative profiles for δ+ & 5000 are shown in Fig. 2.17. Each

of these profiles includes the curve fit according to the logarithmic decay Eq. (2.4). As

is apparent, with increasing δ+ the middle region of each profile shows evidence of an

emerging plateau that eventually develops into a mild peak. It is beyond this peak that

the logarithmic decay must occur. Recalling that the curve fits on these figures are over

the domain 2.6
√
δ+ . y+ . 0.3δ+, it also becomes apparent that the onset of the zone of
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Figure 2.17: Statistical moment profiles of order 2p = 2(◦), 4(�), 6(△), 8(⋄) and
10(∗) of the u signals at two Reynolds numbers greater than 5000. (a) δ+ = 10750 and
(b) δ+ = 19670.
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Figure 2.18: Logarithmic slope coefficients, Ap, values as a function of even moment
2p. Symbols are the same as in Table (2.1).

logarithmic decay begins near to or just beyond where the leading order mean dynamics

become wholly inertial.

Behaviors associated with the totality of theAp are graphically summarized in Fig. 2.18

and Fig. 2.19. Regarding the uncertainty of these estimates, it is relevant to note that
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Figure 2.19: Logarithmic slope coefficients, Ap, values as a function of δ+; 2p =
2, ◦; 2p = 4,�; 2p = 6,△; 2p = 8, ⋄ and 2p = 10, ∗. Dashed lines are a linear fit over all
δ+.

the deviation of the individual data points from the respective logarithmic curve fit is at

most about 7%, but more typically is considerably less. Fig. 2.17 shows curves of the

Ap values for each δ+ plotted versus the order of the even moment, 2p. As is apparent,

the data nominally segregate into two similar sets of curves; one cluster for δ+ . 5000

and another cluster for δ+ & 5000. Comparison indicates that the δ+ & 5000 group-

ing of curves is similar, but not identical, to those presented in the study of Meneveau

and Marusic (2013). This is consistent, since they primarily considered flows having δ+

greater than 5000.

The distinction between the lower δ+ and higher δ+ behaviors is similarly reflected by

individually plotting the Ap values for each moment as a function of Reynolds number,

as shown in Fig. 2.18. In this figure, the linear curve fit that considers the full δ+ range
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Table 2.2: Logarithmic slope coefficients, Ap, of the higher-order even moment curve
fits up to 2p = 10 for δ+ > 5000.

δ+ 5680 6340 6510 8970 10750 10770 15480 15740 19670 Average
A1 1.18 1.20 1.17 1.29 1.34 1.28 1.41 1.20 1.35 1.27
A2 1.87 1.86 1.84 2.00 2.10 2.00 2.19 1.86 2.13 1.98
A3 2.47 2.43 2.38 2.57 2.17 2.57 2.81 2.40 2.80 2.51
A4 2.98 2.93 2.84 3.04 3.19 3.04 3.31 2.82 3.37 3.06
A5 3.41 3.38 3.22 3.44 3.58 3.42 3.72 3.16 3.89 3.47

helps to clearly reveal that the data undergo a nearly discrete jump near δ+ = 5000,

and then exhibit a much slower variation for greater δ+. This much smaller variation for

δ+ & 5000 is potentially indicative of an approach to an asymptotic value, as suggested

by the 2p = 2 pipe data presented in Marusic et al. (2013) at much higher δ+.

The logarithmic slope coefficients, Ap, for the flows with δ+ > 5000 are presented

in Table (2.2), with their average values given in the final column. It is noted that the

present average for A1 is 1.27, which is close but not identical to the value reported by

Marusic et al. (2013). On the other hand, while the values of the present A2 − A5 are

qualitatively similar to those presented in Meneveau and Marusic (2013), at nominally

the same δ+ the present data exhibit slightly higher values for each moment. Some of this

difference can be explained by the fact that they used a boundary layer thickness that is

about 15% larger than the present δ = δ99, and thus when δ99 is consistently employed

their δ+ values decreased by about 15%.

Well-resolved data indicate that the inner-normalized near-wall peak in the velocity

variance in boundary layers increases with increasing δ+ (Metzger and Klewicki, 2001;

Hutchins et al., 2009). Consistent with this, and the results for 2p > 2 reported by
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Figure 2.20: Near-wall peak values of moments of order 2p = 2(◦), 4(�), 6(△), 8(⋄)
and 10(∗) plotted as a function of δ+. The dashed lines are logarithmic curve fits
according to Eq. (2.5).

Meneveau and Marusic (2013), the present higher-order even moment profiles also exhibit

an increasing trend in their near-wall peak values. These peak values are plotted versus

δ+ in Fig. 2.20. The replicated Reynolds numbers in this figure near δ+ = 6500, 11000 and

15000 provide an indication of the uncertainty of these measurements. The present data

indicate that with increasing p the position of the peak undergoes a mild shift toward the

wall. Namely, for 2p = 2 the peak is close to y+ = 15, while for 2p = 10, the peak occurs

near y+ = 10.

The peak values for each moment were fit to a logarithmic curve in Fig. 2.19 according

to ⟨(
u+
)2p⟩1/p

peak
= Jpln

(
δ+
)
+Kp, (2.5)

with the fit parameters listed in Table (2.3). While qualitatively similar to the results
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Table 2.3: Coefficients in the curve fits of Eq. (2.5) describing the increase in the
near-wall peak with δ+, and a comparison of the multiplicative coefficients, Ap and Jp.

2p 2 4 6 8 10
Jp 0.46 0.93 1.53 2.34 3.35
Kp 4.75 5.76 5.27 2.91 −0.93
Ap 1.27 1.98 2.51 3.06 3.47

Jp/Ap 0.36 0.47 0.61 0.76 0.97

reported in Meneveau and Marusic (2013), the results of Fig. 2.19 and Table (2.3) exhibit

some notable differences. As with the Ap data of Fig. 2.18, for any given p the present data

are slightly greater than their similar δ+ result. Furthermore, the present δ+ dependence

of the higher-order moments is slightly more pronounced than what their data indicate.

They also report that for 2p = 8 and 10, Jp ≃ Ap/2. The present data, however, exhibit a

trend that is quantitatively different from this. For 2p = 2, the present slope is less than

Ap/2, and for increasing moment the ratio of Jp to Ap increases such that it approaches

unity for 2p = 10. The reasons for this observed difference are not known, but may at

least be partly associated with the difference in the domain used to determine the Ap,

and our selection of the actual near-wall peak value rather than the value of the moment

at y+ = 15. It is lastly noted that the interesting observation that for each increase in 2p

the ratio Jp/Ap (last row in Table (2.3)) increases by a constant factor of about 1.26.

2.3.3.4 Diagnostic Plot

Fig. 2.21 and Fig. 2.22 respectively present the original diagnostic plot and the modified

diagnostic plot as described by Alfredsson and Örlü (2010) and Alfredsson et al. (2011).

Relative to the initial intended use of the diagnostic plot, the data near the wall deviate
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Figure 2.21: Original diagnostic plots of the streamwise velocity intensity as de-
rived from the data of Table (2.1). Quadratic curve fit is given by ur.m.s/U∞ =
−0.215 (U/U∞)2 + 0.209 (U/U∞) + 0.035.
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Figure 2.22: Modified diagnostic plots of the streamwise velocity intensity as derived
from the data of Table (2.1). Linear curve fit is given by ur.m.s./U = −0.277 (U/U∞)+
0.303.
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from a monotone decay toward zero, and this indicates that the data very close to the

wall are not correct. Note further that in Fig. 2.21 the data in the outer region of interest

follow a quadratic curve, while those in Fig. 2.22 convincingly adhere to a straight line

over the horizontal axis coordinates between about 0.55 and 0.9. Relative to Fig. 2.22,

the present data yield slightly different fit parameters than found by Alfredsson et al.

(2011), but the overall agreement and evidence of linear dependence is compelling. Both

plots reveal that the mean and rms streamwise velocity profiles vary self-similarly over

this domain. A primary aim of the present analysis is to quantify the extent of this

self-similar region in spatial (y+) coordinates, and compare this with the domain where

mean momentum equation exhibits its ϕ→ ϕc self-similarity.

The bounds of the linear region in Fig. 2.22 were determined as follows. For each

Reynolds number the data were fit to a line using data in the middle of the region where

the linear dependence unambiguously holds. Data points were then successively added

to both sides of this subdomain, and the curve fit was updated. With each addition of

data points, the curve fit became more robust. For all of the data that reliably fell within

in the linear region, the maximum deviation from the straight line fit was less than 8%.

Eventually, however, the newly added data deviated from the line fit by more than 8%,

and the locations of the data points immediately adjacent to these were identified as the

starting and ending positions of the linear region. As before, these positions are denoted

as y+s and y+e , respectively.

The y+s and y+e values for the data of Table (2.1) are respectively plotted versus δ+

in Fig. 2.23 and Fig. 2.24. These plots indicate that y+s ≃ 2.55
√
δ+ , and y+e ≃ 0.51δ+.
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Figure 2.23: Reynolds number dependence of the starting point estimates for the
linear region on the diagnostic plot. Curve fit is given by y+s = 2.55
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Figure 2.24: Reynolds number dependence of the ending point estimates for the
linear region on the diagnostic plot. Curve fit is given by y+e = 0.51δ+.
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Thus, to within the scatter of the data the diagnostic plot domain of self-similarity is

indistinguishable from that associated with the ϕ → ϕc self-similarity admitted by the

mean momentum equation.

Relative to the coordinates of Fig. 2.22, Alfredsson and Örlü (2010) and Alfredsson

et al. (2011) note that the mid-layer peak in ⟨u2⟩+ will emerge if the region of linear

dependence extends to sufficiently low values of U/U∞. They estimate this value to

be U/U∞ ≃ 0.55. Given this, it is relevant to describe how these and other empirical

observations connect to the mean flow theory of Fife et al. (2005a). The analysis by

Vincenti et al. (2013) provides evidence that the position of the mid-layer peak occurs at

about y+ = 2.3
√
δ+ + 0.4

√
δ+. Scalings derived from analysis of the mean momentum

equation indicate that the value of U+ at the outer edge of layer III is approximately

U+ = 0.5U+
∞ + 3.6. Thus, according to the theory, the value of U/U∞ at this location

is weakly Reynolds number dependent and asymptotically approaches 0.5. Consistent

with this, the data of Fig. 2.21 and Fig. 2.22 indicate that the position of the outer peak

occurs where U/U∞ ≃ 0.62, while the region of linear dependence in the diagnostic plot

starts closer to 0.55. This slight discrepancy is similar to the results noted by Klewicki

(2013b) relative to the slope of mean velocity gradient profile, and the apparent start of

the region of logarithmic U+. This observation is probably at least partially connected to

the capacity to accurately discern properties from experimental measurements; especially

in layer III where the balance exchange of dominant order terms that leads to inertial

mean dynamics occurs. Overall, however, it would seem that the empirical observations

by Alfredsson et al. (2011) are consistent with the Reynolds number dependent properties
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derived from the mean equation based theory.

2.4 Summary

Two primary conclusions are noted:

1. The region where the KLD and even moment profiles exhibit evidence of emerging

self-similar behavior are indistinguishable from each other to within the present data

scatter. This region of emerging self-similarity scales like but lies interior to the estimated

bounds, 2.6
√
δ+ . y+ . 0.5δ+, of the inertial domain associated with the ϕ → ϕc self-

similarity formally admitted by the mean dynamical equation.

2. To within the scatter of the present measurements, the self-similar domain of the

diagnostic plot is indistinguishable from 2.6
√
δ+ . y+ . 0.5δ+.

At a minimum, these findings reveal a strong correlation between the domain where

the three empirical measures indicate self-similarity, and the ϕ→ ϕc domain determined

through analysis of mean momentum equation.

A physical interpretation of the present findings is gained by the depiction of Fig. 2.25.

Adapted from the study of Klewicki (2013a), this figure describes the mechanisms and

scaling behaviors associated with the relative scale separation between the characteristic

motions of the velocity and vorticity fields in the boundary layer.
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Figure 2.25: Depiction of the vorticity field attributes in turbulent wall-flows. The
dominant processes responsible for scale separation between the velocity and vorticity
fields change across layer III. The velocity field motions (light gray) are space-filling
throughout the flow. The vorticity field motions (hatched regions) are confined to a
sub-volume near the wall via vorticity stretching, and then the resulting thin regions
of concentrated vorticity (vortical fissures) are dispersed by advective transport over
the upper portion of the layer hierarchy (inertial subdomain of present interest) where
ϕ → ϕc as δ

+ −→ ∞. Figure is adapted from Klewicki (2013b).

Near the wall there is intense vorticity stretching and reorientation. This results in the

vigorous three-dimensionalization of the vorticity field with wall-normal distance. This

vorticity stretching also causes a relative reduction in the scale of the concentrated vortical

motions, and an exchange of mean flow enstrophy to fluctuating enstrophy (Klewicki,

2013a). Although not depicted in Fig. 2.25, existing data suggest that, independent of

δ+, most of the mean-to-fluctuating enstrophy exchange occurs in the region y+ . 40

(Klewicki, 2013a). The completion of this randomizing process may have connection

to the present and previous observations indicating that the KLD attains its minimum

relative to a Gaussian pdf just beyond this region, i.e., near y+ = 50.
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The region of primary present interest, however, is the inertial portion of the scaling

layer hierarchy that resides beyond the outer edge of layer III (y+ & 2.6
√
δ+). Here

both vorticity and momentum transport predominantly occur via advective transport,

i.e., for momentum by the mean inertia and turbulent inertia mechanisms . Analysis of

mean vorticity and vorticity fluctuation statistics leads to the inertial layer depiction.

Consistent with the findings of Meinhart and Adrian (1995) and Adrian et al. (2000)

and velocity vorticity product measurements at high δ+ (Priyadarshana et al., 2007), this

flow domain is characterized by large scale zones of nearly uniform momentum that are

segregated by narrow (high aspect ratio) regions of elevated vorticity so-called vortical

fissures (Priyadarshana et al., 2007). On this domain, W+ (y+) approaches a linear

function, and over the extent of this region the magnitude of the mean vorticity, | Ωz |,

attenuates from O
(√

u3τ/δν
)
to O (uτ/δ). These behaviors are associated with the mean

momentum equation admitting a logarithmic mean solution. The decrease in | Ωz |, along

with the continuing effect of vorticity stretching, leads to a self-similar increase in the

vorticity intensities relative to | Ωz | across the inertial layer (Klewicki, 2013a).

With increasing δ+ the vorticity fluctuations are increasingly concentrated in the nar-

row vortical fissures. Thus, the depiction of Fig. 2.25 suggests that the logarithmic

decrease in the moments of u stems from the decreasing difference between the uniform

momentum zone velocities and the local U value as y approaches δ. Similarly, this same

depiction suggests that the diagnostic plot is the velocity field complement of the self-

similarity between the mean vorticity and vorticity intensities noted above. Namely, with

each linear increment in mean velocity (associated with a logarithmic step in y+ and
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the above noted attenuation of | Ωz |), there is a decreasing difference between u+ and

the range of velocities in the uniform momentum zones at the given y+ position. Over-

all, these interpretations lead one to further suspect that the measures of self-similarity

investigated herein are manifestations of the self-similar behaviors admitted by mean

momentum equation.

The similarity solution to the mean momentum equation is accomplished by analyti-

cally determining the coordinate stretching, ϕ, that yields an invariant form of the mean

dynamical equation. This theory faithfully does not rely upon additional assumptions

or hypotheses. As such, the interpretation for the emergence of the mid-layer peak in

⟨u2⟩+ quite naturally derives from its correlation with the onset of the inertial layer at

y+ ≃ 2.6
√
δ+. Townsend (1980) associates the logarithmic behaviors for U+ and ⟨u2⟩+

with the action of his attached eddy hierarchy. The Biot-Savart basis of the attached

eddy model naturally places this hierarchy on the inertial sublayer of present interest.

Accordingly, the onset of this inertial layer also coincides with where Townsends outer

layer similarity hypothesis should become valid. The leading order behaviors of mean

momentum equation indicate that this domain starts at the outer edge of layer III, which

for the smooth-wall flow is located at y+ ≃ 2.6
√
δ+ . More generally (e.g., for rough-wall

flows), the outer edge of layer III is where the viscous force term loses leading order

importance.

Castro et al. (2013) demonstrated that the diagnostic plot properties are also retained

on an outer domain in rough-wall flows. Mehdi et al. (2013) showed that the layer II−IV

structure is generically preserved in rough-wall flows, but that the transitions from layer to
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layer depend on the combined effects of roughness and Reynolds number. Consistent with

the present findings that the linear region of the diagnostic plot coincides with the domain

where the mean momentum equation admits its ϕ → ϕc self-similarity, Mehdi et al.

(2013) provide evidence that for rough-wall flows the onset of the outer layer similarity

approximation still physically occurs where the viscous force term loses leading order

importance provided that the signature of the motions directly created by the roughness

is sufficiently attenuated by the three-dimensionalization processes interior to the outer

edge of layer III. These findings thus provide evidence that the coincidence between the

inertial portion of the layer hierarchy and and the linear region of the diagnostic plot also

extends to rough-wall flows.



CHAPTER 3

SCALING PROPERTIES OF KINETIC ENERGY BUDGETS

IN WALL TURBULENCE

3.1 Background

Efforts to describe kinetic energy and kinetic energy equation behaviors in turbulent wall-

flows arguably began in earnest with the experimental studies by Laufer and Klebanoff

(Laufer, 1951, 1954; Klebanoff, 1955). As remains the case for physical experiments today,

analyses were conducted without the benefit of the comprehensive quantification of terms

that is now provided by direct numerical simulations, DNS. These earlier descriptions

were generally given within the context of the traditional layer structure just described,

and often (but not exclusively) focused on the turbulence kinetic energy (TKE). These

early measurements revealed that not all terms in the TKE budget are leading order

across the entire flow, and in particular the production and dissipation terms were found

to nominally comprise the leading balance across the logarithmic layer. Guided by such

measurements, subsequent analyses and interpretations were made within the context of

55
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the budget equations. Using his attached eddy concepts, Townsend (Tennekes and Lum-

ley, 1976) surmised that in the logarithmic layer the streamwise and spanwise velocity

fluctuation contributions to the TKE are, in the asymptotic limit, given by functions

that logarithmically decrease with distance from the wall, with the wall-normal velocity

fluctuation contribution approaching a constant. Townsend further described equilibrium

boundary layer energy transport as consisting of an inward flux of mean kinetic energy

that is coincident with an outward flux of turbulence energy, and with the primary con-

version of mean to turbulence kinetic energy occurring in the logarithmic layer and below.

Near the outer edge, he surmised that the approximate balance is between the advection

and turbulent transport terms, and thus is inviscid at leading order. The approximate

balance between production and dissipation in the logarithmic layer is often employed

in wall-turbulence scaling arguments, and is regularly used to explain the existence of a

logarithmic mean profile, e.g., (Tennekes and Lumley, 1972; Davidson, 2015)

Of course, the interest in Reynolds number effects also extends to the TKE equation.

As such, an equation based characterization of the leading balances, similar to that just

given for the mean momentum equation, is desired. The difficulties in obtaining accurate

experimental measurements of the relevant quantities postponed the accurate determina-

tion of each term in the TKE budget until the advent of DNS. Since the early DNS of

Mansour et al. (1988), numerous other studies have explored the behavior of the terms

in the TKE equation (Spalart, 1988; Antonia and Kim, 1994; Moser et al., 1999; Cole-

man et al., 2003). From these studies, it is probably safe to surmise that a clear scaling

structure to the TKE budget (and associated Reynolds stress budgets) has yet to emerge
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(Hoyas and Jiménez, 2008).

Some general behaviors are, however, known to hold. At the wall the dissipation term

is maximal and is balanced with the viscous diffusion term. Near the wall, the dissipation

term balances with the sum of the viscous diffusion and pressure diffusion terms. Moving

away from the wall, the pressure diffusion term is small compared to other terms, and

the turbulent diffusion term becomes important. This term is positive near the wall, but

negative for 8 . y+ . 30. It thus plays a role in transporting TKE towards the wall.

In the region y+ & 30, however, the balance is nominally composed of the production

and dissipation terms. It is rationally expected that both the dissipation term, which is

dependent on small scale structure, and the turbulent diffusion term, which is typically

associated with larger scales, are sensitive to Reynolds number via the effects of scale

separation. Also, above the traditional buffer layer, most terms in the TKE transport

equation scale reasonably well with u3τ/δ. Within the viscous and buffer layers, inner-

normalization, u4τ/ν, seems to apply, but the inner scaling works poorly very close to the

wall, especially for the dissipation and pressure-related terms. The former is attributed

to the effect of the large scale motions, and the latter is due to the scaling of pressure

itself (Hoyas and Jiménez, 2008).

The above and similar descriptions of kinetic energy transport are referenced to the

traditional layer structure. The relevance of this structure to scaling the flow field ener-

getics is, however, not well-established. Given this, the present study mimics the more

recent approach used in the analysis of the mean momentum equation (Wei et al., 2005a).

This approach is used to explore the mean, turbulence, and total kinetic energy balances
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in planar channels, circular pipes, and flat plate boundary layer flows. The DNS and LES

data from Hoyas and Jiménez (2008); El Khoury et al. (2013); Bernardini et al. (2014);

Eitel-Amor et al. (2014); Lee and Moser (2015) are used in the analysis. The analysis re-

veals that the leading order layer structure of the mean kinetic energy balance is identical

to that of the mean momentum balance, while for Reynolds numbers available to DNS,

the profiles of the terms in the turbulence kinetic energy equations are very similar in

pipes and channels. The present analyses indicate that there exists a four-layer structure

to the total kinetic energy budget equation, with the property that in each of these layers

a balance occurs between a subset of the relevant terms. This layer structure is, how-

ever, shown to be distinct from the layer structure of the mean momentum balance. The

Reynolds number dependent scaling of the thickness of each layer is empirically quantified

using DNS data, and for one layer (layer iii) is also analytically reasoned. The physical

processes associated with each layer and their connections to the kinetic energy balance

for the mean flow and turbulence are also discussed and clarified.

3.2 Kinetic Energy Budgets

In the following, x denotes the streamwise direction, y is the wall-normal direction, with

the spanwise direction given by z. Uppercase letters or angle brackets denote the averaged

quantities, and lowercase letters indicate fluctuations about the mean. The x, y, and z

velocity components are given by variants of u, v, and w, respectively, and δ is used to

denote the half channel height, pipe radius or boundary layer thickness.
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3.2.1 Mean Kinetic Energy Budgets

Consideration of the mean kinetic energy balance reveals an important connection to the

structure of the mean dynamics. With the Reynolds stress denoted by τRij = −⟨uiuj⟩, in

a Cartesian system the balance equation for the mean kinetic energy, E = 1/2 (UiUi), is

∂

∂t

(
1

2
UiUi

)
+ Uk

∂

∂xk

(
1

2
UiUi

)
= −1

ρ

∂

∂xi
(UiP ) + νUi

∂2Ui

∂xk∂xk
+ Ui

∂

∂xk
τRij , (3.1)

where the conventions of indicial notation are taken to hold.

3.2.1.1 Fully Developed Turbulent Channel and Pipe Flows

Statistically stationary and fully developed turbulent flow in a planar channel or circular

pipe with smooth walls is considered. Since this flow is both planar (axis-symmetric)

and fully developed, derivatives of averaged quantities with respect to x and z are zero,

and such mean quantities are solely a function of y, e.g., U = U (y). For the pipe, the

coordinate transformation, y = δ − r, yields the same equations as the channel.

The condition of a steady flow in the mean yields

∂

∂t

(
1

2
UiUi

)
= 0, (3.2)
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while the fully developed condition and V =W = 0 give

Uk
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= 0, (3.3)
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)
. (3.4)

Now a basic relation between the mean pressure gradient and the friction velocity for

fully developed channel flow is invoked

− δ

ρ

∂P

∂x
= u2τ , (3.5)

where uτ =
√
τw/ρ, and δ is the half-channel height. This gives

− 1

ρ

∂
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u2τ
δ
U. (3.6)

Moreover, simplification for the given flow yields
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, (3.7)

and

Ui
∂τRik
∂xk

= −U d ⟨uv⟩
dy

. (3.8)

Combination of the results gives the simplified form of the transport equation for the

mean kinetic energy for statistically stationary and fully developed turbulent flow in a
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planar channel

u2τ
δ
U + ν

d2

dy2

(
1

2
U2

)
− ν

dU

dy

dU

dy
− U

d ⟨uv⟩
dy

= 0. (3.9)

The terms in Eq. (3.9) are now normalized using uτ and ν. Following convention, this

inner-normalization is denoted by a superscript “+”.

U+ =
U

uτ
, ⟨uv⟩+ =

⟨uv⟩
u2τ

, y+ =
yuτ
ν
. (3.10)

Note that δ appears owing to (3.6). Letting T+ = −⟨uv⟩+, subsequent rearrangement

yields the inner-normalized equation for the mean kinetic energy in fully-developed tur-

bulent channel flow

d2

dy+2

(
1

2
U+2

)
+ U+dT

+

dy+
− dU+

dy+
dU+

dy+
+

1

δ+
U+ = 0. (3.11)

The four terms presented in Eq. (3.11) are physically referred to as mean viscous

diffusion (MVD), rate of work by net Reynolds stress (WRS), mean dissipation (MD)

and mean pressure diffusion (MPD).

3.2.1.2 Zero-Pressure Gradient Turbulent Boundary Layer

Relative to the channel or pipe, the differences in developing the evolution equation for

the flat plate boundary layer are associated with mean streamwise advection and a zero
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mean pressure gradient. Like the channel/pipe flows, the derivatives with respect to z

are zero.

The condition of a steady flow in the mean yields,

∂

∂t

(
1

2
UiUi

)
= 0, (3.12)

While the developing condition in the streamwise direction with the boundary layer ap-

proximations and the zero mean pressure gradient give

Uk
∂

∂xk

(
1

2
UiUi

)
= U

∂

∂x

(
1

2
UiUi

)
+ V

∂

∂y

(
1

2
UiUi

)
= U

∂

∂x

(
1

2
U2

)
+ V

∂

∂y

(
1

2
U2

)
,

(3.13)

− 1

ρ

∂

∂xi
(UiP ) = 0. (3.14)

The other terms are the same as in the turbulent channel flows under the boundary layer

approximation that the derivative of the streamwise mean velocity U in the streamwise

direction x is much smaller than that in the wall-normal direction y and thus can be

neglected, i.e.,

νUi
∂2Ui

∂xk∂xk
= ν

∂2
(
1
2
UiUi

)
∂xk∂xk

− ν
∂Ui

∂xk

∂Ui

∂xk
= ν

∂2

∂y2

(
1

2
U2

)
− ν

∂U

∂y

∂U

∂y
, (3.15)

Ui
∂τRik
∂xk

= −U ∂ ⟨uv⟩
∂y

. (3.16)

Then, to within the boundary layer approximations, the transport equation for the mean

kinetic energy of the 2D steady and zero-pressure gradient turbulent boundary layer is
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given by

U
∂

∂x

(
1

2
U2

)
+ V

∂

∂y

(
1

2
U2

)
= ν

∂2

∂y2

(
1

2
U2

)
− ν

∂U

∂y

∂U

∂y
− U

∂ ⟨uv⟩
∂y

. (3.17)

Under the same inner-normalization with V + = V/uτ , the inner-normalized equation for

the mean kinetic energy in the zero-pressure gradient turbulent boundary layer is thus

given by

∂2

∂y+2

(
1

2
U+2

)
+ U+∂T

+

∂y+
− ∂U+

∂y+
∂U+

∂y+
+

[
−U+ ∂

∂x+

(
1

2
U+2

)
− V + ∂

∂y+

(
1

2
U+2

)]
= 0.

(3.18)

The four physical terms in Eq. (3.18) are respectively denoted as mean viscous diffusion

(MVD), rate of work by net Reynolds stress (WRS), mean dissipation (MD), and mean

advection (MA).

3.2.1.3 Balance in Mean Kinetic Energy Budgets

As described in the Introduction, the mean momentum equation has a four-layer structure

that is revealed by considering the ratio of the viscous force term, V F = ∂2U+/∂y+2, to

the turbulent inertia term, TI = −∂ ⟨u+v+⟩ /∂y+, as a function of wall-normal position.

The same methodology is now utilized to explore the leading order terms in Eqs. (3.11)

and (3.18). In this case the ratio of the sum of the mean viscous diffusion and mean dis-

sipation terms (MVD +MD) to the rate of work by net Reynolds stress term (WRS) is
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Figure 3.1: Ratio of the sum of mean viscous diffusion and mean dissipation terms
(MVD+MD) to the rate of work by net Reynolds stress term WRS for fully developed
channel/pipe flows, channel DNS data are from Hoyas and Jiménez (2008) :△, δ+ = 186;
▽, δ+ = 547; ▹, δ+ = 934; ◃, δ+ = 2003; Bernardini et al. (2014) : ♢, δ+ = 4079; Lee
and Moser (2015) : �, δ+ = 5186. Pipe DNS data are from: El Khoury et al. (2013)
:×, δ+ = 181; T, δ+ = 361; ◦, δ+ = 550; I, δ+ = 999.

under consideration. This ratio profile is shown in Fig. 3.1 and Fig. 3.2 for channels/pipes

and boundary layers, respectively.

Here it is noted that these profiles are identical to those of V F/TI. This observation

is analytically verified by noting that the MVD term can be written as

∂2

∂y+2

(
1

2
U+2

)
= U+∂

2U+

∂y+2
+
∂U+

∂y+
∂U+

∂y+
, (3.19)

which allows the mean kinetic energy equation to be written as

U+

(
d2U+

dy+2
+
dT+

dy+
+

1

δ+

)
= 0, (3.20)
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Figure 3.2: Ratio of the sum of mean viscous diffusion and mean dissipation terms
(MVD+MD) to the rate of work by net Reynolds stress term WRS for Zero pressure
gradient turbulent boundary layers, DNS and LES data are from Eitel-Amor et al.
(2014) : △, δ+ = 252; ▽, δ+ = 359; N, δ+ = 458; ▹, δ+ = 492; ◃, δ+ = 671; H, δ+ =
725; ×, δ+ = 830; J, δ+ = 957; ·, δ+ = 974; ♢, δ+ = 1043; ◦, δ+ = 1145; I, δ+ = 1169;
�, δ+ = 1244; I, δ+ = 1271; •, δ+ = 1367; +, δ+ = 1561; �, δ+ = 1751; /, δ+ = 1937;
�, δ+ = 2118; ⋆, δ+ = 2299; T, δ+ = 2479.

for channel/pipe flows or

U+

(
∂2U+

∂y+2
+
∂T+

∂y+
− U+∂U

+

∂x+
− V +∂U

+

∂y+

)
= 0, (3.21)

for the boundary layer. The mean kinetic energy transport equation is therefore seen to

exhibit the same layer structure as the mean momentum equation.
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3.2.2 Turbulence Kinetic Energy Budgets

The budget equation for the component ⟨uiuj⟩ of the Reynolds stress tensor is written as

∂

∂t
[⟨uiuj⟩] + Uk

∂

∂xk
[⟨uiuj⟩] = − ∂

∂xk

[
⟨uiujuk⟩ − ν

∂

∂xk
⟨uiuj⟩

]
−
[
⟨uiuj⟩

∂Uj

∂xk
+ ⟨ujuk⟩

∂Ui

∂xk

]
−1

ρ

[⟨
ui
∂p

∂xj
+ uj

∂p

∂xi

⟩]
− 2ν

⟨
∂ui
∂xk

∂uj
∂xk

⟩
. (3.22)

Setting j = i in the above equation, and multiplying by 1/2 gives

∂

∂t

[
1

2
⟨uiui⟩

]
+ Uk

∂

∂xk

[
1

2
⟨uiui⟩

]
= − ∂

∂xk

[⟨
uk

1

2
uiui

⟩
+

1

ρ
⟨ukp⟩

]
+ ν

∂2

∂xk∂xk

[
1

2
⟨uiui⟩

]
−⟨uiuk⟩

∂Ui

∂xk
− ν

⟨
∂ui
∂xk

∂ui
∂xk

⟩
. (3.23)

This equation is regarded as the evolution equation for turbulence kinetic energy (tKE),

K = 1/2 ⟨uiui⟩.

3.2.2.1 Fully Developed Turbulent Channel and Pipe Flows

For statistically stationary flow

∂

∂t

[
1

2
⟨uiui⟩

]
= 0. (3.24)
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Combination of V = W = 0 and the fully developed flow condition means that there is

zero net advection of the TKE= 1/2 ⟨uiui⟩, i.e.,

Uk
∂

∂xk

[
1

2
⟨uiui⟩

]
= 0. (3.25)

Furthermore,

− ∂

∂xk

⟨
uk

1

2
uiui

⟩
= − ∂

∂x

⟨
u
1

2
uiui

⟩
︸ ︷︷ ︸

∂
∂x

=0

− ∂

∂y

⟨
v
1

2
uiui

⟩
= − d

dy

⟨
v
1

2
uiui

⟩
, (3.26)

− ∂

∂xk

1

ρ
⟨ukp⟩ = − ∂

∂x

1

ρ
⟨up⟩︸ ︷︷ ︸

∂
∂x

=0

− ∂

∂y

1

ρ
⟨vp⟩ = − d

dy

1

ρ
⟨vp⟩ , (3.27)

ν
∂2

∂xk∂xk

[
1

2
⟨uiui⟩

]
= ν

∂2

∂x2

[
1

2
⟨uiui⟩

]
︸ ︷︷ ︸

∂
∂x

=0

+ν
∂2

∂y2

[
1

2
⟨uiui⟩

]
= ν

d2

dy2

[
1

2
⟨uiui⟩

]
, (3.28)

− ⟨uiuk⟩
∂Ui

∂xk
= −⟨uv⟩ dU

dy
, (3.29)

and

− ν

⟨
∂ui
∂xk

∂ui
∂xk

⟩
= d. (3.30)

the budget equation for the turbulence kinetic energy in fully developed channel/pipe

flow is given by

− d

dy

⟨
v
1

2
uiui

⟩
− d

dy

1

ρ
⟨vp⟩+ ν

d2

dy2

[
1

2
⟨uiui⟩

]
− ⟨uv⟩ dU

dy
+ d = 0. (3.31)
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All terms in Eq. (3.31) are now normalized by inner variables, uτ and ν. but with

p+ =
δp

ρuτν
. (3.32)

Here, the pressure fluctuation is normalized with ρuτν/δ rather than by ρu2τ . This follows

from the analogous scaling of the mean pressure gradient in terms of the friction velocity

and the half-channel height. Physically, this seems appropriate because the fluctuating

pressure is a non-local quantity, with the pressure at a point found by integrating over

the domain. The analysis of Appendix A empirically evidences that the use of this

normalization does not alter conclusions regarding the resulting layer structure.

WithK+ = 1/2
⟨
u+i u

+
i

⟩
, T+ = −⟨u+v+⟩, and by collecting terms, the inner-normalized

budget equation for the turbulence kinetic energy in channel flow becomes

d2

dy+2

(
K+
)

+

[
T+dU

+

dy+
− d

dy+
⟨
v+K+

⟩]
+ d+ +

1

δ+

[
− d

dy+
⟨
p+v+

⟩]
= 0. (3.33)

Four grouped terms in Eq. (3.33) are referred to as turbulent viscous diffusion (TVD),

production/turbulent diffusion (PTD), turbulent dissipation (TD) and turbulent pressure

diffusion (TPD). The inner-normalized form of the turbulence kinetic energy budget for

fully developed turbulent pipe flow has a form that is identical to that for channel flow

when expressed in terms of the wall-normal variable, y+ = δ+ − r+.



Chapter 3. Scaling properties of kinetic energy budgets in wall turbulence 69

3.2.2.2 Zero-Pressure Gradient Turbulent Boundary Layer

For statistically stationary flow

∂

∂t

[
1

2
⟨uiui⟩

]
= 0. (3.34)

It is similar to the mean kinetic energy transport equation, the advection of the tKE

turns into

Uk
∂

∂xk

[
1

2
⟨uiui⟩

]
= U

∂

∂x

[
1

2
⟨uiui⟩

]
+ V

∂

∂y

[
1

2
⟨uiui⟩

]
. (3.35)

Furthermore, the derivatives in the streamwise direction in all the remaining terms are

zero under the boundary layer approximations and then they all take on the same forms

as the turbulent channel flows, i.e.,

− ∂

∂xk

⟨
uk

1

2
uiui

⟩
= − ∂

∂x

⟨
u
1

2
uiui

⟩
︸ ︷︷ ︸

∂
∂x

=0

− ∂

∂y

⟨
v
1

2
uiui

⟩
= − ∂

∂y

⟨
v
1

2
uiui

⟩
, (3.36)

− ∂

∂xk

1

ρ
⟨ukp⟩ = − ∂

∂x

1

ρ
⟨up⟩︸ ︷︷ ︸

∂
∂x

=0

− ∂

∂y

1

ρ
⟨vp⟩ = − ∂

∂y

1

ρ
⟨vp⟩ , (3.37)

ν
∂2

∂xk∂xk

[
1

2
⟨uiui⟩

]
= ν

∂2

∂x2

[
1

2
⟨uiui⟩

]
︸ ︷︷ ︸

∂
∂x

=0

+ν
∂2

∂y2

[
1

2
⟨uiui⟩

]
= ν

∂2

∂y2

[
1

2
⟨uiui⟩

]
, (3.38)

− ⟨uiuk⟩
∂Ui

∂xk
= −⟨uv⟩ ∂U

∂y
, (3.39)
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and

− ν

⟨
∂ui
∂xk

∂ui
∂xk

⟩
= d. (3.40)

Therefore, the leading order transport equation for the turbulent kinetic energy of the

2D steady and zero-pressure gradient turbulent boundary layer is given by

U
∂

∂x

[
1

2
⟨uiui⟩

]
+V

∂

∂y

[
1

2
⟨uiui⟩

]
= − ∂

∂y

⟨
v
1

2
uiui

⟩
− ∂

∂y

1

ρ
⟨vp⟩

+ν
∂2

∂y2

[
1

2
⟨uiui⟩

]
− ⟨uv⟩ ∂U

∂y
+ d. (3.41)

The same inner variables are used to normalize Eq. (3.41), and the inner-normalized

equation for the turbulent boundary layer then becomes

∂2

∂y+2

(
K+
)
+

[
T+∂U

+

∂y+
− ∂

∂y+
⟨
v+K+

⟩]
+ d+ +[

−U+ ∂

∂x+
K+ − V + ∂

∂y+
K+ − 1

δ+
∂

∂y+
⟨
p+v+

⟩]
= 0. (3.42)

The first three grouped terms in Eq. (3.42) are the same as in Eq. (3.33). The fourth one

is referred to as turbulent advection/pressure diffusion (TAPD).

The leading balances for the turbulence kinetic energy (Eqs. (3.33) and (3.42)) are

considered, as these are useful for understanding the total budget structure. Here the

results of the mean kinetic energy balance motivate examining the ratio of the sum of

turbulent viscous diffusion and turbulent dissipation terms (TVD + TD) to the pro-

duction/turbulent diffusion term (PTD). Because the pipe flow results are essentially

indistinguishable from the channel results, Fig. 3.3 and Fig. 3.4 show these ratio profiles



Chapter 3. Scaling properties of kinetic energy budgets in wall turbulence 71

10
0

10
1

10
2

10
3

10
4

−8

−7

−6

−5

−4

−3

−2

−1

0

1

y
+

( 
T

V
D

 +
 T

D
 )

 /
 P

T
D

Figure 3.3: Ratio of the sum of turbulent viscous diffusion and turbulent dissipation
terms (MVD+MD) to the production/turbulent diffusion term (PTD) for channel/pipe
flows. Symbols are the same as in Fig. 3.1.

for the channel/pipe and boundary layer. In contrast to the ratio profiles of the mean

kinetic energy terms in Fig. 3.1 and Fig. 3.2, there is no apparent change of balance

indicated in Fig. 3.3 and Fig. 3.4. The profile curves start from large negative values near

the wall. Here Eqs. 3.33 and 3.42 indicate that the diffusion of TKE identically balances

turbulent dissipation at the wall, and thus to leading order a small distance from the

wall. Beyond this region, the ratio closely approximates −1. Detailed examination (not

shown) indicates that this balance is comprised of one of the PTD terms and the TVD

and TD terms. Along the −1 dashed line, the TVD term gradually gets closer to 0, which

results in the change in balance from three terms to two terms; namely the TD and PTD

terms. This two-term balance is continuously sustained throughout the remainder of the

channel. Unlike the channel, the boundary layer profiles deviate from −1 and approach

zero as y → δ. In this region, the TAPD term increases in relative importance and forms
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Figure 3.4: Ratio of the sum of turbulent viscous diffusion and turbulent dissipation
terms (MVD + MD) to the production/turbulent diffusion term (PTD) for boundary
layer. Symbols are the same as in Fig. 3.2.

a new balance with the TD and PTD terms. Thus, the turbulence kinetic energy budget

exhibits three layers but four distinct balances in the boundary layer.

3.2.3 Total Kinetic Energy Budgets

The combination of Eq. (3.11) and Eq. (3.33) gives rise to the inner-normalized budget

equation for the total kinetic energy in channel/pipe flow

d2

dy+2

(
1

2
U+2 +K+

)
+

d

dy+
[
U+T+ −

⟨
v+K+

⟩]
+D+ +

1

δ+

[
U+ − d

dy+
⟨
p+v+

⟩]
= 0,

(3.43)



Chapter 3. Scaling properties of kinetic energy budgets in wall turbulence 73

where D+ = −
[
d+ + (∂U+/∂y+)

2
]
. Four physical mechanisms are present in Eq. (3.43).

These are viscous diffusion (VD), production/turbulent diffusion (PT), dissipation (D)

and total pressure diffusion (PD).

The combination of Eq. (3.18) and Eq. (3.42) gives rise to the inner-normalized budget

equation for the total kinetic energy in the boundary layer,

∂2

∂y+2

(
1

2
U+2 +K+

)
+

∂

∂y+
[
U+T+ −

⟨
v+K+

⟩]
+D+ +[

−U+ ∂

∂x+

(
1

2
U+2 +K+

)
− V + ∂

∂y+

(
1

2
U+2 +K+

)
− 1

δ+
∂

∂y+
⟨
p+v+

⟩]
= 0.

(3.44)

The different terms of Eq. (3.44) are referred to as viscous diffusion (VD), production/tur-

bulent diffusion (PT), dissipation (D) and advection/turbulent pressure diffusion (APD).

3.2.4 Terms in Total Kinetic Energy Budgets

Analysis begins by individually considering the behaviors of the four grouped terms in

Eqs. (3.43) and (3.44). Figs. 3.5 (a)-(l) show profiles of the terms. The first three

terms for the channel, pipe, and boundary layer exhibit nearly the same behavior. The

profiles of the VD and D terms convincingly merge for all Reynolds numbers plotted,

except immediately adjacent to the wall in the channel and pipe. Here the VD term

appears to consistently increase with Reynolds number below y+ ≃ 3, and the D term

decreases with Reynolds number below y+ ≃ 7. Hoyas and Jiménez (2008) attribute these
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behaviors to the effect of the large scale inactive motions that exist in the logarithmic

layer. Existing evidence indicates that this is a weak but persistent Reynolds number

dependence (Klewicki, 2010). The VD term has a value of about 1.2 close to the wall.

Starting near y+ = 2 this profile decreases rapidly and crosses zero at y+ ≃ 7.5 and 7.75

in the channel and pipe, respectively, and at y+ ≃ 7.3 for the boundary layer. The VD

profiles reach their minimum values near y+ = 15, but increase thereafter to approach

zero from below. Opposite to the VD term, the D term begins at a value of about −1.2

close to the wall but increases more gradually as it approaches zero from below. The VD

and D terms identically balance at the wall.

The PT term profiles in Figs. 3.5 start with a zero value at the wall, and rapidly

ascend. The peaks in all the profiles attain values of about 0.70 near y+ = 9.0. Beyond

the peak, the PT term descends to cross zero from positive to negative. The negative

portion of this profile is concave-upward, and this characteristic is more evident for the

boundary layer. The position of the zero-crossing in the PT term moves to greater y+

values with increasing δ+.

The PD and APD terms in Figs. 3.5 (g) and (h) are both zero at the wall, and become

larger with increasing distance from the wall. The maximum values of these profiles are

Reynolds number dependent. Moreover, there is an obvious peak in the APD profile, and

this term decreases towards zero in the outer region. This is qualitatively distinct from

the PD profiles in the channel and pipe, which exhibit highly similar profile shapes, but

small quantitative differences. In the overall balance, the behavior of the APD profile has

been verified to compensate for the concave-upward trend of the PT term near the edge
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Figure 3.5: Profiles of the individual terms in the total kinetic energy transport
equation. Panels (a), (d), (g) and (j) respectively represent the VD, PT, D, and PD
terms for turbulent channel flow, (b), (e), (h), (k) respectively represent the VD, PT, D,
and PD terms for turbulent pipe flows, and (c), (f), (i) and (l) respectively represent the
VD, PT, D and APD terms for turbulent boundary layer flows. The vertical dashed-
dotted line in (a) - (c) denotes the wall-normal position where the VD crosses zero from
positive to negative. The vertical dashed-dotted line in (d) - (f) denotes the wall-normal
position where the PTD achieves its maximal value.
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of the boundary layer. In the region near the wall, the PD term in the channel and pipe

and the APD term in the boundary layer are much smaller than the other three terms,

but both rise to leading order in the outer region.

3.3 Structure of Total Kinetic Energy Balance

3.3.1 Balance Ratios of Grouped Terms

The analysis of section 3.2.1 reveals a mean kinetic energy layer structure that is the same

as for the mean momentum balance. This finding motivates examining the analogous ratio

in the total kinetic energy equation: the ratio of the sum of the viscous diffusion and the

dissipation terms (VD+D) to the production/turbulent diffusion term (PT). Here it is

noted that if the ratio is

|(V D +D) /PT | ≪ 1, (3.45)

then both the VD and D terms are small, and the PT and the PD terms are nominally

in balance. If

|(V D +D) /PT | ∼= 1, (3.46)

their effects are in balance, and the PD term is either of the same order of magnitude or

much smaller. Else, if

|(V D +D) /PT | ≫ 1, (3.47)



Chapter 3. Scaling properties of kinetic energy budgets in wall turbulence 77

10
0

10
1

10
2

10
3

10
4

−10

−8

−6

−4

−2

0

2

4

6

8

10

y
+

( 
V

D
 +

 D
) 

/ 
P

T

Figure 3.6: Ratio of the sum of the viscous diffusion (VD) and the dissipation (D)
terms to the production/turbulent diffusion (PT) term versus y+ for channel and pipe
flows. Symbols are the same as in Fig. 3.1.

the PT term is very small, and either the VD term is balanced with the D term or the

PD term is of the same order of magnitude as these two terms.

Fig. 3.6 and Fig. 3.7 show (VD+D)/PT for the channel/pipe and boundary layer,

respectively, These data indicate a four-layer structure. This structure is, however,

distinct from the layer structure identified by Wei et al. (2005a) for the mean momentum

equation, which, as shown herein, also corresponds with the mean kinetic energy structure.

To avoid confusion with the layers associated with the mean momentum equation, in what

follows the layers evident in Fig. 3.6 and Fig. 3.7 are denoted with lower case i-iv. The

analysis now proceeds by describing how the contributing terms in Eqs. (3.43) and (3.44)

conspire to produce the layer structure evident in Fig. 3.5 and Fig. 3.6.
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Figure 3.7: Ratio of the sum of the viscous diffusion (VD) and the dissipation (D)
terms to the production/turbulent diffusion (PT) term versus y+ for boundary layer
flows. Symbols are the same as in Fig. 3.2.

3.3.2 Layers i and ii

Layer i lies very close to the wall, y+ . 1.5. The ending value cited is based on the

criterion that the ratio becomes less than −2 (Wei et al., 2005a). In this domain, the

leading balance is between the viscous diffusion and dissipation term, as exemplified

in Fig. 3.8 for the channel/pipe and Fig. 3.9 boundary layer. Here the ratio VD/D

deviates from −1 by less than 4%. Outside this thin layer exists a region (layer ii) that

is characterized by a nearly exact balance between the sum of the VD and D terms and

the PT term. At the onset of this region the viscous diffusion term is positive, but with

increasing y+ goes to zero faster than the dissipation term. It subsequently crosses zero,

reaches a minimum, and then asymptotes to zero. Beyond where the VD term crosses

zero, its magnitude contribution to the sum of the VD and D terms increases gradually
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Figure 3.8: Ratio of viscous diffusion (VD) to dissipation (D) for Channel and pipe
flows. The vertical dashed-dotted line denotes the external bound of layer i. The
vertical dashed line denotes the position where the viscous diffusion crosses zero. The
vertical solid line denotes the position where the ratio peaks. Symbols are the same as
in Fig. 3.1.

and attains a maximum. This maximum is slightly greater than half the contribution to

the sum (about 54%), and is located near y+ ≃ 18.

For greater distances from the wall, but still within layer ii, the contribution from the

VD term decreases and becomes negligible compared to the D term. This occurs near the

outer edge of layer ii. Fig. 3.5 shows that near the start of layer ii, the PT term increases

to balance the VD and D terms; achieving peak values of about 0.70 near y+ = 9.0. The

extent of layer ii exhibits a Reynolds number dependence, with its external boundary

extending into the inertial/advection balance layer (layer IV) of the mean momentum

equation.
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Figure 3.9: Ratio of viscous diffusion (VD) to dissipation (D) for boundary layers.
The vertical dashed-dotted line denotes the external bound of layer i. The vertical
dashed line denotes the position where the viscous diffusion crosses zero. The vertical
solid line denotes the position where the ratio peaks. Symbols are the same as in
Fig. 3.2.

3.3.3 External Bounds of Layers ii and iii

Per the criterion developed byWei et al. (2005a), the start of layer iii is where (VD+D)/PT

drops below −2. Consistently, the end of layer iii is where this ratio falls below 0.5.

Fig. 3.10 and Fig. 3.11 show the normalized width of layer iii (∆y+iii) versus δ
+ for chan-

nel, pipe, and, boundary layer flows as determined by these criteria. Per the scaling

analysis , ∆y+iii is normalized by (δ+ −
√
δ+), as this is reasoned to constitute a finite

Reynolds number correction to outer normalization. To within their scatter, the bound-

ary layer data of Fig. 3.11 seem to remain constant over their entire Reynolds number

range. Conversely, the channel data seem to decay toward a constant value with increas-

ing δ+. The pipe flow data show a similar trend as the channel data, but only extend to
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Figure 3.12: Profiles of Fig. 3.6 for channel/pipe plotted versus y+/(δ+ −
√
δ+).

Symbols are the same as in Fig. 3.1.

δ+ ≃ 1000.

While the analysis indicates that ∆y+iii should scale with (δ+ −
√
δ+) at finite δ+,

this analysis does not require that the beginning and end points of layer iii individually

adhere to this scaling. This rather subtle point is clarified in Fig. 3.12 and Fig. 3.13, which

replots the data of Fig. 3.6 and Fig. 3.7 versus y+/(δ+ −
√
δ+). The data of Fig. 3.13

suggest invariance under this normalization, and thus the end points of layers ii and iii

in the boundary layer seem to scale with (δ+ −
√
δ+). On the other hand, examination

of the channel and pipe data reveals that the end points of both layers ii and iii deviate

from this scaling over the given δ+ range. As exemplified in Fig. 3.12, both the channel

data at δ+ = 186 and pipe data at δ+ = 186 show a considerable deviation from those

at higher δ+. With increasing δ+, however, the profile-to-profile deviation diminishes.

The deviation of the δ+ = 186 profile in Fig. 3.12 is not especially surprising, since this
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Figure 3.13: Profiles of Fig. 3.7 for boundary layer plotted versus y+/(δ+ −
√
δ+)

Symbols are the same as in Fig. 3.2.

profile is just barely within regime where the mean momentum equation exhibits its four

layer structure (Elsnab et al., 2011). Additionally, it has been verified that both the

channel and pipe profiles exhibit the same qualitative behavior when plotted versus y/δ.

Determining whether the beginning and end points of layer iii for the channel and pipe

eventually align under the normalization of Fig. 3.12 and Fig. 3.13 awaits higher Reynolds

number data.

3.3.4 Layers iii and iv

Across layer iii there is an exchange in the balance of terms in the total kinetic energy bud-

get equations. This exchange occurs around the location of maximum [U+T+ − ⟨v+K+⟩].
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Figure 3.14: Ratio of turbulent diffusion to production for Channel flow at δ+ = 4079.
The vertical dashed-dotted line denotes the external bound of layer ii. The vertical
dashed line denotes where the PT term crosses zero. The vertical solid line denotes the
external bound of layer iii.

In this region the dissipation (D) term and the total pressure diffusion (PD) term in chan-

nel/pipe flows (or the advection/turbulent pressure diffusion (APD) term in boundary

layers) nearly balance. Before and beyond the peak in [U+T+ − ⟨v+K+⟩], the PT term is

in leading order balance with the sum of the D and PD terms in channel and pipe flows,

and balances the D + APD terms in boundary layers. The VD term in this layer is less

than a tenth of the D term. Thus, within layer iii, there are three terms of significant

magnitude, with the VD term being much smaller.

Close examination also indicates that across layer iii the PT term changes its sign,

and the contribution from turbulent diffusion is much smaller when compared to the

contribution from the production term. This characteristic is reflected in the results of

Fig. 3.14 and Fig. 3.15. Accordingly, the wall-normal position where the production term
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Figure 3.15: Ratio of turbulent diffusion to production for boundary layer at δ+ =
2299. The vertical dashed-dotted line denotes the external bound of layer ii. The
vertical dashed line denotes where the PT term crosses zero. The vertical solid line
denotes the external bound of layer iii.

crosses zero is very close to where the PT term crosses zero. These findings substantiate

that the turbulent diffusion term over layer iii is quite small. Therefore, the turbulent

diffusion term is small but non-negligible in layer ii, but attains negligible values in layer

iii.

The dissipation term is dominated by its turbulence contribution in layer iii. This is

demonstrated in Fig. 3.16 and Fig. 3.17, which show the ratios of the mean to turbulent

dissipation. In these figures, the abscissa starts near the outer edge of layer ii at δ+ = 180

and 252 for the turbulent channels and boundary layers, respectively. Beyond the start of

layer iii the mean dissipation is at least 10 times smaller than the turbulent dissipation,

and its effect over layer iii diminishes with increasing δ+. These findings are similar to

previous observations that the fluctuating enstrophy dominates the mean enstrophy in
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Figure 3.16: Ratio of the mean dissipation to the turbulent dissipation for channel
and pipe flows. Symbols are the same as in Fig. 3.1.
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Figure 3.17: Ratio of the mean dissipation to the turbulent dissipation for boundary
layers. Symbols are the same as in Fig. 3.2.
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Figure 3.18: Ratio of turbulent pressure diffusion to mean pressure diffusion in
channel and pipe flows. Symbols are the same as in Fig. 3.1.

layer IV of the mean momentum equation (Klewicki, 2013a).

The ratio of the turbulent pressure diffusion to the mean pressure diffusion is ex-

emplified for the channel in Fig. 3.18, while the ratio of turbulent pressure diffusion to

advection in the boundary layer is given in Fig. 3.19. The fact that these ratios are both

less than 10−3 beyond layer ii indicates that the turbulent pressure diffusion is justifiably

absent from the leading balance in layer iii. The layer iii balance in the channel/pipe

therefore simplifies to

d

dy+
[
U+T+

]
+ d+ + ϵ2U+ = 0, (3.48)

where ϵ2 = 1/δ+, and for the boundary layer is

∂

∂y+
[
U+T+

]
+ d+ +

[
−U+ ∂

∂x+

(
1

2
U+2 +K+

)
− V + ∂

∂y+

(
1

2
U+2 +K+

)]
= 0. (3.49)
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Figure 3.19: Ratio of turbulent pressure diffusion to advection in boundary layers.
Symbols are the same as in Fig. 3.2.

Beyond layer iii, the magnitude of both the VD and D terms gradually become smaller

than either the PT or PD terms in the channel/pipe flows, or the APD term in the bound-

ary layer. Similarly, both the turbulent diffusion and the turbulent pressure diffusion are

much smaller than their mean contributions. Thus, the balance is established between

the production and mean pressure diffusion for channel/pipe flows

d

dy+
[
U+T+

]
+

1

δ+
U+ = 0, (3.50)

and between the production and the advection for boundary layers, i.e.,

∂

∂y+
[
U+T+

]
+

[
−U+ ∂

∂x+

(
1

2
U+2 +K+

)
− V + ∂

∂y+

(
1

2
U+2 +K+

)]
= 0. (3.51)
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Figure 3.20: Profiles of terms in Eq. (3.20) across layer iii and iv at δ+ = 4079.
△, U+ (∂T+/∂y+); ▽, T+ (∂U+/∂y+); ▹, turbulent dissipation d+; ◃, ϵ2U+. The ver-
tical dashed-dotted line denotes the external bound of layer ii. The vertical solid line
denotes the external bound of layer iii.

Eqs. (3.48) and (3.50) respectively give the leading balances in layers iii and iv for the

channels and pipes, and Eqs. (3.49) and (3.51) give the same for the boundary layers.

Since

∂ (U+T+)

∂y+
= U+

(
∂T+

∂y+

)
+ T+

(
∂U+

∂y+

)
, (3.52)

the individual behaviors of the two contributions on the right are of interest. For consis-

tency, here partial differential is used for both channel/pipe and boundary layer analyses.

Fig. 3.20 and Fig. 3.21 respectively show profiles of the terms in Eqs. (3.48) and (3.49)

across layers iii and iv. These representative profiles are shown at a single δ+ for the

channel and boundary layer. Within layer iii, the four relevant terms are of the same order

of magnitude but have different trends. The turbulent dissipation profile gradually moves
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Figure 3.21: Profiles of terms in Eq. (3.21) across layer iii and iv at δ+ = 2299.
△, U+ (∂T+/∂y+); ▽, T+ (∂U+/∂y+); ▹, turbulent dissipation d+; ◃, advection. The
vertical dashed-dotted line denotes the external bound of layer ii. The vertical solid
line denotes the external bound of layer iii.

towards zero from below and crosses the U+ (∂T+/∂y+) profile, which passed through zero

to negative values in layer ii. Above the zero axis, the T+ (∂U+/∂y+) and ϵ2U+ profiles

exhibit a similar crossing. These crossing points exhibit a Reynolds dependence that is

consistent with its position residing within layer iii for all δ+. The two crossing positions

for channels and boundary layers are respectively plotted versus (δ+−
√
δ+) in Figs. 3.22

(a) and (b), while it has been confirmed that the pipe exhibits behaviors very similar to

those in the channel. These data indicate that the T+ (∂U+/∂y+) and ϵ2U+ (or advec-

tion) terms cross slightly closer to wall than the U+ (∂T+/∂y+) and d+ terms at lower

Reynolds numbers, but these positions essentially coincide at higher δ+. Similar to the

phenomena illustrated in Fig. 3.12 and Fig. 3.13, the channel data gradually approach the

indicated curve-fit line with increasing Reynolds number, while the boundary layer data
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Figure 3.22: Reynolds number dependence of the two crossing points in Fig. 3.20 for
channel and pipe flows. △, crossing point between T+ (∂U+/∂y+) and ϵ2U+, curve
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Figure 3.23: Reynolds number dependence of the two crossing points in Fig. 3.21
for boundary layers. △, crossing point between T+ (∂U+/∂y+) and advection term,
curve fit is given by dashed line which is 0.2542(δ+ −

√
δ+); ▽, crossing point between

U+ (∂T+/∂y+) and turbulent dissipation d+, curve fit is given by solid line which is
0.2419(δ+ −

√
δ+).
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Figure 3.24: Ratios of (▹)U+ (∂T+/∂y+) to ϵ2U+ and (△)T+ (∂U+/∂y+) to tur-
bulent dissipation d+ for turbulent channel flow at δ+ = 4079.

convincingly follow the linear curve-fit for all δ+. For all three flows the profile-crossings

occur slightly closer to y+ii end than y+iii end.

Both the T+ (∂U+/∂y+) and the d+ terms lose leading order in layer iv, becoming

negligible compared to the U+ (∂T+/∂y+) and ϵ2U+ terms, or similarly the advection

term in the boundary layer. Fig. 3.24 and Fig. 3.25 respectively show profiles of the ratio

of U+ (∂T+/∂y+) to ϵ2U+ (or advection term), and the ratio of T+ (∂U+/∂y+) to d+.

As might be expected, although both the T+ (∂U+/∂y+) and d+ terms are much smaller

than the other two terms (and thus are not leading order), their ratio is nearly −1. This

ratio then approaches zero at the edge of layer iv. Beyond the outer edge of layer ii

the traditional production term, T+ (∂U+/∂y+), is initially balanced with the turbulent

dissipation term, d+, but with the traditional production term approaching zero more

rapidly as y+ → δ+.
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Figure 3.25: Ratios of (▹)U+ (∂T+/∂y+) to advection term and (△)T+ (∂U+/∂y+)
to turbulent dissipation d+ for turbulent boundary layer at δ+ = 2299.

The ratio of the other two leading order terms is also approximately −1 throughout

layer iv. This balance begins near the middle of layer iii for the channel/pipe, and near

the outer edge of layer ii for the boundary layer. It is thus concluded that beyond layer ii,

the U+ (∂T+/∂y+) term balances with the ϵ2U+ term for the channel/pipe, and similarly

with the advection term for the boundary layer. Notably, the two separate balances in

Fig. 3.20 and Fig. 3.21 reflect the individual balances of the mean and turbulence kinetic

energy equations.
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3.4 Basis for the Characteristic Length Scale of Layer

iii

3.4.1 Channel and Pipe Flows

The empirical data analysis in Section 3.3.3 reveals that the inner-normalized width of

layer iii of the total kinetic energy balance for channel and pipe flows scales with δ+−
√
δ+

at finite Reynolds number. And the leading coefficient that is 0.2093 indicates that this

layer iii is located in the inertial sublayer associated with the self-similarity admitted by

the mean momentum equation (Klewicki, 2013b). The leading order balance equation

across this layer is reflected by Eq. (3.48) in Section 3.3.4.

The mean momentum equation asymptotically admits an invariant form across a scal-

ing layer hierarchy. This hierarchy resides between the inner and outer peak positions

of the turbulent inertia (TI) term, where the TI term decreases slowly with increasing

distance from the wall. The rescaled derivative of the turbulent inertial term in each

scaling layer is written as

A = −d
2T+

dy+2
β− 3

2 = −d
2T+

dy+2

(
dT+

dy+
+

1

δ+

)− 3
2

. (3.53)

Recall that β is a small and constant parameter, and the T+ is transformed into T+
β by

T+
β = T+ + y+/δ+ − βy+.
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On each scaling layer,

dT+
β

dy+
(
y+βm
)
=
dT+

dy+
(
y+βm
)
+

1

δ+
− β = 0. (3.54)

Here, y+βm is where T+
β attains its maximum value in each scaling layer. Differentiation

of Eq. (3.53) with respect to β gives

d2T+

dy+2

dy+βm
dβ

− 1 = 0. (3.55)

Combination of Eq. (3.53) and Eq. (3.55) yields

dy+βm
dβ

= −A−1β− 3
2 . (3.56)

A asymptotically approaches a constant on the inertial sublayer where the viscous force

term loses its leading order, as δ+ → ∞. Recall that A → constant physically indicates

a constant flux of turbulent force from one layer to the next on the hierarchy. It also

describes that W+ approaches a direct proportionality with y+ as δ+ → ∞. It is where

the self-similarity emerges on an interior domain that is sufficiently remote from the

overall flow boundaries as δ+ → ∞. Eq. (3.56) is integrated to obtain

y+βm = 2A−1β− 1
2 + C, (3.57)
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where C is the integration constant. Generally, y+βm uniquely corresponds to y+ on the

hierarchy, replacing y+βm by y+ and rewriting the β in terms of dT+/dy+ yields

dT+

dy+
=

(
2

A

)2 [
1

(y+ − C)2
− 1

(y+m − C)2

]
=

ϕ2

(y+ − C)2
− ϕ2

(y+m − C)2
, (3.58)

where ϕ2/(y+m − C)2 substitutes 1/δ+, ϕ = 2/A, C is a constant, and T+ attains its

maximum value, T+
m , at the position y+m. Also, ϕ = dy/dW , which is physically the

stretching of the y coordinate required to produce an invariant representation of the flux

of turbulent force generated by the momentum transport of W sized eddy. Integration of

Eq. (3.58) gives

T+ = C ′ − ϕ2

y+ − C
− y+ϕ2

(y+m − C)2
. (3.59)

The position of T+
m is empirically and asymptotically verified to be y+m = λm

√
δ+, (Long

and Chen, 1981; Afzal, 1982; Klewicki et al., 2014) where λm → constant as δ+ → ∞.

Neglecting C for large δ+ and using y+m = λm
√
δ+ gives

dT+

dy+
=

ϕ2

y+2
− ϕ2

λ2mδ
+
, (3.60)

and

T+ = C ′ − ϕ2

y+
− y+ϕ2

λ2mδ
+
. (3.61)

Noting that T+(δ+) = 0, evaluation of Eq. (3.61) as δ+ → ∞ yields

C ′ =
ϕ2
c

λ2m
., (3.62)
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where ϕ → ϕc as δ
+ → ∞. Evaluation of of Eq. (3.61 as δ+ → ∞ at y+m where T+

m → 1

gives

1 =
ϕ2
c

λ2m
− ϕ2

c

λm
√
δ+

− ϕ2
√
δ+

λδ+
. (3.63)

Thus λm → ϕc and C
′ → 1 as δ+ → ∞.

The first term in Eq. (3.48) is comprised of two parts, i.e., U+ (dT+/dy+) and T+ (dU+/dy+).

Each of these two terms is of the same order of magnitude as the last term, ϵ2U+. Letting

U+ (dT+/dy+) ∼ ϵ2U+(‘∼’ denoting same order of magnitude) gives

dT+

dy+
= O

(
ϵ2
)
. (3.64)

This derivative magnitude is consistent with classical outer scaling arguments (Tennekes

and Lumley, 1972), and the momentum equation analyses of Wei et al. (2005a). Specif-

ically, dT+/dy+ becomes O (ϵ2) at the beginning of layer III and retains this order of

magnitude throughout both layers III and IV of the momentum balance. From Eq. (3.60),

ϕ2

y+2
− ϕ2

λ2mδ
+
= O

(
ϵ2
)
. (3.65)

As δ+ → ∞, ϕ → ϕc and λm → ϕc, where ϕc is a constant. Thus ϕ2/λ2m is O (1),

and ϕ2
c itself is an O (1) constant. Under these conditions, Eq. (3.65) is only valid when

y+ > O (1/ϵ). Requiring y+ > O (1/ϵ) in Eq. (3.61) and noting that C ′ → 1 as δ+ → ∞

yields

T+ = O (1− ϵ) . (3.66)
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This order of magnitude is corroborated by the relevant region residing beyond the peak

of T+, where the maximum value T+
m is 1−O (ϵ) at y+m (Klewicki et al., 2014).

Within layer iii, a rescaling of Eq. (3.60) is now applied such that all terms reflect the

actual orders of magnitude. The present analysis only requires considering the leading

order balance between d [U+T+] /dy+ and ϵ2U+. Rescaling begins by setting

U+ = αŪ, T+ = βT̄ , y+ = y+0 + γȳ, (3.67)

where Ū , T̄ and ȳ are all O (1) as δ+ → ∞. Analogous to y+m relative to layer III, y+0

is the position where the d [U+T+ − ⟨v+K+⟩] /dy+ term changes sign in layer iii. The

indicated transformations give

d

dy+
[
U+T+

]
=
αβ

γ

d

dȳ

[
Ū T̄
]
, ϵ2U+ = ϵ2αŪ. (3.68)

By the requirement, the order of magnitude of both terms on the right must match with

each other. Rendering all terms O(1) requires that

αβ

γ
= ϵ2α, (3.69)

or

γ =
1

ϵ2
β. (3.70)
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From Eqs. (3.66) and (3.67) β = 1− ϵ in layer iii, and with this γ is determined by

γ =
1

ϵ2
(1− ϵ)

=
1

ϵ2
− 1

ϵ
, (3.71)

or

y+ = y+0 +

(
1

ϵ2
− 1

ϵ

)
ȳ

= y+0 + (δ+ −
√
δ+)ȳ. (3.72)

By definition, ȳ is O (1) in layer iii, and thus it follows that the inner-normalized width of

this layer for channel/pipe is O(δ+−
√
δ+). This scaling is interpreted as a finite Reynolds

number correction to traditional outer scaling, since it is apparent that (δ+−
√
δ+) → δ+

as δ+ → ∞.

3.4.2 Boundary layer

The leading balance in layer iii for boundary layer is presented in Eq. (3.49). As evident

in Fig. 3.20 and Fig. 3.21, different from either the MPD, i.e., ϵ2U+, or the WRS, i.e.,

U+(∂T+/∂y+), terms for channel/pipe which monotonically increases or decreases across

layer iii and iv, both the Advection and WRS terms for boundary layer firstly go to attain

their peak values and then tend to approach zero near the edge. Fig. 3.26 shows the

ratio of the turbulent advection to the mean advection across layer iii and iv. Turbulent
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Figure 3.26: Ratios of turbulent advection to mean advection for turbulent boundary
layer at δ+ = 2299. The vertical dashed-dotted line denotes the external bound of layer
ii. The vertical solid line denotes the external bound of layer iii.

advection is negligible compared to the mean advection, and the leading balance equation

is reduced into

U+

(
∂T+

∂y+

)
+

[
−U+ ∂

∂x+

(
1

2
U+2

)
− V + ∂

∂y+

(
1

2
U+2

)]
+T+

(
∂U+

∂y+

)
+ d+ = 0. (3.73)

A desirable transformation is applied to the mean advection term based on the analysis

of Morrill-Winter et al. (2017) in order to modify the curve profiles into shapes similar

to the channel/pipe.
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Transformation of the mean inertia term gives

−U+ ∂

∂x+

(
1

2
U+2

)
− V + ∂

∂y+

(
1

2
U+2

)
= −U+

(
U+∂U

+

∂x+
+ V +∂U

+

∂y+

)
= U+ψ(x+, y+)M+

p , (3.74)

where ψ is a fraction evaluated between 0 and 1, and M+
p is the peak magnitude of the

mean inertia, i.e., − [U+ (∂U+/∂x+) + V + (∂U+/∂y+)]. Subsequently, an invariance of ψ

is defined as

ψ̄ =
1

δ+

∫ δ+

0

ψ
(
x+, y+

)
dy+, (3.75)

since the mean inertia is an outer scale phenomenon. ψ̄ was experimentally determined

to be a constant, 0.57± 0.047, based on the available data (Morrill-Winter et al., 2017).

Now ψ can be normalized by ψ̄ such that ψ(x+, y+) = ψ/ψ̄. Thus

U+ψ(x+, y+)M+
p = U+ψ̄

(
δ+
)
M+

p ψ
(
x+, y+

)
. (3.76)

Since ψ̄ (δ+)M+
p is proved to be 1/δ+ (Morrill-Winter et al., 2017), the mean advection

becomes

− U+ ∂

∂x+

(
1

2
U+2

)
− V + ∂

∂y+

(
1

2
U+2

)
= U+ 1

δ+
ψ
(
y+, δ+

)
. (3.77)

Here ψ is a function of y+ and δ+. The mean advection term is presented in a form that

explicitly contains the 1/δ+ found in the mean pressure diffusion term in channel/pipe.

The primary goal is to modify both the MA and WRS profiles that they correspondingly

varies similarly to the MPD and WRS in channel/pipe. The Reynolds stress is modified
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Figure 3.27: Profiles of terms in Eq. (3.79) for turbulent boundary layer at δ+ = 2299.
The vertical dashed-dotted line denotes the external bound of layer ii. The vertical solid
line denotes the external bound of layer iii.

as

T̃ = T+ +
1

δ+

∫ y+

0

Γ
(
y+, δ+

)
dy+, (3.78)

where Γ(y+, δ+) = ψ(y+, δ+) − ψ
m
(δ+), ψ

m
(δ+) = ψ(y+m, δ

+), and y+m is where the the

turbulent inertia term crosses zero from above. Note that dT̃ /dy+ = 0 at y+m is preserved

under this transformation. The leading balance equation across layer iii becomes

U+

(
∂T̃

∂y+

)
+ U+ 1

δ+
ψ

m
+ T+

(
∂U+

∂y+

)
+ d+ = 0. (3.79)

Fig. 3.27 shows the representative profiles of terms in Eq. (3.79) across layer iii and iv.

Here, that M+
p = 1.76/δ+ and ψ

m
= 0.46 are used in the calculation (Morrill-Winter

et al., 2017). The profiles of U+ϵ2ψ
m

and U+(∂T̃ /y+) are respectively analogous to the



Chapter 3. Scaling properties of kinetic energy budgets in wall turbulence 103

ϵ2U+ and U+(∂T+/∂y+) for channel in Fig. 3.20. Thus the partial symbol, ∂, can be

written as the differential symbol, d. The first two terms are approximately in balance

within the layer iii, i.e.,

O

(
∂T̃

∂y+

)
= O

(
ϵ2ψ

m

)
. (3.80)

Here, the U+ is cancelled out on both sides.

Following the previous study of the channel, a transformation is employed that

T̃χ = T̃ +
1

δ+
ψ

m
y+ − χy+, (3.81)

where χ is small positive parameter that is bounded as 0 6 χ 6 (dT̃ /dy+)peak. This

transformation leads to a scaling layer hierarchy similar to the channel (Klewicki et al.,

2014). This scaling layer width, W+, is evaluated as W+ = (−d2U+/dy+2)−1/2. The

onset of the linear behavior ofW+ is found to scale with
√
δ+, i.e., y+ = 3.6

√
δ+ (Morrill-

Winter et al., 2017). So this layer iii is also located in the inertial region of the mean

momentum transport for the boundary layer. Following the same analysis in previous

Section (3.4.1) from Eq. (3.53) to Eq. (3.66), the order of magnitude of T̃ in layer iii is

verified that

T̃ = O (1− ϵ) . (3.82)

The balance in (3.80) is under consideration. The corresponding rescalings are given

by

T̃ = P ¯̃T, y+ = y+0 +Qȳ, (3.83)
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where ¯̃T and ȳ are both O(1) as δ+ → ∞. Like the channel, y+0 is the position where the

d [U+T+ − ⟨v+K+⟩] /dy+ term changes sign in layer iii. The rescaling transformations

give

dT

dy+
=
P

Q

d ¯̃T

dȳ
. (3.84)

Note that ψ
m
is O(1), and rendering both terms O(1) requires that

P

Q
= ϵ2, (3.85)

or

Q =
1

ϵ2
P. (3.86)

P is the order of magnitude of T̃ in layer iii, i.e., P = 1− ϵ. Thus Q is determined by

Q =
1

ϵ2
(1− ϵ)

=
1

ϵ2
− 1

ϵ
, (3.87)

or

y+ = y+0 +

(
1

ϵ2
− 1

ϵ

)
ȳ

= y+0 + (δ+ −
√
δ+)ȳ. (3.88)

By definition, ȳ is O (1) in layer iii, and thus it follows that the inner-normalized width

of this layer for boundary layer is O(δ+ −
√
δ+). This scaling is interpreted as a finite
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Table 3.1: Magnitude ordering and approximate scaling behaviors associated with the
four layer structure of the total kinetic energy equations for channel/pipe and boundary
layer. VD, D, PT, and PD respectively refer to the viscous diffusion, dissipation,
production/turbulent diffusion and total pressure diffusion terms in Eq. (3.43). Note

that
(
δ −

√
νδ/uτ

)
approaches δ as δ+ → ∞.

Channel/Pipe flow
Layer Magnitude ordering ∆y increment

i |V D| ∼= |D| O (ν/uτ ) (≃ 1.5)

ii |V D| ∼= |D| ∼= |PT | O
(
δ −

√
νδ/uτ

)
(≃ 0.07)

iii |D| ∼= |PT | ∼= |PD| O
(
δ −

√
νδ/uτ

)
(≃ 0.21)

iv |PT | ∼= |PD| O (δ) (≃ 0.68)

Table 3.2: Magnitude ordering and approximate scaling behaviors associated with the
four layer structure of the total kinetic energy equations for channel/pipe and bound-
ary layer. VD, D, PT and APD respectively refer to the viscous diffusion, dissipa-
tion, production/turbulent diffusion and advection/turbulent pressure diffusion terms

in Eq. (3.44). Note that
(
δ −

√
νδ/uτ

)
approaches δ as δ+ → ∞.

Boundary layer flow
Layer Magnitude ordering ∆y increment

i |V D| ∼= |D| O (ν/uτ ) (≃ 1.5)

ii |V D| ∼= |D| ∼= |PT | O
(
δ −

√
νδ/uτ

)
(≃ 0.17)

iii |D| ∼= |PT | ∼= |APD| O
(
δ −

√
νδ/uτ

)
(≃ 0.25)

iv |PT | ∼= |APD| O (δ) (≃ 0.58)

Reynolds number correction to traditional outer scaling, since it is apparent that (δ+ −
√
δ+) → δ+ as δ+ → ∞.

3.5 Summary

Properties of the layer structure associated with the total kinetic energy equation are

summarized in Table 3.1 and Table 3.2. From this table, it is evident that channel,

pipe, and boundary layer flows qualitatively exhibit the same behaviors to within the
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differences between the mean pressure and mean advection effects. Quantitatively, the

layer thicknesses are shown herein to exhibit distinct Reynolds number dependencies. As

is evident, layer i adheres to inner scaling. And the width of layer ii grows at a rate

proportional to
(
δ −

√
νδ/uτ

)
. But the increment for the channel/pipe is less than that

for the boundary layer. This difference is compensated by the thickness of layer iv, where

the advection term is present in the leading balance of layer iv for the boundary layer.

The underlying physical mechanism for the different layer ii thickness is unknown. The

analysis in section 3.4 leads to surmise that the inner-normalized layer iii width follows

a (δ+ −
√
δ+) dependence at finite Reynolds numbers. This result appears to hold in

the boundary layer for all observed δ+, and also seems to hold for the individual upper

boundaries of layers ii and iii. In the channel the present estimates suggest that the layer

iii width scales with this length for δ+ > 1000. The layer scaling behaviors associated with

the total kinetic energy differ substantially from those of the mean momentum balance.

It is significant to note, however, that the layer structure of the mean kinetic energy

equation, which is identical to that of the mean momentum equation, is embedded within

this structure.

The present results indicate that the major portions of layers ii and all of layer iii

and iv reside in the inertial/advection balance layer (layer IV) of the mean momentum

balance. Here the Reynolds stress gradient balances the pressure force in channel flow or

the mean advection in the boundary layer flow, while the viscous force is negligible. For

the total kinetic energy balance the viscous diffusion term gradually becomes negligible

near the external bound of layer ii, and the dissipation term loses leading order in layer
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iv. The leading order balance is inviscid in the outer 68% of the channel/pipe, and outer

58% of the boundary layer.

Lastly, it is noted that the leading order balances associated with the total kinetic

energy budget exhibit an intriguing and potentially telling set of behaviors. Recalling

that the total budget is the sum of the mean and turbulence budgets, the relevant be-

haviors are that mean budget contributions dominate the leading terms near the wall,

the turbulence equation contributions become leading order over an interior region, and

then in the outermost portion mean equation terms return to dominance. This spatial

inter-weaving of the leading order contributions suggests that care should be taken when

using traditional Reynolds averaging to discern properties associated with the energetic

motions within the flow.



CHAPTER 4

SCALING PROPERTIES OF SCALAR TRANSPORT IN

TURBULENT CHANNEL FLOW

4.1 Background

Wall-bounded turbulent flows pervade industrial applications. This fact broadly moti-

vates the numerous and on-going efforts to investigate the properties of wall-flows. In

this regard, the associated transport of heat and mass are of particular technological

importance in applications pertaining to energy efficiency, environmental concerns, and

manufacturing processes. For example, thermal processing seeks to force a temperature

change in a system that enables or disables some material transformation, while the pur-

pose of thermal control seeks to regulate within desired bounds, or to control in time

within a certain margin, the temperature of a system to ensure an application-specific

optimal condition.

Prediction across parameter variations is important to such aims, and thus there has

been considerable effort directed toward quantifying scaling behaviors. Scaling analyses

108
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involving the application multiple-scale approaches are often used to explore parameter

dependent scaling properties of statistical profiles (Yaglom, 1979; Klewicki, 2010; Maru-

sic et al., 2010; Smits et al., 2011a). An especially prominent scaling framework is based

upon the notion of an overlap layer. Here it is postulated that there exists a region

where respective functions of inner and outer normalized distance from the wall are si-

multaneously valid (Izakson, 1937; Millikan, 1938). An alternative approach that more

directly invokes the idea of distance-from-the-wall scaling can be deduced from dimen-

sional analysis (Landau and Lifshitz, 2013). Under this assumption, the attached eddy

phenomenology is inherently consistent with the existence of a logarithmic mean velocity

profile (Townsend, 1980; Perry and Chong, 1982; Perry and Marusic, 1995). More recent

studies reveal that subsumed within the domain where the mean exhibits a logarithmic

increase the variance of the streamwise velocity fluctuations as well as their higher order

even moments also vary logarithmically (Meneveau and Marusic, 2013; Klewicki et al.,

2015; Zhou and Klewicki, 2015). Within this region the mean dynamics are dominated by

the inertia, and the mean momentum equation admits a self-similar structure (Klewicki,

2013b).

Kader (1991) described the law of the wall for temperature in a manner similar to

the inner function in the overlap framework for velocity. This formulation follows from

the assumption that, in the near wall region, the mean temperature, Θ, depends only on

the shear stress at the wall, τw, the heat flux at the wall, qw, the distance from the wall,

the mass density, ρ, dynamic viscosity, µ, specific heat, Cp, and thermal conductivity,

k. Consistent with the analogy between heat and momentum, a logarithmic profile for
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temperature is observed for inner-normalized distances from the wall greater than about

30 and Prandtl number less than 1 (Kader and Yaglom, 1972). As such, the overlap layer

approach has been used to reason the logarithmic structure of the thermal boundary layer

(Gowen and Smith, 1967; Kader, 1981). Based on the overall mean temperature profile

structure, the inner region close to the solid wall is seen to be composed of a molecular

sublayer and a thermal buffer layer, while logarithmic and wake layers comprise an outer

region that extends to the centerline of the channel/pipe. Like for velocity, some divide

the logarithmic (overlap) layer into two sublayers (George and Castillo, 1997; Castillo and

George, 2001). The convective sublayer is characterized by negligible conductive effect,

while heat transfer is under a detectable influence of conduction in the thermal mesolayer.

Based upon his review of available data, Kader (1981) estimated the thermal Kármán

constant, kθ, for the logarithmic mean temperature profile to be about 0.47. This constant

value for a fully developed turbulent channel flow with uniform heating from both walls

was found by Kawamura et al. (1999) to be roughly independent of Reynolds number and

closer to the Kármán constant for velocity, i.e., 0.40 . kθ . 0.42. It is relevant to note,

however, that the law of the wall for temperature apparently breaks down in flows where

the law of the wall for velocity is still valid. It is especially observed that the logarithmic

increase of mean temperature is significantly more affected by pressure gradients than

the mean velocity (Bradshaw and Huang, 1995).

Interest in statistical behaviors in wall turbulent flows has motivated approaches that

more directly incorporate the mean equations to discern scaling behaviors. Based on the

relative magnitude of terms in the mean momentum equation, following Wosnik et al.
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(2000), Wei et al. (2005a) revealed a four layer structure distinct from the traditional

description. As expected, layer I and layer IV (the innermost and outermost layers)

respectively comply with inner and outer scaling. However, an intermediate length scale,√
νδ/uτ , is both empirically observed and analytically shown to characterize the other two

layers. Similarly, Afzal and coworkers (Afzal, 1982, 1984; Seena and Afzal, 2008) deduced

an intermediate scaling for the thermal meso-layer of fully-developed turbulent channel

flow and transitionally rough channel flow. Their analysis incorporates an intermediate

layer that has its own characteristic scaling, and that lies between the traditional inner

and outer layers. Their formulation also employs a matching procedure that incorporates

three layers and two overlapping regions over which two adjacent logarithmic regions

for the mean temperature profile are shown to asymptotically form. The thermal meso-

length scale they employ constitutes the geometric mean of the inner, α/uτ , and outer,

δ, thermal length scales, and is given by δ/
√
Prδ+. Here, α is the thermal diffusivity, δ is

the half channel height, uτ is the friction velocity and Pr is the Prandtl number. Afzal’s

analysis similarly employs an intermediate scaled temperature Tm = (Θw +Θc) /2, where

Θw and Θc are the temperature at the wall and the channel centerline, respectively.

Using an analysis that also incorporates an intermediate scale, Wei et al. (2005b) ex-

amined fully developed thermal transport in channels with constant wall heat flux. They

introduced a new inner variable, yσ = η/σ2, where η = y/δ and σ is a parameter defined

as a function of δ+ and Peclet number, Peτ = Prδ+. Consequently, the corresponding

thermal mesoscale,
√

(Θw −Θc) / (ΘτPrδ+) where Θτ = qw/ρCpuτ , is different from the

geometric mean of the inner and outer thermal length scales,
√
αδ/uτ . Existing DNS,
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however, significantly limited the range of parameters over which Wei et al. could vali-

date their analysis. Based on DNS data covering a broader range of both Reynolds and

Prandtl numbers, Saha et al. (2014) explored the scaling properties of scalar transport

under a larger range of constant wall flux conditions. They showed that, based upon

the magnitude ordering of terms, a four-layer thermal regime exists when Pr & 0.6 at

δ+ = 180. This four layer regime is analogous to that first identified by Wei et al. (2005a).

Their analysis incorporates the inner normalized mesoscale,
√
Peτ , which they show can

be used to effectively merge both the mean temperature and turbulent heat flux over a

domain that starts inside the peak heat flux location out to a position near the centerline.

The previous analyses of the mean thermal energy equation by Wei et al. (2005b)

and Saha et al. (2014) investigated flows having a constant surface heat flux bound-

ary condition. Analytically, this presents a significant challenge when compared to the

corresponding streamwise momentum equation analysis where the pressure gradient in

the inner-normalized form of the equation is represented by 1/δ+. Additionally, the low

Reynolds numbers of previous data make it difficult (and less convincing) to validate the

veracity of the analytical results associated with an asymptotic analysis. In particular,

their data analyses of the mean scalar equation failed to provide comparable evidence for

a scaling layer hierarchy as has been shown for the mean momentum equation, or clearly

delineate trends for varying Reynolds number and Prandtl number.

The present study follows the same methodology as the mean momentum (Wei et al.,

2005a) and kinetic energy budget (Zhou and Klewicki, 2016) to investigate the mean scalar

equation (Zhou et al., 2017) and scalar variance equation with constant heat generation for
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the fully-developed turbulent channel flow. The uniform heat generation term addresses

the previous challenge and reduces the mean scalar equation into a form that is much

more analogous to the mean momentum equation. Furthermore, herein I employ DNS

data from Pirozzoli et al. (2016) covering a significantly larger range of Reynolds Prandtl

numbers, which provide much more compelling support for the analytical conclusions and

theoretical predictions, and more clearly Re and Pr trends.

In what follows, the ratio of the molecular diffusion (MD) term to the gradient of tur-

bulent heat flux (GT) term in the mean scalar equation is employed to reveal a four-layer

leading balance structure. Both the Reynolds number and Prandtl number dependent

scaling of these layer thicknesses is then empirically quantified with DNS data and ver-

ified through analysis of the mean equation. Like for the momentum field, the analysis

also indicates that the mean scalar equation can be cast into an invariant form that

properly reflects the local dominant physical mechanism, and which exposes the effect of

the governing small parameter on an intrinsic scaling layer hierarchy. The Prandtl num-

ber impact on the width distribution of the layer hierarchy is quantified and discussed

relative to the underlying physics. Consistent with the analysis, on the layer hierarchy

there exists a domain where molecular diffusion effects are sub-dominant, and the layer

width function becomes proportional to the distance from the wall. Here the mean equa-

tion is shown to asymptotically admit a similarity solution in the form of a logarithmic

mean temperature profile. The behaviors of the coefficients in the logarithmic expression,

including kθ, are also described. Also the total scalar variance equation is explored to

reveal another four layer structure with properties similar to that of the total kinetic
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energy equation. Finally, The factors that lead to the difference between the Kármán

constant, k, and thermal Kármán constant, kθ are quantitatively explored.

4.2 Mean Scalar Equation

The time-averaged steady state mean scalar equation is

U
∂Θ

∂x
+ V

∂Θ

∂y
+W

∂Θ

∂z
= α

[
∂2Θ

∂x2
+
∂2Θ

∂y2
+
∂2Θ

∂z2

]
− ∂ ⟨uθ⟩

∂x
− ∂ ⟨vθ⟩

∂y
− ∂ ⟨wθ⟩

∂z
+Q, (4.1)

where Θ is the mean temperature and θ is the corresponding fluctuating temperature

(and similarly for the velocity components), α is the thermal diffusivity, and Q is the unit

heat generation.

The analysis considers statistically stationary, fully-developed, incompressible turbu-

lent flow and passive scalar transport in a two dimensional channel. The half channel

height is given by δ. Note that, unlike the typical heat transfer case in which there is

a constant surface heat flux (Saha et al., 2014), this form is simpler, and thus affords a

more comprehensive analytical treatment. Under a uniform heat generation Q with the

zero temperature on both the upper and lower walls, the mean scalar equation reduces

to

α
d2Θ

dy2
− d ⟨vθ⟩

dy
= −Q. (4.2)
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Integration of Eq. (4.2) from y to δ with the conditions dΘ/dy = 0 and ⟨vθ⟩ = 0 at the

centerline gives

α
dΘ

dy
− ⟨vθ⟩ = Q (δ − y) . (4.3)

Using the boundary condition that at y = 0,

− ⟨vθ⟩|wall = 0. (4.4)

gives

α
dΘ

dy
|wall = Qδ. (4.5)

Inner-normalization is applied to each term in Eq. (4.3) with the friction temperature,

i.e., θτ = α
uτ

dΘ
dy
|wall, uτ and ν, which can be deduce from dimensional analysis.

Θ+ =
Θ

θτ
, −

⟨
v+θ+

⟩
= −⟨vθ⟩

uτθτ
, y+ =

yuτ
ν
. (4.6)

With the boundary condition (4.5), the inner-normalized version of Eq. (4.3) becomes

1

Pr

dΘ+

dy+
−
⟨
v+θ+

⟩
= 1− y+

δ+
, (4.7)

where the Prandtl number (Pr) is Pr = ν/α. Differentiating Eq. (4.7) with respect to

y+ yields

1

Pr

d2Θ+

dy+2
+
dT+

θ

dy+
+ ϵ2 = 0, (4.8)

where T+
θ = −⟨v+θ+⟩, and ϵ2 = 1/δ+ = 1/Reτ . These three terms are respectively
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referred to as the molecular diffusion (MD), gradient of turbulent flux (GT), and heat

generation (HG).

4.3 Empirical Observations

4.3.1 Four-layer leading balance structure

Previous studies of mean momentum transport revealed a four-layer structure based on

the relative order of magnitude of the terms in the mean momentum equation (Wei et al.,

2005a). To determine the relative size of terms, the ratio of the viscous force term (VF),

i.e., ∂2U+/∂y+2, to the turbulent inertia term (TI), i.e., −∂ ⟨uv⟩+ /∂y+, was considered

as a function of wall-normal position. The success of this approach motivates using

same methodology to explore the leading order terms in Eq. (4.8), i.e., as was previously

pursued by Wei et al. (2005b) and Saha et al. (2014). Here the ratio of the MD term to

the GT term is under consideration. If this ratio is

|MD/GT | ≪ 1, (4.9)

then the MD term is small, and the GT and HG terms are nominally in balance. If

|MD/GT | ∼= 1, (4.10)
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Figure 4.1: Ratio of the molecular diffusion term (MD) to the gradient of turbulent
transport flux term (GT). DNS data are from Pirozzoli et al. (2016): △, δ+/Pr = 548;
▽, δ+/Pr = 772; ▹, δ+/Pr = 995; ◃, δ+/Pr = 1401; ×, δ+/Pr = 2017; ·, δ+/Pr = 2740;
⋄, δ+/Pr = 2841; ◦, δ+/Pr = 4088; �, δ+/Pr = 4975; I, δ+/Pr = 5758; +, δ+/Pr =
10085; T, δ+/Pr = 20440.

then the HG term is either of the same order of magnitude or much smaller. Else, if

|MD/GT | ≫ 1, (4.11)

the GT term is small, and the MD and the HG terms approximately balance.

Direct numerical simulations that incorporate the constant heat generation term de-

scribed in the analysis leading to Eq. (4.8) were conducted by Pirozzoli et al. (2016).

Notably, these simulations cover a previously unrealized ranges of Prandtl and Reynolds

numbers, 0.2 < Pr < 1 and 550 < δ+ < 4080. Ratio profiles covering this range are

shown in Fig. 4.1 versus the inner-normalized distance from the wall. Consistent with
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Figure 4.2: Ratio of the molecular diffusion term (MD) to the gradient of turbulent
transport flux term (GT) versus y+

√
Prδ+. Symbols are the same as in Fig. 4.1.

the criterion used in the momentum balance analysis (Wei et al., 2005a), the ending po-

sition of layer I is where the ratio becomes greater than −2. The external bound layer II

is determined where the ratio is less than −2, while that of layer III is based on where

the ratio decreases below 0.5. Layer I lies close to the wall, y+ . 2. In this domain, the

leading balance is between the molecular diffusion (MD) and heat generation (HG) term.

4.3.2 Layer widths

The present profiles reveal that normalization of y using ν and uτ (i.e., y+ = yuτ/ν)

fails to produce an invariant profile of the heat flux gradient ratio in layer I for varying

δ+ and Pr. A length scale that characterizes the influence of Prandtl number is used in

Fig. 4.2. A thermal inner length scale, i.e.,
√
ν2α/u3τδ is introduced here to normalize
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the distance from the wall, and varying Pr and δ+ appear to merge the profiles under

this normalization.

Note here that the product of the Reynolds number and Prandtl number is the Peclet

number, i.e., Peτ = Prδ+. The curve fit indicates that y+I end varies with increasing Pe
− 1

2
τ .

The leading coefficient is 16.69. Outside this near-wall layer, the ratio is approximately

equal to −1, and this region (layer II) is characterized by a dominant balance between

the MD and GT terms. With greater distance from the wall, the turbulent transport flux

attains its maximum value, and about this location, all three terms attain equal order.

As with the mean momentum field structure, there is an exchange of leading balance

across layer III. Beyond this layer, the ratio decreases and gradually approaches 0, since

the MD term becomes much smaller than either the GT or HG terms in the outer region

(layer IV). Fig. 4.2 reveals that in layer III the ratio profiles nominally segregate into four

groups of profiles depending on Reynolds number. This is consistent with the thermal

inner-normalization, since for each Pr y+II end
√
Prδ+ and y+III end

√
Prδ+ only depend on

Reynolds number.

The Reynolds and Prandtl number dependence of the inner-normalized external bounds

of layers II and III are respectively shown in Fig. 4.3 and Fig. 4.4. Both y+II end and y
+
III end

follow a linear trend with increasing
√
δ+/Pr. Curve fits give that the layer III is bounded

between y+ ≃ 1.07
√
δ+/Pr and y+ ≃ 2.51

√
δ+/Pr. However, if the curve fits are only

applied to the data where
√
δ+/Pr > 50, since these data best approximate the high√

δ+/Pr condition, the layer III extends from y+ ≃ 1.04
√
δ+/Pr to y+ ≃ 2.50

√
δ+/Pr.

The effects of δ+ and Pr on the heat flux gradient ratio act opposite to each other. An
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Figure 4.3: Reynolds and Prandtl number dependence of the external bound of layer
II. Curve fit for all data (dashed-dotted line) is given by y+II end = 1.07

√
δ+/Pr. Curve

fit for
√

δ+/Pr > 50 (dashed line) is given by y+II end = 1.04
√

δ+/Pr.
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Figure 4.4: Reynolds and Prandtl number dependence of the external bound of layer
III. Curve fit for all data (dashed-dotted line) is given by y+III end = 2.51

√
δ+/Pr. Curve

fit for
√

δ+/Pr > 50 (dashed line) is given by y+III end = 2.50
√

δ+/Pr.
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Figure 4.5: Ratio of the MD term to the GT term vs y+/
√
δ+/Pr. Symbols are the

same as in Fig. 4.1.

intermediate thermal length scale,
√
δα/uτ , is characteristic of the heat transport layer

III. Fig. 4.5 re-plots the data of Fig. 4.1 vs y+/
√
δ+/Pr. The data of this figure suggest

invariance under this normalization, with the estimated end points of layers II and III

remaining nearly fixed when measured in units of
√
δ+/Pr.

4.3.3 Mean temperature increments

The mean scalar increments across each balance layer for each Prandtl number is deter-

mined as a function of Reynolds number. These results are shown in Fig. 4.6, Fig. 4.7 and

Fig. 4.8. It is apparent that the mean temperature increment has a Prandtl number de-

pendence. Under outer-normalization, the increment across layer II exhibits a decreasing

variation, relative to the total increment, with increasing Reynolds number. The highest



Chapter 4. Scaling properties of scalar transport in turbulent channel flow 122

10
3

10
4

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

δ+

∆
II
Θ
+
/Θ
c+

Figure 4.6: Ratio of the mean temperature increment across layer II to the mean
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Figure 4.8: Ratio of the mean temperature increment across layer IV to the mean
centerline temperature. •, P r = 0.20; �, P r = 0.71; �, P r = 1. Θc is the mean
temperature at the centerline.

Reynolds number values of the different curves are approximately 0.35, 0.5 and 0.55 for

Pr = 0.2, 0.71 and 1, respectively. The present scaling theory predicts that these val-

ues should attain constancy at sufficiently high Reynolds number. The inner-normalized

increments across layer III apparently remain O(1) but exhibit a significant relative vari-

ation, with values ranging between 1.5 and 2.3. Under the present scaling theory, this

temperature increment under this normalization is expected to attain invariance for any

given Prandtl number at sufficiently high Reynolds number. Here it is worth noting that

the layer III width grows like
√
δ+/Pr, that is not invariant with δ+. Similar to the

behavior in layer II, the outer-normalized mean temperature increment across layer IV

shows significant variations with Reynolds number at each Prandtl number. Relative to

the mean velocity increments associated with the mean momentum analysis, these layer

IV increments are distinct. Namely, they show that the Prandtl number effect causes
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them to exceed 0.5 for Pr = 0.2, while the layer IV velocity increment approaches 0.5

from below as δ+ → ∞ (Wei et al., 2005a). As expected from the present theory, the

inner-normalized mean temperature increments across layer I remain O(1), and the inner-

normalized mean temperature increments across both layers II and IV increase at a rate

close to proportionality of Θ+
c . Lastly, it is noted that similarly complex δ+ and Pr

trends are observed when the mean temperature increments are normalized by the bulk

temperature instead of Θ+
c .

4.4 Multiscale Analysis

A multiscale analysis of the mean scalar equation is now performed. There is no inherent

limitation on the range of Pr for which the analysis applies. A central element of this

analysis involves describing the scaling behaviors associated with the transitions between

the leading balance layers. In this regard, the analysis of this section does not address the

transition from layer II into layer I as y+ → 0. This is because the problem in this layer

is insufficiently constrained to allow analytical determination of the stretching constants

in the required transformations.

The primary focus below is thus on the scaling behaviors associated with layer III,

which is the region where there is an exchange of balance that culminates with the loss

of a leading order molecular diffusion (conduction) effect. The scaling properties of layer

III are especially significant, as these properties are subsequently shown to replicate as a

function of size with wall-normal distance across a self-similar hierarchy of well-defined
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scaling layers. This layer hierarchy is then demonstrated to underlie the asymptotic

emergence of a logarithmic mean temperature profile on the domain where molecular

diffusion is negligible.

4.4.1 Rescaling across layer III

A multiscale analysis is now applied to mean scalar equation. For reasons to become

apparent, a central element here is to analytically describe the scaling behaviors across

layer III, as revealed by the above data presentation. Recall that across layer III all

three terms have leading order contributions to the balance of Eq. (4.8). In this inner-

normalized balance equation, however, the generation term is given by ϵ2, and hence its

formal order of magnitude is sub-dominant. A rescaling is sought that yields a parameter

free form of Eq. (4.8) in which all three terms are O(1) across layer III. And thus it yields

a formal order of magnitude of each term that comports with their actual (empirically

observed) order of magnitude. Based upon previous such analyses, only the y+ and T+
θ

variables require rescaling.

The process begins by setting

y+ = y+θm + αŷ, T+
θ = T+

θm + βT̂θ, (4.12)

where y+θm is the position where T+
θ attains its maximum value, T+

θm. This position

provides a natural choice for the origin of the layer III rescaling since y+θm necessarily
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resides in layer III. The rescaled variables ŷ and T̂ , which are equal to 0 at y+ = y+θm, are

independently O(1) with the factors α and β to be determined in terms of ϵ and Pr.

Application of 4.12 transforms the first two terms in Eq. (4.8) as:

1

Pr

d2Θ+

dy+2
=

1

α2

1

Pr

d2Θ+

dŷ2
,

dT+
θ

dy+
=
β

α

dT̂θ
dŷ

. (4.13)

Both the derivatives on the right of (4.13) are O(1). Now it is required that each term

on the right of Eq. (4.8) match the third term in magnitude, i.e.,

1

α2Pr
=

1

δ+
,

β

α
=

1

δ+
. (4.14)

This requires that

α =
1

ϵ
√
Pr

, β =
ϵ√
Pr

, (4.15)

and thus

y+ = y+θm +
1

ϵ
√
Pr

ŷ, T+
θ = T+

θm +
ϵ√
Pr

T̂θ. (4.16)

The variable representations given in Eq. (4.16) are valid in layer III, and here the

mean balance equation becomes

d2Θ+

dŷ2
+
dT̂θ
dŷ

+ 1 = 0. (4.17)

Eq. (4.17) is a parameter-free form of the mean scalar equation in the layer III that

faithfully reflects the empirical fact that each term is O(1) in layer III.
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4.4.2 Approach to asymptotic conditions in layer III

The variable stretching properties determined to construct the invariant form given by

Eq. (4.17) allow testable predictions regarding the asymptotic properties of Tθ. In this

regard, note that rearrangement of Eq. (4.7) gives

1

Pr

dΘ+

dy+
= 1− T+

θ − ϵ2y+. (4.18)

The three terms 1
Pr

dΘ+

dy+
,
(
1− T+

θ

)
, and ϵ2y+ are thus of the same order of magnitude in

this region. From Eq. (4.18) it is also seen that for any fixed Pr, T+
θm → 1 as δ+ → ∞.

From the fact that

1

Pr

dΘ+

dy+
=

ϵ√
Pr

dΘ+

dŷ
, (4.19)

one finds that

1− T+
θ = (1− T+

θm) + (T+
θm − T+

θ ) = ∆− ϵ√
Pr

T̂θ, (4.20)

where ∆ is a small quantity that constitutes the deviation of T+
θm from its asymptotic

value of 1. Now, since T̂θ is by construction O(1), 1− T+
θ = O(max[∆, ϵ/

√
Pr]), and the

balance of these three terms requires that

max

[
∆,

ϵ√
Pr

]
= O

(
ϵ√
Pr

)
, ϵ2y+ = O

(
ϵ√
Pr

)
. (4.21)

Thus

∆ 6 O

(
ϵ√
Pr

)
, y+ = O

(
1

ϵ
√
Pr

)
. (4.22)
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Table 4.1: Numerically determined ∆ values. Data are from Pirozzoli et al. (2016).

δ+ (Reτ ) Pr ∆ ϵ√
Pr

∆/ ϵ√
Pr

548 0.20 0.2806 0.0955 2.9378
548 0.71 0.1591 0.0507 3.1375
548 1 0.1387 0.0427 3.2467
995 0.20 0.2068 0.0709 2.9166
995 0.71 0.1138 0.0376 3.0244
995 1 0.0979 0.0317 3.0873
2017 0.20 0.1458 0.0498 2.9288
2017 0.71 0.0767 0.0264 2.9029
2017 1 0.0652 0.0223 2.9285
4088 0.20 0.1022 0.0350 2.9232
4088 0.71 0.0534 0.0186 2.8788
4088 1 0.0452 0.0156 2.8870

These relations indicate that in layer III, y+ is O(1/ϵ
√
Pr), while T+

θ attains its maximum

value T+
θm at y+θm. This implies that y+θm = O(1/ϵ

√
Pr), i.e., the analysis leads to a scaling

for the peak position of the turbulent heat flux.

For the asymptotic approach of T+
θm → 1, Eq. (4.18) is arranged and set y+ = y+θm.

This gives

∆ = 1− T+
θm =

1

Pr

dΘ+

dy+
(y+θm) + ϵ2y+θm > O

(
ϵ√
Pr

)
. (4.23)

Combination of (4.22) and (4.23) yields

∆ = O

(
ϵ√
Pr

)
. (4.24)

The data of Table 4.1 support the analytically predicted behavior for ∆. Additionally

the dependence of y+θm on the combined influences of Pr and δ+ are shown in Fig. 4.9.

These results are also in accord with the present analyses. The curve fit on this figure
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Figure 4.9: Maximum T+
θm position, y+θm, versus

√
δ+/Pr. Curve fit for all data

(dashed-dotted line) is given by y+θm = 1.48
√

δ+/Pr. Curve fit for
√

δ+/Pr > 50

(dashed line) is given by y+θm = 1.46
√

δ+/Pr. Symbols are the same as in Fig. 4.1.

for all data is given by y+θm = 1.48
√
δ+/Pr. Curve fit for

√
δ+/Pr > 50 is given by

y+θm = 1.46
√
δ+/Pr.

4.4.3 Mean temperature and turbulent flux scalings

The above analyses provide a rescaling for the turbulent heat flux that is formally valid

for a ŷ = O(1) domain nominally centered about y+θm. To explicitly see this, note that

the finite transformations (4.12) shift the origin of the hat variables to this location. It

is a straightforward matter, however, to verify that dT̂θ/dŷ = dT+
θ /dη, where η = y/δ.

Thus, the analysis predicts that, when plotted versus ŷ, the T̂θ scaling should hold from

a position that begins on the wallward side of the peak in T+
θ (by an amount that is

ŷ = O(1)), and extends all the way to the channel centerline. Fig. 4.10 (b) provides
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Figure 4.10: (a)Profiles of Θ normalzied by Θ̂(ŷ) = Θ+−Θ(y+θm)−m(y+−y+θm),where
m = (dΘ+/dy+)(y+ = y+θm).(b)Profiles of Tθ normalized according to the variable
scaling given by Eq. 4.16. Figure includes all Reynolds and Prandtl numbers from the
study of Pirozzoli et al. (2016).
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compelling evidence that this is indeed the case. Lastly, note that the scaling shows

small be noticeable deviations as the wall is approached. This is because here the scaling

associated with layer I becomes operative.

According to the scales in Eq. (4.16), the mean temperature Θ also admits an invariant

scaling across layer III. That is, Θ+ = Θ+(y+θm) + m(y+ − y+θm) + Θ̂(ŷ), where m =

(dΘ+/dy+)(y+ = y+θm), and Θ̂ is O(1) across layer III. This rescaled Θ should be valid

across layer III over a range of ŷ =| O(1) |. The prediction is verified in Fig. 4.10

(a), where all Θ̂ curves merge together around ŷ = 0 within layer III. As anticipated,

deviations from this scaling are observed as the wall and centerline are approached.

4.5 Lλ Layer Hierarchy

4.5.1 Hierarchy construction

The scaling properties associated with the four-layer structure for mean scalar equation

have been empirically determined and analytically verified. As described above, the

rescaling across layer III is central to determining these scaling behaviors. In a manner

similar to what has been previously shown with regard to the mean momentum balance,

it is now demonstrated that Eq. (4.17) can be written in an invariant form on each

of a continuous hierarchy of finite width scaling layers, herein called the Lλ hierarchy.

Significantly, each member of this layer hierarchy has a structure that mimics that of

layer III.
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To reveal the layer hierarchy a transformation is applied to T+
θ

T+
θλ = T+

θ + ϵ2y+ − λy+. (4.25)

Here λ is treated as a small positive and constant parameter, i.e., like ϵ2. This trans-

formation allows the contribution to wall-normal transport by the turbulent scalar flux

to be characterized as a function of scale with distance from the wall. Inserting it into

Eq. (4.17) yields

1

Pr

d2Θ+

dy+2
+
dT+

θλ

dy+
+ λ = 0, (4.26)

which is still exact. Note that Eq. (4.26) takes on a form that looks like Eq. (4.17), but

with the ϵ2 term replaced by the λ term.

Concentration is applied to the domain where the GT term in Eq. (4.17) is monoton-

ically decreasing. This region resides between a near-wall peak (at y+ ≃ 7 for Pr = 1),

and a maximally negative position near y/δ ≃ 0.5 (essentially independent of Pr). From

its definition, it is shown that for each λ value on this domain, T+
θλ attains a maximum

value T+
θλm at y+θλm. For this construction, it is similarly shown that each λ value precisely

corresponds to a specific wall normal location, for which there is a corresponding mem-

ber of the layer hierarchy. Furthermore, on each of these layers Eq. (4.26) undergoes a

balance breaking and exchange of terms analogous to what occurs across layer III. Thus,

the scaling properties of each finite width layer on the hierarchy can be determined via

the same mathematical procedure used for layer III.
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Across each hierarchy layer, all three terms in Eq. (4.26) are of leading order. To

reiterate, at y+ = y+θλm, it follows from (4.25) that

dT+
θλ

dy+
(
y+θλm

)
=
dT+

θ

dy+
(
y+θλm

)
+ ϵ2 − λ = 0. (4.27)

Rearrangement of Eq. (4.27) gives

λ =
dT+

θ

dy+
(
y+θλm

)
+ ϵ2. (4.28)

Recognizing that each y+θλm uniquely corresponds to a y+ position on the hierarchy, with-

out loss of generality one can replace it with y+. Eq. (4.27) then becomes

λ =
dT+

θ

dy+
+ ϵ2. (4.29)

Thus, λ is determined from the gradient of turbulent transport flux term and the Reynolds

number (heat generation term).

Now, to ensure that each value of λ uniquely corresponds to a single wall-normal

position and associated scaling layer, i.e., λ
uniquely−−−−−→ y+θλm, λ must necessarily correspond

to bounds between the inner and outer extreme values of dT+
θ /dy

+. On this domain

dT+
θ /dy

+ decreases monotonically with increasing y. At any given Reynolds number,

y+θλm increases as λ decreases. Fig. (4.11) and Fig. (4.12) show profiles of the turbulent

transport flux term, and identify the range of λ = dT+
θ /dy

+ + ϵ+ positions that bound

the hierarchy domain. It is now shown that within each hierarchy layer the variables
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y+ and T+
θλ may be rescaled in such a way that the basic differential equation (4.26) is

transformed into an exact equation having no explicit dependence on λ. As with layer

III, rescaling is applied to T+
θλ and y+ in such a way that all terms are O(1) independent

of λ. Here transformations are posed,

y+ = y+θλm + ζŷθλ, T+
θλ = T+

θλm + κT̂θλ, (4.30)

and solve for the unknown variable stretching parameters, ζ and κ. Under these trans-

formations Eq. (4.26) becomes

1

ζ2
1

Pr

d2Θ+

dŷ2θλ
+
κ

ζ

dT̂θλ
dŷθλ

+ λ = 0. (4.31)

The three terms in Eq. (4.31) are required to be of the same order of magnitude, which

means

1

ζ2
1

Pr
= λ,

κ

ζ
= λ. (4.32)

From these constraints it is apparent that

ζ =
1√
λPr

, κ =

√
λ

Pr
, (4.33)

and therefore,

y+ = y+θλm +
1√
λPr

ŷθλ, T+
θλ = T+

θλm +

√
λ

Pr
T̂θλ. (4.34)
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Under these transformations, Eq. (4.26) takes on an invariant form

d2Θ+

dŷ2θλ
+
dT̂θλ
dŷθλ

+ 1 = 0, (4.35)

that is operative on every layer of the Lλ hierarchy.

4.5.2 Hierarchy layer width scaling

As was done for layer III, analytical description of the layer widths of the Lλ hierarchy is

explored. From (4.34), the inner-normalized width of each hierarchy layer is O(1/
√
λPr).

This width is a central element of the hierarchy structure, since it physically characterizes

the size of the motions responsible for scalar transport, and is mathematically related to

the underlying similarity structure of the mean scalar equation. This length is formally

defined as the function W+
θ

W+
θ = O(λ−

1
2Pr−

1
2 ), (4.36)

but λ−
1
2Pr−

1
2 can be used to calculate the W+

θ without loss of generality. In Eq. (4.25),

setting y+ = y+θλm yields

λ =
∂T+

θ

∂y+
(y+θλm) + ϵ2 = − 1

Pr

∂2Θ+

∂y+2
(y+θλm), (4.37)

As before, it is noted that y+θλm uniquely corresponds to y+ on the hierarchy, and thus can

be replaced by y+. Combination of (4.36) and (4.37) results in the best way to evaluate
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Table 4.2: Inner and outer edges of the Lλ hierarchy.

δ+ (Reτ ) Pr y+θip y+θop/δ
+

548 0.20 13.0361 0.6643
548 0.71 8.1616 0.6533
548 1 7.2725 0.6533
995 0.20 12.8296 0.6848
995 0.71 8.0550 0.6838
995 1 7.1743 0.6828
2017 0.20 12.6361 0.7208
2017 0.71 7.9136 0.7208
2017 1 7.0501 0.7208
4088 0.20 12.4574 0.7107
4088 0.71 7.7977 0.7170
4088 1 6.9649 0.7178

W+
θ from DNS data

W+
θ =

(
−d

2Θ+

dy+2

)− 1
2

. (4.38)

Physically, W+
θ (y+) is recognized as the average size of the motions responsible for

the net wallward flux of heat from layer to layer, or, equivalently, it is the average size of

the motions responsible for the generation of turbulent transport flux, i.e., T+
θ . The inner

(y+θip) and outer (y+θop) edges of the layer hierarchy correspond to where the W+
θ profile

respectively attains its minimum and maximum values, since

dW+
θ

dy+
= −1

2

1√
λ3Pr

d2T+
θ

dy+2
. (4.39)

The values of y+θip and y+θop for various δ+ and Pr are listed in Table (4.2), while

Fig. (4.13) and Fig. (4.14) show distributions of W+
θ . Note that the Prandtl number

only has apparent effects on the domain interior to layer IV. All of the W+
θ profiles
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in Fig. (4.13) and Fig. (4.14) merge onto a single profile beyond the external bound of

layer III, and remain as such until near the end of the hierarchy for each flow. In accord

with the present theory, on this domain W+
θ becomes increasingly well-approximated by

a linear function of y+, with the accuracy of this linear approximation increasing with

δ+. On this portion of the hierarchy (i.e., y+ & 2.5
√
δ+/Pr) the gradient of turbulent

transport flux and heat generation terms form the leading order balance.

4.5.3 Self-similarity

The analytical results pertaining to the invariant form of the mean scalar equation

(Eq. 4.35) on the layer IV portion of the Lλ hierarchy are directly associated with the log-

arithmic dependence of the mean temperature profile. Clarification is conducted now that

this invariance is associated with a self-similar structure that is reflected in the curvature

of the T+
θ profile, or equivalently the linearity of the W+

θ profile. From Eq. (4.25),

dT+
θ

dy+
(
y+θλm

)
+ ϵ2 − λ = 0. (4.40)

Differentiating Eq. (4.40) with respect to λ gives

d2T+
θ

dy+2

dy+θλm
dλ

− 1 = 0, (4.41)

and from (4.34)

d2T+
θ

dy+2
=

√
λ3Pr

d2T̂θλ
dŷ2θλ

. (4.42)
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The underlying theory indicates that the condition for a self-similarity from layer to

layer on the hierarchy is that

Aθ = −d
2T̂θλ
dŷ2θλ

= −d
2T+

θ

dy+2
λ−

3
2Pr−

1
2 = −d

2T+
θ

dy+2

(
dT+

θ

dy+
+ ϵ2

)− 3
2

Pr−
1
2 = −d

2T+
θ

dy+2

(
−d

2Θ+

dy+2

)− 3
2

Pr

(4.43)

approaches constancy for any fixed Pr as δ+ → ∞. This condition stems from the fact

that the only means to interrupt the self similar behavior on the hierarchy is through

edge effects acting at its periphery. Thus, as δ+ becomes large the number of layers on

the hierarchy increases, and those on its interior become increasingly insulated from these

edge effects. Differentiating and rearranging Eq. (4.8) gives

− d2T+
θ

dy+2
=

1

Pr

d3Θ+

dy+3
, (4.44)

and thus Eq. (4.43) becomes

Aθ =
d3Θ+

dy+3

(
−d

2Θ+

dy+2

)− 3
2

. (4.45)

Following Klewicki et al. (2009); Klewicki (2013b), it is now identified that

ϕθ =
dy+

dW+
θ

. (4.46)
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Mathematically, ϕθ is the stretching of the y coordinate required to produce the invariant

form given by Eq. (4.35). Furthermore from (4.39) and (4.43) one can show that

dW+
θ

dy+
=
Aθ

2
, (4.47)

and therefore Aθ and Wθ are related by

dW+
θ

dy+
=
Aθ

2
=

1

ϕθ

. (4.48)

Owing to the properties of Aθ just described, over an interior domain within the Lλ hier-

archy where the molecular diffusion term loses its leading order, ϕθ, which is necessarily

O(1), approaches a constant, ϕθc, as δ
+ → ∞.

4.5.4 Logarithmic dependence

The invariance properties described above provide a basis for constructing a similarity

solution for the mean temperature on the domain where ϕθ → ϕθc. Here, (4.45) is written

as

2

ϕθc

=
d3Θ+

dy+3

(
−d

2Θ+

dy+2

)− 3
2

. (4.49)

Eq. (4.49) is a ordinary differential equation with a single unknown, Θ+.
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Following Klewicki and Oberlack Klewicki and Oberlack (2015), setting fθ = −d2Θ+

dy+2

yields

dfθ
dy+

= − 2

ϕθc

f
3
2
θ . (4.50)

Separating variables and integrating gives

fθ = −d
2Θ+

dy+2
= ϕ2

θc

(
y+ − C1

)−2
, (4.51)

and two more integrations yield

Θ+ = ϕ2
θc ln

(
y+ − C1

)
+ C2y

+ + C3. (4.52)

In Eq. (4.52) ϕ2
θc is usually written as 1/kθ, where kθ is the scalar Kármán constant.

Eq. (4.52) adheres to the classic logarithmic variation, but with an additive linear term

and an offset in the logarithmic argument. The offset C1 is empirically set to be 0, since

it is much smaller than the distance from the wall where the logarithmic dependence

begins, i.e., the onset of layer IV, y+ ≃ 2.5
√
δ+/Pr. In the analogous momentum case

the offset in the velocity log law is estimated be between ±7 viscous lengths, Klewicki

(2013b).

In the lower part of layer IV, Eq. (4.48) becomes

dW+
θ

dy+
=

1

ϕθc

. (4.53)
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Table 4.3: Slope of W+
θ , scalar Karman constant kθ and Curve-fit coefficients in (4.52)

for C1 = 0

δ+ (Reτ ) Pr
dW+

θ

dy+

(
dW+

θ

dy+

)2
kθ C2 C3

548 0.20 0.6857 0.4702 0.5202 2.9603× 10−3 −2.2018
548 0.71 0.7438 0.5533 0.4724 1.6420× 10−3 3.6422
548 1 0.7544 0.5692 0.4609 1.2204× 10−3 6.2077
995 0.20 0.6731 0.4530 0.5037 1.7050× 10−3 −2.4381
995 0.71 0.7156 0.5121 0.5007 1.5442× 10−3 4.0651
995 1 0.7250 0.5256 0.4966 1.4386× 10−3 6.7364
2017 0.20 0.6293 0.3960 0.4796 8.2534× 10−4 −2.8648
2017 0.71 0.6627 0.4391 0.4945 8.9567× 10−4 3.9169
2017 1 0.6677 0.4459 0.4964 8.9830× 10−4 6.6601
4088 0.20 0.6824 0.4657 0.4502 2.2988× 10−4 −3.5559
4088 0.71 0.6782 0.4599 0.4705 3.1904× 10−4 3.3615
4088 1 0.6789 0.4609 0.4755 3.4528× 10−4 6.1612
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Figure 4.15: Curve-fit coefficients in (4.52) for C1 = 0 versus δ+. (a)kθ = ϕ−2
θc .

(b)C2. (c)C3. •, P r = 0.20; �, P r = 0.71; �, P r = 1.

Therefore, (
dW+

θ

dy+

)2

= kθ. (4.54)

Both W+
θ and Θ+ profile data are fitted from the external bound of layer III to y/δ = 0.3

so as to respectively explore the value of
(

dW+
θ

dy+

)
, kθ, C2 and C3. These values are listed

in Table (4.3) and presented in Fig. (4.15). The maximum deviation of the W+
θ data

points from the linear fit is less than 10%, while that of the Θ+ from the logarithmic fit is

less than 0.07%. It is noted that the value of
(

dW+
θ

dy+

)2
appears to asymptotically approach
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Table 4.4: Curve-fit coefficients in (4.52) with ϕ+
θc set to the corresponding(

dW+
θ /dy+

)−2
value and for C1 = 0.

δ+ (Reτ ) Pr C2 C3

548 0.20 1.5404× 10−3 −3.0122
548 0.71 4.3528× 10−3 4.7922
548 1 5.0162× 10−3 7.7168
995 0.20 7.4601× 10−4 −3.4221
995 0.71 1.7860× 10−3 4.2498
995 1 2.0852× 10−3 7.1894
2017 0.20 −2.7122× 10−4 −5.0488
2017 0.71 8.5220× 10−5 2.7291
2017 1 1.4187× 10−4 5.6110
4088 0.20 3.3172× 10−4 −3.1475
4088 0.71 2.3420× 10−4 3.1072
4088 1 2.2125× 10−4 5.8207

that of kθ, while C2 tends to zero with increasing δ+. This second result is anticipated

from the y+ → ∞ boundary condition on dΘ+/dy+. Prandtl number has a remarkable

effect on C3, and for each value of Pr, C3 seems to gradually approach a constant with

increasing Reynolds number. All of the kθ values estimated from the curve fit exceed

0.45. These values are consistent with the estimates of Pirozzoli et al. (2016), kθ ≃ 0.46.

This scalar Kármán constant is greater than the Kármán constant, which asymptotically

approaches something close to 0.39 as δ+ → ∞, e.g., see Klewicki and Oberlack (2015).

To investigate the internal self-consistency of the present analyses, another curve-fit

was also applied to (4.52). In this case the value of ϕ2
θc was set by the corresponding

value of
(

dW+
θ

dy+

)−2

. Over all of the profiles examined, the maximum deviation from this

logarithmic fit is less than 0.39%. The coefficient values associated with this case are

listed in Table (4.4), and shown in Fig. (4.16). Analogous to the previous curve-fit,

C2 is characterized by a diminishing behavior, and C3 varies towards a constant value
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for each Prandtl number. Overall, like the analogous momentum equation analysis, the

present scalar results suggest that the standard logarithmic law (i.e., with zero offset and

single additive constant) naturally arises as an asymptotic condition of the more general

expression given by Eq. (4.52).

4.6 Scalar Variance Analysis

4.6.1 Basic equation

The time-averaged mean scalar variance and turbulence scalar variance equations respec-

tively are

∂

∂t

(
1

2
Θ2

)
+ Uj

∂

∂xj

(
1

2
Θ2

)
+Θ

∂

∂xj
⟨ujθ⟩ = α

∂2

∂xj∂xj

(
1

2
Θ2

)
− α

⟨
∂Θ

∂xj

∂Θ

∂xj

⟩
+ΘQ,

(4.55)
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and

∂

∂t

⟨
1

2
θ2
⟩
+Uj

∂

∂xj

⟨
1

2
θ2
⟩
+⟨ujθ⟩

∂Θ

∂xj
+

∂

∂xj

⟨
uj

1

2
θ2
⟩

= α
∂2

∂xj∂xj

⟨
1

2
θ2
⟩
−α
⟨
∂θ

∂xj

∂θ

∂xj

⟩
.

(4.56)

Same as the previous mean scalar analysis, Θ is the mean temperature and θ is the

corresponding fluctuating temperature (and similarly for the velocity components), α is

the thermal diffusivity, and Q is the unit heat generation. The condition of a statistically

stationary steady flow yields

∂

∂t

(
1

2
Θ2

)
= 0; (4.57)

∂

∂t

⟨
1

2
θ2
⟩

= 0. (4.58)

The fully-developed condition and V = 0 give

Ui
∂

∂xj

(
1

2
Θ2

)
= 0; (4.59)

Ui
∂

∂xj

⟨
1

2
θ2
⟩

= 0; (4.60)

Θ
∂

∂xj
⟨ujθ⟩ = Θ

d

dy
⟨vθ⟩ ; (4.61)

⟨ujθ⟩
∂Θ

∂xj
= ⟨vθ⟩ dΘ

dy
; (4.62)

α
∂2

∂xj∂xj

(
1

2
Θ2

)
=

d2

dy2

(
1

2
Θ2

)
; (4.63)

∂

∂xj

⟨
uj

1

2
θ2
⟩

=
d

dy

⟨
v
1

2
θ2
⟩
; (4.64)
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− α

⟨
∂Θ

∂xj

∂Θ

∂xj

⟩
= −α

⟨
dΘ

dy

dΘ

dy

⟩
(4.65)

and

α
∂2

∂xj∂xj

⟨
1

2
θ2
⟩

= α
d2

dy2

⟨
1

2
θ2
⟩
. (4.66)

Combination and rearrangement of (4.57), (4.59), (4.61), (4.63) and (4.64) give the

simplified form of the mean scalar variance equation for turbulent channel flow

d2

dy2

(
1

2
Θ2

)
−Θ

d

dy
⟨vθ⟩ − α

⟨
dΘ

dy

dΘ

dy

⟩
+ΘQ = 0. (4.67)

Combination and rearrangement of (4.58), (4.60), (4.62), (4.64) and (4.66) give the sim-

plified form of the turbulence scalar variance equation for turbulent channel flow

− d

dy

⟨
v
1

2
θ2
⟩
+ α

d2

dy2

⟨
1

2
θ2
⟩
− ⟨vθ⟩ dΘ

dy
− α

⟨
∂θ

∂xj

∂θ

∂xj

⟩
= 0. (4.68)

Inner-normalization is applied to each term in Eq. (4.67) and Eq. (4.68) with the friction

temperature, i.e., θτ = α
uτ

dΘ
dy
|wall, uτ and ν.

Θ+ =
Θ

θτ
, θ+ =

θ

θτ
, v+ =

v

uτ
, −

⟨
v+θ+

⟩
= − vθ

uτθτ
, y+ =

yuτ
ν
. (4.69)

The inner-normalized Eq. (4.67) becomes

1

Pr

d2

dy+2

(
1

2
Θ+2

)
−Θ+ d

dy+
⟨
v+θ+

⟩
− 1

Pr

dΘ+

dy+
dΘ+

dy+
+Θ+ 1

δ+
= 0. (4.70)
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These four terms are respectively referred to as mean molecular transport (MMT), prod-

uct gradient of turbulent flux (PGT), mean dissipation (MD) and product heat generation

(PG).

The inner-normalized Eq. (4.68) becomes

− d

dy+

⟨
v+

1

2
θ+2

⟩
+

1

Pr

d2

dy+2

⟨
1

2
θ+2

⟩
−
⟨
v+θ+

⟩ dΘ+

dy+
− 1

Pr

⟨
∂θ+

∂x+j

∂θ+

∂x+j

⟩
= 0, (4.71)

These four terms are respectively referred to as turbulent diffusion (TD), turbulent molec-

ular transport (TMT), gradient production (GP) and turbulent dissipation (TD).

Combination of Eq. (4.70) and Eq. (4.71) gives the inner-normalized total scalar vari-

ance equation

1

Pr

d2

dy+2

[
1

2
Θ+2 +

⟨
1

2
θ+2

⟩]
+

d

dy+

[
Θ+T+

θ −
⟨
v+

1

2
θ+2

⟩]
+

[
− 1

Pr

dΘ+

dy+
dΘ+

dy+
− 1

Pr

⟨
∂θ+

∂x+j

∂θ+

∂x+j

⟩]
+Θ+ 1

δ+
= 0, (4.72)

where T+
θ = −⟨v+θ+⟩. These four terms are respectively referred to as molecular trans-

port (MT), gradient production/turbulent diffusion (GPTD), dissipation (D) and product

heat generation (PG).
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Figure 4.17: Ratio of the sum of the molecular transport (MT) and dissipation (D)
terms to the gradient production/turbulent diffusion term (GPTD). Symbols are the
same as in Fig. (4.1).

4.6.2 Four-layer structure

Analogous to previous study of the total kinetic energy budget equations, here, the ratio

of the sum of the molecular transport term and the dissipation term to the gradient

production/turbulent diffusion term (MT+D/GPTD) is considered to explore the layer

structure of the total scalar variance equation. Consistent with the criterion used in the

previous analysis, the ending position of layer i is where the ratio becomes greater than

−2. The external bound layer ii is determined where the ratio is less than −2, while that

of layer iii is based on where the ratio decreases below 0.5. The ratio profiles are shown

in Fig. (4.17). Layer i lies close to the wall, y+ . 1. In this domain, the leading balance

is between the molecular transport term and the dissipation term. Consistent with the

layer I in previous mean scalar structure, the inner length scale,
√
ν2α/u3τδ, also scales
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Figure 4.18: Ratio of the sum of the molecular transport (MT) and dissipation (D)
terms to the gradient production/turbulent diffusion term (GPTD) versus y+

√
Prδ+.

Symbols are the same as in Fig. (4.1).

the first layer (layer i). The length scale is reflected in Fig. (4.18). Curve fit gives y+i end

varies with 12.58Pe
− 1

2
τ . Outside layer i, the ratio is approximately −1. Across this layer

iii, the molecular transport, dissipation and the gradient production/turbulent diffusion

terms constitute the leading balance. There is a balance breaking and exchange in layer

iii, since the gradient production/turbulent diffusion term changes its sign within this

layer. Except the molecular diffusion term, the other three terms are the leading order.

With greater distance from the wall, the magnitude of the dissipation term become much

smaller. The last layer is the region where the gradient production/turbulent diffusion

term is balanced by the product heat generation term.
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Figure 4.19: Inner-normalized width of layer iii for Pr = 0.20. ·, δ+ = 548, P r =
0.20, δ+/Pr = 2740;�, δ+ = 995, P r = 0.20, δ+/Pr = 4975; +, δ+ = 2017, P r =
0.20, δ+/Pr = 10085; T, δ+ = 4088, P r = 0.20, δ+/Pr = 20440. Curve fit is given
by 0.29(δ+ −

√
δ+/Pr).

4.6.3 Width of layer iii

The Reynolds and Prandtl number dependence of the inner-normalized width of layer iii

are shown in Fig. 4.19, Fig. 4.20 and Fig. 4.21 for Pr = 0.20, 0.71 and 1 respectively.

Per the following scaling analysis (see Section 4.6.5), here, the inner-normalized width of

layer iii is plotted for fixed Pr and is versus δ+ −
√
δ+/Pr. This is reasoned to account

for the finite Reynolds number effect on the outer normalization. For fixed Pr, the inner-

normalized width of layer iii increases following the linear trend of δ+ −
√
δ+/Pr. But

the leading scaling coefficients are different for different Pr.
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Figure 4.20: Inner-normalized width of layer iii for Pr = 0.71. ▽, δ+ = 548, P r =
0.71, δ+/Pr = 772; ◃, δ+ = 995, P r = 0.71, δ+/Pr = 1401; ⋄, δ+ = 2017, P r =
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Figure 4.21: Inner-normalized width of layer iii for Pr = 1. △, δ+ = 548, P r =
1, δ+/Pr = 548; ▹, δ+ = 995, P r = 1, δ+/Pr = 995; ×, δ+ = 2017, P r = 1, δ+/Pr =
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Figure 4.22: Ratio of the turbulent diffusion to the gradient production part at
Reτ = 4088, P r = 0.20, Reτ/Pr = 20440. The vertical dashed-dotted line denotes the
external bound of layer ii. The vertical solid line denotes the external bound of layer
iii.

4.6.4 Balance in layers iii and iv

Close examination indicates that across layers iii and iv, the contribution from turbulent

diffusion is much smaller when compared to the contribution from the gradient gen-

eration part, d[Θ+T+
θ ]/dy+. This characteristic is reflected in the results of Fig. 4.22.

It is surmised that the turbulent diffusion term attains negligible value in layers iii

and iv. The dissipation term is dominated by its turbulence contribution in layers iii

and iv. This is demonstrated in Fig. 4.23, which show the ratios of the mean to tur-

bulent dissipation. In these figures, the data curves consistently segregate into three

groups depending on the Prandtl number. The vertical dashed-dotted, dashed and solid

lines respectively represent the end of layer ii for Reτ = 548, P r = 1, Reτ/Pr = 548,

Reτ = 548, P r = 0.71, Reτ/Pr = 772 and Reτ = 548, P r = 0.20, Reτ/Pr = 2740.
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Figure 4.23: The ratio of the mean dissipation to the turbulent dissipation. The
vertical dashed-dotted line denotes the external bound of layer ii at Reτ = 548, P r =
1, Reτ/Pr = 548. The vertical dashed line denotes the external bound of layer ii at
Reτ = 548, P r = 0.71, Reτ/Pr = 772. The vertical solid line denotes the external
bound of layer ii at Reτ = 548, P r = 0.20, Reτ/Pr = 2740.

Beyond the start of layer iii the mean dissipation is at least 6 times smaller than the

turbulent dissipation, and its effect over layer iii diminishes with increasing δ+. So the

layer iii balance therefore simplifies to be composed of Θ+(dT+
θ /dy

+), T+
θ (dΘ+/dy+), tur-

bulent dissipation and Θ+/δ+. Fig. 4.24 shows profiles of these four terms across layers

iii and iv. Beyond layer iii, T+
θ (dΘ+/dy+) and turbulent dissipation lose leading order,

becoming negligible compared to Θ+(dT+
θ /dy

+) and Θ+/δ+. Fig. 4.25 shows profile of

the ratio of Θ+(dT+
θ /dy

+) to Θ+/δ+ and the ratio of T+
θ (dΘ+/dy+) to turbulent dissipa-

tion. As might be expected, although both the T+
θ (dΘ+/dy+) and turbulent dissipation

terms are much smaller than the other two terms (and thus are not leading order), their

ratio is nearly 1. This ratio then approaches zero at the edge of layer iv. Beyond layer

ii, the gradient production term, T+
θ (dΘ+/dy+), is balanced by the turbulent dissipation
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term with the gradient production term approaching 0 rapidly as y+ → δ+. The ratio of

Θ+(dT+
θ /dy

+) to Θ+/δ+ is also approximately 1 throughout layer iv. It is concluded that

beyond layer ii, the production gradient of turbulent transport flux term balances the

product heat generation term. These two separate balance reflect the individual balances

of the mean and turbulence scalar variance equations.

4.6.5 Theoretical prediction of the characteristic length scale

of layer iii

This section provides a rigorous scaling verification supporting the use of the (δ+ −√
δ+/Pr) in Section 4.6.3 as the characteristic length scale of the width of layer iii.

The layer iii is located in the non-diffusive domain associated with the similarity

solution of the mean scalar transport equation. Over this domain, Eq. (4.51) gives

1

Pr

d2Θ+

dy+2
= − 1

Pr

ϕ2
θc

(y+ − C1)
2 . (4.73)

Relation in Eq. (4.8) yields

dT+
θ

dy+
= − 1

Pr

d2Θ+

dy+2
− ϵ2

=
1

Pr

ϕ2
θc

(y+ − C1)
2 − ϵ2

=
1

Pr

ϕ2
θc

(y+ − C1)
2 − 1

Pr

ϕ2
θc(

y+θm − C1

)2 , (4.74)
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where T+
θ is evaluated maximum at y+θm. Integration of Eq. (4.74) leads to

T+
θ = C4 −

1

Pr

ϕ2
θc

y+ − C1

− 1

Pr

ϕ2
θcy

+(
y+θm − C1

)2 . (4.75)

Neglecting C1 as δ
+ → ∞ and using y+θm = H

√
δ+/Pr (see Section 4.4.2, whereH ≃ 1.48)

gives

dT+
θ

dy+
=

1

Pr

ϕ2
θc

y+2
− ϕ2

θc

H2δ+
(4.76)

and

T+
θ = C4 −

1

Pr

ϕ2
θc

y+
− ϕ2

θcy
+

H2δ+
. (4.77)

Evaluating T+
θ = 0 at y+ = δ+ as δ+ → ∞ with fixed Pr yields

C4 =
ϕ2
θc

H2
. (4.78)

Evaluating T+
θ = 1 at y+ = y+θm = H

√
δ+/Pr as δ+ → ∞ with fixed Pr yields

1 =
ϕ2
θc

H2
, (4.79)

and thus C4 → 1 as δ+ → ∞.

The balance requirement that Θ+(dT+
θ /dy

+) ∼ ϵ2Θ+ in layer iii gives

dT+
θ

dy+
=

1

Pr

ϕ2
θc

y+2
− ϕ2

θc

H2δ+
= O

(
ϵ2
)
. (4.80)
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As δ+ → ∞, ϕ2
θc = O(1) and ϕ2

θc/H
2 = O(1), Eq. (4.80) is only valid when y+ >

O(1/
√
Prϵ). Requiring y+ > O(1/

√
Prϵ) in Eq. (4.77) and noting that C4 is O(1) gives

T+
θ = O

(
1− ϵ√

Pr

)
(4.81)

for fixed Pr in layer iii. This order of magnitude is corroborated by the layer iii that is

beyond the peak of T+
θ , since the T+

θm is 1−O(ϵ/
√
Pr).

Within layer iii, Eq. (4.80) gives

dT+
θ

dy+
= O

(
ϵ2
)
. (4.82)

Rescaling begins by setting

T+
θ = RT̄θ, y+ = y+0 + Sȳ, (4.83)

where T̄θ, ȳ are O(1) as δ+ → ∞. Analogously, y+0 is the position where the gradient

production/turbulent diffusion term changes its sign in layer iii. Rescaling transformation

gives

dT+
θ

dy+
=
R

S

dT̄θ
dȳ

. (4.84)

Thus

R

S
= ϵ2, (4.85)
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or

S =
1

ϵ2
R. (4.86)

R is the order of T+
θ in layer iii that is 1− ϵ/

√
Pr, S is determined by

S =
1

ϵ2

(
1− ϵ√

Pr

)
=

1

ϵ2
− 1

ϵ
√
Pr

, (4.87)

or

y+ = y+0 +

(
1

ϵ2
− 1

ϵ
√
Pr

)
ȳ

= y+0 +

(
δ+ −

√
δ+

Pr

)
ȳ. (4.88)

By definition, ȳ is O(1) in layer iii, and thus it follows that the inner-normalized width of

layer iii is O(δ+−
√
δ+/Pr) with fixed Pr. This scaling is interpreted as a finite Reynolds

number correction to traditional outer scaling, since it is apparent that (δ+−
√
δ+/Pr) →

δ+ for fixed Pr as δ+ → ∞.
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4.7 Comparison between streamwise velocity fluc-

tuation and scalar fluctuation

Analysis in Section 4.5.4 indicates the scalar Kármán constant for Pr = 1 is kθ > 0.45.

This is greater than the Kármán constant, i.e., k ≃ 0.39. The fact that the mean

momentum equation, Eq. (1.1), and mean scalar equation, Eq. (4.8), take on the same

form with the same boundary conditions if Pr = 1 might lead one to naively expect the

scalar Kármán constant should be numerically the same as the Kármán constant. Namely,

an identical equation with the same boundary conditions is expected to yield the same

result. Here, however, there is the inherent issue associated with the indeterminacy of

these equations.

The present theory indicates that the values of k and kθ are directly related to the

gradient of width distribution functions, W+ and W+
θ , of the scaling layer hierarchy in

the inertial domain and non-diffusive domain, respectively. The definitions of the W+

and W+
θ are

W+ =

(
dT+

dy+
+

1

δ+

)− 1
2

, (4.89)

and

W+
θ =

(
dT+

θ

dy+
+

1

δ+

)− 1
2

. (4.90)

The only difference comes from the dT+/dy+ and dT+
θ /dy

+. The Reynolds stress, T+ =

−⟨uv⟩+, is the inner-normalized covariance of the streamwise velocity fluctuation u and
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the wall-normal velocity fluctuation v. The turbulent flux, T+
θ = −⟨vθ⟩+, is the inner-

normalized covariance of the scalar fluctuation θ and the wall-normal velocity fluctuation

v. Since the v fluctuations are unchanged, the different transport of the u and the θ and

their correlation with the v account for the difference between the gradient of Reynolds

stress and the gradient of turbulent flux in the inertial (non-diffusive) domains of interest.

This section explores the differences in greater details.

4.7.1 Streamwise velocity budget balance and scalar budget

balance

The difference in the streamwise velocity u and scalar θ can be elaborated via their

respective budget equations. The inner-normalized streamwise velocity budget equation

for fully-developed turbulent channel flow is

− d

dy+
⟨
u+u+v+

⟩
+

d2

dy+2

⟨
u+u+

⟩
+2T+dU

+

dy+
−2

⟨
∂u+

∂x+j

∂u+

∂x+j

⟩
+2

⟨
p+
∂u+

∂x+

⟩
= 0. (4.91)

As expected, this equation has five terms of a form similar to those found in the turbulence

kinetic energy equation. The five terms are referred to as turbulent diffusion, viscous

diffusion, production, dissipation and pressure-strain.

The inner-normalized scalar budget equation with uniform heat generation is

− d

dy+
⟨
v+θ+θ+

⟩
+

1

Pr

d2

dy+2

⟨
θ+θ+

⟩
+ 2T+

θ

dΘ+

dy+
− 2

1

Pr

⟨
∂θ+

∂x+j

∂θ+

∂x+j

⟩
= 0. (4.92)
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Figure 4.26: Profiles of terms in Eq. (4.91) across inertial domain at δ+ = 4088.
△, turbulent diffusion; ▽, viscous diffusion; ▹, production; ◃, dissipation; �, pressure-
strain. The vertical dashed line denotes the external bound of layer III for mean mo-
mentum balance. The vertical dashed-dotted line denotes y+ = 0.3δ+.

The four terms are referred to as turbulent diffusion, molecular transport, gradient pro-

duction and dissipation.

There are five terms in u budget equation, while there are only four terms in θ budget

equation. As is apparent, the pressure-strain terms play non-trivial role in streamwise

velocity transport. Since the similarity solution for both the mean velocity and mean

scalar are valid over the inertial (non-diffusive) domain, the leading balance for the bud-

get equations, i.e., Eq. (4.91) and Eq. (4.92) are considered in this region. Specifically,

2.6
√
δ+ . y+ . 0.3δ+ is used for the u budget equation, and 2.5

√
δ+/Pr . y+ . 0.3δ+

with Pr = 1, is used for the v budget equation. Fig. 4.26 and Fig. 4.27 respectively show

representative profiles of the terms in Eq. (4.91) and Eq. (4.92) across the noted domains.

Similar production and generation production profiles are observed across this domain.
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Figure 4.27: Profiles of terms in Eq. (4.92) across non-diffusive domain at δ+ = 4088
and Pr = 1. △, turbulent diffusion; ▽, molecular transport; ▹, gradient production; ◃,
dissipation. The vertical dashed line denotes the external bound of layer III for mean
scalar balance. The vertical dashed-dotted line denotes y+ = 0.3δ+.

The ⟨uu⟩+ budget in the logarithmic region of the mean velocity profile is characterized by

the leading balance of three terms, production, dissipation and pressure-strain. However,

only the dissipation term balances to the gradient production terms in the logarithmic

region of the mean scalar profile. The magnitude of the streamwise velocity dissipation

is less than that of the scalar dissipation. This difference is physically compensated by

the pressure-strain. The negative work done by the fluctuating pressure of turbulence

and the lower streamwise velocity dissipation rate are regarded to be responsible for the

higher mean velocity gradient compared to the mean scalar gradient, i.e., k < kθ. This

is consistent with Pirozzoli et al. (2016), where the instantaneous cross-stream visualiza-

tions of u′ and θ′ show the interfaces between neighbouring eddies are sharper in the θ′

field than the u′ field. This observation is related to the lower dissipation and the work
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Figure 4.28: Streamwise velocity and scalar variances. Dotted line,
⟨
u2
⟩+

, δ+ =

548; Dashed line,
⟨
u2
⟩+

, δ+ = 995; Dashed-dotted line,
⟨
u2
⟩+

, δ+ = 2017; Solid line,⟨
u2
⟩+

, δ+ = 4088; △,
⟨
θ2
⟩+

, δ+ = 548, P r = 1; ▽,
⟨
θ2
⟩+

, δ+ = 995, P r = 1; ▹,⟨
θ2
⟩+

, δ+ = 2017, P r = 1; ◃,
⟨
θ2
⟩+

, δ+ = 4088, P r = 1.

done by the pressure in the inertial (non-diffusive) domain.

4.7.2 Correlation

Streamwise velocity variance and scalar variance for Pr = 1 are shown in Fig. 4.28. The

stream velocity variances attain a higher values and tend to form a mid peak just prior

to its logarithmic decay. However, the Reynolds stress, T+, and turbulent flux, T+
θ , are

nearly indistinguishable from each other, which is shown in Fig. 4.29. A tiny difference

between T+ and T+
θ is observed in the inertial (non-diffusive) domain, where the T+

θ is

higher.
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The connection of the u and θ to the v is investigated through the profile of the

statistical correlation coefficient that is defined as

Cab =
⟨ab⟩√

⟨a2⟩
√

⟨b2⟩
. (4.93)

It is the ratio of the covariance of two time series to the product of the standard deviation

of these two time series. The profiles of the −Cuv and −Cvθ is shown in Fig. 4.30.

Specifically, −Cuv and −Cvθ for δ+ = 4088 is shown in Fig. 4.31. In the logarithmic

region, both −Cuv and −Cvθ stay close to 0.4, and increases with distance from the wall,

with a reduction in the magnitude as δ+ increases. However, the increment of −Cvθ in

the inertial (non-diffusive) domain is greater than that of the −Cuv, where θ becomes

more linearly correlated with the v than the u. This property also leads to the higher
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slope of the logarithmic mean velocity than the mean scalar. For incompressible flow,

based on the continuity equation and Poisson equation, the streamwise velocity, u, and

the wall-normal velocity, v, are related to each other. The incompressibility constrains

the development of u by that of the v and the pressure-strain. However, the correlation

coefficient indicates the unconstrained θ is more linearly correlated with the v than u.

This phenomenon leads to the expectation that the restrictions between the u and v make

them correlated more non-linearly in the flow.

4.8 Summary

A multi-scale analysis of the mean equation for heat transport in fully developed turbulent

channel flow subjected to volumetrically uniform heat generation was presented herein.

These analyses were both aided by, and validated with, the recent DNS of Pirozzoli et al.

(2016) which cover unprecedented ranges in Reynolds and Prandtl numbers via DNS. As

noted at a number of points in the analysis, the present flow configuration is especially

attractive for the purposes of elucidating the underlying self-similar structure admitted

by the the mean equation. This physically stems from the fact that the uniform heat

generation is identically balanced by an outward flux of heat across the bounding surfaces.

Mathematically, this leads to an analytical structure that is very similar to that for the

mean momentum field.
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The mean equation for scalar transport is unclosed. Thus, analytical approaches seek-

ing to employ this equation must either invoke hypotheses or assumptions of a mathemat-

ical or phenomenological nature (or both), or at some point invoke empirical observations.

For example, the distance-from-the-wall scaling (y-scaling) hypothesis is regularly invoked

without proof, even though it is a central tenet of many models, e.g., Townsend’s attached

eddy scaling paradigm. Similarly, the notions of an inner/outer/overlap layer structure

are regularly assumed to exist. So much so, that overlap layer is often used as a synonym

for the logarithmic layer. Owing, however, to the unclosed governing equation, both this

structure and the form of the expansions employed in the associated mathematical anal-

yses must be assumed. In fact, this approach proceeds with essentially no reliance on the

governing equations.

The present approach formally invokes an empirical step at its inception. (Albeit,

given what has been learnt regarding wall-flow structure over the past decade, the results

of this empirical step are now well-established.) Namely, when data are used to elucidate

the leading balance structure of the terms in the mean heat equation, the layer structure

indicated in Fig. 4.1 is observed. With only the information that these leading balance

layers exist (but not their extent or their scaling properties), the present approach then

determines all its subsequent results directly from the properties admitted by the gov-

erning mean equation and its boundary conditions. These results include: the scaling

properties associated with the extent of layers II and III (and thus layer IV as well), the

scaling for the location of the peak in T+
θ and the asymptotic rate that T+

θ approaches

unity, an invariant scaling for Tθ that is extends from a position interior to its peak to
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the centerline, the formal admittance of an asymptotically self-similar scaling layer hier-

archy, and the exploitation of this self-similar structure to develop the logarithmic mean

temperature profile equation via direct integration of the mean equation. Here it is also

noted that the hierarchy layer widths are shown to asymptotically scale with y (Fife et al.,

2009), and thus this result provides a basis for distance from the wall scaling. All of the

noted results are strongly supported by the DNS data comparisons herein.

Conversely, other results from the present analyses are less clear. Based upon previous

analyses of the momentum equation, the expectation is that the respective temperature

increments across layers I and IV should scale with θτ and Θc as δ+ → ∞, while the

increments across layers II and III should scale with Θc and θτ , respectively (Wei et al.,

2005a). The data of Fig. 4.6, Fig. 4.7 and Fig. 4.8 are, however, not conclusive in this

regard. Namely, it is apparent that Pr has a significant effect on the mean temperature

increments, and furthermore the DNS are not at high enough δ+ to convincingly provide

evidence of an asymptotic limit.

Similarly, while the results of Fig. 4.2 provide rather compelling empirical support for

invariant profiles at the boundary between layers I and II, a purely analytical reason for

this is apparently beyond our current capabilities. Note that for this boundary region

one cannot simply neglect the GT term in Eq. 4.8 and rescale the remaining terms into a

parameter free invariant form. This is because as the wall is approached from above there

is a region, akin to the boundary region between layers II and III, where all three terms

in Eq. (4.8) come into balance. Similar to the rescaling as y+ → y+θm, the GT term ap-

proaches zero as y+ → 0. Additionally, however, so do T+
θ and d2T+

θ /dy
+2, and therefore
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there exists a different set of constraints. As described by Wei et al. (2007), determining

the appropriate scaling in the region approaching this truncated scaling region (truncated

by the wall) depends upon the nonlinear variations in T+
θ and Θ+ in the region just out-

side the conduction sublayer. How to analytically proceed here, however, is not readily

apparent, since other guiding attributes, like those associated with the scaling hierarchy,

are not available. Analysis is performed as far as possible, and then use the empirical

result of Fig. 4.2 to investigate their ramifications as well as check for self-consistency.

This is done in Appendix B.

Lastly, the present theory provides ways of estimating the value for kθ that extend

beyond directly fitting to the profile slope. In accord with previous empirical observations,

the dW+
θ /dy

+ based results herein reveal that kθ is distinctly larger than its mean velocity

counterpart. Insights regarding this are gained by noting that for Pr = 1 Eq. (4.8) and its

boundary conditions are identical to those for the channel flow mean momentum equation.

This suggests that the different value for kθ arises from properties that lead to (slight)

differences between the Reynolds stress and turbulent heat flux. Specifically, because the

wall normal fluctuations are unchanged, the culprit is identified as being associated the

differences between the u and θ fluctuations. The pressure-strain term that influences the

transport of ⟨u2⟩ is at least partly the cause, as no such effect is present in the transport

equation for scalar variance. Also, the magnitude of the correlation coefficient between

θ and v grows more greatly than that between the u and v. The less linear correlation

between u and v seems also leads to the k > kθ in the inertial (non-diffusive) domain.
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Relative to this, different Pr results in the data profiles clearly segregating into indi-

vidual groups in layer iii of the total scalar variance balance. And the inner-normalized

layer width of layer iii in each group strictly follows a linear trend with increasing

δ+/Pr −
√
δ+/Pr. The layer scaling behaviors associated with the total scalar vari-

ance differ obviously differ from those of the mean scalar balance. The layer iii of total

scalar variance exhibits a complex balance exchange. Although both the magnitude of

the gradient production and turbulent dissipation terms in the turbulence scalar variance

equation tends to approach zero, they balance each other throughout the layers iii and

iv, while the production gradient of turbulent transport flux and product heat generation

terms from mean scalar equation constitute the leading balance over layers iii and layer

iv.



CHAPTER 5

CONCLUSIONS

Significant work has been carried out over the past decade on wall-bounded turbulent

flows. Wei et al. (2005a) explored the mean momentum balance in turbulent channel, pipe

and boundary layer flows experimentally and theoretically. Empirical observation and

multi-scale analysis revealed a dynamically relevant four-layer structure that is different

from the traditional mean-profile-based four-layer description of the structure in wall

turbulence. Each of the four layers is characterized by a leading balance of two or three

terms in the mean momentum equation. Layers I and Iv respectively comply with the

inner and outer length scale, but layers II and III exhibit an intermediate length scale, i.e.,√
νδ/uτ , which plays as a good transition from inner to the outer scales. A scaling layer

hierarchy was quantitatively characterized for the mean momentum balance. And the

mean momentum equation admits its self-similarity over the domain where the derivative

of the scaling layer width distributions function is a constant.

In this dissertation research, three measures that quantify the properties of inertial

domain are explored based on the experimentally acquired turbulent boundary layer data

172
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measured at Flow Physics Facility in University of New Hampshire to be in comparison

where these measures provide evidence of self-similarity with where the mean momentum

equation exhibits its self-similar behavior. Research findings indicate that the region

where the KLD and higher order even moments exhibit the evidence of emerging self-

similar behavior are indistinguishable from each other. The region is between 2.6
√
δ+

and 0.3δ+. It lies interior to the estimated bound of the inertial domain associated with

the self-similarity admitted by the mean momentum equation. The self-similarity region

of the diagnostic plot is indistinguishable from the inertial domain. It is from 2.6
√
δ+

to 0.5δ+. similar approach in previous study of the mean momentum equation is used

to explore the kinetic energy budgets in wall turbulence. Kinetic energy equations are

simplified based on reasonable assumptions and approximations. Available simulation

data are used to explore the total kinetic energy equation. It reveals that there exists

an four-layer structure with the properties that in each of the layer, the leading balance

occurs between some of the four grouped terms in the total kinetic energy equation. The

layer iii exhibits a complex balance exchange and the inner-normalized width of layer

iii has a dependence on δ+ −
√
δ+. Rigorous analytical scaling analysis is provided to

describe the length scale of layer iii. The last part of this dissertation continues the

empirical and multi-scale analysis onto the scalar transport in turbulent channel flow

with zero temperature on both upper and lower walls but a uniform heat generation over

the whole domain. Two different four-layer structures are respectively found for the mean

scalar and total scalar variance transport equations based on the simulation data. As for

the mean scalar transport, the external bounds of layers II and III have a dependence on
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√
δ+/Pr. There is also a scaling layer hierarchy across a interior region, where the mean

scalar equation exhibits an invariant form. Properties of a similarity solution to the mean

scalar equation for fully developed turbulent channel flow are quantified. The similarity

solution is found by analytically integrating an invariant form of the mean scalar equation

on a non-diffusion sub-domain. The resulting mean temperature profile function adheres

to the classical logarithmic profile function. At finite Reynolds number, however, the

solution has an additive linear term, and an offset in the argument to the logarithm. As

for the total variance transport, the data strictly segregate into three groups across layer

iii based on three different values of Pr. In each group, the inner-normalized width of

layer iii independently has a dependence on δ+/Pr −
√
δ+/Pr. Across layers iii and iv,

two individual balance occurs between the production gradient of turbulent transport

flux and product heat generation terms from the mean scalar variance equation, and

between the gradient production and turbulent dissipation terms from the turbulence

scalar variance equation.



APPENDIX A

TURBULENT PRESSURE NORMALIZATION

As described in Section 3.2.2, in the present analysis turbulent pressure is effectively

normalized by ρuτν/δ, rather than by ρu2τ . If ρu
2
τ is used for turbulent pressure normal-

ization, the turbulent pressure diffusion term is simply given by −∂ ⟨p+v+⟩ /∂y+, and the

normalized magnitude of this term increases by a factor of δ+. This appendix quantifies,

however, that the leading order balances do not change owing to the present choice for

fluctuating pressure normalization.

Figs. A.1 (a) and (b) show the ratio of −∂ ⟨p+v+⟩ /∂y+ to D+. In layer i, all its values

fall between 0 and −0.02, and thus the dominant balance determined for layer i herein is

retained. In layer ii,−∂ ⟨p+v+⟩ /∂y+ is always observed to be less than 1/10 of the sum

of the V D and D terms, and generally much less. This behavior is shown in Figs. A.1 (c)

and (d) for two representative Reynolds numbers. There is no apparent Reynolds number

trend associated with this ratio. Across layers iii and iv the total pressure diffusion

contribution in channel flows (or the advection/turbulent pressure diffusion in boundary

layers) is still much larger than the turbulent pressure diffusion contribution. The profiles
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Figure A.1: Ratio of −∂ ⟨p+v+⟩ /∂y+ to D term in layer i for (a) channels;
(b)boundary layers. Ratio of −∂ ⟨p+v+⟩ /∂y+ to the sum of the V D and D terms for (c)
channel at δ+ = 4079; (d) boundary layer at δ+ = 2299. (e) Ratio of −∂ ⟨p+v+⟩ /∂y+ to
the mean pressure diffusion term for channel at δ+ = 4079; (f) Ratio of −∂ ⟨p+v+⟩ /∂y+
to the advection term for boundary layer at δ+ = 2299.
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of Figs. A.1 (e) and (f) at a fixed Reynolds number reflect representative behavior in this

regard.



APPENDIX B

RESCALING INTO LAYER I OF MEAN SCALAR BALANCE

As the wall is approached from layer II, somewhere in layer I all three terms in Eq. (4.8)

attain the same actual order of magnitude. Eq. (4.8), however, formally indicates that

the HG term is sub-dominant. Thus, we now seek a rescaling of Eq. (4.8) such that

each of the terms is formally O(1). Here it is useful to note that at y+ = 0, Θ+ = 0,

T+
θ = 0,

dT+
θ

dy+
= 0 and dΘ+

dy+
= Pr. As with the analysis of layer III, conditions such as

these set constraints on the nature of the transition into layer I. In contrast, however, the

transition here is truncated by the wall, whereas in layer III the analogous location is the

peak position of T+
θ , and the exchange of balance across layer III completes into layer IV.

To accomplish the desired representation of Eq. (4.8), we seek a rescaling according

to the finite transformations,

y+ = αȳ, T+
θ = βT̄ , Θ+ = Pry+ + γΘ̄. (B.1)

Here we note that
dT+

θ

dy+
= 0 at y+ = 0, which is similar to

dT+
θ

dy+
passing through zero in

layer III. Unlike the situation in layer III, T+
θ also equals zero at y+ = 0, whereas Tθ
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passes through its maximal value in layer III.

Inserting the above transformations into Eq. (4.8) gives

1

Pr

d2Θ+

dy+2
=

1

Pr

γ

α2

d2Θ̄

dȳ2
,

dT+
θ

dy+
=
β

α

dT̄θ
dȳ

, (B.2)

and the conditions that satisfy the requirement that the order of magnitude of each term

match are

1

Pr

γ

α2
=

1

δ+
=
β

α
. (B.3)

At this point, we have insufficient information to uniquely determine the variable stretch-

ing parameters, α, β and γ, and thus the wholly analytical process ends.

If, however, the first balance is considered and

1

Pr

γ

α2
=

1

δ+
, (B.4)

and invoke the empirical observation from Fig. 4.2 that the stretching is given by the

factor
√
Prδ+, then

α =
1√
Prδ+

, (B.5)

and Eq. (B.4) becomes

1

Pr
γPrδ+ =

1

δ+
, (B.6)

or

γ =
1

δ+2
. (B.7)
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Table B.1: Semi-empirically surmised Θ scaling in layer I.

δ+ Pr Θ+
layer I

√
Pr
δ+

Θ+
layer I/

√
Pr
δ+

548 0.20 0.2238 0.0191 16.9493
548 0.71 0.6205 0.0360 17.2386
548 1 0.7423 0.0427 17.3768
995 0.20 0.2256 0.0142 15.9124
995 0.71 0.4614 0.0267 17.2727
995 1 0.5484 0.0317 17.2985

The ramifications of this are that in layer I

Θ+ = Pry+ +
1

δ+2
Θ̄, (B.8)

and with

y+ = O

(
1√
Prδ+

)
, (B.9)

one gets

Θ+ = PrO

(
1√
Prδ+

)
+O

(
1

δ+2

)
= O

(√
Pr

δ+

)
+O

(
1

δ+2

)
. (B.10)

Since, however, O
(√

Pr
δ+

)
≫ O

(
1

δ+2

)
, in the asymptotic limit

Θ+ = O

(√
Pr

δ+

)
. (B.11)

Albeit limited, the data of Table (B.1) seem to lend support for this semi-empirically

based result. In this table, the value of Θ+
layer I denotes the mean temperature increment
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from the wall to the outer edge of layer I.
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