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ABSTRACT
Brauer-Picard groups and pointed braided tensor categories

by
Costel-Gabriel Bontea

University of New Hampshire, September, 2017

Tensor categories are ubiquitous in areas of mathematics involving algebraic structures. They

appear, also, in other fields, such as mathematical physics (conformal field theory) and theoret-

ical computer science (quantum computation). The study of tensor categories is, thus, a useful

undertaking.

Two classes of tensor categories arise naturally in this study. One consists of group-graded

extensions and another of pointed tensor categories. Understanding the former involves knowledge

of the Brauer-Picard group of a tensor category, while results about pointed Hopf algebras provide

insights into the structure of the latter.

This work consists of two main parts. In the first one we compute the Brauer-Picard group

of a class of symmetric non-semisimple finite tensor categories by studying a canonical action

on a vector space. In the second one we use results from the theory of Hopf algebras to prove

an equivalence between the groupoid of pointed braided finite tensor categories admitting a fiber

functor and a groupoid of metric quadruples.
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CHAPTER 1

INTRODUCTION

The theory of tensor categories has become an important field of mathematics. It has con-

nections with other mathematical fields (representation theory, Hopf algebras, subfactor theory,

low-dimensional topology), as well as with other areas of science, namely, mathematical physics

(conformal field theory, quantum statistics) and theoretical computer science (quantum computa-

tion).

It is desirable, then, to have a good understanding of tensor categories. More precisely, we

want to have classification results for these objects based on their properties.

A class of tensor categories that arises naturally is formed by those that are group-graded. If C

is such a category, with grading C = ⊕g∈GCg, and if Ce is the component associated to the identity

element e of G, we say that C is a G-extension of Ce. Such categories were studied in [ENO10]. It

was shown there that the G-extensions of D are classified by group homomorphisms from G into

the Brauer-Picard group of D, BrPic(D), and additional cohomological data.

Thus, in order to study group extensions of tensor categories, we need to understand Brauer-

Picard groups. This turns out not to be a trivial task. No general descriptions of Brauer-Picard

groups are known, except in a very few cases. For example, if G is a finite abelian group then it

was shown in [ENO10] that BrPic(RepG) ∼= O(G⊕ Ĝ), the group of orthogonal automorphisms

of G ⊕ Ĝ. The first computations of BrPic(RepG), for non-abelian G, were obtained in [NR14]

and, furthermore, in [MN16].

Every tensor category has a pointed subcategory, i.e. one whose simple objects are invertible

with respect to the tensor product. Pointed braided tensor categories are fairly well-understood.

One of the earliest classification results in the theory of tensor categories was given by A. Joyal

and R. Street in [JS93], where it was shown that the category of pointed braided fusion categories
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is equivalent to the category of pre-metric groups. Every pointed braided finite tensor category

admitting a fiber functor is equivalent to the category of co-representations of a finite dimensional

pointed Hopf algebras with abelian coradical, and the latter are almost completely known.

This thesis contributes to the study of tensor categories by describing the Brauer-Picard group

of a class of symmetric non-semisimple finite tensor categories and by giving a classification result

for pointed braided finite tensor categories admitting a fiber functor.

The tools used come from the theory of Hopf algebras. These objects are intimately connected

with tensor categories. The representation category RepH of a Hopf algebraH is a tensor category,

and, by Tannaka-Krein reconstruction theory, every tensor category admitting a fiber functor is the

representation category of a Hopf algebra.

Hopf algebras appear in a variety of mathematical contexts. Due to their ubiquity they are the

subject of intense study by researchers. One of the main research efforts is concentrated on the

classification of finite dimensional Hopf algebras. The most impressive and effective program was

developed by N. Andruskiewitsch and H.-J. Schneider for classifying finite dimensional pointed

Hopf algebras [AS02]. Their method, for example, was used to classify all the liftings of a quantum

linear space B(V )#k[Γ], a certain type of Hopf algebra obtained from an abelian group Γ and a

Γ-graded Γ-module V [AS98].

The first part of this thesis deals with the computation of the Brauer-Picard group of the rep-

resentation categories of Nichols Hopf algebras, E(n), n = 1, 2, ... [BN15]. These algebras are

quantum linear spaces obtained from the group of order two and the exterior algebra of a vector

space. We show in Theorem 3.8.6 that

BrPic(RepE(n)) ∼= PSpn(k)× Z/2Z,

where PSpn(k) is the projective symplectic group of degree 2n.

This result gives the first description of the Brauer-Picard group in the case of a non-semisimple

tensor category and also solves a long-standing problem in the theory of Hopf algebras. It turns

out that the Brauer-Picard group of RepH coincides with the full Brauer group of H , BQ(k, H),

as defined in [CvOZ97]. The group BQ(k, H4), where H4 is Sweedler’s Hopf algebra, the smallest
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non-commutative, non-cocommutative Hopf algebra, was studied in [vOZ01] and [CC11], but its

description eluded experts. Since H4 = E(1), it follows from our work that

BQ(k, H4) ∼= SL2(k)× Z/2Z.

The second part of the thesis deals with a classification result regarding pointed braided fi-

nite tensor categories admitting a fiber functor [BN17]. By Tannaka-Krein reconstruction theory

these categories can be described as co-representation categories of finite dimensional pointed co-

quasitriangular Hopf algebras. Using results from the theory of Hopf algebras, we show that these

algebras are deformations of quantum linear spaces B(V )#k[Γ]. This allows us to describe, in

Theorem 4.7.3, the aforementioned categories in terms of metric quadruples (Γ, q, V, r), consisting

of a finite abelian group Γ, a quadratic form q on Γ, a Γ-module V and an alternating bilinear map

r : V × V → k satisfying certain conditions.

My work can be extended in several ways:

1. One can try to generalize the computation of the Brauer-Picard group of RepE(n) to the

case of quantum linear spaces B(V )#k[Γ]. For this, one should use the identification of the

Brauer-Picard group of RepH with the group of braided autoequivalences of the center of RepH

and study the action of the latter on a categorical Lagrangian Grassmanian or as symmetries of

the maximal pointed subcategory of the center. For the latter approach, the description obtained in

[BN17], is likely to prove useful.

2. One can try to extend the result of [BN17] to the case of pointed braided finite tensor cate-

gories not necessarily having a fiber functor. Since such categories are equivalent to representation

categories of quasi-Hopf algebras, one approach could start by investigating how much of the

theory of pointed Hopf algebras extends to the ’quasi’ case.

3. Another direction of research is to use the description of the Brauer-Picard group of RepE(n)

to study various G-extensions of RepE(n). These extensions are described by group homomor-

phisms fromG→ BrPic(RepE(n)) and by certain cohomological data [ENO10]. The easiest case

to consider would be G = Z/2Z.
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CHAPTER 2

PRELIMINARIES

As the title says, this chapter consists of preliminary material. None of this material is new and

it can be found in the literature. We mention only those concepts and results which are needed for

understanding the rest of the work.

A major theme that runs through the chapter is the use of concepts from Hopf algebra theory

to illustrate notions from the theory of tensor categories. This is not coincidental as the tensor

categories that will appear in this work are representation or corepresentation categories of Hopf

algebras.

We point out that both theories are much richer than they might seem from this short exposition.

It is where they intersect that fruitful interaction happens, as the next two chapters will show.

2.1 Bialgebras and Hopf algebras

In this section we recall basic notions and results from Hopf algebra theory. For more details the

reader can consult [Mont93], [DNR01] or [Rad12].

Throughout, k is an arbitrary field and unadorned ⊗ means ⊗k.

We begin by recasting the definition of a k-algebra and morphism between algebras in a dia-

grammatic way. The advantages of this will be made clear shortly.

Definition 2.1.1. (1) A k-algebra is a triple (A,m, u), consisting of a k-vector space A and two

linear maps m : A ⊗ A → A and u : k → A, called multiplication and unit, respectively,

such that the following diagrams are commutative:

4



(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A⊗ A

A

(1)

m⊗idA

aA,A,A

idA⊗m

m m

A⊗ A

k⊗ A A⊗ k

A

(2)

m

u⊗idA

lA

idA⊗u

rA

where aA,A,A, lA and rA are the obvious maps.

(2) An algebra map (or a morphism) between two k-algebras (A,mA, uA) and (B,mB, uB) is a

linear map f : A→ B making the following two diagrams commutative:

A⊗ A B ⊗B

A B

f⊗f

mA mB

f

A B

k

f

uA uB

Remark 2.1.2. Commutativity of diagram (1) is called the associativity condition, and commuta-

tivity of diagram (2) is called the unit condition.

Remark 2.1.3. The advantage of this definition is twofold. First, it suggests that we can make this

definition in any category for which there exists a notion of a "tensor product", a "unit object", and

"associativity" and "left and right unit maps". We will make this precise in Section 2.8. Secondly,

we can "dualize" it, that is, consider maps and diagrams with reversed arrows. What we obtain,

when we do this, are the notions of "coalgebra" and "morphism" between coalgebras.

Definition 2.1.4. (1) A k-coalgebra is a triple (C,∆, ε), consisting of a k-vector space C and

two linear maps, ∆ : C → C ⊗ C and ε : C → k, called comultiplication and counit,

respectively, such that the following diagrams are commutative:

5



(C ⊗ C)⊗ C C ⊗ (C ⊗ C)

C ⊗ C C ⊗ C

C

(3)

a−1
C,C,C

∆⊗idC idC ⊗∆

∆ ∆

C ⊗ C

k⊗ C C ⊗ k

C

(4)

ε⊗idC id⊗ε

∆

l−1
C r−1

C

(2) A coalgebra map (or a morphism) between two k-coalgebras (C,∆C , εC) and (D,∆D, εD)

is a linear map f : C → D making the following two diagrams commutative:

C ⊗ C D ⊗D

C D

f⊗f

f

∆C ∆D

C D

k

f

εC εD

Remark 2.1.5. Commutativity of diagram (3) is called the coassociativity condition, and commu-

tativity of diagram (4), the counit condition.

Let us give some examples of these objects.

Example 2.1.6. Let G be a finite group and let k[G] be the k-vector space with basis {g}g∈G

consisting of the elements of G. Then k[G] is a k-algebra with multiplication

(∑
g∈G

agg

)(∑
h∈G

bhh

)
=
∑
g,h∈G

agbhgh =
∑
l∈G

(∑
gh=l

agbh

)
l

and unit element 1G. This is called the group algebra of G over the field k.

There is also a k-coalgebra structure on k[G]. It is given by:

∆ : k[G]→ k[G]⊗ k[G], ∆(g) = g ⊗ g,

ε : k[G]→ k, ε(g) = 1,

for all g ∈ G. With this structure, k[G] is called the group coalgebra of G over k.

6



Example 2.1.7. Another example associated to a group G is the following. Let kG be the k-vector

space of k-valued functions defined on G. Then kG is an algebra with pointwise multiplication:

(pq)(g) = p(g)q(g), p, q ∈ kG, g ∈ G.

The unit element is the function that sends all elements of G to 1k. This algebra is called the

algebra of functions on G.

If G is finite then kG admits, also, a k-coalgebra structure. The comultiplication and counit on

the basis elements pg, g ∈ G, where pg(h) = δg,h, for all g, h ∈ G, are given by:

∆ : kG → kG ⊗ kG, ∆(pg) =
∑
uv=g

pu ⊗ pv,

ε : kG → k, ε(pg) = δg,1G ,

where δg,h is Kronecker’s symbol (δg,h = 1 if g = h, and 0, otherwise). With this structure, kG is

called the coalgebra of functions on G.

Example 2.1.8. Let n ≥ 1 be a positive integer and let Mn(k) be the k-vector space of n × n

matrices with entries in k. This is an algebra with usual matrix multiplication.

There is a k-coalgebra structure on Mn(k), as well. The comultiplication and counit on the

basis elements eij , 1 ≤ i, j ≤ n, where eij is the unit matrix with 1 in the (i, j)-th entry and 0

elsewhere, are given by

∆ : Mn(k)→Mn(k)⊗Mn(k), ∆(eij) =
n∑
l=1

eil ⊗ elj,

ε : Mn(k)→ k, ε(eij) = δij,

where δij is Kronecker’s symbol. With this structure, Mn(k) is called the n× n matrix coalgebra.

7



There is an important notation associated with coalgebras, which simplifies computations

greatly. It is called Sweedler’s notation or the sigma notation and is defined as follows. If (C,∆, ε)

is a coalgebra and c ∈ C, then we write

∆(c) =
∑
c(1) ⊗ c(2),

where the subscripts (1) and (2) are symbolic.

Coassociativity of ∆ allows us to extend this notation to the case when there are more than two

tensorands. We have (∆⊗ idC)∆(c) = (idC ⊗∆)∆(c), so

∑
(c(1))(1) ⊗ (c(1))(2) ⊗ c(2) =

∑
c(1) ⊗ (c(2))(1) ⊗ (c(2))(2).

We denote this element by
∑
c(1) ⊗ c(2) ⊗ c(3).

In general, if we define ∆n to be the composition of the following n maps:

C
∆−→ C ⊗ C ∆⊗idC−−−−→ C ⊗ C ⊗ C → · · · → C⊗(n)

∆⊗id
C⊗(n−1)−−−−−−−−→ C⊗(n+1),

where C⊗i is the tensor product of C with itself, i times, then one can show that

∆n = (idC⊗i ⊗∆⊗ idC⊗(n−1−i)) ◦∆n−1,

for every i = 0, . . . , n− 1. This is called the generalized coassociativity law. The element ∆n(c)

is denoted by
∑
c(1) ⊗ c(2) ⊗ · · · ⊗ c(n+1).

We saw that some vector spaces have both an algebra structure and a coalgebra structure. In

general, these are independent of each other. When the two structures are compatible, in the sense

that the comultiplication and the counit maps are algebra maps, we say that the object in question

is a bialgebra.

Definition 2.1.9. A bialgebra over a field k is a k-vector space B, together with an algebra struc-

ture (B,m, u) and a coalgebra structure (B,∆, ε), such that ∆ and ε are algebra maps.

Remark 2.1.10. It seems that in the definition m and u are ignored and it would not be unreason-

able to require thatm and u be coalgebra maps, as well. It turns out that there is no need for this, as

8



it can be shown that ∆ and ε are algebra maps if and only if m and u are coalgebra maps [DNR01,

Proposition 4.1.1].

Example 2.1.11. The group algebra and coalgebra k[G] is a bialgebra. Likewise, the algebra and

coalgebra of functions kG, on a finite groupG, is a bialgebra. The algebra of matricesMn(k), with

the matrix coalgebra structure, is a bialgebra if and only if n = 1. To see this, note that a non-zero

linear map Mn(k)→ k must be injective, and this happens only when n = 1.

As with algebras and coalgebras, there is a notion of a morphism between two bialgebras. The

requirements are the ones that one would expect.

Definition 2.1.12. Let B and B′ be k-bialgebras. A bialgebra map (or a morphism of bialgebras)

from B to B′, is a linear map f : B → B′ which is both an algebra map and a coalgebra map.

Hopf algebras are bialgebras admitting a linear version of the "inverse" function from group

theory: G→ G, g 7→ g−1. More precisely, we have the following:

Definition 2.1.13. A Hopf algebra is a bialgebraH for which there exists a linear map S : H → H ,

called an antipode, such that

S(h(1))h(2) = h(1)S(h(2)) = ε(h)1H ,

for all h ∈ H .

Remark 2.1.14. It can be shown that, if an antipode exists, then it is unique. Moreover, the

antipode is an antimorphism of algebras and an antimorphism of coalgebras, that is, if S : H → H

is an antipode of H , then the following relations hold:

S(gh) = S(h)S(g),

S(1) = 1,

∆
(
S(h)

)
= S(h(2))⊗ S(h(1)),

εS(h) = ε(h),

9



for all g, h ∈ H .

Remark 2.1.15. It can also be shown that if H is a finite dimensional Hopf algebra then the

antipode S is invertible. For a proof see [DNR01, Theorem 7.1.7] or [Rad12, Theorem 7.1.14].

Example 2.1.16. The group bialgebra k[G] is a Hopf algebra. Its antipode is the map

S : k[G]→ k[G], S(g) = g−1, g ∈ G.

We call k[G] the group Hopf algebra of G.

Example 2.1.17. Let G be a finite group. The bialgebra of functions kG is a Hopf algebra. The

antipode is

S : kG → kG, S(pg) = pg−1 , g ∈ G.

We call kG the Hopf algebra of functions on G.

Remark 2.1.18. If f : K → H is a bialgebra map between two Hopf algebras K and H , then

it is not hard to check that SHf = fSK . Bialgebra maps between Hopf algebras are called Hopf

algebra maps, or morphisms of Hopf algebras.

We present next some common constructions with algebras, coalgebras, bialgebras and Hopf

algebras, and provide more examples of Hopf algebras.

Definition 2.1.19. Let k be a field and, for any two k-vector spaces U and V , let τU,V : U ⊗ V →

V ⊗ U be the transposition (or the flip) map: τU,V (u⊗ v) = v ⊗ u, for all u ∈ U and v ∈ V .

(1) The opposite algebra of an algebra (A,m, u) is Aop = (A,mop = mτA,A, u). If A = Aop

then A is said to be commutative.

(2) The co-opposite coalgebra of a coalgebra (C,∆, ε) is Ccop = (C,∆cop = τC,C∆, ε). If

C = Ccop, then C is said to be co-commutative.
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(3) The opposite bialgebra of a bialgebra (B,m, u,∆, ε) is Bop = (B,mop, u,∆, ε), and the

co-opposite bialgebra of (B,m, u,∆, ε) is Bcop = (B,m, u,∆cop, ε). If B = Bop then B is

said to be commutative, and, if B = Bcop then B is said to be co-commutative.

Remark 2.1.20. If H is a Hopf algebra then Hop is a Hopf algebra if and only if the antipode of H

is invertible. The same is true for Hcop. If the antipode of H is invertible then SHop = SHcop = S−1
H .

Definition 2.1.21. Let H be a Hopf algebra with invertible antipode. Then Hop is called the

opposite Hopf algebra of H , and Hcop is called the co-opposite Hopf algebra of H . If H = Hop

then H is said to be commutative, and, if H = Hcop then H is said to be co-commutative.

Example 2.1.22. The group Hopf algebra k[G] is co-commutative. It is commutative if and only

if G is an abelian group. The Hopf algebra of functions kG on a finite group G is commutative. It

is co-commutative if and only if G is an abelian group.

Example 2.1.23. The smallest non-commutative, non-co-commutative Hopf algebra is Sweedler’s

Hopf algebra H4. It was introduced by M. Sweedler and it is described as follows. Let k be a

field of characteristic 6= 2. As an algebra, H4 is the quotient of the free algebra k{g, x} on two

generators, g and x, by the two-sided ideal generated by g2 − 1, x2 and gx+ xg. Thus,

H4 = k{g, x}/(g2 − 1, x2, gx+ xg).

The comultiplication, the counit and the antipode of H4 are:

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1,

∆(x) = 1⊗ x+ x⊗ g, ε(x) = 0, S(x) = g−1x.

A k-basis of H4 is {1, g, x, gx}. The antipode of H4 has order 4. It can be shown that, up to

isomorphism, H4 is the unique non-commutative, non-co-commutative Hopf algebra of dimension

4. Thus, Hop
4
∼= Hcop

4
∼= H4.
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Example 2.1.24. In [T71] E.J. Taft introduced a family of non-commutative, non-co-commutative

Hopf algebras, containing Sweedler’s Hopf algebra as a particular case. The family is defined as

follows. Let N ≥ 2 and m ≥ 1 be two integers. Let k be a field containing a primitive N -th root

of unity ξ. Then

TN,m = k{g1, . . . , gm, x}/(gNi − 1, xN , gigj − gjgi, xgi − ξgix)

is a Hopf algebra with comultiplication, counit and antipode:

∆(gi) = gi ⊗ gi, ε(gi) = 1, S(gi) = g−1
i ,

∆(x) = 1⊗ x+ x⊗ g1, ε(x) = 0, S(x) = −ξ−1g−1
1 x,

for all i = 1, . . . , n. HN,m is a non-commutative, non-co-commutative Hopf algebra of dimension

Nm+1, a k-basis being {gi11 · · · gimm xi | 0 ≤ i1, . . . , im, i ≤ N −1}. The antipode of TN,m has order

2N .

TN,m is called the general Taft algebra, while TN,1 is called the two-generator Taft algebra.

Note that T2,1 is Sweedler’s Hopf algebra.

Example 2.1.25. Another family of non-commutative, non-co-commutative Hopf algebras, con-

taining Sweedler’s Hopf algebra as a particular case, is formed by Nichols Hopf algebras. These

were introduced by W.D. Nichols in [Nich78] and they are defined as follows. Let n ≥ 1 be a

positive integer. Then

E(n) = k{c, x1, . . . , xn}/(c2 − 1, x2
i , cxi + xic, xixj + xjxi)

is a Hopf algebra with comultiplication, counit and antipode:

∆(c) = c⊗ c, ε(c) = 1, S(c) = c−1,

∆(xi) = 1⊗ xi + xi ⊗ c, ε(xi) = 0, S(xi) = c−1xi,

for all i = 1, . . . , n. E(n) is a non-commutative, non-co-commutative Hopf algebra of dimension

2n+1. A k-basis is {cixP | i = 0, 1, P ⊆ {1, . . . , n}}, where, for a subset P = {i1, i2, . . . , is} ⊆
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{1, 2, . . . , n} such that i1 < i2 < · · · < is, we denote xP = xi1xi2 · · ·xis , and x∅ = 1. We note

that E(1) is Sweedler’s Hopf algebra.

Note that, if U and V are two k-vector spaces and U∗ = Hom(U,k) and V ∗ = Hom(V,k) are

their duals, then the map

ρU,V : U∗ ⊗ V ∗ → (U ⊗ V )∗, (p⊗ q)(u⊗ v) = p(u)q(v),

for all u ∈ U , v ∈ V , p ∈ U∗ and q ∈ V ∗, is injective. If U or V is finite dimensional, then ρU,V is

an isomorphism.

Recall, also, that, if f : U → V is a linear map, then its transpose is f ∗ : V ∗ → U∗,

f ∗(p) = pf , for all p ∈ V ∗.

Using the map ρ, we can transpose the comultiplication and counit of a coalgebra C to a

multiplication and unit on C∗. Similarly, we can transpose the multiplication and unit of an algebra

A to a comultiplication and counit on A∗. For the latter, we need that A be finite dimensional, so

that ρ is invertible.

Definition 2.1.26. Let k be a field.

(1) The dual algebra of a coalgebra (C,∆, ε) is (C∗,∆∗ρC,C , ε
∗). Explicitly, the multiplication

of C∗, called the convolution product, is

(p ∗ q)(c) =
∑
p(c(1))q(c(2)), c ∈ C, p, q ∈ C∗.

The unit element of C∗ is ε.

(2) The dual coalgebra of a finite dimensional algebra (A,m, u) is (A∗, ρ−1
A,Am

∗, u∗). Explicitly,

the comultiplication of A∗ is

∆(p)(a⊗ b) =
∑
p(1)(a)p(2)(b), a, b ∈ A, p ∈ A∗.

The counit of A∗ is given by ε(p) = p(1), for all p ∈ A∗.
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Remark 2.1.27. If B is a finite dimensional bialgebra, then the dual algebra and coalgebra B∗ is a

bialgebra. It is called the dual bialgebra of B.

Remark 2.1.28. If H is a finite dimensional Hopf algebra, then the dual bialgebra H∗ is a Hopf

algebra. Its antipode is SH∗ = S∗H . H∗ is called the dual Hopf algebra of H . If H∗ ∼= H , then H

is said to be self-dual.

Example 2.1.29. If G is a finite group then (k[G])∗ ∼= kG and (kG)∗ ∼= k[G].

Example 2.1.30. The Nichols Hopf algebra E(n) is self-dual. An isomorphism E(n) → E(n)∗

maps

c 7→ 1∗ − c∗ and xi 7→ x∗i + (cxi)
∗,

for all i = 1, . . . , n, where {(cixP )∗}i,P is the dual basis of {cixP}i,P .

2.2 The language of categories

In this section and the next we recall basic definitions and results from category theory. For more

details see [P70] or [MacL98].

Definition 2.2.1. A category C consists of

1. A class Ob(C) of objects, which we usually denote by capital letters: X, Y, Z, ... ∈ Ob(C).

2. For each ordered pair of objects (X, Y ), a set HomC(X, Y ), whose elements are called mor-

phisms with domain X and codomain Y . These sets are called hom-sets and morphisms are

usually denoted by small letters: f , g, h, ... ∈ HomC(X, Y ).

3. For each ordered triple (X, Y, Z), a map

HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z), (f, g) 7→ gf

called composition.
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These are required to satisfy the following conditions:

(C1) Disjointedness of hom-sets: If (X, Y ) 6= (Z,W ) then HomC(X, Y ) and HomC(Z,W ) are

disjoint sets.

(C2) Associativity of composition: If f ∈ HomC(X, Y ), g ∈ HomC(Y, Z), and h ∈ HomC(Z,W ),

then (hg)f = h(gf).

(C3) Existence of identity elements: For every object X there is an element idX ∈ HomC(X,X),

called the identity morphism of X , such that f idX = f , for every f ∈ HomC(X, Y ), and

idX g = g, for every g ∈ HomC(Y,X).

Example 2.2.2. The category of k-vector spaces, k-Vec, is the category whose objects are vector

spaces over k and whose morphisms are k-linear maps.

Example 2.2.3. Let G be a group. Then the category k-VecG of G-graded vector spaces over k is

the category with:

• Objects: Pairs (V, {Vg}g∈G), where V is a k-vector space and Vg, g ∈ G, are subspaces of V

such that V =
⊕

g∈G Vg. We usually write V instead of (V, {Vg}g∈G).

• Morphisms: f : (U, {Ug}g∈G) → (V, {Vg}g∈G) is a morphism of G-graded vector spaces if

f : U → V is a linear map such that f(Ug) ⊆ Vg, for all g ∈ G.

The fact that G is a group is irrelevant for this example. Later on, we will see that the group

structure of G turns k-VecG into a "rigid monoidal" category.

Example 2.2.4. If (A,m, u) is a k-algebra then the category RepA of finite dimensional represen-

tations of A (or (left) A-modules), is the category with

• Objects: Pairs (V, ρ), where V is a finite-dimensional k-vector space and ρ : A ⊗ V → V

is a linear map, called the action of A on V , such that the following two diagrams are

commutative:
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(A⊗ A)⊗ V A⊗ (A⊗ V )

A⊗ V A⊗ V

V

m⊗idV

aA,A,V

idA⊗ρ

ρ ρ

k ⊗ V A⊗ V

V V

u⊗idV

ρl−1
v

idV

where aA,A,V and lV are the obvious maps. We usually write V instead of (V, ρ).

• Morphisms: f : (U, ρU) → (V, ρV ) is a morphism of A-modules, or an A-linear map, if

f : U → V is a linear map such that the following diagram is commutative:

A⊗ U A⊗ V

U V

idA⊗f

ρU ρV

f

For a group algebra k[G] we denote Repk[G] by RepG. Note that Repk = k-Vec.

Example 2.2.5. Let (C,∆, ε) be a k-coalgebra. The category CorepC of finite-dimensional corep-

resentations of C (or (right) C-comodules) is the category with

• Objects: Pairs (V, δ), where V is a vector space and δ : V → V ⊗ C is a linear map, called

the coaction of C on V , such that diagrams

V

V ⊗ C V ⊗ C

(V ⊗ C)⊗ C V ⊗ (C ⊗ C)

δ δ

δ⊗idC idV ⊗∆

aV,C,C

V V

V ⊗ C V ⊗ k

δ

idV

idV ⊗ε

rV

are commutative. We usually denote (V, δ) by V .

• Morphisms: f : (U, δU) → (V, δV ) is a morphism of C-comodules, or a C-colinear map, if

f : U → V is a linear map such that the following diagram is commutative:
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U V

U ⊗ C V ⊗ C

f

δU δV

f⊗idC

For a group coalgebra k[G] we denote Corepk[G] by CorepG. Note that Corepk = k-Vec.

Remark 2.2.6. Sweedler’s notation extends to comodules. If V is a C-comodule, with coaction

δ, and v ∈ V then δ(v) is denoted by
∑
v(0) ⊗ v(1). The common element (idV ⊗∆)δ(v) =

aV,C,C(δ ⊗ idC)δ(v) is denoted by
∑
v(0) ⊗ v(1) ⊗ v(2), and so forth.

Definition 2.2.7. A categoryD is a subcategory of C if Ob(D) is a subclass of Ob(C), HomD(X, Y )

is a subset of HomC(X, Y ), for any X , Y ∈ Ob(D), and the composition and identity morphisms

of D coincide with those of C. If HomD(X, Y ) = HomC(X, Y ), for all X , Y ∈ Ob(D), then D is

said to be a full subcategory of C.

Example 2.2.8. The category k-Vec of finite dimensional k-vector spaces is a full subcategory

of k-Vec. Similary, the category k-VecG of finite dimensional G-graded k-vector spaces is a full

subcategory of k-VecG.

Definition 2.2.9. Let C andD be two categories. A functor F from C toD, denoted by F : C → D,

consists of:

1. An assignment Ob(C)→ Ob(D), X 7→ F (X).

2. For each pair of objects (X, Y ), a function

HomC(X, Y )→ HomD
(
F (X), F (Y )

)
, f 7→ F (f),

satisfying the following:

(F1) F (fg) = F (f)F (g), for all morphisms f and g.
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(F2) F (idX) = idF (X), for every X ∈ Ob(C).

Example 2.2.10. An algebra map f : B → A induces a functor Resf : RepA → RepB, called

the restriction of scalars functor and defined in the following way:

• If V ∈ RepA then Resf (V ) = V , with B-action: b · v = f(b)v, for all b ∈ B and v ∈ V .

• If f is a morphism in RepA then F (f) = f is a morphism in RepB.

The unit map u : k → A induces the forgetful functor FA = Resu : RepA → k-Vec. It is

called forgetful because it takes an A-module (V, ρ) to its underlying vector space V , "forgetting"

the action ρ.

Example 2.2.11. Similarly, a coalgebra map f : C → D induces a functor Extf : CorepC →

CorepD, called the extension of scalars functor and defined in the following way:

• If V ∈ CorepC, with C-coaction δ, then Extf (V ) = V , with D-action: (idV ⊗f)δ.

• If f is a morphism in CorepC then F (f) = f is a morphism in CorepD.

The counit map ε : C → k induces the forgetful functor FC = Extε : CorepC → k-Vec. It

takes a C-comodule (V, δ) to its underlying vector space V .

Remark 2.2.12. If F : C → D and G : D → E then GF : C → E is the functor: GF (X) =

G(F (X)), for all X ∈ Ob(C), and GF (f) = G(F (f)), for all morphisms f in C. GF is called

the composition of G with F . For example, if f : C → B and g : B → A are algebra maps then

Resf Resg = Resgf . If f : C → D and g : D → E are coalgebra maps then Extg Extf = Extgf .

Functors between two categories form the objects of a category. Morphisms in this category

are called natural transformations.

Definition 2.2.13. Let F , G : C → D be two functors. A natural transformation µ from F to G,

denoted by µ : F → G, is a family of morphisms µ = {µX : F (X) → G(X)}X∈Ob(C) such that,

for every morphism f : X → Y in C, the following diagram is commutative:
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F (X) G(X)

F (Y ) G(Y )

µX

F (f) G(f)

µY

Remark 2.2.14. If C andD are two categories, then the category whose objects are functors from C

to D and whose morphisms are natural transformations between functors is denoted by Fun(C,D).

The composition of two natural transformations µ and ν is µν = {µXνX}X∈Ob C . The identity

morphism of a functor F is the identity natural transformation of F : idF = {idF (X)}X∈Ob C .

The category End(C) = Fun(C, C) is called the category of endofunctors of C.

Definition 2.2.15. (1) A morphism f : X → Y in a category C is said to be an isomorphism if

there exists a morphism g : Y → X such that gf = idX and fg = idY . Two objects, X and

Y , of a category C are isomorphic, and we write this X ∼= Y , if there exists an isomorphism

f : X → Y .

(2) A functor F : C → D is an isomorphism if there exists a functor G : D → C such that

GF = idC and FG = idD. Two categories, C and D, are isomorphic, and we write this

C ∼= D, if there exists an isomorphism F : C → D.

(3) A natural transformation µ : F → G is said to be a natural isomorphism if there exists a

natural transformation ν : G → F such that νµ = idF and µν = idG. Two functors, F and

G, are said to be isomorphic, and we write this F ∼= G, if there exists a natural isomorphism

µ : F → G.

Example 2.2.16. If G is a group then CorepG and k-VecG are isomorphic. To see this, note that,

if (V, δ) is a corepresentation of k[G], then V =
⊕

g∈G Vg, where Vg = {v ∈ V | δ(v) = v ⊗ g}.

Indeed, if v ∈ V then there exist g1, . . . , gn ∈ G and v1, . . . , vn ∈ V such that δ(v) =
∑

i vi ⊗ gi.

Since

∑
i(vi ⊗ gi)⊗ gi = a−1

V,C,C(idV ⊗∆)δ(v) = (δ ⊗ idk[G])δ(v) =
∑

i δ(vi)⊗ gi

it follows that δ(vi) = vi ⊗ gi. Moreover,
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v = rV (idV ⊗ε)δ(v) =
∑

i viε(gi) =
∑

i vi

so, V =
∑

g∈G Vg. To see that the sum is direct, suppose g1, . . . , gn are distinct elements of G

and vi ∈ Vgi , i = 1, . . . , n, satisfy v1 + · · · + vn = 0. Applying δ to this relation, we obtain∑
i vi ⊗ gi = 0. It follows from this that vi = 0, for all i = 1, . . . , n. Thus, V = ⊕g∈GVg.

The association (V, δ) 7→ (V, {Vg}g∈G) is an isomorphism from CorepG to k-VecG. The

inverse functor sends a G-graded vector space V =
⊕

g∈G Vg to (V, δ), where δ(v) = v ⊗ g,

for all v ∈ Vg and g ∈ G. Both functors leave morphisms unchanged.

Example 2.2.17. If A is a finite dimensional algebra and A∗ is the dual coalgebra of A, then RepA

and CorepA∗ are isomorphic. An isomorphism F : RepA→ CorepA∗ is given as follows.

Let {ei} be a basis of A and let {e∗i } be its dual basis. If V ∈ RepA then F (V ) = V , with

A∗-coaction given by

v 7→
∑

i eiv ⊗ e∗i , v ∈ V .

The inverse functor takes an A∗-comodule V and sends it to V , with A-action:

av =
∑
v(1)(a)v(0), a ∈ A, v ∈ V ,

for all a ∈ A and v ∈ V . Both functors leave morphisms unchanged.

Remark 2.2.18. In a sense, the condition for two categories to be isomorphic is too strong. It

requires, in particular, that there be a one-one correspondence between the objects of the two

categories. Since, in most cases, we are more interested in isomorphism classes of objects, a more

useful notion is that of equivalence of categories. The condition for two categories to be equivalent

ensures that there is a one-one correspondence between the isomorphism classes of objects of the

two categories.

Definition 2.2.19. A functor F : C → D is an equivalence if there exists a functor G : D → C

such that GF ∼= idC and FG ∼= idD. Two categories, C and D, are said to be equivalent, and we

write this C ' D, if there exists an equivalence F : C → D.

20



There is a useful criterion for checking that a given functor is an equivalence. To state it, we

need the following definitions.

Definition 2.2.20. Let F : C → D be a functor.

1. F is said to be faithful (respectively, full) if for all X and Y ∈ Ob(C), the maps

HomC(X, Y )→ HomD
(
F (X), F (Y )

)
are injective (respectively, surjective).

2. F is said to be fully faithful if F is both faithful and full.

3. F is said to be essentially surjective if for any Y ∈ D there exists X ∈ C such that Y ∼=

F (X).

Theorem 2.2.21. A functor F : C → D is an equivalence if and only if it is essentially surjective

and fully faithful.

Proof. See [P70, Proposition 2.1.3] or [MacL98, Theorem IV.4.1].

Definition 2.2.22. Let C and D be two categories. The product category C × D is defined by:

Ob(C × D) = Ob(C)× Ob(D) and

HomC×D((X, Y ), (X ′, Y ′)) = HomC(X,X
′)× HomD(Y, Y ′),

for all X , X ′ ∈ C and Y , Y ′ ∈ D, with composition induced from C and D.

Definition 2.2.23. A functor from a product category of two categories into another category is

called a bifunctor.
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2.3 Finite k-linear abelian categories

Categories of finite dimensional representations of finite dimensional k-algebras can be described

as those categories that are finite, k-linear, and abelian. Since these requirements are met by the

objects of our study, finite tensor categories, it is useful to review their definition and see their

properties.

Definition 2.3.1. An additive category is a category C satisfying the following axioms:

(1) Every hom-set HomC(X, Y ) is equipped with an abelian group structure, written additively,

such that composition of morphisms is biadditive with respect to addition.

(2) C has a zero object, that is, an object 0 such that all hom-sets, HomC(0, X) and HomC(X, 0),

X ∈ Ob(C), are singletons.

(3) For any objects X and Y of C, there exists an object B and morphisms iX : X → B,

iY : Y → B, pX : B → X and pY : B → Y such that pXiX = idX , pY iY = idY and

iXpX + iY pY = idB.

Remark 2.3.2. A zero object is unique, up to a unique isomorphism. If 0 is a zero object of C then

every hom-set HomC(X, Y ) has a distinguished element, namely the composition X → 0 → Y .

This morphism is called the zero morphism and it is denoted by 0X,Y or, if it is clear from the

context what the domain and co-domain are, by 0. If C is an additive category then 0X,Y is the zero

element of the additive group HomC(X, Y ).

Remark 2.3.3. The object B of condition (3) is unique, up to a unique isomorphism, with the

stated properties. It is called the direct sum of X and Y and it is denoted by X ⊕ Y .

Definition 2.3.4. Let k be a field. A k-linear category is an additive category whose hom-sets are

k-vector spaces such that composition of morphisms is k-bilinear.
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Definition 2.3.5. Let F : C → D be a functor. If C andD are additive (respectively, k-linear), then

F is additive (respectively, k-linear) if the associated maps

HomC(X, Y )→ HomD
(
F (X), F (Y )

)
are morphisms of groups (respectively, k-linear maps).

Next, we recall the definition of abelian categories. These are categories where the notion of

an exact sequence can be defined. We need the concepts of a kernel and cokernel of a morphism.

Definition 2.3.6. Let C be a category with a zero object and let f : X → Y be a morphism in C.

1. A kernel of f is pair (K, i), where i : K → X is a morphism such that fi = 0, and, if

i′ : K ′ → X satisfies fi′ = 0, then there is a unique k : K ′ → K such that ik = i′.

2. A cokernel of f is a pair (C, p), where p : Y → C is a morphism such that pf = 0 and, if

p′ : Y → C ′ satisfies p′f = 0, then there is a unique c : C → C ′ such that cp = p′.

Remark 2.3.7. If they exist, the kernel and cokernel are unique, up to a unique isomorphism. The

kernel of f is denoted by Ker(f) and the cokernel by Coker(f).

Definition 2.3.8. An abelian category is an additive category C with the property that, for every

morphism f : X → Y , there exists a sequence

K
i−→ X

u−→ I
v−→ Y

p−→ C

such that f = vu, (K, i) is a kernel of f , (I, u) is a cokernel of i, (I, v) is a kernel of p, and (C, p)

is a cokernel of f . The object I is called the image of f and is denoted by Im(f).

Example 2.3.9. If A is a k-algebra then RepA is a k-linear abelian category. Similarly, if C is a

k-coalgebra then CorepC is a k-linear abelian category.

Next, we recall the notion of a simple object in an abelian category. For this, we need the

concept of subobject.
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Definition 2.3.10. Let C be an abelian category. A morphism f : X → Y is said to be a monomor-

phism if Ker(f) = 0, and an epimorphism if Coker(f) = 0.

Definition 2.3.11. Let C be an abelian category and Y an object of C. A subobject of Y is a pair

(X, i), where i : X → Y is a monomorphism. A quotient object of Y is a pair (Z, p), where

p : Y → Z is an epimorphism.

Remark 2.3.12. It is common to omit mentioning the monomorphism i when saying that (X, i) is

a subobject of Y . Thus, we say X is a subobject of Y and we write X ⊆ Y . The cokernel of the

monomorphism i : X → Y is denoted by Y/X .

Definition 2.3.13. Let C be an abelian category.

(1) A nonzero object X in C is simple if 0 and X are its only subobjects.

(2) An object X in C is semisimple if it is a direct sum of simple objects.

(3) C is semisimple is every object of C is semisimple.

The Jordan-Hölder theorem holds in abelian categories.

Definition 2.3.14. Let C be an abelian category. An object X of C is said to have finite length if X

admits a composition series (or a Jordan-Hölder series), that is, a filtration

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xn−1 ⊆ Xn = X

such that Xi/Xi−1 is simple, for all i = 1, . . . , n. The objects Xi/Xi−1 are called the factors of

the composition series, and n is called the length of the composition series.

Theorem 2.3.15 (Jordan-Hölder). Let C be an abelian category. If X ∈ Ob(C) has finite length,

then all composition series of X have the same length and isomorphic factors, up to order.

It follows from Jordan-Hölder theorem that the number of factors in a composition series of an

object X is independent of the composition series. This number is called the length of X .

As we previously said, abelian categories allow definition of the notion of exact sequence.
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Definition 2.3.16. Let C be an abelian category. A sequence of morphisms in C

· · · → Xi−1
fi−1−−→ Xi

fi−→ Xi+1 → · · ·

is exact in degree i if Im(fi−1) = Ker(fi). The sequence is exact if it is exact in every degree.

An exact sequence 0→ X → Y → Z → 0 is called a short exact sequence.

Definition 2.3.17. Let C be an abelian category and let X and Y be objects of C.

(1) An extension of Y by X is a short exact sequence S : 0→ X
i−→ E

p−→ Y → 0.

(2) A morphism from S : 0 → X
i−→ E

p−→ Y → 0 to S ′ : 0 → X
i′−→ E ′

p′−→ Y → 0 is a

morphisms f : E → E ′ making the following diagram commutative:

E

0 X Y 0

E ′

p

f

i

i′ p′

Remark 2.3.18. The set of isomorphism classes of extensions of Y byX is denoted by Ext1(Y,X).

It is an abelian group with the following operation. Let S : 0 → X
i−→ E

p−→ Y → 0 and

S ′ : 0→ X
i′−→ E ′

p′−→ Y → 0 be two extensions of Y byX . The imageN of (i,−i′) : X → E⊕E ′

is a subobject of the kernel M of ppE − p′pE′ : E⊕E ′ → Y , where pE and pE′ are the projections

of E ⊕ E ′ to its summands. The sum of the isomorphism classes of S and S ′ is the isomorphism

class of the exact sequence

0→ X
(i,0)−−→M/N

ppE−−→ Y → 0

This operation is called the Baer sum. The zero element of Ext1(Y,X) is the class of the split

extension 0→ X → X ⊕ Y → Y → 0.

If C is a k-linear abelian category, then Ext1(Y,X) is a k-vector space. The multiple of the

class of 0→ X
i−→ E

p−→ Y → 0 by the non-zero scalar λ ∈ k× is the class of

0→ X
λ−1 i−−−→ E

p−→ Y → 0
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One can check that if λ, µ ∈ k×, then 0 → X
λ i−→ E

µ p−→ Y → 0 and 0 → X
λµ i−−→ E

p−→ Y → 0

are isomorphic.

Definition 2.3.19. Let C and D be two abelian categories. An additive functor F : C → D is left

exact (respectively, right exact) if given any short exact sequence in C, 0 → X → Y → Z → 0,

the sequence

0→ F (X)→ F (Y )→ F (Z) (respectively, F (X)→ F (Y )→ F (Z)→ 0)

is exact in D. A left exact and right exact functor is said to be exact.

Example 2.3.20. If X is an object of an abelian category C, then the functor HomC(X,−) from C

to the category of abelian groups is left exact.

Example 2.3.21. If A and B are finite dimensional k-algebras and P is a (B,A)-bimodule, then

P ⊗A (−) : RepA→ RepB is right exact.

Definition 2.3.22. Let C be an abelian category.

(1) An object P of C is projective if the functor HomC(P,−) is exact.

(2) A projective cover of X ∈ Ob(C) is a projective object P (X) in C, together with an epimor-

phism p : P (X) → X such that, if g : P → X is an epimorphism from a projective object

P to X , then there exists an epimorphism h : P → P (X) such that ph = g.

We are now ready to state an intrinsic characterization of finite k-linear abelian categories.

Definition 2.3.23. Let k be a field. A k-linear abelian category C is finite if:

(1) C has finite dimensional hom-sets.

(2) All objects of C have finite length.

(3) There are finitely many isomorphism classes of simple objects.

(4) Every simple object has a projective cover.
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Theorem 2.3.24. If C is a finite, k-linear, abelian category then there exists a finite dimensional

k-algebra A such that C is equivalent to RepA.

Proof. See [E11, Theorem 9.6.4].

Since functors between representation categories of finite dimensional algebras will play an

important role in our work, we close this section by making a few observations concerning them.

First, if F : C → D is a functor between two k-linear categories, then End(F ), the set of

functorial endomorphisms of F , is a k-algebra with addition, scalar multiplication and product

given by:

(µ+ ν)X = µX + νX , (λµ)X = λµX , (µν)X = µXνX

for all X ∈ Ob(C), λ ∈ k, and µ, ν ∈ End(F ).

Functorial endomorphisms of forgetful functors have a nice description.

Lemma 2.3.25. Let A be a finite dimensional k-algebra and FA : RepA → Vec the forgetful

functor. Then

ϕ : End(FA)→ A, ϕ(µ) = µA(1), µ ∈ End(FA)

is an isomorphism of k-algebras, with inverse

ϕ−1 : A→ End(FA), ϕ−1(a)V (v) = av, v ∈ V ∈ Rep(A), a ∈ A

Proof. Straightforward.

Remark 2.3.26. Let ϕ : End(FA) → A be the isomorphism of the previous Lemma and let

Resϕ : RepA → Rep End(FA) be the restriction of scalars functor associated to ϕ. If V ∈ RepA

then Resϕ(V ) = V with End(FA)-action given by µ · v = µV (v), for all v ∈ V and µ ∈ End(FA).

In other words, µV (v) = ϕ(µ)v = µA(1)v, for all v, V and µ. Indeed, consider for v ∈ V the A-

linear map fv : A→ V , fv(a) = av, for all a ∈ A. From the naturality of µwe have µV fv = fvµA.

Thus, µV (v) = µvfv(1) = fvµA(1) = µA(1)v.
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Restriction of scalars functors preserve forgetful functors. The converse is also true, as we next

show.

Proposition 2.3.27. Let A and B be two finite dimensional k-algebras and let FA : RepA→ Vec

and FB : RepB → Vec be the forgetful functors. If F : RepB → RepA is a k-linear functor such

that FAF = FB then there exists an algebra map f : A→ B such that F = Resf .

Proof. Let ϕA : End(FA) → A and ϕB : End(FB) → B be the algebra isomorphisms from

Lemma 2.3.25. Define

g : End(FA)→ End(FB) = End(FAF ), g(µ)V = µF (V )

for all V ∈ RepB and µ ∈ End(FA). It is easy to check that g is a well defined algebra homomor-

phism.

Let f : A → B be the algebra map f = ϕBgϕ
−1
A . We claim that F = Resf . Since Resf =

Resϕ−1
A

Resg ResϕB , it suffices to show that the following diagram is commutative:

RepB RepA

Rep
(
End(FB)

)
Rep

(
End(FA)

)
F

ResϕB ResϕA

Resg

Let V ∈ RepB. Taking into account Remark 2.3.26, we have that ResϕA F (V ) is V with End(FA)-

action given by µ·v = µF (V )(v), while Resg ResϕB V is V with End(FA)-action µ·v = g(µ)V (v) =

µF (V )(v). Thus, F = Resf .

Functors that are natural isomorphic to restriction of scalars functors can be described as those

functors that preserve dimensions.

Proposition 2.3.28. Let A and B be two finite dimensional k-algebras. A functor F : RepB →

RepA is isomorphic to Res f , for some algebra map f : A→ B, if and only if dimF (V ) = dimV ,

for all V ∈ RepB.

Proof. Suppose dimF (V ) = dimV , for all V ∈ RepB. For each such V choose an isomorphism

of k-vector spaces µV : F (V ) → V . Then on V there is a unique A-module structure such
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that µV is A-linear. Denote this A-module by G(V ). For a B-linear map f : U → V define

G(f) = µV F (f)µ−1
u . It is easy to check that, with these choices, G is a functor from RepB to

RepA and µ = {µV } is an isomorphism from F to G. Since G preserves the forgetful functors, it

follows from Proposition 2.3.27 that G = Resf , for some algebra map f : A → B. The converse

is trivial.

2.4 Rigid monoidal categories

In this section we present the categorical counterpart of the monoid from group theory, namely, the

monoidal category. We also talk about rigidity in monoidal categories and, at the end, introduce

the main objects of our study, finite tensor categories.

Definition 2.4.1. A monoidal category is a sextuple (C,⊗, 1, a, l, r) consisting of a category C, a

bifunctor ⊗ : C × C → C, called tensor product, an object 1 ∈ C, called a unit object, and natural

isomorphisms:

a = {aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)}X,Y,Z∈Ob(C),

l = {lX : 1⊗X → X}X∈Ob(C),

r = {rX : X ⊗ 1→ X}X∈Ob(C)

called, respectively, the associativity, left unit and right unit constraints, satisfying the pentagon

axiom, i.e. diagram

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

aW,X,Y⊗ZaW⊗X,Y,Z

aW,X,Y ⊗idZ

aW,X⊗Y,Z

idW ⊗aX,Y,Z
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commutes for all W , X , Y , Z ∈ Ob(C), and the triangle axiom, i.e. diagram

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y
rX⊗idY

aX,1,Y

idX ⊗lY

commutes for all X , Y ∈ Ob(C).

Remark 2.4.2. If (C,⊗, 1, a, l, r) is a monoidal category then we say that (⊗, 1, a, l, r) constitutes

a monoidal structure on C. If this structure is clear from the context then we write C instead of

(C,⊗, 1, a, l, r). This will be the case with the next examples.

Example 2.4.3. The category k-Vec is a monoidal category. The tensor product is the usual tensor

product of vector spaces, ⊗ = ⊗k, the unit element is k, and a, l and r are the obvious maps:

aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W ), (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w),

lV : k⊗ V → V, λ⊗ v 7→ λv,

rV : V ⊗ k→ V, v ⊗ λ 7→ λv,

for all u ∈ U , v ∈ V , w ∈ W , λ ∈ k, and U , V , W ∈ k- Vec. The same data defines a monoidal

structure on k-Vec, the category of finite dimensional k-vector spaces.

Example 2.4.4. If B is a bialgebra then the comultiplication and the counit of B make Rep B a

monoidal category. Namely, if U , V ∈ RepB then U ⊗ V = U ⊗k V , with action of B given by

b · (u⊗ v) =
∑
b(1)u⊗ b(2)v, b ∈ B, u ∈ U, v ∈ V .

The unit object is k, on whichB acts via ε: b·λ = ε(b)λ, for all b ∈ B and λ ∈ k. The associativity

and the left and right unit constraints are the same as for k-Vec.

Example 2.4.5. Again, letB be a bialgebra. Then the multiplication and the unit ofB give CorepB

a monoidal structure. If U , V ∈ CorepH then U ⊗ V = U ⊗k V , with co-action of B given by

u⊗ v 7→
∑
u(0) ⊗ v(0) ⊗ u(1)v(1), u ∈ U, v ∈ V .
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The unit object is k, with the trivial coaction: λ 7→ λ ⊗ 1H , for all λ ∈ k. The associativity and

the left and right unit constraints are the same as for k-Vec.

Definition 2.4.6. Let (C,⊗,1, a, l, r) be a monoidal category. The monoidal category opposite to

C is Cop = (C,⊗op,1, aop, ...), where X ⊗op Y = Y ⊗X and aop
X,Y,Z = a−1

Z,Y,X .

Example 2.4.7. Given a bialgebra B, (RepB)op ∼= RepBcop.

Definition 2.4.8. Let (C,⊗, 1, a, l, r) and (C ′,⊗′, 1′, a′, l′, r′) be two monoidal categories. A monoidal

functor from C to C ′ is a triple (F, J, ϕ), where F : C → C ′ is a functor, ϕ : 1′ → F (1) is an iso-

morphism, and

JX,Y : F (X)⊗′ F (Y )
∼−→ F (X ⊗ Y )

is a natural isomorphism, such that the following diagrams are commutative

(
F (X)⊗′ F (Y )

)
⊗′ F (Z) F (X)⊗′

(
F (Y )⊗′ F (Z)

)
F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

F
(
(X ⊗ Y )⊗ Z

)
F
(
X ⊗ (Y ⊗ Z)

)

a′
F (X),F (Y ),F (Z)

JX,Y ⊗′idF (Z) idF (X)⊗′JY,Z

JX⊗Y,Z JX,Y⊗Z

F (aX,Y,Z)

(2.1)

1′ ⊗′ F (X) F (X)

F (1)⊗′ F (X) F (1⊗X)

l′
F (X)

ϕ⊗idF (X)

J1,X

F (lX)

F (X)⊗′ 1′ F (X)

F (X)⊗′ F (1) F (X ⊗ 1)

r′
F (X)

idF (X)⊗ϕ

JX,1

F (rX) (2.2)

The pair (J, ϕ) is called a monoidal structure on F .

Remark 2.4.9. Monoidal functors can be composed. If (F, J, ϕ) is a monoidal functor from

(C,⊗,1) to (C ′,⊗′,1′), and (F ′, J ′, ϕ′) is a monoidal functor from (C ′,⊗′,1′) to (C ′′,⊗′′,1′′)

then the composition of (F ′, J ′, ϕ′) with (F, J, ϕ) is (F ′F, J ′F ′(J), F ′(ϕ)ϕ′), where J ′F ′(J) is

the natural transformation given by the composition:
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F ′F (X)⊗′′ F ′F (Y )
J ′
F (X),F (Y )−−−−−−→ F ′

(
F (X)⊗′ F (Y )

) F ′(JX,Y )
−−−−−→ F ′F (X ⊗ Y ),

for all X , Y ∈ C.

The following results provide some examples of monoidal functors.

Lemma 2.4.10. Let K and H be two bialgebras and f : K → H an algebra map. The set of

monoidal structures on the restriction of scalars functor Resf : RepH → RepK , with ϕ = idk,

is in one-to-one correspondence with the set of invertible elements T ∈ H ⊗ H satisfying the

following conditions:

(f ⊗ f)∆(x) = T−1∆
(
f(x)

)
T, for all x ∈ K, (2.3)

(∆⊗ idH)(T )(T ⊗ 1) = (idH ⊗∆)(T )(1⊗ T ), (2.4)

(ε⊗ idH)(T ) = (idH ⊗ε)(T ) = 1. (2.5)

The monoidal structure corresponding to T is (JT , idk), where

JTU,V : U ⊗ V → U ⊗ V, u⊗ v 7→ T (u⊗ v).

Proof. Straightforward.

Remark 2.4.11. We will denote the monoidal functor (Resf , T, id1) by (f, T ). It is easy to check

that the composition of (f ′, T ′) with (f, T ) is
(
ff ′, T (f ⊗ f)(T ′)

)
.

Remark 2.4.12. The tensor functors (f, T ) have been studied by A. Davydov in [Dav10]. We will

say more about them in Section 2.10.

Corollary 2.4.13. Let H be a bialgebra. The set of monoidal structures on the forgetful functor

FH : RepH → Vec, with ϕ = idk, is in bijection with the set of invertible elements T ∈ H ⊗ H

satisfying conditions (2.4) and (2.5).

Definition 2.4.14. Let H be a bialgebra. An invertible element T ∈ H ⊗H satisfying conditions

(2.4) and (2.5) is called a (right) twist on H .
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Corollary 2.4.15. Let H be a bialgebra. The set of monoidal structures on the identity functor

idRepH : RepH → RepH , with ϕ = idk, is in bijection with the set of twists on H satisfying

T∆(x) = ∆(x)T , for all x ∈ H .

Definition 2.4.16. A twist T on a bialgebra H is invariant if T∆(x) = ∆(x)T , for all x ∈ H .

Lemma 2.4.17. Let K and H be two bialgebras and f : H → K a coalgebra map. The set of

monoidal structures on the extension of scalars functor Extf : CorepH → CorepK, with ϕ = idk,

is in one-to-one correspondence with the set of convolution invertible elements σ : H ⊗ H → k

satisfying the following conditions:

f(x)f(y) = σ−1(x(1), y(1))f(x(2)y(2))σ(x(3), y(3)), (2.6)

σ(x(1)y(1), z)σ(x(2), y(2)) = σ(x, y(1)z(1))σ(y(2), z(2)), (2.7)

σ(x, 1) = σ(1, x) = ε(x), (2.8)

for all x, y, z ∈ H . The monoidal structure corresponding to σ is (Jσ, idk), where

JσU,V : U ⊗ V → U ⊗ V, u⊗ v 7→ σ(u(1), v(1))u(0) ⊗ v(0).

Proof. Straightforward.

Remark 2.4.18. We will denote the monoidal functor (Extf , J
σ, id1) by (f, σ). The composition

of (f ′, σ′) with (f, σ) is (f ′f, σ ∗ (σ′ ◦ (f ⊗ f))).

Corollary 2.4.19. Let H be a bialgebra. The set of monoidal structures on the forgetful functor

FH : CorepH → Vec is in bijection with the set of convolution invertible elements σ : H⊗H → k

satisfying (2.7) and (2.8).

Definition 2.4.20. Let H be a bialgebra. A convolution invertible element σ : H ⊗ H → k

satisfying (2.7) and (2.8) is called a (right) 2-cocycle on H .

Corollary 2.4.21. Let H be a bialgebra. The set of monoidal structures on the identity func-

tor idCorepH : CorepH → CorepH is in bijection with the set of 2-cocycles on H satisfying

σ(x(1), y(1))x(2)y(2) = x(1)y(1)σ(x(2), y(2)).
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Definition 2.4.22. An invariant 2-cocycle on a bialgebra H is a 2-cocycle σ satisfying

σ(x(1), y(1))x(2)y(2) = x(1)y(1)σ(x(2), y(2)),

for all x, y ∈ H .

Definition 2.4.23. Let (F, J, ϕ) and (F ′, J ′, ϕ′) be two monoidal functors from (C,⊗, 1) to (C ′,⊗′, 1′).

A natural monoidal transformation from (F, J, ϕ) to (F ′, J ′, ϕ′) is a natural transformation µ :

F → F ′ such that the following diagrams commute:

F (X)⊗′ F (Y ) F (X ⊗ Y )

F ′(X)⊗′ F ′(Y ) F ′(X ⊗ Y )

JX,Y

µX⊗′µY µX⊗Y

J ′X,Y

F (1) F ′(1)

1′

µ1

ϕ ϕ′
(2.9)

A natural monoidal isomorphism is a natural monoidal transformation that is a natural isomor-

phism.

Remark 2.4.24. Suppose (F, J, ϕ) is a monoidal functor from (C,⊗,1) to (C ′,⊗′,1′). If F ′ : C →

C ′ is a functor, and µ : F → F ′ is a natural isomorphism, then there is a unique monoidal structure

on F ′ such that µ becomes a natural monoidal isomorphism. Namely, this structure is (J ′, ϕ′),

where J ′ and ϕ′ are defined by diagrams (2.9).

Lemma 2.4.25. Let H and K be two bialgebras, and (f, T ) and (f ′, T ′) two monoidal functors

from RepH to RepK. The set of natural monoidal transformations from (f, T ) to (f ′, T ′) is in

bijection with the set of elements u ∈ H satisfying the following conditions:

uf(x) = f ′(x)u, for all x ∈ K, (2.10)

T ′(u⊗ u) = ∆(u)T, (2.11)

ε(u) = 1. (2.12)

The natural monoidal transformation corresponding to u is µu, where

34



µuV : V → V, v 7→ uv, v ∈ V ∈ RepH .

The transformation µu is a natural monoidal isomorphism if and only if u is invertible.

Proof. Straightforward.

Corollary 2.4.26. Let T and T ′ be two twists of a bialgebra H and let FH : RepH → k-Vec be

the forgetful functor. Then (FH , T ) and (FH , T
′) are monoidal natural isomorphic if and only if

there exists an invertible element u ∈ H such that ε(h) = 1 and

T ′ = ∆(u)T (u−1 ⊗ u−1).

Definition 2.4.27. Two twists, T and T ′, of a bialgebra H are gauge equivalent if (FH , T ) and

(FH , T
′) are monoidal natural isomorphic.

Lemma 2.4.28. Let H and K be two bialgebras and (f, σ) and (f ′, σ′) be two monoidal functors

from CorepH to CorepK. Then the set of natural monoidal transformations from (f, σ) to (f ′, σ′)

is in bijection with the set of linear maps α : H → k satisfying the following conditions:

f ′(x(1))α(x(2)) = α(x(1))f(x(2)), for all x ∈ H, (2.13)

α(x(1)y(1))σ(x(2), y(2)) = σ′(x(1), y(1))α(x(2))α(y(2)), (2.14)

α(1) = 1. (2.15)

The natural monoidal transformation corresponding to α is µα, where

µαV : V → V, v 7→
∑
α(v(1))v(0), v ∈ V ∈ CorepH .

µα is a natural monoidal isomorphism if and only if α is convolution invertible.

Corollary 2.4.29. Let σ and σ′ be two 2-cocycles on the bialgebra H and let FH : CorepH → k-

Vec be the forgetful functor. Then (FH , σ) is natural monoidal isomorphic to (FH , σ
′) if and only

if there exists a convolution invertible linear map α : H → k such that α(1H) = 1k and

σ′(x, y) = α(x(1)y(1))σ(x(2), y(2))α
−1(x(3))α

−1(y(3)).
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Definition 2.4.30. Two 2-cocycles, σ and σ′, on a bialgebra H are gauge equivalent if (FH , σ) and

(FH , σ
′) are natural monoidal isomorphic.

Next, we discuss rigidity in monoidal categories.

Definition 2.4.31. Let (C,⊗, 1) be a monoidal category and X an object of C. In what follows we

suppress the unit constraints l and r.

(1) An object X∗ of C is a left dual of X if there exist morphisms

evX : X∗ ⊗X → 1 and coevX : 1→ X ⊗X∗

called evaluation and coevaluation morphisms, such that the compositions

X
coevX ⊗ idX−−−−−−−→ (X ⊗X∗)⊗X

aX,X∗,X−−−−−→ X ⊗ (X∗ ⊗X)
idX ⊗ evX−−−−−→ X ,

X∗
idX∗ ⊗ coevX−−−−−−−→ X∗ ⊗ (X ⊗X∗)

a−1
X∗,X,X∗−−−−−→ (X∗ ⊗X)⊗X∗ evX ⊗ idX∗−−−−−−→ X∗

are the identity morphisms.

(2) An object ∗X of C is a right dual of X if there exist morphisms

ev′X : X ⊗ ∗X → 1 and coev′X : 1→ ∗X ⊗X

also called evaluation and coevaluation morphisms, such that the compositions

X
idX ⊗ coev′X−−−−−−−→ X ⊗ ( ∗X ⊗X)

a−1
X, ∗X,X−−−−−→ (X ⊗ ∗X)⊗X)

ev′X ⊗ idX−−−−−→ X ,

∗X
coev′X ⊗ id ∗X−−−−−−−→ ( ∗X ⊗X)⊗ ∗X

a ∗X,X, ∗X−−−−−→ ∗X ⊗ (X ⊗ ∗X)
id ∗X ⊗ ev′X−−−−−−→ ∗X

are the identity morphisms.

Definition 2.4.32. An object of a monoidal category is rigid if it has both left and right duals. A

monoidal category is called rigid if all of its objects are rigid.
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Example 2.4.33. The category k-Vec of finite dimensional k-vector spaces is rigid. The left and

right dual of a finite dimensional vector space V are V ∗ = Hom(V,k). If {ei} is a basis of V and

{e∗i } is its dual basis, then the evaluation and coevaluation morphisms are given by:

evV : V ∗ ⊗ V → k, (p, v) 7→ p(v),

coevV : k→ V ⊗ V ∗, 1 7→
∑
i

ei ⊗ e∗i ,

ev′V : V ⊗ V ∗ → k, (v, p) 7→ p(v),

coev′V : 1→ V ∗ ⊗ V, 1 7→
∑
i

e∗i ⊗ ei.

The category k-Vec, of all k-vector spaces, is not rigid, as can easily be verified.

Example 2.4.34. Let H be a Hopf algebra and RepH the category of finite dimensional represen-

tations of H . If V is an H-module then V ∗, with H-action given by

(h · f)(v) = f
(
S(h)v

)
, v ∈ V, f ∈ V ∗, h ∈ H ,

is a left dual of V . If the antipode of H is bijective, then V ∗, with H-action given by

(h · f)(v) = f
(
S−1(h)v

)
, v ∈ V, f ∈ V ∗, h ∈ H ,

is a right dual of V . The evaluation and coevaluation morphisms are the same as for finite dimen-

sional vector spaces.

Example 2.4.35. Let H be a Hopf algebra and CorepH the category of finite dimensional corep-

resentations of H . If V ∈ CorepH and {ei} is a basis of V , with dual basis {e∗i }, then V ∗, with

H-coaction given by

V ∗ → V ∗ ⊗H, f 7→
∑

i f
(
(ei)(0)

)
e∗i ⊗ S

(
(ei)(1)

)
,

is a left dual of V . If S is invertible, then V ∗, with H-coaction:

V ∗ → V ∗ ⊗H, f 7→
∑

i f
(
(ei)(0)

)
e∗i ⊗ S−1

(
(ei)(1)

)
,
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is a right dual of V . The evaluation and coevaluation morphisms are the same as for finite dimen-

sional vector spaces.

2.5 Pointed finite tensor categories and pointed Hopf algebras

We introduce in this section the main objects of our study, namely, pointed finite tensor categories.

Since pointed Hopf algebras provide examples of such categories, we introduce more concepts

from Hopf algebra theory that pertain to their study and which will be of use in this dissertation.

Definition 2.5.1. (1) A finite tensor category is a rigid, monoidal, finite, k-linear, abelian cat-

egory C such that the tensor bifunctor ⊗ : C × C → C is bilinear on morphisms and

EndC(1) ∼= k.

(2) A fusion category is a finite tensor category which is semisimple.

(3) A tensor functor between two finite tensor categories, C andD, is a monoidal functor (F, J) :

C → D such that F is exact, faithful and k-linear.

Example 2.5.2. IfH is a finite dimensional Hopf algebra then RepH and CorepH are finite tensor

categories. If, moreover H is semisimple then RepH and CorepH are fusion categories.

The (co)-representation categories of finite dimensional Hopf algebras are those finite tensor

categories that admit a fiber functor.

Definition 2.5.3. A fiber functor on C is tensor functor from C to k-Vec.

Theorem 2.5.4. If C is a finite tensor category and F : C → k-Vec is a fiber functor then H =

End(F ) is a finite dimensional Hopf algebra and C ' Rep(H).

Proof. See [Ulb90] and the references therein.
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Remark 2.5.5. The procedure of obtaining the Hopf algebra End(F ) from a fiber functor F is

called Tannaka-Krein reconstruction. This is because, in the case of a Hopf algebra H we recover

H from the forgetful functor F : RepH → k-Vec: End(F ) ∼= H .

We will be interested in those finite tensor categories that are pointed, i.e. those tensor cate-

gories whose simple objects are invertible.

Definition 2.5.6. Let C be a finite tensor category.

(1) An object X of C is invertible if evX : X∗ ⊗ X → 1 and coevX : 1 → X ⊗ X∗ are

isomorphisms.

(2) C is pointed if every simple object of C is invertible.

Example 2.5.7. LetH be a finite dimensional Hopf algebra. Then the invertible objects of Rep(H)

are the 1-dimensional representations of H . Similarly, the invertible objects of CorepH are the 1-

dimensional co-representions of H .

Definition 2.5.8. Let H be a finite dimensional Hopf algebra. H is said to be basic if RepH is

pointed. H is said to be pointed if CorepH is pointed.

Example 2.5.9. Let G be a finite group. Then k[G] is a pointed Hopf algebra. To see this, recall

that the objects of CorepG can be equivalently described as G-graded vector spaces: if V ∈

CorepG then V = ⊕g∈GVg, where Vg = {v ∈ V | δ(v) = v ⊗ g}. Thus, the simple objects of

CorepG are the 1-dimensional G-graded vector spaces δg, g ∈ G, with the grading of δg given by

(δg)h =

 k if h = g

0 if h 6= g

If G is abelian then k[G] is also basic.

There is an equivalent way of describing pointed Hopf algebras. For this, we have to introduce

additional notions from Hopf algebra theory.

Definition 2.5.10. Let (C,∆, ε) be a coalgebra.
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(1) A subcoalgebra of C is a subspace D of C such that ∆(D) ⊆ D ⊗D.

(2) C is said to be simple if 0 and C are its only subcoalgebras.

(3) The coradical of C is the sum of all simple subcoalgebras of C. It is denoted by C0.

Remark 2.5.11. If D is a 1-dimensional subcoalgebra of C then there exists a non-zero element

g ∈ C such that D = kg and ∆(g) = g ⊗ g. Conversely, if g is a non-zero element of C and

∆(g) = g ⊗ g then kg is a 1-dimensional subcoalgebra of C.

Elements such as g play an important role in the theory of Hopf algebras. Because their co-

multiplication resembles the comultiplication of the group elements of a group coalgebra, they are

said to be group-like.

Definition 2.5.12. A non-zero element g of a coalgebra C is group-like if ∆(g) = g ⊗ g. The set

of group-like elements of C is denoted by G(C).

Remark 2.5.13. If g is a group-like element then g = ε(g)g, so ε(g) = 1.

Remark 2.5.14. It is easy to see that G(C) is a linearly independent subset of C. Moreover, the

subspace k[G(C)] generated by G(C) is contained in the coradical C0 of C.

Remark 2.5.15. If H is a Hopf algebra then G(H) is a group. Indeed, since ∆ is an algebra map,

we have ∆(1H) = 1H ⊗ 1H , and, if g, h ∈ G(H), then ∆(gh) = ∆(g)∆(h) = gh ⊗ gh. The

inverse of g ∈ G(H) is g−1 = S(g), since, by the defining property of the antipode, we have

gS(g) = S(g)g = ε(g)1H = 1H .

Theorem 2.5.16. Let H be a finite dimensional Hopf algebra. The following are equivalent:

(1) H is pointed, i.e. every simple corepresentation of H is 1-dimensional.

(2) Every simple subcoalgebra of H is 1-dimensional.

(3) H0 = k[G(H)].
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Remark 2.5.17. The classification of finite-dimensional Hopf algebras is the subject of ongoing

research. The effort is focused on two cases: 1) H = H0, which is equivalent to H being semisim-

ple, and 2) H0 = k[G(H)], i.e. H is pointed. Of the two cases, the second one is the better

investigated thanks to the program initiated by N. Andruskiewitsch and H.-J. Schneider in [AS98].

Their method has led, for example, to the classification of all finite dimensional pointed Hopf alge-

bras H such that G(H) is abelian and the only prime numbers that divide |G(H)| are greater than

7 [AS10].

We end this section by mentioning a few more concepts that arise in the theory of pointed Hopf

algebras. These will be important when we will study homomorphisms between such objects.

If C is a coalgebra then the coradical C0 is the bottom piece of a filtration of C:

C0 ⊆ C1 ⊆ C2 ⊆ · · · (2.16)

called the coradical filtration. The (j + 1)-th piece is

Cj+1 = {c ∈ C | ∆(c) ∈ Cj ⊗ C + C ⊗ C0}.

The graded coalgebra associated to this filtration is

gr(C) =
⊕

n≥0Cn/Cn−1,

where C−1 = 0.

Remark 2.5.18. If H is a pointed Hopf algebra (more generally, if H0 is a Hopf subalgebra of

H) then (2.16) is, also, an algebra filtration and grH is a graded Hopf algebra. A Hopf algebra L

isomorphic to grH is called a lifting of H .

Definition 2.5.19. Let g and h be group-like elements of a coalgebra C. An element x ∈ C is

called (g, h)-primitive if ∆(x) = g ⊗ x+ x⊗ h. When (g, h) = (1, 1) we say that x is a primitive

element, otherwise, x is a skew-primitive element.

41



Remark 2.5.20. The set of all (g, h)-primitive elements of C is denoted by Pg,h(C). It is a sub-

space of C. Notice that k(g − h) ⊆ Pg,h(C).

Remark 2.5.21. If f : C → D is a morphism of coalgebras and g ∈ C is a group-like element

then f(c) is a group-like element. Moreover, if x ∈ C is a (g, h)-primitive element then f(x) is an

(f(g), f(h))-primitive element.

Remark 2.5.22. It can be shown that any Hopf algebra generated by group-like elements and

skew-primitive elements is pointed. The converse is a conjecture posed by N. Andruskiewitsch

and H.-J. Schneider in [AS00].

Conjecture 2.5.23. Any finite dimensional pointed Hopf algebra over an algebraically closed field

of characteristic zero is generated by group-like elements and skew-primitive elements.

Remark 2.5.24. The conjecture holds in all known examples and was verified in various cases.

The most general one is due to I. Angiono who showed in [Ang13] that the conjecture is true when

the group of group-like elements is abelian.

A categorical way of thinking about group-like elements and skew-primitive elements is giving

by the following.

Proposition 2.5.25. Let H be a finite dimensional Hopf algebra. Then the group-like elements of

H∗ can be identified with the 1-dimensional representations of H . If γ, η ∈ G(H∗) then

Pγ,η(H
∗)/k(γ − η) ∼= Ext1RepH(η, γ).

Proof. It is easy to check that γ ∈ G(H∗) if and only if γ : H → k is an algebra map, hence the

first assertion.

For the second one, let 0→ γ
i−→ E

p−→ η → 0 be an extension of η by γ and let e1, e2 ∈ E be

such that e1 = i(1) and p(e2) = 1. Then {e1, e2} is a k-basis of E such that h · e1 = γ(h)e1 and

h · e2 = ξ(h)e1 + η(h)e2, for all h ∈ H and some ξ ∈ H∗. In fact, ξ ∈ Pγ,η(H∗), since

(hl) · e2 = h · (ξ(l)e1 + η(l)e2) = (γ(h)ξ(l) + ξ(h)η(l))e1 + η(hl)e2
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implies that ξ(hl) = γ(h)ξ(l) + ξ(h)η(l), for all h, l ∈ H , whence ∆(ξ) = γ ⊗ ξ + ξ ⊗ η.

If e′2 and ξ′ are such that p(e′2) = 1 and h · e′2 = ξ′(h)e1 + η(h)e′2 then ξ′ − ξ ∈ k(γ − η).

Indeed, there exists a ∈ k such that e2 − e′2 = ae1, and action of h ∈ H on this relation yields

ξ − ξ′ = a(γ − η).

Similarly, the equivalence class of ξ modulo k(γ − η) remains the same if we pass to an

extension equivalent to E. Thus, the map Ext1Rep(H)(η, γ) 3 [E] 7→ ξ̂ ∈ Pγ,η(H∗)/k(γ− η), where

ξ̂ denotes the class of ξ, is well defined and is easily seen to be a k-vector space isomorphism.

2.6 Braided monoidal categories

If tensor categories should be thought of as the categorical counterparts of rings, then braided

tensor categories should be thought of as the counterparts of commutative rings. The identification

of the two ways of tensoring two objects is realized by a braiding.

Definition 2.6.1. Let C be a monoidal category. A braiding, or a commutativity constraint, on C is

a natural isomorphism c = {cX,Y : X⊗Y → Y ⊗X}X,Y ∈C , such that the two hexagonal diagrams

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

aX,Y,Z

cX⊗Y,Z

idX ⊗cY,Z

aZ,X,Y

a−1
X,Z,Y

cX,Z⊗idY

(2.17)

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

cX,Y⊗Z

a−1
X,Y,Z

cX,Y ⊗idZ

a−1
Y,Z,X

aY,X,Z

idY ⊗cX,Z

(2.18)
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are commutative for all X , Y and Z in C.

Definition 2.6.2. A braided monoidal category is a pair (C, c) consisting of a monoidal category

C and a braiding c on C.

Remark 2.6.3. When talking about a braided monoidal category we usually write C, instead of

(C, c), with the understanding that there is a fixed braiding on C.

Remark 2.6.4. If c is a braiding on C then

crev = {c−1
Y,X : X ⊗ Y → Y ⊗X}X,Y ∈C (2.19)

is also a braiding on C, called the reverse braiding of c. The braided monoidal category (C, crev) is

called the reversed category of (C, c) and is denoted by Crev.

If crev = c, that is, if cY,X ◦ cX,Y = idX⊗Y , for all X , Y ∈ C, then c is said to be symmetric. In

this case, Crev = C and C is said to be a symmetric (braided) monoidal category.

The following results provide examples of braidings and braided monoidal categories.

Lemma 2.6.5. Let H be a Hopf algebra. The set of braidings on RepH is in bijection with the set

of elements R =
∑
R1 ⊗R2 ∈ H ⊗H , satisfying the following conditions:

(∆⊗ idH)(R) = R13R23, (2.20)∑
ε(R1)R2 = 1, (2.21)

(idH ⊗∆)(R) = R13R12, (2.22)∑
R1ε(R2) = 1, (2.23)

∆cop(h)R = R∆(h), (2.24)

for all h ∈ H . Above, by R12, R13 and R23, we mean
∑
R1 ⊗ R2 ⊗ 1,

∑
R1 ⊗ 1 ⊗ R2 and∑

1⊗R1 ⊗R2, respectively. The braiding corresponding to R is:
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cU,V : U ⊗ V → V ⊗ U, u⊗ v 7→
∑
R2v ⊗R1u.

We denote by Rep(H,R) the braided monoidal category RepH with braiding afforded by R.

Proof. See [Mont93, Theorem 10.4.2] or [Maj95, Theorem 9.2.4].

Definition 2.6.6. (1) Let H be a Hopf algebra. An element R ∈ H ⊗H , satisfying conditions

(2.20)-(2.24), is called a (universal) R-matrix, or a quasitriangular structure, of H .

(2) A quasitriangular Hopf algebra is a pair (H,R), formed with a Hopf algebra H and a quasi-

triangular structure R of H .

Remark 2.6.7. If R is an R-matrix of H then R is invertible and

R−1 = (S ⊗ idH)(R).

Moreover, τ(R−1) is an R-matrix of H , where τ denotes the transposition map.

If c is the braiding of RepH afforded by R, then crev is the braiding of RepH afforded by

τ(R−1). We have crev = c if and only if R−1 = τ(R). In this case we say that R is a triangular

structure.

In finding quasitriangular structures on a Hopf algebra H , the following observation is useful.

Remark 2.6.8. If V is a vector space then the map

φV : V ⊗ V → Hom(V ∗, V ), φV (R)(p) = (p⊗ id)(R),

for all R ∈ V ⊗ V and p ∈ V ∗, is injective. When V is finite dimensional, φV is an isomorphism,

with inverse

φ−1
V : Hom(V ∗, V )→ V ⊗ V, φ−1

V (f) =
∑
i

ei ⊗ f(e∗i ),

where {ei} is a basis of V and {e∗i } is its dual basis.

Now let H be a Hopf algebra and R ∈ H ⊗H . Then R satisfies (2.20) and (2.21) if and only

if φH(R) is an algebra map, and, when H is finite dimensional, R satisfies (2.22) and (2.23) if

and only if φH(R) is a coalgebra anti-homomorphism. Thus, in the finite-dimensional setting, the
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set of elements of H ⊗ H satisfying (2.20)-(2.23) is in bijection with the set of bialgebra maps

H∗cop → H .

Example 2.6.9. LetG be a finite group. It was shown by A. Davydov in [Dav97] that quasitriangu-

lar structures on k[G] are parameterized by triples (A,B, β), where A and B are two isomorphic

normal abelian subgroups of G and β : Â × B̂ → k× is a non-degenerate, bi-multiplicative,

G-invariant form. The R-matrix corresponding to (A,B, β) is

R(A,B,β) =
1

|A|2
∑
a∈A
b∈B

∑
χ∈Â
ξ∈B̂

β(χ, ξ)χ(a)ξ(b) a⊗ b.

Example 2.6.10. The R-matrices of Sweedler’s Hopf algebra H4 were described by D. Radford in

[Rad93]. They are parameterized by the base field k. The R-matrix corresponding to λ ∈ k is

Rλ =
1

2
(1⊗ 1 + 1⊗ g + g ⊗ 1− g ⊗ g) +

λ

2
(x⊗ x+ x⊗ gx+ gx⊗ gx− gx⊗ x).

Example 2.6.11. The R-matrices of Nichols Hopf algebra E(n) were described by F. Panaite and

F. van Oystaeyen in [PvO99]. They are parameterized by the set of n×nmatrices with coefficients

in the base field k. For a matrix A = (aij) ∈ Mn(k) and two subsets P = {i1, i2, . . . , ir} and

F = {j1, j2, . . . , jr} of {1, 2, . . . , n} such that i1 < i2 < · · · < ir and j1 < j2 < · · · < jr,

let [A]P,F denote the r × r minor of A found at the intersection of rows i1, . . . , ir with columns

j1, . . . , jr. Then the R-matrix of E(n), corresponding to A, was described in [PvO99, Remark 2]

as:

RA =
1

2
(1⊗ 1 + 1⊗ c+ c⊗ 1− c⊗ c) +

1

2

∑
|P |=|F |

(−1)
|P |(|P |−1)

2 [A]P,F×

× (xP ⊗ c|P |xF + cxP ⊗ c|P |xF + xP ⊗ c|P |+1xF − cxP ⊗ c|P |+1xF ),
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where the sum is over all non-empty subsets P and F of {1, . . . , n}. We will use the following

equivalent expression for RA:

RA =
1

2

n∑
i=0

(−1)
i(i−1)

2

∑
|P |=|F |=i

[A]P,F (xP ⊗ xF + xP ⊗ cxF+

+ (−1)icxP ⊗ xF + (−1)i+1cxP ⊗ cxF )

where the sum is over all subsets P and F of {1, . . . , n} and the convention is that [A]∅,∅ = 1.

Notice that for n = 1 we recover the R-matrices of H4 = E(1) from Example 2.6.10.

G. Carnovale and J. Cuadra have showed in [CC04b] that the quasitriangular structure RA is

triangular if and only if A is symmetric.

The notion dual to R-matrix is that of r-form. It corresponds to a braiding on CorepH .

Lemma 2.6.12. Let H be a Hopf algebra. There is a bijective correspondence between the set

of braidings on CorepH and the set of linear maps r : H ⊗ H → k, satisfying the following

conditions:

r(xy, z) = r(x, z(1))r(y, z(2)), (2.25)

r(1, x) = ε(x), (2.26)

r(x, yz) = r(x(1), z)r(x(2), y), (2.27)

r(x, 1) = ε(x), (2.28)

x(1)y(1)r(y(2), x(2)) = r(y(1), x(1))y(2)x(2), (2.29)

for all x, y, z ∈ H . The braiding corresponding to r is

cU,V : U ⊗ V → V ⊗ U, u⊗ v 7→
∑
r(u(1), v(1))v(0) ⊗ u(0).

We denote by Corep(H, r) the braided monoidal category CorepH with braiding given by r.
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Definition 2.6.13. (1) Let H be a Hopf algebra. A coquasitriangular structure, or an r-form,

on H is a linear map r : H ⊗H → k satisfying conditions (2.25)-(2.29).

(2) A co-quasitriangular Hopf algebra is a pair (H, r), formed with a Hopf algebra H and an

r-form r on H .

Remark 2.6.14. Let H be a finite dimensional Hopf algebra. Let {ei} be a basis of H and {e∗i } its

dual basis. Then the map

ψ : (H ⊗H)∗ → H∗ ⊗H∗, ψ(r) =
∑

i,j r(ei, ej) e
∗
i ⊗ e∗j

is invertible, with inverse given by ψ−1(α ⊗ β)(x ⊗ y) = α(x)β(y), for all α, β ∈ H∗ and x,

y ∈ H . It is straightforward to check that r is an r-form on H if and only if ψ(r) is an R-matrix of

H∗.

The following two remarks mirror Remark 2.6.7 and Remark 2.6.8.

Remark 2.6.15. If r is an r-form on H then r is convolution invertible and

r−1 = r ◦ (S ⊗ idH).

Moreover, r−1τ is an r-form on H , where τ is the transposition map.

If c is the braiding of CorepH corresponding to r, then crev is the braiding of CorepH cor-

responding to r−1τ . We have crev = c if and only if r−1 = rτ . In this case we say that r is a

triangular structure.

Remark 2.6.16. If V is a vector space then the map

ϕV : (V ⊗ V )∗ → Hom(V, V ∗), ϕ(r)(v) = r(v,−)

for all v ∈ V , is invertible, with inverse

ϕ−1 : Hom(V, V ∗)→ (V ⊗ V )∗, ϕ−1(f)(v ⊗ w) = f(v)(w)
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for all v and w ∈ V .

If H is a Hopf algebra and r : H ⊗ H → k is a linear map, then r satisfies (2.25) and (2.26)

if and only if ϕH(r) is an algebra homomorphism, and r satisfies (2.27) and (2.28) if and only if

ϕH(r) is a coalgebra antihomomorphism. Thus, the set of elements r : H ⊗ H → k satisfying

(2.25)-(2.28) is in bijection with the set of bialgebra maps H → H∗ cop.

Example 2.6.17. Let G be a finite group. Then k[G] admits a co-quasitriangular structure if and

only ifG is abelian. In this case, restriction toG×G establishes a one-one correspondence between

r-forms on k[G] and bicharacters of G.

Definition 2.6.18. Let (C, c) and (D, d) be two braided monoidal categories. A monoidal functor

(F, J) : C → D is said to be braided if the diagram

F (X)⊗ F (Y ) F (Y )⊗ F (X)

F (X ⊗ Y ) F (Y ⊗X)

dF (X),F (Y )

JX,Y JY,X

F (cX,Y )

(2.30)

commutes for all X , Y ∈ C.

Definition 2.6.19. A braided monoidal equivalence of braided monoidal categories is a braided

monoidal functor which is also an equivalence of categories.

Example 2.6.20. Let (H,RH) and (K,RK) be two quasitriangular Hopf algebras. Consider the

monoidal functor (f, T ) from Lemma 2.4.10. Then (f, T ) is a braided monoidal functor from

Rep(H,RH) to Rep(K,HK) if and only if (f ⊗ f)(RK) = τ(T−1)RHT .

Example 2.6.21. Let (H, rH) and (K, rK) be two co-quasitriangular Hopf algebras. Then the

monoidal functor (f, σ) from Lemma 2.4.17 is a braided monoidal functor from Corep(H, rH) to

Corep(K, rK) if and only if rK(f ⊗ f)(x, y) = σ−1(y(1), x(1))r(x(2), y(2))σ(x(3), y(3)), for all x,

y ∈ H .

Definition 2.6.22. Let C be a braided tensor category with braiding c.

49



(1) The centralizer D′ of a tensor subcategoryD ⊆ C is the full tensor subcategory of C consist-

ing of all objects Y such that cY,X ◦ cX,Y = idX⊗Y , for all X ∈ C.

(2) The symmetric center of C is Zsym(C) = C ′.

Example 2.6.23. If (H,R) is a quasitriangular Hopf algebra then Zsym(Rep(H,R)) = RepHsym,

where Hsym is the following quotient Hopf algebra of H . Let R21 = τ(R), where τ is the transpo-

sition map, and let

ΦR : H∗ → H, ΦR(p) = (p⊗ idH)(R21R), p ∈ H∗.

Let K = ΦR(H∗) and K+ = K ∩ Ker(ε). Then HK+ = {hk | h ∈ H, k ∈ K+} is a Hopf ideal

of H , and Hsym = H/HK+.

The fact that Zsym(Rep(H,R)) = RepHsym was shown by S. Natale in [Nat06, Theorem 4.4].

Example 2.6.24. This example is the dual version of the previous one. The symmetric center of

Corep(H, r), where (H, r) is a coquasitriangular Hopf algebra, is Z(Corep(H, r)) = CorepHsym,

where Hsym is the following Hopf subalgebra of H . Let

Φr : H → H∗, Φr(x)(y) = r(y(1), x(1))r(x(2), y(2)), x, y ∈ H.

Then Hsym = (H∗Φr(H)+)⊥, where, for a subset I of H∗ we denote by I⊥ its annihilator, i.e.

I⊥ = {x ∈ H | f(x) = 0 for all f ∈ I}. Explicitly,

Hsym = {x ∈ H | x(1)r(x(2), y(1))r(y(2), x(3)) = ε(y)x, for all y ∈ H}, (2.31)

Equivalently, Hsym consists of all x ∈ H such that the squared braiding c2
H,H : H ⊗H → H ⊗H

fixes x⊗ y, for all y ∈ H .

Example 2.6.25. This is a particular case of the previous example. If Γ is a finite abelian group

and r : Γ× Γ→ k× is a bicharacter, then

Zsym(Corep(Γ, r)) = Corep(Γ⊥, r|Γ⊥),
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where Γ⊥ is the radical of Γ relative to the bicharacter b : Γ × Γ → k×, b(g, h) = r(g, h)r(h, g),

g, h ∈ Γ.

Remark 2.6.26. A braided tensor category is symmetric if and only if Zsym(C) = C. Symmetric

tensor categories have been described by P. Deligne. It is shown in [Del02] that any symmet-

ric finite tensor category is equivalent to the representation category of a finite supergroup. As

explained in [AEG01], any such category can be realized as the representation category of a mod-

ified supergroup Hopf algebra ∧V o kG, where G is a finite group with a fixed central element u

such that u2 = 1 and V is a finite dimensional representation of G on which u acts by −1. The

coalgebra structure of ∧V o kG is determined by

∆(g) = g ⊗ g, ε(g) = 1, g ∈ G, ∆(v) = 1⊗ v + v ⊗ u, ε(v) = 0, v ∈ V,

and the antipode is given by S(g) = g−1, S(v) = −v. This category is semisimple if and only if

V = 0.

Any symmetric finite tensor category has a unique, up to isomorphism, super-fiber functor (i.e.,

a braided tensor functor to the category sVec of super vector spaces). This functor is identified with

the forgetful tensor functor

Rep(∧V o kG)→ sVec.

To the opposite extreme of symmetric categories are the factorizable categories.

Definition 2.6.27. A braided tensor category is C is factorizable if Zsym(C) ' Vec.

We close this section by talking about ribbon structures. These are used to construct knot

invariants and 3-manifold invariants.

Definition 2.6.28. Let C be a braided tensor category with braiding c. A ribbon structure on C is a

natural isomorphism θ = {θX : X → X}X∈Ob(C) such that

θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y , (2.32)

(θX)∗ = θX∗ , (2.33)

51



for all X , Y ∈ C.

A ribbon tensor category is a braided tensor category together with a ribbon structure on it.

Lemma 2.6.29. Let (H, r) be a coquasitriangular Hopf algebra. The set of ribbon structures on

Corep(H, r) is in bijection with the set of ribbon elements of (H, r), i.e. convolution invertible

central elements α ∈ H∗ such that α ◦ S = α and

α(xy) = α(x(1))α(y(1))(r21 ∗ r)(x(2), y(2)),

for all x, y ∈ H . The ribbon structure associated to the ribbon element α is

θV : V → V, v 7→
∑
α(v(1))v(0).

Proof. Straightforward.

Remark 2.6.30. If (H, r) is a triangular Hopf algebra, i.e. if r−1 = r21, then the set of ribbon

elements of (H, r) is the set of involutive central group-like elements of H∗: {α ∈ G(H∗) ∩

Z(H∗) | α2 = ε}.

Example 2.6.31. Let Γ be a finite abelian group and r : Γ × Γ → k× a bicharacter on Γ. Then a

ribbon element of (k[Γ], r) is the same thing as a function α : Γ→ k× satisfying:

• α(g−1) = α(g), for all g ∈ Γ,

•
α(g + h)

α(g)α(h)
= r(h, g)r(g, h), for all g, h ∈ Γ.

Such a function is an example of a quadratic form on Γ (see Definition 4.1.2). The ribbon structure

on Corep(Γ, r) associated to α is

θV : V → V, v 7→ α(g)v, v ∈ Vg.

If (k[Γ], r) is triangular, then the set of ribbon elements of (k[Γ], r) is the set of involutive

characters of Γ: {χ ∈ Γ̂ | χ2 = 1}.
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Remark 2.6.32. The ribbon elements of (H, r) can be determined in the following way (see

[Rad94, Proposition 2] where the result appears in dual form). Let η be the Drinfeld element

of (H, r), i.e. η : H → k, η(h) = r(h(2), S(h(1))), for all h ∈ H . Then η is convolution invertible,

with inverse η−1(h) = r(S2(h(2)), h(1)), for all h ∈ H , and the element (η◦S)∗η−1 is a group-like

element of H∗. The map

γ 7→ γ ∗ η

establishes a one-to-one correspondence between the set of group-like elements γ ∈ H∗, satisfying

γ2 = (η ◦ S) ∗ η−1 and S2
H∗(p) = γ−1 ∗ p ∗ γ, for all p ∈ H∗, and the set of ribbon elements of

(H, r).

Remark 2.6.33. Any symmetric fusion category C has a canonical ribbon structure θ [EGNO15,

Section 9.5]. It differs from the trivial ribbon structure by a tensor automorphism of the identity

endofunctor of C. This give rise to a (possibly trivial) Z/2Z-grading:

C = C+ ⊕ C−, (2.34)

where C+ is the maximal Tannakian subcategory of C [Del02]. In terms of the canonical ribbon

structure θ, one has θX = ± idX when X ∈ C±.

Example 2.6.34. Let Γ be a finite abelian group and r : Γ × Γ → k× a bicharacter on Γ. If

Corep(Γ, r) is symmetric then the canonical ribbon structure of Corep(Γ, r) is

θV : V → V, v 7→ r(g, g)v, v ∈ Vg.

In this case, the objects of Corep(Γ, r)+ (respectively, of Corep(Γ, r)−) are those Γ-graded vector

spaces with support contained in {g ∈ Γ | r(g, g) = 1} (respectively, {g ∈ Γ | r(g, g) = −1}).
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2.7 The center construction

An important construction in the theory of tensor categories is the center construction. It associates

to a tensor category C a braided factorizable category Z(C). It is defined as follows.

Definition 2.7.1. Let (C,⊗,1, a, l, r) be a monoidal category. The center of C is the categoryZ(C)

constructed as follows:

• An object ofZ(C) is a pair (Z, γ−,Z), whereZ is an object of C and γ−,Z = {γX,Z : X⊗Z →

Z ⊗X}X∈C is a natural isomorphism, making the following diagram commutative:

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

aX,Y,Z

γX⊗Y,Z

idX ⊗γY,Z

aZ,X,Y

a−1
X,Z,Y

γX,Z⊗idY

for all X , Y ∈ C.

• A morphism f : (Z, γ−,Z) → (Z ′, γ−,Z′) in Z(C) is a morphism f : Z → Z ′ in C such that

the diagram

X ⊗ Z Z ⊗X

X ⊗ Z ′ Z ′ ⊗X

γX,Z

idX ⊗f f⊗idX

γX,Z′

is commutative for all X ∈ C.

Remark 2.7.2. Z(C) is a braided monoidal category. The tensor product of two objects (Y, γ−,Y )

and (Z, γ−,Z) is

(Y, γ−,Y )⊗ (Z, γ−,Z) = (Y ⊗ Z, γ−,Y⊗Z),

where γX,Y⊗Z , for X ∈ C, is the morphism defined by the following commutative diagram:
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X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

γX,Y⊗Z

a−1
X,Y,Z

γX,Y ⊗idZ

a−1
Y,Z,X

aY,X,Z

idY ⊗γX,Z

The braiding of Z(C) is given by

γX,Y : (X, γ−,X)⊗ (Y, γ−,Y )→ (Y, γ−,Y )⊗ (X, γ−,X).

Remark 2.7.3. There is an obvious forgetful monoidal functor

F : Z(C)→ C, (Z, γ−,Z) 7→ Z.

If C is a finite tensor category then Z(C) is a finite tensor category. In particular, given

a finite dimensional Hopf algebra H , Z(RepH) is a finite tensor category. Moreover, there

is a fiber functor F̃ : Z(RepH) → Vec, namely, the composition of the forgetful functors

Z(RepH) → RepH → Vec. By Tannaka-Krein reconstruction, D(H) = End(F̃ ) is a Hopf

algebra and Z(RepH) ' RepD(H). This Hopf algebra is called the Drinfeld double of H . It can

be constructed explicitly as follows.

Let H∗ be the dual of H . Then H∗ is an H-bimodule with the following actions:

h ⇀ p = p(2)(h)p(1) and p ↼ h = p(1)(h)p(2),

for all h ∈ H and p ∈ H∗.

Definition 2.7.4. The Drinfeld double of a finite dimensional Hopf algebra H is the Hopf algebra

D(H) with underlying vector space H∗ ⊗H , product

(p⊗ h)(p′ ⊗ h′) = p
(
h(1) ⇀ p′ ↼ S−1(h(3))

)
⊗ h(2)h

′ (2.35)

and the tensor product coalgebra structure of H∗ cop ⊗H .
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Remark 2.7.5. The canonical braiding of Z(RepH) corresponds to the braiding of RepD(H)

associated to the R-matrix

R =
∑

(1⊗ ei)⊗ (e∗i ⊗ 1),

where {ei} is a basis of H and {e∗i } is the dual basis.

It is well known that a representation of a Drinfeld double D(H) is the same thing as a (left-

right) Yetter-Drinfeld H-module. We recall this equivalent definition and the connection between

the two notions.

Definition 2.7.6. Let H be a finite dimensional Hopf algebra. The category HYDH of finite-

dimensional (left-right) Yetter-Drinfeld H-modules (or crossed H-bimodules) is the category with

• Objects: finite-dimensional vector spaces V endowed with a left H-module structure ′ · ′ and

a right H-comodule structure δ such that:

δ(h · v) =
∑
h(2) · v(0) ⊗ h(3)v(1)S

−1(h(1)),

for all h ∈ H and v ∈ V .

• Morphisms: linear maps that are H-linear and H-colinear.

Remark 2.7.7. The category of Yetter-Drinfeld modules is braided and monoidal. The tensor

product of two objects, V , W ∈ HYDH , is the vector space V ⊗W with H-action and H-coaction

given, respectively, by

h · (v ⊗ w) =
∑

h(1) · v ⊗ h(2) · w,

δ(v ⊗ w) =
∑

v(0) ⊗ w(0) ⊗ w(1)v(1).

The unit object is k with trivial H-action and trivial H-coaction. The associativity and the left and

right unit constraints are the same as for the category of vector spaces. The braiding of HYDH is:

cU,V : U ⊗ V → V ⊗ U, u⊗ v 7→
∑

v(0) ⊗ v(1) · u, (2.36)

56



for all u ∈ U , v ∈ V and U , V ∈ HYDH .

Proposition 2.7.8. Given a finite dimensional Hopf algebra H , there is a braided isomorphism

Rep(D(H),R) ∼= HYDH .

Proof. Let (F, J) : Rep(D(H),R)→ HYDH be the monoidal functor defined as follows:

• If V ∈ RepD(H), then F (V ) = V , with H-action and H-coaction given, respectively, by

h · v = (1 ./ h)v, (2.37)

v 7→
∑
i

(e∗i ./ 1)v ⊗ ei, (2.38)

for all h ∈ H and v ∈ V , where {ei} is a basis of H and {e∗i } is the dual basis.

• If f is a morphism in RepD(H) then F (f) = f is a morphism in HYDH .

• JU,V : F (U)⊗ F (V )→ F (U ⊗ V ), u⊗ v 7→ u⊗ v, u ∈ U, v ∈ V .

It is easy to check that (F, J) is well defined and is an isomorphism of braided categories. For

more details see [Mont93, Proposition 10.6.16] or [Kas95, Theorem IX.5.2].

Remark 2.7.9. There is also a notion of a left-left Yetter-Drinfeld H-module. Namely, such an

object is a vector space V together with a left H-action ′ · ′ and left H-coaction δ, such that

δ(h · v) =
∑
h(1)v(−1)S(h(3))⊗ h(2) · v(0),

for all h ∈ H and v ∈ V .

Finite dimensional left-left Yetter-Drinfeld modules form a braided monoidal category denoted

H
HYD. The tensor product of two objects V , W ∈ H

HYD is the vector space V ⊗W with H-action

and H-coaction given, respectively, by

h · (v ⊗ w) =
∑

h(1) · v ⊗ h(2) · w,

δ(v ⊗ w) =
∑

v(−1)w(−1) ⊗ v(0) ⊗ w(0).

The braiding is given by
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cU,V : U ⊗ V → V ⊗ U, u⊗ v 7→
∑
u(−1) · v ⊗ u(0),

for all u ∈ U , v ∈ V and U , V ∈ H
HYD.

Remark 2.7.10. If G is a finite group then a left-left (or a left-right) Yetter-Drinfeld kG-module is

the same thing as a G-graded vector space V = ⊕g∈GVg, together with a G-module structure, such

that h · Vg ⊆ Vghg−1 , for all g, h ∈ G. We denote kG
kGYD by G

GYD.

If G is abelian then the simple objects of G
GYD are {δ(g,χ)}g∈G,χ∈Ĝ, where δ(g,χ) = k with

G-action h · 1 = χ(h), h ∈ G, and G-coaction 1 7→ g ⊗ 1. If V ∈ G
GYD then

V =
⊕
g∈G

Vg =
⊕
g∈G

⊕
χ∈Ĝ

V χ
g
∼=

⊕
g∈G,χ∈Ĝ

dim(V χ
g )δ(g,χ),

where V χ
g = {v ∈ Vg | h · v = χ(h)v, for all h ∈ G}.

Remark 2.7.11. A group homomorphism α : G → G′ induces a functor indα : G
GYD → G′

G′YD.

If V ∈ G
GYD, then indα(V ) = V with action ·′ and coaction δ′ given by

h′ ·′ v = α−1(h′) · v and δ′(v) = (α⊗ id)δ(v),

for all v ∈ V and g′ ∈ G′.

Remark 2.7.12. If C is a braided monoidal category, with braiding c, then there exist canonical

braided embeddings

C ↪→ Z(C) : X 7→ (X, c−,X) and Crev ↪→ Z(C) : X 7→ (X, c−1
X,−). (2.39)

The intersection of the images of C and Crev inZ(C) is equivalent toZsym(C), the symmetric center

of C.

Example 2.7.13. Consider a finite abelian group Γ and a bicharacter r on Γ. We haveZ(CorepΓ) ∼=
Γ
ΓYD. Using the description of the objects of Γ

ΓYD given in Remark 2.7.10, the image of Corep(Γ, r)

in Γ
ΓYD consists of those Γ-graded vector spaces V = ⊕g∈ΓVg, with Γ-action given by: h · v =

r(h, g)v, for all v ∈ Vg and g, h ∈ Γ.
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Now (Corep(Γ, r))rev = Corep(Γ, r−1 ◦ τ), so the image of (Corep(Γ, r))rev in Γ
ΓYD consists

of those Γ-graded vector spaces V = ⊕g∈ΓVg, with Γ-action given by: h · v = r−1(g, h)v, for all

v ∈ Vg and g, h ∈ Γ.

Thus, the intersection of Corep(Γ, r) and (Corep(Γ, r))rev in Γ
ΓYD consists of those Γ-graded

vector spaces V = ⊕g∈ΓVg with Γ-action given by

h · v = r(h, g)v = r−1(g, h)v,

for all v ∈ Vg and g, h ∈ Γ. In particular, if Vg 6= 0 then r(g, h)r(h, g) = 1, for all h ∈ Γ. Thus,

V = ⊕g∈Γ⊥Vg ∈ CorepΓ⊥ ∼= Zsym(Corep(Γ, r)) (see Example 2.6.25).

Remark 2.7.14. The braided monoidal category Γ
ΓYD has a canonical ribbon structure θ, given by

θV : V → V, θV (v) = χ(g)v, v ∈ V χ
g .

2.8 Module categories

Just as modules are useful in studying algebras, so too module categories are useful in studying

tensor categories.

Definition 2.8.1. Let (C,⊗,1, a, l, r) be a finite tensor category. A (left) C-module category is

a quadruple (M,⊗,m, l), consisting of a finite, k-linear, abelian category M, a bifunctor ⊗ :

C ×M→M, called the action (or module product) bifunctor, and two natural isomorphisms

m = {mX,Y,M : (X ⊗ Y )⊗M → X ⊗ (Y ⊗M)}X,Y ∈Ob C,M∈Ob(M),

l = {lM : 1⊗M →M}M∈Ob(M),
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called the module associativity and module unit constraints, respectively, satisfying the pentagon

and the triangle axioms:

(X ⊗ Y )⊗ (Z ⊗M)

((X ⊗ Y )⊗ Z)⊗M X ⊗ (Y ⊗ (Z ⊗M))

(X ⊗ (Y ⊗ Z))⊗M X ⊗ ((Y ⊗ Z)⊗M)

mX,Y,Z⊗MmX⊗Y,Z,M

aX,Y,Z⊗idM

mX,Y⊗Z,M

idX ⊗mY,Z,M

(X ⊗ 1)⊗M X ⊗ (1⊗M)

X ⊗M
rX⊗idM

mX,1,M

idX ⊗lM

Remark 2.8.2. There is also a notion of a right module category, defined in a similar way. Equiv-

alently, a right C-module category is the same thing as a left Cop-module category.

Example 2.8.3. Let G be a finite group. If H is a subgroup of G and ψ ∈ Z2(H,k×) then the

category RepψH , of projective representations of H with Schur multiplier ψ, is a left RepG-

module category. The module product is

W ⊗ V := ResGH(W )⊗ V, W ∈ RepG, V ∈ RepψH ,

where ResGH : RepG→ RepH is the restriction functor.

Definition 2.8.4. Let C andD be finite tensor categories. A (C,D)-bimodule category is a (locally)

finite k-linear abelian category M together with a left C-module category structure (⊗,m, l), a

right D-module category structure (⊗, n, r), and a natural isomorphism

b = {bX,M,Y : (X ⊗M)⊗ Y → X ⊗ (M ⊗ Y )}X∈C,M∈M,Y ∈D

called the middle associativity constraint, such that the diagrams
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(X ⊗ Y )⊗ (M ⊗ Z)

((X ⊗ Y )⊗M)⊗ Z X ⊗ (Y ⊗ (M ⊗ Z))

(X ⊗ (Y ⊗M))⊗ Z X ⊗ ((Y ⊗M)⊗ Z)

mX,Y,M⊗ZbX⊗Y,M,Z

mX,Y,M⊗idZ

bX,Y⊗M,Z

idX ⊗bY,M,Z

(X ⊗M)⊗ (W ⊗ Z)

X ⊗ (M ⊗ (W ⊗ Z)) ((X ⊗M)⊗W )⊗ Z

X ⊗ ((M ⊗W )⊗ Z) (X ⊗ (M ⊗W ))⊗ Z

nX⊗M,W,Zb−1
X,M,W⊗Z

idX ⊗nM,W,Z

b−1
X,M⊗W,Z

b−1
X,M,W⊗idZ

commute for all X , Y ∈ C, Z, W ∈ D and M ∈M.

Remark 2.8.5. It can be shown that a (C,D)-bimodule category is the same thing as a left C�Dop-

module category.

Definition 2.8.6. Let (M,⊗,m, l) and (M′,⊗′,m′, l′) be two module categories over a finite

tensor category C. A C-module functor fromM toM′ is a pair (F, s), where F : M→M′ is a

functor and

sX,M : F (X ⊗M)→ X ⊗′ F (M)

is a natural isomorphism, such that the following diagrams are commutative:

(X ⊗ Y )⊗′ F (M)

F ((X ⊗ Y )⊗M) X ⊗′ (Y ⊗′ F (M))

F (X ⊗ (Y ⊗M)) X ⊗′ F (Y ⊗M)

m′
X,Y,F (M)sX⊗Y,M

F (mX,Y,M )

sX,Y⊗M

idX′ ⊗sY,M

F (1⊗M) 1⊗′ F (M)

F (M)

F (lM )

s1,M

l′
F (M)
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for all X , Y ∈ Ob(C) and all M ∈M.

Definition 2.8.7. Let (F, s), (G, t) : M → M′ be two C-module functors. A morphism of C-

module functors from (F, s) to (G, t) is a natural transformation µ : F → G such that the following

diagram commutes for all X ∈ C and M ∈M:

F (X ⊗M) X ⊗′ F (M)

G(X ⊗M) X ⊗′ G(M)

sX,M

µX⊗M idX ⊗µM
tX,M

Remark 2.8.8. C-module functors from M to M′ and morphisms of C-module functors form a

category, denoted by FunC(M,M′).

Module categories over a finite tensor category C can be studied by studying algebras in C. It

can be shown (see Proposition 2.8.16) that every C-module category is equivalent to the category

of modules in C over an algebra A in C.

In Remark 2.1.3 we pointed out that the notion of an algebra can be defined in any category

equipped with a tensor product, a unit element and associativity and left and right unit constraints.

We make that precise now.

Definition 2.8.9. Let (C,⊗,1, a, l, r) be a monoidal category. An algebra in C is a triple (A,m, u),

consisting of an object A in C and two morphisms m : A ⊗ A → A and u : 1 → A, called

multiplication and unit, respectively, such that the following diagrams are commutative:

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A⊗ A

A

m⊗idA

aA,A,A

idA⊗m

m m

A⊗ A

1⊗ A A⊗ 1

A

m

u⊗idA

lA

idA⊗u

rA

where aA,A,A, lA and rA are the obvious maps.

Example 2.8.10. An algebra in k-Vec is a usual k-algebra.
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Example 2.8.11. Let B be a bialgebra. Then an algebra in RepB is a finite dimensional k-algebra

(A,m, u) together with a B-action, such that m and u are B-linear, that is

b · (xy) =
∑

(b(1) · x)(b(2) · y),

b · 1A = ε(b)1A,

for all b ∈ B and x, y ∈ A. Algebras in RepB are called (left) B-module algebras.

Example 2.8.12. Let B be a bialgebra. Then an algebra in CorepB is a finite dimensional k-

algebra (A,m, u) together with a B-coaction δ, such that m and u are B-colinear, that is

δ(xy) =
∑

x(0)y(0) ⊗ x(1)y(1),

δ(1A) = 1A ⊗ 1B,

for all x, y ∈ A. Algebras in CorepB are called (right) B-comodule algebras.

Example 2.8.13. If C is a monoidal category and X ∈ C has a left dual X∗, then X ⊗ X∗ is an

algebra in C with multiplication m = idX ⊗ evX ⊗ idX∗ and unit u = coevX (notice that we have

suppressed the associativity and the left and right unit constraints). Similarly, if X has a right dual

∗X then ∗X ⊗X is an algebra in C with multiplication m = id∗X ⊗ ev′X ⊗ idX and unit u = coev′X .

Accompanying the notion of an algebra A in C is the notion of A-module in C.

Definition 2.8.14. Let (A,m, u) be an algebra in a monoidal category (C,⊗,1, a, l, r). Then the

category CA, of (right) A-modules in C, is the category with:

(1) Objects: Pairs (M,ρ), where M is an object of C and ρ : M ⊗ A → M is a morphism in C

such that the following diagrams commute:
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M ⊗ (A⊗ A) (M ⊗ A)⊗ A

M ⊗ A M ⊗ A

M

idM ⊗m

a−1
M,A,A

ρ⊗idA

ρ ρ

M ⊗ 1 M ⊗ A

M M

idM ⊗u

ρr−1
M

idM

(2) Morphisms: f : (M,ρM) → (N, ρN) is a morphism of A-modules in C if f : M → N is a

morphism in C such that the following diagram is commutative:

M ⊗ A N ⊗ A

M N

f⊗idA

ρM ρN

f

Proposition 2.8.15. Let A be an algebra in a monoidal category (C,⊗,1, a, l, r). Then the tensor

product, the associativity constraint and the left unit constraint induce a C-module structure on

CA. More precisely, the module product bifunctor is

C × CA → CA, (X, (M,ρ)) 7→ (X ⊗M, (idX ⊗ρ)aX,M,A)

the module associativity is {aX,Y,M}X,Y ∈C,M∈CA , and the module unit constraint is {lM}M∈CA .

Proof. Straightforward.

Proposition 2.8.16. Let C be a finite tensor category. If A is an algebra in C then CA is a finite k-

linear abelian C-module category. Conversely, ifM is a finite k-linear abelian C-module category

then there exists an algebra A in C such thatM∼= CA as C-module categories.

Proof. See [Ost03, Theorem 3.1] and [EO04, Theorem 3.17].

Definition 2.8.17. Two algebras, A and B, in a finite tensor category C are Morita equivalent if

and only if CA and CB are isomorphic as left C-module categories.

Remark 2.8.18. When C = k-Vec we recover the classical notion of Morita equivalence for k-

algebras.
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The class of module categories most useful to study is that formed by exact module categories.

These should be thought as the counterparts of projective modules from ring theory.

Definition 2.8.19. Let C be a finite tensor category.

1. A C-module categoryM is exact if, for any projective object P ∈ C and any objectM ∈M,

the object P ⊗M is projective inM.

2. An algebra A in C is exact if CA is exact.

Example 2.8.20. A k-algebra A is exact, as an algebra in k-Vec, if and only if A is semisimple.

Indeed, since k is a projective object of k-Vec, (k-Vec)A = RepAop is exact if and only if every

Aop-module M = k⊗M is projective.

2.9 2-cocycles and Galois objects

We will see in the next section that tensor functors between representation, respectively corepre-

sentation, categories of Hopf algebras are completely determined, up to monoidal natural isomor-

phism, by morphisms and twists, respectively 2-cocycles, of Hopf algebras. Describing the latter

turns out to be an involved task. One way to achieve this is with the help of Galois objects. We

present in this section left 2-cocycles and discuss their connection to Galois objects.

We begin by recalling the definition of right 2-cocycles and introducing their left counterpart.

Definition 2.9.1. Let H be a Hopf algebra.

(1) A right 2-cocycle on H is a convolution invertible map σ : H ⊗H → k such that σ(1, x) =

σ(x, 1) = ε(x), for all x ∈ H , and

σ(x(1)y(1), z)σ(x(2), y(2)) = σ(x, y(1)z(1))σ(y(2), z(2))

for all x, y, z ∈ H .
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(1) A left 2-cocycle on H is a convolution invertible linear map σ : H ⊗ H → k such that

σ(1, x) = σ(x, 1) = ε(x), for all x ∈ H , and

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2))

for all x, y, z ∈ H .

Remark 2.9.2. The set of right 2-cocycles on H is denoted by Z2
r(H), while the set of left 2-

cocycles on H , by Z2
l (H). If σ : H ⊗H → k is a convolution invertible map then σ ∈ Z2

r(H) if

and only if σ−1 ∈ Z2
l (H). Thus, it suffices to know, and work with, only one type of 2-cocycles.

Gauge equivalence for left 2-cocycles is as follows (compare with Definition 2.4.30):

Definition 2.9.3. Two left 2-cocycles σ and σ′ are gauge equivalent if and only if there exists a

convolution invertible map α : H → k such that α(1H) = 1k and

σ′(x, y) = α−1(x(1))α
−1(y(1))σ(x(2), y(2))α(x(3)y(3))

for all x, y ∈ H .

The condition for a left 2-cocycle to be invariant is the same as for right 2-cocycles (see Defi-

nition 2.4.22).

Definition 2.9.4. A left 2-cocycle σ on H is invariant if and only if

σ(x(1), y(1))x(2)y(2) = x(1)y(1)σ(x(2), y(2)) (2.40)

for all x, y ∈ H .

Remark 2.9.5. An invariant left 2-cocycle is an invariant right 2-cocycle, and vice versa. The set

of invariant 2-cocycles of H is denoted by Z2
inv(H). It is a group with convolution product.

Remark 2.9.6. If H is a cocommutative Hopf algebra then Z2
l (H) = Z2

r(H) = Z2
inv(H). For

example, if G is a group then the notions of right and left 2-cocycles on k[G] coincide. In this

case, the restriction to G×G of a 2-cocycle on k[G] is a usual 2-cocycle on G. Thus, Z2
inv(k[G]) ∼=

Z2(G,k×).
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Remark 2.9.7. If α : H → k is a convolution invertible map such that α(1H) = 1k and

x(1)α(x(2)) = α(x(1))x2, for all x ∈ H , then ∂(α) : H ⊗H → k defined by

∂(α)(x) = α−1(x(1))α
−1(y(1))α(x(2)y(2)), x, y ∈ H

is an invariant 2-cocycle onH . Such 2-cocycles are called 2-coboundaries. The set of 2-coboundaries

is a central subgroup of Z2
inv(H), denoted by B2

inv(H).

Remark 2.9.8. Two invariant 2-cocycles σ and τ are gauge equivalent if and only if there exists a

2-coboundary ∂(α) such that σ = ∂(α)τ . We also say, in this case, that σ and τ are cohomologous.

Definition 2.9.9. The second invariant cohomology group of H is the quotient group

H2
inv(H) = Z2

inv(H)/B2
inv(H)

Remark 2.9.10. The second invariant cohomology group was introduced by P. Schauenburg in

[Sch02] in his generalization of Kac’s exact sequence [Kac68]. J. Bichon and G. Carnovale have

given a comprehensive study of the group in [BC06]. Their motivation came, primarily, from the

study of the biGalois group BiGal(H) of a Hopf algebra H , but also from the interplay of invariant

cohomology with Brauer groups and projective representations. If the elements of BiGal(H) can be

thought of as isomorphism classes of k-linear monoidal autoequivalences of CorepH , then Bichon

and Carnovale showed in [BC06, Theorem 3.8] that the elements of H2
inv(H) can be identified with

those classes of autoequivalences that are isomorphic, as functors, with the identity functor.

As we said at the beginning, 2-cocycles can be studied by studying Galois objects.

Definition 2.9.11. Let H be a Hopf algebra. A right H-Galois object is a non-zero right H-

comodule algebra A such that {a ∈ A | δ(a) = a⊗ 1H} = k1A, and the following composition is

bijective:

A⊗ A idA⊗δ−−−→ A⊗ A⊗H mA⊗idH−−−−−→ A⊗H

A morphism of right H-Galois objects is an algebra map which is right H-colinear.
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Remark 2.9.12. The set of isomorphism classes of right H-Galois objects is denoted by Gal(H).

Every 2-cocycle gives rise to a Galois object in the following way. If σ is a left 2-cocycle on a

Hopf algebra H , then the vector space H , with the product

x ·σ y = σ(x(1), y(1))x(2)y(2), x, y ∈ H ,

and right coaction given by the comultiplication ∆ ofH , is a rightH-Galois object and it is denoted

by σH . If σ′ is another left 2-cocycle on H then σ′H is isomorphic to σH if and only if σ′ and σ are

gauge equivalent.

The H-Galois objects of the type σH are the ones with the normal basis property, i.e. those

that are isomorphic to H as H-comodules. If A is a right H-Galois object with the normal basis

property and if ψ : H → A is a right H-colinear isomorphism with ψ(1) = 1, then A ∼= σH ,

where

σ(x, y) = ε
(
ψ−1

(
ψ(x)ψ(y)

))
, x, y ∈ H

It is known that all H-Galois objects are cleft if either H is finite dimensional [KC76] or H

is pointed [G99]. In these cases, we see, from this discussion, that the set of gauge equivalence

classes of 2-cocycles on H is in bijection with Gal(H).

Example 2.9.13. The set Gal(E(n)) was described in [PvO00]. Using this description, invariant 2-

cocycles onE(n) were studied in [CC04b] and [BC06]. It was shown in [BC06] that H2
inv(E(n)) ∼=

Symn(k), the additive group of n × n symmetric matrices with entries in k. The cohomology

class corresponding to M = (mij) ∈ Symn(k) is represented by the invariant 2-cocycle σM :

E(n)⊗ E(n)→ k defined by:

σM(c⊗ c) = 1, σM(xi ⊗ xj) = mij, i, j = 1, . . . , n,

σM(xP ⊗ xQ) = σM(cxP ⊗ xQ) = (−1)|P |σM(xP ⊗ cxQ) = (−1)|P |σM(cxP ⊗ cxQ),

for all P , Q ⊆ {1, . . . , n}, σM(xP ⊗ xQ) = 0 if |P | 6= |Q|, and some recurrence formula allowing

to compute σM(xP , xQ) when |P | = |Q|.
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Given a left 2-cocycle σ on a Hopf algebra H , we can deform the multiplication of H to obtain

a new Hopf algebra Hσ. This procedure was introduced by Y. Doi [Doi93].

Definition 2.9.14. Let σ be a left 2-cocycle on a Hopf algebra H . The σ-deformation of H is the

Hopf algebra Hσ with the coalgebra structure of H and the product

x ·σ y = σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3)), x, y ∈ H .

Remark 2.9.15. A left 2-cocycle σ on H is invariant if and only if the σ-deformation does not

change the multiplication of H; in other words, if Hσ = H as Hopf algebras.

Remark 2.9.16. Let σ be a left 2-cocycle on H . If r is an r-form on H , then rσ = (στ) ∗ r ∗ σ−1,

is an r-form on Hσ. Explicitly,

rσ(x, y) = σ(y(1), x(1))r(x(2), y(2))σ
−1(x(3), y(3)), x, y ∈ H. (2.41)

We close this section by considering the dual version of 2-cocycles, namely twists. We mention

only those results which will be used later.

Definition 2.9.17. Let H be a Hopf algebra.

(1) A right twist onH is an invertible element T ∈ H⊗H such that (ε⊗ id)(T ) = (id⊗ε)(T ) =

1 and

(∆⊗ id)(T )(T ⊗ 1) = (id⊗∆)(T )(1⊗ T ).

(2) A left twist onH is an invertible element T ∈ H⊗H such that (ε⊗ id)(T ) = (id⊗ε)(T ) = 1

and

(T ⊗ 1)(∆⊗ id)(T ) = (1⊗ T )(id⊗∆)(T ).

(3) A left, or right, twist T is invariant if T∆(x) = ∆(x)T , for all x ∈ H .
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Remark 2.9.18. Let H be a finite dimensional Hopf algebra. Consider the invertible map:

ψ : (H ⊗H)∗ → H∗ ⊗H∗, ψ(σ) =
∑

i,j σ(ei, ej) e
∗
i ⊗ e∗j ,

where {ei} be a basis of H and {e∗i } is the dual basis. It is easy to check that σ is a left (right)

2-cocycle on H if and only if ψ(σ) is a left (right) twist on H∗.

Remark 2.9.19. An invariant left twist is the same thing as an invariant right twist. We call these,

simply, invariant twists. Just as with cocycles, we can define a second invariant cohomology group

of H by considering cohomology classes of invariant twists. By the previous remark, this group is

H2
inv(H

∗).

The following is the twist analogue of the σ-deformation.

Definition 2.9.20. Let T be a left twist on a Hopf algebra H . The twist deformation of H by T is

the Hopf algebra HT with the algebra structure of H and the comultiplication

∆T (x) = T∆(x)T−1, x ∈ H .

Remark 2.9.21. If T is a left twist on H and R is an R-matrix on H then RT = τ(T )RT−1 is an

R-matrix on HT .

2.10 Autoequivalences of finite tensor categories

To better understand tensor categories it is important to know their symmetries. In the case of the

(co)-representation categories of Hopf algebras, these symmetries are determined by morphisms

and twists (2-cocycles) of Hopf algebras. We make this precise in the present section and provide

examples of tensor auto-equivalences of tensor categories. The results presented here are based on

the exposition of A. Davydov in [Dav10].

Given a finite tensor category C we denote by Aut⊗(C) the group of monoidal isomorphism

classes of tensor auto-equivalences of C.
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Recall from Lemma 2.4.10 that, if f : K → H is an algebra map between two Hopf algebras

and T ∈ H ⊗H is a right twist of H satisfying

(f ⊗ f)∆(x) = T−1∆
(
f(x)

)
T, (2.42)

for all x ∈ K, then (f, T ) : RepH → RepK is a tensor functor.

We can rephrase this in a slightly different form. Notice that T−1 is a left twist of H and

∆T−1
(x) = T−1∆

(
x
)
T , x ∈ H , is the comultiplication of the twist deformation HT−1 . Condition

(2.42) is then equivalent to requiring f : K → HT−1 to be a coalgebra map.

The following concept was introduced and studied by A. Davydov in [Dav10].

Definition 2.10.1. Let H and K be Hopf algebras. A twisted homomorphism from K to H is a

pair (T, f), where T is a right twist of H and f : K → HT−1 is a Hopf algebra map.

We see from the above discussion that every twisted homomorphism (T, f) : H → K gives

rise to a tensor functor (f, T ) : RepH → RepK.

Any tensor functor RepH → RepK is monoidal isomorphic to a functor (f, T ). To see this, let

us assume for now that a tensor functor (F, J) : RepH → RepK preserves dimensions. Then, it

follows from Proposition 2.3.28, that F is isomorphic to Resf , for some algebra map f : K → H .

Using Remark 2.4.24, there exists a monoidal structure J ′ on Resf such that (F, J) is natural

monoidal isomorphic to (Resf , J
′). According to Lemma 2.4.10, J ′ = JT , for some right twist T

on H , satisfying (f ⊗ f)∆(x) = T−1∆(f(x))T , for all x ∈ K. Thus, (F, J) ∼= (f, T ).

We have proved the following:

Proposition 2.10.2. Let H and K be two Hopf algebras. If (F, J) : RepH → RepK is a tensor

functor then there exists a twisted homomorphism (T, f) : K → H such that (F, J) ∼= (f, T ).

Remark 2.10.3. The fact that a tensor functor F : RepH → RepK preserves dimensions follows

from a more general fact in the theory of tensor categories. Namely, any object X in a finite

tensor category C has a Frobenius-Peron dimension. It is defined as the largest non-negative real
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eigenvalue of the matrix N = (Nij)1≤i,j≤n, where Nij , j = 1, . . . , n, are the multiplicities with

which the simple objects of C, X1, . . . , Xn, appear in the decomposition of X ⊗ Xi: X ⊗ Xi
∼=∑

j NijXj . If V is a finite-dimensional representation of a finite dimensional Hopf algebra H then

its Frobenius-Perron dimension equals its dimension as a vector space. It can be shown that tensor

functors between finite tensor categories preserve Frobenius-Perron dimensions (see [EGNO15,

Proposition 4.5.7]).

Since we are interested in equivalences of tensor categories, we can ask when is (f, T ) an

equivalence. The following should come as no surprise.

Proposition 2.10.4. LetH andK be Hopf algebras and (f, T ) : RepH → RepK a tensor functor.

Then (f, T ) is an equivalence if and only if f : K → HT−1
is an isomorphism.

Proof. Straightforward.

Corollary 2.10.5. If RepH and RepK are tensor equivalent then K ∼= HT−1
, for some right twist

T on H .

Let Auttw
Hopf(H) be the set of twisted automorphisms of H , i.e. the set of those twisted homo-

morphisms (T, f) : H → H , with f an invertible homomorphism from H to HT−1 . There is a

group operation on Auttw
Hopf(H), namely

(T ′, f ′)(T, f) = (T ′(f ′ ⊗ f ′)(T ), f ′f), (T, f), (T ′, f ′) ∈ Auttw
Hopf(H).

The inverse of (T, f) is ((f−1 ⊗ f−1)(T−1), f−1) and the identity element is (1⊗ 1, idH).

It follows from Proposition 2.10.2 and Proposition 2.10.4 that there is a surjective group ho-

momorphism

ϕ : Auttw
Hopf(H)→ Aut⊗(RepH), (T, f) 7→ ̂(f, T )−1,

where (̂f, T ) denotes the isomorphism class of (f, T ).

The kernel of ϕ is given as follows. Let H×ε be the set of invertible elements u ∈ H with

ε(u) = 1. Then there is an injective group homomorphism
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∂ : H×ε → Auttw
Hopf(H), ∂(u) = (∆(u)u−1 ⊗ u−1, u(−)),

where u(−) : H → H is the conjugation automorphism: u(x) = uxu−1, x ∈ H . The kernel of ϕ

coincides with the image of ∂.

Thus, we have the following description of the group of symmetries of the tensor category

RepH:

Proposition 2.10.6. The sequence

1→ H×ε
∂−→ Auttw

Hopf(H)
ϕ−→ Aut⊗(RepH)→ 1

is a short exact sequence of groups.

Corollary 2.10.7. If H is a commutative finite dimensional Hopf algebra then

Aut⊗(RepH) ∼= H2
inv(H

∗) o AutHopf(H).

Proof. By Proposition 2.10.6, Aut⊗(RepH) is isomorphic to the quotient group Auttw
Hopf(H)/∂(H×ε ).

Since H is commutative, the elements of ∂(H×ε ) have the form (∆(u)(u−1 ⊗ u−1), idH), with

u ∈ H×ε . Moreover, any twist of H is an invariant twist, and, if (T, f) ∈ Auttw
Hopf(H) then

∂(H×ε )(T, f) = {(∆(u)(u−1 ⊗ u−1)T, f) | u ∈ H×ε }.

Thus, the map

Auttw
Hopf(H)/∂(H×ε )→ H2

inv(H
∗)× AutHopf(H), ∂(H×ε )(T, f) 7→ (T̂ , f),

is well defined and is a bijection. The same map is easily seen to be a group homomorphism

between Auttw
Hopf(H)/∂(H×ε ) and the semidirect product H2

inv(H
∗)oAutHopf(H) with respect to the

left action of AutHopf(H) on H2
inv(H

∗): f . T̂ = ̂(f ⊗ f)(T ).
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Remark 2.10.8. There are two group homomorphisms:

AutHopf(H) → Auttw
Hopf(H), f 7→ (1⊗ 1, f),

H2
inv(H

∗) → Auttw
Hopf(H), T̂ 7→ (T, idH).

Composing these with the map ϕ : Auttw
Hopf(H) → Aut⊗(RepH), we obtain the following group

homomorphisms:

AutHopf(H) → Aut⊗(RepH), f 7→ ̂(f−1, 1⊗ 1),

H2
inv(H

∗) → Aut⊗(RepH), T̂ 7→ ̂(idH , T−1).

If (H,RH) and (K,RK) are quasitriangular Hopf algebras, a natural question to ask is when

(f, T ) : Rep(H,RH) → Rep(K,RK) is a braided tensor functor. The answer is given by the

following:

Proposition 2.10.9. The tensor functor (f, T ) : Rep(H,RH) → Rep(K,RK) is braided if and

only if f : (K,RK)→ (HT−1
, RT−1

H ) is a morphism of quasitriangular Hopf algebras.

Proof. It follows from Example 2.6.20.

For future reference, we end this section by providing the dual versions of some of the previous

results.

Proposition 2.10.10. Let H and K be two Hopf algebras. If (F, J) : CorepH → CorepK is a

tensor functor then:

(1) There exist a left 2-cocycle σ on H and a Hopf algebra map f : Hσ → K such that

(F, J) ∼= (f, σ−1).

(2) F is an equivalence if and only if f is an isomorphism.
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(3) If rH and rK are r-forms on H and K, respectively, then (F, J) is a braided functor from

Corep(H, rH) to Corep(K, rK) if and only if f : (Hσ, rσH) → (K, rK) is a morphism of

coquasitriangular Hopf algebras.

Corollary 2.10.11. If CorepH and CorepK are tensor equivalent then K ∼= Hσ, for some left

2-cocycle σ on H .

Corollary 2.10.12. If G is a finite group then Aut⊗(CorepG) ∼= H2(G,k×) o Aut(G).

Remark 2.10.13. The previous two results were proved for the first time by P. Schauenburg in

[Sch96], using the concept of BiGalois object.
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CHAPTER 3

THE BRAUER-PICARD GROUP OF A FINITE SYMMETRIC TENSOR
CATEGORY

In this chapter we compute the Brauer-Picard group of the representation category of Nichols

Hopf algebra E(n). If Cn = Rep(En), we prove in Theorem 3.8.6 that

BrPic(Cn) ∼= PSpn(k)× Z/2Z,

where PSpn(k) is the projective symplectic group of degree 2n.

Our method relies on a canonical representation of the group of braided autoequivalences of

Z(Cn) on the space of extensions of two simple objects, as well as on a description of the group

of braided autoequivalences of Z(Cn) trivializable on Cn with a symmetric braiding, obtained in

[CC04b].

The material is organized as follows.

In Section 3.1 we define the Brauer group of a braided finite tensor category based on the

more general construction of [vOZ98]. At the end we give a short review of the literature on the

computation of Brauer groups of Hopf algebras.

In Section 3.2 we define the Brauer-Picard group of a finite tensor category and the Picard

group of a braided finite tensor category. The latter is a subgroup of the Brauer-Picard group and

it coincides with the Brauer group defined in Section 3.1.

In Section 3.3 we review the properties of Nichols Hopf algebraE(n). We recall the description

of the quasitriangular structures, the invariant 2-cocycles and invariant twist from Chapter 2, and

describe its Drinfeld double.

In Section 3.4 we show that Z(Cn) has precisely two invertible objects, ε and χ, and the group

of braided tensor autoequivalences ofZ(Cn) acts projectively on the space Ext1(χ, ε) of extensions

of χ by ε. We prove that this space is 2n-dimensional.

76



In Section 3.5 we show that the action of Section 3.4 preserves a symplectic form on k2n. This

allows us to view the Brauer-Picard group of Cn as a symplectic group.

In Section 3.6 we show that the sets of subcategories of Z(Cn) which are tensor, respectively

braided, equivalent to Cn, are parametrized by the sets of n-dimensional subspaces and Lagrangian

subspaces, respectively, of k2n. We show that there is a one-to-one correspondence with the n-

dimensional subspaces of Ext1(χ, ε).

In Section 3.7 we describe two ways of constructing elements of the Brauer-Picard group.

One induces braided autoequivalences of Z(Cn) from tensor autoequivalences of Cn. The other

one induces invertible Z(Cn)-module categories from invertible D-module categories, where D

is a tensor subcategory of Z(Cn). In this way We construct various group homomorphisms into

BrPic(Cn).

In the final section we put together the information from the previous sections to compute

BrPic(Cn).

The results of this chapter appeared in [BN15].

3.1 The Brauer group of a braided finite tensor category

We recall here the classical definition of the Brauer group of a field and show how it generalizes to

the case of a braided finite tensor category.

Definition 3.1.1. Let k be a field.

(1) A central simple k-algebra is a k-algebra A which is simple, i.e. it has no proper non-zero

ideals, and central, i.e. Z(A) = k.

(2) An Azumaya k-algebra is a finite-dimensional central simple algebra.

Remark 3.1.2. We collect here some facts about central simple algebras:

(1) The algebra Mn(k), of n× n matrices with entries in a field k, is an Azumaya k-algebra.
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(2) If A is a central simple algebra then Aop is a central simple algebra.

(3) If A and B are central simple algebras then A⊗B is a central simple algebra.

(4) A is an Azumaya k-algebra if and only if A is finite-dimensional and the map

A⊗ Aop → End(A), (a⊗ b)(x) = axb

is an isomorphism of algebras.

There is an equivalence relation on the set of Azumaya algebras. It was introduced by R. Brauer

in 1929 in his study of division rings.

Definition 3.1.3. Two Azumaya k-algebras, A and B, are equivalent, and we write this A ∼ B, if

there exists an isomorphism of k-algebras:

A⊗Mm(k) ∼= B ⊗Mn(k),

for some integers m and n. The equivalence class of an Azumaya k-algebra A is denoted by [A].

Remark 3.1.4. The above equivalence is the Morita equivalence: A and B are equivalent if and

only if RepA ' RepB.

Definition 3.1.5. The set of equivalence classes of Azumaya k-algebras, with respect to ’∼’, is a

group with the following operation:

[A] · [B] = [A⊗B]

This group is denoted by Br(k) and is called the Brauer group of k.

Remark 3.1.6. Br(k) is a commutative group. The inverse of [A] is [Aop], and the unit element is

[k].

Example 3.1.7. If k is an algebraically closed field then Br(k) = {0}. Thus, Br(C) = 0.

Example 3.1.8. Br(R) ∼= Z/2Z, where the non-zero element is represented by the algebra H of

quaternions.
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The construction of the Brauer group of a field was extended, over time, to various contexts. It

was defined for commutative rings, for commutative rings graded by abelian groups, for schemes,

for commutative and cocommutative Hopf algebras over a commutative ring, etc. An important

step in this sequence of extensions was made by B. Pareigis who, in 1975, defined the Brauer

group of a symmetric monoidal category [P75]. After A. Joyal and R. Street introduced, in 1993,

the concept of a braided monoidal category [JS93], F. Van Oystaeyen and Y. Zhang extended, in

1998, Pareigis’ definition of the Brauer group [vOZ98] to such categories. This is the most general

definition of the Brauer group, encompassing all known instances of the construction.

Since the definition of the Brauer group in its greatest generality exceeds the purpose of this

exposition, we will restrict our attention to the case of finite braided tensor categories. The gen-

eralization to this context will be more clearly understood if we recast the definition of Azumaya

algebras and its accompanying equivalence relation in terms only of finite dimensional vector

spaces. This means that we work in the category k-Vec.

Notice first that, if V is a k-vector space of dimension n, then there exist isomorphisms of

algebras:

Mn(k) ∼= End(V ) ∼= V ⊗ V ∗,

where V ∗ is the dual vector space of V . Here, the product of V ⊗V ∗ is (v⊗p)(w⊗q) = p(w)v⊗q,

for all v, w ∈ V and p, q ∈ V ∗. The isomorphism End(V ) → V ⊗ V ∗ maps f to
∑

i f(ei) ⊗ e∗i ,

where {ei} is a basis of V and {e∗i } is its dual basis.

An Azumaya k-algebra is then an algebra (A,m, u) in k-Vec such that, if {ei} is a basis of A,

then the map

F : A⊗ Aop → A⊗ A∗, F (a⊗ b) =
∑

i aeib⊗ e∗i ,

which makes the following diagram commutative,

A⊗ Aop A⊗ A∗

A⊗ Aop ⊗ k A⊗ Aop ⊗ A⊗ A∗ A⊗ A⊗ Aop ⊗ A∗ A⊗ Aop ⊗ A∗
∼=

F

id⊗ coevA id⊗cA,A⊗id mA⊗id

mA⊗id
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is an isomorphism of algebras.

Two Azumaya algebras, A and B, are equivalent if and only if there exist finite dimensional

vector spaces, U and V , such that

A⊗ U ⊗ U∗ ∼= B ⊗ V ⊗ V ∗.

We see from the above that the Brauer group can be defined for a category which has a tensor

product, a braided structure, and whose objects admit duals. This is the case with braided finite

tensor categories.

Recall that, given a braided finite tensor category (C,⊗, 1, c), the opposite algebra Aop of an

algebra A in C is A with multiplication mAcA,A. If A and B are algebras in C then A ⊗C B is the

algebra with underlying object A ⊗ B and multiplication (mA ⊗mB)(idA⊗cB,A ⊗ idB). Also, if

X is an object of C with left and right duals, X∗ and ∗X , respectively, then X ⊗X∗ and ∗X ⊗X

are algebras with multiplication idX ⊗ evX ⊗ idX∗ and id∗X ⊗ ev′X ⊗ idX , respectively.

Definition 3.1.9. Let (C,⊗, 1, c) be a braided finite tensor category. A C-Azumaya algebra is an

algebra A in C such that morphisms

F : A⊗C Aop → A⊗ A∗ and G : Aop ⊗C A→ ∗A⊗ A

making the following diagrams commutative,

A⊗ Aop A⊗ A∗

A⊗ Aop ⊗ k A⊗ Aop ⊗ A⊗ A∗ A⊗ A⊗ Aop ⊗ A∗ A⊗ Aop ⊗ A∗
r−1
A⊗Aop

F

id⊗ coevA id⊗cAop,A⊗id mA⊗id

mA⊗id

Aop ⊗ A ∗A⊗ A

k⊗ Aop ⊗ A ∗A⊗ A⊗ Aop ⊗ A ∗A⊗ Aop ⊗ A⊗ A ∗A⊗ Aop ⊗ A

l−1
Aop⊗A

G

coev′A⊗ id id⊗cA,Aop⊗id id⊗mA

id⊗mA

are isomorphisms of algebras in C.

Remark 3.1.10. The reason we consider both morphisms F and G is that, in general, A ⊗C Aop

and Aop ⊗C A are not isomorphic as algebras in C.
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Remark 3.1.11. It can be shown that an algebra A in C is C-Azumaya if and only if the following

two functors are equivalence functors (see [vOZ98, Theorem 3.1]):

C → A⊗CAopC, X 7→ A⊗X,

C → CAop⊗CA, X 7→ X ⊗X.

Remark 3.1.12. The following hold true in a braided finite tensor category C:

(1) X ⊗X∗ is a C-Azumaya algebra for every X ∈ C.

(2) If A is a C-Azumaya algebra then Aop is a C-Azumaya algebra.

(3) If A and B are C-Azumaya algebras then A⊗C B is a C-Azumaya algebra.

(4) Any C-Azumaya algebra is exact.

Definition 3.1.13. Let C be a braided finite tensor category.

(1) Two C-Azumaya algebras A and B are equivalent, and we write this A ∼ B, if there exist

two objects, X and Y , in C and an isomorphism of C-algebras

A⊗C (X ⊗X∗) ∼= B ⊗C (Y ⊗ Y ∗).

The equivalence class of A is denoted by [A].

(2) The set of equivalence classes of C-Azumaya algebras is a group with the operation

[A] · [B] = [A⊗C B].

This group is denoted by Br(C) and called the Brauer group of C. The inverse of [A] is [Aop],

and the identity element is [1].

Remark 3.1.14. It can be shown that the equivalence relation on the set of C-Azumaya algebras is

the Morita equivalence, that is A ∼ B if and only if CA ' CB as C-module categories.
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Example 3.1.15. It is obvious that Br(k-Vec) = Br(k).

Example 3.1.16. Br(k- sVec) is called the Brauer-Wall group of k and is denoted byBW (k). This

group was introduced by C.T.C. Wall and it classifies equivalence classes of finite dimensional

Z/2Z-graded central simple algebras [Wall64]. We have BW (C) = Z/2Z and BW (R) = Z/8Z.

Example 3.1.17. For a quasitriangular Hopf algebra (H,R) the group Br
(
Rep(H,R)

)
is denoted

by BM(k, H,R). If (H, r) is coquasitriangular, then Br
(
Corep(H, r)

)
is denoted by BC(k, H, r).

Since Rep(H,R) is braided equivalent to Corep(H∗, R∗), where R∗ is the r-form dual to R, we

have BM(k, H,R) ∼= BC(k, H∗, R∗).

These groups were studied by a number of Hopf algebraists. The first explicit computation was

performed by F. van Oystaeyen and Y. Zhang in [vOZ01], who showed that

BM(k, H4, R0) ∼= (k,+)×BW (k)

In [C01] G. Carnovale showed that the groups BM(k, H4, Rλ), where Rλ, λ ∈ k, are the R-

matrices from Example 2.6.10, are all isomorphic. She used, in fact, the self-duality of H4, and

worked with the groups BC(k, H4, rλ) ∼= BM(k, H4, Rλ). Other examples were considered in

[CC03] and [CC04a]. For a symmetric n× n matrix A, it was shown in [CC04b] that

BM(k, E(n), RA) ∼= Symn(k)×BW (k), (3.1)

where Symn(k) is the additive group of symmetric n × n matrices with entries in k. If A is not

symmetric, then the description of BM(k, E(n), RA) is still possible, but is a bit more involved.

Finally, BM was computed for a large class of triangular Hopf algebras, called modified super-

group algebras, in [C06]. Taking into account [EG01] this yields computation of BM for all finite

dimensional triangular Hopf algebras.

Example 3.1.18. Let HYDH be the category of Yetter-Drinfeld modules over a finite dimensional

Hopf algebra H . Then Br(HYDH) is denoted by BQ(k, H) and is called the full Brauer group

of H . This was introduced in [CvOZ97]. The justification for the name comes from the fact that
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BQ(k, H) contains BM(k, H,R) and BC(k, H, r) as a subgroups, when (H,R) is quasitriangular

and/or (H, r) is co-quasitriangular.

Notice that, since HYDH is braided equivalent to Rep
(
D(H),R

)
, we have BQ(k, H) ∼=

BM(k, D(H),R).

Before the systematic study of tensor categories was initiated, the full Brauer group was known

only for some special classes of group Hopf algebras of abelian groups, e.g. kZ/nZ, with n square-

free and k algebraically closed with of characteristic - n [Lon74], or n a power of an odd prime

number and some mild assumptions on k [BC89].

A major step in advancing our knowledge on the subject was made when it was realized that

the Brauer-Picard group BrPic(C) of a finite tensor category C coincides with the Brauer group

Br(Z(C)) of the center of C [DN13]. Thus, if H is a finite dimensional Hopf algebra and k

is an algebraically closed field of characteristic 0, BrPic(RepH) ∼= BQ(k, H). In particular,

BrPic(Repk[G]) ∼= BQ(k,k[G]), for any finite group G. This allowed for the use of methods

from the theory of tensor categories to compute the full Brauer group. For example, it follows

easily from this theory that, if A is a finite abelian group, then BrPic(RepA) ∼= O(A ⊕ Â), the

orthogonal group of A ⊕ Â with respect to the canonical quadratic form on q : A ⊕ Â → k,

q(a, χ) = χ(a), for all a ∈ A and χ ∈ Â. The first descriptions of BrPic(RepG), when G is not

abelian, were obtained by B. Riepel and D. Nikshych in [NR14], and furthermore by I. Marshall

and D. Nikshych in [MN16].

An interesting problem that remained unsolved was to describe BQ(k, H4) whereH4 is Sweed-

ler’s Hopf algebra, the smallest non-semisimple Hopf algebra. Athough attempts were made (see

[vOZ01] and [CC11]), the answer seemed to be out of reach. In this chapter, I will present

my contribution to the problem of computing Brauer groups by computing BrPic(RepE(n)) =

BQ(k, E(n)), where {E(n)} are the Nichols Hopf algebras. Since H4 = E(1), this solves, in

particular, the problem of describing BQ(k, H4).
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3.2 The Brauer-Picard group of a tensor category

In this section we give the definition of the Brauer-Picard group of a finite tensor category C,

mention its equivalent description as the group of braided autoequivalences of the center of C, and,

when C is braided, discuss an important subgroup, the Picard group of C. We show that the Picard

group of C coincides with the Brauer group of C, as defined in the previous section. This creates

a bridge between the theory of tensor categories and the theory of Brauer groups, and allows for

the application of results from one field to the other. Throughout, the base field k is assumed to be

algebraically closed of characteristic 0.

Recall the definition of the Picard group of an algebraA. AnA-bimodule P is invertible if there

exists an A-bimodule Q such that P ⊗A Q and Q⊗A P are isomorphic to A as A-bimodules. The

Picard group ofA, denoted by Pic(A), is the set of isomorphism classes of invertibleA-bimodules,

with the group operation induced by the tensor product over A:

[P ] · [Q] = [P ⊗A Q],

where [P ] and [Q] denote the isomorphism classes of the invertible A-bimodules P and Q, respec-

tively.

The counterpart of the Picard group of an algebra in the theory of tensor categories is the

Brauer-Picard group of a finite tensor category. To define it, we need to introduce the tensor

product of two module categories.

Definition 3.2.1. Let M be a right module category and N a left module category over a finite

tensor category C. Let A be a k-linear abelian category. A bifunctor F : M×N → A, additive

and k-linear in each argument, is said to be C-balanced if there is a natural isomorphism

b = {bM,X,N : F (M ⊗X,N)→ F (M,X ⊗N)}M∈M,X∈C,N∈N ,

making the following diagram commutative
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F (M ⊗ (X ⊗ Y ), N) F (M, (X ⊗ Y )⊗N)

F ((M ⊗X)⊗ Y,N) F (M,X ⊗ (Y ⊗N))

F (M ⊗X, Y ⊗N)

mM,X,Y

bM,X⊗Y,N

bM⊗X,Y,N

n−1
X,Y,N

bM,X,Y⊗N

for every M ∈M, N ∈ N and X , Y ∈ C.

Definition 3.2.2. Let C be a finite tensor category. A tensor product of a right C-module category

M and a left C-module category N is a k-linear abelian category M �C N , together with a C-

balanced bifunctor

BM,N :M×N →M�C N ,

which is right exact in each variable and which induces, for every k-linear abelian category A,

an equivalence between the category of C-balanced, right exact in each variable, bifunctors from

M×N → A and the category of right exact functors fromM�C N to A:

Funbal,re(M×N ,A) ' Funre(M�C N ,A).

Remark 3.2.3. The subscripts bal and re indicate that the functors in question are balanced, re-

spectively, right exact.

Remark 3.2.4. It was shown in [ENO10, Section 3.2] that the tensor product of a right C-module

category M and a left C-module category N exists, and that there is an equivalence of abelian

categories:

M�C N ' FunC,re(Mop,N ).

Remark 3.2.5. IfM andN are C-bimodule categories, then the left C-module structure ofM and

the right C-module structure of N induce a C-bimodule structure onM�C N .

Remark 3.2.6. It was shown in [DN13, Proposition 2.10] that for two exact C-bimodule categories,

M and N , the tensor productM�C N is an exact C-bimodule category.
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Definition 3.2.7. Let C be a finite tensor category.

(1) An exact C-bimodule categoryM is invertible if there exists an exact C-bimodule category

N suchM�C N and N �CM are equivalent to C as C-bimodule categories.

(2) The Brauer-Picard group of C, denoted by BrPic(C), is the set of equivalence classes of

invertible, exact, C-bimodule categories, with the group operation induced by the tensor

product over C:

[M] · [N ] = [M�C N ],

where [M] and[N ] denote the equivalence classes of the invertible, exact, C-bimodule cate-

goriesM and N .

Remark 3.2.8. The definition of the Brauer-Picard group justifies the inclusion of Picard’s name.

Brauer’s name is included because BrPic(k-Vec) ∼= Br(k).

Given an algebra A, there is a homomorphism

φ : Pic(A)→ Aut(Z(A)),

where Z(A) is the center of A, defined as follows. For an invertible A-bimodule M and z ∈ Z(A),

φ(M)(z) is that element of Z(A) such that the endomorphism of M given by left multiplication

with φ(M)(z) is the same as the endomorphism given by right multiplication with z.

There is an analogue of homomorphism φ at the categorical level. Consider a finite tensor cat-

egory C and an invertible C-bimodule categoryM. Then Z(C) can be identified with the category

of C-bimodule endofunctors ofM in two ways: via the functors Z 7→ Z ⊗ − and Z 7→ − ⊗ Z.

We can define a braided autoequivalence ΦM of Z(C) in such a way that there is an isomorphism

of C-bimodule functors

ΦM(Z)⊗− ∼= −⊗ Z,
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for all Z ∈ Z(C).

The next result was established for fusion categories in [ENO10] and extended to tensor cate-

gories in [DN13].

Theorem 3.2.9. Let C be a finite tensor category. Then

Φ : BrPic(C)→ Autbr(Z(C)), M 7→ ΦM, (3.2)

is a group isomorphism.

Remark 3.2.10. Much of the progress on computing Brauer-Picard groups relies on Theorem

3.2.9. This is because, in practice, it is much easier to work with functors than with module

categories. Moreover, Autbr(Z(C)) can be viewed as a classical orthogonal group, which allows

for important geometric insights. For example, the computations of the Brauer-Picard groups in

[NR14] and [MN16], were achieved by studying the action of Autbr(Z(C)) on categorical ana-

logues of Grassmannians.

Example 3.2.11. Let A be a finite abelian group. It follows from Theorem 3.2.9 that

BrPic(RepA) ∼= O(A⊕ Â, q),

where O(A ⊕ Â, q) is the group of automorphisms of A ⊕ Â preserving the canonical quadratic

form q : A⊕ Â→ k×, q(a, χ) = χ(a), for all a ∈ A, and χ ∈ Â.

If C is a braided tensor category then BrPic(C) contains the Brauer group Br(C) as a subgroup.

We close this section by discussing this relationship.

Suppose c = {cX,Y : X ⊗ Y → Y ⊗X}X,Y ∈C is a braiding on C. Then, just as modules over

a commutative ring become bimodules over that ring, so too, modules categories over C become

C-bimodules. If (M,⊗,m, l) is a left C-module category thenM is a C-bimodule category with

• Right action: M ⊗X := X ⊗M , for all M ∈M and X ∈ C.

• Right module associativity constraint given by
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(M ⊗X)⊗ Y
nM,X,Y //M ⊗ (X ⊗ Y )

Y ⊗ (X ⊗M)mY,X,M
// (Y ⊗X)⊗M cY,X

// (X ⊗ Y )⊗M

.

• Right unit constraint r = l.

• Middle associativity constraint given by

X ⊗ (M ⊗ Y )
bX,M,Y // (X ⊗M)⊗ Y

X ⊗ (Y ⊗M)mX,Y,M
// (X ⊗ Y )⊗M cX,Y

// (Y ⊗X)⊗M
m−1
Y,X,M

// Y ⊗ (X ⊗M)

.

Definition 3.2.12. Let C be a braided finite tensor category.

(1) A C-bimodule category is said to be one-sided if it is equivalent to a C-bimodule category

constructed, in the manner presented earlier, from a left C-module category.

(2) The Picard group of C, denoted by Pic(C), is the subgroup of BrPic(C) consisting of equiv-

alence classes of invertible, one-sided, exact, C-bimodule categories.

Let Autbr(Z(C); C) be the subgroup of Autbr(Z(C)) consisting of braided autoequivalences of

Z(C) trivializable on C. The following result was proved in [DN13].

Theorem 3.2.13. The image of Pic(C), under the isomorphism (3.2.9), is Autbr(Z(C); C).

Remark 3.2.14. The Picard group of a braided finite tensor category C is nothing but the Brauer

group of C. To see this, recall that every exact left C-module category is equivalent to a category

CA, of right A-modules in C, for some exact algebra A in C. It can be shown that CA is invertible

if and only if the two functors from Remark 3.1.11 are equivalences, i.e. A is a C-Azumaya

algebra. Recall also that the equivalence relation on the set of C-Azumaya algebras is the Morita

equivalence: A ∼ B if and only if CA ' CB.

Thus, the map
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Pic(C)→ Br(C), [CA] 7→ [A]

where [CA] and [A] denote equivalence classes, is well defined and is a bijection. Moreover, it is

an isomorphism, since, for two exact algebras, A and B, in C there is an equivalence of C-module

categories CA �C CB ' CA⊗B (see [DN13, Proposition 3.4]).

Remark 3.2.15. It follows from [ENO10] that

BrPic(C) ∼= Pic(Z(C)).

Thus, if H is a finite dimensional Hopf algebra, we have

BrPic(RepH) ∼= Pic(Z(RepH)) ∼= Br(HYDH) = BQ(k, H).

Example 3.2.16. Let k be an algebraically closed field of characteristic 6= 0. Let R0 be the R-

matrix of E(n) associated to the zero n× n matrix. Taking into account (3.1), we have

Pic(Rep(E(n), R0)) ∼= BM(k, E(n), R0) ∼= Symn(k)× Z/2Z. (3.3)

3.3 A finite symmetric tensor category

In this section we recall the definition and properties of the Nichols Hopf algebra E(n). We review

the quasitriangular structures, the invariant 2-cocycles and invariant twists. At the end we describe

the Drinfeld double D(E(n)).

Recall Example 2.1.25. The Nichols Hopf algebra E(n) is :

E(n) = k{c, x1, . . . , xn}/(c2 − 1, x2
i , cxi + xic, xixj + xjxi).

with comultiplication, counit and antipode given by:

∆(c) = c⊗ c, ε(c) = 1, S(c) = c−1,

∆(xi) = 1⊗ xi + xi ⊗ c, ε(xi) = 0, S(xi) = c−1xi,

for all i = 1, . . . , n.

89



E(n) is a pointed Hopf algebra with coradical k[C2], where C2 = 〈c〉. A k-basis of E(n) is

{cixP | i = 0, 1, P ⊆ {1, . . . , n}}. The comultiplication of a basis element is given as follows.

For a subset F = {ij1 , . . . , ijr} of P = {i1, i2, . . . , is} ⊆ {1, 2, . . . , n}, let

S(F, P ) =

 (j1 + · · ·+ jr)− r(r + 1)/2 if F 6= ∅

0 if F = ∅.

If we denote the number of elements of F by |F |, then

∆(xP ) =
∑

F⊆P (−1)S(F,P )xF ⊗ c|F |xP\F .

The group of Hopf automorphisms of E(n) was computed in [PvO99]. We have

AutHopf(E(n)) ' GLn(k), (3.4)

with the automorphism corresponding to T = (tij) ∈ GLn(k), being given by c 7→ c and xi 7→∑
j tjixj , for all i = 1, . . . , n. The inner automorphisms of E(n) correspond to T = ±In.

The quasitriangular structures of E(n) were described in Example 2.6.11. The set of R-

matrices of E(n) is parameterized by Mn(k). The R-matrix corresponding to A ∈Mn(k) is

RA =
1

2

n∑
i=0

(−1)
i(i−1)

2

∑
|P |=|F |=i

[A]P,F (xP ⊗ xF + xP ⊗ cxF+

+ (−1)icxP ⊗ xF + (−1)i+1cxP ⊗ cxF ),

and RA is triangular if and only if A is symmetric.

Remark 3.3.1. The category RepE(n) with symmetric braiding is equivalent to the representation

category of a finite supergroup ∧kn o Z/2Z. It is the most general example of a non-semisimple

symmetric tensor category without non-trivial Tannakian subcategories. We will denote RepE(n)

with a symmetric braiding by Cn.

Proposition 3.3.2. Autbr(Cn) ∼= GLn(k)/{±In}.
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Proof. By [Del02] the symmetric category Cn has a unique, up to isomorphism, braided ten-

sor functor to sVec. Let F denote the composition of this functor with the forgetful functor

sVec → Vec. Then E(n) ∼= End(F ). Since every braided tensor autoequivalence of Cn =

Rep(E(n)) preserves F it must come from a Hopf automorphism of E(n). By (3.4) we have

AutHopf(E(n)) = GLn(k). Tensor autoequivalences of Cn isomorphic to the identity functor come

from inner automorphisms of E(n). The statement follows from the observation that the group

of inner Hopf automorphisms of E(n) is generated by the conjugation by c and is isomorphic to

{±In}.

Recall the description of the invariant 2-cocycles of E(n) from Example 2.9.13. We have

H2
inv(E(n)) ∼= Symn(k). A representative of the cohomology class corresponding to M = (mij) ∈

Symn(k) is the invariant 2-cocycle σM : E(n)⊗ E(n)→ k defined by:

σM(c⊗ c) = 1, σM(xi ⊗ xj) = mij, i, j = 1, . . . , n,

σM(xP ⊗ xQ) = σM(cxP ⊗ xQ) = (−1)|P |σM(xP ⊗ cxQ) = (−1)|P |σM(cxP ⊗ cxQ),

for all P , Q ⊆ {1, . . . , n}, σM(xP ⊗ xQ) = 0 if |P | 6= |Q|, and a recurrence formula allowing to

compute σM(xP , xQ) when |P | = |Q|. In particular, we have σM(cixk⊗ cjxl) = (−1)jmkl, for all

i, j = 0, 1 and k, l = 1, . . . , n.

Since E(n) is self-dual, we have H2
inv(E(n)∗) ∼= Symn(k). A representative for the cohomol-

ogy class corresponding to M = (mij) ∈ Symn(k) is the invariant twist

JM = 1
4

∑
i,j,P,Q σM(cixP ⊗ cjxQ)(xP + (−1)icxP )⊗ (xQ + (−1)jcxQ).

Finally, we will need a description of D(E(n)). Recall that D(E(n)) contains E(n) and

E(n)∗cop as Hopf subalgebras and multiplication is given by formula (2.35). Composing the two

Hopf algebra isomorphisms E(n)→ E(n)∗, c 7→ 1∗−c∗, xi 7→ x∗i +(cxi)
∗, and E(n)cop → E(n),

c 7→ c, xi 7→ cxi, we obtain the isomorphism E(n) → E(n)∗cop, c 7→ 1∗ − c∗, xi 7→ x∗i − (cxi)
∗.

Thus, the Drinfeld double, D(E(n)), is generated by two copies of E(n).
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Let C = 1∗ − c∗ and Xi = x∗i − (cxi)
∗, i = 1, . . . , n. Then, viewing E(n) and E(n)∗cop

as Hopf subalgebras of D(E(n)) and taking into account formula (2.35), we see that D(E(n))

is generated by the grouplike elements c and C, the (1, c)-primitive elements x1, . . . , xn and the

(1, C)-primitive elements X1, . . . , Xn, subject to the following relations:

c2 = 1, x2
i = 0, xic+ cxi = 0, xixj + xjxi = 0, (3.5)

C2 = 1, X2
i = 0, XiC + CXi = 0, XiXj +XjXi = 0, (3.6)

cC = Cc, Xic+ cXi = xiC + Cxi = 0, xiXj +Xjxi = δi,j(1− Cc), (3.7)

for all i, j = 1, . . . , n.

Lemma 3.3.3. If P is a subset of {1, . . . , n} then

x∗P = (−1)
|P |(|P |−1)

2 (XP + CXP )

(cxP )∗ = (−1)
|P |(|P |+1)

2 (XP − CXP ).

Proof. For P ⊆ {1, . . . , n} define YP = x∗P + (cxP )∗. An easy argument using induction on |P |

shows that, if P = {i1, . . . , ir}, with i1 < i2 < · · · < ir, then YP = Yi1Yi2 · · ·Yir . Moreover, since

(1∗ − c∗)(x∗P + (cxP )∗)(cixQ) =

 0 if Q 6= P

(−1)i if Q = P

we have CYP = x∗P − (cxP )∗. In particular, CYi = Xi, for all i = 1, . . . , n, and, because C is an

element of order 2 that anti-commutes with Xi, we also have YiC = −CYi, for all i. Consider now

i ∈ {0, 1} and P = {i1, . . . , ir}, with i1 < i2 < · · · < ir. Then
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CiXP = CiXi1Xi2 · · ·Xir

= Ci(CYi1)(CYi2) · · · (CYir)

= (−1)
r(r−1)

2 Cr+iYi1Yi2 · · ·Yir

= (−1)
|P |(|P |−1)

2 C |P |+iYP

= (−1)
|P |(|P |−1)

2 (x∗P + (−1)|P |+i(cxP )∗).

From this we easily obtain the formulas for x∗P and (cxP )∗.

Remark 3.3.4. For i ∈ {0, 1} and P ⊆ {1, . . . , n} we have

(cixP )∗ =
1

2
(−1)

|P |(|P |−1)
2

+i|P |(XP + (−1)iCXP ). (3.8)

3.4 A canonical representation of BrPic(Cn)

We show in this section that Z(Cn) has precisely two invertible objects: ε and χ. Thus, there is a

canonical action of Autbr(Z(Cn)) on the space of extensions of χ by ε. We prove that this space is

a 2n-dimensional vector space.

We start with the following observation.

Proposition 3.4.1. Let C be a tensor category and let U and V be two simple objects of C such

that α(V ) = V and α(U) = U for all tensor autoequivalences α : C → C. Then isomorphisms

ρ(α) : Ext1(U, V )
∼−→ Ext1(α(U), α(V )) = Ext1(U, V ), (3.9)

where the image of extension 0→ V
i−→ E

p−→ U → 0 under ρ(α) is

0→ V
α(i)−−→ α(E)

α(p)−−→ U → 0
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give rise to a projective representation of Aut⊗(C) on Ext1(U, V ).

Proof. Let α, α′ : C → C be tensor autoequivalences and let φ : α → α′ be a tensor isomorphism

between them (so that α and α′ determine the same element of Aut⊗(C)). We have an isomorphism

of extensions:

0 // V
α(i) //

φV
��

α(E)

φE
��

α(p) // U

φU
��

// 0

0 // V
α′(i)// α′(E)

α′(p) // U // 0,

where φV , φU are non-zero scalars and φE is an isomorphism. Thus, the equivalence classes of

ρ(α) and ρ(α′) differ by the scalar φV φ−1
U . Hence, the map

ρ : Aut(C)→ PGL(Ext1(U, V ))

is well defined. It is clear that this map is a group homomorphism.

Z(Cn) = RepD(E(n)) has precisely two invertible objects: the trivial representation ε and a

one-dimensional representation χ, as we next show.

Lemma 3.4.2. The algebra D(E(n)) has a unique non-trivial one-dimensional representation,

χ : D(E(n))→ k, defined by

χ(C) = χ(c) = −1, χ(xi) = χ(Xi) = 0, i = 1, . . . , n.

Proof. It follows from relations (3.5)-(3.7) that, for a one-dimensional representation χ : D(E(n))→

k, one has χ(Xi) = χ(xi) = 0, for all i = 1, . . . , n, χ(c)2 = χ(C)2 = 1, and χ(cC) = 1. This

implies the claim.

Proposition 3.4.3. The space Ext1(χ, ε) of equivalence classes of extensions of the one-dimensional

representation χ by the trivial representation ε is isomorphic to k2n. The equivalence class corre-

sponding to a = (a1, . . . , a2n) ∈ k2n is the one associated to the extension

0→ ε
i−→ Va

p−→ χ→ 0
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where Va = k2 is the 2-dimensional D(E(n))-module with basis {v1 = (1, 0), v2 = (0, 1)},

D(E(n))-action given in matrix form by

C, c 7→

 1 0

0 −1

 , Xi 7→

 0 ai

0 0

 , xi 7→

 0 an+i

0 0

 , i = 1, . . . , n (3.10)

and the maps i and p are such that i(1) = v1 and p(v2) = 1.

Proof. Let V be an extension of χ by ε. Then V comes equipped with two maps i and p such that

0→ ε
i−→ V

p−→ χ→ 0

is an exact sequence. Let v1 = i(1) and choose v2 ∈ V such that p(v2) = 1. Then {v1, v2} is a k-

basis of V on which the elements of D(E(n)) act by h ·v1 = ε(h)v1 and h ·v2 = f(h)v1 +χ(h)v2,

for all h ∈ D(E(n)), and for some linear map f ∈ Hom(D(E(n)), k).

Consider now another extension

0→ ε
i′−→ V ′

p′−→ χ→ 0

of χ by ε and associate to V ′, as above, a basis {v′1, v′2} and a linear map f ′ ∈ Hom(D(E(n)), k).

We claim that if there exists a homomorphism of extensions ϕ : V → V ′ then f and f ′ differ by

a multiple of χ − ε. Indeed, if ϕ is such a map then, then from ϕ ◦ i = i′ and p′ ◦ ϕ = p we

readily deduce that ϕ(v1) = v′1 and ϕ(v2) = λv′1 + v′2, for some λ ∈ k. Letting h ∈ D(E(n))

act on the latter relation and taking into account that ϕ commutes with the action of D(E(n)), we

arrive at the equality
(
f(h) + λχ(h)

)
v′1 + χ(h)v′2 =

(
λε(h) + f ′(h)

)
v′1 + χ(h)v′2, which shows

that f ′ − f = λ(χ− ε).

In particular, if we take V ′ = V and ϕ = idV , we see that the 2n-tuple (f(X1), . . . , f(Xn),

f(x1), . . . f(xn)) does not depend on the choice of v2. Also, the above discussion shows that

the same 2n-tuple depends only on the equivalence class of V . We can, thus, define a map

Ext1(χ, ε) → k2n sending the equivalence class of V to (f(X1), . . . , f(Xn), f(x1), . . . f(xn)).

This map is easily seen to be one-to-one and onto, sending the equivalence class of the extension

Va, in the statement, to a ∈ k2n.
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Using Proposition 3.4.1, we see that there is a group homomorphism

ρ : Autbr(Z(Cn))→ PGL(Ext1(ε, χ)) = PGL2n(k). (3.11)

3.5 BrPic(Cn) as a symplectic group

In this section we show that the image of (3.11) lies, actually, in the projective symplectic group

PSp2n(k). We do this by proving that the elements of Autbr(Z(Cn)) preserve a symplectic form on

Ext1(ε, χ). Thus, BrPic(Cn) can be viewed as a symplectic group.

Consider the sympletic bilinear form

ω : k2n × k2n → k, ω(a, b) =
∑n

i=1(aibn+i − an+ibi),

for all a = (a1, . . . , a2n), b = (b1, . . . , b2n) ∈ k2n. The symplectic group and the projective

symplectic group of degree 2n are, respectively:

Sp2n(k) = {T ∈ GL2n(k) | ω(T (a), T (b)) = ω(a, b)},

PSp2n(k) = Sp2n(k)/{±I2n}.

To see how the braided tensor category Z(Cn) gives rise to a symplectic form, let us switch to

the language of Yetter-Drinfeld modules. In particular, let us describe the extensions of χ by ε as

Yetter-Drinfeld modules.

Lemma 3.5.1. Let Va be the extension of χ by ε associated to a = (a1, . . . , a2n) ∈ k2n. If {v1, v2}

is a basis of Va on which D(E(n)) acts by (3.10), then the Yetter-Drinfeld module structure of Va

is given by the E(n)-action

c · v1 = v1, xi · v1 = 0, c · v2 = −v2, xi · v2 = an+iv1
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for all i = 1, . . . , n, and the E(n)-coaction

δ(v1) = v1 ⊗ 1 and δ(v2) =
∑n

j=1 ajv1 ⊗ xj + v2 ⊗ c

Proof. This follows from Proposition 2.7.8. To see that the E(n)-coaction δ is the one stated, we

use that

δ(v) =
∑

i,P (cixP )∗ · v ⊗ cixP

formulas (3.8) and the following relations, which are straightforward to check:

(CiXP ) · v1 =

 v1 if P = ∅

0 if P 6= ∅
and (CiXP ) · v2 =


(−1)iv2 if P = ∅

ajv1 if P = {j}

0 if |P | ≥ 2

Proposition 3.5.2. Let 0→ ε
i−→ Va

p−→ χ→ 0 and 0→ ε
j−→ Vb

q−→ χ→ 0 be two extensions of χ

by ε associated to a = (a1, . . . , a2n) and b = (b1, . . . , b2n). Then

cVb,Va ◦ cVa,Vb = idVa⊗Vb +ω(a,b) (i⊗ j) ◦ (p⊗ q)

Proof. Let {v1, v2} and {v′1, v′2} be bases of Va and Vb, respectively, on which D(E(n)) acts as in

(3.10). Then it follows from (2.36) and the Yetter-Drinfeld module structures of Va and Vb that the

matrix of cVb,Va ◦ cVa,Vb in the basis {v1 ⊗ v′1, v1 ⊗ v′2, v2 ⊗ v′1, v2 ⊗ v′2} is

1 0 0 ω(b, a)

0 1 0 0

0 0 1 0

0 0 0 1


.
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For example,

cVb,Va ◦ cVa,Vb(v2 ⊗ v′2) = cVb,Va

(
n∑
i=1

biv
′
1 ⊗ xi · v2 + v′2 ⊗ c · v2

)

= cVb,Va

(
n∑
i=1

bian+iv
′
1 ⊗ v1 − v′2 ⊗ v2

)

=
n∑
i=1

bian+iv1 ⊗ v′1 −
n∑
i=1

aiv1 ⊗ xi · v′2 − v2 ⊗ c · v′2

=
n∑
i=1

bian+iv1 ⊗ v′1 −
n∑
i=1

bn+iaiv1 ⊗ v′1 + v2 ⊗ v′2

= ω(b, a)v1 ⊗ v′1 + v2 ⊗ v′2.

The same matrix is obtained for the map idVa⊗Vb +ω(a,b) (i⊗ j) ◦ (p⊗ q), if (i⊗ j) ◦ (p⊗ q) is

the appropriate composition

Va ⊗ Vb
p⊗q−−→ χ⊗ χ ∼= ε ∼= ε⊗ ε i⊗j−−→ Va ⊗ Vb

Proposition 3.5.3. Let 0 → ε
i−→ Va

p−→ χ → 0 and 0 → ε
j−→ Vb

q−→ χ → 0 be two extensions of

χ by ε associated to a and b ∈ k2n. If α ∈ Autbr(Z(Cn)), α(Va) = Vα(a) and α(Vb) = Vα(b) then

ω(α(a), α(b)) = ω(a,b).

Proof. Let J be the monoidal structure of α. Since α is a braided functor, the following diagram

is commutative

Vα(a) ⊗ Vα(b) Vα(b) ⊗ Vα(a) Vα(a) ⊗ Vα(b)

α(Va ⊗ Vb) α(Vb ⊗ Va) α(Va ⊗ Vb)

cVα(a),Vα(b)

JVa,Vb

cVα(b),Vα(a)

JVa,Vb

α(cVa,Vb ) α(cVb,Va )
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Using Proposition 3.5.2, we have

cVα(b),Vα(a)
◦ cVα(a),Vα(b)

= J−1
Va,Vb

α(cVb,Va ◦ cVa,Vb)JVa,Vb

= J−1
Va,Vb

(
α(idVa⊗Vb) + ω(a,b)α

(
(i⊗ j) ◦ (p⊗ q)

))
JVa,Vb

= idVα(a)⊗Vα(b)
+ω(a,b) J−1

Va,Vb
α
(
(i⊗ j) ◦ (p⊗ q)

))
JVa,Vb

= idVα(a)⊗Vα(b)
+ω(a,b)

((
α(i)⊗ α(j)

)
◦
(
α(p)⊗ α(q)

))

where the last equality follows from the commutativity of diagram

Vα(a) ⊗ Vα(b) χ⊗ χ ∼= ε ∼= ε⊗ ε Vα(a) ⊗ Vα(b)

α(Va ⊗ Vb) α(χ⊗ χ) ∼= α(ε) ∼= α(ε⊗ ε) α(Va ⊗ Vb)

α(p)⊗α(q)

JVa,Vb

α(i)⊗α(j)

JVa,Vb

α(p⊗q) α(i⊗j)

From Proposition 3.5.2 it follows that ω(α(a), α(b)) = ω(a,b).

Corollary 3.5.4. The image of the group homomorphism (3.11) belongs to PSp2n(k).

3.6 Subcategories of Z(Cn)

In this section we describe the sets L(Cn) and L0(Cn) of subcategories of Z(Cn) which are tensor,

respectively braided, equivalent to Cn. We show that L(Cn) can be identified with the set Gr(n, 2n)

of n-dimensional subspaces of k2n, while L0(Cn) can be identified with the subset Lag(n, 2n) of

Gr(n, 2n) consisting of Lagrangian subspaces of k2n, i.e. n-dimensional subspaces of k2n on which

the symplectic form ω vanishes. We then relate L(Cn) and L0(Cn) with Ext1(χ, ε) ∼= k2n. We show

that there is a one-to-one correspondence between L(Cn) and the set of n-dimensional subspaces

of Ext1(χ, ε). The correspondence preserves the action of the Brauer-Picard group, a fact which

will be useful later, when we determine the kernel of the action of BrPic(Cn) on Ext1(χ, ε).
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By a tensor subcategory D of a tensor category C we mean the image of a fully faithful tensor

functor (i.e., embedding) ι : D ↪→ C. Tensor subcategories of RepH , for a Hopf algebra H , can

be described as follows.

Proposition 3.6.1. Let H be a finite-dimensional Hopf algebra. The set of tensor subcategories

of Rep(H) is in bijection with the set of equivalence classes of surjective Hopf algebra homomor-

phisms p : H → K, under the following equivalence relation: two surjective homomorphisms

p : H → K and p′ : H → K ′ are equivalent if there is a Hopf algebra isomorphism f : K
∼−→ K ′

such that f ◦ p = p′.

Proof. If p : H → K is a surjective Hopf algebra map then the restriction of scalars functor

Resp : Rep(K) → Rep(H) is an embedding. The image of Resp consists of isomorphism classes

of representations of H that factor through p, so, it does not change when p is composed with an

isomorphism.

Conversely, let ι : D → Rep(H) be a tensor embedding. Let F : Rep(H) → k-Vec be the

forgetful tensor functor. By Tannakian formalism, K = End(F ◦ ι) is a Hopf algebra such that D

is canonically equivalent to Rep(K). Also, H ∼= End(F ). The natural map p : H = End(F ) →

End(F ◦ ι) = K is a surjective homomorphism of Hopf algebras. It is clear that any embedding

ι′ : D′ → Rep(H) with ι(D) = ι(D′) results in a homomorphism p′ : H → K ′ equivalent to

p.

Lemma 3.6.2. The set of surjective Hopf algebra maps D(E(n))→ E(n) is in bijection with the

set of n × 2n matrices of rank n. The homomorphism f corresponding to (A|B) ∈ Mn×2n(k),

where A = (aij) and B = (bij) are n× n matrices, is given by

f(C) = f(c) = c, f(Xi) =
n∑
j=1

ajixj, f(xi) =
n∑
j=1

bjixj, i = 1, . . . , n (3.12)

Proof. Let f : D(E(n)) → E(n) be a Hopf algebra map. Since C and c are group-like elements

of D(E(n)), we have f(C), f(c) ∈ G(E(n)) = {1, c}.
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If (f(C), f(c)) = (1, 1) then f(Xi) and f(xi), i = 1, . . . , n, are primitive elements of E(n),

so f(Xi) = f(xi) = 0, for all i = 1, . . . , n. Thus, f is the trivial homomorphism, f(h) = ε(h)1,

which is not surjective.

If (f(C), f(c)) = (1, c) then f(Xi) = 0, for all i = 1, . . . , n. Applying f to the relation

xiXi+Xixi = 1−Ccwe obtain 0 = 1−c, which is not possible. Similarly, if (f(C), f(c)) = (c, 1).

If (f(C), f(c)) = (c, c) then f(Xi) and f(xi) are (1, c)-primitive elements of E(n), for all

i = 1, . . . , n. Since the space of (1, c)-primitive elements of E(n) is k(1− c)⊕ kx1 ⊕ · · · ⊕ kxn

it follows that there exist a, b, aij , bij ∈ k, i, j = 1, . . . , n, such that f(Xi) = a(1− c) +
∑

j ajixj

and f(xi) = b(1 − c) +
∑

j bjixj , for all i = 1, . . . , n. Using the relations xic + cxi = 0 and

XiC+CXi = 0, we readily deduce that a = b = 0. Since the remaining relations impose no other

restrictions on the scalars aij and bij we are left to see under what conditions the homomorphism

associated to these scalars is surjective.

We claim that f is surjective if and only if f maps U = span{X1, . . . , Xn, x1, . . . , xn} onto

span{x1, . . . , xn}. For this, it suffices to prove that if xi is in the image of f then it is in the image

of the restriction of f to U .

Suppose xi = f(h), for some h ∈ D(E(n)). Since B = {CjXP c
lxQ | j, l ∈ {0, 1}, P,Q ⊆

{1, . . . , n}} is a basis of D(E(n)) there exist u ∈ U , v ∈ V = span{CXjc, Ccxj | j = 1, . . . , n}

and w ∈ W = spanB \ {Xj, xj, CXjc, Ccxj | j = 1, . . . , n} such that h = u + v + w. Now

f(u), f(v) ∈ span{x1, . . . , xn} and f(w) ∈ span{cjxP} \ {x1, . . . , xn}, so, from xi = f(u) +

f(v) + f(w) we deduce that f(w) = 0. Taking into account that f(CXjc) = −f(Xj) and

f(Ccxj) = f(xj), for all j = 1, . . . , n, we see that f(v) ∈ f(U), hence xi ∈ f(U).

Thus, f is surjective if and only if f maps U onto span{x1, . . . , xn}. In terms of the scalars aij

and bij this is equivalent to saying that the rank of the n× 2n matrix (A|B), where A = (aij) and

B = (bij), is n. The lemma is proved.

Proposition 3.6.3. The set L(Cn) of subcategories of Z(Cn) tensor equivalent to Cn is identified

with Gr (n, 2n), the Grassmannian of n-dimensional subspaces of a 2n-dimensional vector space.
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Proof. Taking into account Proposition 3.6.1, the description (3.4) of the automorphisms of E(n),

and Proposition 3.6.2, L(Cn) is identified with the set of equivalence classes of n× 2n matrices of

rank n, under the equivalence relation induced by left multiplication with invertible n×nmatrices.

The latter set is Gr(n, 2n). Indeed, if A = (aij) and B = (bij) are two n× 2n matrices of rank

n then the rows of A, r1(A), . . . , rn(A), and the rows of B, r1(B), . . . , rn(B), generate the same

subspace of k2n if and only if there exists T = (tij) ∈ GLn(k) such that ri(B) =
∑

j tijrj(A) =

ri(TA), for all i = 1, . . . , n, that is, if and only if B = TA.

We now prove that L0(Cn) can be identified with the set of Lagrangian subspaces of the sym-

plectic space (k2n, ω), where

ω : k2n × k2n → k, ω(a, b) =
∑n

i=1(aibn+i − an+ibi)

for all a = (a1, . . . , a2n) and b = (b1, . . . , b2n) ∈ k2n.

Recall that a subspace V of k2n is called isotropic if ω(a,b) = 0, for all a, b ∈ V . An isotropic

subspace V is called Lagrangian if dimk(V ) = n (which is the maximal possible dimension of an

isotropic subspace).

We need the following result.

Lemma 3.6.4. If f : D(E(n)) → E(n) is given by (3.12) and P = {i1, . . . , ir} is a subset of

{1, . . . , n} such that i1 < i2 < · · · < ir, then

f(XP ) =
∑
|F |=|P |

[A]F,PxF and f(xP ) =
∑
|F |=|P |

[B]F,PxF (3.13)

Proof. We have
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f(XP ) = f(Xi1) · · · f(Xir)

=
∑
j1,...,jr

aj1,i1 · · · ajr,irxj1 · · ·xjr

=
∑

j1<···<jr
σ∈Sr

aσ(j1),i1 · · · aσ(jr),irxσ(j1) · · ·xσ(jr)

=
∑

j1<···<jr

(∑
σ∈Sr

sgn(σ)aσ(j1),i1 · · · aσ(jr),ir

)
xj1 · · ·xjr

=
∑
|F |=|P |

[A]F,PxF

and similarly for f(xP ).

Proposition 3.6.5. L0(Cn) = Lag(n, 2n), the Grassmannian of Lagrangian subspaces of the sym-

plectic space (k2n, ω).

Proof. Under the identification of Proposition 3.6.1 L0(Cn) corresponds to the set of equivalence

classes of surjective Hopf algebra maps D(E(n)) → E(n) that take the canonical R-matrix of

D(E(n)) to a triangular structure on E(n).

Let A, B ∈ Mn(k) be such that the two block matrix M = (A|B) has rank n and let f :

D(E(n)) → E(n) be the map given by (3.12). Let R =
∑

i,P c
ixP ⊗ (cixP )∗ be the canonical

R-matrix of D(E(n)). Then, taking into account (3.13) and using (3.8), we have:
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(f ⊗ f)(R) =
1

2

∑
i,P

(−1)
|P |(|P |−1)

2
+i|P |f(cixP )⊗ f(XP + (−1)iCXP )

=
1

2

∑
i,|E|=|F |=|P |

(−1)
|P |(|P |−1)

2
+i|P |[A]E,P [B]F,P c

ixE ⊗ (xF + (−1)icxF )

=
1

2

∑
|E|=|F |=|P |

(−1)
|P |(|P |−1)

2 [A]E,P [B]F,P

(
xE ⊗ xF + xE ⊗ cxF+

+ (−1)|P |cxE ⊗ xF + (−1)|P |+1cxE ⊗ cxF
)

=
1

2

n∑
j=0

(−1)
j(j−1)

2

∑
|E|=|F |=|P |=j

[A]E,P [B]F,P

(
xE ⊗ xF + xE ⊗ cxF+

+ (−1)jcxE ⊗ xF + (−1)j+1cxE ⊗ cxF
)

=
1

2

n∑
j=0

(−1)
j(j−1)

2

∑
|E|=|F |=j

∑
|P |=j

[A]E,P [B]F,P

(xE ⊗ xF+

+ xE ⊗ cxF + (−1)jcxE ⊗ xF + (−1)j+1cxE ⊗ cxF
)

=
1

2

n∑
j=0

(−1)
j(j−1)

2

∑
|E|=|F |=j

[ABt]E,F

(
xE ⊗ xF + xE ⊗ cxF+

+ (−1)jcxE ⊗ xF + (−1)j+1cxE ⊗ cxF
)

= RABt

where Bt denotes the transpose matrix of B and where we used the well known formula for the

minor of a product of two matrices, [AB]E,F =
∑
|P |=|E|[A]E,P [B]P,F .

Thus, f takes the canonical R-matrix of D(E(n)) to the R-matrix corresponding to ABt.

Recall that the latter is a triangular structure if and only if ABt is symmetric. This is equivalent to

ABt = BAt, or, what is the same, to
∑n

l=1 ailbjl =
∑n

l=1 bilajl, for all i, j = 1, . . . , n. Subtracting

the right hand term in the previous equality from the other, we obtain
∑n

l=1(ailbjl− bilajl) = 0, for

all i, j = 1, . . . , n. If r1(M), . . . , rn(M) denote the rows ofM , then the last condition is equivalent

to ω(ri(M), rj(M)) = 0, for all i, j = 1, . . . , n.

Thus, the surjective Hopf algebra mapsD(E(n))→ E(n) which take the canonical quasitrian-

gular structure ofD(E(n)) to a triangular structure of E(n) correspond to n×2nmatrices, of rank
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n, with entries from k, such that the symplectic form ω on k2n vanishes on the subspace generated

by their rows. Equivalence classes of such maps have, as their correspondent in Gr(n, 2n), those

subspaces on which the symplectic form vanishes, whence the assertion in the statement.

Remark 3.6.6. If C is a braided tensor category then Autbr(Z(C)) acts on L0(C) by permutation

of categories:

α · L = α(L), α ∈ Autbr(Z(C)), L ∈ L0(C).

The stabilizer of ιC(C) in Autbr(Z(C)), where ιC : C → Z(C), is the embedding Z 7→ (Z, c−,Z), is

St(ιC(C)) = Pic(C) o Autbr(C).

The proof is the same as of [NR14, Proposition 6.8].

We now relate L(Cn) and L0(Cn) with Ext1(χ, ε). For a tensor subcategory C of Z(Cn) let

C ∩ Ext1(χ, ε) denote the subspace of Ext1(χ, ε) consisting of equivalence classes of extensions

0→ ε→ V → χ→ 0 such that V belongs to C.

Proposition 3.6.7. The assignment C → C∩Ext1(χ, ε) induces bijections L(Cn)→ Gr(n, 2n) and

L0(Cn)→ Lag(n, 2n).

Proof. We saw in Proposition 3.6.3 that L(Cn) = Gr(n, 2n). The subcategory of Z(Cn), tensor

equivalent to Cn, corresponding to U ∈ Gr(n, 2n) is CU , described as follows. Let A = (aij) and

B = (bij) be n × n matrices such that the rows r1(M), . . . , rn(M) of M = (A|B) ∈ Mn×2n(k),

form a basis of U . Then CU is the image of the restriction functor associated to f : D(E(n)) →

E(n), f(C) = f(c) = c, f(Xi) =
∑n

j=1 ajixj , f(xi) =
∑n

j=1 bjixj , i = 1, . . . , n. We will show

that, under the isomorphism of Proposition 3.4.3, CU ∩Ext1(χ, ε) = U , which will prove the claim.

Let 0 → ε
i−→ V

p−→ χ → 0 be an element of CU ∩ Ext(χ, ε) and let {v1, v2} be a basis of V

such that v1 = i(1) and p(v2) = 1. If {v∗1, v∗2} is the dual basis of {v1, v2} then the element of k2n

corresponding to V , under the isomorphism of Proposition 3.4.3, is

aV =
(
v∗1(X1 · v2), . . . , v∗1(Xn · v2), v∗1(x1 · v2), . . . , v∗1(X1 · v2)

)
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Since v∗1(Xi · v2) = v∗1
(
f(Xi)v2

)
= v∗1(

∑
j ajixjv2) =

∑
j ajiv

∗
1(xjv2) and v∗1(xi · v2) =

v∗1
(
f(xi)v2

)
= v∗1(

∑
j bjixjv2) =

∑
j bjiv

∗
1(xjv2), for all i = 1, . . . , n, we deduce that

aV =
∑n

j=1 v
∗
1(xjv2)(aj1, . . . , ajn, bj1, . . . , bjn) =

∑n
j=1 v

∗
1(xjv2)rj(M)

Thus, aV ∈ U , for all V ∈ CU ∩ Ext1(χ, ε).

To complete the proof we need only show that Vri(M) ∈ CU , for all i = 1, . . . , n. A quick check

shows that the representation Vri(M) is obtained from the following matrix representation of E(n):

E(n)→M2(k), c 7→

 1 0

0 −1

 , xj 7→

 0 δi,j

0 0

 , j = 1, . . . , n

by restriction of scalars via f .

Remark 3.6.8. It is easy to see that, if α ∈ Autbr(Z(Cn)) and CU is the tensor subcategory of

Z(Cn) corresponding to U ∈ Gr(n, 2n), then α(CU) = Cα(U).

3.7 Induction homomorphisms

In this section we discuss two ways of constructing elements of the Brauer-Picard group. One is

to induce braided autoequivalences of Z(C) from tensor autoequivalences of C. The other one is

to induce invertible Z(C)-module categories from invertible D-module categories, where D is a

tensor subcategory of Z(C).

For any tensor category C there is an induction homomorphism

Γ : Aut⊗(C)→ Autbr(Z(C)) : α 7→ Γα, (3.14)

where Γα(Z, γ) = (α(Z), γα) and γα is defined by the following commutative diagram
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X ⊗ α(Z)
γαX //

��

α(Z)⊗X

��
α(α−1(X))⊗ α(Z)

Jα−1(X),Z

��

α(Z)⊗ α(α−1(X))

JZ,α−1(X)

��
α(α−1(X)⊗ Z)

α(γα−1(X)) // α(Z ⊗ α−1(X)).

Here α−1 is a quasi-inverse of α and JX,Y : α(X) ⊗ α(Z)
∼−→ α(X ⊗ Z) is the tensor functor

structure of α.

Let us describe the braided autoequivalences of Z(RepH) induced from the tensor autoequiv-

alences of Rep(H) of Remark 2.10.8. We will identify Z(RepH) with HYDH , the category of

Yetter-Drinfeld modules over H (see Proposition 2.7.8).

Example 3.7.1. Let (α, 1 ⊗ 1) be the tensor autoequivalence of RepH , corresponding to a Hopf

algebra automorphism α of H . Then Γ(α,1⊗1)(V ) = V as a vector space, with the H-action and

H-coaction given by

h · v = α(h)v, δα(v) = v(0) ⊗ α(v(1)) h ∈ H, v ∈ V. (3.15)

Example 3.7.2. Let (id, T ) be the tensor autoequivalence of RepH corresponding to an invariant

twist T on H . Then Γ(id,T )(V ) = V as an H-module, with H-coaction given by

δT (v) = (T−1)2 · (T 1 · v)(0) ⊗ (T−1)1(T 1 · v)(1)T
2, v ∈ V. (3.16)

Here T 1 ⊗ T 2 stands for T , and T−1 ⊗ T−2 for the inverse of T . Formula (3.16) appeared, also, in

[CZ07].

Example 3.7.3. Let σ ∈ (H ⊗H)∗ be an invariant 2-cocycle on H . The dual map σ∗ can be seen

as an invariant twist onH∗ and, as such, it gives rise to an autoequivalence (id, σ∗) of Rep(H∗). By

Example 3.7.2, this induces an autoequivalence Γ(id,σ∗) of H∗YDH
∗
. Since HYDH and H∗YDH

∗

are tensor equivalent, via the functor that dualizes module and comodule structures, we obtain

107



an autoequivalence of HYDH , which we continue to denote by Γ(id,σ∗). If V ∈ HYDH then

Γ(id,σ∗)(V ) = V as an H-comodule, with the H-action given by

h · v = σ−1
((
h(2) · v(0)

)
(1)
⊗ h(1)

)
σ(h(3) ⊗ v(1))

(
h(2) · v(0)

)
(0)
, h ∈ H, v ∈ V. (3.17)

Remark 3.7.4. Autoequivalences described in Examples 3.7.1, 3.7.2, 3.7.3 give rise to group ho-

momorphisms

ι1 : AutHopf(H)→ Autbr(Z(RepH)),

ι2 : H2
inv(H)→ Autbr(Z(RepH)),

ι3 : H2
inv(H

∗)→ Autbr(Z(RepH)).

Now let C be a braided tensor category and D ⊆ C a tensor subcategory. IfM is an invertible

D-module category then C �DM is an invertible C-module category. The assignment

IndCD : Pic(D)→ Pic(C), M 7→ C �DM (3.18)

is a group homomorphism.

Remark 3.7.5. If A is an algebra in D such thatM is equivalent to the category of A-modules in

D then IndCD(M) is the category of A-modules in C.

The homomorphism (3.18) is not injective in general. Its kernel can be described as follows.

Let C =
⊕

α∈Σ Cα be the decomposition of C into a direct sum of D-module subcategories (this

decomposition exists and is unique by [EO04]) and let

Σ0 = {α ∈ Σ | Cα is an invertible D-module category}.

Proposition 3.7.6. The kernel of homomorphism (3.18) is precisely the set of the equivalence

classes of categories Cα, α ∈ Σ0.
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Proof. Suppose thatM is an invertible D-module category such that

C �DM∼= C (3.19)

as a C-module category. From the D-module decomposition of both sides of (3.19) we obtain

⊕
α∈Σ

(Cα �DM) ∼=
⊕
β∈Σ

Cβ.

Taking α such that Cα = D we conclude thatM∼= Cβ for some β ∈ Σ0.

Conversely, suppose thatM∼= Cβ for some β ∈ Σ0. Note that

E =
⊕
α∈Σ0

Cα

is a tensor subcategory of C. It is group graded with the trivial component D. Thus, IndEDM ∼= E

and, hence, IndCDM = IndCE(Ind
E
DM) ∼= C.

Proposition 3.7.7. Let C be a braided tensor category and letD ⊆ C be a tensor subcategory. The

image of the composition

Pic(D)
IndCD−−→ Pic(C)→ Autbr(C)

is contained in Autbr(C; D′). Here D′ denotes the centralizer of D in C.

Proof. LetM ∈ Pic(D) be an invertible D-module category and let A ∈ D be an algebra such

that M is identified with the category of A-modules in D. When we view A as an algebra in

C the corresponding element ∂M of Autbr(C) is determined by the existence of a natural tensor

isomorphism

A⊗X ∼= ∂M(X)⊗ A, X ∈ C,

of A-modules [DN13]. When X centralizes D (and, hence, centralizes A) we get a natural tensor

isomorphism ∂M(X) ∼= X , i.e., ∂M|D′ ∼= idD′ .
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Example 3.7.8. Consider the triangular structureR0 = 1
2
(1⊗1+1⊗c+c⊗1−c⊗c) ofE(n). Let

C2 = 〈c〉 ∼= Z/2Z. We have following sequence of surjective quasitriangular homomorphisms:

(D(E(n)),R)
f−→ (E(n), R0)

g−→ (k[C2], R0), (3.20)

where f(p ./ x) = (p ⊗ id)(R0)x, for all p ∈ E(n)∗ and x ∈ E(n), and g(c) = c and g(xi) = 0,

for all i = 1, . . . , n. Sequence (3.20) induces a sequence of tensor embeddings

sVec
Resg−−→ (Cn, c0)

Resf−−→ Z(Cn) (3.21)

where sVec = Rep(k[C2], R0) and (Cn, c0) = Rep(E(n), R0). This induces, in turn, a sequence of

group homomorphisms

Pic(sVec)
IndCnsVec−−−→ Pic(Cn)

Ind
Z(Cn)
Cn−−−−−→ Pic(Z(Cn)) = Autbr(Z(Cn)) (3.22)

Since the image of sVec in Z(Cn), under composition (3.21), is the tensor subcategory generated

by the invertible object χ, we have that the image of Pic(sVec) in Autbr(Z(Cn)) consists of those

braided autoequivalences of Z(Cn) that are trivializable on the centralizer of χ.

3.8 Computing BrPic(Cn)

We begin by describing the images of the compositions of the map ρ : Autbr(Z(Cn)) →

PGLn(k) of (3.11), with the homomorphisms of Remark 3.7.4, in the case H = E(n).

Proposition 3.8.1. We have

(i) ρ ◦ ι1
(
AutHopf(E(n))

)
=


A 0

0 (At)−1

 | A ∈ GL2n(k)

,
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(ii) ρ ◦ ι2
(
H2

inv(E(n))
)

=


In 0

B In

 | B = Bt

,

(iii) ρ ◦ ι3
(
H2

inv(E(n)∗)
)

=


In B

0 In

 | B = Bt

.

Here each matrix denotes the class in PSp2n(k).

Proof. (i) This is clear in view of Proposition 3.3.2.

(ii) Let σM ∈ (E(n)⊗E(n))∗ be the invariant 2-cocycle associated to M = (mij) ∈ Symn(k),

and let Γ(id,σ∗M ) be the autoequivalence of Z(Cn) induced by σM .

Let Va ∈ Ext1(χ, ε). According to Example 3.7.3, Γ(id,σ∗M )(Va) = Va as an E(n)-comodule,

with the E(n)-module structure given by

h · v = σ−1
M

((
h(2) · z(0)

)
(1)
⊗ h(1)

)
σM(h(3) ⊗ z(1))

(
h(2) · z(0)

)
(0)
, h ∈ E(n), v ∈ Va.

Consider a basis {v1, v2} of Va such that theD(E(n))-module structure of Va is given by (3.10).

Then, a straightforward computation shows that h · v1 = ε(h)v1, for all h ∈ E(n), c · v2 = −v2

and

xi · v2 = an+j +
(∑n

i=1(mij +mji)ai

)
v1,

for all i = 1, . . . , n. Thus, Γ(id,σ∗M )(Va) = Va′ , where

a′t =

 In 0

M +M t In

 at

and the result follows.

(iii) Let

TM = 1
4

∑
i,j,P,Q σM(cixP ⊗ cjxQ)(xP + (−1)icxP )⊗ (xQ + (−1)jcxQ)

be the invariant twist associated to M = (mij) ∈ Symn(k). Observe that

TM = 1⊗ 1 +
∑n

j,l=1 mjlxj ⊗ cxl + L
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where L is a linear combination of cixP ⊗ cjxQ, with i, j ∈ {0, 1} and P , Q ⊆ {1, . . . , n} such

that |P | ≥ 2 or |Q| ≥ 2. Let Γ(id,TM ) be the autoequivalence of Z(Cn) induced by TM .

If Va ∈ Ext1(χ, ε) then Γ(id,TM )(Va) is Va as an E(n)-module, with the comodule structure

given by

δTM (v) = (T−1
M )2 · (T 1

M · v)(0) ⊗ (T−1
M )1(T 1

M · v)(1)T
2
M ,

for all v ∈ Va.

Consider {v1, v2} a basis for Va such that the action of D(E(n)) on Va is given by (3.10). Then

one can easily check, using Lemma 3.5.1, that δTM (v1) = v1 ⊗ 1 and

δTM (v2) =
∑n

i=1 aiv1 ⊗ xi +
∑n

i=1

(∑n
j=1 an+j(mij +mji)

)
v1 ⊗ cxi + v2 ⊗ c.

Taking into account that the inducedE(n)∗-module structure of Γ(id,TM )(Va) is f ·v =
∑
f(v(1))v(0),

for all f ∈ E(n)∗ and v ∈ Γ(id,TM )(Va), we readily deduce the D(E(n))-module structure of

Γ(id,TM )(Va). We have C · v1 = v1, C · v2 = −v2, Xi · v1 = 0 and

Xi · v2 = (x∗i − (cxi)
∗) · v2 =

(
ai −

∑n
j=1 an+j(mij +mji)

)
v1.

Thus, Γ(id,TM )(Va) = Va′ , where

a′t =

 In −(M +M t)

0 In

 at

which concludes the proof.

Corollary 3.8.2. The image of homomorphism (3.11) is PSp2n(k).

Proof. The three subgroups from Proposition 3.8.1 generate PSp2n(k), so the statement follows

from Proposition 3.5.3.

We now determine the kernel of ρ. We need the following result.

Lemma 3.8.3. Let Va be the underlying object of an extension of χ by ε. Then Va centralizes χ,

i.e., the squared braiding cVa,χ ◦ cχ,Va is the identity morphism.
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Proof. As a Yetter-Drinfeld module over E(n), χ has the module structure given by c · 1 = −1,

xi · 1 = 0, for all i = 1, . . . , n, and the comodule structure 1 7→ 1⊗ c.

Let {v1, v2} be a basis of Va such that the action of D(E(n)) on Va is given by (3.10). Then,

from Lemma 3.5.1 and (2.36), we deduce that

cVa,χ ◦ cχ,Va(1⊗ v1) = cVa,χ(v1 ⊗ 1) = 1⊗ c · v1 = 1⊗ v1

and

cVa,χ ◦ cχ,Va(1⊗ v2) = cVa,χ

(
n∑
j=1

ajv1 ⊗ xj · 1 + v2 ⊗ c · 1

)

= −cVa,χ(v2 ⊗ 1)

= −1⊗ c · v2

= 1⊗ v2

whence the claim.

Proposition 3.8.4. The kernel of homomorphism (3.11) is isomorphic to Z/2Z.

Proof. Taking into account Remark 3.6.6, Proposition 3.6.7, Proposition 3.3.2 and Theorem 3.2.13

the kernel of ρ is a subgroup of Pic(Cn) = Autbr(Z(Cn); Cn). From Example 3.2.16, we know that

Pic(Cn) ∼= Symn(k)× Z/2Z.

The subgroups of Autbr(Z(Cn); Cn) corresponding to Z/2Z and Symn(k) are the following.

Z/2Z corresponds to the image of Pic(sVec) in Autbr(Z(Cn)) under composition (3.22), and

Symn(k) corresponds to the image of ι2.

According to Example 3.7.8 the image of Pic(sVec) in Autbr(Z(Cn)) consists of braided auto-

equivalences that are trivializable on the centralizer of χ. Since Va centralizes χ, for every a ∈ k2n,

we have Z/2Z ⊆ Ker(ρ). Now Ker(ρ) ∩ Im(ι2) = 1, so Ker(ρ) = Z/2Z.

Proposition 3.8.5. The restriction of homomorphism (3.11) on the subgroup of Autbr(Z(Cn)) gen-

erated by the images of AutHopf(E(n)), H2
inv(E(n)), H2

inv(E(n)∗) is injective.
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Proof. Every matrix M ∈ Sp2n(k) can be uniquely written as M = XY Z, where X , Y , Z are

matrices from parts (i), (ii), and (iii) of Proposition 3.8.1, respectively, so the claim holds.

Theorem 3.8.6. We have

Autbr(Z(Cn)) ∼= PSp2n(k)× Z/2Z. (3.23)

The action of Autbr(Z(Cn)) on L0(Cn) corresponds to the action of PSp2n(k) on the Lagrangian

Grassmannian Lag(n, 2n).

Proof. According to Corollary 3.8.2 and Proposition 3.8.4, we have a central extension

1→ Z/2Z→ Autbr(Z(Cn))→ PSp2n(k)→ 1.

This extension splits by Proposition 3.8.5. The Lagrangian equivariance follows from Remark

3.6.8.

Corollary 3.8.7. BrPic(Cn) ∼= PSp2n(k)× Z/2Z.
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CHAPTER 4

POINTED BRAIDED FINITE TENSOR CATEGORIES

One of the earliest results on the classification of tensor categories was given by A. Joyal and R.

Street in [JS93], who showed that the category with objects pointed braided fusion categories and

whose morphisms are natural isomorphisms of braided tensor functors is equivalent to the category

of pre-metric groups. The objects in the latter category are pairs (Γ, q), where Γ is a finite abelian

group and q : Γ→ k× is a quadratic form.

In this chapter we prove a weak generalization of this result. We show in Theorem 4.7.3 that the

category with objects pointed braided tensor categories admitting a fiber functor and morphisms

natural isomorphisms of braided equivalences is equivalent to a category of metric quadruples.

The objects of the latter category are quadruples (Γ, q, V, r) consisting of a finite abelian group

Γ, a diagonalizable quadratic form q : Γ → k×, a Γ-graded vector space V whose support is

contained in {g ∈ Γ | q(g+h)
q(h)

= −1, for all h ∈ Γ} (equivalently, V ∈ Zsym(C(Γ, q))−) and

an anti-symmetric Γ-graded map r : V ⊗ V → k. We achieve this by using results from the

classification theory of finite dimensional pointed Hopf algebras.

The material in this chapter is organized as follows.

In Section 4.1 we prove the result of A. Joyal and R. Street in the case of pointed braided fusion

categories admitting a fiber functor. This will serve as a prototype for the proof of Theorem 4.7.3.

In Section 4.2 we describe the objects that will serve as tools in our study of pointed braided

tensor categories. These arose from the classification program of N. Andruskiewitsch and H.-J.

Schneider and are called quantum linear spaces. They are certain type of pointed Hopf algebras

associated to a finite abelian group Γ and a Γ-graded Γ-module V .

In Sections 4.3 and 4.4 we describe the 2-cocycles and the co-quasitriangular structures, respec-

tively, of quantum linear spaces. For the former we use M. Mombelli’s classification of module
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categories over the representation category of a quantum linear space in [Momb11]. The latter

objects were described in a different form by A. Nenciu in [Nen04]. Our approach is categorical

in nature and sheds more light on the structure of r-forms on quantum linear spaces.

At the end of Section 4.4 we associate to a quadruple (Γ, r0, V, r1) formed with a finite abelian

group Γ, a bicharacter r0 on Γ, a certain Γ-module V and a morphism r1 : V ⊗ V → k, a pointed

braided finite tensor category admitting a fiber functor, denoted by C(Γ, r0, V, r1). We describe in

Sections 4.5 and 4.6 the symmetric center and the ribbon structures of C(Γ, r0, V, r1).

In Section 4.7 we prove Theorem 4.7.3. As an application of our work, we describe in Section

4.8 the metric quadruple associated to the adjoint subcategory of the center of C(Γ, q, V, r), for a

carefully chosen V .

The results of this chapter are based on [BN17].

4.1 Pointed braided fusion categories

In this section we prove a weak form of Joyal and Street’s result. Namely, we show that the

category whose objects are pointed braided fusion categories admitting a fiber functor, and whose

morphisms are natural isomorphisms of braided tensor functors is equivalent to the category of

pre-metric groups with a diagonalizable quadratic form. This will serve as a prototype for the

more general result which we will prove in Section 4.7.

We start by recalling a result from group cohomology, that we will use later.

Let Γ be a finite abelian group and let Alt2(Γ) be the abelian group of alternating bicharacters

on Γ, i.e. those bicharacters b : Γ× Γ→ k× such that b(g, g) = 1, for all g ∈ Γ.

Proposition 4.1.1. The map alt : Z2(Γ,k×)→ Alt2(Γ), defined by

alt(σ)(g, h) =
σ(g, h)

σ(h, g)
, g, h ∈ Γ, (4.1)
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induces an isomorphism

H2(Γ,k×) ∼= Alt2(Γ).

Proof. See [Karp87, Theorem 2.6.7] where the result appears in an equivalent form.

Definition 4.1.2. Let Γ be an abelian group. A quadratic form on Γ (with values in k) is a map

q : Γ→ k× such that:

• q(g) = q(g−1), for all g ∈ Γ.

• The function b : Γ× Γ→ k×, b(g, h) =
q(gh)

q(g)q(h)
, for all g, h ∈ Γ, is a bicharacter.

The set of quadratic forms on Γ is denoted by Quad(Γ). A quadratic form q is non-degenerate if

the associated bicharacter b is non-degenerate.

Example 4.1.3. Every bicharacter r : Γ× Γ→ k× gives rise to a quadratic form on Γ, namely

q : Γ→ k×, q(g) = r(g, g), g ∈ Γ.

Quadratic forms obtained in this way are said to be diagonalizable. The set of diagonalizable

quadratic forms on Γ is denoted by Quadd(Γ).

Definition 4.1.4. (1) A pre-metric group (over k) is a pair (Γ, q), formed with a finite abelian

group Γ and a quadratic form q : Γ→ k×.

(2) An orthogonal homomorphism of pre-metric groups from (Γ, q) to (Γ′, q′) is a group homo-

morphism α : Γ→ Γ′ such that q′ ◦ α = q.

Let G be the category whose objects are pre-metric groups (Γ, q), with q ∈ Quadd(Γ), and

whose morphisms are orthogonal homomorphisms of pre-metric groups. Let F be the category

whose objects are pointed braided fusion categories admitting a fiber functor and whose morphisms

are isomorphism classes of braided tensor functors.

We can define a functor F : G → F in the following way. Fix, for every object (Γ, q) in G, a

bicharacter r : Γ× Γ→ k× such that q(g) = r(g, g), for all g ∈ Γ. Define F on objects by
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F (Γ, q) = Corep(Γ, r).

Consider now an orthogonal homomorphism α : (Γ, q) → (Γ′, q′). Then r′ ◦ (α × α)/r is

an alternating bicharacter on Γ, so, by Proposition 4.1.1, there exists a 2-cocycle σ ∈ Z2(Γ,k×)

such that r′ ◦ (α × α)/r = alt(σ), i.e. r′(α(g), α(h)) = σ−1(h, g)r(g, h)σ(g, h), for all g, h ∈ Γ.

According to Example 2.6.21, (α, σ) : Corep(Γ, r)→ Corep(Γ′, r′) is a braided tensor functor.

Define F on morphisms by F (α) = (̃α, σ), where (̃α, σ) is the isomorphism class of (α, σ).

Note that F is well defined, since the 2-cocycle σ is determined up to cohomology.

Proposition 4.1.5. The functor F : G → F , defined above, is an equivalence of categories.

Proof. Taking into account Theorem 2.2.21, we have to show that F is essentially surjective and

fully faithful. The fact that F is fully faithful follows from Corollary 2.10.12. Let us show that F

is essentially surjective.

Consider a pointed braided fusion category C admitting a fiber functor. By Tannaka-Krein

reconstruction, C ' CorepH , for some finite dimensional Hopf algebra H . Since C is pointed

and semisimple, it follows that H is pointed and co-semisimple. Thus, H = k[Γ], where Γ is the

group of group-like elements of H . Since C is braided, we have that Γ is abelian, and there exists

a bicharacter r on Γ such that C is braided equivalent to Corep(Γ, r). It is not hard to see that

Corep(Γ, r) ' F (Γ, q), where q : Γ → k×, q(g) = r(g, g), for all g ∈ Γ. Thus, F is essentially

surjective and the proof is complete.

Remark 4.1.6. Given a finite abelian group Γ and a bicharacter r on Γ, we will use the following

notation:

C(Γ, r) := Corep(Γ, r).

Corollary 4.1.7. (1) C(Γ, r) and C(Γ′, r′) are braided equivalent if and only if there is an or-

thogonal isomorphism (Γ, q)→ (Γ′, q′), where q(g) = r(g, g) and q′(g′) = r′(g′, g′), for all

g ∈ Γ, g′ ∈ Γ′.

(2) We have
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Autbr(C(Γ, r)) ∼= O(Γ, q),

where q : Γ → k×, q(g) = r(g, g), for all g ∈ Γ, and O(Γ, q) is the group of orthogonal

automorphisms of (Γ, q).

Remark 4.1.8. If C is a pointed braided fusion category then the isomorphism classes of simple

objects of C form a finite abelian group Γ. The braiding of C determines a function c : Γ×Γ→ k×

and the function q : Γ → k×, q(g) = c(g, g), g ∈ Γ, is a quadratic form on Γ. It was shown in

[JS93] (see also [DGNO10, Appendix D]) that the assignment

C 7→ (Γ, q)

is an equivalence between the category with objects pointed braided fusion categories and mor-

phisms natural isomorphisms of braided tensor functors and the category of pre-metric groups. We

will denote a pointed braided fusion category associated to (Γ, q) by C(Γ, q).

Remark 4.1.9. If r is a bicharacter on Γ and q(g) = r(g, g), for all g ∈ Γ, then

C(Γ, r) ' C(Γ, q).

4.2 Quantum linear spaces

In this section we describe a class of Hopf algebras, called quantum linear spaces, that were intro-

duced by N. Andruskiewitsch and H.-J. Schneider in [AS98], as part of a classification program for

finite dimensional pointed Hopf algebras. Remarkable progress has been made since then and the

classification problem is approaching completion [A14]. It turns out that quantum linear spaces

are all that we need in order to study pointed braided finite tensor categories admitting a fiber func-

tor, so a good understanding of their properties is essential. We will continue our discussion in

the next two sections, where we will give a description of their 2-cocycles and co-quasitriangular

structures.
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Let Γ be a finite abelian group. Let g1, . . . , gn be elements of Γ and χ1, . . . , χn be elements of

the character group Γ̂ such that

χi(gi) 6= 1 and χj(gi)χi(gj) = 1,

for all i, j = 1, . . . , n, i 6= j.

Definition 4.2.1. A quantum linear space associated to the above datum (g1, . . . , gn, χ1, . . . , χn)

is a Yetter-Drinfeld module

V =
n⊕
i=1

kxi ∈ Γ
ΓYD, (4.2)

with h · xi = χi(h)xi, for all h ∈ Γ, and δ(xi) = gi ⊗ xi, for all i.

Remark 4.2.2. With the notation of Remark 2.7.10, we have xi ∈ V χi
gi

, for all i = 1, . . . , n.

Remark 4.2.3. The braiding of Γ
ΓYD on V ⊗ V is given, on the basic elements xi ⊗ xj , i, j =

1 . . . , n, by

cV,V (xi ⊗ xj) = χj(gi)xj ⊗ xi. (4.3)

Definition 4.2.4. We say that a quantum linear space V is of symmetric type if χi(gi) = −1, for

all i = 1, . . . , n.

Remark 4.2.5. In categorical terms, a quantum linear space of symmetric type is an object V ∈
Γ
ΓYD such that c2

V,V = idV⊗V and θV = − idV , where θ is the canonical ribbon structure of Γ
ΓYD

(see Remark 2.7.14). The advantage of this definition is that it does not depend on the choice of

“basis" gi, χi, i = 1, . . . , n.

Remark 4.2.6. Let V ∈ Γ
ΓYD. A linear map β : V ⊗ V → k is a morphism in Γ

ΓYD if and only if

β(v ⊗ v′)(1− gg′) = 0 and β(v ⊗ v′)(1− χχ′) = 0,

for all v ∈ V χ
g and v′ ∈ V χ′

g′ .

Note, also, that the transposition map

τU,V : U ⊗ V → V ⊗ U, u⊗ v 7→ v ⊗ u, u ∈ U, v ∈ V,
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is a morphism in Γ
ΓYD.

Lemma 4.2.7. Let V ∈ Γ
ΓYD be a quantum linear space of symmetric type and let β : V ⊗V → k

be a morphism in Γ
ΓYD. Then β ◦ cV,V = −β ◦ τV,V .

Proof. Let {xi} be a basis of V . Taking into account Remarks 4.2.3 and 4.2.6, we have

β ◦ cV,V (xi ⊗ xj) = χj(gi)β(xj ⊗ xi) = χ−1
i (gi)β(xj ⊗ xi) = −β(xj ⊗ xi),

for all i and j.

We denote by Sym2
Γ
ΓYD

(V ∗) (respectively, Alt2Γ
ΓYD

(V ∗)) the space of morphisms β : V ⊗V → k

in Γ
ΓYD, that are symmetric (respectively, anti-symmetric) in the usual sense, i.e., β ◦ τV,V = β

(respectively, β ◦ τV,V = −β). Thus,

Sym2
Γ
ΓYD

(V ∗) ⊂ S2(V ∗), Alt2Γ
ΓYD

(V ∗) ⊂ ∧2(V ∗),

where S2(V ∗) and ∧2(V ∗) are the usual spaces of symmetric, respectively, alternating bilinear

forms on the vector space V .

Remark 4.2.8. Every linear map β : V ⊗ V → k has a canonical decomposition into a sum of

symmetric and alternating parts:

β = βsym + βalt, (4.4)

where βsym = 1
2
(β + β ◦ τV,V ) and βalt = 1

2
(β − β ◦ τV,V ).

Given a quantum linear space V we associate to it a Hopf algebra B(V )#k[Γ], called the

bosonization of the Nichols algebra B(V ) by k[Γ] 1. If Γ is generated by F ⊆ Γ, with relations

R, then B(V )#k[Γ] is generated by the group-like elements g ∈ F and the (gi, 1)-skew primitive

elements xi (i.e., such that ∆(xi) = gi ⊗ xi + xi ⊗ 1), i = 1, . . . , n, satisfying the following

relations:

R, hxi = χi(h)xih, xrii = 0, h ∈ Γ, i = 1, . . . , n,

1We will abuse the terminology and will also refer to B(V )#k[Γ] as a quantum linear space.
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xixj = χj(gi)xjxi, i, j = 1, . . . , n,

where ri is the order of the root of unity χi(gi). The set

{gxi11 · · ·xinn | g ∈ Γ, 0 ≤ ij < rj, j = 1, . . . , n}

is a basis of B(V )#k[Γ].

Remark 4.2.9. H = B(V )#k[Γ] is a pointed Hopf algebra and its coradical filtration is given by

Hm = 〈gxi11 . . . xinn | g ∈ Γ, 0 ≤ ij < rj, ∀j,
∑

j ij ≤ m〉.

In particular,

Pgi,1(H) = k(1− gi)⊕
( ⊕
j : gj=gi

kxj

)
, 1 ≤ j ≤ n,

Pg,1(H) = k(1− g), if g /∈ {gi}.

Many classical examples of pointed Hopf algebras are quantum linear spaces.

Example 4.2.10. If Γ = C2 = 〈c〉 is the cyclic group of order 2 and Γ̂ = 〈χ〉, then (g1, . . . , gn,

χ1, . . . , χn) = (c, . . . , c, χ, . . . , χ) is a datum for a quantum linear space V and

B(V )#k[Γ] ∼= E(n)cop ∼= E(n).

Example 4.2.11. If Γ = CN = 〈g〉 is the cyclic group of order N , ξ is a primitive N -th root of

unity, and χ ∈ Γ̂ is defined by χ(g) = ξ, then (g1, χ1) = (g, χ) is a datum for a quantum linear

space V and

B(V )#k[Γ] ∼= T cop
N,1
∼= TN,1.

If V is a quantum linear space then the liftings of B(V )#k[Γ], i.e., the pointed Hopf algebras

H for which there exists a Hopf algebra isomorphism

grH ' B(V )#k[Γ],

122



where grH is the graded Hopf algebra associated to the coradical filtration of H , were classified in

[AS98, Theorem 5.5]. Namely, for any such lifting H , there exist scalars µi ∈ {0, 1} and λij ∈ k

1 ≤ i < j ≤ n, such that

• µi is arbitrary if grii 6= 1 and χri = 1, and µi = 0 otherwise,

• λij is arbitrary if gigj 6= 1 and χiχj = 1, and λij = 0 otherwise.

H is then generated by the group-like elements g ∈ F and the (gi, 1)-skew-primitive elements

ai, i = 1, . . . , n, subject to the following relations:

R, gai = χi(g)aig, arii = µi(1− grii ), g ∈ F, i = 1, . . . , n,

aiaj = χj(gi)ajai + λij(1− gigj), 1 ≤ i < j ≤ n.

It was shown in [Mas01] that these liftings are cocycle deformations of B(V )#k[Γ].

Remark 4.2.12. Suppose that V is a quantum linear space of symmetric type. Then x2
i = 0 for

all i = 1, . . . , n. For a subset P = {i1, i2, . . . , is} ⊆ {1, . . . , n} such that i1 < i2 < · · · < is

we denote the element xi1 · · ·xis by xP and use the convention that x∅ = 1. The set {gxP | g ∈

Γ, P ⊆ {1, . . . , n}} is then a basis of B(V )#k[Γ].

Let F ⊆ P be subsets of {1, . . . , n} and let ψ(P, F ) be the element of k such that xP =

ψ(P, F )xFxP\F . Thus,

ψ(P, F ) =
∏

j∈F, i∈P\F
i<j

χj(gi). (4.5)

It is easy to check that the comultiplication formula for xP is given by

∆(xP ) =
∑
F⊆P

ψ(P, F )gFxP\F ⊗ xF , (4.6)

where gF = Πi∈F gi and g∅ = 1.
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We end this section by introducing a construction which will appear in Section 4.8 when we

discuss the adjoint subcategory of the center of a pointed braided finite tensor category.

Let V ∈ Γ
ΓYD be a quantum linear space of symmetric type associated to a datum (g1, . . . , gn,

χ1, . . . , χn). Let Σ be the subgroup of Γ × Γ̂ generated by (gi, χ
−1
i ), i = 1, . . . , n, and define

characters ϕi : Σ→ k× by

ϕi(g, χ) = χi(g), for all (g, χ) ∈ Σ, i = 1, . . . , n.

We have

ϕi(gi, χ
−1
i ) = −1 and ϕj(gi, χ

−1
i )ϕi(gj, χ

−1
j ) = 1,

for all i, j = 1, . . . , n. Thus, we can consider the quantum linear space of symmetric type W ∈
Σ
ΣYD associated to the datum

(
(g1, χ

−1
1 ), . . . , (gn, χ

−1
n ), ϕ1, . . . , ϕn

)
.

Definition 4.2.13. We call the quantum linear space D(V ) := W ⊕ W ∗ ∈ Σ
ΣYD the Drinfeld

double of V .

Note that the quantum linear space D(V ) is of symmetric type.

Remark 4.2.14. There is a canonical bilinear form rD(V ) : D(V )⊗D(V )→ k, given by

rD(V )((w, f), (w′, f ′)) := evW (f, w′) + evW cW,W ∗(w, f
′) (4.7)

for all w,w′ ∈ W, f, f ′ ∈ W ∗, where evW : W ∗ ⊗ W → k is the evaluation morphism and

cW,W ∗ : W ⊗W ∗ → W ∗ ⊗W is the braiding in Σ
ΣYD.

Note that rD(V ) is a symplectic bilinear form on W ⊕W ∗. Indeed, if {xi} is a basis of W such

that xi ∈ Wϕi
(gi,χ

−1
i )

, i = 1, . . . , n, and {x∗i } is the dual basis of W ∗, then the matrix of rD(V ) with

respect to the basis (x1, . . . , xn, x
∗
1, . . . , x

∗
n) is

 0 −In

In 0

 ,

where In denotes the n× n identity matrix.
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4.3 2-cocycles on quantum linear spaces

In this section we describe the gauge equivalence classes of 2-cocycles on the quantum linear space

B(V )#k[Γ], with V of symmetric type. We determine, also, the second invariant cohomology

group of B(V )#k[Γ]. For this, we exploit the relationship between 2-cocycles and Galois objects,

illustrated in Section 2.9, and make use of a description of the latter objects in the work of M.

Mombelli [Momb11].

Let V ∈ Γ
ΓYD be a quantum linear space of symmetric type and let H = B(V )#k[Γ]. In

[Momb11] Mombelli classified equivalence classes of exact indecomposable Rep(H)-module cat-

egories. In particular, he classified H-Galois objects and, hence, 2-cocycles on H . We recall here

this classification, see [Momb11, Section 4] for details.

A typical H-Galois object is determined by a 2-cocycle ψ ∈ Z2(Γ, k×) and two families of

scalars ξ = (ξi)i=1,...,n and α = (αij)1≤i<j≤n, satisfying:

ξi = 0 if χ2
i (g) 6= ψ(g, g2

i )

ψ(g2
i , g)

, (4.8)

αij = 0 if χiχj(g) 6= ψ(g, gigj)

ψ(gigj, g)
, (4.9)

for all g ∈ Γ. To this datum one assigns a left H-comodule algebra A(ψ, ξ, α) generated as an

algebra by {eg}g∈Γ and v1, . . . , vn subject to the relations:

efeg = ψ(f, g)efg, f, g ∈ Γ,

efvi = χi(f)vief , f ∈ Γ, i = 1, . . . , n,

vivj − χj(gi)vjvi = αijegigj , 1 ≤ i < j ≤ n,

v2
i = ξieg2

i
, i = 1, . . . , n.

The left H-comodule structure of A(ψ, ξ, α) is λ : A(ψ, ξ, α)→ H ⊗A(ψ, ξ, α),
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λ(vi) = gi ⊗ vi + xi ⊗ 1 and λ(ef ) = f ⊗ ef ,

for all i = 1, . . . , n and f ∈ Γ. Two H-Galois objects A(ψ, ξ, α) and A(ψ′, ξ′, α′) are isomorphic

if and only ψ and ψ′ are cohomologous, ξ = ξ′, and α = α′.

Remark 4.3.1. Suppose that ψ = 1. The 2-cocycle σ corresponding to the H-Galois object

A(1, ξ, α) satisfies

σ(xi, xj)− χj(gi)σ(xj, xi) = αij and σ(xi, xi) = ξi, 1 ≤ i < j ≤ n.

In this case, conditions (4.8) and (4.9) are equivalent to σ−σ◦cV,V : V ⊗V → k being a Γ-module

map.

Proposition 4.3.2. The association σ 7→ σ|V⊗V ◦ (idV⊗V −cV,V ) establishes a bijection between

the set of gauge equivalence classes of 2-cocycles on H , whose restriction on Γ is trivial, and the

set of Γ-module maps β : V ⊗ V → k satisfying β ◦ cV,V = −β.

Proof. The set of gauge equivalence classes of 2-cocycles on H , whose restriction on Γ is trivial,

is in bijection with the set of isomorphism classes of Galois objects of the type A(1, ξ, α). The

latter are parameterized by pairs (ξ, α), where ξ = (ξi)1≤i≤n and α = (αij)1≤i<j≤n are such that

ξi(1− χ2
i ), i = 1, . . . , n and αij(1− χiχj) = 0, 1 ≤ i < j ≤ n.

The pair (ξ, α) associated to the equivalence class of σ is, according to Remark 4.3.1, given by

ξi = σ(xi, xi), i = 1, . . . , n, αij = σ(xi, xj)− χj(gi)σ(xj, xi), 1 ≤ i < j ≤ n,

It defines, uniquely, the map β = σ|V⊗V ◦(idV⊗V −cV,V ), since β(xi, xi) = 2ξi and β(xi, xj) = αij .

Every Γ-linear map β : V ⊗ V → k, such that β ◦ cV,V = −β, arises in this way. To see this,

note that, if ξi = 1
2
β(xi, xi), i = 1, . . . , n, and αij = β(xi, xj), 1 ≤ i < j ≤ n, then A(1, ξ, α) is

an H-Galois object. This completes the proof.

Next, we describe invariant 2-cocycles on H .
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Proposition 4.3.3. Let σ be a 2-cocycle on H , whose restriction on Γ is trivial, and let β =

σ|V⊗V ◦ (idV⊗V −cV,V ). Then σ is invariant if and only if β(xi, xj)(1− gigj) = 0, for all i and j,

i.e., if and only if β is morphism in Γ
ΓYD.

Proof. Suppose that σ is invariant. Taking x = xi, y = g ∈ Γ in (2.40) we obtain σ(xi, g) = 0.

Similarly, taking x = g and y = xi we get σ(g, xi) = 1. Next, taking x = xi, y = xj in (2.40) we

obtain σ(xi, xj)(1− gigj) = 0. This holds for all i, j = 1, . . . , n, so σ is a Γ-comodule map. Thus,

β is a Γ-comodule map, and, combining this with Proposition 4.3.2, we see that β is a morphism

in Γ
ΓYD.

Conversely, suppose that a 2-cocycle σ on H is such that σ|Γ×Γ = 1 and β is a morphism in

Γ
ΓYD. Then the multiplication in the corresponding twisted Hopf algebra Hσ satisfies relations

g ·σ xi = χi(g)xi ·σ g and

xi ·σ xj − χj(gi)xj ·σ xi = αij(1− gigj), i, j = 1, . . . , n.

But the right hand side of the last equality is equal to 0, so Hσ = H , i.e., σ is invariant.

Recall that Sym2
Γ
ΓYD

(V ∗) denotes the set of morphisms β : V ⊗ V → k in Γ
ΓYD that are

symmetric: βτV,V = β.

Corollary 4.3.4. The map σ 7→ (σ|V⊗V )sym is an isomorphism between the set of gauge equiv-

alence classes of invariant 2-cocycles on H , whose restriction to Γ is trivial, and the space

Sym2
Γ
ΓYD

(V ∗).

Proof. According to Proposition 4.3.2 and Proposition 4.3.3, the association σ 7→ β = σ|V⊗V ◦

(idV⊗V −cV,V ) is a bijection between the set of invariant 2-cocycles on H , with trivial restriction

to Γ, and the set of morphisms β : V ⊗ V → k in Γ
ΓYD, such that β ◦ cV,V = −β. The latter

condition on β is equivalent, according to Lemma 4.2.7, to β ◦ τV,V = β, i.e. β ∈ Sym2
Γ
ΓYD

(V ∗).

We claim that β = 2 (σ|V⊗V )sym. Indeed, idV⊗V −cV,V is an invertible morphism in Γ
ΓYD, with

inverse idV⊗V +cV,V , so σV⊗V is a morphism in Γ
ΓYD. According to Lemma 4.2.7, σV⊗V ◦ cV,V =

−σV⊗V τV,V . Thus,
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β = σ|V⊗V ◦ (idV⊗V −cV,V ) = σ ◦ (idV⊗V +τV,V ) = 2 (σ|V⊗V )sym.

We now analyze the general situation when σ|Γ×Γ is not necessarily trivial. Let Γ0 be the

subgroup of Γ generated by gi, i = 1, . . . , n.

Proposition 4.3.5. Let σ be an invariant 2-cocycle onH . There exists ρ ∈ Z2(Γ/Γ0, k
×) such that

σ|Γ×Γ is cohomologous to ρ◦(πΓ0×πΓ0), where πΓ0 : Γ→ Γ/Γ0 is the quotient homomomorphism.

Proof. It suffices to check that the alternating bilinear form alt(σ) : Γ× Γ→ k× given by

alt(σ)(g, h) =
σ(g, h)

σ(h, g)
, g, h ∈ Γ (4.10)

vanishes on Γ×Γ0. But this follows from invariance of σ since we must have σ(gi, g) = σ(g, gi) =

1, for all i = 1, . . . , n and g ∈ Γ.

Proposition 4.3.6. H2
inv(H) ∼= H2(Γ/Γ0, k

×)× Sym2
Γ
ΓYD

(V ∗).

Proof. By Corollary 4.3.4 the group Sym2
Γ
ΓYD

(V ∗) is identified with the normal subgroup of H2
inv(H)

consisting of gauge equivalence classes of invariant 2-cocycles with trivial restriction on Γ.

Next, there is a surjective Hopf algebra homomorphism p : H → k[Γ/Γ0] obtained by com-

posing the canonical projection H → k[Γ] with πΓ0 : Γ → Γ/Γ0. Thus, for any 2-cocycle

ρ ∈ Z2(Γ/Γ0, k
×) its pullback p∗(ρ) is a 2-cocycle on H .

Using the explicit formula (4.6) for the comultiplication on H we check that this 2-cocycle

satisfies

p∗(ρ)(x(1), y(1))x(2) ⊗ y(2) = x(1) ⊗ y(1)p
∗(ρ)(x(2), y(2)), x, y ∈ H .

Indeed, for x = hxP , y = fxQ, where h, f ∈ Γ, both sides of this equality are equal to

ρ(πΓ0(h), πΓ0(f))hxP ⊗ fxQ.

In particular, p∗(ρ) is an invariant 2-cocycle on H and belongs to the center of H2
inv(H). Thus,

there is a central embedding H2(Γ/Γ0, k
×) ⊂ H2

inv(H). The statement follows from Proposi-

tion 4.3.5.
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4.4 Co-quasitriangular structures on quantum linear spaces

In this section we prove that if B(V )#k[Γ] admits a co-quasitriangular structure then V is of

symmetric type. In this case, r-forms on B(V )#k[Γ] are parametrized by pairs (r0, r1) where

r0 : Γ × Γ is a bicharacter, satisfying a certain condition, and r1 : V ⊗ V → k is a morphism in

Γ
ΓYD. Quasitriangular structures on B(V )#k[Γ] have been described by A. Nenciu in [Nen04] in

terms of generators of Γ and a basis of V . By duality, one can deduce from that a classification

of co-quasitriangular structures. Our approach is new and, by providing a basis free description,

gives more insight into the structure of r-forms on B(V )#k[Γ].

We start with a couple of preliminary results.

Lemma 4.4.1. Let H = B(V )#k[Γ] be a quantum linear space. If r : H ⊗ H → k is a linear

map satisfying conditions (2.25)-(2.28) then r is a co-quasitriangular structure on H if and only if

condition (2.29) holds for all pairs (x, y) ∈ H1×H1, where H1 is the second term in the coradical

filtration of H .

Proof. We need only prove sufficiency. By induction on m we show that condition (2.29) holds

for all pairs (x, y) for which either x or y is in Hm, the m-th term of the coradical filtration.

Assume first that x ∈ H1. Using induction on k ≥ 1 we show that condition (2.29) holds for

all pairs (x, y) and (y, x) with y ∈ Hk. If k = 1 there is nothing to prove. Assume that the claim

is true for k ≥ 1 and consider z ∈ H1. Then, using the induction hypothesis and (2.25), we have
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x(1)(yz)(1)r
(
(yz)(2), x(2)

)
= x(1)y(1)z(1)r(y(2)z(2), x(2))

= x(1)y(1)z(1)r(y(2), x(2))r(z(2), x(3))

= y(2)x(2)z(1)r(y(1), x(1))r(z(2), x(3))

= y(2)z(2)x(3)r(y(1), x(1))r(z(1), x(2))

= y(2)z(2)x(2)r(y(1)z(1), x(1))

= (yz)(2)x(2)r
(
(yz)(1), x(1)

)

and using (2.27) we have

(yz)(1)x(1)r
(
x(2), (yz)(2)

)
= y(1)z(1)x(1)r(x(2), y(2)z(2))

= y(1)z(1)x(1)r(x(2), z(2))r(x(3), y(2))

= y(1)x(2)z(2)r(x(1), z(1))r(x(3), y(2))

= x(3)y(2)z(2)r(x(1), z(1))r(x(2), y(1))

= x(2)y(2)z(2)r(x(1), y(1)z(1))

= x(2)(yz)(2)r
(
x(1), (yz)(1)

)

Since Hk+1 = HkH1 it follows that (2.29) holds for all pairs (x, y) and (y, x) with y ∈ Hk+1.

Thus, (2.29) holds for all pairs (x, y) with either x or y in H1.

Suppose now that (2.29) holds for all pairs (x, y) with either x or y in Hm. Then a similar

argument as the previous one shows that (2.29) holds for all pairs (x, yz) and (yz, x) with y ∈ Hm,

z ∈ H1 and arbitrary x. Since Hm+1 = HmH1, it follows that (2.29) is satisfied for all pairs (x, y)

with either x or y in Hm+1. This proves the induction step and concludes the proof.

Lemma 4.4.2. Let H be a Hopf algebra generated as an algebra by h1, . . . , hn and such that the

vector space V spanned by h1, . . . , hn is a subcoalgebra. Then any co-quasitriangular structure

on H is uniquely determined by its restriction to V ⊗ V .
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Proof. Suppose r′ and r′′ are two co-quasitriangular structures onH such that r′(hi, hj) = r′′(hi, hj),

for all i, j ∈ {1, . . . , n}. If i, i1, . . . , it ∈ {1, . . . , n} then, using (2.25), we have

r′(hi1 · · ·hit , hi) = r′
(
hi1 , (hi)(1)

)
· · · r′

(
hit , (hi)(t)

)
= r′′

(
hi1 , (hi)(1)

)
· · · r′′

(
hit , (hi)(t)

)
= r′′(hi1 · · ·hit , hi)

Thus, r′(h, hi) = r′′(h, hi), for all h ∈ H and i ∈ {1, . . . , n}. Let h ∈ H and i1, . . . , it ∈

{1, . . . , n}. Then, using (2.27), we have

r′(h, hi1 · · ·hit) = r′
(
h(1), hit

)
· · · r′

(
h(t), hi1

)
= r′′

(
h(1), hit

)
· · · r′′

(
h(t), hi1

)
= r′′(h, hi1 · · ·hit)

Since h1, . . . , hn generate H as an algebra, we conclude that r′ = r′′.

We now prove the main result of this section.

Proposition 4.4.3. LetH = B(V )#k[Γ] be a quantum linear space. IfH admits a co-quasitriangu-

lar structure then V is of symmetric type. In this case, the set of r-forms on H is parameterized by

the set of pairs (r0, r1), where r0 : Γ×Γ→ k× is a bicharacter such that V ∈ Zsym(C(Γ, r−1
0 )) ⊆

Γ
ΓYD, and r1 : V ⊗ V → k is a morphism in Γ

ΓYD. The pair (r0, r1) corresponding to a co-

quasitriangular structure r is (r0, r1) = (r|Γ×Γ, r|V⊗V ).

Proof. Let r be an r-form on B(V )#k[Γ]. Then the restriction of r to Γ × Γ is a bicharacter

r0. From condition (2.29) applied to the pair (x, y) = (xi, g) we obtain r0(g, gi) = χ−1
i (g) and
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r(g, xi) = 0, and from the same condition applied to (x, y) = (g, xi) we get r0(gi, g) = χi(g) and

r(xi, g) = 0. Thus,

r0(gi,−) = χi = r0(−, gi)−1,

for all i = 1, . . . , n. This is equivalent to requiring V ∈ Zsym(C(Γ, r−1
0 )) ⊆ Γ

ΓYD. It also implies

χi(gi) = −1, for all i = 1, . . . , n, so V is a quantum linear space of symmetric type.

Let us check now that r1 = r|V⊗V is a morphism in Γ
ΓYD. Making use, again, of condition

(2.29), this time for the pair (x, y) = (xi, xj), we obtain that r(xi, xj)(1 − gigj) = 0. Looking

now at condition (2.27), for (x, y) = (xi, xjg) and (x, y) = (xi, gxj), we see that r(xi, xjg) =

χi(g)r(xi, xj) and r(xi, gxj) = r(xi, xj). Since xjg = χ−1
j (g)gxj , we have

χi(g)r(xi, xj) = r(xi, xjg) = χ−1
j (g)r(xi, gxj) = χ−1

j (g)r(xi, xj)

Thus, r(xi, xj)(1− χiχj) = 0. It follows from Remark 4.2.6 that r|V⊗V is a morphism in Γ
ΓYD.

We have proved that if B(V )#k[Γ] admits a co-quasitriangular structure r then V is a quantum

linear space of symmetric type and the pair (r0, r1) = (r|Γ×Γ, r|V⊗V ) has the properties listed in

the statement. Let us see that, when V is a quantum linear space of symmetric type and H =

B(V )#k[Γ], any such pair comes from a unique r-form on H .

Suppose (r0, r1) is such a pair. Let f : H → H∗cop be defined by

f(g) = γg and f(xi) = ξi

where, for g ∈ Γ and i = 1, . . . , n, γg and ξi are given by

γg(hxP ) = δP,∅r0(g, h) and ξi(hxP ) =

 0 if |P | 6= 1,

r1(xi, xj) if P = {j},

for all h ∈ Γ and P ⊆ {1, . . . , n}. It is not hard to see that γg is a group-like element and xi is a

(γgi , ε)-skew primitive element of H∗cop, for every g ∈ Γ and i = 1, . . . , n. Thus, f is a coalgebra

map.

In addition, f is an algebra map. Indeed, since r1 : V ⊗V → k is a morphism of Yetter-Drinfeld

modules, we have ξi(xj)(1 − χiχj) = 0 and ξi(xj)(1 − gigj) = 0, for all i, j ∈ {1, . . . , n}. With

these relations, it is straightforward to check that γgγh = γgh, γgξi = χi(g)ξiγg, ξiξj = χj(gi)ξjξi
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and ξ2
i = 0, for all g, h ∈ Γ and i, j = 1, . . . , n. For example, ξiξj(hxP ) = 0 = χj(gi)ξjξi(hxP )

when |P | 6= 2. If 1 ≤ u < v ≤ n, then

ξiξj(hxuxv) = ξi(hguxv)ξj(hxu) + χ−1
u (gv)ξi(hgvxu)ξj(hxv)

= ξi(xv)ξj(xu) + χi(gj)
−1ξi(xu)ξj(xv)

= χj(gi)
(
ξi(xu)ξj(xv) + χj(gi)

−1ξi(xv)ξj(xu)
)

= χj(gi)
(
ξj(hguxv)ξi(hxu) + χ−1

u (gv)ξj(hgvxu)ξi(hxv)
)

= χj(gi)ξjξi(hxuxv).

Thus, f is a bialgebra map fromH toH∗cop. It follows from Remark 2.6.16 that r : H⊗H → k,

r(x, y) = f(x)(y), for all x, y ∈ H , satisfies (2.25)-(2.28). To prove that r is a co-quasitriangular

structure on H , it suffices, by virtue of Lemma 4.4.1, to check that (2.29) holds for every pair of

elements in the second term of the coradical filtration of H . This is straightforward, as we next

show for the pair (gxi, hxj):

r
(
(hxj)(1), (gxi)(1)

)
(hxj)(2)(gxi)(2) = r(hgj, ggi)hxjgxi + r(hxj, gxi)hg

= r(h, g)χ−1
i (h)ghxixj + r(hxj, gxi)gh

= gxihxjr(h, g) + ggihgjr(hxj, gxi)

= (gxi)(1)(hxj)(1)r
(
(hxj)(2), (gxi)(2)

)
where, for the third equality, we use the fact that r(hxj, gxi)(1 − gigj) = 0. Thus, r is a co-

quasitriangular structure on H which restricts to r0 on Γ× Γ and to r1 on V ⊗ V . The uniqueness

of r follows from Lemma 4.4.2.

Remark 4.4.4. Recall from Example 2.6.25 that Zsym(C(Γ, r)) = C(Γ⊥, r|Γ⊥). Recall, also, from

Example 2.6.34 that, if C(Γ, r) is symmetric then the objects of C(Γ, r)− are those Γ-graded vector

spaces with support contained in {g ∈ Γ | r(g, g) = −1}. Thus, for arbitrary (Γ, r), the objects of

Zsym(C(Γ, r))− are the Γ-graded vector spaces with support contained in
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{g ∈ Γ | r(g, h)r(h, g) = 1, for all h ∈ Γ} ∩ {g ∈ Γ | r(g, g) = −1}.

Corollary 4.4.5. Let Γ be a finite abelian group, r0 : Γ×Γ→ k× a bicharacter, V ∈ Zsym(C(Γ, r−1
0 ))−,

and r1 : V ⊗ V → k, a Γ-graded map. Then V is a quantum linear space of symmetric type and

(r0, r1) defines a co-quasitriangular structure on B(V )#k[Γ].

Proof. Recall from Example 2.7.13 that C(Γ, r−1
0 ) embeds into Γ

ΓYD. Thus, V is a Yetter-Drinfeld

Γ-module with Γ-action given by:

h · v = r−1
0 (h, g), v ∈ Vg, g, h ∈ Γ.

Let gi ∈ Γ, χi ∈ Γ̂ and xi ∈ V , i = 1, . . . , n, be such that V = ⊕ni=1kxi and xi ∈ V χi
gi

. Taking into

account Remark 4.4.4, we have χi = r0(−, gi)−1,

χi(gi) = −1 and χi(gj)χj(gi) = 1,

for all i, j = 1, . . . , n. Thus, V is a quantum linear space of symmetric type.

To finish the proof we have to check that r1 is Γ-linear. Since r1 is Γ-co-linear, we have

r1(xi, xj)(1− gigj) = 0, for all i and j. Notice that, since χi = r0(−, gi)−1, we have that gigj 6= 1

whenever χiχj 6= 1. Thus, r1(xi, xj)(1− χiχj) = 0, for all i and j, so r1 is Γ-linear.

Remark 4.4.6. Given Γ, r0, V and r1 as in Corollary 4.4.5, we use the following notation

C(Γ, r0, V, r1) := Corep(B(V )#k[Γ], (r0, r1)),

where (r0, r1) denotes the r-form on B(V )#k[Γ] afforded by r0 and r1.

Example 4.4.7. Let Γ = Z/2Z and let r0 : Γ × Γ → k× be the non-trivial bicharacter of

Γ. Let V be a multiple of the non-identity simple object of Corep(Z/2Z). Then V belongs to

Zsym(C(Z/2Z, r−1
0 ))− ⊆ Γ

ΓYD, so the Nichols algebra

E(V ) = B(V )#k[Z/2Z]

admits co-quasitriangular structures. According to Proposition 4.4.3 such structures are in bijection

with bilinear forms r1 : V ⊗ V → k or, equivalently, with n × n square matrices, where n =

dimk(V ). This agrees with the result of [PvO99] (see Example 2.6.11).
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4.5 The symmetric center of C(Γ, r0, V, r1)

In this section we describe the symmetric center of C(Γ, r0, V, r1). As a result, we obtain nec-

essary and sufficient conditions for C(Γ, r0, V, r1) to be symmetric, semisimple and factorizable,

respectively.

Let Γ, r0, V , and r1 be as in Remark 4.4.5. Let H = B(V )#k[Γ] and r the r-form on H

corresponding to (r0, r1). We have

Zsym(C(Γ, r0, V, r1)) ∼= Corep(Hsym, r|Hsym⊗Hsym),

where Hsym is the Hopf subalgebra of H defined by (2.31).

Let b : Γ× Γ→ k× be the symmetric bicharacter given by

b(g, h) = r(g, h)r(h, g), g, h ∈ Γ.

Let Γ⊥ and V ⊥ denote the radicals of b and (r1)alt, respectively, i.e.

Γ⊥ = {g ∈ Γ | b(g, h) = 1 for all h ∈ Γ},

V ⊥ = {v ∈ V | (r1)alt(v, w) = 0 for all w ∈ V }.

Lemma 4.5.1. Hsym is generated as an algebra by Γ⊥ and V ⊥.

Proof. Since Hsym is a Hopf subalgebra of a pointed Hopf algebra with abelian coradical, it is

pointed with abelian coradical. By the result of Angiono [Ang13], Hsym is generated by its group-

like and skew-primitive elements.

It is easy to see that an element g ∈ Γ is inHsym if and only if r(g, h)r(h, g) = 1, for all h ∈ Γ.

Thus, the set of group-like elements of Hsym is Γ⊥.

Let now g ∈ Γ⊥ and let x be a (g, 1)-primitive element. If g /∈ {gi | i = 1, . . . , n} then x

is a scalar multiple of 1 − g, so it is contained in Hsym. If g = gi for some i ∈ {1, . . . , n} then
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x = a(1−gi)+
∑

j:gj=gi
ajxj , for some a, aj ∈ k. Let y =

∑
j:gj=gi

ajxj . We claim that x ∈ Hsym

if and only if y ∈ V ⊥.

It is clear that x ∈ Hsym if and only if y ∈ Hsym. Next,

y(1)r(y(2), z(1))r(z(2), y(3)) =
∑

j:gj=gi
aj

(
r(gj, z(1))r(z(2), xj) + r(xj, z)

)
gi + ε(z)y,

for all z ∈ H , so y ∈ Hsym if and only if

∑
j:gj=gi

aj

(
r(gj, z(1))r(z(2), xj) + r(xj, z)

)
= 0, (4.11)

for all z ∈ {hxl | h ∈ Γ, l = 1, . . . , n}. For z = hxl, the left-hand side of (4.11) becomes

LHS(4.11) =
∑
j:gj=gi

aj

(
r(gj, hgl)r(hxl, xj) + r(xj, hxl)

)
=
∑
j:gj=gi

aj

(
r(gj, gl)r(xl, xj) + r(xj, xl)

)
= r(gl, gi)r(xl, y) + r(y, xl)

= (r + r ◦ cV,V )(y, xl)

= (r − r ◦ τV,V )(y, xl)

= 2(r1)alt(y, xl),

where we have used the fact that r|V⊗V is a morphism in YD and Lemma 4.2.7.

Thus, y ∈ Hsym if and only if y ∈ V ⊥. It follows that non-trivial skew-primitive elements of

Hsym generate V ⊥, and the claim is proved.

Corollary 4.5.2. Hsym = B(V ⊥)#k[Γ⊥] and

Zsym(C(Γ, r0, V, r1)) ∼= C(Γ⊥, r0|Γ⊥×Γ⊥ , V
⊥, r1|V ⊥⊗V ⊥).

Corollary 4.5.3. The following hold.

(i) C(Γ, r0, V, r1) is symmetric if and only if C(Γ, r0) is symmetric and r1 is symmetric.
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(ii) Zsym(C(Γ, r0, V, r1)) is semisimple if and only if (r1)alt : V ⊗ V → k is non-degenerate.

(iii) C(Γ, r0, V, r1) is factorizable if and only if C(Γ, r0) is factorizable and V = 0.

Example 4.5.4. Let E(V ) be the Hopf algebra from Example 4.4.7 and let r1 : V ⊗ V → k be

a bilinear form. In this case cV,V = −τV,V , so Corollary 4.5.3(i) says that the co-quasitriangular

structure determined by r1 is symmetric if an only if r1 is symmetric (in the usual linear algebra

sense). This was proved in [CC04b].

4.6 Ribbon structures on C(Γ, r0, V, r1)

In this section we classify ribbon structures of C(Γ, r0, V, r1).

We need the following result.

Lemma 4.6.1. Let A be an abelian group and let a1, a2, . . . , an be elements of A. There exists a

group homomorphism γ : A → {±1} such that γ(ai) = −1, for all i = 1, . . . , n if and only if

there are no relations in A of the form ai1ai2 · · · aik = x2, with k odd.

Proof. Suppose there are no relations inA of the form ai1ai2 · · · aik = x2, with k odd. Let π : A→

A/A2 be the natural projection and let {π(ai1), π(ai2), . . . , π(air)} be a maximal linearly indepen-

dent subset of {π(ai) | i = 1, . . . , n} in the elementary abelian 2-group A/A2. Notice that, for any

i ∈ {1, . . . , n}, π(gi) is a product of an odd number of elements of {π(ai1), π(ai2), . . . , π(air)}.

Thus, there is a homomorphism f : A/A2 → {±1} such that f
(
π(ai)

)
= −1, for all i = 1, . . . , n.

Composing f with π we obtain a homomorphism A→ {±1} sending each ai to−1. The converse

is trivial.

Proposition 4.6.2. The set of ribbon structures on C(Γ, r0, V, r1) is non-empty and is in bijection

with the set of group homomorphisms γ : Γ→ {±1} such that γ(gi) = −1, for all i = 1, . . . , n.
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Proof. Let H = B(V )#k[Γ]. As explained in Remark 2.6.32, ribbon structures on C(Γ, r0, V, r1)

are in bijection with group-like elements γ ∈ G(H∗) satisfying γ2 = (η ◦ S) ∗ η−1 and S2
H∗(p) =

γ−1 ∗ p ∗ γ, for all p ∈ H∗.

Let γ be such an element. We have

γ(g)2 = γ2(g) = (η ◦ S) ∗ η−1(g) = r0(g−1, g)r0(g, g) = 1

for all g ∈ Γ, so γ(Γ) ⊆ {±1}. Now S2
H∗(p) = γ−1 ∗ p ∗ γ, for all p ∈ H∗, if and only if

S2
H = γ−1 ∗ idH ∗γ. Since both maps are algebra maps, they are equal if and only if they agree on

algebra generators. We have

S2
H(g) = g, (γ−1 ∗ idH ∗γ)(g) = g,

S2
H(xi) = −xi, (γ−1 ∗ idH ∗γ)(xi) = γ−1(gi)xi,

for all g ∈ Γ and i = 1, . . . , n. Thus, S2
H = γ−1 ∗ idH ∗γ if and only if γ(gi) = −1 for all i.

It remains to show that there always exists a homomorphism γ : Γ→ {±1} such that γ(gi) =

−1, for all i = 1, . . . , n. Since k× is an injective Z-module, it is enough to show that there is such

a homomorphism on the subgroup Γ0 = 〈g1, . . . gn〉 ⊂ Γ. Using Lemma 4.6.1, we have to show

that there are no relations in Γ0 of the form gi1gi2 · · · gik = x2 with k odd. If x = ge1i1 g
e2
i2
· · · getit is

an element of Γ0 then

r0(x, x) =
∏t

r=1 r0(gir , gir)
e2r
∏

1≤r<s≤t
(
r0(gir , gis)r0(gis , gir)

)eres
= (−1)

∑t
r=1 e

2
r .

In particular, r0(x, x)2 = 1, for all x ∈ Γ0. On the other hand, if gi1gi2 · · · gik = x2 with k odd,

then r0(x, x)4 = r0(x2, x2) = (−1)k = −1, which is a contradiction.
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4.7 Metric quadruples

In this section we generalize the result of Section 4.1 to include the non-semisimple case. We prove

that the groupoid with objects pointed braided finite tensor categories admitting a fiber functor is

equivalent to a groupoid of metric quadruples.

We start with the following result.

Theorem 4.7.1. Let C be a pointed braided finite tensor category admitting a fiber functor. Then

there exist a finite abelian group Γ, a bicharacter r0 : Γ×Γ→ k×, an object V ∈ Zsym(C(Γ, r−1
0 ))−

and a Γ-graded morphism r1 : V ⊗ V → k, such that

C ' C(Γ, r0, V, r1).

Proof. From the reconstruction theory we know that there exists a finite dimensional pointed co-

quasitriangular Hopf algebra (H, r) such that C ' Corep(H, r).

Let Γ be the group of group-like elements of H . Since CorepΓ is a tensor subcategory of

CorepH , it is braided, hence Γ is abelian. Moreover, r restricts to a bicharacter r′0 on Γ.

For g ∈ Γ let Vg = Pg,1(H) be the set of (g, 1)-primitive elements of H . The group Γ acts on

Vg by conjugation, so Vg =
⊕

χ∈Γ̂ V
χ
g , where V χ

g = {x ∈ Vg | hxh−1 = χ(h)x, for all h ∈ Γ}.

Let

V =
⊕

g∈Γ\{1}
χ∈Γ̂\{1}

V χ
g =

n⊕
i=1

kxi, xi ∈ V χi
gi

.

Condition (2.29) for the pair (x, y) = (xi, g) yields r′0(g, gi) = χ−1
i (g), and the same condition

for the pair (x, y) = (g, xi) yields r′0(gi, g) = χi(g). Thus,

r′0(gi,−) = χi = r′0(−, gi)−1,

for all i = 1, . . . , n. In particular, χi(gj)χj(gi) = 1 for all i, j = 1, . . . , n. Moreover, χi(gi) = −1,

for all i = 1, . . . , n. Indeed, if χi(gi) = 1, for some i, then the Hopf subalgebra of H generated by
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gi and xi is non-semisimple commutative, and, hence, infinite dimensional. Thus, V is a quantum

linear space of symmetric type.

From I. Angiono’s result [Ang13] it follows thatH is generated by Γ and V , soH is a lifting of

B(V )#k[Γ]. From the work of N. Andruskiewitsch and H.-J. Schneider [AS98], and A. Masuoka

[Mas01], we have that H is a 2-cocycle deformation of B(V )#k[Γ]. Taking into account Proposi-

tion 4.4.3 and the fact that cocycle deformation does not change the category of co-representation,

we have

C ' Corep(H, r) ' Corep(B(V )#k[Γ], (r0, r1)) = C(Γ, r0, V, r1),

for a bicharacter r0 of Γ such that V ∈ Zsym(C(Γ, r−1
0 )−, and a Γ-graded map r1 : V ⊗ V →

k×.

Recall that a groupoid is a category in which all morphisms are isomorphisms.

Let P be the groupoid with objects pointed braided finite tensor categories admitting a fiber

functor and morphisms natural isomorphism classes of equivalences of braided tensor categories.

Denote byQ the groupoid whose objects are quadruples (Γ, q, V, r), where Γ is a finite abelian

group, q ∈ Quadd(Γ) is a diagonalizable quadratic form on Γ, V is an object in Zsym(C(Γ, q))−,

and r : V ⊗ V → k is an alternating bilinear form in C(Γ, q). The set of morphisms in Q from

(Γ, q, V, r) to (Γ′, q′, V ′, r′) is the set of equivalence classes of pairs (α, f), where α : (Γ, q) →

(Γ′, q′) is an orthogonal group isomorphism and f : indα(V )→ V ′ is an isomorphism in C(Γ′, q′)

such that r′ ◦ (f ⊗ f) = indα(r). The equivalence relation identifies (α, f) and (α,−f).

Definition 4.7.2. We call Q the groupoid of metric quadruples.

Define a functor F : Q → P as follows. Choose, for every metric quadruple (Γ, q, V, r), a

bicharacter r0 : Γ× Γ→ k× such that q(g) = r0(g, g), for all g ∈ Γ, and define F on objects by:

F (Γ, q, V, r) = C(Γ, r0, V, r). (4.12)
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Let now (α, f) : (Γ, q, V, r) → (Γ′, q′, V ′, r′) be a morphism in Q. It gives rise to an isomor-

phism of Hopf algebras ϕ(α,f) : B(V )#k[Γ]→ B(V ′)#k[Γ′] given by

ϕ(α,f)(g) = α(g), ϕ(α,f)(x) = f(x), (4.13)

for all g ∈ Γ and x ∈ V . If r′0 : Γ′ × Γ′ → k× is a bicharacter such that q′(g) = r′0(g, g),

g ∈ Γ′, then r′0 ◦ (α×α)/r0 = alt(µ), for some µ ∈ Z2(Γ/Γ0,k
×), see (4.10). This means that the

r-form r′0 ◦ (α×α) is a µ-deformation of r0. But µ̂ ∈ H2(Γ/Γ0,k
×) defines an invariant 2-cocycle

σ on B(V )#k[Γ] by Proposition 4.3.6. Thus, ϕ(α,f) gives rise to a well defined braided tensor

equivalence F (α, f) between C(Γ, r0, V, r) and C(Γ′, r′0, V ′, r′), namely (ϕ(α,f), σ).

Our aim is to prove the following.

Theorem 4.7.3. The functor

F : Q → P (4.14)

is an equivalence of categories.

We start with a few observations.

Lemma 4.7.4. Let (r0, r1) and (r′0, r
′
1) define co-quasitriangular structures on B(V )#k[Γ] and

B(V ′)#k[Γ′], respectively. Then the set of co-quasitriangular Hopf algebra isomorphisms

(B(V )#k[Γ], (r0, r1))→ (B(V ′)#k[Γ′], (r′0, r
′
1))

is in bijection with the set of pairs (α, ϕ), where α : Γ → Γ′ is a group isomorphism such that

r′0 ◦ (α× α) = r0, and ϕ : indα(V )→ V ′ is an isomorphism in C(Γ′, r′0) such that r′1 ◦ (ϕ⊗ ϕ) =

indα(r1). The pair (α, ϕ) corresponding to an isomorphism f is (α, ϕ) = (f |Γ, f |V ).

Proof. Let f : (B(V )#k[Γ], (r0, r1)) → (B(V ′)#k[Γ′], (r′0, r
′
1)) be an isomorphism of coquasi-

triangular Hopf algebras. Since f takes group-like elements to group-like elements, it restricts to a

group isomorphism α : Γ→ Γ′. Let us show that f induces an isomorphism indα(V )→ V ′.
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Notice first that α(gi) ∈ {g′j}. Indeed, if this is not the case, then f(xi) = a(1 − f(gi)), for

some a ∈ k. But f(xi) anti-commutes with f(gi), while a(1 − f(gi)) commutes with f(gi), so

f(xi) = 0. This, however, contradicts the injectivity of f .

Thus, α(gi) ∈ {g′j}, for all i. It follows that there exist scalars ai, bij ∈ k such that bji
(
g′j −

f(gi)
)

= 0 and

f(xi) = ai(1− f(gi)) +
∑

j bjix
′
j, i = 1, . . . , n.

We must have f(g)f(xi) = χi(g)f(xi)f(g), for all g ∈ Γ. Now

f(g)f(xi) = ai(f(g)− f(ggi)) +
∑
j

bjif(g)x′j

= ai(f(g)− f(ggi)) +
∑
j

bjiχ
′
j

(
f(g)

)
x′jf(g)

and

χi(g)f(xi)f(g) = aiχi(g)(f(g)− f(ggi)) +
∑

j bjiχi(g)x′jf(g).

Thus, f(g)f(xi) = χi(g)f(xi)f(g) if and only if ai = aiχi(g) and χ′j
(
f(g)

)
bji = χi(g)bji, for

all j and g ∈ Γ. Taking g = gi in the first condition, we obtain ai = 0. The second condition is

equivalent to bji(χi − χ′j ◦ f) = 0.

It follows that f(xi) =
∑

j bjix
′
j , where bji

(
g′j − α(gi)

)
= 0 and bji(χiα−1 − χ′j) = 0. In

particular, the restriction ϕ of f to V is a morphism in C(Γ′, r′0) from indα(V ) to V ′. Since f is an

isomorphism, ϕ is also an isomorphism.

We have proved that if f : B(V )#k[Γ] → B(V ′)#k[Γ′] is an isomorphism of Hopf algebras

then it induces, by restriction, isomorphisms α : Γ → Γ′ and ϕ : indα(V ) → V ′. We have

(r′0, r
′
1) ◦ (f ⊗ f) = (r0, r1) if and only if r′0 ◦ (α× α) = r0 and r′1 ◦ (ϕ⊗ ϕ) = indα(r1).

It is easy to check that every data (α, ϕ) with the above properties comes from an isomorphism

of co-quastriangular Hopf algebras H → H ′, so the theorem holds.
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Lemma 4.7.5. Let σ be an invariant 2-cocycle on B(V )#k[Γ] such that σ|Γ×Γ = 1, and let r be

an r-form on B(V )#k[Γ] . Then the σ-deformation of r satisfies

rσ|V⊗V = r|V⊗V + 2(σ|V⊗V )sym. (4.15)

Proof. Using formula (2.41), we compute

rσ(xi, xj) = r(gi, gj)σ
−1(xi, xj) + r(xi, xj) + σ(xj, xi)

= r(xi, xj) + (σ(xj, xi)− χi(gj)σ(xi, xj))

= r(xi, xj) + (σ ◦ τV,V − σ ◦ cV,V ◦ τV,V )(xi, xj)

Since the restrictions of r and rσ on V⊗V are morphisms in Γ
ΓYD we conclude, using Lemma 4.2.7,

that

σ|V⊗V ◦ τV,V − σ|V⊗V ◦ cV,V ◦ τV,V = 2(σ|V⊗V )sym,

which implies the statement.

We now proceed with the proof of Theorem 4.7.3.

Proof. We need to show that the functor F (4.14) is essentially surjective and fully faithful.

(1) F is essentially surjective. For this end it suffices to check that the co-quasitriangular

structure on H defined using r : V ⊗ V → k is gauge equivalent, by means of an invariant 2-

cocycle on H , to the one defined using an alternating morphism V ⊗ V → k in C(Γ, r0). Let σ be

an invariant 2-cocycle on H such that σ|Γ×Γ = 1 (such 2-cocycles are classified in Corollary 4.3.4)

and let rσ = σ21 ∗ r ∗ σ−1. By Lemma 4.7.5 we have

rσ|V⊗V = r|V⊗V + 2(σ|V⊗V )sym.

Thus, we can take σ such that (σ|V⊗V )sym = −1
2
(r ◦ τ)sym, so that rσ|V⊗V = (r|V⊗V )alt, i.e.,

rσ|V⊗V is alternating.
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Since C(Γ, r0, V, r) and C(Γ, r0, , r
σ) are equivalent braided tensor ategories, the surjectivity of

F follows.

(2) F is faithful. We need to check that F is injective on morphisms. It is clear from definitions

that F (α, f) = F (α′, f ′) implies α = α′. Therefore, it remains to check that for an automorphism

(idΓ, f) of (Γ, q, V, r) ∈ Q one has F (idΓ, f) ∼= idC(Γ,q,V,r) as a tensor functor if and only if

f = ± idV . One implication is clear since − idV preserves any bilinear form.

Note that the Hopf algebra automorphism ϕ(idΓ,f) of H defined in (4.13) gives rise to a trivial

tensor autoequivalence of Corep(H) if and only if it is given by

h 7→ χ ⇀ h ↼ χ−1, h ∈ H

for some character χ ∈ H∗. The condition that it preserves r is equivalent to χ(gi)χ(gj) = 1 for all

i, j = 1, . . . , n, i.e., to χ being identically equal to 1 or −1 on the support of V . By the Remark ??

there exists χ such that this value is −1, so that f = ± idV .

(3) F is full. We need to check that F is surjective on morphisms. We claim that any braided

tensor equivalence Φ between Corep(B(V )#k[Γ], r) and Corep(B(V ′)#k[Γ′], r′) is isomorphic

to one coming from a coquasitriangular Hopf algebra isomorphism B(V )#k[Γ]→ B(V ′)#k[Γ′].

By the result of A. Davydov [Dav10] Φ corresponds to a pair (f, σ), where σ is a 2-cocycle on

B(V )#k[Γ] and f : (B(V )#k[Γ])σ → B(V ′)#k[Γ′] is Hopf algebra isomorphism such that

r ◦ (f ⊗ f) = rσ.

The last condition corresponds to the braided property of the equivalence.

We must have σ|Γ×Γ = 1 since non-trivial twisting changes the braided equivalence class of

Corep(k[Γ], r0). By Lemma 4.7.5 we have

(r ◦ (f ⊗ f)− r) |V⊗V = 2(σ|V⊗V )sym.
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The left hand side is of the above equality is alternating, while the right hand side is symmetric.

Hence, both sides are equal to 0 and so σ is gauge equivalent to the trivial 2-cocyle by Proposi-

tion 4.3.2. This means that Φ is isomorphic to the equivalence induced by a co-quasitriangular

Hopf algebra isomorphism, so the result follows from Lemma 4.7.4.

Remark 4.7.6. We can give a conceptual explanation of the reason why (r1)alt is an invariant of

the braided tensor category C := C(Γ, r0, V, r1).

Let g ∈ Γ. We will also use g to denote the corresponding invertible H-comodule. Recall

that Ext1(g, 1) ∼= P1,g(H)/k(1 − g), where P1,g(H) denotes the space of (1, g)-skew primitive

elements of H . Explicitly, elements of Ext1(g, 1) are in bijection with equivalence classes of short

exact sequences

0→ 1
ι−→ Vx

p−→ g → 0,

where 1 denotes the trivial comodule k. The 2-dimensional comodule Vx is a vector space with a

basis v0, v1 and H-coaction given by

ρ(v0) = v0 ⊗ 1, ρ(v1) = v0 ⊗ x+ v1 ⊗ g, (4.16)

where x ∈ P1,g(H).

Let x′ ∈ P1,g′(H), g′ ∈ Γ, be another skew-primitive element of H , let

0→ 1
ι′−→ Vx′

p′−→ g′ → 0

be the corresponding extension, and let v′0, v′1 be a basis of Vx′ defined analogously to (4.16).

Let βx,x′ = cVx′ ,Vx ◦ cVx,Vx′ denote the square of the braiding on Vx ⊗ Vx′ . Using formula (??)

one computes
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βx,x′(v0 ⊗ v′0) = v0 ⊗ v′0,

βx,x′(v0 ⊗ v′1) = v0 ⊗ v′1,

βx,x′(v1 ⊗ v′0) = v1 ⊗ v′0,

βx,x′(v1 ⊗ v′1) = v1 ⊗ v′1 + (r1(x, x′) + r0(g, g′)r1(x′, x))v0 ⊗ v′0.

Let s := r1 − r1 ◦ τ . Combining Lemma 4.2.7 with above computation we see that

βx,x′ = idVx⊗Vx′ +s(x, x
′)(p⊗ p′) ◦ (ι⊗ ι′) (4.17)

for all x, x′ ∈ V = Ext1(Γ, 1) (note that (p⊗p′)◦(ι⊗ι′) ∈ EndC(Vx⊗Vx′) whenever s(x, x′) 6= 0).

It follows from (4.17) that s = (r1)alt is an invariant of the braided equivalence class of C

(a computation establishing this fact is straightforward and can be found in the proof of [BN15,

Proposition 6.7]).

Let C = C(Γ, q, V, r). Theorem 4.7.3 allows to compute the group Autbr(C) of isomorphism

classes of braided autoequivalences of C. Namely, let

Aut(V, r) := {f ∈ AutC(Γ,q)(V ) | r ◦ (f ⊗ f) = r}/{± idV },

O(Γ, q, r) := {α ∈ Aut(Γ) | q ◦ α = q and indα(r), r are congruent in C(Γ, q)}.

Corollary 4.7.7. There is a short exact sequence

1→ Aut(V, r)→ Autbr(C)→ O(Γ, q, r)→ 1. (4.18)

Example 4.7.8. Let us consider C = Corep(E(V ), r), where E(V ) is the Hopf algebra from

Example 4.4.7 with the co-quasitriangular structure given by the zero bilinear form on V (this

structure is symmetric). In this case Γ = Z/2Z, so O(Γ, q, r) = 1 and Corollary 4.7.7 implies that

Autbr(C) = GLn(V )/{± idV }, cf. [BN15].
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4.8 The Drinfeld center of a pointed braided tensor category

It is well known that the Drinfeld center of a pointed braided fusion category is pointed (see, e.g.,

[DN13, Proposition 5.8]). This is no longer true in the non-semisimple case. Indeed, the Drinfeld

center is always factorizable, cf. Corollary 4.5.3(iii). If (Γ, q, V, r) is a metric quadruple such that

V ∈ C(Γ, q) is self-dual, then the adjoint subcategory of Z(C(Γ, q, V, r)) is pointed. We describe

the metric quadruple associated to this subcategory.

Let H be a Hopf algebra. It was shown in [GN08] that, for any Hopf subalgebra K of H con-

tained in the center of H , the tensor category Rep(H) is graded by G(K∗). The trivial component

of this grading is Rep(H/HK+). The maximal central Hopf subalgebra of H provides the univer-

sal grading of Rep(H). In this case, the trivial component is Rep(H)ad, the adjoint subcategory of

Rep(H).

If H is quasitriangular then the maximal central Hopf subalgebra of H is the group algebra of

G(H) ∩ Z(H), and the universal grading group of Rep(H) is the group of characters of G(H) ∩

Z(H).

Let H = B(V )#k[Γ] be a quantum linear space of symmetric type. We have

Z(CorepH) ∼= RepD(H)cop.

Since D(H)cop is quasitriangular, the universal grading group of Z(Corep(H)) is isomorphic to

the group of characters of G(D(H)) ∩ Z(D(H)).

The group of central group-like elements of D(H) was described in [Rad93, Proposition 10].

We have

G
(
D(H)

)
∩ Z

(
D(H)

) ∼= G
(
D(H)∗

)
,

and
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G
(
D(H)∗

)
= {g ⊗ γ | (g, γ) ∈ G(H)×G(H∗),∑

γ(h(1))h(2)g =
∑

γ(h(2))gh(1), ∀h ∈ H}

If H = B(V )#k[Γ] is a quantum linear space of symmetric type, it is straigtforward to check

that

G
(
D(H)∗

)
= {g ⊗ γ | (g, γ) ∈ Γ× Γ̂, γ(gi) = χi(g), for all i = 1, . . . , n}.

Equivalently, this can be described as follows. Let b : (Γ × Γ̂) × (Γ × Γ̂) → k× be the canonical

non-degenerate bicharacter defined by

b
(
(g, χ), (g′, χ′)

)
= χ(g′)χ′(g), (g, χ), (g′, χ′) ∈ Γ× Γ̂.

Consider the subgroup

Σ := 〈(gi, χ−1
i ) | i = 1, . . . , n〉 ⊆ Γ× Γ̂. (4.19)

Then G(D(H)∗) is isomorphic to Σ⊥, the orthogonal complement of Σ with respect to the bichar-

acter b.

Thus, the universal grading group of Z(CorepH) is Σ̂⊥.

Remark 4.8.1. Σ is an isotropic subgroup of Γ× Γ̂, i.e. Σ ⊂ Σ⊥.

Let K be the group algebra of G(D(H)) ∩ Z(D(H)) ∼= Σ⊥. Then

Z(CorepH)ad
∼= (RepD(H)cop)ad

∼= Rep(D(H)/D(H)K+)cop. (4.20)

Let π : D(H) → D(H)/D(H)K+ be the canonical projection. Then the transpose π∗ :(
D(H)/D(H)K+

)∗ → D(H)∗ is an injective Hopf algebra map. We describe next the image of

this map.

Given a co-quasitriangular Hopf algebra (H, r), there is a Hopf algebra map

ιr : H → D(H)∗ op, ιr(x) = x(1) ⊗ r(−, x(2))
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It corresponds to the embedding C ↪→ Z(C) from Remark 2.7.12.

Recall from Proposition 4.4.3 that the r-forms on H = B(V )#k[Γ] are in bijection with pairs

(r0, r1), where r0 is a bicharacter of Γ such that V ∈ Zsym(C(Γ, r0))− and r1 : V ⊗ V → k

is a morphism in C(Γ, r0). Fix a bicharacter r0 on Γ such that V ∈ Zsym(C(Γ, r0))−, and let

(g1, . . . , gn, χ1, . . . , χn) be the datum that defines V .

If r is the r-form on H corresponding to the pair (r0, 0), then ιr(gi) = gi ⊗ χ−1
i and ιr(xi) =

xi⊗ε. Thus,D(H)∗ contains the group-like elements gi⊗χ−1
i and the (gi⊗χ−1

i , 1)-skew primitive

elements xi ⊗ ε, i = 1, . . . , n.

Assume that V is a self-dual object of Γ
ΓYD. Then the set {(gi, χi) | i = 1, . . . , n} is closed

under taking inverses and there exists a non-degenerate morphism r1 : V ⊗ V → k in Γ
ΓYD. Let

r′ be the r-form on H corresponding to the pair (r0, r1). Then ιr′(gi) = gi ⊗ χ−1
i and ιr′(xi) =

gi ⊗ r′(−, xi) + xi ⊗ ε. Thus, D(H)∗ contains, also, the (gi ⊗ χ−1
i , 1)-skew primitive elements

gi ⊗ r′(−, xi).

Let A be the Hopf subalgebra of D(H)∗ generated by group-like elements gi ⊗ χ−1
i and skew-

primitive elements xi ⊗ ε and gi ⊗ r′(−, xi), i = 1, . . . , n.

Remark 4.8.2. By definition (4.19), the group of group-likes of A is Σ. The above skew-primitive

elements xi ⊗ ε and gi ⊗ r′(−, xi), i = 1, . . . , n constructed above are linearly independent and

form a 2n-dimensional quantum linear space of symmetric type in Σ
ΣYD. Therefore,

dimk(A) = |Σ| 22n.

Proposition 4.8.3. The image of the map π∗ :
(
D(H)/D(H)K+

)∗ → D(H)∗ is A. Thus,

D(H)/D(H)K+ ∼= A∗. (4.21)

Proof. By definition, K is the group algebra of {γ ⊗ g | (g, γ) ∈ Σ⊥}. Let

e =
1

|Σ⊥|
∑

(g,γ)∈Σ⊥

γ ⊗ g.
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Then e is a central idempotent of D(H), ze = ε(z)e, for all z ∈ K, and K+ = (1 − e)K. Thus,

D(H)K+ = D(H)K(1− e) = (1− e)D(H). The image of π∗ is

Im(π∗) = {f ∈
(
D(H)

)∗ | f(z) = f(ez), for all z ∈ D(H)}.

It is easy to check that any f ∈ {gi⊗ χ−1
i , xi⊗ ε, gi⊗ r′(−, xi)} satisfies f((γ ⊗ g)z) = f(z),

for all (g, γ) ∈ Σ⊥ and z ∈ D(H). For example, if (g, γ) ∈ Σ⊥, then

(xi ⊗ ε)
(
(γ ⊗ g)z

)
= (gi ⊗ χ−1

i )(γ ⊗ g) (xi ⊗ ε)(z) + (xi ⊗ ε)(γ ⊗ g) (1⊗ ε)(z)

= γ(gi)χ
−1
i (g) (xi ⊗ ε)(z)

= (xi ⊗ ε)(z).

It follows that the generators of A are contained in the image of π∗, so A ⊆ Im(π∗). Using

Remark 4.8.2 we compute

dim Im(π∗) =
dimD(H)

dimK
=
|Γ|222n

|Σ⊥|
= |Σ| 22n = dimA

and so A = Im(π∗).

We are now ready to describe the metric quadruple associated toZ
(
C(Γ, q, V, r)

)
ad. Recall first

the notion of the Drinfeld double of V from Section 4.2. We haveD(V ) = W⊕W ∗ ∈ Σ
ΣYD, where

W is the quantum linear space associated to the datum
(
(g1, χ

−1
1 ), . . . , (gn, χ

−1
n ), ϕ1, . . . , ϕn

)
, and

ϕi : Σ → k×, i = 1, . . . , n, are defined by ϕi(g, χ) = χi(g), for all (g, χ) ∈ Σ. Define a

bicharacter rΣ : Σ× Σ→ k× by

rΣ ((g, χ), (g′, χ′)) = χ′(g) .

The diagonal of this bicharacter is a quadratic form qΣ : Σ→ k×,

qΣ(g, χ) = χ(g), (g, χ) ∈ Σ.
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Then D(V ) ∈ Zsym(C(Σ, rΣ))−.

Theorem 4.8.4. Let (Γ, q, V, r) be a metric quadruple such that V ∈ C(Γ, q) is self-dual. There is

an equivalence of braided tensor categories:

Z
(
C(Γ, q, V, r)

)
ad
∼= C(Σ, qΣ, D(V ), rD(V )),

where rD(V ) is the canonical symplectic form on D(V ) defined in (4.7).

Proof. Let H = B(V )#k[Γ] and let A be the Hopf subalgebra of D(H)∗ generated by the group-

like elements gi ⊗ χ−1
i and by the skew-primitive elements xi ⊗ ε and gi ⊗ r′(−, xi), i = 1, . . . , n,

where r′ is an r-form on H whose restriction to V ⊗V is non-degenerate. Using Proposition 4.8.3,

we have

Z(CorepH)ad =
(
RepD(H)cop

)
ad = Rep

(
A∗ cop

)
=
(
RepA∗

)op ' RepA∗ = CorepA.

where the equivalence between RepA∗ and its opposite follows from the fact that RepA∗ is braided.

We claim that A ∼= B(D(V ))#k[Σ]. Indeed, it is easy to check that for each (g, γ) ∈ Σ we

have

(g ⊗ γ)(xi ⊗ ε) = χ−1
i (g)(xi ⊗ ε)(g ⊗ γ),

(g ⊗ γ)(gi ⊗ r(−, xi)) = χ−1
i (g)(gi ⊗ r(−, xi))(g ⊗ γ),

(gi ⊗ r(−, xi))(xj ⊗ ε) = χ−1
j (gi)(xj ⊗ ε)(gi ⊗ r(−, xi)),

for all i, j = 1, . . . , n. Note that W is self-dual because V is self-dual. Thus, there exists a

basis {yi}2n
i=1 of D(V ) such that yi, yn+i ∈ D(V )ϕi

(gi,χ
−1
i )

. It follows from the above, that the map

A→ B(D(V ))#k[Σ], given by

g ⊗ γ 7→ (g, γ), xi ⊗ ε 7→ yi, gi ⊗ r(−, xi) 7→ yn+i

for all (g, γ) ∈ Σ and i = 1, . . . , n, is a Hopf algebra isomorphism.

The braiding onZ
(
C(Γ, q, V, r)

)
ad is obtained by restriction of the braiding ofZ

(
C(Γ, q, V, r)

)
.

It corresponds to the braiding on CorepA coming from the restriction to A of the canonical r-form

rD(H)∗ : D(H)∗ ⊗D(H)∗ → k. on D(H)∗. The latter is given by
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rD(H)∗(α, β) =
∑

h∈Γ,P⊆{1,...,n} α(ε⊗ hxP )β((hxP )∗ ⊗ 1), α, β ∈ D(H)∗.

We have

rD(H)∗(g ⊗ γ, g′ ⊗ γ′) =
∑
h,P

ε(g)γ(hxP )(hxP )∗(g′)γ′(1) = γ(g′),

rD(H)∗(xi ⊗ ε, xj ⊗ ε) =
∑
h,P

ε(xi)ε(hxP )(hxP )∗(xjε(1)) = 0,

rD(H)∗
(
xi ⊗ ε, gj ⊗ r(−, xj)

)
=
∑
h,P

ε(xi)ε(hxP )(hxP )∗(gj)r(1, xj) = 0,

rD(H)∗
(
gj ⊗ r(−, xj), xi ⊗ ε

)
=
∑
h,P

ε(gj)r(hxP , xj)(hxP )∗(xi)ε(1) = r(xi, xj),

rD(H)∗
(
gi ⊗ r(−, xi), gj ⊗ r(−, xj)

)
=
∑
h,P

ε(gi)r(hxP , xi)(hxP )∗(gj)r(1, xj) = 0.

Thus, Corep(A, rD(H)∗|A⊗A) ' C(Σ, qΣ, D(V ), s), where the quadratic form qΣ : Σ → k× is

given by qΣ(g, γ) = γ(g), for all (g, γ) ∈ Σ, and the matrix of s : D(V )⊗D(V )→ k with respect

to the basis {yi} is the block matrix  0 0

X t 0

.

Here X t is the transpose of the matrix X =
(
s(xi, xj)

)
i,j

. Changing s by a cocycle deformation sσ

will not change the braided equivalence class of C(Σ, qΣ, D(V ), s). As explained in Section 4.7,

we can choose invariant σ such that sσ is alternating. The matrix of sσ with respect to the basis

{yi} is then

1
2

 0 −X

X t 0

 .

This matrix is easily seen to be congruent to

 0 −In

In 0

. So, after a change of basis, the

matrices of sσ and rD(V ) coincide. Therefore, Corep(A, rD(H)∗ |A⊗A) ' C(Σ, qΣ, D(V ), rD(V )).
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Corollary 4.8.5. Z(C(Γ, q, V, r)) is a Σ̂⊥-extension of C(Σ, qΣ, D(V ), rD(V )).
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