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ABSTRACT

QUANTIFYING THE ROLE OF THE SEED POPULATION IN

RADIATION BELT DYNAMICS

by

Alexander Boyd

University of New Hampshire, May, 2016

The dynamics of the radiation belts depend on a delicate balance of source and loss

processes. One such source process that has been shown to be effective is local acceleration,

where 10s-100s keV seed electrons are accelerated via wave-particle interactions up to energies

>1 MeV. Historically, much of the focus of radiation belt research has been on the dynamics

of these >1 MeV electrons, and the role and importance of the seed electrons has been

largely overlooked. In this thesis, we use phase space density calculated using data from

the Van Allen Probes, to directly investigate seed population for a variety of events. We

begin by presenting a case study of the 17 March 2013 event, providing some of the first

clear observations of the seed population during a local acceleration event. Next, we present

results from the first ever statistical study of the radiation belt seed population from the

first 26 months of data from the Van Allen Probes. Finally, we examine all the pieces of the

acceleration process together to determine what conditions produce effective radiation belt

acceleration. Our results clearly demonstrate that the seed population plays a critical role

in governing the dynamics of the higher energy radiation belt electrons.

xii



Chapter 1

Introduction

1.1 Earth’s Magnetosphere

The conditions of the local space environment around the Earth depend largely on the inter-

actions between the sun and Earth’s intrinsic magnetic field. Without an outside influence,

Earth’s magnetic field would be very similar to a simple magnetic dipole. However, the Earth

is constantly bombarded by a stream of charged particles from the sun known as the solar

wind. This impact of these solar wind particles causes the magnetic field to be compressed

on the dayside, and stretched into a long tail on the nightside. This bullet shaped cavity in

the solar wind that forms is known as the magnetosphere.

Within the magnetosphere, there are several different important regions and boundaries.

Figure 1-1 shows a diagram of the magnetosphere with these major regions labeled. The

outer edge of the magnetosphere, and the boundary between Earth’s magnetic field and the

solar wind is known as the magnetopause. On the dayside, the magnetopause location is

typically ∼ 10 Earth radii (RE), but this location can vary depending on the solar wind

conditions [Shue et al., 1998]. 3-4 RE beyond the magnetopause lies the bow shock, a shock

wave that is formed as the solar wind encounters Earth’s magnetic field.

1



Figure 1-1: Figure from Piel [2011] depicting Earth’s magnetosphere.
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The nightside of the magnetosphere is dominated by the magnetotail, which stretches

from ∼7 Earth radii (RE) out to several hundred RE. Spatially, most of the magnetotail is

made up of the northern and southern lobes. These regions contain nearly parallel magnetic

fields and have very low plasma densities (<0.01 cm−3). In between the lobes lies the

plasma sheet, a region with higher densities (0.1-1 cm−3) of hot plasma (few keV ions and

electrons). During geomagnetically active times, the plasma sheet serves as an important

source of plasma for the inner magnetosphere [Friedel et al., 2001]

The inner magnetosphere contains two major regions that overlap spatially, but differ

greatly in their plasma properties. The first is the plasmasphere, a region of cold (∼eV)

dense (10-1000 cm−3) plasma that co-rotates with the Earth. The source of this plasma is

the ionosphere, which is Earth’s charged upper atmosphere. The other area of interest in

the inner magnetosphere are the radiation belts. The belts are the focus of the remainder of

this thesis, and will be discussed in detail in the following sections.

1.2 Van Allen Radiation Belts

The radiation belts were first discovered in 1958 by an experiment led by Dr. James Van

Allen aboard Explorer I [Allen and Frank , 1959]. Although the experiment was designed to

observe cosmic rays, it found an unexpected region of high energy particles trapped in Earth’s

magnetic field. In honor of their discovery, the regions have become known as the Van Allen

radiation belts. Since their discovery, the radiation belts have been studied not only for their

scientific interest, but also for the danger they pose to satellites. The energetic protons (10s

MeV - few GeV) and electrons (100s keV - several MeV) in the radiation belts are capable of

penetrating spacecraft shielding and causing severe damage up to and including spacecraft

3



Figure 1-2: Radial cutaway of the radiation belts. Image courtesy NASA.

failure [Lanzerotti , 2001; Baker , 2002].

The nominal structure of the belts consists of two belts: an inner belt from 1.5-2.5 RE

and an outer belt from 4-7 RE, separated by a narrow slot region. Figure 1-2 shows an

illustration of this two belt structure. The two belts differ in both their composition and

their variability. The inner belt is composed of high energy protons (10s MeV-few GeV) and

lower energy electrons (<900 keV). Recent results from Fennell et al. [2015] have shown that

the inner belt is completely devoid of higher energy electrons (>1 MeV). The protons in the

inner belt are highly stable over long time periods, with lifetimes of several years [Freden

and White, 1960]. The outer belt, on the other hand, is populated by high energy electrons

(up to several MeV). It is also highly dynamic, with both the electron fluxes and the outer

4



boundary of the belt varying over the course of hours or days.

This variability becomes apparent when viewing long term observations of the outer

belt. Figure 1-3 from Li et al. [2011] shows the 2-6 MeV electron flux from nearly 20 years of

radiation belt observations by the Solar Anomalous and Magnetospheric Particle Explorer

(SAMPEX). Figure 1-3 shows these fluxes as a function of L-shell, which is defined as follows:

r = L cos2(λ) (1.1)

where λ is the geomagnetic latitude, and r is radial distance in Earth radii (RE). L is

a quantity that describes the equatorial radial distance of a field line mapped to a dipole.

Therefore, a particle at L=5 is on a magnetic field line that crosses the magnetic equator 5 RE

from the center of the Earth. A location within the magnetosphere can be more completely

described by also including magnetic local time (MLT), which describes azimuthal location,

with 12 MLT (noon) facing sunward and 00 MLT (midnight) facing antisunward.

It is clear that the 2-6 MeV electrons shown in Figure 1-3 are highly dynamic, with

fluctuations of more than 4 orders of magnitude. The timescales of these changes varies

greatly, with gradual growth and decay over days and weeks and increases and dropouts

that take place over less than a day. Many, but certainly not all, of these changes are

associated with geomagnetic storms.

Renewed interest in resolving open mysteries of the radiation belts led to the recent

launch of NASA’s Van Allen Probes mission. The mission features a comprehensive suite of

instruments to study the particles, waves and fields in the radiation belts. The spacecraft

and their instrumentation are described in detail in Chapter 2. The overall goal of radiation

belt research, and the main mission objective for the Van Allen Probes, is to understand the

5



Figure 1-3: Figure from Li et al. [2011] showing 20 years of 2-6 MeV electron observations
from SAMPEX as a function of L. The color scale on the main plot shows differential electron
flux (#/cm2-s-sr).
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processes that generate the dynamics we see in the belts to the point that we can predict

the response of the radiation belts. Even with nearly 60 years of research on the radiation

belts, there are still many new discoveries and unanswered questions. One of the fundamental

questions since the discovery has been how exactly radiation belt electrons are accelerated to

such high energies. This thesis aims to address part of this wider question, and investigate

the role that a lower energy (10s-100s keV) population of electrons, known as the ’seed’

population, plays in the acceleration process.

1.3 Single Particle Motion

Before beginning a detailed discussion of radiation belt dynamics, it is important to review

the motion of particles within the radiation belts. This will conclude in the derivation of the

three adiabatic invariants µ, K and L*, which play an important part of the phase space

density calculation described in Chapter 2.

For charged particles moving in a magnetic field, the motion is described by the Lorentz

force equation:

F = q( ~E + ~v × ~B) (1.2)

where q and ~v are the particle’s charge and velocity, and ~E and ~B are the electric and

magnetic fields. The particle’s velocity can be split into a component perpendicular to the

magnetic field (v⊥), and a component along the magnetic field (v‖). The ratio of these

velocity components define a particle’s pitch angle α:

7



Figure 1-4: Diagram from Baumjohann and Treumann [2006] showing the gyro, bounce and
drift motions of particles in Earth’s magnetic field.

α = tan−1
v⊥
v‖

(1.3)

From equation 1.2, it is clear that the electric field only serves to accelerate the particle

along the direction of the field. However, the magnetic field term leads to more complicated

motions. As a result, in a quasi-dipole magnetic field like the Earth’s, charged particles

undergo three types of motion:

1. Gyration around the magnetic field line.

2. Bounce along the field line between magnetic mirror points.

3. Drift azimuthally around the Earth (eastward for electrons, westward for protons).

An illustration of these motions is shown in Figure 1-4. For radiation belt electrons, these

motions have timescales on the order of milliseconds, seconds and tens of minutes respec-

tively. Each of these motions has a corresponding adiabatic invariant, which is conserved

8



if the magnetic field varies slowly compared to these timescales. Following Hamiltonian

mechanics, an adiabatic invariant of a periodic motion is given by the action integral J ,

integrated over a complete motion period [Goldstein, 1959]:

J =

∮
pidqi (1.4)

where p is the canonical momentum and q is a generalized coordinate. The following

sections describe the gyro, bounce and drift motions and the calculation of the associated

invariants.

1.3.1 First Adiabatic Invariant

The gyro motion can be derived by starting with equation 1.2. If E = 0 and B is assumed to

be homogeneous, the equation of motion becomes a harmonic oscillator. The particle rotates

around the magnetic field with frequency Ωg (known as the gyrofrequency) and radius rg

(known as the gyroradius):

Ωg =
qB

m
rg =

m0v⊥
|q|B

(1.5)

Therefore, the particle gyrates around the magnetic field line at the above gyro frequency.

To derive the first adiabatic invariant, the canonical momentum p = m~v + q ~A, where ~A is

the vector potential ( ~B = ∇× ~A), is substituted into Equation 1.4, integrating over a single

gyromotion:

J1 =

∮
(~p+ q ~A) · d~s (1.6)

9



Here, the integration is over a single gyromotion, so in the first term ~p · d~s = p⊥ds. In

addition, the second term can be rewritten using Stokes’ theorem as follows:

J1 =

∫
p⊥ds+ q

∫∫
(~∇× ~A) · d~S

J1 = m0v⊥

∫
ds+ q

∫∫
~B · d~S

J1 = m0v⊥2πrg − qBπr2g

J1 =
πm2

0v
2
⊥

qB
=

2πm0

q
µ

J1 ∝ µ (1.7)

(1.8)

where m0 is the particle mass and rg is the gyroradius from Equation 1.5 and µ is the

first adiabatic invariant, the magnetic moment, defined as:

µ =
p2⊥

2m0B
(1.9)

1.3.2 Second Adiabatic Invariant

The bounce motion arises as a consequence of the Earth’s magnetic field geometry. A

particle’s v‖ moves the particle along the magnetic field line. The Earth’s magnetic field is

stronger near the poles since the field lines are closer to the surface. Therefore, as a particle

moves away from the magnetic equator it encounters a stronger magnetic field. Assuming

the 1st invariant (Equation 1.9) is conserved, as the magnetic field increases, the energy

associated with the particle’s perpendicular velocity must also increase. Since the particle’s
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total energy is conserved, as the energy associated with the perpendicular velocity increases,

the energy associated with the parallel velocity must decrease to compensate. This continues

until the particle reaches a strong enough magnetic field field that v‖ → 0. This point is

known as the magnetic mirror point since the particle then reverses direction along the field

line.

The location of the magnetic mirror point is dependent on the equatorial pitch angle.

A particle will mirror when its local pitch angle is 90◦. Therefore, particles with equatorial

pitch angles near 90◦ mirror close to the magnetic equator, while particles with equatorial

pitch angles near 0◦ or 180◦ will mirror far from the equator. If a particle’s pitch angle is

sufficiently small, its mirror point will lie inside the atmosphere. In this case, the particle

will not mirror and will instead be lost due to interactions with the atmosphere. The critical

angle where a particle is lost defines the ‘loss cone’, where all particles with smaller pitch

angles are lost due to interactions with the atmosphere rather than mirroring.

The second invariant associated with the bounce motion J2, can be found by substituting

into equation 1.4, integrating over a single bounce motion:

J2 =

∮
p‖ ds = 2m0

∫ sN

sS

v‖ ds (1.10)

where sS and sN are the southern and northern magnetic mirror points. This invariant

describes the length of the particle’s bounce motion along the magnetic field line. Assuming

that 1st invariant µ is conserved, it is useful to decouple the first and second invariants

and write the second invariant only in terms of the magnetic field. Using conservation of

energy, along with the fact that v‖ = 0 at the mirror point, v‖ at arbitrary location s can be

expressed as follows:
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W (s) = Wmirror

W⊥ +W‖ = W⊥mirror

µB(s) +
v2‖

2m0

= µBmirror

v‖ =
√

2m0µ
√
Bmirror −B(s) (1.11)

where W is the particle’s energy and m0 is the particle mass. The second invariant K

can therefore be written as:

K =
J

2
√

2m0µ
=

∫ sN

sS

√
Bmirror −B(s) ds (1.12)

1.3.3 Third Adiabatic Invariant

The third motion, the drift motion, occurs if there is a force acting on the particle perpen-

dicular to the magnetic field line. The particle will then drift in a direction perpendicular to

both the force and the magnetic field. In the case of the Earth’s magnetic field, such forces

are caused by the radial gradient of the magnetic field (towards the earth) and the curvature

of the magnetic field lines. Both of these cause the particle to experience an inward radial

force and therefore drift azimuthally around the Earth. Both the gradient and curvature

drifts are charge dependent and point in the same direction, so they are often referred to

collectively as the gradient-curvature drift. This causes electrons to drift eastward and ions

to drift westward around the earth. The opposite motion of the charges generates a west-

ward current in the equatorial plane known as the ring current. This current opposes the
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magnetic field of the Earth. During geomagnetic activity, more particles are transported into

the inner magnetosphere, strengthening the ring current and causing a decrease in strength

of the Earth’s dipole field measured by ground stations. This decrease is reflected in the

disturbance storm time (Dst) index, which is commonly used to measure the strength of

geomagnetic storms.

When all three of the particle motions (gyro, bounce and drift) are put together, the

particle’s path traces out a surface known as a drift shell. The third adiabatic invariant,

which describes the total magnetic flux contained in a particle’s drift shell is defined as

follows:

Φ =

∮
~B · ~dA (1.13)

For the radiation belts it is often more useful to use the dimensionless quantity L*

[Roederer , 1970], defined below:

L* =
2πM

ΦRE

(1.14)

where M is the Earth’s dipole moment and RE is the radius of the Earth (6378 km).

Since L* is inversely proportional to Φ, it also functions as an adiabatic invariant. In a

dipole field, L* is equivalent to L (Equation 1.1). However, for a more realistic model of

the Earth’s magnetic field, particularly during active times, these two quantities can deviate

greatly.
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1.4 Wave Particle Interactions

1.4.1 Violation of Adiabatic Invariants

As mentioned earlier, each of these invariants has an associated timescale. For the 1st invari-

ant, this is the timescale of the gyroperiod, which for a 1 MeV electron at geosynchronous

orbit is ∼few milliseconds. For the 2nd invariant, this is the timescale of the bounce motion

(∼few seconds). Finally, for the 3rd invariant this is the timescale of the drift motion (10s

minutes). If the changes in the electric and magnetic fields are slower than these timescales,

then these quantities are conserved. Much of the study of the radiation belts focuses on

times when there is an irreversible increase in the relativistic electron flux, which can only

occur when one or more of the invariants are violated. Therefore, putting observations in

terms of these invariants provides a clearer picture as to whether an observed enhancement

is caused by an adiabatic or an irreversible process.

One of the primary ways that these invariants can be violated is by wave-particle in-

teractions. For violation of the 1st invariant, this is done by waves with frequencies close

to the gyrofrequency. These types of waves, with frequencies between 1-30 kHz are know

as very low frequency (VLF) waves. Similarly, for violation of second and third invariants,

this is done by waves with periods close to the bounce and drift periods. These waves, with

frequencies between 1 mHz - 1 Hz, are known as ultra low frequency (ULF) waves. In the

following sections we will discuss these waves in more detail and describe how they interact

with energetic electrons.
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Figure 1-5: A) Figure from Kletzing et al. [2013] showing a wave spectrogram with the
major VLF magnetospheric wave modes labeled. B) Figure from Thorne [2010] showing the
locations within the magnetosphere that these wave are observed.

1.4.2 Magnetospheric Waves

As mentioned in the previous section, VLF and ULF waves can interact with energetic

particles and violate one or more of the adiabatic invariants. The focus of this thesis will

be on VLF waves and their interaction with energetic electrons. While their effects are

important and will be discussed in the following sections, the exact details of these different

wave types and how they are generated is beyond the scope of this thesis. For a review of

ULF waves see Menk [2011].

Within the magnetosphere, there are several different types of VLF waves that can in-

teract with energetic electrons. Figure 1-5A shows a spectrogram of the waves observed by

the Combined Release and Radiation Effects Satellite (CRRES; a predecessor to the Van

Allen Probes). The major types of waves that interact with energetic electrons including

electron-cyclotron, magnetosonic, whistler-mode chorus, and hiss waves are labeled. Fig-

ure 1-5B shows the location of where these different wave types are observed within the

magnetosphere.

The remainder of this thesis will focus on one type of VLF wave in particular, whistler-
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mode chorus, since they play an important role in the acceleration of radiation belt electrons

[e.g. Thorne et al., 2013]. For a complete description of other wave types and their effects

on radiation belt electrons see the review by Thorne [2010]. Chorus waves are circularly

polarized right hand plasma waves with frequencies between ∼few 100 Hz and 10s kHz.

Therefore, chorus waves are classified as VLF waves. They have been named whistlers for

the distinctive descending tones the waves make when played as sound waves. The structure

of chorus is dependent on the equatorial electron gyrofrequency (fce; Equation 1.5 for an

equatorial electron), and typically occurs in two separate bands: a lower band between 0.1-

0.5 fce and an upper band between 0.5-0.9 fce [Tsurutani and Smith, 1974]. An example

of this two band structure can be seen between 23:50-1:50 on Figure 1-5A. As shown in

Figure 1-5B, lower band chorus is predominately from pre-midnight to post-dawn in MLT

and studies have shown that its occurrence is closely related to geomagnetic activity [Li

et al., 2011].

1.4.3 Gyro-resonance

When a particle encounters a plasma wave, it will interact strongly if the wave is Doppler-

shifted with respect to its gyrofrequency. This resonance condition can be written as follows:

ω − k‖v‖ =
nΩg

γ
n = 0,±1,±2,±3... (1.15)

where ω is the wave frequency, k‖ and v‖ are the wave number and particle velocity

along the magnetic field, Ωg is the gyrofrequency (Equation 1.5) and γ = (1 − (v/c)2)−1/2

is the relativistic correction factor. A diagram of the normal cyclotron interaction is shown

in Figure 1-6. In this scenario, the wave and the particle both move along the field line in
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Figure 1-6: Figure from Tsurutani and Lakhina [1997] showing the normal cyclotron resonant
interaction between electrons and right handed waves.

opposite directions and therefore propagate toward one another. While the particle encoun-

ters the wave, if the resonance condition is met, the particle experiences an electric field that

accelerates (or decelerates) the particle.

This type of interaction violates the first invariant, leading to a changes in both particle

energy and pitch angle [Kennel and Petschek , 1966]. If particle is accelerated, the wave

transfers energy to the particle, causing the particle’s pitch angle to move closer to 90◦. If

the particle is decelerated, the particle transfers energy to the wave, and the particle’s pitch

angle is scattered to smaller pitch angles. In some cases this can act as an important loss

process if particles are scattered into the loss cone.

In either of these cases, the particle is exchanging energy with the wave. Therefore,

the waves offer a medium to exchange energy between different particle populations, as the

particles that lose energy help to drive wave growth that can then drive acceleration for

other particles. The waves are highly localized phenomena, so the particles will encounter

the waves during each drift orbit. Even if the energy gain for each interaction is small, if the

waves persist for long enough, the particles can become energized over multiple drift orbits

and gain a large amount of energy.
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1.4.4 Bounce-Drift Resonance

In addition to the gyro-resonance condition described above, waves can also resonate with

a particles bounce and drift motions, violating the second and/or third invariants. The

bounce-drift resonant condition can be written as follows [Southwood and Kivelson, 1981]:

ωwave −mωdrift = Nωbounce (1.16)

where N is an integer, m is the azimuthal wave mode number and ωwave, ωdrift, and

ωbounce are the frequencies of the wave, drift motion and bounce motion respectively. For

electrons ωbounce � ωdrift, so only the N=0 mode is a valid resonance condition [Ozeke and

Mann, 2008]. This type of resonance is important for ULF waves, the impact of which will

be discussed further in Section 1.5.1.

1.5 Radiation Belt Dynamics

It has long been known that radiation belt fluxes are correlated with solar activity [Paulikas

and Blake, 1979]. This correlation can be clearly seen in Figure 1-3, which shows that belt

properties correlate with sunspot number and related quantities such as solar wind speed

over long time scales. On shorter timescales, this is especially true for geomagnetic storms,

which often elicit a prompt response from the radiation belts. Reeves et al. [2003] analyzed

geosynchronous data from 276 geomagnetic storms and compared the fluxes before and after

each event. They found that the response of the radiation belt varied greatly from event

to event, with 53% of the storms causing a net increase, 28% causing no change, and 19%

causing a net decrease. These results are shown in Figure 1-7. They concluded that the
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Figure 1-7: Figure from Reeves et al. [2003] showing statistics from 276 geomagnetic storms
observed at GEO. The post and pre-storm fluxes were compared for each event. They found
that 53% of the storms caused a net increase, 28% caused no change, and 19% caused a net
decrease.

differences were due to the fact that the radiation belt’s response to any given storm is the

result of a delicate balance of source and loss processes.

There is a complex set of source and loss processes that act in the radiation belts. In the

following sections, I will look separately at source and loss processes. It is important to note

that effectiveness of a particular process can vary greatly from event to event. Also, these

processes do not occur separately and often operate concurrently or in rapid succession, lead-

ing to the complex dynamics we see in the outer radiation belt, which makes predictability

a challenge.

1.5.1 Loss Processes

There are several processes that can lead to the loss of radiation belt particles. Millan and

Thorne [2007] provide a review of these loss processes for the outer radiation belt electrons.

In addition to true loss processes, there can be apparent losses due to adiabatic effects.

This is resolved by looking at phase space density (PSD) in adiabatic coordinates, which is
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discussed in Chapter 2. True particle losses from the radiation belts have two possible sinks:

precipitation loss into the atmosphere, and loss at the outer boundary of the magnetosphere

(typically through the magnetopause).

As mentioned earlier, precipitation occurs when a particle’s pitch angle is sufficiently

close to 0◦ or 180◦ to be in the loss cone. This precipitation can occur slowly as particles are

scattered into the loss cone by wave particle interactions with plasmaspheric hiss [e.g. Lyons

and Thorne, 1972] (which is also responsible for the formation of the slot region between the

radiation belts), electromagnetic ion cyclotron waves [e.g. Thorne and Kennel , 2012] or VLF

chorus waves [e.g. Thorne et al., 2005], which can also cause rapid bursts of precipitation

known as a microbursts [e.g. Lorentzen et al., 2001].

Losses through the magnetosphere can occur via a process known as magnetopause shad-

owing. During enhanced solar wind pressure (often during a geomagnetic storm), the mag-

netosphere is compressed and the magnetopause location moves closer to the Earth on a

timescale shorter than a drift time. This results in particle’s drift shell intersecting the

magnetopause and connecting to open field lines in the solar wind. As the particle crosses

the magnetopause, it is lost from the radiation belts. This process has been shown to be a

rapid, highly effective loss process for radiation belt electrons [e.g. Turner et al., 2012]. This

loss can also be driven by outward radial diffusion pushing particles outside of the outer

boundary [e.g. Shprits et al., 2006].

1.5.2 Source Processes

Source processes operate by violating one or more of the adiabatic invariants (µ,K,L*) in

order to accelerate particles. Most of these processes fall into two broad categories: radial

transport and local acceleration. Friedel et al. [2002] provides an overview of these and
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other radiation belt source processes such as shock acceleration. While shock acceleration

can be the dominant acceleration mechanism for certain events [e.g. Li et al., 1993], it lies

beyond the scope of this thesis and I will focus the discussion on radial diffusion and local

acceleration.

The first type of radial transport source process is radial diffusion. Radial diffusion

involves moving particles inward from the magnetotail into the radiation belts. This motion

violates the third invariant while conserving the 1st and 2nd invariants. Since the first

invariant is conserved, as the particles move to the stronger magnetic field in the inner

magnetosphere, they are energized considerably. Much of the early work on the radiation

belt acceleration focused on the effect of radial diffusion, which adequately explained the

structure of the belts and long term variations that were observed in the belts [Schulz and

Lanzerotti , 1974]. This diffusion can also be enhanced by interactions with ULF waves [e.g.,

Rostoker et al., 1998; O’Brien et al., 2001; Mann et al., 2004; Ukhorskiy et al., 2005]. This

allows for more rapid, time variability seen during strong geomagnetic activity.

The other type of radial transport are energetic particle injections. Similar to radial

diffusion, injections move particles from the magnetotail into the inner magnetosphere, but

during an injection, the particles are transported significantly faster by electric fields. These

injections are often associated with geomagentic substorms. The exact evolution of substorms

is a complex and often controversial topic, but the basic phenomena that lead to an injection

are as follows: During the early part of a substorm, magnetic reconnection allows solar

wind plasma to enter the plasma sheet, adding energy to the magnetotail and causing the

tail magnetic field to become more stretched. Eventually, the energy stored in the tail

releases and the configuration of the magnetic field quickly becomes more dipole-like in a

process known as dipolarization. This change in the magnetic field induces an electric field
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that rapidly pushes particles into the inner magnetosphere. As the particles move into the

stronger magnetic field of the inner magnetosphere they are energized due to conservation

of the first invariant.

Once in the inner magnetosphere the particles begin to drift (electrons drift eastward,

ions drift westward). Spacecraft near the injection region see all energies simultaneously,

known as ‘dispersionless’ injection, whereas spacecraft further away see higher energies first

since they drift faster, known as ‘dispersed’ injection. There has been considerable work

[Gabrielse et al., 2014, and references therein] looking at the injection region and dynamics.

These injections have been shown to regularly inject particles up to 300 keV into the inner

magnetosphere [Baker et al., 1979], providing an ample source of 10s-100s keV electrons for

subsequent acceleration.

The other type of process, and the focus of much of this thesis is known as local accel-

eration. Local acceleration processes accelerate the particles within the radiation belts by

violating the 1st and/or 2nd invariants via wave-particle interactions with VLF (100s Hz -

10 kHz) waves. This process is capable of rapidly (less than a day) producing large radiation

belt enhancements at low L-shells. However, observational challenges have historically made

it difficult to definitively observe local acceleration in the radiation belts. This is due to the

fact that flux observations alone are not enough to differentiate between radial diffusion and

local acceleration. Clear phase space density measurements within the radiation belts, as

discussed in Chapter 2, are required.

Local acceleration by VLF waves was first discussed by Temerin et al. [1994] and Li et al.

[1997]. Up until that time, interactions with VLF waves were thought to be dominated by

pitch angle scattering [e.g. Lyons and Thorne, 1972]. However, since that time, there has

been considerable theoretical work and modeling that shows VLF chorus waves are capable of
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accelerating radiation belt electrons [Horne and Thorne, 1998; Summers et al., 2002; Horne

et al., 2005; Summers et al., 2007; Thorne et al., 2013]. There has also been observational

evidence of local acceleration shown by Green and Kivelson [2004]; Iles et al. [2006]; Chen

et al. [2007a]. However, these observations were limited to either high inclinations, or geosta-

tionary observations. Recently, Reeves et al. [2013] has presented the clearest observations

to date of local acceleration using data from the Van Allen Probes during the 8-9 October

2013 storm.

1.6 Radiation Belt Seed and Source Populations

The theory of local acceleration by VLF chorus waves relies on the interaction of the waves

with two populations of particles: the few-10s keV source population that generates the

waves and the 10s-100s keV seed population that is accelerated by the waves. Both of

the populations are transported into the inner magnetosphere by substorm injections. The

pitch angle distribution of these injected particles are often strongly peaked at 90◦ [Asnes

et al., 2005]. VLF chorus waves are generated through electron cyclotron instability driven

by anisotropic (T⊥/T‖) distributions of these few-10s keV source electrons [e.g. Kennel and

Petschek , 1966; Thorne et al., 1977]. As these particles are scattered, they transfer energy

to the waves, driving wave growth. These waves generated by the source population can

then resonate with higher energy particles, accelerating the particles up to higher energies.

As described earlier, the gyro-resonant interaction with chorus waves can either accelerate

or decelerate particles. Lower energy particles (like those at source population energies)

are predominantly scattered by the waves, whereas higher energies can experience rapid

acceleration. As described by Horne et al. [2005], the anchor-point energy, above which
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particles are accelerated faster than they are scattered is ∼300 keV. Therefore, the 100s keV

seed electrons, which are supplied by substorm injections can be accelerated by the chorus

waves up to higher energies.

The idea of a radiation belt seed population was first discussed in Baker et al. [1997] and

Baker et al. [1998], which laid out a two step process where substorm injections bring 10s-100s

keV seed electrons into the inner the magnetosphere, followed by subsequent acceleration

via wave particle interactions. This was followed by Meredith et al. [2001] which showed

that chorus wave occurrence was strongly related to substorm activity and the injection of

keV electrons. They concluded substorm injections were vital to drive the sustained chorus

emissions to allow for acceleration. Overall, the work of Meredith et al. [2001, 2004] and

Li et al. [2009] conclude that substorms, rather than storms, play a critical role in the

development of the outer radiation belt population. This idea will be revisited and discussed

in Chapter 5.

1.7 Focus Questions

The overall objective of this thesis is to understand the role and ultimately the importance of

the seed population in radiation belt dynamics. While the theory behind the seed population

and VLF wave acceleration has been well developed, clear observations of the seed population

in the radiation belts have been very limited. This thesis aims to leverage the data from

the Van Allen Probes to study the radiation belt seed population through a series of focus

questions:

1. Is it possible to directly observe and quantify the seed population’s role in the acceler-

ation of radiation belt electrons?
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2. What correlations and causal relationships are there between enhancements in the seed

population and enhancements in the core population?

3. How do differing inputs of source and seed electrons lead to acceleration (or lack

thereof) in the radiation belts?

4. Can the seed population be used to predict enhancements in the core population?

In the next chapter, I will discuss the Van Allen Probes mission and the calculation of

phase space density. The remaining chapters will use that dataset to address each of first

three questions in detail. This will lay the framework for a discussion of the final question,

which is the ultimate goal of the work presented here.
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Chapter 2

Phase Space Density

2.1 Motivation

One of the main goals of this thesis is to understand the role that the seed population plays in

radiation belt acceleration. In addition to acceleration and loss process, electrons within the

outer belt also experience adiabatic changes. For example, as particles move slowly inward

they experience a stronger magnetic field and will therefore experience an increase in energy

if their first adiabatic invariant is conserved. Additionally, particles can move adiabatically

away from a spacecraft and no longer be observed. When only looking at particle fluxes,

these types of changes can appear as either enhancements or losses, even though the particles

have only undergone adiabatic changes. In order to get a more clear picture of what is

going on in the radiation belts, we need to look at phase space density (PSD) in adiabatic

coordinates (µ, K, L*). Liouville’s theorem indicates that phase space density is conserved

along any trajectory in invariant space so long as there are no sources or sinks. Therefore,

we will explore PSD to quantify potential sources (e.g., acceleration events) or sinks (e.g.,

precipitation) within the system. Doing so removes the adiabatic effects, making it easier in

our case to examine the acceleration of particles at different energies.
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Studies using PSD to study isolated events have been around for some time [Selesnick

et al., 1997; Selesnick and Blake, 1997; Hilmer et al., 2000; Green and Kivelson, 2004]. How-

ever, the challenges of calculating and interpreting PSD have made it difficult to implement

robustly and definitively. The quality data from recent missions such as THEMIS and the

Van Allen Probes along with recent studies such as Reeves et al. [2013] have helped to make

PSD a viable and important tool for studying radiation belt dynamics. The goal of this

chapter is to completely describe the phase space density (PSD) data product for the Van

Allen Probes that will be used in each of the subsequent chapters. This includes a descrip-

tion of the Van Allen Probes instrumentation, the calculation of PSD, applications of PSD

and a summary of error analysis techniques.

2.2 Van Allen Probes

The twin Van Allen Probes (originally known as Radiation Belt Storm Probes (RBSP))

spacecraft launched on 30 August 2012 with the goal to study the radiation belts. The

probes were launched in low inclination, highly elliptical orbits with apogees near 5.8 RE

and perigees at ∼ 700 km. The orbital period is ∼9 hours, allowing both spacecraft to offer

nearly continuous observations of both the outer and inner belt. The spacecraft spin at

a cadence of 11 seconds, allowing the particle instruments to measure pitch angle-resolved

fluxes.

The overall objective of the mission is to: ‘Provide understanding, ideally to the point

of predictability, of how populations of relativistic electrons and penetrating ions in space

form or change in response to variable inputs of energy from the Sun’ [Mauk et al., 2014]. To

address this goal, the Van Allen Probes feature a comprehensive instrument suite to study
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the particles, fields and waves in the radiation belts. These instruments suites include:

• Energetic Particle Composition and Thermal Plasma Suite (ECT; Spence et al. [2013b]),

which consists of three instruments and provides measurements of energetic electrons

and ions (1 eV - 10s MeV).

• Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE; Mitchell et al.

[2013], which provides measurements of energetic electrons and ions (20 keV - 1 MeV).

• Relativistic Proton Spectrometer (RPS; Mazur et al. [2013]), which provides measure-

ments of highly relativistic protons (50 MeV - 2 GeV).

• Energetic and Magnetic Field Instrument Suite and Integrated Science (EMFISIS;

Kletzing et al. [2013]), which provides measurements of the magnetic field and plasma

waves.

• Electric Field and Waves instruments (EFW; Wygant et al. [2013], which provides

measurements of the electric fields.

This thesis will largely focus on data from two of the instruments in the ECT suite, Mag-

netic Electron Ion Spectrometer (MagEIS; Blake et al. [2014]) and the Relativistic Electron

Proton Telescope (REPT; Baker et al. [2013]). We will now describe the operations of those

instruments in detail.

2.2.1 Magnetic Electron Ion Spectrometer (MagEIS)

The MagEIS instrument actually consists of four separate instruments on each spacecraft.

These are a low energy unit (20-240 keV), 2 medium energy units to provide additional

pitch angle coverage (M35 and M75; 80-1200 keV), and a high energy unit (800-4800 keV).
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Fig. 3 The Low and Medium
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focal plane
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Figure 2-1: Figure from Blake et al. [2014] showing the one of the MagEIS instruments (Panel
A) and a diagram of how the instrument operates (Panel B). A large magnet produces a
magnetic field into the page directs electrons on the detector array.

Together these instruments provide pitch angle resolved particle fluxes for electrons with

energies of 20-4000 keV. The LOW, M75, and HIGH units provide identical pitch angle

coverage, so for the work presented here, data from the M35 unit will not be used. A picture

of one of the instruments is shown in Figure 2-1A.

As the instrument name suggests, MagEIS uses a strong magnet (550, 1600, and 4800

Gauss for the LOW, MED, and HIGH units, respectively) to create a magnetic field to direct

electrons into the detector array. The curvature of the particle is dependent on the particle

energy, so it allows the magnet to direct different energies to the appropriate detector. In

addition the magnet allows for separation of ions and electrons, since the protons gyrate in

the opposite direction from electrons. The electrons are directed onto a series of detectors

whose thicknesses are matched to the expected energy based on the radius of curvature. A

diagram of how the instrument works is shown in Figure 2-1B. The magnet strength is the
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Figure 2-2: Picture of the REPT instrument.

primary reason for having 4 instruments as different energy ranges require different strength

magnets.

During certain times in the orbit, penetrating protons in the inner zone and Bremsstrahlung

X-rays in the outer zone can lead to elevated background counts that can dominate over the

foreground electrons. The MagEIS data recently underwent an extensive overhaul to remove

these background counts, described in Claudepierre et al. [2015]. While this correction has

greatly improved the data quality, it does come with some caveats. There are many times

when the background correction is more than 100% of the measured fluxes. In these cases

the corrected fluxes are set to 0, even though this does not necessarily indicate that the

actual flux is 0. Additionally, when the instrument operates in high-rate mode (which offers

significantly higher pitch angle resolution), the background correction cannot be performed.

2.2.2 Relativistic Electron Proton Telescope (REPT)

The REPT instrument measures the higher energy (2 - 20 MeV) electrons in the radiation

belt. The instrument consists of a stack of silicon solid state detectors, a collimator and a
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thick aluminum and tungsten casing to shield the detectors. Figure 2-2 shows an image of

one of the REPT instruments. The detector stack is able to stop electrons with energies

up to 10 MeV, so measuring the penetration of incident particles gives a measure of the

electrons incident energy. The lowest energy channels in the REPT instrument overlap with

the MagEIS HIGH unit, allowing for inter-calibration between the two instruments. This

inter-calibration has been an ongoing effort and at the time of this thesis, the fluxes from

each instrument generally differ by less than a factor of 2 in the overlap region (energies of

∼ 1 MeV). The following sections describe the conversion of these fluxes into phase space

density.

2.3 PSD Calculation

The goal of this calculation is to transform a differential particle flux j(E,α, x, t), as a func-

tion of energy (E), pitch angle (α), and position (x) into phase space density f(µ,K,L*, t)

as a function of the three adiabatic invariants µ, K and L*. The calculations described

here build on the work of Chen et al. [2005], Chen et al. [2007a], Turner and Li [2008] and

Turner et al. [2012], but have been tailored and refined to use data from the Van Allen

Probes. While very detailed, the calculation can be broken down into three basic steps:

1. For each energy channel at each time-step, convert the differential flux into phase space

density.

2. For each desired K value, match the K to a measured pitch angle. Then, for each

energy channel, fit the pitch angle distributions and extract the proper PSD values,

giving an energy spectrum. Finally, at each time step, match the measured pitch angle

to the calculated L* value.
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Figure 2-3: Diagram depicting each step of the PSD calculation The calculation begins with
differential particle flux j(E,α, ~x, t) and ends with PSD f(µ,K,L*, t).

3. For each desired µ value, match the µ to an energy value. Fit the energy spectrum

and extract the proper PSD for that µ and K.

These steps are illustrated in Figure 2-3. Due to the quality of the observations from the

Van Allen Probes, every effort was taken to remain as true to the data as possible. Each of

these calculation steps will now be described in detail.

2.3.1 Flux to PSD Conversion

Phase space density f is related to differential particle flux j by the following equation:

f =
j

p2
(2.1)

Inserting the relativistic expression for momentum for p and inserting a numerical factor
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to convert the units to the GEM (Geospace Environment Modeling) unit of ( c
MeV cm

)3 [Chen

et al., 2005; Green and Kivelson, 2004], the equation becomes:

f = 3.325× 10−8
j(E)

E(E + 2moc2)
[(

c

MeV cm
)3] (2.2)

where j(E) is the differential particle flux with units of #/s · sr · cm2 · keV , moc
2 is the

rest mass of the electron and E is the energy value for each the energy channels, defined as

follows:

E =
√
Emin*Emax (2.3)

where Emin and Emax are respectively the minimum and maximum energies covered by

an energy channel. As shown by Chen et al. [2005], this form offers improved accuracy over

the mean energy, which tends to overestimate the calculated value of PSD.

These pitch angle resolved fluxes used in this calculation come from both the MagEIS

and REPT instruments. All of the fluxes are binned into 5-minute averages in order to

improve counting statistics. Additionally, since MagEIS uses dynamic energy channels, the

fluxes are interpolated onto a common set of energies. These fluxes at each energy channel

and pitch angle are used in Equation 2.2 to get PSD, f(E,α, ~x, t).

2.3.2 Pitch Angle Fitting

In order to get PSD in terms of 2nd invariant K and 3rd invariant L*, K(α,t) and L*(α,t)

are needed. For the Van Allen Probes mission, these quantities are calculated by the ECT

Science Operations Center (SOC) using the LANLGeoMag model [Henderson et al., 2011].

LANLGeoMag numerically solves a particle’s guiding center equation of motion in the TS04D
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global magnetic field model [Tsyganenko and Sitnov , 2005] to calculate a variety of relevant

quantities, including K(α, t) and L*(α, t).

At each time step a linear interpolation is applied to K(α) in order to get α(K). There-

fore, each desired K value maps to a pitch angle. This pitch angle value also allows PSD to

be tied to the proper L* value, using the provided L*(α, t).

Next, the pitch angle distributions for each energy need to be fit in order to find the

PSD at the proper pitch angle to get f(K). Many previous studies use a function of the

form sinn to fit the pitch angle distributions. For the Van Allen Probes data there are many

times when this type of function offers a very poor fit. Therefore for this calculation, we

use a linear interpolation in order to stay as true to the data as possible. Choosing the

proper value from the pitch angle interpolation at each energy channel then gives an energy

spectrum (f(E,K,L*)) at each time-step.

2.3.3 Energy Spectrum Fitting

Given the particle kinetic energy E, pitch angle α, and the locally measured magnetic field

B from EMFISIS, the first invariant µ is defined as:

µ(E,B) =
E(E + 2m0c

2)sin2(α)

2Bm0c2
[
MeV

G
] (2.4)

where m0c
2 is the electron rest mass. Table 2.1 shows the mapping between various µ

and energy values at different L*. Table 2.1 clearly demonstrates that both the MagEIS

and REPT measurements are needed to cover different parts of µ-space over a range of L*.

At very high or low values of µ, the measurements from a single instrument are sufficient.

However, to explore dynamics for µ between ≈ 500 and 3500 MeV/G across the outer

34



µ [MeV/G] L*=3.0 L*=3.5 L*=4.0 L*=4.5 L*=5.0 L*=5.5
50 0.421 0.277 0.185 0.127 0.090 0.070
75 0.572 0.383 0.262 0.182 0.130 0.102
100 0.704 0.479 0.331 0.232 0.168 0.132
150 0.933 0.646 0.455 0.324 0.237 0.189
200 1.130 0.792 0.564 0.408 0.301 0.241
300 1.466 1.044 0.756 0.554 0.416 0.336
400 1.753 1.260 0.921 0.683 0.518 0.422
500 2.007 1.452 1.070 0.800 0.610 0.500
600 2.238 1.627 1.206 0.906 0.696 0.573
800 2.650 1.940 1.449 1.099 0.851 0.705
1000 3.014 2.218 1.666 1.271 0.990 0.825
1500 3.791 2.811 2.130 1.641 1.292 1.084
2000 4.447 3.314 2.524 1.956 1.550 1.307
2500 5.027 3.758 2.873 2.235 1.779 1.506
3000 5.551 4.160 3.189 2.489 1.987 1.687
3500 6.033 4.530 3.480 2.723 2.179 1.853
4000 6.482 4.874 3.751 2.940 2.358 2.009

Table 2.1: Table showing the energy that relates to given µ values at several L* values. The
calculation was performed for 90◦ pitch angle particles and for the average magnetic field
values at each L*. All energies shown have units of MeV. The red shaded boxes indicate
when the energy lies in the range of the REPT instrument. The unshaded boxes are in the
range of the MagEIS instrument.

belt (3.0 < L* < 5.5), measurements from MagEIS and REPT must be combined. This

underscores the importance of the cross-calibration of MagEIS and REPT.

If Equation 2.4 is rewritten to give E(µ):

E(µ,B) = −m0c
2 +

1

2

√
8µBm0c2

sin2(α)
+ 4m2

0c
2 (2.5)

At each time-step, the energy spectrum f(E,K,L*) is fit using a uni-variate spline. Using

Equation 2.5, for each µ value, the correct energy is selected to complete the calculation and

give f(µ, K, L*). As an important note, the spline fit is not used to extrapolate. If the

energy falls below the lowest energy channel or above the highest energy channel, the value

is not used.

35



to potentially large errors. To elaborate, s
L*) requires calculation of the adiabatic i
are introduced because invariant calcu
assumptions and models rather than mea
For example, calculating the first invar
specification of the local magnetic field,
andpitch angle. In somesituations thesem
not all available. Thus a model magnetic
assumed pitch angle distribution are subs
surements. Calculating the second and
which correspond to particle bounce an
requires knowledge of the global confi
magnetic field that no single spacecraft m
provide.A global magnetic fieldmodel isa
calculate these two invariants. Quantifyin

Figure 2-4: Figure from Green and Kivelson [2004] depicting the different signatures of radial
diffusion (Panel A) and local acceleration (Panel B).

2.4 Using Phase Space Density

2.4.1 Distinguishing Acceleration Sources

One of the main uses for PSD is to distinguish between radial diffusion and local acceleration.

Figure 2-4 from Green and Kivelson [2004] depicts the signatures for each of the acceleration

processes. Radial Diffusion has a source at high L*, so the PSD profile increases or remains

constant toward higher L*. Local acceleration has a source at low L*, so a peak develops in

PSD that increases with time. As noted in Green and Kivelson [2004], diffusion eventually

smooths out peaks that develop in PSD.

These simple criteria for identifying different acceleration processes does come with some

caveats. While a peaked distribution is indicative of local acceleration, there are other

processes that can produce peaked PSD distributions. For example, a loss at large L* can

produce a peaked distribution even though no local acceleration had taken place. Therefore,

growing PSD peaks at a fixed L* value need to be observed to indicate local acceleration.
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However, even if growing peaks are observed, great care must be taken to eliminate other

possible sources for the observations. One of the few examples of another process that can

also produce growing peaks is that of an on-off source at high L*. Therefore observations at

high L* are needed to constrain this possibility and show that there is a source at low L*.

An excellent example of local acceleration exhibited by growing PSD peaks comes from

Reeves et al. [2013], which looked at the 8-9 October 2012 storm. The radial PSD profiles

from that event are shown in Figure 2-5. The peaked distribution begins to develop on the

3:32 pass on 9 October. The peak continues to grow for the next 10 hours until outward radial

diffusion smooths out the peak. In the supplementary material, Reeves et al. [2013] goes to

great lengths to show that: 1) the peaks are significant compared to the errors produced

by the magnetic field and 2) The PSD beyond the Van Allen Probes orbit has a negative

gradient throughout the event, eliminating the possibility of an on-off source producing the

growing peaks.

2.4.2 Van Allen Probes Limitations

While the quality of the observations from the Van Allen Probes is unprecedented, the orbital

configuration of the spacecraft leads to several limitations in adiabatic invariant space. The

first is that the L* of the spacecraft apogee is often limited to L* < 5, particularly during

active times. This can cause uncertainly in identifying the acceleration mechanism if the

PSD profile appears to be peaked at or near apogee. The second limitation is on second

invariant K. While the Van Allen Probes’ orbit is near the magnetic equator, the spacecraft

do spend a significant amount of time off of the equator. Therefore, it is not possible to

see all K values (particularly near K=0) at all times. As was shown in Reeves et al. [2013],

K = 0.11 REG1/2 is the smallest K value that allows for coverage at nearly all L* values.
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Figure 2-5: Figure from Reeves et al. [2013] show growing PSD peaks (µ = 3433MeV/G,
K = 0.11 REG1/2) during the 8-9 October 2012 Storm. All times shown are the L*=4.2
crossing times.
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2.5 Error Estimation

The error in the PSD calculation largely comes from errors in the calculation of K and L*

from the global magnetic field models. Green and Kivelson [2004] offers a complete discussion

of how these errors can affect the interpretation of PSD results. Previous studies have utilized

different techniques to attempt to estimate the error in the PSD calculation. Turner et al.

[2012] estimated the error in the THEMIS PSD calculations by calculating the error in pitch

angle measurements and carrying these errors though the PSD calculation. Chen et al.

[2007a,b] utilized the technique of phase space density matching for the calculation of PSD

for the LANL geosynchronous satellites. This technique was later used for the Van Allen

Probes by Morley et al. [2013] and will be the used throughout this thesis to estimate errors.

Phase space density matching works on the application of Liouville’s theorem, which

states in the absence of sources or losses, phase space density should be constant. Therefore,

during magnetic conjunctions of two spacecraft (looking at the same µ,K and L*), the space-

craft should observe the same value for PSD. Assuming the spacecraft are well calibrated,

any differences in the measured PSD are a result of errors in K or L*, or a source or loss

operating during the conjunction [Morley et al., 2013]. This technique gives an estimate of

the errors from the global magnetic field model, which can produce large errors in the PSD

calculation [Green and Kivelson, 2004].

As suggested above, the PSD matching technique requires at least two separate and

well calibrated measurements to be effective. Fortunately, PSD matching is a particularly

effective technique for the Van Allen Probes, since the instruments are well calibrated and the

dual spacecraft frequently overlap in adiabatic invariant space. [Morley et al., 2013] presents

phase space density matching results from the REPT instrument for the 8-9 October 2012
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storm. Using the techniques described in Morley et al. [2013], the PSD matching results for

the 17 March 2013 storm are shown in Figure 2-6.

Morley et al. [2013] tested several magnetic field models and found that the TS04D

magnetic field model gave the smallest errors, with an average error of a factor of 1.2 for the

8-9 October 2012 storm. This technique was used to generate the error bars seen in Reeves

et al. [2013]. PSD matching was able to show that the errors were smaller than the observed

PSD peaks. This same technique is used in Chapter 3 for the 17 March 2013 event, a critical
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element in the analysis that quantifies the significance of the peak determination and hence

that local acceleration is operative.

2.6 Studies using Phase Space Density

The Van Allen Probes PSD data product I produced as part of this thesis have been used to

enable several science studies beyond those described in the subsequent chapters. The first

is Li et al. [2014] which modeled radial diffusion during March 2013. The PSD product that

I derived from the ECT and EMFISIS data served as the outer boundary condition for the

model and provided a data-model comparison to check how well the model performed. In

general the model performed very well until 17 March 2013, when the model underestimated

the PSD. This supports the conclusion that radial diffusion was the dominant mechanism

leading up to the 17 March 2013 event, when local acceleration dominated. The next study

in which the key PSD data product I developed was used is in Foster et al. [2015] which

looked at the shock acceleration event on 8 October 2013. The PSD data described here was

used to illustrate how effective the shock was at rapidly accelerating electrons. The PSD

data showed that across a wide range of µ values, electrons inside of L*=4.2 were accelerated,

whereas electrons outside were lost.

The final example of my PSD contributions that enabled other collaborative studies is

the calculation of the Total Radiation Belt Content (TRBEC) [Spence et al., 2013a; Huang

et al., 2016]. Previous estimates of this quantity by Baker et al. [2004]; Selesnick and Kanekal

[2009] used flux measurements by SAMPEX and POLAR respectively. Therefore to try and

improve on this measurement, PSD from the Van Allen Probes can be integrated across

µ, K and L* to get a single number, the total number of electrons. An overview of this
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quantity for 2013 is shown in Figure 2-7. While only a single quantity, ongoing work with

TRBEC has shown it to be a great way to quantify losses and enhancements. In addition,

the integration can be limited to particular ranges in either µ or L*, allowing for studies of

different particle populations such as the seed and core populations.

As described earlier, the PSD data product described in this chapter will be used in

work presented in the subsequent chapters. The PSD data also played a critical role in the

examples described above. While only described briefly here, these studies represent some

of my important contributions outside of the work presented in the remainder of the thesis.
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Chapter 3

Seed Population Case Study: 17

March 2013 Storm

3.1 Motivation

Up until recently, most radiation belt research has focused on the dynamics of the highly

relativistic electrons that populate the outer belt. One possible source for these electrons,

local acceleration, has been shown to be capable of quickly producing enhancements in

relativistic electrons. Reeves et al. [2013] recently provided evidence of local acceleration of

MeV electrons for an event on 8-9 October 2012 but that paper did not examine, in any detail,

the relative effects of local acceleration and radial diffusion as a function of energy. This

leaves open the question of the origin and evolution of the initial, lower-energy electrons (10s

to 100s keV) that serve as a ‘seed’ population for the radiation belts. The instrumentation

aboard the Van Allen Probes mission allows for the simultaneous observation of both the seed

and core radiation belt populations to see how they behave and interact during acceleration

events. This chapter examines phase space density data from one such event: the 17 March

2013 storm. The goal is to answer the focused question: ‘Is it possible to directly observe

and quantify the seed population’s role in the acceleration of radiation belt electrons?’
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3.2 17 March 2013 Storm

A strong geomagnetic storm occurred on 17 March 2013. The relevant solar wind conditions

for this event are shown in Figure 3-1. The event began with a strong interplanetary shock at

06:00 UT on 17 March [Baker et al., 2014a], driving fast solar wind (>700 km/s) and elevated

dynamic pressure (>10 nPa) (Figure 3-1d). This storm was one of the most geoeffective of

the early Van Allen Probes mission, with Dst reaching -132 nT and Kp reaching 6+ (Figure

3-1f). The IMF Bz remained southward for the majority of the next 18 hours (Figure 3-1e),

allowing for strong substorms, shown by the elevated AE index (Figure 3-1g). In particular,

Foster et al. [2014] observed a large substorm at 20:17 UT.

The orbital positions for the Van Allen Probes spacecraft are shown in Figure 3-1a.

The spacecraft were ideally suited to study the event, with their orbits straddling magnetic

midnight. In addition, the spacecraft were closely spaced in their orbits, with RBSP-B

leading RBSP-A by about 1 hour. The RBSP electron observations from two energy channels

(211 keV and 1016 keV) are shown in Figures 3-1b-c. The observations show a strong loss

of the relativistic electrons, likely due to the compression of the magnetopause, leading to

magnetopause shadowing losses [Baker et al., 2014a; Hudson et al., 2015]. This loss was

followed by a rapid enhancement of relativistic electrons deep within the outer radiation

belt. This rapid enhancement, and the role the seed population plays in it will be the focus

of the remainder of the chapter.

3.3 Phase Space Density Gradients

Figure 3.3 shows the MagEIS-B PSD for a range of µ values for a single inbound pass. The

µ-dependent error estimates at 10 minute intervals are shown as error bars on each curve.
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For this study we used phase space density matching on the period from March 19-21 to

estimate the errors in PSD. For this period, conjunctions in L* occurred close to apogee. We

found that these errors were somewhat µ dependent, but were consistent with the REPT

PSD errors found by Morley et al. [2013], with an average error factor of 1.3, and larger

errors at the highest µ values. The pass shown in Figure 3.3 covered a period from 23:10 UT

on March 17th to 3:02 UT on March 18th, placing it early in the recovery phase of the storm.

Plotting this pass as a function of L* allows us to quantify the PSD gradients throughout

the entire outer radiation belt as a function of µ. We chose to look at the gradients during

this pass to characterize the structure of the belt immediately after the acceleration event.

From Figure 3.3 it is clear that the PSD has a positive gradient in L* for µ <200 MeV/G

and flat or negative gradients for µ >200 MeV/G. This transition at 200 MeV/G is consistent

with previous estimates by Turner and Li [2008], Kim et al. [2010], and Turner et al. [2012].

While this study does confirm previous results, these results also represent the first time

these gradients have been quantified for a broad range of µ in the heart of the radiation belts

during storm-time. Previous studies have been limited to measurements that were either

beyond GEO, off-equatorial, or at higher µ. This µ dependence in the gradients persists

through most of the recovery phase, until outward radial diffusion moves the PSD peaks

beyond the Van Allen Probe apogee, resulting in positive gradients for all µ values. During

quiet times the PSD peaks for relativistic electrons are typically at or beyond the Van Allen

Probe apogee [Turner et al., 2012], which makes it difficult to locate the transition point

between positive and negative gradients. However, these observations are not unique to this

storm. Figure 3.3 shows that the same transition at ∼200 MeV/G is also seen during the

recovery phase of the 8-9 October 2012 storm.

As discussed in Green and Kivelson [2004], PSD profiles tend to be peaked in their
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source regions. Therefore, since the <200 MeV/G population has a positive PSD gradient,

this suggests the source region is beyond the Van Allen Probe apogee and these particles

likely come from the plasma sheet. Conversely, the PSD profile of larger µ particles is peaked

within (and therefore has a source within) the radiation belt. As suggested by Turner et al.

[2012], the transition of these gradients around 200 MeV/G is consistent with the theory

of local acceleration by wave-particle interaction with chorus waves. The <200 MeV/G

particles that originate in the plasma sheet can be locally accelerated by interactions with

waves to produce the higher µ particles that have a source within the radiation belt. A value

of µ = 200 MeV/G corresponds to an energy of 400 keV at L* = 4. Horne et al. [2005]

showed that this is a critical energy for acceleration by chorus waves, where energies below

it are scattered into the loss cone faster than they are accelerated. This suggests that this

µ<200 MeV/G population could be the ‘seed’ population for the relativistic electrons in the

outer radiation belt.

3.4 Storm Evolution

Next, we explore the evolution of the PSD over the course of the 17/18 March storm. In

Figure 3.4, we plot the PSD from each inbound and outbound pass for six values of µ between

03:05 UT on March 17th, just before the storm, and 5:10 UT on March 18th, during the

recovery phase. This allows us to examine how the PSD profile evolves in time over the

course of the storm. All the given times correspond to the L*=4.2 crossing time and are

marked and color coded on the Dst plot in Figure 3.4 for context. For this section we looked

at a higher K value (0.11 REG1/2) in order to have sufficient coverage in L* for the whole

time period. In addition to the PSD observations, the integrated lower band chorus power
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Figure 3-4: Phase Space Density evolution of the 17 March 2013 event. All times are the
L*=4.2 Crossing Times. Also shown are the SYM-H index and integrated lower band chorus
wave power as measured by EMFISIS. The colored lines in the SYM-H plot correspond to
each of the orbital passes shown in the PSD plots.

as measured by EMFISIS and the Dst index are shown in Figure 3.4.

It is clear that, over the course of the storm, the PSD evolves very differently for different

µ values. For µ = 50 MeV/G and µ = 100 MeV/G, there is a large, sudden increase in PSD

near the Van Allen Probes apogee, i.e. L*>5.5 for the 3:05 UT orbit (outbound). This

feature is likely associated with a substorm injection seen by GOES around this time (see

Figure 3.4) and identified by the peak in AE at 8:00 UT. In the two subsequent inbound

orbits, the peak emerges and grows inside L* = 5.5 first for Probe A, the trailing spacecraft.
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Figure 3-5: GOES-13 and GOES-15 observations from the 17 March 2013 event. The shaded
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By the time the next two outbound passes come 3.5 hours later, the PSD has been enhanced

at all L*. For the µ=100 MeV/G population, this is followed by enhancement over a wide

range of L*, indicative of acceleration by radial diffusion. Later in the event, beginning

at 15:00 UT, there is another enhancement seen at L*<3.2 for µ = 50 MeV/G. This is

associated with another substorm injection, coinciding with the peak in AE and observed

by GOES around the same time (Figure 3.4). This reinforces the notion that injections of

fresh lower energy electrons from the inner magnetotail are an important initial step that

precedes local acceleration to higher energies.

The direct effects of the injections were not seen for µ>300 MeV/G. Instead there are

clear PSD peaks that form at low L* and then increase with time. During the 11:30/12:25 UT

passes, the 50 MeV/G population has already been enhanced, and the 100 MeV/G begins

to show signs of enhancement, and the >500 MeV/G population shows signs of a strong
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loss process, which was related to a flux dropout during the main phase of this storm. On

the following orbit 15:23/16:25 UT, the 100 MeV/G population continues to enhance, and

300-1000 MeV/G population begins to show peaks in PSD at low L*. Finally, on 20:40/21:55

UT orbit, the 1500 MeV/G population begins to show a significant PSD peak. As shown

in Figure 3.4, strong chorus wave activity was also observed during these orbits. Although

not shown here, the REPT PSD at higher µ is qualitatively similar to the PSD at µ=1500

MeV/G.

As shown in Green and Kivelson [2004] and Reeves et al. [2013], an increasing phase

space density peak may be an indication of local acceleration. Another possibility for the

increasing PSD peaks is an on-off source at high L*. However, for this storm such a source

is unlikely. While the acceleration process is active, there were two periods when neither of

the spacecraft were beyond the observed PSD peak (L* >4.4). During the first, 15:53 - 20:41

UT, substorm injections were observed by GOES (Figure 3.4). However, for the second, 1:42

- 5:15 UT, there was no evidence of substorm injections in the GOES observations making

an on-off source unlikely. Additionally, none of the injections seen earlier in the storm caused

increases in the >300 MeV/G electrons. It is unlikely that this on-off source for >300 MeV/G

electrons would only operate during the time periods when one of the spacecraft was not in

a position to observe it.

Another possibility is that errors in the PSD calculation could account for some of the

increases. Details on how errors in the global magnetic field models can lead to errors in

PSD are discussed in Chapter 2. It is unlikely that these errors can account for the nearly

two orders of magnitude increase in PSD seen over the course of the storm. While it is not

possible to completely eliminate these other possibilities, local acceleration is the most likely

explanation for the growing PSD peaks observed during this storm.
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This set of observations shows clear evidence of a sequence of acceleration occurring

sequentially with the injection of a lower-energy seed population from the plasma sheet

radially inward. That process accelerates electrons up to a few hundred keV in the heart

of the radiation belts [Baker et al., 1998; Baker and Kanekal , 2008]. The higher energy

electrons later show increasing PSD peaks, showing evidence of local acceleration. These

peaks occur at the same time that chorus waves were observed by EMFISIS. This suggests

that acceleration via wave-particle interactions with whistler-mode chorus is the most likely

candidate for the observed acceleration. Modeling of the storm by Li et al. [2014] has also

confirmed this conclusion. These two different acceleration processes for the populations

below and above µ ∼ 200 MeV/G are clearly shown in Figure 3.4 and are consistent with

a <200 MeV/G seed population preceding subsequent local acceleration to enhance the

relativistic populations within the heart of the outer belt.

This timing of this acceleration process is shown more clearly in Figure 3.4, which shows

the ratio of PSD to the pre-storm level (3:05 UT orbit) at L* = 4. This figure clearly

shows that at L*=4, the initial acceleration of the seed electrons is followed by a strong

loss of the >500 MeV/G population. This is then followed by acceleration at all values.

The acceleration process for the relativistic electrons does not seem to begin until this seed

population is in place at low L* values. After the seed population is in place, the acceleration

up to multi-MeV occurs over a period of less than 12 hours. More specific timescales for this

acceleration process are difficult to determine without greater time resolution. However, the

orbital configuration and instrumentation from the Van Allen Probes for this event allowed

the observation of this progression from seed electrons up to multi-MeV energies with high

precision and with excellent and unprecedented resolution and specification of the adiabatic

coordinates.
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3.5 Conclusions

The goal of the chapter was to observe and to quantify the seed populations’ role in the

acceleration process. To address this goal, we presented electron PSD distributions from

MagEIS over a broad range of µ values for the 17 March 2013 electron acceleration event. We

have quantified the µ dependence of PSD gradients inside GEO for the first time, confirming

the results of previous studies, with µ< 200 MeV/G showing positive gradients and µ> 200

MeV/G showing peaks in the heart of the radiation belts and flat or negative gradients at

higher L*.

We combine these observations with results showing local acceleration in the heart of

the radiation belts [e.g. Reeves et al., 2013]. Taking advantage of the comprehensive mea-

surements available from the Van Allen Probes we can now connect the two steps of the

acceleration process with a single, unified, set of observations. Our results demonstrate that

the acceleration process for this storm begins with multiple injections of the seed population

from the plasma sheet between 08:00 UT - 15:00 UT on 17 March 2013. This is followed

by the local acceleration of the µ=300-1000 MeV/G population beginning around 16:00 UT.

This ultimately leads to local acceleration up to multi-MeV energies by 21:00 UT.

Additionally, for this event, strong chorus wave activity was observed while the peaks in

phase space density were developing. This provides strong evidence that wave-particle inter-

actions with chorus waves is responsible for driving the acceleration process. In this scenario,

the seed population plays a critical role of interacting with the waves and accelerating up to

the highly relativistic energies for which the radiation belts are known.

56



Chapter 4

Statistical Properties of the

Radiation Belt Seed Population

4.1 Introduction

In the previous chapter, we examined the role of the seed population during a single event,

the 17 March 2013 storm. In this chapter, we extend the analysis to a wider time period:

the first 26 months of the Van Allen Probes mission. In particular, we will examine the

correlation between the core and seed populations for each enhancement event during this

period. This builds on the work of Li et al. [2005] and Turner and Li [2008], who analyzed

fluxes at geosynchronous orbit over a five-year time period. They found that when a time-

lag was applied, the seed electron population fluxes were well correlated with the >1 MeV

electron fluxes. However, since these observations were at geosynchronous orbit, they were

not able to see the acceleration process itself, as it was happening in the heart of the radiation

belt. In this chapter, we examine both the seed and core populations inside of the radiation

belt over a long time period to see exactly for the first time how these two populations

interact to produce radiation belt acceleration. In particular, we look to answer the focus
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question: ‘What correlations and causal relationships are there between enhancements in the

seed population and enhancements in the core population?’

4.2 Data

The dual Van Allen Probes spacecraft were launched on August 30, 2012 with a comprehen-

sive suite of instruments to study the fields, waves and particles within the Earths radiation

belts [Mauk et al., 2014]. For this study we used data from the Relativistic Electron Proton

Telescope (REPT) [Baker et al., 2014b], which measures high energy (∼1-20 MeV) electrons,

and the Magnetic Electron-Ion Spectrometer (MagEIS) [Blake et al., 2014] which measures

low and medium energy (∼20-4000 keV) energetic electrons. Both of these instruments are

part of the Energetic Particle, Composition, and Thermal (ECT) plasma instrument suite

[Spence et al., 2013b]. These particle measurements, together with the magnetic field mea-

surements from the Electric and Magnetic Field Instrument Suite and Integrated Science

(EMFISIS) [Kletzing et al., 2013] were used to calculate phase space density (PSD) for the

Van Allen Probes mission from launch through the end of 2014.

To calculate the PSD, we follow the method laid out in Chapter 2. Pitch angle-resolved

fluxes from MagEIS and REPT along with the magnetic field data from EMFISIS were used

to calculate PSD as a function of the three adiabatic invariants µ, K and L*. Tsyganenko

and Sitnov [2005] was used as the global magnetic field model for these calculations. Using

the phase space density at fixed 2nd and 3rd invariants, we focused on how phase space

density evolved as a function of 1st invariant µ. In particular we investigated three distinct

electron populations at different values. These populations are the seed population; which

we define to be µ ≈ 150 MeV/G (∼200 keV at L*=5); the core population (µ ≈ 1000
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MeV/G; 1 MeV); and the ultra-relativistic population (µ ≈ 4000 MeV/G; 2.5 MeV).

Our goal of this study was to use these data-sets to investigate two questions: 1)

What correlations exist between these populations and what are the relevant acceleration

timescales? and 2) What conditions in the seed population lead to enhancements in the core

and ultra-relativistic populations?

4.3 Correlations and Timing

To investigate their correlations, we examine the phase space density of the seed, core

and ultra-relativistic populations for a period of 26 months between October 2012 and

December 2014. These observations are shown in Figure 1. For this time period, we re-

strict our attention to those particles that are mirroring relatively close to the magnetic

equator(K=0.11 REG1/2) and well into the outer radiation belt (L* = 5). Figure 4-1 illus-

trates that each of these populations behave very differently and have different characteristic

timescales. The seed population varies rapidly, with sharp increases on the timescale of hours.

The core population varies less dynamically and follows a pattern of rapid increases followed

by slow decay. The ultra-relativistic population follows a similar pattern to the core pop-

ulation, possessing even less dynamism. Despite these differences, there are many events,

such as the 8-9 October 2012 event and the 17 March 2013 event, which elicit a coordinated

response in all three of the populations, demonstrating that these populations are sometimes

strongly correlated.

To understand these connections, we next quantify the properties of such events. Since

the seed population is believed to play a key role in the acceleration process, we focused on

enhancement events in the core (µ = 1000 MeV/G) electrons. Similar to Reeves et al. [2003],
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Figure 4-1: Overview of the phase space density for 3 different µ values: Seed (150 MeV/G),
Core (1000 MeV/G) and Ultra-relativistic (4000 MeV/G) for a period from October 2012
through December 2014. All the data are for K=0.11 REG

1/2 and L* = 5. The gray triangles
in the core panel denote core enhancement events.

we require enhancement events to meet the following criteria:

1. The core population must increase by at least a factor of 2

2. The enhancement must be isolated, with no other events within ±48 hours

3. There must be no data gaps of more than 10 hours during the event

Implementing these criteria with second invariant K=0.11 REG
1/2 and L* = 5 gave 34

enhancement events over the 26-month period. These K and L* values were chosen since

they represent the smallest K value continuously observed by the Van Allen Probes, and

the typical L* where the peak fluxes are observed. Although we did not place a requirement

on any geomagnetic indices, the events represent an equal mixture of non-storm and storm-

times, with 17 of the 34 events having a minimum Dst ≥ -40nT. In addition, all 34 of the
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events are associated with an elevated Auroral Electrojet (AE) index. Table 4.1 shows a

summary of these events, and they are marked with gray triangles in Figure 4-1.

Our first goal is to investigate the correlation between the different electron populations.

Following Li et al. [2005] and Turner and Li [2008], we implement the technique of cross

correlation analysis. For a number of µ value steps between 200 and 3000 MeV/G, we

calculate the linear correlation coefficient between that population and the 150 MeV/G

seed population. We then apply a series of time-lags between -2 and -48 hours to the

seed population and repeat the calculation of the correlation coefficient. For each µ value,

we record the time-lag that gave the maximum correlation coefficient. The time-lags as a

function of µ for three L* values are shown in the Panel A of Figure 4-2. Panel B shows the

correlation coefficient as a function of µ for L* = 5 with and without the time-lag applied.

Panels C and D show the same calculation using only data for the 5 days leading up to the

maximum core phase space density for each event. Data for L*=5.5 is not shown for the

active times, as the L* of Van Allen Probes apogee is often less than 5.5 for periods of strong

geomagnetic activity. The shaded regions in panels A and C represent the range of time-lags

at L*=5 where the correlation coefficient was within 1% of the maximum value. For the

purposes of this study, we only consider the correlation to be significant if R ≥ 0.7. The

lines in panels A and C are dashed when the maximum correlation coefficient goes below

this threshold.

As shown in Figure 4-2, the core population has its maximum correlation at 10-25 hours

with a correlation coefficient between 0.7 and 0.8. These results are consistent between

L* = 4.5 and L* = 5.5, with marginally highest correlations at L*=5. The value of the

coefficient is similar for the active times, but the maximum correlation time-lag is much

shorter, with a maximum between 0-13 hours. These results agree with the findings of
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Date L*en Max/Min
PSD

Post/Pre
PSD

Clear PSD
Peaks?

Min Dst
[nT]

2012-10-08 4.2 472.1 232 Yes -105
2012-11-13 4.5 92 19.3 Yes -108
2012-12-17 Apogee 25.5 12.9 No -27
2013-01-13 Apogee 34.4 24.5 No -30
2013-02-14 Apogee 11.3 6.2 No -36
2013-02-22 Apogee 41.6 8.6 No -32
2013-03-01 5.0 166.4 21.9 No -55
2013-03-17 4.2 148.2 22.8 Yes -132
2013-04-24 5.0 343.4 36.2 No -50
2013-05-18 4.5 75.2 9.1 Yes -57
2013-05-25 4.5 17.1 16.7 No -50
2013-06-21 5.0 114.2 13.4 No -21
2013-07-10 4.7 13.6 20.8 No -45
2013-08-04 4.7 200.5 9.4 No -44
2013-08-16 Apogee 15.1 3.9 No -35
2013-08-31 Apogee 38.9 5.5 No -37
2013-09-19 Apogee 11.2 7.9 No -19
2013-10-02 5.0 49.4 37 No -60
2013-10-14 Apogee 12.1 4.9 No -43
2013-11-09 4.6 61.5 17.2 Yes -81
2013-12-08 Apogee 28.8 5.7 No -66
2014-01-01 Apogee 111.6 36.8 No -40
2014-02-08 Apogee 116.9 72.5 No -30
2014-02-19 Apogee 78.8 36.7 No -116
2014-04-12 Apogee 44 26.5 No -81
2014-06-08 Apogee 8.7 3.0 No -38
2014-06-18 Apogee 14.5 5.0 No -33
2014-08-02 Apogee 15.1 10.4 No -18
2014-08-21 5.25 38 6.7 No -32
2014-08-27 4.5 153.9 14.1 Yes -80
2014-09-22 Apogee 99.9 44.9 No -22
2014-10-17 5.0 29.8 24.5 No -21
2014-11-15 Apogee 139.9 42.8 No -50
2014-12-07 4.8 68.9 16.7 No -24
2014-12-24 4.7 46.2 5.1 No -38

Table 4.1: Properties of the core enhancement events used in this study. Columns describe
the date of the enhancement, the L* where the maximum enhancement is seen, the ratio
of the maximum to minimum PSD, the ratio of average post-event PSD to pre-event PSD,
whether the event had clear observations of PSD peaks, and the minimum Dst for the event.
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Figure 4-2: Results of the cross correlation analysis. Panels A and B show results with
all available data, panels C and D only includes results from times within 3 days of a core
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Turner and Li [2008], who performed a similar study using fluxes at geostationary orbit.

For similar energies, Turner and Li [2008] found a similar correlation coefficient (0.8) and a

slightly larger time-lag (between -17 and -34 hours).

As shown in panels A and C, this correlation is only significant up to ≈800-1000 MeV/G.

This indicates that while the seed population is well correlated with the core population

it is not directly connected to the ultra relativistic population. However, when perform-

ing a similar analysis with respect to the 1000 MeV/G core population, we find that the

core and ultra-relativistic populations were very well correlated, with R >0.8 up to 5000

MeV/G. These results are consistent with the stepwise acceleration processes described in

Boyd et al. [2014], where the seed population is accelerated up to 1 MeV and then subsequent

acceleration brings that population up to multi-MeV energies.

The correlation coefficients shown in Figure 4-2 give the average timing for all of the

events, but the timing for individual events can vary greatly. Figure 4-3 shows the dis-

tribution of time-lags for each of the enhancement events that meet the criteria described

above for µ = 1000 MeV/G and µ = 4000 MeV/G. For the core population, in the majority

of the events the maximum seed population PSD occurs 10-20 hours before the core, but

there are several events with much shorter timescales (<10 hours). Similarly, for the ultra-

relativistic population, the maximum seed population occurs 15-25 hours earlier, but several

of the events have much shorter or longer timescales. As shown in both panels, for all of the

events, the seed population enhancement preceded the enhancement at higher energies.
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Figure 4-3: Distribution of time-lags for all core enhancement events relative to the µ=150
MeV/G seed population. Left panel shows µ = 1000 MeV/G, right panel shows µ = 4000
MeV/G.

4.4 Superposed Epoch Analysis

Our next focus is to investigate the seed population conditions that lead to radiation belt

acceleration. Therefore, we needed to know what the seed population conditions were for

each of the core enhancement events. We use superposed epoch analysis to investigate this.

For each event, we use the L* where the largest enhancement was observed. As shown in

Table 4.1, for more than half (18) of the events, this was at or near the Van Allen Probes

apogee (L*>5.25), but several of the events featured enhancements inside of L* = 5. In

addition, 7 of the events showed clear evidence of PSD peaks at low L*. The t=0 epoch time

was defined to be at the maximum core population PSD for each event.

The results of this analysis are shown in Figure 4-4. The three panels show the ultra-

relativistic, core and seed population PSDs respectively. In all panels, the median (thick

line) and the upper and lower quartiles are shown. The sequence of the acceleration process
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is shown clearly in Figure 4-4, with the seed population reaching its maximum first (t=-

0.8), followed by the core population (t=0), and ultimately the ultrarelativistic population

(t=0.3).

The initial conditions for all three of the populations vary by about an order of magnitude.

The final values for the core and ultra-relativistic populations vary by roughly the same

amount. However, this is not the case for the seed population. All of the events end up

with nearly the same number of seed electrons (to within a factor of 5). This is despite the

fact that the initial conditions of the seed population varies by several orders of magnitude.

Given that all of these events showed an enhancement in the core population, it is possible

that this represents the minimum, or threshold value for the seed population. This value at

1× 10−4 ( c
cm·MeV

)3 is labeled in Figure 4-4.

4.5 Seed Population Threshold

The seed population threshold can also be investigated by looking at all seed population en-

hancements, rather than just those that are associated with increases in the core population.

For each of the seed population enhancements, we compare the maximum PSD value with the

fractional change in the core population PSD in the following 48 hours. This comparison at

L*=4.5 and L*=5, is shown in Figure 4-5. In both panels, the shaded region indicates where

the maximum PSD is above the threshold from Figure 4-4. For all values of the maximum

seed PSD, there were many events that did not lead to core enhancements, so it is imme-

diately clear that larger seed population values do not necessarily lead to enhancements in

the core population. However, all of the events that did lead to core enhancements (shown

by the red markers) have maximum seed populations near or above 1 × 10−4 ( c
cm·MeV

)3.
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Figure 4-4: Superposed epoch analysis for all core enhancement events. Top panel shows the
seed population (µ = 100 MeV/G), the middle panel shows the core population (µ = 1000
MeV/G) and the bottom panel shows the ultrarelativistic population(µ = 4000 MeV/G). In
each panel, the thick line is the median, and the thinner lines the upper and lower quartiles.
T=0 epoch time was taken to be the maximum core PSD for each event. Data for each event
is taken at the L* where the largest core enhancement was observed. The apparent threshold
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cm·MeV
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core PSD for the 48 hours following each seed population enhancement. Left panel shows
data from L*=4.5, right panel shows L*=5. The horizontal dashed line marks where the core
population increased by a factor of 2. Points above this value are shaded red. The shaded
region shows where the maximum seed population PSD is above the threshold value and/or
saturation limit of 1× 10−4 ( c

cm·MeV
)3

This provides further evidence that this value represents a necessary threshold for the seed

population in order to produce a core population enhancement.

As noted earlier, the superposed epoch shown in Figure 4-4 was done at the L* where

the acceleration was taking place. It is plausible that the seed population plays a role in

controlling the location of the acceleration for each event. To investigate this, for each event,

we compare the minimum L* where the seed population was above the threshold value to

the minimum L* (to within ± 0.25) where the core population increased by at least a factor

of 2.

The relationship between the minimum L* at which the core acceleration takes place and

minimum L* penetration of the seed population is shown in Figure 4-6. These values are

very well correlated, with a linear correlation coefficient of 0.84. In addition, for nearly all
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L* Fraction of Time
above Threshold

Total
Events

Enhancement
Events (%)

Acceleration, no
Enhancement (%)

No Acceleration
(%)

4 0.075 25 14 (56 %) 2 (8 %) 9 (36 %)
4.5 0.301 52 31 (59 %) 14 (26 %) 7 (13.5 %)
5 0.532 55 33 (60 %) 9 (16 %) 13 (24 %)
5.5 0.707 62 35 (56 %) 10 (16 %) 17 (27 %)

Table 4.2: Statistics for the fraction of time seed population is above threshold.

of the events, to within L* ± 0.25, the enhanced seed population penetrates further inward

than where the acceleration is observed. This suggests that the seed population forms an

inner boundary. Only outside of this boundary are there enough seed electrons to facilitate

the acceleration process.

The majority of the time, when the seed population is above the threshold, there are

enhancement events in the core population. Additionally, all of the core enhancement events

seen in the 26-month interval are preceded by a seed population enhancement, indicating

they are one key ingredient to core population enhancements. However, the seed population

is only one part of the acceleration process. Without waves to accelerate the seed electrons,

there would be no enhancements to the > 1 MeV populations. As noted in Table 4.2 at L* =

5.5, the seed population is above the threshold value more than 70% of the time. Even with

an elevated seed population, continued chorus wave activity driven by substorm activity is

needed to drive MeV electron enhancements [Meredith et al., 2001, 2002]. In addition, these

acceleration processes take place at the same time as loss processes. As shown in Table 4.2,

there are many instances when loss processes overwhelm any acceleration taking place, or

there is no acceleration seen in the higher energy populations. All of these results point to

the fact that the seed population is a critical piece in a very delicate acceleration process.

While an enhanced seed population is necessary, alone it is not sufficient for radiation belt

acceleration.
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4.6 Discussion

Beginning with the work of Baker et al. [1998], the seed population has been recognized

as a key part of the acceleration process. While the seed population has been well studied

for particular events, this paper represents the first substantial statistical studies of the seed

population in the radiation belts and how these properties relate to the variability in the core

population. The results presented here confirm the results of Turner and Li [2008], where

the seed population enhancement precedes the core population by 20-25 hours. However,

we offer a substantial improvement on previous results by looking at phase space density at

fixed invariants in the heart of the radiation belts.

As noted in Turner and Li [2008] and Li et al. [2005], in addition to local acceleration,

radial transport processes can also explain the time-lags seen between the 100s keV and MeV

electrons. This is due to the fact that lower energy electrons move inward faster, so they are

observed earlier. While it would be difficult, if not impossible, to completely separate the

radial transport and local acceleration effects for each event, we note that, on average, we

observe smaller time-lags than the studies at geosynchronous orbit. If radial transport were

the dominant mechanism for most of these events, we would expect to see larger time-lags,

as the particles take longer to drift into lower L-shells. Therefore, while radial transport is

undoubtedly responsible for some of the results in this study, local acceleration likely plays

an important role in most of the events, particularly those at lower L*.

The work presented here makes it clear that the seed population plays a critical role in

controlling both where and when core population enhancements will take place. All of the

core enhancement events seen in this 26-month period were associated with seed population

enhancements up to a particular level. This level likely represents a threshold value that
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the seed population must reach in order for the acceleration process to take hold. It is

possible that this threshold represents a saturation point for these electrons in the inner

magnetosphere. As shown in Figure 4-6, acceleration can only begin when a given L* is

filled or saturated with seed electrons. It is probable that this saturation point is associated

with the Kennel-Petschek limit. As described in Kennel and Petschek [1966], the fluxes of

electrons of this energy range are subject to an upper limit imposed by pitch angle scattering

via wave particle interactions. For average strength magnetic field, at L*=5, µ=150 MeV/G

corresponds to ∼230 keV. Therefore, from Equation 2.2, a PSD value of 1× 10−4 ( c
cm·MeV

)3

will correspond to a flux of 9.56 × 103 #
s·sr·cm2·keV . From the values provided by Schulz and

Davidson [1988], the Kennel-Petschek differential limiting flux of at this energy at L-value

would be ∼ 5.09 × 104 #
s·sr·cm2·keV . We have shown that observations of these events are

consistent with local acceleration by these same waves. Therefore, since these waves would

be active during these periods, it is not surprising that this threshold is comparable with

the Kennel-Petschek limit, and the seed population must be close to this saturation limit in

order to produce an enhancement of MeV electrons.

However, as mentioned here, the seed population is only one part of the acceleration

process. Future studies will also involve incorporating the source population and chorus

and ULF wave activity to investigate the other ingredients required for the acceleration

process. In addition, further investigation into the relationship between the seed population

and geomagnetic indices such as AE could yield useful results that could be useful for models

and for the use of the seed population as a predictor of core population enhancements.
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4.7 Conclusions

The goal of this chapter was to understand the statistical relationship between the radiation

belt seed, core and ultrelativistic populations. To investigate this we used phase space density

observations for the first 26 months of the Van Allen Probes mission taken at fixed second

and third invariant. We have three main conclusions:

1. The seed population (150 MeV/G) is strongly correlated with the core population

(1000 MeV/G), but is not directly connected to the ultra-relativistic population (4000

MeV/G).

2. The strongest correlation between the seed and core populations is at a 10-15 hour

time-lag. This time-lag is smaller (0-13 hours) during enhancement events.

3. The seed population is subject to a threshold value or saturation limit that is a

necessary condition for the enhancement of MeV electrons.

All of these conclusions are consistent with a step-wise acceleration picture where a 10s-

100s keV seed population is accelerated up to ∼1 MeV and then is subsequently accelerated

up to multi-MeV energies. While this picture has been previously shown for individual events

(as shown in Chapter 3), this study shows that the seed population plays an important role

in governing radiation belt dynamics.
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Chapter 5

Investigating the Source and Seed

Populations

5.1 Introduction

The previous two chapters focused on the role of the seed population in the enhancement

of MeV electrons. However, as demonstrated in the previous chapter, the seed population

is only one part of the acceleration process. In particular, the 10s-100s keV seed population

needs to interact with the waves in order to be accelerated up to MeV energies, and these

waves are in turn generated by the few-10s keV source population. A schematic diagram of

these populations, along with role that VLF chorus waves play in transferring energy from

the seed to the higher energy populations is shown in Figure 5-1.

For many events, such as the 17 March 2013 event presented in Chapter 3, all of these

elements work together to rapidly produce MeV electrons. However, this is not always the

case. Jaynes et al. [2015] looked at a period in September 2014 where one or more of these

pieces were missing and the acceleration process broke down. Although the solar wind had

favorably high velocity during the period of 14-19 September 2015, the IMF BZ remained

northward for a long period over that interval. Despite elevated levels of seed electrons, there
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SOURCE SEED CORE ULTRA

VLF Chorus 
Waves

Energy

Figure 5-1: Diagram showing the different particle populations (source, seed, core) and the
role that VLF chorus waves play to transfer energy between the populations.
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was little/no injections of source electrons, leading to weak wave activity and no enhancement

in the higher energy electrons. This event offered a clear example that when a piece of the

acceleration process is missing, the process breaks down and does not lead to relativistic

electron enhancements.

In this chapter, we build on the work of Jaynes et al. [2015] and look at several events

with varying levels for the source and seed populations. Exploring these populations in

conjunction with observations of the higher energy core population will give a more complete

picture of the entire acceleration process and what role these low energy populations play in

it. In particular, we aim to finish addressing the focus question: ‘How do differing inputs of

source and seed electrons lead to acceleration (or lack thereof) in the radiation belts?’

5.2 October 2014 Case Study

The first time period we will we examine is 14-25 October 2014. The period, which cul-

minated in a relativistic electron enhancement, was relatively quiet with Dst >-40 nT for

the entire interval. During this time the Van Allen Probes apogee was in the post-midnight

sector. The observations of the source and seed electrons from MagEIS are shown in Figure

5-2. It should be noted that for the source population we are examining particle fluxes rather

than phase space density. This is due to the fact that at source population energies (few-

10s keV), electric fields become increasingly important in determining the particles’ motion.

Therefore, the value of third invariant L*, which is based on the global magnetic field, no

longer accurately describes the position of these particles. While the first and second invari-

ants are likely still valid, much of the advantage of using PSD in adiabatic coordinates is lost

and it becomes more convenient and accurate to instead look at particle fluxes to explore
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Figure 5-2: Overview of the 14-25 October 2014 period. A) µ = 1000 MeV/G PSD obser-
vations for the entire interval, B-D) Spin averaged fluxes of the source (31 keV), seed (230
keV) and core (1.5 MeV) electrons respectively and E) SYM-H index. The periods marked
I, II and III mark the three time periods of interest for this event.

the source population dynamics.

In order to analyze this event, we have divided it into three time periods denoted as I,

II and III, on Figure 5-2. Each of these time periods has a different behavior of the source

and seed populations leading to different outcomes for the core population. More specifically,

The first time period (I) features a strong source and seed population at different times along

with very little change at core population energies. The second time period features a strong

source population and a moderate seed population along with a small increase in the core

population. Finally, the third time period (III) featured strong core and seed populations,

leading to a large enhancements of the core population. In addition to observations of the

source and seed populations, we examined the changes in the relativistic population phase

space density. In particular, we looked at the µ = 1000 MeV/G PSD observations, which are

shown in Figure 5-2A. The PSD observations for each time period are shown in the colored

traces and the traces from other times are shown in gray for context.
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The final set of observations for this time period are the chorus wave measurements from

EMFISIS. For each time period (I,II,III) the lower band chorus wave power was obtained by

integrating between 0.1 and 0.5 fce. Since waves are a highly localized phenomena, waves

may be active (and consequently affecting the particles) even if they are not locally observed

by the spacecraft. However, local observations of the wave activity can offer the best available

indication of whether these waves are active. Combining these wave observations with the

core PSD measurements and the seed and source flux observations gives a picture of each

part of the acceleration process. In the following sections, we examine each of the time

periods (I,II,III) individually to determine how different levels of source and seed electrons

lead to changes in the relativistic population.

5.2.1 Time Period I: No Acceleration

A summary of the first time period is shown in Figure 5-3. This time period begins with

strong substorm activity, noted by the elevated AE index (Figure 5-3G) and the injection

of source electrons beginning at 14:00 UT on 14 October (Figure 5-3B). These injections

persist until 03:00 UT on 15 October when BZ turns northward for an extended period. As

shown in Figure 5-3E, these injections also generated strong chorus activity at L=5 around

18:00 UT on 14 October. However, as seen in Figure 5-3A, the was little to no change in the

core PSD for this time period, indicating that there was no acceleration of the MeV electron

population during this time. This is due to the fact that the seed population (Figure 5-3C)

was missing during the early part of this period. The seed population only goes above the

threshold value at 23:00UT on 14 October, after the strong chorus activity and near the

end of the injections of source electrons. Even though this period saw injections of source

electrons generating chorus, the seed population was not above the threshold while the waves
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Figure 5-3: Overview of the time period I in the 14-25 October 2014 event. A) µ = 1000
MeV/G PSD observations. B-D) Spin averaged fluxes of the source (31 keV), seed (230 keV)
and core (1.5 MeV) electrons respectively. The red line under panel C denotes times when
the seed population is above the threshold described in Chapter 4. E) Integrated lower band
chorus power, F) IMF BZ , G) AE index and H) Solar wind dynamic pressure.

were active. Therefore, there were not enough seed electrons to be accelerated by the waves,

stopping the acceleration process before it could lead to MeV electron enhancements.

5.2.2 Time Period II: Small Acceleration

A summary of the second time period is shown in Figure 5-4. Similar to the previous period,

the second time period begins with substorm activity and injections of the source electrons,

beginning at 03:00 UT on 18 October and persisting for the next ∼30 hours, until BZ turns

northward. As shown in Figure 5-4E, these injections were effective in generating lower band

chorus activity throughout the entire time period. However, unlike the first time period, these

waves overlap with an enhanced seed population, which goes above the threshold beginning

at 17:00 UT on 18 October. With all the pieces in place, the acceleration process can be seen
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Figure 5-4: Overview of the time period II in the 14-25 October 2014 event. A) µ = 1000
MeV/G PSD observations. B-D) Spin averaged fluxes of the source (31 keV), seed (230 keV)
and core (1.5 MeV) electrons respectively. The red line under panel C denotes times when
the seed population is above the threshold described in Chapter 4. E) Integrated lower band
chorus power, F) IMF BZ , G) AE index and H) Solar wind dynamic pressure

to be working in core population PSDs, with peaks forming at L*=5.2 and growing in time

(Figure 5-4A). These PSD peaks only begin to form once the seed population is above the

threshold value, even though there was chorus activity earlier in the time period. Overall

the core PSD increases by a factor of ∼8 during this time period. This acceleration slows

during the end of the period, coinciding with the end of the source electron injections.

5.2.3 Time Period III: Strong MeV Enhancements

A summary of the second time period is shown in Figure 5-5. The final time period begins

with more than 48 hours of substorm activity and the injection of source electrons. Addi-

tionally, the strongest seed population levels seen in the entire event are observed during

this time period, and the seed population above the threshold for nearly the entire period
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Figure 5-5: Overview of the time period III in the 14-25 October 2014 event. A) µ = 1000
MeV/G PSD observations. B-D) Spin averaged fluxes of the source (31 keV), seed (230 keV)
and core (1.5 MeV) electrons respectively. The red line under panel C denotes times when
the seed population is above the threshold described in Chapter 4. E) Integrated lower band
chorus power, F) IMF BZ , G) AE index and H) Solar wind dynamic pressure

beginning at 13:00 UT on 20 October. As shown in Figure 5-5E, chorus activity is observed

throughout the time period, especially early in the event, just after the enhancement of the

seed population above the threshold value. This leads to large enhancements in the core

population, evidenced by the growing peaks at L*=4.9 shown in Figure 5-5A. During this

time period, the core PSD increases by a factor of ∼12.

This event definitively shows that continued injections of source electrons, coinciding with

an enhanced seed population above the threshold value is needed to produce an enhancement

in the MeV electrons. If a piece of this process is missing, or as in time period I if the pieces

do not come together at the same time, then the process breaks down and does not accelerate

the seed population up to higher energies. The interrelated responses of the varied elements

of the ensemble acceleration during this event (and others not shown here) are similar to

that reported by Jaynes et al. [2015], demonstrating that this is a consistent and robust
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feature of the dynamic system.

5.3 Acceleration Timescales

In the 15-25 October 2014 event described above, once all the pieces were in place, the

acceleration process took place over the course of more than two days. This stands in sharp

contrast with events with much faster timescales such as the 8-9 October 2012 storm [Reeves

et al., 2013] or the 17 March 2013 storm described in Chapter 3. In this section we compare

two events that both produce strong enhancements to the MeV core population but at

very different timescales. In particular we explore how the behavior of the source and seed

population contributes to the different timescales.

The first event we explore occurred on 12 April 2014. This enhancement event was

produced during a moderate storm, with minimum Dst = -81 nT. The Van Allen Probes

apogee was located in the pre-noon sector during this event. The second event was a much

larger storm (minimum Dst = -204 nT) on 22 June 2015. During this event, apogee was

located in the dusk sector. Despite the large difference in Dst, both storms featured similar

levels of enhancements to the 1 MeV core population. The µ=1000 MeV/G PSD traces

for each of the events are shown in Figure 5-6. Both of the events feature growing PSD

peaks, a clear indication that local acceleration was active. However, the timescales for the

local acceleration is very different for each of the events. The 12 April 2014 event takes

place over the course of more than 48 hours as evidenced by the steady rise in PSD between

4<L*<5 from ∼21:50 UT on 4/11 (medium blue curve) until ∼22:05UT on 4/13 (orange

curve). This contrasts with the 22 June 2015 event which takes place in nearly half the time

(∼30 hours) with the major enhancement starting at 22:40 UT on 6/22 (dark blue curve)
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Figure 5-6: PSD profiles from the 12 April 2014 and 22 June 2015 events. Panel A shows
RBSP-A observations from the April 2014 event and Panel B shows RBSP-A and B obser-
vations of the June 2015 event. Both panels show PSD with µ = 1000 MeV/G and K=0.11
REG

1/2.

between 3.5<L*<5, with an initial abrupt increase of∼6 hours lasting until∼5:05UT on 6/23

(medium blue curve, followed by a slower increase lasting another 24 hours until ∼6:35UT

on 6/24 (orange curve). Unlike the first event, the 22 June 2015 began with a strong loss

of relativistic electrons, so with respect to the pre-storm levels at this energy, both storms

featured a very similar increase of a factor of ∼15.

A side-by-side comparison of the source and seed electrons for these events is shown in

Figure 5-7. The differences between the two events are immediately apparent. First, the flux

of the seed population (second panels of Figure 5-7) during the 22 June 2015 is higher by

more than an order of magnitude. Second, the source population (top panels of Figure 5-7)

for the 22 June 2015 featured brief but intense substorm activity, including a large injection

of source electrons into low L-shells. While intense, the injections in this storm lasted for

83



3
4
5
6
7 I II III

April 2014

3
4
5
6
7

20
10
0

10
20
30

2014-04-11 2014-04-12 2014-04-13 2014-04-14 2014-04-150
400
800

1200

3
4
5
6
7

31
ke

V
L

I II III
June 2015

103

104

105

106

3
4
5
6
7

23
0k

eV
L

102

103

104

105

   
   

   
   

   
   

   
 S

pi
n 

Av
er

ag
ed

 F
lu

x
   

   
   

   
   

   
   

 [#
/c

m
2
-s

r-s
-k

eV
]

20
10
0

10
20
30

B
Z
 [n

T]

2015-06-21 2015-06-22 2015-06-23 2015-06-24 2015-06-250
400
800

1200

AE
 [n

T]
Figure 5-7: Comparison of the 12 April 2014 and 22 June 2015 events. The plots on the left
side show observations of the 12 April 2014 event, and the right side plots show the 22 June
2015 events. For each event, the first two panels show spin averaged fluxes of the source
population (31 keV) and the seed population (230 keV). The bottom two panels show IMF
BZ and the AE index.

less than 18 hours. The April 2014 event, on the other hand featured a long period (∼48

hours) of nearly continuous small injections.

These observations suggest that there is a fundamental difference in the way that larger

storms operate in comparison to smaller storms, even if the end result for the core radiation

belt electrons appears to be the same. To test whether this pattern generally holds, we looked

a subset of the enhancement events shown in Table 4.1. In order to reduce the ambiguity

between radial diffusion and local acceleration events, only the events with enhancements

inside of the Van Allen Probes apogee were chosen. To quantify how long we see injections of

the seed population, we used AE >300 nT as a proxy for the strong substorm activity that

drives these injections. The number of hours with AE >300 nT for these events is shown in

Table 5.1.

With the exception of the 21 August 2013 event, these events all follow the same pattern

where the largest events feature injections for shorter timeperiods than for smaller storms.
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Date Hours with AE >300 nT Max AE [nT]
2012-10-08 21 1240
2013-11-13 19.5 400
2013-03-01 26.25 1350
2013-03-17 17.5 2430
2013-04-24 35.91 890
2013-05-18 34.25 1250
2013-06-21 40.58 950
2013-07-10 53.83 1130
2013-08-04 28.75 1120
2013-10-02 28.67 2070
2013-11-09 31.75 1040
2013-08-21 18.08 790
2014-08-27 43.08 1180
2014-10-17 32.33 580
2014-12-07 29.33 1408
2014-12-24 22.25 940

Table 5.1: Table showing the number of hours with AE above 300 nT for various events.
Highlighted events are large storms (Minimum Dst <-100 nT).

While this is a small sample size, particularly for the larger storms, this suggests that there

is a balance between the required level of seed and source populations. For the largest

events, the acceleration process is more efficient, and highly enhanced seed populations can

be accelerated faster and therefore do not require the waves and more indirectly the source

population to be active for as long a time period to get MeV particle enhancements.

As shown for these events, and more generally by Reeves et al. [2003], a stronger storm

in Dst does not guarantee a larger response of the radiation belts. In addition, storms that

produce a similar overall effect on the radiation belts can have important difference in how

the acceleration process plays out. Both the 22 June 2015 and the 12 April 2014 events

produce similar enhancements in the MeV electron population, but the source and seed

populations behave differently leading to very different acceleration timescales.
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Figure 5-8: Diagram of the local acceleration process depicting the role of the source and
seed populations.

5.4 Discussion

Coupled with the work presented in the previous chapters, we can paint the following picture

of the acceleration process: The process begins with a large injection of both source (few-10s

keV) and seed (10s-100s keV) electrons associated with substorm activity in the outer mag-

netosphere, impulsively transporting warm (source) and hot (seed) electrons into the inner

magnetosphere. These source electrons drive wave growth and these waves resonate with

and accelerate the seed population up to ∼1 MeV ∼10-15 hours after the initial injection.

Continued injections of the source population drive further wave growth. These waves then

accelerate the ∼1 MeV population up to multi-MeV energies. The whole process takes 20-30

hours on average. If any piece of the process is missing, it will not result in multi-MeV

electron enhancements. This process is shown in conceptually in Figure 5-8.
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This picture of the acceleration process stresses the importance of substorm injections in

shaping the outer radiation belt population, which agrees with the work of Meredith et al.

[2001, 2004] and Li et al. [2009]. While this picture does well in describing the acceleration

process, we have shown here that the details and timing of this acceleration process can

vary greatly event to event. Future work will include also looking at solar wind parameters

to investigate how these tie into the acceleration process and influence the results we have

shown here.

5.5 Conclusions

The overall goal of this chapter was to extend the discussion beyond the seed population

and finish answering the question: ‘How do differing inputs of source and seed electrons lead

to acceleration (or lack thereof) in the radiation belts?’ To this end, we have three main

conclusions:

1. An enhanced seed population, injections of source electrons and chorus wave activity

are all necessary to drive acceleration to MeV energies.

2. Continued injection of source electrons is needed to maintain the acceleration process.

3. There are two classes of events:

• Rapid enhancement driven by a highly enhanced seed population and brief intense

injections of source electrons.

• Slower enhancement driven by a less enhanced seed population and prolonged

periods of smaller injections of source electrons.
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The work presented here shows definitively that the seed population is only one of the

important pieces of the acceleration process that needs to be in place in order to produce

MeV electron enhancements.
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Chapter 6

Summary & Conclusions

6.1 Overall Summary

The overarching goal of this thesis was to characterize and quantify the importance of the

seed population in producing the MeV electrons we see in the radiation belt. This work was

made possible in large part due to the observations made by the Van Allen Probes mission.

For the first time we have access to clean, simultaneous, multipoint measurements of both

the low energy seed electrons and the higher energy >1 MeV core electron populations as

well as measurements of the plasma waves responsible for local acceleration. We have used

this dataset to calculate phase space densities which we then used to analyze each part of

the acceleration process.

The thesis was framed around four focus questions. Each of the chapters addressed one

or more of these questions leading to the final question, which guides the future work of

implementing the seed population observations presented here to build a predictive model

for the radiation belts.
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6.2 Focus Questions Revisited

The goal of the first question: ‘Is it possible to directly observe and quantify the seed popula-

tion’s role in the acceleration of radiation belt electrons?’ was to get clear observations of the

seed population’s evolution during a radiation belt enhancement event. As mentioned earlier,

prior to the Van Allen probes simultaneous observations of the seed and core populations

were not readily available. In addition, earlier studies, such as Reeves et al. [2013] focused on

observations of the multi-MeV electrons. Therefore, observing the seed population in action

during a local acceleration event was an important and new observation.

We presented clear observations of the seed population’s role in the 17 March 2013 event,

showing conclusively that the local acceleration process began with an enhanced seed pop-

ulation that was accelerated up to 1 MeV, then subsequently accelerated up to multi-meV

energies. In addition, we quantified the radial gradients of PSD as a function of first invari-

ant µ for the first time inside of geostationary orbit. Our results confirmed the transition

at 200 MeV/G between particles originating in the magnetotail and particles with a local

source within the belts. Finally, we clearly demonstrated that the PSD at different µ values

(or equivalently energy) evolved very differently over the course of the event.

With clear observations from a single event, the next logical step was to look at longer

time range to understand the connection between the seed and core populations. This

motivated the second question: ‘What correlations and causal relationships are there between

enhancements in the seed population and enhancements in the core population?’

To address this question we completed the first comprehensive statistical study of the

radiation belt seed population. Using data from the first 26 months of the Van Allen Probes

mission, we performed a cross correlation analysis between the seed and higher µ populations.
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We demonstrated that the seed was strongly correlated up to ∼1 MeV at a 10-15 hour time

lag. At higher µ values, the correlation was much weaker, indicating that they were not

directly connected to variations in the seed population. These results match with multi-step

acceleration process seen in the 17 March 2013 storm.

Along the same vein as the second question, the third question is: ‘How do differing

inputs of source and seed electrons lead to acceleration (or lack thereof) in the radiation

belts?’ This question addresses two parts of the acceleration process: the source population

that generates the waves and the seed population that is accelerated by the waves. Beginning

with the seed population, we showed the first evidence of a seed population threshold. This

threshold, which is related to the Kennel-Petschek limit represents the minimum level of seed

electrons that must be present to get relativistic electron enhancements. For the the source

population, we showed that the acceleration process is only active during injections of the

source electrons, and the necessary duration of these injections is related to the strength of

the event and the level of the seed population.

The work presented for the first three questions all leads to the final question: ‘Can the

seed population be used to predict enhancements in the core population?’ which serves as

the ultimate goal for the work presented in this thesis. While this is not directly addressed

in this thesis, the work presented here informs the basic groundwork for building a predictive

model. As shown in Figure 5-8, we have developed a clear picture of how this acceleration

process evolves. It begins with a large injection of both the source and seed populations.

The source electrons provide free energy to drive the growth of VLF chorus waves. These

waves then resonate with the enhanced seed population and accelerate the electrons up to

∼1 MeV. This initial stage of the acceleration process takes 10-15 hours. Than, continued

injections of the source electrons drive further wave growth. The waves resonate with and
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accelerate the enhanced ∼1 MeV electrons up to multi-MeV energize. The entire process,

from the initial source injection to the acceleration of multi-MeV electrons takes 20-30 hours.

If a piece is missing, then the process breaks down and does not result in the enhancement

of multi-MeV electrons.

One of the primary challenges of developing a predictive model would be to capture the

dynamics of this complex process using quantifiable parameters. A robust predictive model

would need to be build around parameters like AE or consistent particle measurements

like those from the GOES spacecraft. As shown in Chapter 5, injections of the source

population that drive the wave growth are closely related with substorm activity and it

might be possible to develop a parameter based off of AE that quantifies the injection of the

source and seed populations. Chorus wave activity could be quantified using a technique like

the one outlined in Li et al. [2013]. Rather than using measurements from the Van Allen

Probes, measurements from the GOES spacecraft or ground based observations could be

used to give long lasting reliable inputs to the model. While there is considerable work that

needs to be done before such a model is viable, this represents an important path moving

forward for the work presented in this thesis.

6.3 Conclusions

Historically, the study of the radiation belts has focused on the dynamics of the >1 MeV

electron population. This is understandable, given that these so-called ‘killer’ electrons are

what make the radiation belts an interesting area to study and a dangerous one for satellites

to traverse. Consequently, the ultimate goal of radiation belt research has been to understand

the system to the point that we can predict the fluxes of >1 MeV electrons.
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The work presented in this thesis definitively shows that to accomplish this goal we also

need to first understand the dynamics of the lower energy source and seed populations.

The work presented here marks some of the first steps towards that understanding and un-

derscores the importance of looking beyond just the relativistic electrons in the radiation

belts. Their appearance is the result of a multi-step process that involves waves gener-

ated through instabilities in the lower energy electron populations that resonate with and

accelerate medium energy electrons.

With the prediction of the MeV fluxes as the ultimate goal, a better understanding of

the lower source and seed population is therefore needed, as are the full conditions needed

to quantify the strength and location of wave generation. A fundamental outcome of this

thesis is a new appreciation and understanding of how these populations play a critical role

in the acceleration of higher energy radiation belt electrons.
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