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Abstract 
 

A MODEL STUDY OF ADLAYER PATTERN FORMATION OF RIGID DI- 

TRI- AND TETRATOPIC MOLECULES ON SQUARE AND 

TRIANGULAR LATTICES 

 

BY 

Mohammed I. Alomari 

University of New Hampshire, December 2015 

 

In this work we considered the adlayer self-assembly of three model molecules di-, tri- and 

tetratopic with different sizes and potential energy parameters on square and hexagonal (triangular) 

lattices. For each case, we carry out minimization using an analytical gradient to find the most 

stable minima. In all cases we use “coarse-grained” site-to-site pairwise additive potential. We 

have explored how the change in the size of the molecule affects the pattern formation in the 

molecular adlayer. A primary focus of this work restricts the exploration of the landscape to a “unit 

cell” of 2x2 angles, labeled [1, 2, 3, 4]  and extrapolate this to an infinite lattice by the 

application of tessellation. The model we study represents a 2-dimensional surface with fully 

occupied lattice sites and with boundary conditions to resemble the infinitely occupied surface. 

To investigate the patterns we have used several order parameters that can distinguish 

between the adlayers. We have found several adlayers varied as the shape and the size of the 

molecules’ change. We also have reported the chirality of the adlayer by using the order 

parameters. We note that homochiral patterns can be formed by using achiral molecules, and 

comment on the areas of parameter space where this occurs. 
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The molecular pattern hierarchy of the ditopic molecule on a square lattice distributed from 

highly ordered motifs such as a linear sheet “short stripe” geometry to fourfold achiral windmill 

structure and chiral windmill pattern. On the other hand we have reported a pinwheel chiral 

structure of ditopic molecule on a triangular lattice. On both square and triangular lattices we also 

found several herringbone structures. 

Depending on the shape of the molecule and the surface lattice, the porous shape and size 

of the adlayer change wildly. We note several porous shapes such as square, rectangle, hexagon 

and octagon with their sizes depend on the molecular distance parameters. For instance we note a 

honeycomb structure of tritopic molecule on a triangular lattice distorts to a semi-hexagonal 

pattern as the size of the molecule increases. 

We have also conducted Monte Carlo simulation for a range of molecular sizes of ditopic 

molecule on both square and triangular lattices. We note that the adlayer patterns of the simple 

minimization method and the Monte Carlo simulation are quite consistent. 
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Chapter I  

Introduction 

 

 

 

I.1 Motivation and Background 

 Since surface microscopies such as scanning tunneling microscopy (STM) and atomic 

force microscopy (AFM) have become available, there has been considerable effort in researching 

the structure of adsorbed thin layers on a variety of surfaces (1-4). One area that has received 

considerable attention is the investigation of the possibility of forming self-assembled adlayers, 

utilizing the nonbonding interactions between adsorbed molecules. Self-assembly is a term used 

to describe a processes, in which a number of molecules that are spatially in a disordered pattern 

at some particular time will order themselves overtime via intermolecular interactions. In several 

cases, interesting patterns have been observed, particularly when the pattern formation has been 

driven by hydrogen bonding (5-11). Also many other adlayer geometries can be built due to other 

nonbonding van der Waals interactions (12-27).  

The monolayer self-assembly adlayers of compounds such as ditopic  (19, 24, 28-45), 

tritopic (20-24, 46) and tetratopic (20, 25) have been studied theoretically widely in the literature. 

The n-topic term has been used in literature to represent the molecules where n functional groups 

play the main role in directing the self-assembly (5).  This term (ditopic) was used first to describe 

the diamine poly organic ligand that can chelate metal atoms (47). 
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I.1.a Applications: 

Self-assembled adlayers of organic molecules on a metal surface have a wide range of 

potential applications in the fields of molecular and organic electronics (48-51), organic solar cells 

(52), and solid state quantum computation (53). Other applications are related to the chirality of 

the adsorbate and the adlayer such as, heterogeneous asymmetric catalysis (54-57), enantiomeric 

separation and chiral sensors (57-60). 

A typical solar cell needs: light-absorbing material, together with an electron-transport 

agent. The guiding idea of choosing organic molecules of high -electron density is to enhance the 

electrical properties of semiconductors. This leads to promising applications in photovoltaic cells 

(52, 61, 62). Compared with nature’s energy-conversion molecular devices, the efficiencies of 

man-made photovoltaic (PV) devices are still very poor. The most promising candidates of 

synthetic compounds in this field are porphyrins and phthalocyanine derivatives, which absorb 

visible light with high efficiency. Porphyrins and phthalocyanines are heterocyclic molecules that 

have 18  electrons in the inner membered ring; that obey Hückel’s rule of aromaticity (aromatic 

systems contain 4n + 2  electrons). As a consequence, they usually have very intense absorption 

bands in the visible region (61). In addition they can coordinate with metals in their central cavity, 

and it is possible to add a great variety of functional groups around the central part. 

In conjunction with porphyrins and phthalocyanines (acting as a light absorber), the 

fullerene C60 is a good choice to play a role as an electron acceptor (electron transport agent) using 

its LUMO molecular orbital (61). After being discovered 30 years ago (63, 64), fullerene has been 

a particular focus of interest of many research groups (50-52). The molecule resembles the shape 

of a soccer ball, and has high electron density which gives it a dual property as electron donor 
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(through the HOMO molecular orbital) and electron acceptor (through the LUMO molecular 

orbital) (52).  

Molecular sieves are materials with small cavities that allow certain molecules to pass 

while blocking others. Zeolites are 3D materials used to separate gas molecules such as CO2, N2, 

CH4, and CO (65). As the molecules get larger it is not easy to discriminate between them because 

of their size and shape. One way to do this is to use the cavities constructed by a monolayer self-

assembled on surfaces. For instance, Schull et al investigated the size selectivity of the honeycomb 

pattern of (1,3,5-tris[(E)-2-(3,5-didecyloxyphenyl)-ethenyl]-benzene (TSB35) on a graphite 

surface (66). The honeycomb cavities (size of ~1.3 nm in diameter) can accommodate molecules 

such as coronene (1 nm) and hexabenzocoronene (1.3 nm).  

When adsorbed on graphite 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB) forms nearly 

tetragonal cavities (67). The host nanoporous cavities have been explored using three guest 

molecules triphenylene, 1-phenyloctane and copper(II) phthalocyanine. Studies considering the 

competitive adsorption and dynamic processes concluded that the flexible network can adjust itself 

according to the shape and the size of the guest molecule. 

Discrimination between enantiomers of chiral molecules using a self-assembled adlayer 

leads to potential applications such as chiral molecular separation and chiral sensors. Kühnle et al 

reported, using STM studies of cysteine on a gold surface Au(110), that adsorbed molecular pairs 

of cysteine are exclusively homochiral and formed from a racemic mixture of this amino acid (68). 

Pan et al observed chiral molecular cavities when enantiomer mixtures of chiral calix[4]arene 

(crown molecule) were adsorbed on Au(111). This is of interest in chemical sensors and chiral 
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recognition (69). Lopinski et al investigated the recognition of (R or S) chiral center when (cis or 

trans) simple alkenes were adsorbed on Si(100) using STM technique (70). 

I.1.b Experimental Studies: 

Experimental studies have focused on the self-assembly of organic species, influenced by 

the classic carboxyl group dimer building unit (71) on metal surfaces (5). Carboxyphenyl-

substituted porphyrins are examples that form an assembly of two- or four- membered clusters on 

a gold surface Au(111) (72). A linear-chain motif of ditopic molecules, such as terephthalic acid, 

was observed (5). By contrast an open network honeycomb structure is created with the threefold 

symmetric, tritopic, trimesic-acid molecule both on triangular and square substrates (73-75).  

Flower and heptamer structures of cyanuric acid (a tritopic molecule) occur on a graphite surface 

(76). These patterns are driven by the hydrogen bonding of the hydroxyl group of the acid. These 

examples illustrate how the structure and the functional group influence the geometry of the self-

assembled adlayer on the solid surface.  

A honeycomb network can be formed by a heterogeneous mixture of tritopic melamine and 

ditopic perylenetetracarboxylic di-imide (PTCDI) molecules, driven by hydrogen bond self-

assembly (77). The porous network can serve as a template for heptamers of fullerene and 

tetradecamers of dodecanethiol guest molecules. Chiral networks have also been observed from 

achiral molecules such as anthraquinone on Cu(111), dicyanoquinquiphenyl on Ag(111), and co-

adsorbed pentacene and PTCDI molecules on Ag(111) (77). 

Self-assembly of organic molecules can be directed by van der Waals forces other than a 

hydrogen bond, see for instance reference (78). Organometallic molecules with very high electron 

density around a metal center, such as metal-phthalocyanines, are among the most interesting 
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examples (13, 14, 79-84). Long carbon chain supramolecules, such as a Fréchet dendron (85, 86), 

also have been shown to build self-assembled monolayers. Another example is the formation of 

the honeycomb pattern of trioctylamine on the Au(111) surface (87). 

Linderoth et al have studied the chiral ordering of a class of oligo-phenylene-ethynylenes 

(ditopic molecules) on an Au(111) surface (6, 7, 88-90). With a high dense layer of triphenyl-

dicarbonitrile molecule, on an Ag(111) surface a windmill structure has been observed (91). 

Another chiral adlayer related to “crankshaft” C2h-symmeric molecule bisisophthalic acids, also 

have been observed on a graphite surface (9). Chiral ordering of tetratopic molecules such as metal-

phthalocyanine derivatives has been investigated by Toader et al (79) and Calmettes et al (13). 

I.1.c Theoretical studies: 

As experimental techniques such as STM and AFM can image and characterize the self-

assembled adlayer, they provide a partial insight to predict the way the physical phenomenon play 

a role in the assembly. There is a need for theoretical modeling to achieve this goal and 

complement the experimental studies.  

Pioneering studies in this field (92, 93) which led to much of the fundamental 

understanding of adlayer geometries were carried out using realistic intermolecular potentials –

typically the quadrupole-quadrupole interaction to model the interaction of small molecules such 

as H2 and N2 on graphite. More recently, Dawoud et al studied the role played by quantum effects 

of H2, D2 and N2 intermolecular interactions, in organizing adlayers on metal oxide and metal 

halides surfaces at low temperature (94-99). 
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Several studies using a lattice model with linear molecular adsorbates interacting through 

a pairwise additive potential have been carried out (28-36). Most of these studies have focused on 

the phase behavior of the adlayers as a function of temperature and density. 

However, relatively little work has been done on understanding the effect of systematic 

variations in the intermolecular potential on the adlayer structure. This is in marked contrast to 

such areas as gas phase atomic and molecular clusters, where a large body of systematic analysis 

exists investigating the role of the potential in the structure and in growth sequences (100-104). 

After finding the geometry of the adlayer experimentally, electronic structure calculations, 

using density functional theory (DFT), for a single point energy calculation can characterize the 

adsorbate-adsorbate or adsorbate-adsorbent molecular structure and bonding characteristics. For 

instance Besenbacher et al used a DFT calculation to interpret the quartet network geometry of 

guanine on an Au(111) surface (105). They used a single point energy calculation for clusters up 

to tetramers to determine the hydrogen bond binding energy and its electron density in the absence 

of the substrate. This calculation becomes highly expensive for large clusters and in the presence 

of the substrate. 

Coarse-Grained Force Field 

 One choice to reduce the computing cost for large clusters is using a coarse graining model 

of intermolecular forces. Generally, the molecule functional groups are reduced to a smaller set of 

interaction sites (pseudoatoms or united-atoms), which are then used to calculate the potential 

energy of the system (11, 106-109). For instance, Bubnis and Mayne (11, 108) used Girifalco’s 

potential (110) to study the self-assembly of fullerene derivatives on an Au(111) surface. The 

potential integrated all the carbon-carbon interactions between two fullerene molecules into one 

united-atoms pair interaction, rather than utilize the full atom-atom potential. 
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This same idea, coarse graining, has been used by Franosch et al (26, 86) and Pint et al (17) 

to simulate the self-assembly of hydrocarbon molecules. Both used the Martini force field model 

to represent the interactions between carbon chains (111). The former studied the self-assembly of 

Fréchet dendrons on isotropic 2D surfaces using Monte Carlo simulation. They have found several 

patterns such as saw-tooth, honeycomb, jigsaw, and tiretrack. Pint et al used molecular-dynamics 

to study the temperature effect on the adlayer including herringbone molecular pattern of hexane 

on graphite surface. They represented interactions between molecules as beads of certain potential 

for each functional group in the chain. For instance, CH2 units, exhibiting short-range van der 

Waals attractions were described by the Lennard-Jones potential.  

 A series of articles by Szabelski et al (19-25) simulated the self-assembly of different 

structures of ditopic, tritopic, and tetratopic molecules on a solid surface using Metropolis Monte 

Carlo. With a drastic simplification of the model using short range site-to-site interactions, each 

arm of the molecule contains beads representing the active sites where molecules interact with 

each other, the authors have found a variety of rhombic and rectangular chiral nanoporous 

networks pattern. 

Another site-to-site coarse-grained simulation was carried out by Balbas Gambra et al (26). 

These authors built rigid model molecules (dendrons, with roughly C2v symmetry) using several 

sites along the “arms”. Their site-to-site interaction was a Lennard-Jones potential. Molecules were 

placed on all sites of a triangular lattice, and the potential energy was explored using Monte Carlo 

as the axis of the molecules was rotated. Several adlayer patterns were identified (often having 

large unit cells). The energy of each of these structures was plotted as the lattice size was varied. 

Some of the patterns were chiral, but this was due to the presence of a 3-fold lattice symmetry. 
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Glotzer et al used the term “patchy particles” to represent a model of nanoparticles with 

certain shapes, such as a sphere, that have patches form the basis of the intermolecular interaction 

potential (112).  In these particles they used the coarse graining model with a Lennard-Jones 

potential to represent the site-to-site interaction. The patchy particles resemble the Janus particles 

(a term used in late eighties to describe nanoparticles composed of two different parts one being 

hydrophilic and the other being hydrophobic) (113). 

The patchy model of different symmetry has been used, by Doye’s group, such as tetratopic 

“D4h”, pentatopic “D5h”, and hexatopic “D6h” (114). They have used a Lennard-Jones potential 

arranged regularly on a surface of a two dimensional disk to represent the site-to-site interactions. 

One of the research interests of the Mayne group in recent years has been to model pattern 

formation of model molecules on a variety of substrates-particularly metals (10, 11). A particular 

focus has been on adsorbate molecules containing fullerene, since these have been possible 

applications in molecular electronics. Cleary et al investigated how fullerene derivatives formed 

layers through a thiolate linkage on gold, and illustrated the role played by fullerene-metal 

interaction in disrupting pattern formation (10). Bubnis and Mayne looked at pattern formation of 

fullerene derivatives on gold with a variety of nonbonding interactions, including hydrogen 

bonding (11). It was shown in this work how important is the role played by fullerene-fullerene 

intermolecular forces in deriving the adlayer formation. In this work, a small number of molecules 

was simulated adsorbing on the surface, and their behavior studied as a function of time using 

Molecular Dynamics (MD) and as a function of temperature using Metropolis Monte Carlo 

(MMC). A variety of adlayer patterns was observed, and varied with the form of the nonbonding 

interactions. 
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Berezutskiy also looked at adlayer formation using a model (115). He reduced each 

molecule to a small ditopic with two atom-like sites. He placed the molecules on all sites of a 

surface lattice. Using a pairwise-additive site-to-site model nonbonding potential, he was able to 

generate a potential energy landscape for the system as a function of the parameters for nonbonding 

interactions as they systematically varied. The main focus in Berezutskiy’s work was to locate the 

most stable global minimum (GM) configuration. 

In the study of gas phase clusters, there has been extensive work carried out to determine 

the ground state geometry of atomic clusters using a wide variety of potential energy function 

(100-103). The most frequently employed have been the Lennard-Jones and Morse atom-atom 

potentials. A large literature exists in this area, and several concepts in this field are now well 

established: Cluster geometry can be predicted from these principles for a large range of cluster 

size. 

I.2 The Present Work 

As far as the self-assembly on surfaces is concerned, this motivated by thermodynamic 

properties of the model system (78), we need to build a model starting from a disordered state to 

the spontaneity of the system to self-assembled itself via intermolecular interactions. In other 

words finding all the minima, including the metastable local minima that the system could be 

kinetically trapped in and the most stable minima, leads to a full understanding of the energy 

landscape of the self-assembled molecules on solid surfaces.  

We built a model of rigid rotors on two different lattices, square and triangular lattices, to 

study the self-assembly of three types of molecules, ditopic, tritopic and tetratopic, on solid 

surfaces. To study the effect of the size of the molecule on the self-assembly, the length of the 

model rotor and the site-to-site equilibrium distance of the potential has been varied gradually. The 
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model represented is a 2D surface with fully occupied lattices and with boundary conditions to 

resemble the infinitely occupied surface. We have used Lennard-Jones and Morse potentials to 

represent the site-to-site interactions between molecules. First we utilize the potential energy and 

search for the entire minima including the global minimum and the local minima. Also we have 

introduced order parameters to distinguish between the hierarchies of the structures.  

Our method and analysis elements are described in detail in Chapter II. Then in Chapter 

III and IV we show the main adlayer geometries found on a square and hexagonal (triangular) 

lattices as the length of the rotor and the site-to-site equilibrium distance (re) increase. After that, 

for some cases, the local minima have been located needed to build the full landscape of those 

systems. 

Chapter V describes the global minima of tritopic molecules on square and triangular 

lattices. Also full energy minima are shown for illustrative systems. Chapter VI describes the 

minima of tetratopic on both lattices. In the last chapter we show Monte Carlo results of some 

ditopic systems on both square and triangular lattices to compare the geometries found by using 

high lattice sites with the model used in previous chapters. 

 

Note: Some of the chemical structures that have mentioned in the Chapter I are shown in 

the supporting materials at the end of this dissertation.  
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Chapter II  

Overview of Di-, Tri- and Tetratopic Molecules on Square and 

Triangular Lattices 

 
 

II.1 Introduction 

As mentioned in Chapter I, this dissertation considers the behavior of molecules forming 

adsorbed layers on a solid surface. The intermolecular interactions will be modeled by a coarse-

grained site-to-site pairwise-additive potential. We will consider here symmetric molecules with 

two, three and four sites, and refer to these as ditopic, tritopic, and tetratopic, respectively. These 

sites are located on “arms” at a distance from the molecule’s center of mass (Figure II-1 shows 

the model molecule on a square lattice as an example). Experimental studies have been carried out 

on adsorbate molecules where the number of “spokes” has been changed, but the molecular 

structure and functionality remain similar throughout (6). 

One of our primary interests will be to explore how the change in the size of the molecule, 

, affects the pattern formation in the molecular adlayer (23, 46, 91, 116, 117). Several authors 

have explicitly investigated how changes in the size of molecules affect their behavior in a 

monolayer. Our primary strategy will place molecules at all sites on a lattice of fixed size, as we 

change the molecule size. This is similar in spirit to work as the surface concentration is varied (8) 

or in which the adlayer is subject to strain. In addition, we will systematically vary the parameters 

of the potential energy acting between the molecules. We note that several groups have carried out 

model calculations in a similar spirit (19, 37).  
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Figure II-1: The model molecules, di-, tri- and tetratopic on square lattice (n-topic: n refers to number of 

arms of the molecule). (a) Shows porphyrin derivative with four hydrogen bonds can be model by using 

coarse-graining tetratopic molecule. (b) A tritopic model on the lattice site,  is the angle of the rotor with 

the universal x axis,  the length of the rotor arm from its center of mass to the tip. (c) The unit cell of the 

system with angles (). (d) Interactions between two tritopic rotors showing one of the 

interactions at the equilibrium distance of the potential. 

The potential energy landscape can be explored by traditional methods such as molecular 

dynamics or Monte Carlo calculations. In Figure II-2, we illustrate a high temperature and a low 

temperature “snapshot” from a Monte Carlo simulation (whose details are given in a later chapter) 

of a ditopic molecule (Lennard-Jones dimer) on an isotropic (flat) surface. (The potential energy 

parameters are given in the Figure’s caption.) As can be seen, at low temperature, the preferred 

geometry is a windmill (which is chiral, with p4 wallpaper symmetry). This is presumably the 

ground state of the system. Similar calculations could be carried out for a range of parameters, 

such as interaction strength and molecular size. However, the calculation for the results shown 

here was extremely resource-intensive. In order to explore a range of parameters, the cost would 

be prohibitive.  
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Figure II-2: Energy, heat capacity, and two order parameters as a function of temperature from Monte 

Carlo trajectories for ditopic molecule with Lennard-Jones potential, re=0.40  = 0.5. (For explanation of 

parameters, see Section II-1 and II-5.) Shown on the left of the figure is a snapshot of a typical structure at 

low (T=0.1) temperature; shown on the right is a snapshot of a typical structure at high temperature 

(T=0.4). (note: for calrity the snapshot on the right is zoomed in) 

Therefore, in order to further limit the scope of the problem, in the following chapters, we 

fix the molecules on a periodic lattice, and attempt to identify the significant (low potential energy) 

geometries for several combinations of parameters. Here we use a square lattice and a triangular 

lattice. Since we wish to determine the ground state (the global minimum of the potential energy) 

for a large number of points in the parameter space, we further restrict the exploration of the 

landscape to a “unit cell” of 2x2 angles, labeled [1, 2, 3, 4]  and extrapolate this to an infinite 

lattice by the application of tessellation. See Figure II-3. 
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   


 

Figure II-3: Starting from upper most left and proceeding left to right in two rows. The 2x2 unit cell [1, 

2, 3, 4] on square lattice is highlighted; Model ditopic molecule ( is the distance between the molecule 

center of mass and a site); The 2x2 unit cell [1, 2, 3, 4] on triangular lattice is highlighted; Schematic 

representation of the tessellation of the unit cell to an infinite square lattice; and Schematic representation 

of the tessellation of the unit cell to an infinite triangular lattice. The angles are taken with reference to the 

lattice x-axis. 

II.2 Identification of Adlayer Patterns – Radial Distribution Functions and Orientational 

Order Parameters 

In a simulation of N rigid molecules in a plane, each molecule is characterized by its center-

of-mass displacement R, and its orientation angle, . For any pair of molecules i and j, joint pair 

distributions of the form (|Ri-Rj|, i, j) are, in principle, available from the simulation, but 

represent vast amounts of data. It is more usual to break the information into pair (or radial) 

distribution functions, which depend only on the distances between sites on molecules, and angular 

distributions, which depend only on the angles of the molecules. 

The radial distribution functions are treated in great detail in Appendix A.III.  (See, for 

instance ref. (118)). Essentially, this is carried out by performing a frequency analysis (histogram) 

of the site-to-site distances in an adlayer geometry, with all of the angular information averaged 
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out. Each geometry will, in principle, have a characteristic frequency pattern.  This construction 

will be discussed in more detail in the next Chapters. 

The angle distribution (with the distance dependence averaged out) gives information on 

the “pattern” adopted by the molecules.  We shall focus on that in this section. For a system 

containing N molecules in a plane, the angular distribution is given by the (normalized) angular 

distribution function I(), where  20  , and )(
1
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simulation run, I() will be displayed as a histogram with angular “bins” replacing the delta 

functions. However, the above form will be useful for the “fixed lattice” model calculations 

considered in chapter III and IV, in which only a small number of molecules is considered. We 

note that for an n-topic symmetric molecule (for n-topic term see Figure II-1), we can relabel  

with n such that n/20   . (That is, for a ditopic molecule, for instance, we need only consider 

angles between 0 and ; angles between  and 2merely repeat this information.) 

The angular distribution function can be expanded in a Fourier series: 
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Io is simply the average value of I over the interval, and contains no new information. The 

coefficients cl and dl give information on the deviation of I() from being isotropic (equal at all 

angles). Using the orthogonality of the trigonometric functions, we have: 
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We note immediately that some of these coefficients will be zero by symmetry. In particular, since 

the sine is an odd function dl = 0 for all values of l for any distribution that obeys I() = I(/n). 

Therefore, nonzero values of the dl coefficient can serve as a measure of chirality, as we discuss 

below. 

In order to touch base with one of the best-known order parameters in the literature, 

consider the case of linear (ditopic, n=2) molecules. We have: 

                           2cos)( 1cII o               II-3 

   The coefficient c1 is given by: 
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where the <…> denotes the ensemble average from the simulation. 

If all the molecules lie at angles close to some average angle, this angle can be used to define the 

reference axis. For a “tight” distribution about this average, <cos2> will be close to unity.  

This is closely related to the nematic order parameter used in work on polymers and liquid crystals, 

where the reference axis is usually referred to as the “director”. The nematic order parameter in 

this case is given by: 
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(where the <…> denotes the ensemble average.) We note that 2/)2cos1(cos2   . Therefore,
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 OP . Thus, a value of <cos2> which is close to unity (often referred to later 



17 
 

in Chapter III and IV as a “striped” adlayer geometry) corresponds to a nematic order parameter 

of unity. 

In Monte Carlo and molecular dynamics calculations of particles, order parameters based 

on the ideas developed above have been used to detect local ordering of the particles – particularly 

for spherical particles (119-121) and diatomic molecules (122). Therefore, one of the goals of this 

dissertation is to develop order parameters which can help identify local pattern formation for the 

model molecules investigated here, which can be carried out “on the fly” during large simulations.  

Examples 

From the definitions of the Fourier components given above, we note they are related to 

the ensemble averages of the appropriate functions of the angles. We define the order parameters 

 in the following way, typically normalizing them so that the maximum value they can have is 

unity. For any “geometry” defined by four angles, [1, 2, 3, 4] we have )(
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where the sum is over the four rotors of the (2x2) unit cell for the model calculations. 

We define the integrals that occur in the Fourier expansion with the following new notation, which 

will be used throughout the dissertation: 
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In the case of the ditopic rotor (n=2) the leading term in the Fourier expansion has l=1, and so we 

consider: 
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Another pair of useful order parameters for a ditopic molecule (n=2, l=2) are:                   
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These order parameters are similar to ones used previously to detect local fourfold symmetry (11, 

123).  We used the labels shown in Figure II-4, to describe some of the most important geometries. 

We now consider some simple cases for the ditopic molecule, paying particular attention 

to the arbitrariness of our choice of angle (shown in Figure II-4). The molecules are parallel 

(nematic order parameter = 1) if all their angles are the same. If, for instance, they all lie along the 

x-axis (y-axis), the set of angles is [0,0,0,0] ([/2,/2,/2,/2]). (We refer to this as a “short 

stripe”.) Alternatively, they are also parallel if the set of angles is [/4,/4,/4,/4] (which we 

refer to as a “long stripe”). In both cases, (|2
c|2+ |2

s|2)=1. However, |2
c|=1 for the short stripe, 

but |2
c|=0 for the long stripe. For an isotropic ensemble, (|2

c|2+ |2
s|2) =0. Thus, the 2 order 

parameters are useful in the form (|2
c|2+ |2

s|2) to detect nematic behavior in a simulation, but 

will not be useful individually. 



19 
 

     

 (a) Short stripe  [0,0,0,0] (b) Short stripe[/2,/2,/2,/2]  

  |4
c|=1, |4

s|=0     |4
c|=1, |4

s|=0 

      

(c) Long stripe (d) Achiral windmill   (e) Chiral windmill  

[/4, /4,/4,/4] [/4, 3/4,/4,/4] [/8, 5/8,/8,/8] 

|4
c|=1, |4

s|=0 |4
c|=1, |4

s|=0       |4
c|=0, |4

s|=1 

Figure II-4: Schematic representation of simple geometries of a ditopic molecule on square lattice.  

By contrast, |4
c|=1 for both forms of stripe, with |4

s|=0 in both cases. Thus, 4 is a more 

promising candidate for detecting order. In this spirit, consider the case [/4+, 3/4+, 5/4+, 

7/4+]. When =0, the geometry is achiral, and the molecules define a square “pore”. (We 

describe this as a “symmetric windmill”).  In this case |Ψ4
𝑐| = 1 and Ψ4

𝑠 = 0. If  is 5 degrees, say, 

(“chiral windmill”) then |Ψ4
𝑐| = 0.94 and |Ψ4

𝑠| = 0.34 in both cases, and (|4
c|2+ |4

s|2) =1. An 

isotropic ensemble would have (|4
c|2+ |4

s|2) =0. Thus, the 4 order parameters (i) detect local 

fourfold symmetry, since (|4
c|2+ |4

s|2) =1, whatever the value of , and whatever the orientation 

of the geometry; (ii) detect chirality through a nonzero value of Ψ4
𝑠 . 

As will be discussed later, when we expect to observe three-fold order for a ditopic 

molecule,  we will find that the 3 order parameters depend on the choice of axes, whereas  the 6 

order parameters do not. 
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In order to demonstrate the utility of these order parameters we show in Figure II-2 the 

values of two of the 4 order parameters at high and low temperature, respectively, for a full Monte 

Carlo simulation.  At high temperature, the adlayer is disordered, and therefore the angles are 

random on the interval 0 to , yielding a value 2
s = 4

s = 0. However, for the ordered chiral 

“windmill” adlayer shown in Figure II-2, |4
s | is close to unity. (The absolute value is taken since 

the sense of rotation is arbitrary.) As can be seen from the figure, the angles making up a unit cell 

are (approximately) /8 and 5/8. This large nonzero value of 4
s is a strong indicator of chirality. 

As was the case for the (2x2) model calculations, these particular parameters detect the local 4-

fold symmetry of the adlayer at low temperature. 

 Another type of adlayer geometry that is frequently observed is the so-called 

“herringbone”. This consists of two “sub-lattices”, one characterized by an orientation angle A, 

the other by orientation angle B. The pattern is most extreme if the two sublattices are 

perpendicular to each other; that is, if |A - B|= /2. This suggests a herringbone order parameter 

(17, 124, 125) given by: 

Ψ𝐻𝐵 =
1

4
∑∑sin(|𝜃𝑖−𝜃𝑗|) =

4

𝑗𝑖

4

𝑖=1

1

4
∑

1

2
∑sin(|𝜃𝑖−𝜃𝑗|)

4

𝑗>𝑖

4

𝑖=1

             II-11 

and we shall sometimes use ij = |i-j|. The formulation given above can be used for more 

complicated unit cells. However, it should be noted that it will reach its maximum value for the 

case described above: namely, when there are two mutually perpendicular sublattices. (We note 

that using this definition, both the symmetric and chiral windmill geometries will yield a 

herringbone order parameter of 1; stripes will yield a value of zero.) 
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For each of the six cases considered in detail in the next chapter, we will search for order 

parameters that will help identify the various families of adlayer geometry. 

II.3 Concepts 

Some of the concepts and tools used in determining the most stable geometry for a given 

molecule, lattice, and parameter set are illustrated in Figure II-5 and Table II-1.  The example 

given is that of a tetratopic molecule on a square lattice.  First “candidate” adlayer structures must 

be identified.  In Figure II-5, we consider three such structures. One is a square (SQ) in which the 

arms of the molecule lie parallel to the lattice axes.  The second structure is the cross (CR) in which 

the arms of all molecules are oriented at an angle of 45° to the lattice axes.  Finally, we look at 

what we have labeled the “compact” structure (CO).  (The name derives from the geometry of the 

adlayer observed for a model tetratopic molecule at high density by the Szabelski group (20)).  In 

this case, the molecules are all oriented at π/8 to the lattice x-axis. 

The geometries are illustrated by the cartoons in Figure II-5. The space group symmetries 

of the three adlayer structures shown are p4mm, p4mm, and p4 respectively.  It can be seen that 

the first two possess mirror planes, and are therefore achiral.  However, the third adlayer is chiral. 

This is despite the fact that the molecule itself is achiral (D4h).  The expression of chiral monolayers 

using achiral molecules as “building blocks” has been the subject of considerable interest recently 

(8, 126-129).  In our analysis, we pay particular attention to chirality, and shall attempt to identify 

which regions of the parameter space give rise to chiral adlayers. 

As has been described in Appendix A, the total potential energy is the pairwise sum of all 

the intermolecular site-to-site interactions.  This sum is dominated by the contributions from the 

nearest-neighbor (NN) pair interactions.  This NN distance is denoted by s. 
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Clearly, as the length of the molecule’s arm ρ changes, so too does the nearest-neighbor 

distance.  The dependence of s on ρ for the three geometries shown is given in Table II-1, and is 

plotted in Figure II-5.  As is clear from the figure, the shortest NN distance is obtained from the 

square geometry, for all molecular sizes. 

 

Figure II-5: Tetratopic molecule on a square lattice.  (Upper) The nearest-neighbor (NN) nearest-neighbor 

site-to-site separation s, as a function of molecular size, . The functional forms are from Table II-1. 

(Lower) The total potential energy (in LJ energy units) as a function of molecular size, , for the three 

geometries denoted as square (SQ), cross (CR) and compact (CO). The Lennard-Jones length parameter re 

= 0.44. The adlayer geometries are shown as cartoons. 

re=0.44 
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Table II-1: Tetratopic molecule on a square lattice. For three sample adlayer geometries, the nearest-

neighbor site-to-site separation s, is shown as a function of molecular size, . The geometries are shown 

in Figure II-4. 

Geometry Site-to-site distance NN count 

Square, SQ 𝑠(𝜌) = 1 − 2𝜌 4 

Cross, CR 𝑠(𝜌) = 1 − √2𝜌 8 

Compact, CO (/8) 
𝑠(𝜌) = √1 − 4𝜌 cos (

𝜋

8
) + 4𝜌2 

4 

 

We can now use this information to predict which is the most stable geometry for each 

value of the molecular size, ρ.  To help visualize this, consider Figure II-5, where we plot the pair 

potential as a function of molecular size, V(s(ρ)) for the three geometries.  (The figure is for the 

LJ pair potential with an re value of 0.44.) 

Using the SQ geometry as an example, we see that for ρ=0, the molecule has shrunk to a 

point, the NN separation is equal to the lattice size (unity), and the pair potential is small, since 

s>>re.  As the molecule increases in size, the s(ρ) decreases.  Therefore the potential becomes 

increasingly attractive until s=re.  (Recall that re is the separation of maximum attraction.)  From 

Table II-1, we see that this occurs at ρe=(1- re)/2.  Since there are four NN interactions, the 

potential at ρe is approximately -4 (in Lennard-Jones energy units). (It is actually a little more 

attractive, because of next-NN (NNN) attractions.)  As the molecule increases in size beyond ρe, 

however, the potential becomes rapidly repulsive.  This means that the SQ geometry is no longer 

viable.  A similar argument can be made for the cross (CR) geometry, which we predict to be the 

most stable (of the three candidate geometries considered here) when ρ is approximately equal to 

0.4.  For ρ values much greater than about 0.45, however, the CR geometry has also become 

repulsive.  Of the three geometries we consider here, then, at large molecular size, only the chiral 

“compact” geometry is viable.  Referring to the cartoons it can be seen that this makes intuitive 
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sense: the sites can avoid crowding best in the compact geometry.  We comment that this tendency 

for the largest molecules to adopt a chiral pattern is one of our findings in this dissertation. 

We note at this point that several candidate adlayer geometries are intuitively obvious and 

predictable.  For instance, in the previous discussion, both the square and cross patterns would 

have been obvious candidate structures, with unambiguous values of the angles – either all 0 for 

the square or all π/4 for the cross.  However, the compact (chiral, p4) geometry has a range of 

angles values that are possible.  (In fact, any rotational angle on the open interval (0, π/4) is 

possible.  The rotation angle appears in the formula for s(ρ). As can be seen in Table II-1, we 

arbitrarily used the value π/8 for the analysis.) This will be addressed in detail in each of the 

discussions of the results that follow. 

II.4 Procedure 

In the Results chapter(s) (Chapter III, Chapter IV, Chapter V, Chapter VI, and 

Chapter VII), we adopt the following procedure.  The adsorbate geometry is explored for di-, tri-

, and tetratopic molecules fixed on square and triangular lattices.  In particular, we consider how 

the preferred geometry varies as a function of the molecular size, . We also vary the distance 

parameter, re, of the Lennard-Jones potential to explore what impact this has.  

The four-angle “unit cell” is searched by the method detailed in Appendix A, and the most 

stable geometries are identified. We classify the geometries into a limited number of families using 

inspection and order parameters developed for each case. We present our results in the form of the 

most stable geometry as a function of the (, re) “parameter space”. We will refer to this 

construction (loosely) as the “parameter phase diagram.” By using the s(ρ) data for each family of 

geometries we can rationalize a parameter “phase diagram”. In selected cases, we also undertake 
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a more detailed study of the potential energy landscape, seeking local minima, in addition to the 

global minimum. This information is useful in predicting thermodynamic and kinetic data for the 

system. The global minimum of the potential is the free energy minimum at T=0. However, for 

nonzero temperatures, local minima need to be included in the calculation of the free energy. In 

addition, rate behavior is governed by transitions between these minima. Hence, a knowledge of 

transition states yields insight into the kinetics and dynamics of a system. 

II.5  Method 

The study considers di-, tri- and tetra-topic molecules on both a square and a triangular 

(hexagonal) lattice. The lattice is infinitely large but we use a small portion with periodicity to 

represent the full lattice. A primary 2x2 “unit cell” is defined by four independent angles, 

[𝜃1, 𝜃2, 𝜃3, 𝜃4] . (The angles are taken with reference to the lattice x-axis.) The remainder of the 

lattice is then populated by translating the 2x2 cell in the x and y directions for the square lattice. 

The Cartesian coordinates of each of the P= 2, 3, or 4 sites on each molecule can then be obtained 

by simple trigonometry. For the triangular lattice, the new Cartesian coordinates for each site are 

obtained by counter-clockwise rotation through /6 (rotation matrix = 












 

6/cos

1
0

6/tan1




). For any 

pair of molecules, i and j, say, the potential energy is the pairwise sum of all P sites on molecule i 

with those on j. That is, (see Figure II-6) 

𝑉𝑖𝑗(𝜃𝑖 , 𝜃𝑗) = ∑ ∑ 𝑣(𝑟𝑝𝑞
𝑖𝑗

)

𝑞

𝑞=1

𝑝

𝑝=1

                   II-12 



26 
 

 

Figure II-6: Illustration of the site-to-site (r) distances between two adjacent rotors i and j used in the 

intermolecular potential energy interactions.   

where v(r) is the pairwise site-to-site potential energy (typically Lennard-Jones, but occasionally 

Morse). The total potential felt by the ith molecule is given by the sum over all the intermolecular 

pair potentials: 





ij

iji VV               II-13 

The sum is, in principle, infinite, but in practice can be truncated after the second nearest-neighbor 

molecule. The mean potential felt by a molecule in the adlayer is then given by 





4

1

1

i

iV
d

V         II-14 

where d is the number of nearest-neighbor and next-nearest-neighbor sites (8 for  the square lattice; 

12 for the triangular lattice). In what follows, we will refer to this as the potential energy (and 

remind the reader it is a function of (1, 2, 3, 4)). This will be the term that is minimized in the 

potential energy optimization.  Figure II-3 illustrates the four angles of the unit cell and the 

tessellated images of that cell for both the square and the triangular lattices. The specific case 

shown is for the ditopic molecule. 

1 
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Potential energy function 

The molecule-molecule pairwise potential energy between two adjacent rotors is given by 

a sum over pairwise site-to-site pair potentials. The sites are separated by a distance, r. Typically, 

the pair potential used will be the Lennard-Jones potential. This potential has two parameters: the 

well depth, De, which measures the strength of the interaction; and re, which measures the 

interaction length of the potential.  However, on occasion, we will also use the Morse potential, 

which has an additional “stiffness” parameter, , which modulates how gradually the potential 

attains the maximum attraction. Both potentials have the maximum attraction at r=re, where V =   

-De. It is convenient to scale the potential by quoting it in units of De.  

 
𝑉𝐿𝐽(𝑟)

𝐷𝑒
= (

𝑟𝑒

𝑟
)
12

− 2(
𝑟𝑒

𝑟
)
6

              II-15   

 

 
𝑉𝑚𝑜𝑟𝑠𝑒(𝑟)

𝐷𝑒
=  𝑒−𝛽(𝑟−𝑟𝑒)[𝑒−𝛽(𝑟−𝑟𝑒) − 2]          II-16 

 

 The Lennard-Jones potential and the Morse potential for two different values of are 

shown in Figure II-7. (In fact, the two potentials are similar in the vicinity of re when  = 6 when 

re = 1.) Thus varying the parameter is a useful way to smoothly deform the potential away from 

a Lennard-Jones, without altering minimum energy lengths or energies. 
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Figure II-7: Schematic representation of Lennard-Jones and Morse potential with two different stiffness 

parameters 𝛽 = 10 𝑎𝑛𝑑 20. Note that minimum at r = re and that V=0 at r = ∞.  

A useful parameter of LJ and Morse potential which is shown in Figure II-7 is the hard sphere 

radius, This is essentially the van der Waals radius, the distance below which the potentials 

become repulsive.  

𝜎𝐿𝐽 =
𝑟𝑒

21/6
                 II-17 

 𝜎𝑀𝑜𝑟𝑠𝑒 = 𝑟𝑒 −
ln(2)

𝛽
            II-18  

The van der Waals radius will sometimes be used to show the space-filling “footprint” of 

the molecule (Figure II-8). This will be particularly important when the primary focus is on the 

“pore” sizes of the adlayer. An example is shown below for p4 adlayer formed by a ditopic 

molecule on a square lattice. The radius of the (red) end-cap of the molecule is /2, making the 

width of the “shaft” of the molecule  (The division by two guarantees that two sites repel each 

-1 

re 

De 


LJ
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other at a separation of .) The two sites on the same molecule are separated by a length 2. As 

can be seen, the adlayer creates a square “pore” tilted about 30 degrees from the lattice x-axis. In 

each of the chapters that follows, we shall look at how the pore size(s) and shape(s) change as the 

parameters change.  

 

Figure II-8: Space-filling “footprint” diagram for a ditopic molecule on a square lattice, showing pore 

size, shape, and orientation. 

In Figures II-9, II-10 and II-11 (for di-, tri, and tetratopic, respectively) we illustrate the 

effect of varying of the parameters (, re) by showing the contour energy plots of a single atomic 

site moving around the molecule with angle 𝛾 ∈ [0,2𝜋]
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


 =0.3  =0.5 =0.6 

 re=0.2

  

re=0.4 

  

re=0.5 

  

Figure II-9: The model ditopic molecule (upper panel). To illustrate the effect of changing the molecular 

parameters, the potential energy is shown for a single atom-like site interacting with the molecule. This 

site has plane polar coordinates (R, ), or Cartesian coordinate (R cos, R sin). Contour energy plots 

V(, re=0.2, 0.4, 0.5,  of the molecule with single site. is the angle of a single site 

moved around the molecule with the universal x-axis. Note:  is length of the each arm of the molecule 

from center of mass; re is the site-to-site equilibrium distance of Lennard-Jones potential. 
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 =0.3  =0.4 =0.5 

re=0.2

    

re=0.4 

    

re=0.5 

     

Figure II-10: The model tritopic molecule (upper panel). To illustrate the effect of changing the molecular 

parameters, the potential energy is shown for a single atom-like site interacting with the molecule. This 

site has plane polar coordinates (R, ), or Cartesian coordinate (R cos, R sin). Contour energy plots 

V(, re=0.2, 0.4, 0.5,  of the molecule with a single site. is the angle of a single 

site moved around the molecule from the universal x-axis. 
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 =0.3  =0.4 =0.5 

re=0.2

   

re=0.4 

  

re=0.5  

Figure II-11: The model tetratopic molecule (upper panel). To illustrate the effect of changing the 

molecular parameters, the potential energy is shown for a single atom-like site interacting with the 

molecule. This site has plane polar coordinates (R, ), or Cartesian coordinate (R cos, R sin). Contour 

energy plots V(, re=0.2, 0.4, 0.5,  of the molecule with a single site. is the angle 

of a single site moved around the molecule from the universal x-axis. 
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II.6 Simplified unit cell notation and some definitions 

The full notation of the unit cell  (see Figure II-3.) is occasionally too 

cumbersome to write when not all the angles are independent of each other. Therefore we will use 

a short notation to describe some special geometries. This notation will be described here briefly. 

We will also mention some adlayer notation that may be used in the discussions. This notation is 

also known as superlattice notation (130), since the adlayer is a periodic structure with periodicity 

related to the underlying surface lattice.  

If all the rotor angles are the same, then the adlayer periodicity is the same as that of the 

surface lattice. That is, the adlayer repeats every 1 unit in the x and 1 unit in the y direction (for a 

square lattice). This is accordingly labeled a (1x1) superlattice. The single angle which repeats is 

, say, and we denote this as {Depending on the molecule and the angle, this can have different 

appearances. For instance, for a ditopic molecule, {0} (or equivalently {/2}) on a square lattice 

the geometry can be described as a “short stripe”. For a ditopic molecule {/4} on the square 

lattice, this can be described as a “long stripe”. Alternatively, for a tetratopic molecule on a square 

lattice, {0} would denote the square (SQ) adlayer already shown in Figure II-5 of this chapter, 

whereas {/4} would be the cross (CR) adlayer. The chiral compact (CO) also described in Figure 

II-5 could be described by {/8}. 

A pattern that occurs frequently is one in which the same angle occurs along a “diagonal” 

of the unit cell. This is referred to as a “herringbone” adlayer. It would have the full notation 

 Clearly, this means that the periodicity in both the x and the y directions is now 2, 

and this would be written in superlattice notation as (2x2). One extreme form of this adlayer has 
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already been mentioned, in which the angles alternate between zero and /2. We will refer to this 

geometry {0,/2} as a “perfect” herringbone. 

Another type of adlayer geometry that is frequently observed is the so-called “herringbone” 

(HB). This consists of two “sub-lattices”, one characterized by an orientation angle A, the other 

by orientation angle B. The herringbone pattern is ubiquitous in the packing of hard ellipsoids 

(131). This can occur in one of two morphologies. (See Figure II-12.) In the more typical form, 

the same angle occurs along a “diagonal” of the unit cell. It would have the full notation 

which will sometimes be abbreviated to HB(ABBA). Clearly, this means that the 

periodicity in both the x and the y directions is now 2, and this would be written in superlattice 

notation as (2x2). One extreme form of this type of herringbone adlayer has already been 

mentioned, in which the angles alternate between zero and /2. We will refer to this geometry 

{0,/2} as a “perfect” herringbone. The other herringbone morphology has or 

AABB) form. These two geometries are illustrated in Figure II-12. Both structures would have 

the abbreviated form {}. When necessary, we will distinguish between the ABBA and the 

AABB variants. 

The notation will be particularly useful when we attempt to investigate the stability of a 

given adlayer. In such cases, we will plot the potential energy as we systematically vary the rotor 

angles. We will motivate this by considering the family of adlayers described by the ditopic 

molecule on the square lattice described by a single rotor angle {}. When0, we have the 

(p2mm) adlayer already described as a short stripe. When =/4, we have the (p2mm) adlayer 

already described as a long stripe. As has been noted above, between those extremes, the adlayer 

has only p2 symmetry, and is chiral. Since all the angles are the same, we can describe the rotation  
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Figure II-12: Space-filling representations of two forms of herringbone. (Left) ABBA on a square lattice; 

(Right) AABB on a triangular lattice. For the two adlayers shown above, the unit cell would have 

crystallographic notation |a| = |b| =2, =/2 (square lattice); |a| = 1, |b| =2, =/3 (triangular lattice). 

as conrotatory, in analogy with the rotation of molecules in electrocyclic reactions. Remaining 

with ditopic molecules on the square lattice, the mapping from {0} (short stripe) with a disrotatory 

mapping through {,-} retains p2mm symmetry at all times, until it reaches the important 

structure {,-/4}, which has p4mm symmetry, and we refer to it as a symmetric “windmill” 

(WM1). Conrotatory distortion of this symmetric windmill through {,-/4} produces chiral 

windmill adlayers with p4 symmetry. These will be labeled as WM2. 

A rather unexpected adlayer structure that was detected in the searches is referred to as the 

“butterfly” geometry. The (2x2) structure is shown in Figure II-13. 
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Figure II-13:  “Butterfly” adlayer geometry (c2mm). Left, square lattice. Angle notation [3/8, 3/4, /4, 

/8]. Crystallographic notation |a|=|b|=2, =/2. Right, triangular lattice. [3/12, 5/6, /6, /12]. 

Crystallographic notation |a| = |b| =2, =/3.  

II.7 Summary 

In this chapter, we have introduced some concepts and notations of the method and the 

model that will be used in the following chapters. In these subsequent chapters we shall consider 

the six possible combinations of di-, tri-, tetratopic molecules fixed on, respectively, a square and 

a hexagonal (triangular) lattice. 
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Chapter III  

A Model Study of Adlayer Geometries of Rigid Ditopic Molecules on 

a Square Lattice 
 

 

III.1 Introduction 

As has been described in the previous chapter we carry out here a model study designed to 

elucidate some of the effects that details of the adsorbate-adsorbate interaction potential can have 

on adlayer patterning. To do this we choose ditopic molecules (explained in chapter I), and 

consider a substrate lattice of square symmetry. The adsorbate pattern depends on both the 

adsorbate-adsorbate interaction potential and the adsorbate-substrate interaction. In order to 

simplify the problem, we have chosen the limit in which all adsorbate molecules are bound to a 

surface site, and all sites are occupied. Furthermore, each molecule is constrained to move only in 

the plane of the surface, making the molecule a plane rotor. The theoretical approach to obtaining 

adlayer geometry, that is adopted here, is very similar to that of the Anisotropic Plane Rotor model 

of several previous authors (34, 36). 

The goal of this chapter (and the next) is to examine the potential energy landscape of a 

rigid ditopic molecular “rotor” adsorbed on a square lattice using the Lennard-Jones and Morse 

functions to model the site-to-site potential energy. Primarily we search for the ground state 

structure of the adlayer, that is, the geometry that yields the global minimum (GM) of the potential 

energy. In addition, we have investigated the most stable local minima of the system by 

considering a large number of minimization starting points. We systematically investigate the role 

played by: (i) the size of the rotor and (ii) the site-to-site interaction length. 
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he size of the molecular rotor is defined using, distance (“arm length”) from the rotor 

center of mass to the tip of the rotor, shown in Chapter II (Figure II-3). This means that the 

length of the ditopic rotor is given by 2. The length re is the site-to-site equilibrium distance of 

the potential. This was illustrated in the previous chapter, and is shown in Figure II-9, the contour 

plot of several illustrative examples. 

As both re and  increase in size, the space-filling “footprint” of the molecule will increase. 

Therefore, this can be envisaged as an increase in monolayer density, experimentally realizable by 

increasing the surface pressure. In principle, with a full knowledge of all the local minima of a 

potential energy landscape, statistical mechanics can be applied to obtain the temperature 

dependence of the system. We have not done this here, but we do identify several of the local 

minima at various points of the parameter space for the Lennard-Jones pair potential. 

Our methods are presented in Section III.2, in which we introduce the orientational order 

parameters and the “key” geometries we shall focus on. Results and Discussion for the global 

minimum of Lennard-Jones potential are in Section III.3.A. The results are summarized in a 

parameter “phase diagram”, with the geometries shown in a contour plot as a function of (, re). 

These are central findings for this chapter. Local minima are explored in Section III.3.B, and the 

effect of changing the pair potential is considered in Section III.3.C. Conclusions, and 

comparisons with available experimental data appear in Section III.4. 
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III.2 Method 

III.2.a Energy Landscape 

  As discussed in the previous chapter, the search is restricted to the (2x2) “unit cell” space, 

[1, 2, 3, 4] with the full adlayer generated by tessellation. The potential energy V(1, 2, 3, 4) is 

explored for each point in parameter space by methods described more fully in the Appendix A. 

The principal results reported are the global minima (GM) of the potential energy. In certain cases, 

local minima (LM) are explored and reported. 

III.2.b Orientational Order Parameters 

In order to classify the adlayer geometries, several order parameters were employed. The 

ideas behind the order parameters were presented in the previous chapter. Here, we use the 

following four order parameters to differentiate between the geometries. 

Ψ4
𝑐 =

1

4
∑cos(4𝜃𝑖)

𝑖

              (III-1) 

|Ψ4
𝑠| = |

1

4
∑sin(4𝜃𝑖)

𝑖

|             (III-2) 

Ψ2
|𝑐|

=
1

4
∑|cos(2𝜃𝑖)|

𝑖

         (III-3) 

where the sum is over the unit cell. 

Ψ𝐻𝐵 =
1

8
|∑∑ sin(∆𝜃𝑖𝑗)

4

𝑖≠𝑗

4

𝑖=1

|          (III-4) 

where ∆𝜃𝑖𝑗 = |𝜃𝑖 − 𝜃𝑗|, and the sum is over the 4 unit cell rotors. 
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As mentioned in the previous chapter, |Ψ4
𝑠| proves to be an indicator of chirality. Ψ4

𝑐  , Ψ2
|𝑐|

 and 

Ψ𝐻𝐵 provides information on the geometry that is a useful complement to visual inspection. 

III.2.c Key Geometries 

As discussed in the previous chapter, we need to identify the key adlayer geometries which 

will be used to construct the “parameter phase diagram.”  These are obtained using preliminary 

investigations.  We have chosen to focus on seven key adlayer geometries in this chapter. These 

are shown in Figure III-1. All the other geometries we identified could be “binned” into one of 

the following categories. 

We discuss each of these adlayer geometries briefly below. 

(a) The short stripe (SS) has p2mm wallpaper symmetry. In our notation, it is written {0}. 

(We note that this is equivalent to {/2}). 

(b) The symmetric windmill (WM1) has p4mm symmetry, with angles {/4, 3/4}. This 

geometry is achiral. 

(c) The chiral (or “distorted”) windmill (WM2), with p4 symmetry, has geometry 

{As noted before, a range of 0<is possible. Shown is=/8. 

(d) The long stripe (LS) geometry {/4} has p2mg symmetry. (This is equivalent to 

{3/4}). 

(e) The “perfect” herringbone (PHB) {0, /2} (of ABBA type) has p4gm symmetry.   

(f) The herringbone (HB) shown is the example {7/18, /9} has (of ABBA type) p2gg 

symmetry. 

(g) The butterfly (BF) shown is the example [7/18, 3/4, /4, /9] has symmetry c2mm. 
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 (a) SS  (b) WM1 

      

 (c) WM2 (d) LS 

    

 (e) PHB (f) HB 

 

 (g) BF 

Figure III-1: Schematic representation of the seven key geometries used for the ditopic molecule on a 

square lattice.  (a) Short Stripe (SS); (b) Symmetric Windmill (WM1); (c) Chiral Windmill (WM2) 

{/8,5/8}; (d) Long Stripe (LS); (e) Perfect Herringbone (PHB); (f) Herringbone (HB) {7/18,5/9};  

(g) Butterfly (BF) [7/18,3/4, /4,/9]. Shown on the figure are the NN site-to-site distances in each 

case. A range of angles is possible for the chiral windmill.  
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These particular geometries were chosen since they illustrate the major intermolecular 

“bonding” motifs that are possible. The “stripes” show 2-center bonds. The “windmills” illustrate 

4-center bonds. The herringbone is the dominant motif for hard ellipsoids (131). Other geometries 

were identified by our exploration, and will be discussed more fully in the Results and Discussion 

section. 

Table III-1: Closest nearest-neighbor (NN) site-to-site distance, s, for specified geometry as a function of 

. Also included is the number of nearest-neighbor interactions. Note that there are two possible NN 

distances for the LS geometry, with differing NN coordination. The geometries are defined in Figure III-

1. 

Geometry Site-to-site distances Number of  NN  

SS 𝑠(𝜌) = 1 − 2𝜌 2 

WM1 𝑠(𝜌) = 1 − √2𝜌 4 

WM2 
𝑠(𝜌) = √1 − 2√2𝜌 cos (

𝜋

8
) + 2𝜌2 

4 

LS 
𝑠(𝜌) = 𝑚𝑖𝑛 (√2 − 2𝜌,√1 − 2√2𝜌 + 4𝜌2) 

4, 2 

PHB 𝑠(𝜌) = √1 − 2𝜌 + 2𝜌2 8 

   

HB 

𝑠(𝜌) = 𝑚𝑖𝑛

(

 
 
 √1 + 2𝜌2 + 2𝜌2 cos

5𝜋

18
− 2√2𝜌 cos

5𝜋

36

  √1 + 2𝜌2 − 4√2𝜌 cos
5𝜋

36 )

 
 
 

 

4, 2 

BF 

𝑠(𝜌) = 𝑚𝑖𝑛

(

 
 
 
 
 
 √1 + 2𝜌2 + 2𝜌2 cos

5𝜋

36
− 2𝜌 sin

7𝜋

18
− √2𝜌

√1 + 2𝜌2 − 2𝜌2 sin
5𝜋

36
− 2𝜌 sin

7𝜋

18
− √2𝜌

  √2 − 2𝜌 cos
5𝜋

36 )

 
 
 
 
 
 

 

2, 1,1 

 

This functional dependence of s() is shown graphically in Figure III-2. 
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Figure III-2: Nearest-neighbor site-to-site distance, s(), as a function of molecule arm length, , for 

chosen  geometries. The geometry labels PHB, HB, LS, WM2, WM1, BF and SS are defined in Figure 

III-2. 

Table III-2: Values of order parameters of the seven key geometries described in Figure III-1. 

Geometry  Ψ4
𝑐 | Ψ4

𝑠|  Ψ2
|𝑐|
 HB 

SS 1 0 1 0 

WM1 -1 0 0 1 

WM2 0 1 1/√2 1 

LS -1 0 0 0 

PHB 1 0 1 1 

HB 0.2 0 0.8 0.8 

BF -0.4 0 0.4 1 

 

 One of the ways to distinguish geometries is the combination of the values of the orientational 

order parameters. The values for the seven geometries listed above are given in Table III-2.  
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Also shown in Figure III-1 in each case (as a dotted line) are the nearest neighbor NN site-

to-site interaction distances. In Table III-1, we give the explicit dependence of this distance on 

the molecular rotor arm length, s(). In Figure III-2, we plot the s() functions identified in Table 

III-1 for the seven key geometries.  

III.2.d Distortion Pathways 

The potential energy minimization is carried out in a four-dimensional angle space. This is 

difficult to visualize. Certain “cuts” through that space, though, enable one to gain insight into the 

variables as the angle space is traversed, and may yield insight into the findings. Particularly simple 

are one-dimensional plots of variables (particularly the energy) as a function of a single angle 

variable. While they do not represent an exploration of the full angle space, they can assist in 

understanding the role played by the geometry in determining the potential energy. 

We note that all “stripes” can be represented by a single distortion angle {}, with the 

points  = 0 and = /4 being the SS and LS, respectively. The intermediate geometries would all 

be of (chiral) p2 symmetry. We can also deform the short stripe (SS) into the “perfect” herringbone 

(PHB) using the path {0,}, with  = 0 giving the SS, and  =/2 giving the PHB, with all the 

intermediate points being of the HB(ABBA) type. Rather than follow this path, we consider two 

different distortion paths which traverse several of the key geometries. Path I begins with a 

disrotatory rotation through (via p2mg geometries) to the symmetric windmill (WM1), followed 

by a conrotatory rotation through’ to the chiral windmill (WM2) and PHB. Path II begins with a 

conrotatory rotation through (via p2 geometries) to the long stripe (LS), followed by a disrotatory 

rotation through ’ (via HB (ABBA) geometries) to the HB and PHB. 

  



 

45 
 

Path I 

→    → →

  

 SS WM1 WM2 PHB 

 Step 1 Step2 

 
→


         

 

→
   

→  

 SS LS HB PHB 

Path II 

Figure III-3: Two pathways from the SS to the PHB geometries. Path I begins (Step 1) with a disrotatory 

rotation through (via p2mg geometries) to the symmetric windmill (WM1). This is followed (Step 2) by 

a conrotatory rotation through’. Path II begins (Step 1) with a conrotatory rotation through (via p2 

geometries) to the long stripe (LS). This is followed (Step 2) by a disrotatory rotation through ’ (via HB 

geometries). 

We can utilize these pathways to help visualize some of the criteria needed to use the 

orientational order parameters to distinguish geometries. The four order parameters are shown as 

a function of the deformation angles along the two paths in Figure III-4. Of particular interest is 

the |4
s| parameter. This is zero when the adlayer is achiral, nonzero when the adlayer is chiral. 

Enantiomers with the same angle would have s →s when the angles are reflected about either 
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the x or the y axis. Therefore we take the absolute value of this order parameter, since the actual 

sense of rotation of the degenerate chiral structures depends arbitrarily on the details of the 

minimization to get both homochiral structures. The only geometry of the seven key structures, 

shown in Figure III-1, that is chiral is the chiral windmill, WM2, which has |
s|=1; the other six 

geometries considered here have |4
s| =0 (that is, they are achiral), since they all possess a plane 

of symmetry. We note that the mirror planes are maintained in Step 1 of Path I; hence the adlayers 

along that path are achiral.  

However, the conrotatory Step 1 of Path II passes through chiral p2 geometries, with the 

“maximum chirality” evidenced at =/8. By contrast, Step 2 of Path I takes us through p4 

geometries, with the order parameter recording its maximum value at =/8.  

The cosine order parameter 4
c moves through a wider range of values, being unity for the 

starting and final points on the paths, and -1 for both the LS and the symmetric windmill. 

 Using the order parameters in combination with a visual inspection allows us to “bin” 

intermediate adlayer geometries into the appropriate family. We bin the geometries using the Ψ2
|𝑐| 

order parameter.  
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 Step1  Step2

 (a)

 

 (b) 

 

 (c) 

 

 (d) 

 

Figure III-4: the order parameters as a function of rotation angle  or ’ for the paths shown in Figure 

III-3. (a)
c, (b)|

s|, (c)
|c| (d) HB. The legends describe the path (I or II).  
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III.3 Results and Discussion for Square Lattice 

III.3.a Parameter “Phase Diagram” for the Lennard-Jones Potential 

The Lennard-Jones potential energy was minimized for all points in the (, re) parameter 

space. Once the minimum energy geometry is obtained, we can obtain the orientational order 

parameters from the values of the angles. The potential energy, 
c, |

s|, 
c|, HB are shown as 

contour plots in Figure III-5 (b), (c), (d), (e), (f) respectively. In order to assign geometries, a 

visual inspection was carried out and NN counts taken (SS and BF have two NN; WM1 and WM2 

have three). Geometries that were “transitional” between the seven key geometries were “binned” 

to one of these geometries using the 
c| orientation parameter sort criteria. A non-zero value of 

| Ψ4
𝑠| unambiguously identified chiral windmills. In the border between SS and WM1, if 

c|>0.5, 

the distorted geometries are added to the SS region, else to the WM1 region. Using these criteria, 

all the geometries could be assigned to one of the seven key geometries. 

 The results are summarized as the “parameter phase diagram” in Figure III-5 (a). The 

dashed lines on the other contour plots show the boundaries that were established for the phase 

diagram. (These are not true phase changes – or even phase transformations—since the energy 

changes smoothly as the parameters are changed. However, uniquely demarking the dominant 

geometry in each region of the parameter space allows us to understand the role played by the 

parameters.) This “phase diagram” is the principal finding for this chapter.  
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 (a) (b) 

 
 (c) (d) 

 
 (e) (f)  

Figure III-5: Contour plots of various properties of the most stable geometry as a function of Lennard-

Jones parameters (, re). Panels (b) potential energy, V; (c), (d), (e), (f) orientation order parameters 
c, 

|
s|, 

|c| HB respectively. Panel (a) summarizes this in the “phase diagram”, in which geometries are 

assigned using the criteria given in the text. The “phase boundaries” established in panel (a) are 

reproduced in the other panels. (Abbreviations used: SS = short stripe; WM1 = symmetric windmill; 

WM2= chiral windmill; HB = herringbone; PHB = perfect herringbone; BF = butterfly.) 

V 

| Ψ4
𝑠| Ψ4

𝑐 

 Ψ2
|𝑐|

 HB 



 

50 
 

In order to better visualize the findings, we show examples in Figure III-6 of the space-

filling versions of the adlayer geometries identified in Figure III-5.  In most cases, these 

correspond to the parameters at which the geometry is the true GM. The single exception is for the 

long stripe (LS) geometry, which is not a GM for the Lennard-Jones potential. Shown is the 

geometry obtained using a Morse potential (see later discussion). 

       

 (a) (b) (c) (d) 

       

 (e) (f) (g) (h) 

Figure III-6: Representative adlayer geometries for ditopic molecule on a square lattice with the Lennard-

Jones potential. (See Figure III-5.) The geometries are drawn using the space-filling representation (see 

Chapter II). All are actual GM’s, with the exception of the LS (f), which is a global minimum for a Morse 

potential. The (, ) parameters for each structure are: 

 (a) SS (0.36, 0.29); (b) Distorted SS* (0.46, 0.34); (c) WM1 (0.36, 0.39); (d) WM2 (0.36, 0.53); (e) PHB 

(0.62, 0.36); (f) LS (0.67, 0.35); (g) HB (0.62, 0.40); (h) BF (0.45, 0.45).  

*Note that this geometry could be “binned” as either SS or WM1 depending on the orientational order 

parameter criteria. 

 



 

51 
 

In order to understand the phase diagram, we consider the following plots of V(s()) for 

three different values of re, (Figure III-7). In these figures, the parameter re is fixed, the geometry 

is fixed by holding the appropriate angles constant,  and the potential energy as a function of  is 

plotted. Also shown on the figure is the potential energy found in the full (unbiased) search of the 

angle space described above at a given set of parameter values. This is labeled Vunbiased. 

These values have been chosen since they represent three distinctive areas of the “phase 

diagram”. The value of re=0.4 represents the upper limit of the “low re” region. In this region, the 

ratio /re is the most typical of realistic molecular systems.  For values of re less than 0.4, we see 

that the SS (short stripe) is favored at low values of , since this achieves the closest NN 

interaction. (See Figure III-2.) This geometry, however, becomes strained and untenable as  

increases. The symmetric windmill (WM1) is favored for intermediate values of , since this 

geometry achieves 4-center intermolecular “bonds”, while avoiding the short 2-center “bonds” 

typical of the short stripe. As  further increases, this geometry too becomes strained, and the 

pattern distorts away from the p4mm symmetry. However, as can be seen, it retains its fourfold 

symmetry, maintaining the p4 symmetry up to very large values of . Although the LS is attractive 

up to  = 0.55 (see bottom panel of Figure III-7), the range of angles available to the chiral 

windmill (WM2) allow it to remain the GM. Indeed, for this value of re, the geometry manages to 

minimize the strain for all physically reasonable values of . 

At a somewhat larger value of re (here arbitrarily chosen to be 0.52) the chiral windmill 

(WM2) becomes repulsive near  = 0.45. This is about the same value as that at which the LS 

becomes repulsive, and hence this geometry is also infeasible. But the butterfly geometry, which 

manages to access 3-center bonding is here a feasible alternative, and avoids repulsion. 
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Figure III-7: Plots of V(s()) for the Lennard-Jones potential for the geometries observed in Figure III-6. 

Upper panel re = 0.7; Middle panel, re = 0.52; Lower panel, re=0.4.  
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When re is unrealistically large for the model, and  is small, all the geometries “smear” 

into an isotropic sum over the site-to-site interactions for large molecule-molecule separations. 

Each geometry becomes strained in roughly the same order as for the lower values of re, but there 

is little difference in the attractive parts of the potential. The model results for these parameters 

almost certainly do not resemble those for any realistic molecular system. 

We consider next a much more detailed analysis of the potential energy for re = 0.4 in 

Figure III-8. This figure shows the potential energy along the distortion paths shown in Figure 

III-3 for selected values of the molecular arm length, . For the smallest value of (0.29) the SS 

is preferred: any distortion of the angle from linearity increases the potential energy. However, as 

the molecule’s size increases, the SS becomes increasingly strained, leaving the (achiral) 

“distorted” SS (= 0.34), then ( = 0.39-0.42) the (achiral) windmill with its 4-center interaction 

becomes the most stable geometry. Further increase in the molecule’s size ( > 0.53) introduces 

strain in the 4-center interaction that twists the geometry to the chiral windmill structure. 

At large molecular sizes ( > 0.53) we note that the path that would lead to HB-like 

structures (path II) is not favored: The fourfold attraction (evidenced by a potential energy of about 

-4) always leads to more stable geometries than the HB family, with its 2-center attraction 

(evidenced by a potential energy of about -2). This information will be used in the next section. 
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 =0.29  =0.34 

  

 =0.39  =0.42 

  

 =0.53 =0.56   

 

Figure III-8: Potential energy, V, as a function of rotation angle along the two paths shown in Figure III-

3. At the lefthand side (path I) of each panel (=0) the geometry is the SS. At the right (path II) of each 

panel (’=/2), the geometry is the PHB. In the center of the panel, the geometry is WM1. The potential 

is the Lennard-Jones, with re=0.4. Each panel has a different value of . In each case, the global minimum 

(GM) geometry is indicated by a cartoon. 
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III.3.b Local Minima for the Lennard-Jones Potential 

 The GM is the geometry reported in the “phase diagram” (Figure III-5). This is the 

geometry the system would adopt at T = 0. However, for nonzero temperatures, energetically 

excited states (that is, local minima) have to be included in the partition function. We therefore 

also report the local minima (LM) found in the searches by randomly (in the angle space) initiating 

a large number of “quenches” to the nearest local minimum.  Each local minimum can be 

associated with a probability depending on the number of “quenches” that lead to that minimum. 

The histograms of the potential energies of the local minima for several values of  at 

re=0.40 and re=0.52 are shown in Figure III-9, and Figure III-10. 

For re=0.4,  = 0.29 Figure III-9 shows the system has a sole minimum, the GM. By  = 

0.34, the stripe has distorted, with incipient 4-center “bonding” beginning to appear. Both the GM 

and the LM are on the achiral path. As  is further increased (say from 0.34 to 0.53) we see a 

herringbone-like local minima appear, but the dominant minimum is the windmill. For  > 0.5 

something weird is going on since the GM should be p4. What is interesting is that its catchment 

area seems small, and the irregular geometries are easier to access. This might suggest that, as we 

increase the temperature at re=0.4, herringbone-like structures might be the thermodynamically 

stable adlayer geometry. 

 For the larger value of re, we see that various herringbone structures appear as local minima. 

In addition, the 3-center “bond” which underlies the butterfly (BF) geometry makes its appearance 

as a local minimum. (As explained above, these geometries are rather unphysical for molecular 

systems.) 
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 =0.29 =0.34 

  

 

 =0.39 =0.42 

   

 =0.45 =0.53 

  

 =0.56 
Figure III-9: Probability of reaching local minima for LJ potential with re=0.40, and various values of . 
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  = 0.23  = 0.26 

 

  

  = 0.28   = 0.34 

 

  

  = 0.41  = 0.45 

 

Figure III-10: Probability of reaching local minima for LJ potential with re =0.52, and various values of . 
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III.3.c Parameter Phase Diagrams for Other Potentials. 

 While the Lennard-Jones potential is the most commonly employed site-to-site potential, 

the Morse potential has also been used effectively in gas-phase cluster calculations. The Morse 

potential has the advantage that it has an additional parameter (, the “range” parameter) which 

can adjust how gradually the potential changes away from its minimum. As is discussed elsewhere, 

the primary effect of changing this parameter is to change the van der Waals radius,:  increases 

with , reaching a limit of    = re for very large values of . 

 With this in mind, we have repeated several of the calculations carried out for the LJ 

potential with two different values of . These are shown, together with the LJ parameter “phase 

diagram” in Figure III-11. 

As can be seen from Figure III-11, the “phase diagram” is very similar in all three cases. 

The one region where we see the appearance of a geometry that is not a GM for the LJ potential is 

in the (unphysical) re=0.7 region of parameter space. The long stripe (LS) geometry is the GM for 

a small area of the parameter space here. To explain this, we show the V(), V() diagrams for the 

three different potentials in Figure III-12 and Figure III-13 together with the “density of states” 

quenches at these parameter values Figure III-14. 
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Figure III-11: Parameter “phase diagrams” for: (top) Morse, =20; (middle) Morse, =10; (bottom) LJ. 
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Figure III-12: The potential energy function V() for the key geometries described in Figure III-1, for re 

= 0.7 for (upper panel) Morse (=20); (middle panel) Morse (=10); (bottom panel) LJ pair potentials. 

The solid gray line is the potential of the GM obtained through the unbiased search.  
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 =0.35 =0.40 

 

 

 

Figure III-13: V() at re = 0.70 with two different values of  for different pair potentials. The pair 

potentials are: (upper panel) Morse (=20) (middle panel) Morse (=10) and (lower panel) Lennard-

Jones. The global minimum is indicated by a cartoon. 
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

 =0.35 =0.40 

 

  

   

Figure III-14: Probability of reaching local minima for re=0.7, at  values of 0.35 and 0.40. The pair 

potentials are: (upper panel) Morse (=20) (middle panel) Morse (=10) and (lower panel) Lennard-

Jones. 

In Figure III-12, V(), that of a representative herringbone (HB) key geometry is 

presented, since this is an important motif in this region of parameter space. As can be seen from 

Figure III-12, decreasing  has the effect of straining any given geometry at a smaller value of . 

It can be seen that, although the differences in energy are very slight, the long stripe (LS) is 

marginally more attractive than the herringbone family of geometries for the Morse (=20) 

potential. Thus, in principle, slight massaging of the pair potential can lead to dramatic changes in 
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the preferred geometry. This point is also made clear in Figures III-13 and Figure III-14, where 

it is shown that for the Morse (=20) potential alone, and in a limited region of parameter space, 

the LS competes with the herringbone geometries. 

III.4 Ditopic Molecule on Square Lattice (All Lattice Sites are Occupied) Conclusions and 

Comments 

We have systematically investigated a system of rigid ditopic rotor model molecules 

forming a monolayer on a square lattice as a function of both the interaction distance (re) and 

molecular size ().  Most of the work involved the use of a pairwise Lennard-Jones potential. The 

effect of a different pair potential (the Morse potential) was also investigated. For physically 

realistic systems (/re >1) we find that 2-center intermolecular “bonds” dominate for low /re 

ratios, and this pattern is designated as the (short) stripe. The short stripe (or “ribbon”) is the 

dominant motif for linear ditopic molecules interact via hydrogen-bonding groups at the tips of the 

molecule (for instance, terephthalic acid by Clair et al (132)). 

For larger values of the /re ratio, the most common motif involves 4-center intermolecular 

interactions, with the pattern buckling to become chiral at the highest values. These we label 

“windmill” (WM) geometries, and they have been observed experimentally. (We use WM1 to 

denote the achiral version; WM2 the chiral version.) This motif has been observed experimentally 

by Lindroth et al (6, 7, 88-90). They studied the geometries of an adlayer of oligo-phenylene-

ethynylene derivatives (which we could classify as linear ditopic molecules) on Au(111). Similar 

structures have been reported using dicarbonitrile polyphenyl (91) and oligo(p-phenylenevinylene) 

(133)  molecules as adsorbate. 

For large re (0.5-0.7) values, (/re < 1, and the model’s relationship with molecular systems 

is tenuous) the main geometries are the herringbone adlayers. The dominant structures here are the 
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herringbone (HB and PHB). The former has been observed experimentally in a packed layer of 

triphenyl-dinitrile adsorbate on Ag(111) surface (91, 134). While the latter has been located for 

symmetric linear BDA (4,4′-biphenyldicarboxylic) on a square surface Cu(100) (135). For an 

extremely “rugged” potential (Morse, with =20) we located the long stripe (LS) as a global 

minimum in a small area of parameter space. Similar geometries have been observed in the 

experimental literature; in particular the brick wall geometry of a highly dense adlayer of para-

oligo-phenylene-ethynylene on Au(111) surface (6, 7). 

In conclusion we have located the most stable geometries for linear molecules on a square 

lattice interacting with anisotropic potential energy. We have noticed that the geometries of the 

adlayer depend on the property of the potential, (such as the softness parameter ). The richest 

variety of adlayer patterns are obtained for re=0.4-0.7, and with small differences between the 

Morse (=10) and Lennard-Jones potentials. Highly symmetric long stripe “LS” geometries can 

be attained for low /re ratios in the case of the most rugged Morse potential (=20). By contrast, 

we find that chiral adlayers (such as windmill “WM2”) will be ubiquitous for high /re ratios. 
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Chapter IV  

A Model Study of Adlayer Geometries of Rigid Ditopic Molecules on 

a Triangular Lattice 

IV.1 Introduction 

Several studies have reported ground states of self-assembled layers of rigid linear 

molecules on a triangular lattice (29, 92, 93, 136, 137). For instance, Mederos et al used Monte 

Carlo simulation to study the self-assembly of rigid ditopic molecules on a triangular lattice (137). 

The study has been done with the molecules fixed at the sites of the triangular lattice allowing the 

molecules to rotate around the axis normal to the surface plane. They have reported two ordered 

GM adlayer patterns. These include structures of a herringbone with two different orientational 

angles (it has the AABB form, see Chapter II for details), and a pinwheel phase with vacancies 

in one fourth of the lattice sites. Although the authors did not mention it, the pinwheel structure is 

chiral.  

Berezutskiy and Lawrence-Hurt also studied the self-assembly of rigid linear molecules on 

a triangular lattice (115, 138). Both have reported the effect of the variations in the intermolecular 

distance parameters of the adsorbate itself on the adlayer geometry.  For instance, Berezutskiy 

(115) studied a 2X2 unit cell angle space and applied tessellation by translation (see Chapter II 

for more details) to represent an infinite lattice space.  While Lawrence-Hurt (138) studied a large 

angular space and applied the same tessellation method as described in Chapter II. In general 

both have reported the same geometries except for small regions of the intermolecular parameters. 

So one of our goals was to study the effect of the lattice size on the adlayer structure. Also we add 

more orientational order parameters than were used by Berezutskiy (115). 
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As mentioned in the previous chapters the goal of this chapter is to study the self-assembly 

adlayer of a ditopic molecule on a hexagonal (triangular) lattice. We expect to find several new 

geometries other than the geometries on a square lattice, due to the strain of the lattice site 

geometry, that is, the ability to occupy the most favorable geometry. The method and model 

substrate are described in Chapter II and Appendix A. In our work we have been able to identify 

previously observed geometries such as the herringbone and the pinwheel geometries and several 

new ground state geometries (which will be explained in detail). 

The method is presented in Section IV-2 including the energy landscape, the orientational 

order parameters and the key geometries found. Our results and discussions are presented in 

Section IV-3.a in which we present the full energy landscape “parameter phase diagram” results, 

with the geometries shown in a contour plot as a function of (, re). In Section IV-3.b we show 

results for a larger unit 4X4 cell.  Conclusions and comparison with previous theoretical and 

experimental data appear in Section IV-4. 

IV.2 Method  

IV.2.a Energy Landscape 

As discussed in Chapter II, the search is restricted to the (2x2) “unit cell” space, [1, 2, 3, 

4] with the full adlayer generated by tessellation. The potential energy V(1, 2, 3, 4) is explored 

for each point in parameter space by methods described more fully in Appendix A. The principal 

results reported are the global minima (GM) of the potential energy.  
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IV.2.b Orientational Order Parameters 

In order to classify the adlayer geometries, several order parameters were employed. The 

ideas behind the order parameters were presented in Chapter II. Here, we use the following four 

order parameters to differentiate between the geometries. 

 Ψ3
|𝑐|

=
1

4
∑|cos(3𝜃𝑖)|

𝑖

            IV-1 

Ψ3
|𝑠| =

1

4
∑|sin(3𝜃𝑖)|

𝑖

             IV-2 

|Ψ6
𝑐| =

1

4
|∑cos(6𝜃𝑖)

𝑖

|             IV-3 

|Ψ6
𝑠| =

1

4
|∑ sin(6𝜃𝑖)

𝑖

|            IV-4 

where i are the angles of the unit cell.  

IV.2.c Key Geometries 

We need to identify the key adlayer geometries which will be used to construct the 

“parameter phase diagram.”  These are obtained using preliminary investigations.  We have chosen 

to focus on nine key adlayer geometries in this chapter. These are shown in Figure IV-1. In most 

cases, these correspond to the parameters at which the geometry is the true GM. 

We discuss each of these adlayer geometries briefly below. 

(a) The perfect herringbone “PHB” structure with p2mm symmetry. 
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(b) The short stripe “SS” structure with c2mm symmetry and orientational angles all the 

same {0} ≡ {
𝜋

3
}. 

(c) The distorted short stripe “DSS” with p2gg symmetry. 

(d) The honeycomb “HC” geometry as it has a hexagonal porous shape and has c2mm 

symmetry. 

(e) The pinwheel “PW” pattern has p2 symmetry group. 

(f) The butterfly “BF” pattern has c2mm symmetry.  

(g) The herringbone 1 “HB1” pattern has p2 symmetry. 

(h) The herringbone 2 “HB2” pattern has p2gg symmetry.  

The geometries that possess no mirror plane such as PW and HB1 are homochiral. These 

geometries will be discussed in detail in the next sections. 

These particular geometries were chosen since they illustrate the major intermolecular 

“bonding” motifs that are possible. The “stripes” show 2-center bonds. The “honeycomb” 

demonstrates 3-center bonds. Other geometries were identified in our exploration, and are 

discussed more fully in the Results and Discussion section. 

The nearest neighbor “NN” site-to-site distances as a function of  s(), for the selected 

main geometries are shown in Figure IV-2 and Table IV-1. The symmetry and abbreviation keys 

are described in Table-IV-2 as well. 
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(A) PHB =0.10, re=0.3 (p2mm) 

   

 

 (B) SS =0.34, re=0.3 (c2mm) (C) DSS =0.37, re=0.3 (p2gg) DSS  

 

 (D) HC =0.40, re=0.3 (c2mm)  (E) HB1 (AABB) =0.45, re=0.3 (p2) 

 

 (F) PW1 =0.50, re=0.3 (p2) (G) BF=0.5, re=0.4 (c2mm) 

 

 (H) PW2 =0.34, re=0.6 (p2) (I) HB2 (AABB)=0.45, re=0.3 (p2gg) 

Figure IV-1: Structure of the ground state key patterns for different  and re. The abbreviation are 

described in Table IV-2. In parenthesis are the symmetry wall paper group (explained in details 

Appendix C).  
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Figure IV-2: The nearest-neighbor site-site distance, s(), as a function of molecule length, , for chosen 

fixed geometries. Upper panel are the pinwheel 2 “PW2”, pinwheel 1 “PW1”, butterfly “BF”, honeycomb 

“HC”, and the short stripe “SS”. The lower panel are the herringbone family: herringbone 2 “ HB2”, 

herringbone 1 ”HB1”, distorted short stripe “DSS” and perfect herringbone “PHB”. The geometry labels 

are described in Table IV- 2 and shown in Figures IV-3, 4, 5.  Note: the PW2 orientational angles= [2, 

65, 50, 123]o, the PW1 angles = [8, 126, 69, 33]o, the BF angles = [/2, 0, 4/9, 5/9], The HB2 

angles={/5, 4/5}, the HB1 angles= {20, 91}o, the DSS angles= {170, 15}o. 
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Table IV-1:  Closest nearest-neighbor (NN) site-site distance, s, for specified geometry as a function of . 

Including the number of nearest-neighbor. HB2 angles = {/5, 4/5}. BF angles = [/2, 0, 4/9, 5/9]. 

The abbreviation are described in Table IV-2.  

Geometry site-site distances Number of nearest-

neighbors NN (N1) 

SS 𝑠(𝜌) = 1 − 2𝜌 2 

PHB 𝑠(𝜌) = 1 − 2𝜌 1 

BF 𝑠(𝜌)

= min 

(

 
 
 √1 − 𝜌 (√3 + cos

4𝜋

9
+ √3 sin

4𝜋

9
) + 2𝜌2 (sin

4𝜋

9
+ 1)

√1 − 𝜌 (1 − cos
4𝜋

9
+ √3 sin

4𝜋

9
) + 2𝜌2 (1 − cos

4𝜋

9
)

)

 
 
 

 

2,2 

HC s(𝜌) = 1 − √3𝜌 
 

3 

HB2 𝑠(𝜌)

= 𝑚𝑖𝑛 (√1 − 4𝜌 cos
𝜋

5
+ 4𝜌2 , √1 − 2√3𝜌 sin

𝜋

5
+ 4𝜌2 (sin

𝜋

5
)2 ) 

2,4 

DSS  2 

HB1  1, 2 

PW1  3 

PW2  3 

 

Table IV-2: Geometry name, abbreviation and symmetry plane group of the adlayers on a triangular 

lattice. See Figures IV-2, for geometries, and Appendix C for symmetry plane groups. 

Geometry name Abbreviation Symmetry plane group 

Perfect herringbone PHB p2mm 

Short stripe SS c2mm 

Distorted short stripe DSS p2gg 

Honeycomb HC c2mm 

Herringbone 1 HB1 p2 

Pinwheel 1 PW1 p2 

Butterfly BF c2mm 

Pinwheel 2 PW2 p2 

Herringbone 2 HB2 p2gg 
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IV.3 Results and Discussion for a Triangular Lattice 

IV.3.a Parameter “Phase Diagram” for the Lennard-Jones Potential 

The Lennard-Jones potential energy was minimized for all points in the (, re) parameter 

space. Once the minimum energy geometry is obtained, we can obtain the orientational order 

parameters from the values of the angles. The potential energy, 
c|, 

s|, |
c|, and |

s| are shown 

as contour plots in Figure IV-3 (b), (c), (d), (e), and (f) respectively. In order to assign geometries, 

a visual inspection was carried out and NN counts taken (SS, DSS, BF, and HB2 have two NN; 

PHB, and HB1 have one; HC, PW1 and PW2 have three), (see Table IV-1).  

Also we used the order parameters to distinguish between patterns.  We notice from Figure 

IV-3 (c), (d), (e), and (f), the following areas. The PHB pattern has 
c|= 

s|=1/2 and |
c|= 

|
s|=0; the SS has 

c|= |
c|=1 and 

s|= |
s|=0; the HC has 

c|=|
s |=0 and 

s|= |
c|=1. 

The other geometries have order parameter values which fluctuate between zero and unity. For 

instance, the HB2 pattern (AABB; see Chapter II), with orientational angles {42, 138}o, has  


c|0.7 and |

c|0.3 , while HB2 {146, 34}o has  
c|0.2 and |

c|0.9.  

The chirality of the adlayer can be detected by the |
s| order parameter, see Figure IV-

3(f). All the patterns such as PW, and HB1 that have a non-zero value of |
s| are chiral because 

they possess no mirror plane as mentioned earlier. All the patterns such as PHB, HC, HB2, BF and 

DSS with zero value of |
s| are achiral; they all possess at least one mirror plane of symmetry. 

  The results are summarized as the “parameter phase diagram” in Figure IV-3 (a). The 

dashed lines on the other contour plots show the boundaries that were established for the phase 

diagram. (These are not true phase changes – or even phase transformations—since the energy 

changes smoothly as the parameters are changed. However, uniquely demarking the dominant 
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geometry in each region of the parameter space allows us to understand the role played by the 

parameters.) This “phase diagram” is the principal finding for this chapter.  

In order to understand the phase diagram, we consider the following plots of V(s()) for 

three different values of re, (Figure IV-4). In these figures, the parameter re is fixed, the geometry 

is fixed by holding the appropriate angles constant,  and the potential energy as a function of  is 

plotted. Also shown on the figure is the potential energy found in the full (unbiased) search of the 

angle space described above at a given set of parameter values. This is labeled Vunbiased. 

For short rotors the global minimum is the PHB. Looking back to the s() graph, Figure 

IV-2, the s for both SS and PHB are degenerate. However by a small energetic difference the PHB 

is the global minimum because of its s2 (which the second nearest neighbor) is closer to the 

potential well than the one for the SS, see the radial distribution function “RDF” of (=0.1, re=0.3) 

Figure IV-5 (for details on how to construct the RDF see Chapter II and Appendix A.III). By 

0.25<<0.35 (see Figure IV-4(C)) the global minimum is clearly the SS as the s() becomes closer 

to the value of re=0.3. An example at =0.35 of the RDF is shown in Figure IV-5 which show that 

the number of nearest neighbor, N1=2, of the SS pattern is located in the potential well, while the 

N1=1 of the case of PHB. The SS geometry, however, becomes strained and untenable as  

increases and the geometry buckles to a DSS pattern. The honeycomb (HC) is favored for 

intermediate values of , since this geometry achieves 3-center intermolecular “bonds”, while 

avoiding the short 2-center “bonds” typical of the short stripe and distorted short stripe. As  

further increases, this geometry too becomes strained, and the pattern distorts away from the c2mm 

symmetry to the pinwheel structure. However, as can be seen, it retains its threefold symmetry, 

maintaining the p2 symmetry up to very large values of . 



 

74 
 

 

 (a)  (b) 

 

 (c)  (d) 

  
 (e)  (f) 
Figure IV-3: a) The adlayer GM geometries “ phase diagram” as a function of  , and  re, b) The contour 

plots potential energy V(, re), c) Order parameter 
|c|, d) Order parameter

|s|, e) Order parameter |
c|, 

f) Order parameter |
s|.   The labeling of the geometries PHB, SS, DSS, HC, HB, BF and PW are shown 

in Table IV-2. The geometries are shown in Figures IV-1. In each plots the color bars show the values of 

the contours. 

V 


|c| 

|s| 

|
c| |

s| 
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(A)

  

(B)

 

(C)

  
Figure IV-4: Plots of V(s()) for the Lennard-Jones potential for the geometries observed in Figure IV-1. 

(A) Upper panel re = 0.6; (B) Middle panel, re = 0.4; (C) Lower panel, re=0.3. Note: The DSS angles= 

{170 15}o 
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 PHB SS 

=0.10

             

=0.35

              

Figure IV-5: The radial distribution function of perfect herringbone “PHB” and short stripe “SS” for two 

different rotor length =0.1 and 0.35 at constant re=0.3. The black line is the Lennard-Jones potential at 

re=0.3. 

By increasing the re=0.4, Figure IV-4(B), two new geometries become accessible as GM which 

are the chiral herringbone “HB1” and the butterfly “BF”. Upon further increasing re=0.6, Figure 

IV-4(A), we notice the pinwheel “PW2” and the achiral herringbone “HB2” patterns as global 

minima. 

IV.3.b Special case =0.5, re=0.4 (4X4 unit cell) 

Lawrence-Hurt has studied a larger cluster with a 3X3 unit cell on triangular lattice sites 

using the Morse potential (138). He reported a GM geometry at around =0.5, re=0.4 other than 

what we found in this study. He called it a triangle geometry because it has triangular porous shape.  

Accordingly, to investigate whether the 2X2 unit cell represents a large space lattice we conducted 

the same method of minimization using a larger (4X4) lattice with an example system V(re=0.4, 

=0.5). 
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Two geometries which have been located are the global minimum butterfly “BF”, and pinwheel 

“PW” local minimum. The geometries are shown in Figure VI-12. These same GM was found by 

using the smaller 2X2 unit cell. 

 

 

Figure IV-6: A) The global minimum “BF” upper panel, and (B) local minimum “PW” of a 4X4 unit cell 

at re=0.4, and =0.5. 

IV.4 Conclusions and comments on the Adlayers of the Ditopic Molecule on a Triangular 

Lattice 

We have investigated the ground state energy and the structure of a rigid ditopic model 

molecule “rotor” on a triangular lattice as a function of both the interaction distance re and the 

molecular size . All of the work involved the use of a pairwise Lennard-Jones potential. We have 

noticed that for low  and re the most stable structures are the ones which have 2-center 
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intermolecular interactions, with these patterns designated as the short stripe “SS” and perfect 

herringbone “PHB”. The short stripe “SS” structure can be related to the brick wall structure of 

1,4 bis(phenyl(ethynyl))benzene on a Au(111) surface (90). The same structure has been reported 

by Fortuna et al (139), in which they have simulated the self-assembly of terephthalic acid, driven 

by hydrogen bonding, on a graphite surface (140). 

  For larger values of the/re ratio, the most common motif involves 3-center intermolecular 

interactions, with the pattern buckling to become chiral at the highest values. These are labeled 

honeycomb “HC” and pinwheel “PW”. The pinwheel structure which is a homochiral pattern has 

been reported by Marx et al, Hammonds et al and Mederos et al (93, 136, 137).  

For the highest re values the main geometry we found is the herringbone 2 “HB2 AABB” 

(see Chapter II for details). Such a structure is reported in the theoretical studies of diatomic 

molecule on triangular lattice (29, 93, 137). The structure also has been reported by Pint et al (17), 

although they have studied linear hexane on a graphite surface using the coarse graining model. 

The adlayer structures that we have reported mostly resemble the ones reported by 

Lawrence-Hurt and Berezutskiy (115, 138). With one exception Lawrence-Hurt reported a 

triangular “TR” GM pattern which we could not locate in this work. This could be due to, the fact 

that he used a Morse potential while we used a Lennard-Jones potential. Also we have additional 

order parameters, more than the one has been used by Berezutskiy, that can distinguish between 

the adlayer geometries. 

In conclusion theoretical minimization can be used as a simple method to investigate the 

self-assembly of a linear molecule with an anisotropic potential energy on a solid surface. We have 

located structures that resemble previous studies.  We have noticed that the pattern geometries 
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depend mainly on lattice properties (compared with the square lattice discussed in previous 

chapter) as well as the distance parameters such as the size () of the rotor and the site-to-site 

equilibrium distance (re) of the potential function. 
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Chapter V  

A Model Study of Adlayer Geometries of Rigid Tritopic Molecules 

on Triangular and Square Substrates 
 

V.1 Introduction 

Several theoretical studies by Szabelski and his coworkers have considered tritopic 

molecule monolayer self-assembly on a solid surface (20, 22-24, 46). In these studies the effect of 

intermolecular and intramolecular distances on the morphology of the adlayer has been reported.  

With a drastic simplification of the coarse-graining potential that represents the interaction 

between the molecules, they have found a variety of patterns, some of which possess chiral 

nanoporous networks. All of their calculations were carried out with an intermolecular site-to-site 

interaction potential that was relatively short-ranged. 

In our study we have used the same method described in Chapter II to study the effect of 

varying the length parameters of the Lennard-Jones potential on the pattern of the self-assembled 

adlayer of tritopic model molecules on square and triangular lattices. 

The chapter is organized as follows. In Section V.2 we present the results and discussion 

of the adlayer geometries found on triangular lattice. In Section V.3 we address the conclusions 

and comments of the adlayer structures on triangular lattice. In Section V.4 we present the results 

and discussion of the model molecule on square lattice. Finally, in Section V.5 we show the 

conclusions and comments. 
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V.2 Result and discussion (Tritopic on a Triangular Lattice)  

In order to interpret our results we suggest three key geometries, shown in Figure V-1. 

These were obtained using preliminary investigations. The figure shows, a) the honeycomb “HC” 

(because it has a hexagonal pore site) has wallpaper symmetry p3m1 and orientational angle{
𝜋

2
} ≡

{
𝜋

6
}, b) the perfect chevron “PCh” has symmetry p3m1 and orientational angle {0} ≡ {

𝜋

3
}, c) the 

reverse chevron “RCh” has symmetry p2mg and orientational angle {0,
𝜋

3
}. Note, the chevron 

family have the same orientational angle {} and p3 symmetry, one of which is the PCh has {0} ≡

{
𝜋

3
} geometry and p3m1 symmetry. Shown in the figure are the nearest neighbor NN site-to-site 

distances s as dashed red lines. 

       

 HC (p3m1)

 

 a) | Ψ3
𝑠| = 1, | Ψ3

𝑐| = 0, Ψ3
|𝑐|

= 0 

         PCh (p3m1)

 

 b) | Ψ3
𝑠| = 0, | Ψ3

𝑐| = 1, Ψ3
|𝑐|

= 1 

 

       RCh (p2mg)

 

c) | Ψ3
𝑠| = 0, | Ψ3

𝑐| = 0, Ψ3
|𝑐|

= 1 

Figure V-1: Schematic representation of the three key geometries on a triangular lattice with the value of 

their order parameters |3
s| , |3

s| and 3
|c|, a) Honeycomb “HC”, b) Perfect Chevron “PCh”, c) Reverse 

Chevron “RCh”. Note: The dashed red lines are the nearest neighbor NN, site-to-site distances s (Values 

and the relationships, as a function of , are shown in Figure V-2 and Table V-1). In parenthesis are the 

wallpaper symmetry. 
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The NN distances s() as a function of for the key geometries are shown in Figure V-2 and the 

relationships are identified  in Table V-1.   

 
Figure V-2: the nearest-neighbor site-to-site distance, s(), as a function of molecule length, , for the key 

geometries. The geometry labels HC, RCh and PCh stand for “Honeycomb”, “Reverse Chevron”, 

“Perfect Chevron”, Figure V-2.  Note: The relationships are shown in Table V-1. 

Table V-1: Closest nearest-neighbor (NN) site-to-site distance, s, for specified geometry on a triangular 

lattice as a function of . Including the number of nearest-neighbor sites N1.  

Geometry site-to-site distances Number of 

nearest-neighbors 

NN (N1) 

HC 𝑠(𝜌) = 1 − √3𝜌 6 

RCh 𝑠(𝜌) = 1 − 2𝜌 2 

PCh 𝑠(𝜌) = √1 − 3𝜌 + 3𝜌2 12 

V.2.a Distortion Pathways 

We also note that the geometries can be generated by a single distortion path starting from 

a certain geometry. Accordingly we suggest two arbitrary paths starting from the key honeycomb 

geometry in which all the orientational angles are 
𝜋

2
. These paths are shown in Figure V-3. In the 

figure, Path I, conrotatory of all rotors clockwise with angle {𝜙} ∈ [0,
𝜋

3
]; Path II disrotatory with 

angles {𝜙, −𝜙} ∈ [0,
𝜋

3
]. (Note {𝜙} ∈ [0,

𝜋

3
]; is the rotatory angle and it is different from the 



 

83 
 

geometry abbreviation {𝜃}).These paths will be used to explain the geometries that have been 

found in the unbiased minimizing of the potential V(, re) as a function of rotor length  and the 

equilibrium distance of the Lennard-Jones potential re. 

 

Figure V-3: Schemes of the suggested paths (see the text), Path I conrotatory {} starting with 

Honeycomb “HC”{/2} geometry and ends with HC {/6}, Path II, disrotatory {} starts with HC 

{/2}  and ends with HC {/6}. Note: rotatory paths {}, {} are different from geometry 

abbreviation {}, under each geometry. Note: the paths are of geometries on a triangular lattice. 

V.2.b Order parameters 

To distinguish between the patterns we have used three order parameters. These order 

parameters have been used in the spirit of the idea discussed in chapter II.   

|Ψ3
𝑠| = |

1

4
∑sin(3𝜃𝑖)

𝑖

|                               V-1 

|Ψ3
𝑐| = |

1

4
∑cos(3𝜃𝑖)

𝑖

|                                V-2 

Ψ3
|𝑐|

=
1

4
∑|cos(3𝜃𝑖)|

𝑖

                                V-3 
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Where, 𝜃𝑖 ∈ [0,
2𝜋

3
], are the angles of the unit cell rotors. We take the absolute value for the 

parameters because the angle is arbitrary. For instance the honeycomb “HC” geometry has two 

equivalent orientational angles, {
𝜋

2
} ≡ {

𝜋

6
}. The Ψ3

𝑠 = −1 for the first “HC/2”, while  Ψ3
𝑠 = 1 for 

the second “HC/6”. On the other hand the perfect chevron “PCh” has also two equivalent 

orientational angles {0} ≡ {
𝜋

3
}. The Ψ3

𝑐 = 1 for the first “PCh”, while  Ψ3
𝑐 = −1 for the second 

“PCh/3”. The values of each order parameter are shown below the key geometries in Figure V-1. 

In Figure V-4 we show the order parameters along the two arbitrary paths that has been described 

in Figure V-3. 

In Figure V-4, we notice that the order parameters can distinguish between all of the key 

geometries and the patterns in between. For instance, see path I (Figure V-4.A) for honeycomb 

(HC) {
𝜋

2
} ≡ {

𝜋

6
} the value of | Ψ3

𝑠| = 1  and decreases gradually to | Ψ3
𝑠| = 0 for the perfect 

chevron (PCh) {
𝜋

3
} ≡ {0}. While | Ψ3

𝑐| and   Ψ3
|𝑐|

, shown in Figure V-4.B and C both start with 0 

for HC and develop to 1 for PCh. On the other hand path II | Ψ3
𝑐| has a constant of value 0 along 

the path, while for path I both | Ψ3
𝑐| and  Ψ3

|𝑐|
 have the same values. 
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Figure V-4: The order parameter as a function of paths shown in Figure V-3 A) |3
s|, B) |3

c|, and C) 

3
|c|. The legends describe each path (I and II) inside each graph. The cartoons in A) show the patterns of 

path II while in B) show patterns of path I. Note: Path I and II are degenerate in both |3
s| and |3

c|. Note: 

{} [0, /2}; is the rotatory angle and it is different from geometry abbreviation {}. 

 

A) 

 

B) 

 

C) 
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V.2.c Results of full potential energy search on a triangular lattice. 

The results of a full unbiased search of potential energy V(, re) as a function of and re is 

shown in Figure V-5. In Figure V-6 we show the order parameters contour diagram of the full 

unbiased search as a function of  and re. The large and re are physically meaningless and not 

color coded. 

We notice from Figure V-5 and V-6 that the dominant GM geometry at low and re is the 

honeycomb “HC” geometry. And at low re and large  the dominant pattern is the reverse chevron 

pattern. For a large /re ratio the dominant geometries are the chevron structures (“Ch” and “PCh”). 

To explain the geometries in detail we will study horizontal cuts of the contour diagrams at 

constant re by using a biased calculation (the paths suggested earlier Figure V-3) and an unbiased 

calculation using the full space minimization. We will show low re=0.3, medium re=0.4 and high 

re=0.5. Those choices contain most the illustrative geometries of the full space potential energy 

minimization. 

Case 1: Horizontal cut at re=0.3 for tritopic molecule on a triangular lattice 

 Figure V-7 shows the biased potential energy calculation of the three key geometries in 

addition to the unbiased full space potential energy minimization. Several geometries along this 

horizontal line (re=0.3) are shown in Figure V-8. Looking back to Figure V-2 the reverse chevron 

“RCh” is expected to be the lowest energy state. However we noticed from Figure V-7 that at 

low the HC and RCh geometries are energetically very close, with the HC being the 

global minimum as can be seen in Figure V-5. This can be explained by looking at Table V-1 

where we can see the number of the nearest neighbor site-to-site “N1” for HC and RCh are 6 and 

2, respectively, which gives HC the chance to be the global minimum. In the region 0.21< <0.34,  
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Figure V-5: The parameter phase diagram of a tritopic molecule on a triangular lattice  as a function of , 

re) (Left).The contour plots of potential as a function of  and re (Right). The labels “HC”, “Ch”, “HB”, 

“RCh” and “PCh” stand for honeycomb, chevron, herringbone, reverse chevron, and perfect chevron, 

respectively. All geometries are shown in Figure V- 8, 12 and 15.The broken black lines show the 

borders between the patterns. The color bar is the color codes of the value of the energy. 

 (a)

   

(b)

 

(c)

  
Figure V-6: the contour plots of the order parameters of tritopic molecule on triangular lattice; (a) Order 

parameter,|3
s| , (b) Order parameter |3

c|; (c) Order parameter 3
|c|. The borders are described in Figure 

V-5. The color bars beside each diagram represent the color-code values of the order parameters. 
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as the optimum NN distance s (s becomes closer to re=0.3) overcomes the number of the nearest 

neighbor N1, the global minimum is the RCh pattern. As  increases, the s of the RCh pattern hits 

the repulsive distance  of the potential, the geometry buckles to herringbone structure. The 

herringbone structure has two different orientational angles {,}. Bythe 

global minimum is the HC geometry. After that the HC reaches the repulsive region (see Figure 

V-2) and buckles to Chevron “Ch” geometry. The Ch structure has p3 symmetry group and is 

chiral because it possess no mirror plane. 

The same story can be seen using the biased potential energy calculation, as shown in 

Figure V-9, for path I and path II (which are described in Figure V-3). For =0.20 the global 

minimum is the HC pattern {0}, where all the orientational angles are equal. By =0.34 the global 

minimum is the RCh {
𝜋

3
, 0}. The herringbone structure is the ground state for =0.36. By =0.40 

the HC is the global minimum. Finally by =0.49 the chevron “Ch” is the global minimum. 

 

Figure V-7: The potential energy function V() for the key geometries described in Figure V-1, for re = 

0.3. The solid black line is the potential of the GM obtained through the unbiased search. The legends 

shown inside the graph represent the labeling of the key geometries shown in Figure V-1. 
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 HC =0.20 (p3m1) RCh =0.34 (p2mg) HB =0.36 (pg) 

 

HC =0.40 (p3m1) Ch =0.49 (p3)  

Figure V-8: The geometries of tritopic molecule on triangular lattice of the unbiased search for different 

’s (horizontal cut at constant re=0.3 of Lennard-Jones potential V(), Figure V-5 and Figure V-7). In 

the parentheses is the symbol for the wallpaper symmetry (for details see Appendix C). The labels below 

each geometry are abbreviations that stand for “HC” honeycomb, “RCh” reverse chevron, “HB” 

herringbone, “Ch” chevron. Chevron structure is chiral, because it has no symmetry mirror plane. 

Chevron family has the same orientational angle, {}. 

Local minima, re=0.3, of tritopic molecule on a triangular lattice 

Figure V-10, shows some examples of the potential energy histogram of all the minima 

found by considering a large number of minimization for the system with (, re=0.3). As expected 

at =0.20 the next higher energetic local minimum to the HC global minimum is the RCh pattern 

due to the fact that the two are energetically very close. By =0.34 we have one minima which is 

the RCh pattern global minimum. By =0.36 the only pattern found is the GM herringbone 

structure. At =0.40 all the starting points descend to the HC structure where all the orientational 

angles = /2. For a larger molecule with =0.49 three minima are found with the chevron “Ch” 

geometry being the global minimum. The second minimum, an irregular shape, has the highest 

probability among the minima. The third one has orientational angles {76,16}o. 
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 =0.20 =0.34 

    

 =0.36 =0.40 

 

=0.49 

Figure V-9: Potential energy as a function of the rotatory paths V(re=0.3) at constant values of  (see 

Figure V-3). Each graph shows path I conrotatory (Solid black line) and path II disrotatory (cut green 

line). Shown in each panel is a cartoon of the global minimum “GM” of the paths. Note: for clarity graph 

1 (=0.2), V-scale is different from the other scales. For=0.49 path II is repulsive. 
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 =0.20 =0.34 

        

 =0.36 =0.40 

 

=0.49 

Figure V-10:  The probability histogram energy potentials at constant re=0.3 for rotor lengths =0.2, 0.34, 

0.36, 0.40, and 0.49. In each plot shown the cartoons of the minima found by the unbiased search of many 

starting points. Note: at =0.2 the energies of the minima are very close (for clarity the inner panel shows 

a different energy scale). 

Case 2: Horizontal cut at re=0.4 for a tritopic molecule on a triangular lattice 

 The potential energy plot for the key geometries with the unbiased potential energy curve 

V(, re=0.4) are shown in Figure V-11. The global minima geometries along this potential energy 

curve, V(, re=0.4), are shown in Figure V-12. Figure V-13 shows the potential energy V(), for 
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the rotor length shown in Figure V-12,  as a function of the rotatory paths described above (see 

Figure V-3). As expected (look back to Figure V-2 and Table V-1) for a short rotor <0.35 the 

global minimum is the honeycomb structure, although for <0.27 the HC and RCh geometries 

energetically compete, the HC pattern being the global minimum. This also noticed in Figure V-

13, panels, =0.24 and 0.34, where the global minimum is HC in both panels. By >0.35 the global 

minimum is the chevron structure with all orientational angles being the same (see =0.39 and 

=0.49 as examples Figure V-11 and 13). 

Local minima, re=0.4, of a tritopic molecule on a triangular lattice 

In Figure V-14, we show the potential energy histograms of several rotor lengths at a 

constant re=0.4. For a small rotor, =0.24, the only minimum we found is the HC GM pattern. By 

increasing the rotor length, =0.34, we see a second local minimum where the HC GM pattern is 

the most probable geometry. By =0.39, two other local minima can be seen with the lowest energy 

LM has the highest probability. For larger =0.49 the irregular pattern LM which has the highest 

probability, and is found along with the chevron GM geometry.  
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Figure V-11: The potential energy function V() for the key geometries (on triangular lattice) described 

in Figure V-1, for re = 0.4. The solid black line is the potential of the GM obtained through the unbiased 

search. The legends shown inside each graph represent the labeling of the key geometries shown in 

Figure V-1. 

  

 HC =0.24 (p3m1) HC =0.34 (p3m1) 

    

 Ch =0.39 (p3) Ch =0.49 (p3) 

Figure V-12: The geometries (on a triangular lattice) of the unbiased search for different values of  

(horizontal cut at constant re=0.4 of Lennard-Jones potential V(), Figure V-5 and Figure V-11). In the 

parentheses is the symbol for the wallpaper symmetry (for details see Appendix C). The labels below 

each geometry are abbreviations that stand for “HC” honeycomb, “Ch” chevron. Note: Chevron structure 

is chiral as it possess no mirror plane. 
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 =0.24 =0.34  

  

 =0.39 =0.49 

Figure V-13: Potential energy as a function of the rotatory paths V(re=0.4) (on a triangular lattice) at a 

constant value of  (see Figure V-3). Each graph shows path I conrotatory (Solid black line) and path II 

disrotatory (cut green line). Shown in each panel is a cartoon of the global minimum “GM” of the paths. 

Note: for clarity graph 1 (=0.24), the inner panel’s V-scale is different from the other scales. For=0.39 

and 0.49 path II is repulsive. 

     
 =0.24 =0.34  

   

 =0.39 =0.49 

Figure V-14:  The probability histogram energy potentials at constant re=0.4 for rotor lengths , 

=0.34, 0.39, and 0.49. In each plot shown are the cartoons of the minima found by the unbiased search 

of many starting points. (The lattice is triangular) 
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Case 3: Horizontal cut at re=0.5 for tritopic molecule on a triangular lattice 

 Looking back to the s() plot (Figure V-2) and the number of nearest neighbors N1 (Table 

V-1) the RCh structure has lower s() distance but HC geometry possess larger N1. We predict 

that both the HC and the RCh patterns compete on the position of the GM. Also we predict from 

the figure that perfect chevron “PCh” geometry is accessible for large . This is also can be seen 

in Figure V-15, which shows the potential energy of the key geometries (Figure V-1) with the 

unbiased potential energy search V(, re=0.5). In the figure we noticed that at low the HC and 

RCh geometries are energetically very close. By >~0.35, the PCh structure, {0} ≡ {
𝜋

3
}, is the 

global minimum. Examples of the structure along this constant re=0.5 line are shown in Figure V-

16.  

In Figure V-17 we show the potential energy V(, re=0.5) for the paths (described in 

Figure V-2). By looking at the figure the short rotors ( as example) we see that the HC 

pattern is the global minimum. By=0.31 the global minimum is the chevron structure with all 

the orientational angles being the same. As the increases (example =0.41) the GM is the perfect 

chevron {0} ≡ {
𝜋

3
}. 

Local minima, re=0.5, for a tritopic molecule on a triangular lattice 

Figure V-18 shows the potential energy histogram of the minima found at a constant 

re=0.5. The region that possess more than one minima is the region that has the chevron as the GM 

(example =0.28). For the other regions, all the starting points descend to the global minima. 
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Figure V-15: The potential energy function V() for the key geometries described in Figure V-1, for re = 

0.5. The solid black line is the potential of the GM obtained through the unbiased search. The legends 

located inside each graph represent the labeling of the key geometries shown in Figure V-1. 

    

 HC =0.28 (p3m1) Ch =0.31 (p3) 

 

PCh =0.41 (p3m1) 

Figure V-16: The geometries of the unbiased search for different ’s (at constant re=0.5 of Lennard-Jones 

potential V(), Figure V-5 and Figure V-11). In the parentheses is the symbol for the wallpaper 

symmetry (for details see Appendix C). The labels below each geometry are abbreviations that stand for 

“HC” honeycomb, “Ch” chevron and “PCh” perfect chevron. 
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 =0.20 =0.28  

 
 =0.31 =0.41  

Figure V-17: Potential energy as a function of the rotatory paths V(re=0.5) at constant ’s (see Figure 

V-3). Each graph shows path I conrotatory (Solid black line) and path II disrotatory (cut green line). 

Shown in each panel is a cartoon of the global minimum “GM” of the paths. Note: for clarity graph 1 

(=0.20), the inner panel’s V-scale is different from the other scales. For=0.41 the path II is repulsive. 

 
 =0.20 =0.28  

 
 =0.31 =0.41  

Figure V-18:  The probability histogram energy potentials at constant re=0.5 for rotor lengths , 

=0.28 0.31, and 0.41. In each plot are shown the cartoons of the minima found by the unbiased search of 

many starting points. 
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V.3 Conclusion for a Tritopic Molecule on a Triangular Lattice 

We have investigated the adlayer self-assembly of a tritopic model molecule on a triangular 

lattice using a simple coarse-graining Lennard-Jones potential. We have found a variety of adlayer 

patterns that have different porous shapes such as a hexagon. We have located a chiral pattern such 

as chevron “Ch” on triangular lattice, although the adsorbate molecules are achiral and possess a 

D2h symmetry point group. 

At low  the honeycomb “HC” is the dominant GM while the reverse chevron “RCh” is 

the dominant global minimum for low re. The HC with 3-center of intermolecular interaction 

appears again as the GM for high /re ratio. As the /re ratio increases the honeycomb buckles to 

the chiral chevron “Ch” structure. Szabelski et al (23) have reported the reverse chevron “RCh” 

and the chevron “Ch” structure on a triangular lattice using theoretical simulation and an 

experimental study of 1,3,5-tris(pyridine-4-ylethynyl)benzene on graphite surface (46). 

At the highest re values, the dominant GM is the perfect chevron “PCh” pattern which is 

achiral, compared with the other chevron structures, because the structure possess a mirror plane 

of symmetry. The perfect chevron “PCH” on a triangular lattice has been reported theoretically by 

Szabelski et al (23, 46) and experimentally by Kahn et al (141). 

In the conclusion, we located some adlayers of a tritopic molecule on a triangular lattice 

which have been reported in previous studies as well as some newly observed geometries. 
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V.4 Results and discussion (Tritopic on a Square Lattice)  

The contour plot of the ground state potential energy for the global minimum geometries 

is shown in Figure V-19. The nearest neighbor site-to-site distances s()as a function of  for the 

selected high symmetry geometries are described in Figure V-20 and Table V-2. The symmetry 

and abbreviation keys are shown in Table V-3. The geometries of the ground states and the 

symmetry plane groups at different values of re are depicted in Figure V-21, 22 and 23. 

The main geometries are the followings: 

1. The ribbon “RB” structure with p2mm symmetry and a hexagonal porous sites,  

2. The octagon “OCT” as it has an octagon porous shape and has p4mm symmetry. 

3. The distorted octagon “DOCT” has a distorted octagon shape and p4 symmetry.  

4. The distorted ribbon “DRB” has cm symmetry group;  

5. The chevron “CH” structure with all the orientational angle are the same {
𝜋

4
} with 

pm symmetry; 

6. The reverse chevron “RCH” with p2mg symmetry; distorted chevron ‘DCH” with 

p4gm symmetry. 

 In addition several distorted structures are found in the transition borders between the main 

geometries. These geometries will be discussed in detail in the next sections. 
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Figure V-19: Geometry distribution “phase diagram” (Left) as a function of (, re) of the ground states of 

the tritopic system on a square lattice. Contour energy plot (Right) V(, re). The black cut lines indicate 

the borders between different patterns explained in Figure V-21, 22 and 23. The key of the plots 

colorations represent the potential energy per rotor.  For clarity the abbreviations for all geometries 

labeling are in Table V-3. 

 
Figure V-20: The nearest-neighbor site-to-site distance, s(), as a function of molecule length, , for 

chosen fixed geometries on a square lattice. The geometry labels RCH, CH, DCH, OCT, and RB stand for 

“Reversed Chevron”, “Chevron”, “Distorted Chevron”, “Octagon” and “Ribbon”, respectively are shown 

in Figure V-21, 22 and 23. 

Table V-2: Closest nearest-neighbor (NN) site-to-site distance, s, for specified geometry (on a square 

lattice) as a function of . Including the number of nearest-neighbor. Note that there are two possible NN 

distances for the Reversed Chevron and Distorted Chevron geometry. 
Geometry site-to-site distances Number of nearest-

neighbor NN (N1) 

Reversed Chevron 

(RCH) 𝑠(𝜌) = min(√1 − 2√3𝜌 + 4𝜌2, √1 − 3𝜌 + 3𝜌2) 
2,4 

Chevron (CH) 
𝑠(𝜌) = √1 − 𝜌 (√2 + 2 cos (

𝜋

12
)) + 3𝜌2 

4 

Distorted Chevron 

(DCH) 𝑠(𝜌) = min(√1 − 𝜌 (√2 + 2 cos (
𝜋

12
)) + 𝜌2(2 + √3), √2 − 2𝜌 ) 

4,1 

Octagon 

(OCT) 
𝑠(𝜌) = 1 − 2𝜌 cos(

𝜋

12
) 

 

2 

Ribbon (RB) 𝑠(𝜌) = 1 − 2𝜌 1 
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Table V-3: Geometry name, abbreviation and symmetry plane group of the adlayers on a square lattice 

(see Figure V-21, 22 and 23, and Appendix C). 

Geometry name Abbreviation Symmetry plane group 

Ribbon RB p2mm 

Octagon OCT p4mm 

Distorted Octagon DOCT p4 

Chevron CH pm 

Distorted Reversed Chevron DRCH1 p2 

Distorted Chevron DCH p4gm 

Reversed Chevron RCH p2mg 

Distorted Ribbon DRB cm 

Distorted Reversed Chevron 2 DRCH2 pg 

Distorted Reversed Chevron 3 DRCH3 p4 

      

RB =0.39 (p2mm) OCT =0.41 (p4mm) DOCT =0.42 (p4) 

    

 DRB =0.43 (cm) DRCH1 =0.50 (p2) 

Figure V-21: The geometries of the unbiased search (on a square lattice) for different values of  (at 

constant re=0.2 of Lennard-Jones potential V()). In the parentheses is the symbol for the wallpaper 

symmetry (for details see Appendix C). The labels below each geometry are the abbreviations described 

in Table V-3. DOCT and DRCH1 structures are chiral, because they have no symmetry mirror plane.  
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RB =0.18 (p2mm) OCT =0.31 (p4mm) DOCT =0.33 (p4) 

                       

CH =0.40 (pm) DRCH2 =0.44 (pg) DRCH1 =0.46 (p2) 

 
DRCH3 =0.50 (p4) 

Figure V-22: The geometries of the unbiased search (on a square lattice) for different values of  (at 

constant re=0.4 of Lennard-Jones potential V()). In the parentheses is the symbol for the wallpaper 

symmetry (for details see Appendix C). The labels below each geometry are abbreviations described in 

Table V-3. DOCT and DRCH structures are chiral, because they have no symmetry mirror plane.  
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OCT = 0.25 (p4mm) DOCT  = 0.26 (p4) CH = 0.31 (pm) 

     

DRCH2  = 0.34 (pg) DCH  = 0.45 (p4gm) DRCH3  = 0.46 (p4) 

 

RCH  = 0.48(p2mg) 

Figure V-23: The geometries of the unbiased search (on a square lattice) for different values of  (at 

constant re=0.5 of Lennard-Jones potential V()). In the parentheses is the symbol for the wallpaper 

symmetry (for details see Appendix C). The labels below each geometry are abbreviations described in 

Table V-3. DOCT and DRCH structures are chiral, because they have no symmetry mirror plane.  
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Results at constant values of re of tritopic molecule on a square lattice 

To show and explain the geometries, we selected three horizontal lines of energy contour 

(Figure V-19) at constant re’s, one at low re=0.2, one at medium re=0.4, and one at high re=0.5.  

Case 1: re=0.2 of a tritopic molecule on a square lattice  

In Figure V-24 we plot the potential energy as a function of  V(,re=0.2) of some ground 

state geometries with the potential energy, V(,re=0.2), of the unbiased calculation. For a certain 

 if the potential of the biased calculation of a certain structure matches the unbiased potential 

curve the ground state pattern corresponds to that structure.  

The geometries found in this horizontal cut (re=0.2) are shown in Figure V-21. For< 0.4 

there is a competition between two structures, the ribbon “RB” and octagon “OCT”. Using the 

radial distribution function, Figure V-25, we cannot distinguish which one is the global minimum, 

because the site-to-site distances are very close for both (See Figure V-20). However there is a 

very tiny energy difference, in the range 10-7 between the two, being the RB the global minimum. 

After this region the two become distinguishable to the benefit of OCT as the global minimum. 

The radial distribution function for =0.41, Figure V-6, shows that the RB structure becomes 

repulsive (see also Figure V-20, s(0.4)0.2).  At =0.42 the global minimum is the chiral distorted 

octagon “DOCT” structure with p4 symmetry. In the region the [0.43-0.47] the  distorted ribbon 

structure with cm symmetry is the global minimum. Finally in the region of >0.47 the distorted 

reverse chevron “DRCH” with p2 symmetry is the global minimum.  This structure is also chiral 

because it has no mirror plane.  
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Figure V-24: The potential energy function V() for the geometries described in Figures V-21, 22, 23 

(Table V-3) at re = 0.2. The solid black line is the potential of the GM obtained through the unbiased 

search.  

 =0.39 =0.41 

RB

      

OCT

    

Figure V-25: Radial distribution function, showing the number of neighbor counts, N1 as a function of 

site-to-site distance s(), for RB and OCT geometries for the case re=0.2. The labels RB, and OCT are 

described in Table V-3 and Figure V-21. The black line is the Lennard-Jones potential at re=0.2. 
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Local minima, re=0.2, of a tritopic molecule on a square lattice: 

 In Figure V-26 we show the probability histogram for all minima of several representative 

examples at re=0.2. At =0.39 there are two minima, the ribbon GM structure and another local 

minimum which has a low probability density d(V) <20%, with orientational angles {
𝜋

3
, 0}. By 

=0.41 most of the starting points descend to the octagon structure GM plus a very rare LM 

d(V)<5%, with orientational angles {107, 73}o. At =0.42 there are thee minima. The lowest 

minimum is the chiral distorted octagon structure. The second LM is the distorted ribbon pattern 

with significantly high probability density. The last one has low probability and irregular shape. 

By =0.43 the distorted octagon and distorted ribbon switch their positions so the distorted ribbon 

structure is the global minimum, with high probability. The last example at =0.5 has several 

minima being the chiral distorted reverse chevron GM. The second LM, with the highest 

probability, is the irregular pattern.  
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    

 =0.39  =0.41 

       
 =0.42 =0.43 

 
=0.50 

Figure V-26: Probability histograms of the minima of Lennard-Jones at constant re=0.2 for several rotor 

lengths . In each plot are shown the cartoons of the minima found by the unbiased search of many 

starting points. 
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Case 2: re=0.4 of a tritopic molecule on a square lattice 

The potential energy functions of the main ground state geometries as a function of  

V(,re=0.4), and unbiased potential energy curve are shown in Figure V-27. The patterns of the 

global minima are shown in Figure V-22. Again for short rotors ( < 0.18) using the radial 

distribution function, Figure V-28, we cannot distinguish which one, the RB structure or the OCT 

geometry, is the global minimum, because the site-to-site distances are very close for both (look 

back to s() Figure V-20).  After this region the two become distinguishable to the benefit of OCT 

pattern as the global minimum (see the radial distribution function for =0.31, Figure V-28). In 

the region of =0.32 and 0.33, the chiral DOCT pattern is the global minimum Figure V-28. 

As expected, from Figure V-20 and also noticed in Figure V-27, the chevron “CH” 

structure is the ground state in the range  [0.34-0.40]. The radial distribution function, for a case 

of =0.38 is shown in Figure V-28, which shows the N1 site-to-site distance at the optimum 

equilibrium distance of the potential. In the region of >0.4 the chiral distorted reverse chevron 

pattern “DRCH” is the global minima. 

Local Minima, re=0.4, of tritopic molecule on a square lattice  

In Figure V-29 we show the histogram of the probability density of the minima of several 

rotor lengths at constant re=0.4. For the first one, =0.18, all the starting points descend to the 

ribbon GM structure. By =0.31, the global minimum is the octagon, the distorted ribbon is the 

second local minimum and an irregular pattern is the last local minimum. By =0.33, the chevron 

structure appears as the last local minimum with low probability. At =0.4 the chevron becomes 

the global minimum and a distorted high probable structure is a second local minimum. 
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Figure V-27: The potential energy function V() for the geometries (on a square lattice) described in 

Figure V-22 for re = 0.4. The solid black line is the potential of the GM obtained through the unbiased 

search.  

 =0.18 =0.31 =0.38 

RB
 

   

OCT

   

CH

      

Figure V-28: Radial distribution function, showing the number of neighbor counts, N1 as a function of 

site-to-site distance s(), for RB, OCT and CH geometries (on a square lattice) for the case re=0.4. The 

labels RB, OCT and CH are described in Table V-3 and Figure V-22.  
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 =0.18 =0.31 

 

 =0.33 =0.4 

 

 =0.44 =0.46 

 

=0.50 

Figure V-29: Probability histograms of minima (on a square lattice) of Lennard-Jones at constant re=0.4 

for several rotor lengths . In each plot shown the cartoons of the minima found by the unbiased search of 

many starting points. 
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Case 3: re=0.5 of a tritopic molecule on a square lattice 

The structures along re=0.5 are shown in Figure V-23. The potential energy curve is shown 

in Figure V-30. By examining Figure V-30, the region of 0<<0.25, it is seen that the competition 

between RB and OCT occurs as expected because their energies are very closed, with OCT being 

the global minimum of >0.06. As the get closer to 0.25, the CH structure appears as a third 

minimum, until it becomes the ground state in the region of [0.27-0.31]. The histogram local 

minima diagrams, Figure V-31, show some examples for = 0.25, 0.26 and 0.31. For >0.31 the 

local minimum chevron structure accompanies the other global minima (DRCH, DCH and RCH) 

although it possesses a highly positive potential energy after =0.36 (see the histogram for LM of 

=0.4 Figure V-31 and the radial distribution functions of CH, Figure V-32). 

A case that is worthy to focus on is the region of 0.35<<0.46 at which the DCH pattern is 

the global minimum with p4mg symmetry. The same structure has been experimentally located by 

Kahn et al (141). They have located the most energetically stable structure for the self-assembly 

of a highly packed monolayer of hexaazatrinaphthylene on Au(111) surface. The radial distribution 

function and the histogram of the local minima diagram of =0.4 are depicted in Figure V-32 and 

Figure V-31, respectively. 
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Figure V-30: The potential energy function V() for the geometries (on a square lattice) described in 

Figure V-25 at re = 0.5. The solid black line is the potential of the GM obtained through the unbiased 

search. The abbreviations are shown in Table V-3. 

  

 =0.25 =0.26 

 

 =0.31 =0.40 

Figure V-31: Probability histograms of minima (on a square lattice) of Lennard-Jones at constant re=0.5 

for several rotor lengths . In each plot the cartoons of the minima, found by the unbiased search of many 

starting points, are shown. Note: For =0.40 the chevron structure are highly positive (repulsive). 
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

 =0.31 =0.40 =0.48 

CH

       

DCH

    

RCH

     

Figure V-32: Radial distribution function, showing the number of neighbor counts, N1 as a function of 

site-to-site distance s, for CH, DCH and RCH geometries (on a square lattice)  for the case re=0.5. The 

labels CH, DCH and RCH are described in Figure V-23 and Table V-3.  
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V.5 Conclusion for a  Tritopic Molecule on a Square Lattice 

We have investigated the adlayer self-assembly of the tritopic model molecule on a square 

lattice using a simple coarse-graining Lennard-Jones potential. We have found a variety of adlayer 

patterns that have different porous shapes such as the octagon and the hexagon. We have located 

chiral patterns such as the distorted octagon “DOCT” and the distorted reverse chevron “DRCH”, 

although the adsorbate molecules are achiral and possess the D2h symmetry point group. 

At low re values the ribbon “RB” and the octagon “OCT” patterns, with 2-center 

intermolecular interaction, are energetically very close with the RB being the global minimum 

structure. As re increases, for a low /re ratio, the octagon “OCT” structure is the dominant GM, 

while at higher /re, the geometry buckles to the chiral distorted octagon “DOCT”. As the ratio 

increases the chevron “CH” structure dominates the other structures, with 3-center intermolecular 

interaction.  

At high, re >0.5, the pattern buckles to many distorted patterns as the chevron structure 

becomes repulsive. One of the patterns is the chiral distorted reverse chevron “DRCH”. Another 

structure is the distorted chevron “DCH”. This motif has been observed experimentally by Kahn 

et al as the lowest minima of a compact mono-layer of hexaazatrinaphthylene on gold surface 

(141). 
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Chapter VI  

A Model Study of Adlayer Geometries of Rigid Tetratopic 

Molecules on Square and Triangular Lattices 
 

VI.1 Introduction 

Szabelski and his coworkers examined the self-assembly of a 4-fold cross-shaped model 

molecules on a solid surface (20, 25, 142, 143).  The potential energy between two molecules is 

governed by the sum of the site-to-site interactions between the molecules. The authors use a 

constant site-to-site potential energy. The molecular size is changed by changing the number of 

sites on each “arm”. Small molecules have a single site; the authors go as far as three sites per arm. 

The molecules were placed on a large square lattice – initially sparsely—then were allowed to 

move on the lattice, using a Metropolis Monte Carlo algorithm. Low potential energy “clusters” 

were recorded. The authors’ found compact structures containing square “voids” or “pores” 

between the arms, which increased in size as the number of interaction sites of the molecule 

increased. None of the pores were chiral. This was a simple calculation, using a fixed site-to-site 

potential energy.  

D4h, D5h and D6h symmetry patchy models (see Chapter I) have been studied by Doye et 

al using Monte Carlo simulation (114). The interactions are based on the Lennard-Jones potential. 

The sites were placed on disks with 4, 5 and 6 interaction sites regularly arranged on the surface 

of the disks. Without considering the size of the molecule they have reported two patterns. One in 

which the molecules have been arranged to form square pores, the other forms rectangular pores. 
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In this chapter we will study the pattern of tetratopic molecule on square and triangular 

lattices. The method is outlined in Section VI-2. Our results and discussions will be shown in 

Section VI-3, including all the geometries that have been found on a square lattice. In Section VI-

4 we discuss the results for a triangular lattice. In Section VI-5 we conclude our study and compare 

our results with previous studies. 

VI.2 Method 

 As described in Chapter II our model system is composed of tetratopic molecules (one 

molecule per lattice site). Each molecule is composed of four atom-like sites located at the tip of 

each arm (see Figure II-1 in Chapter II). The intermolecular potential is calculated using pairwise 

site-to-site (coarse-graining) additive interactions using the Lennard-Jones potential. The size of 

the molecule is described by  which is the arm length from the molecule’s center of mass.  

We use the same method described earlier in Chapter II to minimize 1000 stating points. 

Each starting point is a (2x2) “unit cell” space, [1, 2, 3, 4] and minimized to the zero gradient 

convergence criterion.  

 



 
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VI.3 Results and Discussion of a Tetratopic Molecule on Square Lattice: 

In order to understand how the ground state (most stable) geometry changes with the 

parameters, it is useful to consider some key geometries. If the potential is governed by attraction, 

then (for a site-to-site potential) the geometry must optimize the potential energy to produce the 

strongest attraction. Given the nature of the site-to-site interaction, the maximum attraction is 

obtained when the nearest site-to-site separations are minimized. Such a geometry is shown in 

Figure VI-1a. It has p4mm symmetry, and we refer it as “square” (SQ) (p4mm), since the pores 

enclosed by the molecular “arms” are square. As the rotor length increases, the molecular sites 

must avoid each other and relax to other geometries (as will be shown later). The square geometry 

becomes forbidden when s() (σ=
re

√2
6 ) (all of the distance parameters of the Lennard-Jones 

potential are defined in Chapter II). The nearest site-to-site distances s() as a function of rotor 

length () for a square pattern are depicted in Figure VI-2. The relationships of s() are shown in 

Table VI-1. 

By contrast, if the rotor length is further increased, the pattern relaxes to more stable 

geometries, and the most stable geometry will be that in which all of the rotors twisted by /4. 

This geometry is called a “cross” (CR), and also has p4mm symmetry, (Figure VI-1c). Another 

geometry, which has fixed angles, located between the square and the cross patterns is referred to 

as checkerboard (CB) and has p4mm symmetry, (Figure VI-1b). A structure which will be 

referred to as “compact” (CO) with p4 symmetry has shown in Figure VI-1d. This structure is 

chiral as it possesses no mirror plane of symmetry. To explain the chirality we introduce a compact 

structure for which all orientational angles are the same {
𝜋

8
}. The last key geometry is referred as 

“tilt” and has orientational angles {
𝜋

8
, −

𝜋

8
} with p4gm symmetry.  
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a) SQ (p4mm) b) CB (p4mm) 

 

   

c) CR (p4mm) d) CO (p4) 

 

e) TI (p4gm) 

Figure VI-1: The main ground state pattern for the tetratopic system of rotors on a square lattice. a) 

Square (SQ), b) Checkerboard (CB), c) Cross (CR), d) Compact (CO), e) Tilt (TI). The symmetry plane 

groups are given in parenthesis (described Appendix C). 

 
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Figure VI-2: The nearest-neighbor site-to-site distance, s(), as a function of molecular length, , for key 

geometries. The geometry labels square “SQ”, checkerboard “CB” cross “CR”, compact “CO” and tilt 

“TI” are shown in Figure VI-1. The number of nearest-neighbors NN (N1) are shown in Table VI-1. 

Table VI-1: Closest nearest-neighbor (NN) site-to-site distance, s, for specified geometries as a function 

of . In the last column the number of the nearest-neighbors (N1) are included. 

Geometry site-to-site distances Number of 

nearest-neighbor 

NN (N1) 

Square “SQ” 𝑠(𝜌) = 1 − 2𝜌 4 

Checkerboard “CB” 
𝑠(𝜌) = min (√1 − (2 + √2)𝜌 + (2 + √2)𝜌2, 

 √2 − 2𝜌) 

8,2 

Cross “CR” 𝑠(𝜌) = 1 − √2𝜌 8 

Compact “CO” 
𝑠(𝜌) = min (√1 − 4𝜌 cos (

𝜋

8
) + 4𝜌2,  

√1 − 2√2𝜌 cos (
𝜋

8
) + 2𝜌2) 

4,8 

Tilt “TI” 𝑠(𝜌) = 1 − 2𝜌 cos (
𝜋

8
) 4 

 

 
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In order to understand the changes in geometry, many of the important changes can be 

described by considering a single molecular rotation angle, . The square and cross patterns are 

both {} superlattices. The square has {0} in the simple notation or i=[0,0,0,0] in the full notation. 

On the other hand, the cross and checkerboard have {
π

4
} and {0,

π

4
} in the simple notation, 

respectively. 

The patterns can be changed by four paths of single molecular rotations. The first path 

conrotatory by 𝜙 ∈ [0 −
𝜋

4
] is notated by {𝜙}, the second path disrotatory is given by {𝜙, −𝜙}. The 

third path is notated by {0, 𝜙}. The final path has [0, 𝜙,−𝜙, 0] full notation. The descriptions of 

the paths are shown in Figure VI-3. The first path leads to the cross pattern through a “distorted 

square”, which has p4 symmetry with superlattice notation {𝜙}. We note that the absence of a 

mirror plane means that this superlattice is chiral. Path II also leads to the cross pattern “CR” 

through a geometry called a “distorted cross” and has p4gm symmetry group. The third and fourth 

paths are almost degenerate and end with the checkerboard structure “CB” through a geometry 

referred to as “square twisted cross” and has p4gm symmetry. 

VI.3.a Order parameters 

We use the Ψ4
𝑐 , Ψ4

|𝑐|
, and |Ψ4

𝑠| order parmeters already defined in Chapter 2. We have 

recorded the order parameter for each stationary point found. 

The order values of parameters along the suggested single angle rotation paths are shown 

in Figure VI-4 for ∅ ∈ [−
𝜋

4
,
𝜋

4
]. By looking at the figure we note the following. The first of these 

order parameters, Ψ4
𝑐 , can distinguish between the three limiting geometries shown in Figure VI-

1 and Table VI-1: For the SQ, the value is 1; for the CB, the value is 0; for the CR, the value is -
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1; for CO, the value is 0 and for TI, the value is 0. The Ψ4
𝑐 order parameter can therefore be used 

as a “binning” variable to assign geometries that are similar to these five key geometries. 

 

Figure VI-3: The description of rotating the square pattern. Path I conrotatory, Path II disrotatory (both 

lead to cross pattern), Path III and IV lead to checkerboard pattern. The patterns are described in Figure 

VI-1. 

The second of these order parameters, Ψ4
|𝑐|

, can distinguish between the geometries that 

have p4mm symmetry and the other geometries. For instance, SQ, CR, and CB patterns 

have Ψ4
|𝑐|

= 1 while the other geometries have values <1. 

The last of these order parameters,  |Ψ4
𝑠|, can be used to identify chiral structures. Since the 

sense of rotation is arbitrary, enantiomers of the same geometry obey  Ψ4
𝑠 → −Ψ4

𝑠 when all of the 

angles in the unit cell are reflected about either the x or the y axis. Therefore we take the absolute 
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value of this order parameter, since the actual sense of the rotation of the chiral structure depends 

on minimization (on other words the two homochiral structures are degenerate). We note the four 

geometries (SQ, CB, CR and TI structures shown in Figure VI-1) are all achiral, since they all 

possess a mirror plane. As will be discussed later, a path in which all angles of the unit cell are 

distorted equally will generate chiral structures (see Figure VI-4 panel 2), with the “maximum 

chirality” being for a distortion angle of /8. This is the case for a compact adlayer, which is shown 

in Figure VI-1(d). 

VI.3.b Results of a Full Space Minimization 

 The results of a full search of the input space for the GM are shown in Figure VI-5. The 

distribution of geometries is shown in Fig VI-5(a), potential energies V(, re) in Fig VI-5(b),  

order parameter Ψ4
𝑐(ρ,re) in Fig VI-5(c), order parameter  Ψ4

|𝑐|(ρ,re) in Fig VI-5(d) and  order 

parameter Ψ4
𝑠(ρ, re) in Fig VI-5(e). Large  and re values are unphysical, and are not color-coded. 

The ratio of small  /large re values are also somewhat unphysical. 

We note the following from Figure VI-5. For small values of , the square adlayer 

geometry (SQ) dominates. For low values of re, we note as the molecular size, , increases, the 

potential energy tends to decrease. In addition, the GM geometry shifts from a pattern 

predominantly based on the square to those based on the cross, to eventually, at high  and re, the 

compact geometry. 
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 (A)

         

 

(B)

         

 

(C)

          

Figure VI-4: The order parameters as a function of paths that are shown in Figure VI-1, A) 4
c , B) 4

|c| 

and C) |4
s|. The legends describe each path (I, II, III and IV). Note in A path I and II coincide, path III 

and IV coincide. In B path II and IV are coincided. In C path I and II are coincided, path III and IV are 

coincided.



 

124 
 

 
 (a) (b) 

 
 (c) (d) 

 
  (e) 

Figure VI-5: The contour plots of a full energy search. a) Geometry (, re), b) Potential energy V(, re), c) 

Order parameter 4
c , d) Order parameter 4

|c| and e) Order parameter |4
s|. In each plots the color bars 

show the values of the contours. The labeling of the geometries SQ, CR, CB, CO and TI represent square, 

cross, checkerboard, compact, and tilt, respectively. The geometries are shown in Figure VI-1. 

V 

 𝛹4
𝑐  𝛹4

|𝑐|
 

| 𝛹4
𝑠| 
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To explain this behavior, it is useful to take “cuts” through the parameter space. First we 

consider the case when re is a low value, re=0.2, as we expect the pore size to be large and for a 

larger value, re=0.4, which has less pore sizes. These two re values will cover all illustrative patterns 

we have found. 

Case 1: re=0.2 

The unbiased potential energy curves with the potential of the suggested key geometries 

are shown in Figure VI-6. The geometries along this constant, re=0.2, path are shown in Figure 

VI-7. We show in Figure VI-8 the potential energy V() as a function of the rotation angle  for 

different molecule sizes (). 

First we consider the case when~0.4. We note from Table VI-1 and Figure VI-2 that 

s(0.40) is 0.2 of the SQ pattern curve. Therefore, at =0.4, the SQ geometry is at its optimum 

potential energy. Furthermore (as can be seen from Figure VI-6), this value of  is too small to 

allow access to the most attractive part of the potential for other geometries. Also, as can be seen 

from Figure VI-8 (panel =0.4), the SQ pattern is the GM geometry in the rotation paths suggested 

earlier. Thus we see at the point (, re) = (0.4, 0.4), the SQ is the preferred geometry. 

However, if we increase the value of , we would “hit the repulsive wall of the potential 

energy function” for the SQ geometry. So the adlayer distorts to avoid the repulsive wall the square 

geometry would impose. The distorted geometries are shown in Figure VI-7 (see the examples 

=0.41, 0.45, and 0.50). The distorted geometries are the GM of the rotational paths as shown in 

Figure VI-8. (panel [41, 0.55]). As the  further increases the adlayer distorts more until it 

reaches the cross ”CR” pattern for which all of the orientational angles are the same {/4} (see the 

examples =0.56, Figure VI-7 and VI-8). 
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
Figure VI-6: The potential energy function V() for the geometries described in, Figures VI-1, at re = 0.2. 

The solid brown line is the potential of the GM obtained through the unbiased search. The abbreviations 

are described in Table VI-1. 

       

 SQ (p4mm) =0.40 (p4) =0.41 (p4gm) =0.45

   

 TI (p4gm) =0.50 CR (p4mm) =0.56 CO(p4) =0.63

Figure VI-7: The geometries of the unbiased search for different ’s (at constant re=0.2). In the 

parenthesis are the wallpaper symmetry group symbols (for details see Appendix C).  
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 

 

 

  

 

 

 

 

Figure VI-8: The potential energy V() as a function of the rotation angle  for different molecule size () 

at fixed re=0.2, the cartoons on the figures show the global minimum pattern among all the other 

geometries of paths. Note: for = 0.41, 0.59 and 0.63 the global minimum patterns are chiral. Path IV 

coincide with path III because they are almost degenerate. For=0.45 the global minimum goes through 

path IV. 
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By >0.56 the CR pattern hits the repulsive wall of the potential. As can be seen from Figure VI-

1 the cross pattern starts at s(~0.56)=0.2. At this region (>0.56) the chiral compact “CO” 

geometry is the GM, with the orientational angles less than /4.  All the CO pattern in this region 

has a  Ψ4
𝑠<1, (see contour diagram in Figure VI-5e), which means the CO example that we give 

in the key geometries is not seen here. 

Case 2: re=0.4 

The curve of the unbiased potential energy minimization with the potential energy of the 

key geometries is shown in Figure VI-9. The geometries are shown in Figure VI-10. The potential 

energy along the distortion paths, described above, for some illustrative results (rotor size  are 

shown in Figure VI-11. 

Again looking back to Figure VI-1, we see that the s(~0.3) is 0.4 for the SQ curve, so we 

expect that at this region the SQ geometry starts to hit the repulsive wall. It can be seen in Figure 

VI-9 that <0.3 the SQ pattern is at its optimum potential energy. This also can be seen from the 

distortion paths in Figure VI-11, panel =0.29. 

For>0.3, to prevent the repulsive wall the adlayer distorts to a distorted structure as 

shown in Figure VI-10, panels =0.32, =0.33 and =0.37. The first two have p4 symmetry and 

therefore they are homochiral because they possess no mirror plane. By increasing the rotor size 

the pattern reaches the checkerboard GM geometry (see the example at =0.4 Figure VI-10 for 

geometry and Figure VI-11 for distortion path). By =0.41 the next candidate GM is the CR 

structure. The CR structure has a little bit lower energy than the CB structure as can be seen in 

Figure VI-11. This can be explained because the CR geometry has a 4-fold attraction geometry, 

and the next nearest neighbor (N2) plays a role in determining the GM.  
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

Figure VI-9: The potential energy function V() for the key geometries at re = 0.4. The solid brown line is 

the potential of the GM obtained through the unbiased search. The abbreviations are described in Table 

V-1. 

 By >0.41the CR pattern becomes repulsive and distorts to the CO chiral pattern, which 

has p4 symmetry. The example shown in Figure VI-10, =0.55, is the optimum key geometry 

suggested earlier and has a maximum value of  Ψ4
𝑠=1 (see also Figure VI-9). This is also seen in 

Figure VI-11, =0.55 panel, the optimum GM minimum occurs at /8 orientational angles on 

conrotatory, path I, as described earlier, Figure VI-3. 

VI.3.c Local Minima 

 With the above comments in mind, we consider the results of a large number of 

minimizations, to determine the amount of phase space associated with each minimum. Each local 

minimum reached by the minimization procedure is tested for a stationary point by checking its 

hessian (See Appendix A). The histograms of the potential energy of the several illustrative 

examples at re=0.4 are shown in Figure VI-12. At =0.29, all of the initial points descend to the 

square GM. By =0.32, we note the appearance of a LM with energy only slightly greater than 



 

130 
 

that of the “distorted” square GM. Interestingly, this LM has a larger probability than the GM. 

This can be explained by examination of Figure VI-11(e) path III, where we can see a large range 

of the angle space associated with the CB geometry. By=0.37, the CB is the energetic global 

minimum. Interestingly, the other significant minimum populated by the “quench” is an irregular 

structure in which one of the molecules is “trapped” at a different angle from the other three in the 

unit cell. The last LM has TI structure with very low probability. By=0.41 the GM is the CR 

pattern. The CB structure as expected is the second minimum (see Figure VI-11(f)) with 

probability larger than GM. The third minimum with the highest probability is the one which has 

one angle defect from the other three angles in the unit cell. By =0.55, the highest probable 

minimum is the CO pattern GM. The next LM is the structure which has irregular structure. 
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 SQ =0.29 (p4mm)     =0.32 (p4) =0.33 (p4) 

            

 =0.37 (p4gm)   CB =0.40 (p4mm) CR=0.41 (p4mm) 



CO=0.55 (p4) 

Figure VI-10: The geometries found from the unbiased search for different values of  (at constant 

re=0.4). In the parentheses are the wallpaper symmetry group symbols (for details see Appendix C).  
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 a) =0.29    b) =0.32  

 

 c) =0.33  d) =0.37   

 
 e) =0.40   f) =0.41   

 
     g) =0.45 h) =0.55 

 
Figure VI-11: The potential energy V() as a function of the rotation angle  for different molecule size 

() at fixed re=0.4. The cartoons on the figures show the global minimum pattern among all the other 

geometries of paths. Note: for =0.32, 0.33, and 0.45 the global minimum patterns are chiral. Path IV is 

align with path III because they are almost degenerate. For =0.55 path II, III, IV are repulsive and for 

clarity has a different scale.  
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Figure VI-12: Probability histograms of minima of Lennard-Jones at constant re=0.4 for several rotor 

lengths, =0.29, 0.32, 0.37, 0.41 and 0.55. In each plot are shown the cartoons of the minima found by an 

unbiased search of many starting points.  
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VI.4 Results and Discussion of a Tetratopic Molecule on a Triangular Lattice: 

The energy contour diagram of the full space search as well as the order parameters contour 

are shown in Figure VI-13. The geometries are shown in Figures VI-14, VI-15, and VI-16, at 

constant values of re=0.20, 0.28, and 0.40, respectively. The main geometries are classified as 

follows  

(a) The checkerboard “CB” has p2mm wallpaper symmetry, and has orientational angles 

{0, /4} AABB form (see the herringbone classification in Chapter II). 

(b) The rectangle “RC” pattern as it has a rectangle porous shape with c2mm symmetry 

and angles {0}. (Note that this is equivalent to {/3}). 

(c) The cross “CR” with c2mm symmetry and angles {/4}. 

(d) The pinwheel 1 “PW1” with c2mm symmetry and angles {, /2-, 0, /4}. 

(e) Two herringbone structures, one with p2 symmetry and the other with p2gg symmetry. 

(f) The pinwheel 2 “PW2” with p2 symmetry. 

(g) The twisted checkerboard “TCB” with c2mm symmetry. 

The nearest neighbor NN site-to-site distances s1() and the next nearest neighbor NNN 

s2() as a function of rotor length are presented in Figure VI-17 and Tables VI-2 and VI-3.  

VI.4.a Orientational order parameters 

We employed the several order parameters to classify the adlayer geometries. Here we 

use the following four order parameters. 

 Ψ4
𝑐(∆𝜃) =

1

4
∑

1

8
∑ cos(4∆𝜃)

𝑛

𝑗=1

4

𝑖=1

          VI-4 
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𝑃2(∆𝜃) =
1

4
∑

1

8
∑

3𝑐𝑜𝑠2(∆𝜃) − 1

2

𝑛

𝑗=1

4

𝑖=1

          VI-5 

where ∆𝜃 = |𝜃𝑖 − 𝜃𝑗| 

Ψ6
|𝑐|

=
1

4
∑|cos(6𝜃𝑖)|

𝑖=1

          VI-6 

|Ψ6
𝑠| =

1

4
|∑ sin(6𝜃𝑖)

𝑖=1

|           VI-7 

For the checkerboard geometry the order parameters values =0.5 while for the rectangle geometry 

 Ψ4
𝑐(∆𝜃) = Ψ6

|𝑐| = 𝑃2(∆𝜃) = 1 and |Ψ6
𝑠| = 0. The cross structure has  Ψ4

𝑐(∆𝜃) = |Ψ6
𝑠
| = 𝑃2(∅) = 1 

, Ψ6
|𝑐|

= 0. 

VI.4.b Result of full search at constant values of re 

To interpret our results we will consider cuts of Figure IV-13 at constant values of re. 

These values cover all the geometries reported in this study, classified as low re=0.2, medium 

re=0.28 and high re=0.4. 

Case1: re=0.20 

The potential energy curve of the unbiased search with the potential energy curves for 

biased geometries are shown in Figure VI-18. Looking to the s1 curve, Figure VI-17 we see that 

both the checkerboard “CB” and the rectangle “RC” structures have the same s1 value. However 

the s2 value of the CB is much lower than that of the RC. We expect at low the global minimum 

geometry is checkerboard. However the number of s2 (N2) of the RC is higher than that for the CB 

(see Table VI-3). So for some values of  the RC is the global minimum. 

The RC and CB geometries become repulsive for >0.4, so the adlayer relaxes to twisted 

geometries. By =0.41 the twisted checkerboard “TCB” is the global minimum. For >0.41 the 

geometries consecutively are the herringbone “HB” p2gg symmetry, pinwheel 1 “PW1” and 

pinwheel 2 “PW2”.  
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 (a) (b) 

    
 (c) (d) 

 

 (e) (f) 
Figure VI-13: Contour plots of various properties of the most stable geometry of tetratopic molecule on a 

triangular lattice as a function of Lennard-Jones parameters (, re). Panels (b) potential energy, V; (c)-(f) 

orientation order parameters 4
c(), P2(

|c|, and |6
s|, respectively. Panel (a) summarizes this in 

the “phase diagram”, in which geometries are assigned using the criteria given in the text. The “phase 

boundaries” established in panel (a) are reproduced in the other panels. (Abbreviations used: CB = 

checkerboard; rectangle = RC; HB= herringbone; PW = pinwheel; CR = cross; TCB = Twisted 

checkerboard.) 

V 

 Ψ4∆θ
c  P2(∅) 

 Ψ6
|c|

 | Ψ6
s| 
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CB=0.33 (p2mm) 

 

 

RC=0.39 (c2mm) 

 

                

TCB=0.41 (c2mm) HB=0.43 (p2gg) PW1=0.45 (c2mm) 

 

 

PW2=0.5 (p2) 

 

 

Figure VI-14: The geometries of the unbiased search for different values of  (at constant re=0.2). The 

abbreviation are described in Figure VI-13. In the parenthesis are the wallpaper symmetry group symbols 

(for details see Appendix C). Note: Two equivalent patterns of CB and three equivalent patterns of the RC 

pattern are shown. 
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 CB=0.33 (p2mm) TCB=0.35 (c2mm) 

 

 

  

 HB=0.38 (p2gg) PW1=0.40 (c2mm) 

 

 

  

 PW2=0.43 (p2) CR=0.50 (c2mm) 

Figure VI-15: The geometries of the unbiased search for different values of  (at constant re=0.28). The 

abbreviation are described in Figure VI-13. In the parenthesis are the wallpaper symmetry group symbols 

(for details see Appendix C).  
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 CB=0.29 (p2mm) CB=0.30 (p2mm) 

  

 PW2=0.34 (p2) HB=0.39 (p2) 

Figure VI-16: The geometries of the unbiased search for different values of  (at constant re=0.40). The 

abbreviations are described in Figure VI-13. In the parenthesis are the wallpaper symmetry group 

symbols (for details see Appendix C).  

Table VI-2: Closest nearest-neighbor (NN) site-to-site distance, s1, for specified geometry as a function 

of . Including the number of nearest-neighbor. Note: There are two possible NN distances for the PW1 

and HB geometry. Note: =3/10, 1=5/18, 2=/18. 

Geometry site-to-site distances Number of 

nearest-neighbors 

NN (N1) 

CB 𝑠1(𝜌) = 1 − 2𝜌 1 

RC 𝑠1(𝜌) = 1 − 2𝜌 2 

CR 
𝑠1(𝜌) = √1 − (√2 + √6)𝜌 + 4𝜌2 

4 

PW1 𝑠1(𝜌)

=

(

 
 √1 − 𝜌(

√3 + 1

√2
+ cos 𝜗 + √3 sin 𝜗 + 𝜌2(2 + √2 cos 𝜗 +√2 sin 𝜗) ,

√1 − 𝜌(√3 + √3 cos 𝜗 + sin 𝜗) + 𝜌2(2 + 2 cos 𝜗) )

 
 

 

2,2 

HB 

𝑠1(𝜌) = 𝑚𝑖𝑛

(

 
√1 − 2𝜌(sin 𝜃1 + √3 cos 𝜃1) + 4𝜌2,

√1 − 2𝜌(cos 𝜃2 + sin 𝜃1) + 2𝜌2(1 + sin(𝜃1 − 𝜃2)) 
  )

  

2,4 
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Figure VI-17: (Upper panel) the nearest neighbor NN s1; (Lower panel) the next nearest neighbor NNN 

s2 of the tetratopic model on a triangular lattice system. The legend inside each plot is the abbreviation of 

the adlayer described in Figure VI-13. 
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Table VI-3: Closest nearest-neighbor (NN) site-to-site distance, s2, for specified geometry as a function 

of . We include the number of nearest-neighbor. Note: There are two possible NN distances for the SQ, 

PW1 and HB geometry. Note: : =3/10, 1=5/18, 2=/18. 

Geometry site-to-site distances Number of nearest-

neighbors NN (N2) 

CB 

𝑠2(𝜌) = √1 − (
1 + √3 + √6

√2
) 𝜌 + (2 + √2)𝜌2 

4 

RC 
𝑠2(𝜌) = min (√1 − 2√3𝜌 + 4𝜌2, √1 − (1 + √3)𝜌 + 2𝜌2) 

4,8 

CR 𝑠2(𝜌) = 1 − √2𝜌 4 

PW1 𝑠2(𝜌)

=

(

 
 

√1 − 𝜌(√3 + √3 cos 𝜗 + sin 𝜗) + 𝜌2(2 + 2 cos 𝜗),

√1 − 𝜌(
√3 + 1

√2
+ cos 𝜗 + √3 sin 𝜗 + 𝜌2(2 + √2 cos 𝜗 +√2 sin 𝜗)

)

 
 

 

2,2 

HB 

𝑠2(𝜌) = 𝑚𝑖𝑛 (
√1 − 2𝜌(cos 𝜃2 + sin 𝜃1) + 2𝜌2(1 + sin(𝜃1 − 𝜃2)) ,

√1 − 2𝜌(sin 𝜃1 + √3cos 𝜃1) + 4𝜌2  
) 

4,2 

 

Figure VI-18: The potential energy function V() for the geometries described in, Figures VI-14, at re = 

0.2. The solid black line is the potential of the GM obtained through the unbiased search. The 

abbreviations in the legend are described in Figure VI-13. 
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Case2: re=0.28 

The potential energy curve of the biased geometries and the potential energy curve of the 

unbiased minimization are shown in Figure IV-19. As expected the CB geometry is the GM at 

low values of . The CB geometry becomes repulsive at >0.34. Again the adlayer buckles to TCB 

at =0.35 then to herringbone with p2gg symmetry. By  = 0.39 the pinwheel “PW1” structure is 

the next GM. This can be explained because the PW1 pattern has the second lowest s1 and s2 

values among the geometries (see Figure VI-17). The PW1 geometry becomes repulsive for 

>0.4. The adlayer relaxes to the chiral PW2 geometry with p2 symmetry. At~> 0.45 the PW2 

geometry competes with the cross “CR” structure. This is due to the fact that the CR pattern having 

the third lowest s1 and s2 values as can be seen in Figure VI-17. 

 

Figure VI-19: The potential energy function V() for the geometries described in, Figures VI-15, at re = 

0.28. The solid black line is the potential of the GM obtained through the unbiased search. The 

abbreviations in the legend are described in Figure VI-13. 
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Case3: re=0.4 

The potential energy curves at re=0.4 are shown in Figure VI-20. At low  the CB structure 

is the global minimum. By =0.34 the GM adlayer is the chiral PW2 structure. By >0.34 the 

herringbone “HB” geometry, which has orientational angles={
5𝜋

18

𝜋

18
} and p2 wallpaper symmetry, 

is the GM. The HB pattern is homochiral as it possess no mirror plane of symmetry. 

 

Figure VI-20: The potential energy function V() for the geometries described in, Figures VI-16, at re = 

0.4. The solid black line is the potential of the GM obtained through the unbiased search. The 

abbreviations in the legend are described in Figure VI-13. 
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VI.5 Tetratopic Adlayer Conclusion and Comparison with Previous Studies 

We have examined the geometries of the adlayer of a tetratopic model molecule on a square 

and a triangular lattice using Lennard-Jones coarse-graining potential. The model represents a fully 

occupied lattice surface. We have reported a variety of structures. On a square lattice we have 

found adlayers with symmetry plane group (p4mm), such as square, checkerboard and cross 

patterns. In addition a chiral compact geometry with p4 symmetry has been found for large /re. 

In contrast, on triangular lattices we have located several structures with c2mm symmetry 

such as the rectangle, cross, and pinwheel. Also we have found two chiral herringbone and 

pinwheel structures with p2 symmetry. In addition we have found some other distorted structures 

such as the twisted checkerboard and herringbone. 

Experimental studies of phthalocyanine derivative adsorbates (tritopic molecules) have 

reported two structures resembling the cross and compact patterns. For instance, the cross structure 

with symmetry plane group (p4mm) has been located in a study of cobalt(II) hexadecafluoro-

phthalocyanine (F16CoPc) on a silver surface  (14). The chiral compact and the rectangle 

geometries have been observed in a study of zinc(II) octachloro-phthalocyanine (Cl8ZnPc)  on a 

silver surface (13).  The chiral herringbone has been reported for cobalt phthalocyanine on a 

graphite surface (81). Theoretically, the compact structure has been reported in a study by 

Kasperski and Szabelski (20). In addition the square and the rectangle geometries have been 

observed by Doye’s group using Monte Carlo calculation (114).  

In conclusion our coarse graining system has generated many of the reported experimental 

and theoretical adlayers. In addition to new geometries, such as the checkerboard, tilt and pinwheel 

structures, that have not been observed before.  
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Chapter VII  

Monte Carlo Model Study of Adlayer Geometries of Rigid Ditopic 

Molecules on Square and Triangular lattices 
 

VII.1 Introduction 

 Several research groups have reported on the self-assembly of ditopic molecules on square 

and triangular lattices using Monte Carlo simulation (18, 19, 37, 39, 42, 44). For instance Pastor 

et al (37) and Almarza (44) groups studied the rigid rod with two bonding sites on both lattices. 

These rods interact with the nearest-neighbors (NN) through anisotropic attractive interactions. 

The molecules arrange in one-dimensional linear chains with two 2-fold center of interactions. 

Following the idea of the previous chapter we consider in this chapter Monte Carlo 

calculations for ditopic molecules on larger lattices and cluster sizes than the 2X2 unit cell used in 

previous chapters. The idea of this chapter is to look at several systems from earlier chapters 

(mainly Chapter III and IV) and examine whether the reported patterns remain when the “fixed 

site” geometry constraint is relaxed.  Our model molecules are shown in Section 2 including the 

model compound and the surface lattices. The method including the order parameters used are 

explained in Section 3. Our results and discussion is in Section 4. Finally the conclusions and 

comparison with the previous results are presented in Section 5. 

VII.2 Model  

VII.2.a. Model molecule 1 

The model molecule is shown in Figure VII-1 (91). Two interactions have been considered 
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between two neighboring molecules. First the tip-tip interaction is given by force field coarse-

graining Lennard-Jones potential. The second interaction is between the stems of the molecules 

which have been described by the repulsive van der Waals radius =  of the Lennard-Jones 

potential. (see the interactions in Figure VII-1 C) 

𝑈𝑖𝑗(𝜃𝑖 , 𝜃𝑗) = 𝜔(𝑟𝑖𝑗
𝜎) + ∑ ∑ 𝑢(𝑟𝑝𝑞

𝑖𝑗
)

𝑞

𝑞=1

𝑝

𝑝=1

        VII-1 

where, where u(r) is the pairwise site-to-site potential energy, typically Lennard-Jones potential, 

and (r) is the short range repulsive stem-stem interaction represent by van der Waals radius = 

. That is, if the stem-stem shortest distances 𝑟𝑖𝑗
𝜎 < 𝜎, then →∞. 

 To be consistent with the previous chapters the molecule’s total length L=2. In most 

cases we use 100 molecules. Each molecule is attached to the lattice site at its center of mass. For 

the square lattice, the lattice is a grid with 400 lattice sites, and the lattice site-to-site distance = 1 

unit, which is confined in a 2 dimensional square of 20X20 dimensions. On the other hand the 

triangular lattice is compose of a grid of 20X20 lattice sites in a 2 dimensional rhombic lattice with 

angle = 60o between the main axis of the lattice (see the triangular lattice structure in Chapter II, 

Figure II-3).  

The potential energy is calculated as the total tip-to-tip interaction (this is explained in 

Chapter II) potential energy for the molecules with cutoff distance = 2 L units. 
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 A  B C 

Figure VII-1: A) Dicarbonitrile-triphenyl molecule. B) Model of Molecule, L is the length of the 

molecule which is equal to 2as described in Chapter II, Figure II-1. C) Scheme represents the 

interactions between two adjacent model molecules.  is the van der Waals radius of the Lennard-Jones 

potential. 

VII.2.b. Model molecule 2 

This study considers a molecules with the shape described in Figure VII-2. This molecule 

was inspired by the linear class oligo-phenylene-ethynylenes (ditopic molecules) (6, 7, 88-90). 

This molecule has two active sites one at each of the tips of the molecule (shown as red balls in 

Figure V-2). Two interactions have been considered between the two neighboring molecules. First 

the tip-tip interaction is given by force field coarse-graining Lennard-Jones potential. On the other 

hand the second interaction between the stems of the molecules which is described by the van der 

Waals radius =  of the Lennard-Jones potential. (See the interactions in Figure VII-2 C). The 

length of the molecule stem L=1 unit length, and the arm length l=0.2 unit length. 

The potential energy between two adjacent molecules are calculated using Equation VII-

1. 
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   

 A  B 

Figure VII-2: A) Oligo-phenylene-ethynylene with two main carboxylic groups. B) The force field coarse 

graining, the angle =2/3, L=1, l=0.2, C) Scheme represents the interactions between two adjacent 

model molecules.  is the van der Waals radius of the Lennard-Jones potential. Note: is selected to 

resemble the angle of the carboxylic group in oligo-phenylene-ethynylene with the stem of the molecule. 

The surface sites have been taken as a grid of square lattice with two lattice constants one 

with low density of 400 sites with a distance between sites = 0.5 unit length and another with a 

high density of 3025 sites with a distance between sites =  =0.18. The molecules are attached to 

each site of the lattice at their center of mass. 

VII.3 Method 

VII.3.a NVT canonical Monte Carlo ensemble 

The NVT ensemble is a Monte Carlo method in which the number of particles, the volume 

and the temperature are kept constant. The method of Temperature Replica Exchange Monte Carlo 

(T-REMC or simply REMC) is a Monte Carlo scheme that has been derived to achieve good 

sampling of systems that have a free-energy landscape with many local minima. In REMC the 

configuration swaps between the lower and higher temperature systems which allows the lower 

temperature system to escape from the one region of space to represent all of the energy allowed 

systems. The probability of the swaps can be calculated using equation VII-2: 
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prop = min [1, 𝑒
−(𝑈𝑖−𝑈𝑗)(

1
𝑘𝐵𝑇𝑗

−
1

𝑘𝐵𝑇𝑖
)
]         VII-2 

where, U and T are the potential energy and the temperature, respectively, of 2 swapped replicas; 

kB is the Boltzmann constant, which is taken to be 1 for our study. 

To identify the temperature where the phase transition occurs we carry out a naive 

calculations with 32 equally spaced temperatures selected for each system. Upon this calculation 

we selected our final 32 replicas used to collect the data. The system was advanced to 1000 Monte 

Carlo steps and the pause while attempt swap using Calvo’s All-exchanges approach (144) (the 

method is explained in Appendix D). 

The Monte Carlo “MC” step is composed of two movements applied to a randomly chosen 

molecules. First, there is the possibility of translation between randomly chosen empty lattice sites. 

The second movement is a single-molecule trial rotation [−𝛿𝜃, 𝛿𝜃] angle around the molecule’s 

center of mass (the molecule is randomly chosen). The two movements are equally probable. Each 

MC step is subjected to Boltzmann acceptance criterion. 

acc = min [1, 𝑒
−(𝑈𝑛𝑒𝑤−𝑈𝑜𝑙𝑑)

𝑘𝐵𝑇 ]             VII-3 

where U are the potential of two updated configurations (new and old), kB is the Boltzmann 

constant and T is the temperature of the system. 

VII.3.b Grand canonical ensemble: 

To determine thermodynamically stable ordered or disordered structures of model 

molecules using grand canonical ensemble (145, 146), the Temperature Replica Exchange Monte 

Carlo (T-REMC) simulation is carried out to study the structure of a monolayer self-assembly 

(MSA), using the grand canonical ensemble (or , V, T ensemble), where  is the chemical 
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potential, V is the volume, T is the Temperature. In this ensemble , V, and T are fixed. 32 replicas 

have been created with an equally spaced temperature scale in the range [0.5-0.01] (De/kB).  

At each temperature, 5 moves are applied on each replica (displacement, rotation, flip, 

insertion and removal of molecules). All of the moves are equally probable. For the displacement 

rotation and flip moves a molecule is selected at random and given a new conformation by either 

moving to a new empty lattice site or rotating with a random angle or flipping around the molecule 

main axis. These moves are accepted within the Boltzmann acceptance criterion equation VII-2. 

The creation of the particle is accepted with a probability: 

acc(N → N+1) = min [1,
𝑁𝑠

𝑁+1
𝑒

(𝜇−𝑈𝑁+1+ 𝑈𝑁)(
1

𝑘𝐵𝑇
)
]          VII-4      

The removal of a particle is accepted with a probability: 

acc(N → N-1) = min [1,
𝑁

𝑁𝑠
𝑒

−(𝜇+𝑈𝑁−1−𝑈𝑁)(
1

𝑘𝐵𝑇
)
]          VII-5 

where U is the total potential of the configuration, Ns is the number of sites on the lattice (represent 

the volume of the container), N is the number of molecules,  is the chemical potential which is 

related to the particle density N/Ns. 

𝜇 = 𝑘𝐵𝑇𝑙𝑛(𝜌)                   VII-6 

All exchanges between replicas, Calvo’s method (144)  (appendix D), are used for swapping 

between replicas. The probability of swapping between replicas can be calculated using:  

 

𝑃(𝑅𝑜 → 𝑅𝑛) = min [1, 𝑒
[(𝑉𝑅𝑛−𝑉𝑅𝑜)(

1
𝑘𝐵𝑇𝑅𝑛

−
1

𝑘𝐵𝑇𝑅𝑜
)]−[(

𝜇𝑅𝑛
𝑘𝐵𝑇𝑅𝑛

−
𝜇𝑅𝑜

𝑘𝐵𝑇𝑅𝑜
)(𝑁𝑅𝑛−𝑁𝑅𝑜)]

]      VII-7 

where Ro and Rn are the old and new replicas, respectively. 
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For each swapping step the replicas are advanced to 1000 of the 4 moves and then paused 

while exchange is carried out. This is described as one Monte Carlo (MC) cycle. The only adjusted 

move is the angle selection, which is selected to get ~50% acceptance while the other moves 

depend on the vacancy of the lattice site.  

We started with the same unbiased randomly chosen structure of 10 molecules for each 

replica. To determine the temperature where the phase transitions occur a naïve search of equally 

spaced temperature in the range of [1.0-0.001] was performed.  

 The system is subjected to 107 MC equilibration steps, then 108 MC collections steps. 

In each step we collect the potential energy, the square of the potential energy of each configuration 

and the order parameters. The heat capacity per molecule Cv/N can be calculated using: 

𝐶𝑣

𝑁
=

〈𝑈2〉 − 〈𝑈〉2

𝑘𝐵𝑇2
       VII-8 

 

VII.3.c Order Parameters 

            Ψ𝑎
𝑐(∆𝜃) =

1

𝑁
∑ cos(𝑎∆𝜃)

𝑖=𝑁

𝑖=1

        VII-9 

Where ∆𝜃 = |𝜃𝑖 − 𝜃𝑗| is the relative angle between two adjacent rotors with less than 2 units 

between their center of mass. 

|Ψ𝑎
𝑠(𝜃)| = |

1

𝑁
∑ sin(𝑎𝜃𝑖)

𝑖=𝑁

𝑖=1

|         VII-10 

|Ψ𝑎
𝑐(𝜃)| = |

1

𝑁
∑ cos(𝑎𝜃𝑖)

𝑖=𝑁

𝑖=1

|         VII-11 
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Where 𝜃𝑖 is the angle of ith rotor, N is the number of the molecules and “a” is a constant integer 

which depends on the system (this will explained for each individual system we show). Mainly 

a=4 for a square lattice and 6 for a triangular lattice. 

VII.4 Result and Discussion 

We have studied several molecules with different rotor lengths on both square and 

triangular lattice surfaces. These are selected as illustrative examples of the main structures in the 

parameter “phase diagram” in previous chapters.   

VII.4.a Molecule 1, =0.29 re=0.4 on square lattice, lattice constant =1: 

The heat capacity, potential energy curve and order parameters curve as a function of 

temperature are shown in Figure VII-3. We notice the phase transition occurs at T=0.15. The 

snapshots at low temperature the geometry show a short stripe geometry as expected (see the 

geometry for this system in Chapter III). 

 We use the order parameters with a=4, Ψ4
𝑐(∆𝜃) and Ψ4

𝑠(𝜃). The first order parameter 

shows the four fold symmetry and is close to 1 as can be seen in Figure VII-3. While the second 

parameter,  Ψ4
𝑠,  used to check the chirality of the system. Clearly the value of  Ψ4

𝑠  is equal 0 at all 

temperatures, as the short stripe geometry is achiral. 
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Figure VII-3: Energy, the heat capacity, and two order parameters as a function of temperature from NVT 

the Monte Carlo trajectories for a ditopic molecule with the Lennard-Jones potential, re=0.40,  = 0.29. 

(For an explanation of the parameters, see text.) Shown on the left of the figure are snapshots of typical 

structures at low temperature (T=0.01, 0.10); shown in the middle is a snapshot of a typical structure at 

the phase transition temperature (T=0.15); shown on the right are snapshots of typical structures at high 

temperature (T=0.2, 0.3). 

VII.4.b Molecule 1, =0.42, re=0.4 on square lattice, lattice constant =1: 

In Figure VII.4 we show the heat capacity, the potential energy average and order 

parameters curves as a function of temperature. We notice that the phase transition occurs at T= 

0.30. We also show snapshots at high temperature with random distribution of the molecules 

except for some spots with symmetric windmill structure. The snapshots at low temperature which 

has perfectly symmetric windmill structures. The snapshot at the phase transition (T=0.3) shows 

spots with windmill structure and spots with random distribution. 

T=0.30 

T=0.20 

T=0.15 

T=0.10 

T=0.01 
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Figure VII-4: Energy, heat capacity, and two order parameters as a function of temperature from NVT 

Monte Carlo trajectories for a ditopic molecule with the Lennard-Jones potential, re=0.40  = 0.42. (For 

an explanation of the parameters, see text.) Shown on the left of the figure are snapshots of typical 

structures at low temperature (T=0.10, 0.20); shown in the middle is a snapshot of a typical structure at 

the phase transition temperature (T=0.30); shown on the right are snapshots of typical structures at high 

temperature (T=0.35, 0.4). 

We use the order parameters with a=4, Ψ4
𝑐(∆𝜃) and Ψ4

𝑠(𝜃). For this system the first order 

parameter = 1 with a 4 fold symmetric unit cell such as the windmill structure. The second 

parameter is used to show the chirality of the adlayer. As we notice the Ψ4
𝑠  0 at all temperatures, 

which means the adlayer is achiral. 

VII.4.c Molecule 1, =0.5, re=0.4 on a square lattice, lattice constant =1: 

The heat capacity, the potential energy average and order parameters curves are a function 

of temperature are shown in Figure VII-5.  The phase change occurs at T= 0.27 (see the snapshot 

at phase transition in Figure VII-5). We use the same order parameters as in the previous molecule 

T=0.40 

T=0.35 

T=0.30 

T=0.20 

T=0.1 
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with a=4. As can be seen from the snapshot the pattern is the chiral windmill. This is also confirmed 

by the high value of Ψ4
𝑠 which is close to 1 at low temperature. And the 4 fold symmetry adlayer 

can be seen by Ψ4
𝑐(∆𝜃) 1. 

 

 

 

 

 

 

 

Figure VII-5: Energy, the heat capacity, and two order parameters as a function of temperature from NVT 

Monte Carlo trajectories for a ditopic molecule with the Lennard-Jones potential, re=0.40  = 0.5. (For an 

explanation of the parameters, see text.) Shown on the left of the figure are snapshots of typical structures 

at low temperature (T=0.10, 0.20); shown in the middle is a snapshot of a typical structure at the phase 

transition temperature (T=0.27); shown on the right are snapshot of typical structures at high temperature 

(T=0.35, 0.4). 

VII.4.d Molecule 1, =0.34, re=0.4 on a triangular lattice, lattice constant =1: 

The phase transition occurs at T=0.3 as can be noticed from the Figure VII-6, from the 

heat capacity and potential energy curves. 

T=0.40 

T=0.35 

T=0.27 

T=0.20 

T=0.10 
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We have used the order parameters with a=6, Ψ6
𝑐(𝜃) and Ψ6

𝑠(𝜃). The first order parameter 

= 1 for hexagonal geometry. This can be noted by its value at low temperature which is consistent 

with the snapshot for the honeycomb geometry. The second order parameter confirms the chirality 

of the geometry. Geometrically, the honeycomb geometry is achiral which is confirmed by the 0 

value of   Ψ6
𝑠 at all temperatures (see the last panel of Figure VII-6).  

 

 

 

 

Figure VII-6: Energy, the heat capacity, and two order parameters as a function of temperature from NVT 

Monte Carlo trajectories for a ditopic molecule with the Lennard-Jones potential, re=0.40  = 0.34. (For 

an explanation of the parameters, see text.) Shown on the left of the figure are snapshots of typical 

structures at low temperature (T=0.01, 0.15); shown on the middle is a snapshot of a typical structure at 

the phase transition temperature (T=0.30); shown on the right are snapshots of typical structures at high 

temperature (T=0.35, 0.5). 

 

 

 

T=0.50 

T=0.35 

T=0.30 

T=0.15 

T=0.01 
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VII.4.e Molecule 1, =0.45, re=0.4 on a triangular lattice, lattice constant =1: 

The snapshots shown in Figure VII-7 with random distribution of the molecules at high 

temperature and chiral pinwheel structures at low temperature. The phase change occurs at T=0.26 

as shown in the heat capacity curve as function of temperature, the first panel of Figure VII-7. 

We use the same order parameters as explained for the previous systems with Ψ6
𝑐(𝜃) 

and Ψ6
𝑠(𝜃). The structure is semi-hexagonal as can be noticed from the Ψ6

𝑐 value. The chirality can 

be confirmed by the high value of  Ψ6
𝑠(𝜃) at low temperature in the last panel of Figure VII-7.  

 

 

 

 

 

 

Figure VII-7: Energy, the heat capacity, and two order parameters as a function of temperature from NVT 

Monte Carlo trajectories for a ditopic molecule with the Lennard-Jones potential, re=0.40  = 0.45. (For 

an explanation of the parameters, see text.) Shown on the left of the figure are snapshot of typical 

structures at low temperature (T=0.01, 0.10); shown in the middle is a snapshot of a typical structure at 

the phase transition temperature (T=0.26); shown on the right are napshots of typical structures at high 

temperature (T=0.35, 0.5). 

T=0.50 

T=0.35 

T=0.26 

T=0.10 

T=0.01 
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VII.4.f Molecule 1, =0.50, re=0.4 on a triangular lattice, lattice constant =1: 

As shown in Figure VII-8 the phase change occurs at T=0.15. The snapshot at low 

temperature shows a chiral pinwheel structure with rotors in the center of a semi-hexagonal 

structure.  

We have used Ψ6
𝑐(𝜃) and Ψ6

𝑠(𝜃) order parameters. The central molecules break the 

hexagonal pattern. This is can be seen from the value of Ψ6
𝑐 at low temperature compared with the 

high temperature values. The chirality of the pinwheel is also emphasized by the relatively high 

value of  Ψ6
𝑠. 

 

 

 

 

 

 

Figure VII-8: Energy, the heat capacity, and two order parameters as a function of temperature from NVT 

Monte Carlo trajectories for a ditopic molecule with the Lennard-Jones potential, re=0.40  = 0.5. (For an 

explanation of the  parameters, see text.) Shown on the left of the figure is a snapshot of a typical 

structure at low temperature (T=0.01); shown in the middle is a snapshot of a typical structure at the 

phase transition temperature (T=0.15); shown on the right is a snapshot of a typical structure at high 

temperature (T=0.25). 

T=0.25 

T=0.15 

T=0.01 
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VII.4.g Molecule 2, =0.50, re=0.2 on a square lattice, lattice constant =0.5: 

The results shown here are for Molecule 2 with stem length = 2 =1.0 and lattice grids with 

site-to-site distances = 0.5. We use the grand canonical ensemble described earlier. The heat 

capacity, the potential energy, the molecular density N/Ns and order parameters curves as a 

function of temperature are shown in Figure VII-9. The three snapshots are at three different 

temperatures, high T=0.5, medium T=0.20 and low T=0.01 are shown in Figure VII-10. We notice 

from Figure VII-9 the phase change occurs at T0.25. 

 
Figure VII-9: Energy, the heat capacity, the molecular density per lattice sites N/Ns, and two order 

parameters as a function of temperature from the grand canonical Monte Carlo trajectories for molecule 2 

with the Lennard-Jones potential, re=0.20  = 0.5. Note: low density square lattice is used.  (For a 

explanation of the parameters, see text.)  
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 A) T=0.01 B) T=0.20 C) T=0.50 

Figure VII-10: Snapshots of Monte Carlo simulation of molecule 2, re=0.20  = 0.5; A) high T=0.5, B) 

medium T=0.20 and C) low T=0.01. 

We used order parameters with a=4, Ψ4
𝑐(∆𝜃) and Ψ4

𝑠(𝜃). The first parameter describes the 

four fold symmetry, which clearly is very high at low temperature. The Ψ4
𝑐(∆𝜃) slightly decreases 

at T<0.1 due to the adsorbed molecules in the center of the pores (see the snapshots in Figure VII-

10). The second order parameter explains the chirality of the adlayer, which is  1 for the T[0.1-

0.22] and decreases to less than 0.5 at lower temperatures due to the molecules inside of the pores. 

VII.4.h Molecule 2, =0.50, re=0.2 on a square lattice, lattice constant =0.18 

 This results are for molecule 2 on a high density square lattice, with site-to-site distances 

= =0.18. We have used the grand canonical ensemble for a maximum number of molecules =100 

to decrease the cost of the calculation. The results of the heat capacity, energy, molecular density 

N/Ns, and order parameters curves with three snapshots at high, low and the phase transition 

temperatures are shown in Figure VII-11. The phase change occurs at T=0.35. 

As noticed from the Ψ4
𝑠 order parameter and the snapshots the adlayer is clearly achiral. 

The adlayer at low temperature has a herringbone property with four fold symmetry (this can be 

noticed from Ψ4
𝑐(∆𝜃)=1). All the angles are arbitrarily equal. 
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Figure VII-11: Energy, the  heat capacity, the molecular density and two order parameters as a function of 

temperature from grand canonical Monte Carlo trajectories for a ditopic molecule with Lennard-Jones 

potential, re=0.40  = 0.5. (For an explanation of the parameters, see text.). Shown on the left of the figure 

is a snapshot of a typical structure at low temperature (T=0.20); shown on the middle is a snapshot of a 

typical structure at the phase transition temperature (T=0.35); shown on the right is a snapshot of a typical 

structure at high temperature (T=0.45). 

VII.5 Conclusion 

We have investigated the adlayer of ditopic molecule on a square and a triangular lattice 

using Replica Exchange Monte Carlo (REMC) simulation. We considered rotors with different 

lengths, having two coarse grained sites at the tips of each molecule. The site-to-site interactions 

are expressed by the Lennard-Jones potential. A repulsive van der Waals radius was also applied 

between the stems of the molecules with a radius =  of the Lennard-Jones potential.  

T=0.45 T=0.20 

T=0.35 
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We have found several ground state adlayers which are in general consistent with the 

results in previous chapters using the minimization method of the “fixed site” constraint molecules. 

For instance, the short stripe structure on a square lattice for a small molecule =0.29 are the same 

for both Monte Carlo simulation and the ground state minimization method. Also achiral and chiral 

windmill structures on a square lattice are found for both =0.42, =0.5, respectively.  The same 

results are found using the minimization method.  

On the other hand, the honeycomb and pinwheel adlayers on a triangular lattice are also 

consistent with the results in chapter IV. With the exception of the central molecule, inside the 

hexagonal structure, which disappears in the case of Monte Carlo simulation. 

The Monte Carlo results for the system with =0.5 on a triangular lattice produces the 

pinwheel adlayer with semi-hexagonal porous sites. However the global minimum of this system 

is the butterfly structure as found in Chapter IV using the minimization method of the “fixed site” 

molecules constraint. This could be due to the system needing to be cooled to lower temperatures 

which makes the cost of the system prohibitively high.  

Our results for the oligo-phenylene-ethynylenes model molecule 2 are very consistent with 

the experimental results. For instance, Linderoth’s group has reported both the chiral windmill 

structure (6, 7, 88-90) and the herringbone pattern (6, 90) exist on the surface of Au(111). 

In conclusion, our simple model can be used to investigate the self-assembly of an infinite 

system. 
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Appendix A : 

Method  

 

A.I Method for Finding Stationary Points 

A.I.a Method for finding global minima: 

The method we have used for global minimizing is a quasi-Newton method using an 

analytical gradient (147, 148). The quasi-Newton method and the step size are explained in section 

A.II. A random selection of  unit cell angles is chosen using a random number for 

each of the angles. The potential energy is minimized for 1000 steps until we reach an angle 

threshold of 10-6 and/or 10-6 potential energy and RMS = 10-6 of the gradient convergence. This 

procedure is repeated for 1000 starting points in the set of primary cell angles. The lowest energy 

is obtained and reported as a global minimum and the angles are also reported. This procedure is 

presented in Figure A-1. 

A.I.b Method for finding local minima: 

A random point in the angle space 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4] is selected as a starting point. The 

Quasi-Newton method, using an analytical gradient, is then used to find the local minimum. 1000 

minimizing steps are further applied until we reach a 10-6 angle threshold and/or 10-6 potential 

energy and RMS = 10-6 of the gradient convergence. This is repeated for 1000 starting points. All 

of the minimized structures were collected and sorted according to recognition techniques derived 

and will be shown next.  

The stationary points are verified by calculating the analytical gradient ∇𝑉 vector, which 

is the set of first derivatives of the potential function 𝑉(𝜃1, 𝜃2, 𝜃3, 𝜃4), and the hessian matrix (H) 

which contains the second partial derivative of the function (Appendix B). 
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Figure A-1: A schematic representation of an energy funnel and the global minimizing method. (a) Global 

minimum. (b) Allowed local minimizing. (c) Minimizing path to global minimum not allowed. 𝑉̅ is the 

potential energy calculated by using the equations method shown in Chapter II (see the text). 

For all stationary points the gradient must reach a 10-6 tolerance level. Then the stationary 

points are tested according to the eigen values of the Hessian matrix (148): 

1. If all eigen values > 0 then the stationary point is a minimum. 

2. If all eigen values < 0 then the stationary point is a maximum. 

3. If there are positive and negative eigen values then the stationary point is a saddle point. 

The order of the saddle point depends of how many negative eigen values are available. 

For example if one eigen value is available then it is a first order saddle point and so on. 
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A.II Quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimization method 

 The BFGS algorithm is a quasi-Newton method that accumulates information about the 

Hessian matrix H, and the inverse of the Hessian matrix 𝐻−1, and uses this information to 

determine the search direction on the potential energy surface. 

The potential function 𝑉(𝜃𝑖′𝑠) is a function of the rotor angles. 

The update step is: 

 𝜃𝑖+1 = 𝜃𝑖 + 𝜆Δ𝜃𝑖 (A1) 

The step direction: 

 Δ𝜃𝑖 = −𝐻𝑖
−1∇𝑉(𝜃𝑖)  (A2) 

Where H is the Hessian matrix (see Appendix B), and  ∇𝑉  is the gradient of the potential 

function.  

The step size 𝜆 ∈ [0,1] can be calculated by a line search such that: 

 𝑉(𝜃𝑖 + 𝜆𝑖Δ𝜃𝑖+1) = min
𝜆

𝑉(𝜃𝑖 + 𝜆Δ𝜃𝑖) (A3) 

Hessian is updated using (BFGS) update: 

 𝐻𝑖+1 = 𝐻𝑖 +
𝑦𝑦𝑇

𝑦𝑇𝑠
−

𝐻𝑖𝑠𝑠
𝑇𝐻𝑖

𝑠𝑇𝐻𝑖𝑠
 (A4)  

 Where: 𝑠 = 𝜃𝑖+1 − 𝜃𝑖,         𝑦 = ∇𝑉(𝜃𝑖+1) − ∇𝑉(𝜃𝑖)   

Algorithm: The BFGS algorithm 

1: Initialize the Hessian Matrix 𝐻𝑖 

2: Evaluate the forces ∇𝑉(𝜃𝑖) of the initial positions. 

3: Update the positions using equation (A3) and line minimization procedure. 

4: Evaluate the forces on the new positions ∇𝑉(𝜃𝑖+1). 

5: Update the Hessian matrix 𝐻𝑖+1using equation (A4). 

6: Continue until a convergence criterion is reached. If not, go to step 3. 
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A.III Method for Finding Radial Distribution Function of a ditopic molecule a square lattice: 

The radial distribution function RDF is defined as the site-to-site distance between the unit 

cell rotors and its nearest neighbors. This gives a total of [4 (unit cell) x 32 (distances around each 

rotor) = 128]  per 4 rotors in the unit cell.  Figure A-2, explains the RDF function for rotor 𝜃𝑖 in 

the unit cell. This information has been used to build the RDF by counting the site-to-site distances 

within 0.01 thresholds.  These numbers are normalized to the number of rotors in a unit cell [4 

rotors per unit cell], which gives peaks represent, the first one is the nearest-neighbor N1, and the 

second one is next-nearest-neighbor N2 and so on. 

This can be expressed by the radial distribution formula I(r) 

𝑁 = 𝐼(𝑟) =
1

4
∑∑𝛿(𝑟𝑝𝑞

𝑖𝑗
)

8

𝑗=1

4

𝑖=1

         (A5) 

Where i and j are neighbors rotors and p and q are the Cartesian coordinates for i and j, 

respectively. 

             

 (A) (B) 

Figure A-2: (A) The radial distribution function RDF, the frequency peaks are the number of nearest 

neighbors within 0.01 threshold distance unit.  (B) A schematic representation of the herringbone 

structure (𝐿𝐽, and re = 0.7) showing 𝜃𝑖, the center rotor and the counted nearest neighbor rotors, 

located inside the oval structure. 
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Appendix B : The potential function and its gradient and hessian 

 
The Morse and Lennard-Jones potentials are written in the form: 

 𝑉𝑚𝑜𝑟𝑠𝑒(𝑟) = 𝐷𝑒 𝑒−𝛽(𝑟−𝑟𝑒)[𝑒−𝛽(𝑟−𝑟𝑒) − 2]  (B1) 

 𝑉𝐿𝐽(𝑟) = 𝐷𝑒 [(
𝑟𝑒

𝑟
)
12

− 2(
𝑟𝑒

𝑟
)
6

]   (B2) 

Where r, the atomic-atomic distances, is a function of 𝜃′𝑠, the angle of rotors, as shown in Chapter 

II, Figure II-6. 

The gradient ∇𝑉 is calculated by using the chain rule: 

All the parameters described in the context (see Chapter II, Figure II-6 and Figure II-7). 

 
𝑑𝑉

𝑑𝜃
=

𝑑𝑉

𝑑𝑟
×

𝑑𝑟

𝑑𝜃
     (B3) 

Morse Potential: 
𝑑𝑉

𝑑𝑟
= 2 × 𝛽 × 𝐷𝑒 × 𝑒−𝛽(𝑟−𝑟𝑒)[1 − 𝑒−𝛽(𝑟−𝑟𝑒)]  (B4) 

Lennard-Jones 
𝑑𝑉

𝑑𝑟
= 12 ×

𝐷𝑒

𝑟𝑒
[(

𝑟𝑒

𝑟
)
7

− (
𝑟𝑒

𝑟
)
13

]  (B5) 

 ∇𝑉 = [
𝑑𝑉

𝑑𝜃1
,

𝑑𝑉

𝑑𝜃2
,

𝑑𝑉

𝑑𝜃3
, … .

𝑑𝑉

𝑑𝜃𝑛
]        (B6) 

Where n is the number of molecules on the surface. 

The Hessian is an (n × n ) matrix which contains the second partial derivatives of the potential: 

 𝐻 =

[
 
 
 
 
 
 

𝜕2𝑉

𝜕𝜃1
2  

𝜕2𝑉

𝜕𝜃1𝜃2
…

𝜕2𝑉

𝜕𝜃1𝜃𝑛

𝜕2𝑉

𝜕𝜃2𝜃1

𝜕2𝑉

𝜕𝜃2
2  …

𝜕2𝑉

𝜕𝜃2𝜃𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑉

𝜕𝜃𝑛𝜃1

𝜕2𝑉

𝜕𝜃𝑛𝜃2
…

𝜕2𝑉

𝜕𝜃𝑛
2 ]

 
 
 
 
 
 

  (B7) 
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Appendix C : Wallpaper Symmetry Groups 

 
Periodic arrangements on the surface resulting from monolayer formation can be 

represented by one of the 17 wallpaper group symmetries, Chart C.1. This approach is based on 

the determination of the surface symmetry elements in Table C.1. 

Table C-1: Schematic representation of the symmetry elements of the wallpaper plane groups. 

Center of rotation  Order  Angle 

  6 
2𝜋

6
 

    4  
2𝜋

4
 

   3 
2𝜋

3
 

    2 
2𝜋

2
 

Reflection of plane 

 Mirror plane  

 Glide Reflection  

Patterns are created by repeating a shape to fill the plane by either translation, reflection, 

glide reflection, or rotation (the plane symmetry elements). Translation shifts the pattern some 

distance from the original and leaves the pattern appearing unchanged. The rotations are clockwise 

by half-turns (180o turn), 120o turn, 90o turn and 60o turn.  A reflection through a plane looks like 

a flip along an axis. The axes can be horizontal, vertical or at some angle. A glide reflection is 

composed of a reflection across an axis and a translation along the axis.    
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Chart C.1: Flow chart describes the 17 plane groups used to describe monolayer symmetry: 

  
 

Largest Rotation 
Order? 

Is there a 
reflection? 

Are there a 
reflection in two 

directions?  

Are all rotation 
centers on a 
mirror lines? 

p2mm 

c2mm 

p2mg 

Is there a glide 
reflection? 

p2gg 

p2 

Is there a 
reflection? 

Are all rotation 
centers on a 
mirror lines? 

p3m1 

p31m 

p3 

Is there a 
reflection? 

Are the mirror 
lines intersecting 

at 45o? 

p4mm 

p4gm 

p4 

Is there a 
reflection? 

Is there a glide 
reflection? 

cm 

pm 

Is there a glide 
reflection? 

p1 

pg 

Is there a 
reflection? 

p6mm 

p6 

None 

 

Yes 

 

Yes 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

Yes 

 

No 

 
No 

 

No 

 

No 

 

No 

 

No 

 

No 

 

No 

 

No 

 

No 

No 

 

2 

3 

4 

6 

No 
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 a) SS (p2mm) b) DSS1 (c2mm)  c) DSS2 (p2mg)   

 

       

 d) WM1 (p4mm)  e) WM2 (p4)   f) LS (p2mg)  

   

 g) PHB (p4gm)  h) HB1 (p2gg) i) BF (c2mm) 

 

j) HB2 (p2) 

Figure C-1: The main symmetry elements and the wallpaper symmetry groups of the main patterns of a 

ditopic molecule on the square lattice surface. The abbreviations are described in the text (Chapter III) 

except for DSS which stand for distorted short stripe. 

  



 

172 
 

 

 a) PHB (p2mm) b) SS (c2mm)  c) DSS  (p2gg)   

 

 d) HC (c2mm)  e) THC (p2)   f) HB1 (p2)  

 

 g) PW1 (p2)  h) PW2 (p2) i) TR (c2mm) 

 

j) HB2 (p2gg) 

Figure C-2: The main symmetry elements and the wallpaper symmetry groups of the main patterns of a 

ditopic molecule on the triangular lattice surface. The abbreviations are described in the text (Chapter 

III). 
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 a) RB (p2mm)  b) OCT (p4mm)  c) CH (pm)  

     

 d) DCH (p4gm)  e) RCH (p2mg)  f) DOCT (p4)   

                      

 g) DRB (cm)  h) DRCH1 (p2)  i) DRCH2 (pg) 

 

g) DRCH 3 (p4) 

Figure C-3: The main symmetry elements and the wallpaper symmetry groups of the main patterns of a 

tritopic molecule on the square lattice surface. The abbreviations are described in the text (Chapter IV). 
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 a) HC(p3m1)  b) RCh (p2mg)   

 

 c) Ch(p3)  d) HB (pg)   

 

d) PCh (p3m1)  

Figure C-4: The main symmetry elements and the wallpaper symmetry groups of the main patterns of a 

tritopic molecule on the triangular lattice surface. The abbreviations are described in the text (Chapter 

IV). 
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 a) SQ (p4mm)  b) CO1 (p4) c) DCB (p4gm) 

 

       

 d) HB1 (p4) e) TI (p4gm) f) CB (p4mm) 

            

 g) CR (p4mm)  h) HB2 (p4) i) CO2 (p4) 

Figure C-5: The main symmetry elements and the wallpaper symmetry groups of the main patterns of a 

tetratopic molecule on the square lattice surface. The abbreviations are described in the text (Chapter V). 
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 a) CB (p2mm)  b) RC(c2mm) 

 

 c) TCB (c2mm) d) HB (p2gg) 

 

 e) CR (c2mm) f) PW1(c2mm) 

Figure C-6: The main symmetry elements and the wallpaper symmetry groups of the main patterns of a 

tetratopic molecule on the triangular lattice surface. The abbreviations are described in the text (Chapter 

V). Cont’d see next page for g and h. 
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 g) HB (p2) h) PW2 (p2) 

Figure C.6: continued. 
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Appendix D : Calvo’s approach of Temperature Replica Exchange 

Monte Carlo (T-REMC) 

The exchange probability between two replicas 𝑖 < 𝑗: 

 𝑃𝑖𝑗=min [1, 𝑒
−(𝑈𝑖−𝑈𝑗)(

1

𝑘𝐵𝑇𝑗
−

1

𝑘𝐵𝑇𝑖
)
] (D1) 

where, U is the potential energy for each replica, kB is the Boltzmann constant, and T is the 

temperature  

Each pair (i, j) is denoted by a single number r, including the rejection move for r=0 and given 

P0=1. One specific ℓ is the randomly selected according to its normalized probability 𝑃ℓ̃: 

 𝑃ℓ̃ =
∑ 𝑃ℓ0…ℓ

∑ 𝑃𝑟𝑟
 (D2) 

The move ℓ succeeded if: 

 𝑃̃ℓ−1 < 𝜉 < 𝑃ℓ̃ (D3) 

Where, 𝜉 is random number selected in the interval [0, 1]. 

Example: If three replica (T1, T2, and T3) have to be applied:  

We calculate the probability between each two replica using equation D1 as follows: 

P0=1, P1=P12, P2=P13, and P3=P23. After that we calculate the sum of the probabilities 𝑠𝑢𝑚 = ∑ 𝑃𝑖
3
𝑖 . 

Then a random number (𝜉) has been generated. Finally, the swapping algorithm are:  

If 𝜉 < 1/𝑠𝑢𝑚  don’t switch 

If  1/𝑠𝑢𝑚 ≤ 𝜉 < (1 + 𝑃1)/𝑠𝑢𝑚  switch 1→2 

If (1 + 𝑃1)/𝑠𝑢𝑚 ≤  𝜉 < (1 + 𝑃1 + 𝑃2)/𝑠𝑢𝑚 switch 1→3 

If (1 + 𝑃1 + 𝑃2)/𝑠𝑢𝑚 ≤ 𝜉 < 1 switch 2→3 
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Supporting Material: 

Chemical structures mentioned in the dissertation 

   

 porphyrin phthalocyanine  

 

1,3,5-tris[(E)-2-(3,5-didecyloxyphenyl)-ethenyl]- benzene TSB35 

 

 

calix[4]arene 
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perylene tetra-carboxylic di-imide (PTCDI) 

 

 

dicyanoquinquiphenyl 

 

 

Fréchet dendron 
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