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3-1 Temperature and stream function fields at Ra = 9976 (Lc = 0.063): (a) Ls =
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the temperature fluctuations are nearly independent of z. However, as Ls

is increased (c,d) more Fourier modes arise and the structure of the steady

solutions departs from that of the analytical heat-exchanger solution even in
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3-3 (a) Proximity of numerical solutions to the heat-exchanger solution: γ =

−(Ra/k2s)∂zT |z=0.5 versus LsRa. As Ls is increased, γ eventually departs from
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(b) Variation with Ra of Lh, the wavelength of steady solutions with γ = 0.99

(i.e. numerical heat-exchanger solutions). Also plotted for comparison are

Lc ∼ 2πRa−0.5, the wavelength of the marginal stability boundary; Lm ≈

(2π/0.47)Ra−0.4, the mean inter-plume spacing measured from the DNS of

Hewitt et al. (2012); and Lf ∼ 2
√
πRa−0.25, the wavelength of the fastest
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3-4 Contour plot of Nusselt number in (Ra,Ls) parameter space for steady con-
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3-5 (a) Rayleigh-number scaling of the inverse wavelength associated with heat-
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Ra multiple states yield nearly the same (maximum) heat flux. The dashed

line is the best fit curve 1/Ls = 0.070Ra0.52 for Ra ≤ 12559. For reference,

1/Lh and 1/Lc are also plotted as functions of Ra. (b) Rayleigh-number

scaling of the Nusselt number for steady convective solutions (dots). The

dashed line is the best fit curve Nu = 0.155Ra0.60 + 1.213. For reference,

data from various DNS and upper bound analysis is also shown. The DNS

results (Nu ∼ 0.0068Ra) are from Otero et al. (2004), Hewitt et al. (2012)

and chapter 2; the upper bound results (Nu ∼ 0.0207Ra) are from chapter 6. 75
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3-6 Contours of the maximum growth rate Re{σm} as a function of β and Ls for

various Ra: (a) Ra = 1581; (b) Ra = 3155; (c) Ra = 5000; (d) Ra = 9976.
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4-2 Contours of the maximum growth rate Re{λm} as a function of wavenumber

nk and Ra. φ = 0 (a), 1 (b), 5 (c), 10 (d), 25 (e), and 30 (f ) degrees.
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792 using the present numerical scheme. . . . . . . . . . . . . . . . . . . . . 110



List of Figures xxvii
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However, as φ is increased, the natural roll is stabilized and the instability of
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4-13 Snapshots of the temperature field from DNS showing the nonlinear evolution

of the fastest-growing secondary instability mode for Ls = 0.1667, β = 0.1,
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highlighted in (a) to (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4-14 Snapshots of the temperature field from DNS showing the bulk instability for

narrow columnar flows at Ra = 50000 and φ = 5◦ in L = 2.387: (a) τ = 0; (b)
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5-5 Snapshots of the temperature field and time series of the instantaneous Nusselt
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5-8 Time-averaged Fourier amplitudes of the temperature fluctuations (i.e. devi-
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ABSTRACT

POROUS MEDIUM CONVECTION AT LARGE RAYLEIGH NUMBER:

STUDIES OF COHERENT STRUCTURE, TRANSPORT,

AND REDUCED DYNAMICS

by

Baole Wen

University of New Hampshire, September, 2015

Buoyancy-driven convection in fluid-saturated porous media is a key environmental and tech-

nological process, with applications ranging from carbon dioxide storage in terrestrial aquifers

to the design of compact heat exchangers. Porous medium convection is also a paradigm

for forced-dissipative infinite-dimensional dynamical systems, exhibiting spatiotemporally

chaotic dynamics if not “true” turbulence. The objective of this dissertation research is to

quantitatively characterize the dynamics and heat transport in two-dimensional horizontal

and inclined porous medium convection between isothermal plane parallel boundaries at

asymptotically large values of the Rayleigh number Ra by investigating the emergent, quasi-

coherent flow. This investigation employs a complement of direct numerical simulations

(DNS), secondary stability and dynamical systems theory, and variational analysis.

The DNS confirm the remarkable tendency for the interior flow to self-organize into closely-

spaced columnar plumes at sufficiently large Ra (up to Ra ' 105), with more complex

spatiotemporal features being confined to boundary layers near the heated and cooled walls.

The relatively simple form of the interior flow motivates investigation of unstable steady and

xxxvii
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time-periodic convective states at large Ra as a function of the domain aspect ratio L. To

gain insight into the development of spatiotemporally chaotic convection, the (secondary)

stability of these fully nonlinear states to small-amplitude disturbances is investigated us-

ing a spatial Floquet analysis. The results indicate that there exist two distinct modes of

instability at large Ra: a bulk instability mode and a wall instability mode. The former

usually is excited by long-wavelength disturbances and is generally much weaker than the

latter. DNS, strategically initialized to investigate the fully nonlinear evolution of the most

dangerous secondary instability modes, suggest that the (long time) mean inter-plume spac-

ing in statistically-steady porous medium convection results from an interplay between the

competing effects of these two types of instability.

Upper bound analysis is then employed to investigate the dependence of the heat transport

enhancement factor, i.e. the Nusselt number Nu, on Ra and L. To solve the optimization

problems arising from the “background field” upper-bound variational analysis, a novel two-

step algorithm in which time is introduced into the formulation is developed. The new

algorithm obviates the need for numerical continuation, thereby enabling the best available

bounds to be computed up to Ra ≈ 2.65×104. A mathematical proof is given to demonstrate

that the only steady state to which this numerical algorithm can converge is the required

global optimal of the variational problem. Using this algorithm, the dependence of the

bounds on L(Ra) is explored, and a “minimal flow unit” is identified. Finally, the upper

bound variational methodology is also shown to yield quantitatively useful predictions of Nu

and to furnish a functional basis that is naturally adapted to the boundary layer dynamics

at large Ra.



CHAPTER 1

INTRODUCTION

1.1 Background

Porous medium convection is a key environmental process that has been extensively studied

since the 1940s (Horton and Rogers, 1945; Lapwood, 1948) owing to its numerous geo-

scientific applications including oil recovery, groundwater flow, and geothermal energy ex-

traction (Nield and Bejan, 2006; Phillips, 1991, 2009). More fundamentally, as a paradig-

m for forced-dissipative infinite-dimensional nonlinear dynamical systems, buoyancy-driven

convection in a fluid-saturated porous layer retains much of the rich dynamics of Rayleigh–

Bénard convection in a pure fluid layer yet provides a simpler physical and mathematical set-

ting for studying instabilities, bifurcations, pattern formation, and spatiotemporally chaotic

dynamics. Recently, this system has again become the subject of intense scrutiny owing

to applications in carbon dioxide (CO2) sequestration in terrestrial aquifers, one promising

means of reducing the emission of greenhouse gases into the atmosphere (Metz et al., 2005).

When CO2 is injected into a deep aquifer, it forms an immiscible CO2-rich vapor phase

(Riaz et al., 2006), as shown in Figure 1-1. The uncontrolled upward movement of the

1
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Left: CO2 migration in a saline aquifer. 

Right: Dissolution-driven convection in 

a porous medium. 
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Fig. 1 Schematic of the CO  sequestration process [8, 9]. Figure 1-1: Schematic of the CO2 sequestration process (Blunt, 2010; Pau et al.,
2010).

buoyant vapor is largely inhibited by low-permeability cap rock (Blunt, 2010), but secure

long-term storage is not guaranteed since fractures in the cap rock can lead to undesired

leakage (Neufeld et al., 2011). Fortunately, as the CO2 vapor spreads, it dissolves into

the liquid brine that fills the porous rock layer comprising the aquifer. The brine becomes

top-heavy and, under the influence of gravity, sinks in plumes of comparatively heavy CO2-

rich fluid (Pau et al. (2010), see Figure 1-1). This phenomenon, known as porous medium

convection, greatly increases the rate of CO2 dissolution and modifies the spread of the

overlying CO2 vapor.

Although carbon sequestration is already being pursued at various sites around the globe (Met-

z et al., 2005), there is a pressing need for improved mathematical and computational models

to facilitate evaluation of injection scenarios, estimation of reservoir storage capacities, and

assessment of leakage risks. To develop quantitatively reliable yet computationally efficient

models for use in studies of carbon sequestration, a thorough understanding of the underlying

flow and transport mechanisms governing this spatiotemporally-chaotic system is required.

This need motivates the dissertation studies of coherent structure, transport, and reduced
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dynamics in porous medium convection. The long-term objective of this dissertation re-

search is to contribute to the development of efficient models of CO2 sequestration, while a

more fundamental aim is to further the general understanding of spatiotemporally chaotic

nonlinear systems.

In pursuit of these goals, a canonical configuration for studying the essential features of

porous medium convection – namely, Rayleigh–Bénard convection in a fluid-saturated porous

medium – is employed (Nield and Bejan, 2006). In Rayleigh–Bénard convection, fluid is

heated from below and cooled from above. Since warmer fluid is less dense than colder

fluid, convection sets in when the imposed temperature difference across the porous layer,

encapsulated in a parameter termed the Rayleigh number Ra, is large enough. Note that,

here, the fluid temperature is strictly analogous to the concentration of CO2 in carbon

sequestration; similarly, the enhancement in heat transport across the layer, quantified by

the so-called Nusselt number Nu, is directly proportional to the increased CO2 dissolution

rate.

1.2 Rayleigh–Bénard Convection in a Fluid-Saturated

Porous Medium

The flow in a horizontal porous layer uniformly heated from below undergoes a sequence of

bifurcations as the Rayleigh number Ra, the normalized temperature drop across the layer, is

increased (see Figure 1-2). When Ra > 4π2, the simple conduction solution becomes linearly

unstable (Nield and Bejan, 2006) and steady O(1) aspect-ratio large-scale convective rolls

emerge. In a two-dimensional (2D) domain, the steady rolls strengthen but remain stable as
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resolution in Ra the heat transport has its largest slope in this region; see Graham &
Steen (1994) for further discussion.

Continuing up the Ra↗ run, we observe that between Ra =1255 and Ra = 1581
the motion changes rather abruptly from time-dependent rolls to plume shedding,
as is evident in figure 4(d–f ). The Nu–Ra relationship also undergoes an abrupt
change over this interval. In fact, it decreases in going from Ra =1255 to Ra = 1581
(see figure 2). For values of Ra greater than 1581 the fluid motion continues to be
dominated by blobs of hot (cold) fluid breaking off the bottom (top) boundary layer
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(e) 5000, (f ) 7924.

and drifting upward (downward). We refer to the dynamics in this Rayleigh number
regime as ‘turbulent’, at least in the sense that it is spatially and temporally chaotic
(presumably) displaying dynamics over a range of length scales. We also observe a
robust ‘anomalous’ Nu–Ra scaling to emerge in this high-Ra range. The best fitting
power law to the data has an exponent very close 0.9, clearly distinct from the classical
Nu ∼ Ra scaling law. The anomalous scaling regime we observe is relatively small –
on the order of a single decade – and so the deviation from exponent 1 could be
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and drifting upward (downward). We refer to the dynamics in this Rayleigh number
regime as ‘turbulent’, at least in the sense that it is spatially and temporally chaotic
(presumably) displaying dynamics over a range of length scales. We also observe a
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power law to the data has an exponent very close 0.9, clearly distinct from the classical
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Figure 1-2: Snapshots of temperature field from DNS (Otero et al., 2004) for (a)
Ra = 315, (b) Ra = 500, (c) Ra = 1255, (d) Ra = 1581, (e) Ra = 5000, (f)
Ra = 7924. Colorbar: the hot roll/plume is in white color; the cold roll/plume is in
dark color.

Ra is increased up to Ra ≈ 400 (Schubert and Straus, 1982). For Ra slightly greater than

400, instabilities within the upper and lower thermal boundary layers generate small-scale

features that are advected around the cell by the large-scale convective rolls. In this moderate

Ra parameter regime, 400 < Ra < 1300, the resulting flow exhibits a series of transitions

between periodic and quasi-periodic convective roll motions, as discussed in considerable

detail by Kimura et al. (1986, 1987) and Graham and Steen (1992, 1994). However, the

background convective rolls are not completely broken down until Ra > 1300. The overall

dynamics are then better characterized as spatiotemporally chaotic plume shedding from the
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We use a vertical coordinate transformation in order to
resolve the diffusive boundary layers at z ¼ 0, 1 which
have an anticipated depth �� Ra�1 [16]. The numerical
simulations are second order in space and time, and have
been extensively benchmarked against previous numerical
results at lower values of Ra [9,10].

For Ra * 1300 [17] the system cannot sustain the large-
scale quasiperiodic roll structure found at lower Ra, which
is broken down as unsteady plumes from the boundaries
drive vigorous columnar exchange flow across the height
of the domain. This transition in the dynamics marks the
start of the ‘‘high-Ra’’ regime. The flow can be divided into
three regions of differing dynamics, as illustrated in Fig. 1.
The interior region is dominated by predominantly vertical
exchange flow, carried in columns or ‘‘megaplumes’’ of a
fairly regular and Ra-dependent wavelength. At the very
top and bottom of the domain are thin diffusive boundary
layers, where intermittent short-wavelength instabilities
drive the growth of small ‘‘protoplumes.’’ Between the
boundary layers and the interior columnar flow is a region
where the dynamics are characterized by the rapid growth
and vigorous mixing of protoplumes. Lateral flushing by
the large-scale flow drives entrainment of the protoplumes
into the interior megaplumes.

In the high-Ra regime the local time-dependent Nusselt
number exhibits chaotic fluctuations about the long-term
time-averaged Nusselt number Nu. A numerical estimate
of Nu is obtained by time averaging until statistical uncer-
tainty in the mean is reduced to within 1%. Figure 2 shows
Nu(Ra) for Ra � 40 000. The transition to the high-Ra
regime is marked by a sharp discontinuity in Nu at
Ra � 1300; a least-squares fit of the data beyond this point
gives a scaling of Ra� Nu0:95�0:01, in approximate agree-
ment with previous results [10]. However, the inset to
Fig. 2 shows a clear trend in Nu=Ra towards a constant
as Ra increases beyond 10 000, strongly suggesting that the
classical linear scaling is attained asymptotically. Given
that the system is dominated by persistent columnar ex-
change flow across the whole domain (Fig. 1), it is surpris-
ing that the flux seems to be asymptotically independent
of the height of the domain. We find that Nu exhibits no

systematic dependence on the aspect ratio L; the slight
scatter in the measurements of Fig. 2 (inset) is the result of
extremely long-time-scale fluctuations in the number of
megaplumes in the domain.
We can model the interior megaplume flow by an exact

‘‘heat-exchanger’’ solution to (1) and (2) in an unbounded
domain. In this model, vertical advection of a background
linear temperature gradient is exactly balanced by horizon-
tal diffusion between neighboring megaplumes, giving a
steady solution

Tðx; zÞ ¼ T̂ cosðkxÞ � k2

Ra
z; (3)

u ¼ 0; wðxÞ ¼ T̂ cosðkxÞ: (4)

This solution comprises interlocking columnar flow with

amplitude T̂ and a regular horizontal wave number k.
Equation (3) shows that the horizontally averaged

temperature profile is linear. Numerical measurements of
the temporally and horizontally averaged temperature
h �TðzÞi [Fig. 3(a)] agree with this linear behavior in the
interior region. We compare the amplitude of the columnar
flow in the model with the numerical calculations by
measuring the root-mean-square (rms) temperature pertur-
bations and velocity components, Trms, urms, and wrms.

In the heat-exchanger model, Trms ¼ wrms ¼ T̂=
ffiffiffi
2

p
, and

urms ¼ 0. Numerical measurements of Trms, urms, and wrms

at z ¼ 0:5 [Fig. 3(b)] show very good agreement with
this behavior asymptotically.
These measurements, together with movies [18] of the

temperature field, indicate that the vigorously convecting
system is dominated by remarkably persistent columnar
flow, which becomes increasingly ordered and increasingly
well-described by the steady heat-exchanger solution as Ra

increases. Moreover, Fig. 3(b) suggests that T̂ is asymptoti-
cally independent of Ra. This observation agrees with the
indications in Fig. 2 that a linear scaling for Nu(Ra)
is attained asymptotically: since the heat transport is
dominated by advection in the interior, we expect that

Nu� RaðT � �TÞw� RaT̂2 � Ra, if T̂ ¼ Oð1Þ.

FIG. 1 (color online). A snapshot of the temperature field at Ra ¼ 2� 104, illustrating the different regions described in the text.
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Figure 1-3: Snapshot of the temperature field from DNS at Ra = 20000 (Hewitt
et al., 2012). Colorbar: the hot plume is in red color; the cold plume is in blue
color. At large Ra, the time-mean inter-plume spacing measured from DNS is Lm =
(2π/0.47)Ra−0.4.

boundaries rather than quasi-coherent cellular flow (Otero et al., 2004; Hewitt et al., 2012).

This marks the transition to the “turbulent” high-Ra regime.

The direct numerical simulations (DNS) of Hewitt et al. (2012) reveal that at large Ra porous

medium convection exhibits a three-region asymptotic structure (see Figure 1-3): adjacent

to the upper and lower walls are extremely thin thermal boundary layers, with a thickness

that scales as O(Ra−1); the interior region is dominated by a nearly vertical columnar ex-

change flow (“mega-plumes”) spanning the height of the domain; and the transition zone

between these regions, where a series of small “proto-plumes” grow from the boundaries and

merge with the interior mega-plumes. Remarkably, as Ra is increased, the interior vertical

columnar exchange flow becomes increasingly well organized. Hewitt et al. (2012) model this

interior flow analytically using a single horizontal Fourier-mode “heat-exchanger” solution,

and extract a Ra−0.4 scaling for the time-mean inter-plume spacing Lm from their simula-

tion data. Actually, this heat-exchanger solution is identical to the asymptotic core solution,

obtained by Corson (2011) based on certain assumptions. To explore the mechanisms for
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this nonlinear scale selection, in a subsequent investigation, Hewitt et al. (2013) show that

the vertical columnar exchange flow is unstable for horizontal wavenumbers k greater than

k ∼ Ra5/14 as Ra→∞ in evident agreement with their DNS results.

1.3 Challenges and Objectives

Although many investigations have been conducted to study the physics of porous medium

convection as discussed above, there still exist many challenges in understanding the flow

mechanisms and dynamics at large Ra. First, the relevance of the stability analysis in Hewitt

et al. (2013) remains an open question, since it employs the analytical heat-exchanger model

– in which the upper and lower boundaries are ignored – as the pertinent base flow on the

grounds that k is not controlled directly by the small-scale dynamics of proto-plumes near

the boundary, since these have a lateral scale of Ra−1. The view of the present study is

that to elucidate the mechanisms for the high-Ra lateral scale selection, it is preferable to

analyze the stability of (numerically) exact solutions of the complete dynamical system (i.e.

in which the base flow exactly satisfies the governing equations and all boundary conditions)

that also exhibit certain flow structures observed in DNS.1 As described above, at large

Ra porous medium convection exhibits spatiotemporally chaotic dynamics. DNS show that

the instantaneous flow self-organizes into recurring quasi-coherent structures, suggesting

that basic physics of high-Ra porous medium convection can be understood in terms of

these “building blocks” and the patterns they form. Consequently, one specific aim of this

dissertation research is to quantify the periods, stability, and heat-transport properties of

1The term “exact” shown in “numerically exact solutions” or “numerically exact coherent states” here
and throughout means the errors between the numerical and the analytical solutions are so small (e.g. of
the order of machine epsilon) that the numerical solutions can be treated as the exact solutions.
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the coherent structures exhibited in this spatiotemporally chaotic dynamical system. To

avoid arbitrary definitions involving averages or thresholds, these structures are identified

with simple exact coherent states (e.g. steady and time-periodic solutions) of the governing

equations. Moreover, as shown in Figure 1-1, the underground saline aquifers are generally

inclined at an angle to the horizontal. Nevertheless, the effects of the inclination of the

layer on the flow structure and transport properties for high-Ra porous medium convection

have largely been unexplored. Hence, another aim of this dissertation is to explore pattern

formation in the inclined porous medium convection at large Ra and to investigate the

physical mechanisms resulting in these patterns.

Secondly, a primary quantity of interest in convection is the Nusselt number Nu, the ratio of

the heat transport in the presence of convective motion to the conductive heat transport in

the absence of fluid motion. An open question important for reduced modeling is: is there a

smallest domain aspect ratio L(Ra) above which the Nusselt number Nu becomes independent

of L? This question is loosely analogous to that of determining the “minimal flow unit” in

wall-bounded shear flow turbulence, the smallest physical domain with horizontally periodic

boundary conditions in which (low-dimensional) turbulence can sustain itself. In this dis-

sertation, this question is addressed by studying the optimal upper bounds on Nu(Ra,L)

obtained from the rigorous “background” (sometimes called Constantin–Doering–Hopf) vari-

ational formalism (Doering and Constantin, 1998). These bounds are then compared with

the DNS results provided by Dianati (2013) as a function of Ra and L.

Finally, at large values of the Rayleigh number, DNS of porous medium convection is com-

putationally expensive. Computer simulations that resolve all dynamical flow features in

kilometer-wide geological formations into which CO2 is sequestered would require years to

perform! Consequently, efficient and reliable reduced dynamical models that resolve only a
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subset of the dynamics are needed. Motivated by this need, another aim of this dissertation

research is to develop a reduced dynamical model of high-Ra porous medium convection.

It should be noted that the investigations of porous medium convection considered in this

dissertation are restricted to 2D configurations. However, recent DNS of Rayleigh–Bénard

convection in a three-dimensional (3D) porous layer at large Rayleigh number clearly ex-

hibit the emergence of a three-region asymptotic structure, with an interior flow that is

increasingly well described by an extension of the heat-exchanger model and comprised by

mega-plumes whose spacing decreases approximately as Ra−0.5 (Hewitt et al., 2014). Thus,

the results of the 2D investigations in the present study may be reasonably expected to pro-

vide at least partial insight into 3D porous medium convection. In short, this dissertation

research comprises investigations of three aspects of 2D porous medium convection: coherent

structure, transport, and reduced dynamics.

1.4 Problem Formulation

Before performing systematic studies of porous medium convection, it is instructive to thor-

oughly understand the basic laws that control the dynamics of this system. In this section,

the derivation of the equations governing porous medium convection is summarized, as adapt-

ed from Nield and Bejan (2006) and Bejan (2013). The limitations of and the assumptions

underlying the resulting models of porous medium convection are also discussed.
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Figure 1-4: Schematic identifying the scale of a r.e.v. relative to the scales of the
flow domain and the pores (Nield and Bejan, 2006).

1.4.1 Dimensional Equations

Consider thermal convection in a fluid-saturated porous medium which consists of a solid

matrix with an interconnected void. Instead of studying the motions of the microscopic

fluid particles, engineers and scientists generally are more interested in variations of coarse-

grained properties of the porous medium. Therefore, to derive the laws governing these

macroscopic variables, a spatial average is taken over a sufficiently large “representative

elementary volume” (r.e.v.) which contains many pores. As shown in Figure 1-4, the r.e.v.

is much larger than the pore, but considerably smaller than the entire domain; in other

words, the appropriate mean quantities over each r.e.v. are studied.

Following Nield and Bejan (2006) and Bejan (2013), the conservation of mass can be ex-

pressed by the continuity equation

ϕ
∂ρf
∂t

+∇ · (ρfu) = 0, (1.1)
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where ϕ = Vf/Vm is the ratio of the volume Vf consisting of fluid only and the volume Vm of

the medium (including both solid and fluid material) in the r.e.v., e.g. ϕ = 1 for pure fluid;

ρf is the fluid density; u = uex+vey+wez is the average of the fluid velocity over Vm (ex, ey

and ez are unit vectors in the x, y and z directions, respectively); and ∇ = ex
∂
∂x

+ey
∂
∂y

+ez
∂
∂z

is a differential operator. If the flow is incompressible, then

∇ · u = 0. (1.2)

The movement of fluid through a porous medium can be modeled by Darcy’s law

µ

K
u = −∇p, (1.3)

where µ the dynamic viscosity of the fluid, K is the medium permeability with dimension

(length)2 (K1/2 is a length-scale representative of the effective pore diameter), and the left-

hand side term of (1.3) denotes the resistance force acting on the fluid while the right-hand

side term denotes the driving force. If gravity (a body force) is considered, then (1.3) becomes

µ

K
u = −∇p+ ρfg, (1.4)

where g = (gx, gy, gz) is the acceleration of gravity, and ρfg actually is a buoyancy force, as

shown later. For the unsteady case, (1.4) becomes

ρfca
∂u

∂t
= − µ

K
u−∇p+ ρfg, (1.5)

where ca is a constant tensor that depends on the geometry of the porous medium. The

exclusion of the inertial term u·∇u in (1.5) (as would appear in the Navier–Stokes equations)
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is partly because for the steady case, i.e. ∂u
∂t

= 0, the inclusion of the inertial term in (1.5) will

make the momentum equation contradict (1.4) unless u·∇u ≡ 0. More detailed explanations

about why this term can be omitted can be found in Nield and Bejan (2006). Actually, (1.5)

can be further simplified by using the Oberbeck–Boussinesq approximation:

ρ0ca
∂u

∂t
= − µ

K
u−∇p+ ρfg, (1.6)

ρf = ρ0[1− α(T − T0)], (1.7)

where ρf only depends on the temperature T , ρ0 is the density of fluid at T0, and α is the

coefficient of thermal expansion.

Assume the medium is homogeneous and isotropic, and the radiative effects, viscous dissi-

pation, and the work done by pressure changes are negligible. Then, from the first law of

thermodynamics, the energy equations for the solid and fluid phases can be expressed as

(1− ϕ)(ρc)s
∂Ts
∂t

= (1− ϕ)∇ · (Ks∇Ts) + (1− ϕ)q′′′s +H(Tf − Ts), (1.8)

ϕ(ρcp)f
∂Tf
∂t

+ (ρcp)fu · ∇Tf = ϕ∇ · (Kf∇Tf ) + ϕq′′′f +H(Ts − Tf ), (1.9)

where the subscripts s and f refer to the solid and fluid phases, respectively, c is the specific

heat of the solid, cp the specific heat at constant pressure of fluid, K the thermal conductivity,

q′′′ the heat production per unit volume, and H the heat transfer coefficient. If there is no

heat production, and the solid matrix and fluid are in local thermal equilibrium so that

Ts = Tf = T , then adding (1.8) and (1.9) yields

(ρc)m
∂T

∂t
+ (ρcp)fu · ∇T = ∇ · (Km∇T ), (1.10)
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where

(ρc)m = (1− ϕ)(ρc)s + ϕ(ρcp)f , (1.11)

Km = (1− ϕ)Ks + ϕKf . (1.12)

Strictly, the assumption of local thermal equilibrium is only valid when there is no exchange

of heat between the fluid and solid matrix or when the heat capacity per unit volume of

the fluid and solid are equal. However, these equations are formally identical to the ap-

propriate equations governing solutal convection (where the temperature T is replaced with

the concentration C of a solute), which is, of course, the more relevant interpretation for

convective and diffusive transport of carbon dioxide in the context of sequestration and for

which no-flux of solute between the fluid and solid is an appropriate idealization. Moreover,

this assumption can be shown to be a reasonable approximation in many applications for

which rapid thermal adjustment of the solid matrix may be expected, as is often the case

for small-pore media such as fibrous insulation (Nield and Bejan, 2006; Bejan, 2013).

Since (ρc)s, (ρcp)f , Ks and Ks are constant for homogeneous and isotropic medium, (1.10)

can also be rewritten as

αm
∂T

∂t
+ u · ∇T = κ∇2T, (1.13)

where

αm =
(ρc)m
(ρcp)f

, (1.14)

κ =
Km

(ρcp)f
, (1.15)
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Figure 1-5: Geometry for horizontal 2D porous medium convection: (a) dimen-
sional and (b) dimensionless porous Rayleigh–Bénard cells.

are the heat capacity ratio and the thermal diffusivity with dimension (length2/time),

respectively, and ∇2 is the Laplacian operator. In short, the equations (1.2), (1.6) and

(1.13) are the so-called Darcy–Oberbeck–Boussinesq equations governing the evolution of

the temperature field T (x, t) in porous medium convection.

1.4.2 Dimensionless Equations

In this dissertation, the classical Horton–Rogers–Lapwood problem (Nield and Bejan, 2006)

is studied in a 2D porous Rayleigh–Bénard cell, as shown in Figure 1-5. Consider a fluid-

saturated porous layer with layer thickness H heated from below at z = 0 (T = T0 +4T )

and cooled from above at z = H (T = T0) (see Figure 1-5a). For this system, there exist two

types of nondimensionalizations depending on which time scale, diffusion or convection, is

chosen. In both approaches, H, 4T , T , U and P are chosen as scales for horizontal/vertical

length, temperature, time, velocity and pressure, respectively, where T , U and P are to be

determined.
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First, dimensional analysis of the energy equation (1.13), namely,

αm
4T
T ∼ U

4T
H

∼ κ
4T
H2

, (1.16)

yields a diffusion time Td = αmH
2/κ and a diffusion velocity Ud = κ/H. Then, the scale for

pressure would be P = µκ/K from dimensional analysis of the momentum equation (1.6).

Therefore, the dimensional variables can be normalized as

x? =
x

H
, T ? =

T − T0
4T , t? =

t

Td
, u? =

u

Ud
, p? =

p

P
. (1.17)

Thus, the dimensionless equations can be written as

∇? · u? = 0, (1.18)

γa
∂u?

∂t?
= −u? −∇?p̃? +RaT ?ez? , (1.19)

∂T ?

∂t?
+ u? · ∇?T ? = ∇?2T ?, (1.20)

where

γa =
caDa

αmPr
, Da =

K

H2
, P r =

ν

κ
, Ra =

gαKH4T
νκ

(1.21)

are the inverse Prandtl–Darcy number, Darcy number, Prandtl number and Rayleigh num-

ber, respectively, ν = µ/ρ0 is the kinematic viscosity of the fluid and p̃? = p?+gKHz?/(νκ).

Generally, the pore scale K � H2, namely, Da� 1. Moreover, in many cases, Pr � 1, e.g.

Pr ∼ 1023 for the Earth’s mantle. Hence, the inverse Prandtl–Darcy number γa is exceed-

ingly small in most applications. Finally, the dimensionless Darcy–Oberbeck–Boussinesq
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equations in the infinite Prandtl–Darcy number limit can be expressed as

∇ · u = 0, (1.22)

u +∇p = RaTez, (1.23)

∂T

∂t
+ u · ∇T = ∇2T, (1.24)

where the tilde and stars have been dropped for brevity of notation. The dimensionless

variables in the porous Rayleigh–Bénard cell satisfy the boundary conditions

T (x, 0, t) = 1, T (x, 1, t) = 0, w(x, 0, t) = 0, w(x, 1, t) = 0 (1.25)

and L-periodicity of all fields in x, as shown in Figure 1-5(b). It should be emphasized here

that the Darcy’s equation (1.23) requires (1) the smallest length scale of the flow is much

larger than the length scale of the pore; (2) the Reynolds number Rep of the flow, based on

the length scale of the pore, is of order unity or smaller. However, given that the pore scale

is small, the second requirement, Rep ∼ O(1), is not in contradiction to Ra� 1. Although

both (1) and (2) indicate that Darcy’s equation will be invalid when Ra is sufficiently large

(e.g. Ra = ∞), according to the analysis in Hewitt (2014), the above requirements can be

satisfied at least for Ra . 106.

The second approach to nondimensionalizing the governing equations is to choose the con-

vective time scale, as shown in Hewitt (2014). Dimensional analysis of the right-hand side

terms of the momentum equation (1.6), namely,

µ

K
U ∼ P

H
∼ ρ0α4Tg, (1.26)
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yields the convective velocity Uc = Kρ0α4Tg/µ and pressure P = ρ0α4TgH. Then, the

convective time Tc = αmH/Uc can be obtained from the dimensional analysis of the energy

equation (1.13). Therefore, the dimensional variables can be normalized as

x? =
x

H
, T ? =

T − T0
4T , t? =

t

Tc
, u? =

u

Uc
, p? =

p

P
. (1.27)

Finally, the dimensionless continuity equation retains the same form as in (1.22); however, in

the infinite Prandtl–Darcy number limit, the dimensionless momentum and energy equations

are changed to

u +∇p = Tez, (1.28)

∂T

∂t
+ u · ∇T =

1

Ra
∇2T, (1.29)

respectively. Note that Ra can be also written in the form of the ratio of the diffusion to

convection time scales, namely Ra = Td/Tc.

One of the key quantities of interest in convection is the Nusselt number Nu, the ratio of the

heat transport in the presence of convective motion to the conductive heat transport when

u = 0 in the horizontal porous layer:

Nu = 1 +
1

L

〈∫
wTdxdz

〉
, (1.30)

where the angle brackets denote a long-time average; i.e. for some function f

〈f〉 = lim
t̃→∞

1

t̃

∫ t̃

0

fdt. (1.31)
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From the equations of motion an alternative but equivalent expression for the Nusselt number

can be derived,

Nu = − 1

L

〈∫
z=0

∂zTdx

〉
≡ −〈∂zT |z=0〉 =

1

L
〈||∇T ||2〉, (1.32)

where f = 1
L

∫ L
0
fdx and ||f || = (

∫
|f |2dxdz)1/2.

1.5 Layout

The reminder of this dissertation is organized as follows. To characterize the asymptotic

structure of flow in 2D porous medium convection at Ra� 1, new DNS are performed up to

Ra = O(105) for long times and in wide domains (large aspect ratios) in chapter 2. The DNS

confirm the remarkable tendency for the interior flow to self-organize into narrow columnar

plumes at sufficiently large Ra, with more complex spatiotemporal features being confined to

boundary layers near the heated and cooled walls. However, the new data indicates that the

mean inter-plume spacing Lm deviates from the Ra−0.4 scaling for Ra > 104. In particular,

the interior flow can be statistically steady for a band of wavelengths at sufficiently large

Ra. Moreover, the first systematic study of high-Ra inclined porous medium convection is

also presented in this chapter. The DNS results reveal that when the inclination angle of

the porous layer φ is between 0◦ and 25◦, the flow exhibits a similar three-region structure

as is manifest in the horizontal case, except that as φ is increased the time-mean spacing

between neighboring interior mega-plumes is also substantially increased. Nevertheless, for

0◦ ≤ φ . 20◦, the Nusselt number Nu is almost unchanged. However, when φ > φc, where

30◦ < φc < 32◦, the columnar flow structure is completely broken down: the flow transitions
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to a large-scale traveling-wave convective roll state, and the heat transport is significantly

reduced.

In chapter 3, the structure and stability of equilibrium solutions of the Darcy–Oberbeck–

Boussinesq equations as functions of both Ra and domain aspect ratio L are investigated.

These solutions take the form of steady convective states that share certain attributes of the

columnar flows seen in the DNS. At large Ra, the steady flows can be broadly categorized

into two distinct forms: for small L (close to the linear stability threshold) the flow in the

interior can be well predicted using a heat-exchanger model given by Hewitt et al. (2012); for

larger L, the convective state changes form, exhibiting a stably stratified core. Quantitative

comparisons with the time-mean columnar core flow obtained from DNS show that the latter

is neither an equilibrium heat-exchanger nor a stably-stratified core solution but, rather, an

admixture of these steady convective states. The equilibrium solutions transport less heat

than does the statistically steady turbulent flow at the same parameter values. Specifically,

the Nusselt number Nu ∼ Ra for turbulent porous medium convection, while Nu ∼ Ra0.6

for the maximum heat-transporting steady solutions; like the unsteady flow, however, the

plume spacing for these maximum heat-transporting steady states decreases as the thermal

forcing is increased, approximately as L ∼ Ra−0.52 for 103 < Ra < 104 (see also Corson

(2011)). To gain insight into the development of spatiotemporally chaotic convection, the

(secondary) stability of the fully nonlinear steady states to small-amplitude disturbances is

investigated using a spatial Floquet analysis. At large Ra, two distinct modes of instability

are found. For sufficiently small L, the fastest-growing secondary instability mode has a

wall-normal structure that spans the layer. Interestingly, for larger L, secondary instability

modes associated with a continuous band of horizontal scales are equally amplified. Unlike

the bulk modes manifested at smaller L, these modes are strongly localized near the hot
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and cold boundaries. DNS strategically initialized with a superposition of the nonlinear

equilibrium solutions and small-amplitude contributions from the fastest-growing secondary

instability modes suggest that the mean inter-plume spacing observed at large Ra results

from an interplay between these two types of instability.

In chapter 4, the physics of pattern formation in inclined porous medium convection is

elucidated using linear stability and secondary stability analyses of different steady states

(the background linear basic state and the fully nonlinear convective state). Theoretical

analysis indicates the inclination of the porous layer will induce a basic unicellular flow

which strengthens as the inclination angle φ is increased from 0◦ to 90◦. The neutral stability

analysis of this base flow by Rees and Bassom (2000) predicted a critical value of the angle

31.30◦ above which the base unicellular flow is linearly stable in an infinitely wide 2D domain

at large Ra. This critical value appears very close to the transitional angle with a value

between 30◦ and 32◦ around which the convective flow in DNS exhibits distinct patterns,

implying that the linear stability analysis could provide at least partial insight into the

pattern formation of the flow at large Ra. Therefore, in this section, the linear stability

analysis is revisited to study the distribution of the eigenspectrum for various disturbances

with different wavelengthes from the onset of convection up to Ra = 50000. Since DNS

generally exhibits a convective flow pattern with boundary layers near the upper and lower

walls, the structure and stability of steady, fully nonlinear convective states are investigated

at moderate and large Rayleigh number. At moderate Ra, these steady states take the form

of large-scale, counter-rotating convective rolls. The results indicate that small inclination of

the layer will strengthen and stabilize the counterclockwise-rotating rolls, while suppressing

and destabilizing the clockwise rolls and thereby making them detach from the upper and

lower walls at large angles. At high Ra, depending on the value of the aspect ratio, the steady
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convective state is distorted in a different direction (either clockwise or counterclockwise), in

contrast with the vertically straight steady flow in the horizontal case. Secondary stability

analysis of these steady solutions indicates that there still exist two types of instability when

φ 6= 0◦: a bulk instability and a wall instability, consistent with the previous findings for

φ = 0◦. However, the background flow induced by the inclination of the layer intensifies the

bulk instability during its subsequent nonlinear evolution, thereby favoring increased spacing

between the interior plumes relative to the horizontal scenario.

Although the steady convective states contain many features of the columnar flows seen in

the DNS, there are evident differences, too. For example, unlike the unsteady flow observed

in DNS, the proto-plumes are absent in these steady solutions. Moreover, DNS also suggest

that both the bulk instability and the wall instability are operative in the turbulent flow.

Hence, it is more desirable to analyze the structure and stability of some (numerically)

exact coherent solutions which contain the three-region structure including proto-plumes, as

exhibited in the turbulent flow. Consequently, the structure and stability of time-periodic

solutions of high-Ra porous medium convection are computed and assessed in chapter 5.

By classifying the eigenfunctions emerging from a stability analysis of the steady convective

states, four types of periodic-orbit solutions with different symmetries have been found. The

results indicate that both the instantaneous and time-averaged mean flows of these time-

periodic solutions retain the critical characteristics of the turbulent columnar flow observed

in DNS. Compared with the steady states, these time-periodic states are closer to the real

flow, not only in flow structure but also in terms of heat transport. Moreover, the stability

analysis of these time-periodic solutions reveals that the wall and bulk instabilities coexist

for an unsteady columnar flow.

One of the central challenges in porous medium convection is to determine the heat transport
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enhancement factor Nu as a function of the Rayleigh number Ra and domain aspect ratio

L. In chapter 6, upper bound theory is used to investigate the dependence of the Nusselt

number Nu on the domain aspect ratio L at large values of the Rayleigh number Ra. A

novel two-step algorithm in which time is introduced into the variational formulation is

utilized to solve the optimization problems arising from the upper bound analysis, without

requiring numerical continuation, enabling the best available bounds to be computed up to

Ra ≈ 2.65 × 104. Mathematical analysis indicates that the only steady state to which this

numerical algorithm can converge is the required global optimal of the variational problem.

Moreover, using this new upper bound algorithm, the dependence of the bounds on L(Ra)

is explored and a minimal flow unit is identified.

As noted above, DNS show that buoyancy-driven convection in a fluid-saturated porous

layer self-organizes into narrow columnar plumes at large Ra. According to the specific well-

organized structure of high-Ra columnar flow, two strategies are presented in chapter 7 to

reduce the degrees of freedom in numerical simulations of porous medium convection in the

minimal flow unit. In the first approach, the domain is decomposed into three regions: one

interior region and two near-wall regions. It will be shown that in the interior region, the

high-wavenumber Fourier modes basically do not affect the flow features and heat transport.

Nevertheless, to resolve chaotic small-scale convective motions within the upper and lower

boundary layers, exceedingly many Chebyshev or Fourier modes are needed. In the second

approach, an alternative, fully a priori spectral basis composed of eigenfunctions from upper

bound theory is employed for reduced dynamical modeling of porous medium convection.

These upper bound eigenfunctions, extracted directly from the governing equations, contain

many characteristics observed in the real flow. In this dissertation research, the previous

model reduction strategy developed by Chini et al. (2011) has been extended to large Ra to
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efficiently represent the small-scale rolls within the thin thermal boundary layers.

Conclusions are given in chapter 8.



CHAPTER 2

DIRECT NUMERICAL SIMULATIONS

2.1 Introduction

As noted in chapter 1, DNS have been carried out by Otero et al. (2004) and Hewitt et al.

(2012) to study the flow structure and transport properties of horizontal porous medium

convection at large Ra (up to Ra = 4 × 104); in particular, Hewitt et al. (2012) extract a

Ra−0.4 scaling for the mean inter-plume spacing from their DNS data. However, these DNS

are generally conducted in domains with L = 2. In this chapter, new DNS is performed

for 1900 < Ra < 105 in wide domains and for long times containing more than 15 pairs of

plumes for hundreds to thousands of convective time units. To characterize the structure of

flow in 2D porous medium convection at large Ra, the new DNS data is analyzed statistically

and compared with the previous results.

Moreover, as shown in Figure 1-1, porous medium convection in carbon sequestration gen-

erally occurs in inclined aquifers. Therefore, another primary aim of this chapter is to study

the flow and transport mechanisms in inclined porous medium convection using DNS. Ear-

ly experimental investigations by Bories and collaborators (Bories et al., 1972; Bories and

23
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(a)

Natural convective flow in an inclined porous layer 269 

FIQURE 1. The porous layer. 

3. Establishment of transition criteria 
The basic flow which develops in a differentially heated inclined porous layer is of 

a unicellular two-dimensional type. The structure of this flow as well as its stability 
are defined not only by the slope angle $ and the Rayleigh number Ra*, but also 
by the parameters A and B. In order to make comparison with the experimental 
results previously observed, the stability analysis will be respectively developed for 
A, B+ and A and B remaining finite. 

3.1. Stability of the jlow in an inJinite-extension layer 
If the porous layer is of infinite extension in the x- and y-directions, the solution 
corresponding to the basic unicellular flow can be readily found and leads to the 
following expressions for the temperature and velocity fields : 

To = 1-2;  Uo = Ra* sin$ (i-2); V, = 0; Wo = 0. (4) 

Equations of perturbation relative to this flow, deduced from the (l), (2), (3) system 

ae ae 
i3X at 

become : 
Vee-Ra* sin $ (4-2) -+w = - ; 

where 0 and w stand for the perturbations of the temperature and the vertical 
component of the filtration velocity superimposed on the basic flow (4). 

Developing these perturbations into complex exponential functions of the spatial 
coordinates x ,  y and of time t and eliminating w in (5)  and (6), the previous set of 
equations is reduced to one equation in 8: 

(D2-82)2 8-n(D2-sa) O-Ra* cos$ 8*8-isZ Ra* sin $ [(i-z) (D2-82)O-De] = 0, 
(7) 

in which 8, represents the Component of the wavenumber 8 = (8:+8:)4 of the 
perturbation in the direction of the slope, and D = d/dz. 

The principle of stability exchange having been satisfied for the problem in 

(b)

Natural convection in a tilted two-dimensional porous cavity 31 1 

A m 

Ra 

20 r I I I c  
0 30 60 90 

+ (deg.) 

FIGURE 1.  The different experimentally determined types of flow in an inclined cell of large lateral 
extension (after Bories et al. 1972). A :  unicellular flow; B :  polyhedric cells; C :  helicoidal 
cells ; D : unsteady regime ; E : oscillating helicoidal cells. 

Aziz (1972), who investigated a square cavity saturated by a fluid with 
temperature-dependent properties. Weber (1975) demonstrated that, in a layer of 
infinite extension, longitudinal rolls constitute the preferred mode of disturbance. 
Walch & Dulieu (1979, 1982) analysed convection in slightly inclined two- 
dimensional cavities and showed that anomalous modes exist for inclinations less 
than 7". Chan, Ivey & Barry (1970), Walch (1980) and Caltagirone & Bories (1980) 
studied the existence of, and transitions between, different flow configurations by 
means of two- and three-dimensional numerical simulations using spectral and 
finite-difference methods. 

Using analytical and numerical (spectral) methods, Caltagirone & Bories (1985) 
determined two- and three-dimensional solutions for the inclined box and examined 
their stability. Their results, which are summarized in figure 2, confirmed previously 
known results for layers of large lateral extent : the existence of three major regimes 
and the condition for transition from unicellular flow. In  addition the study 
determined : (i) the existence of a transition angle g5t characterizing the change from 
polyhedric cells to longitudinal coils. The theoretical value was found to be 31" 48' 
which differed markedly from the experimental estimates of g5exp - 15"; (ii) the 
critical nature in which initial conditions affected the selection of the mode, when 4 
is less than q5t. It should be emphasized that three-dimensional flows occur naturally 

Figure 2-1: (a) Geometry and boundary conditions for a tilted porous cavity with
an inclination angle φ, where the x axis is taken in the longitudinal direction, and the
y axis in the transverse direction; (b) Different configurations of convective motion
experimentally observed in a tilted porous cavity (Bories et al., 1972). Symbols in (b):
A© unicellular flow; B© polyhedral cells; C© longitudinal stable coils; D© fluctuating
regime; E© oscillating longitudinal coils.

Monferran, 1972; Bories and Combarnous, 1973) revealed three types of flows near the onset

of convection in a sloping 3D porous layer with an inclination angle φ above the horizontal

(see Figure 2-1a): the basic unicellular flow with an upward current near the lower (heat-

ed) wall at z = 0 and a downward current near the upper (cooled) wall at z = 1; the

polyhedral cells with a vertical axis; and the longitudinal helicoidal cells resulting from the

longitudinal rolls (with axes parallel to the sloping walls) superposed on the basic flow, as

shown in Figure 2-1(b). Their experiments indicated that for Ra cosφ ≤ 4π2, only the basic

unicellular flow remains; when Ra cosφ is slightly greater than 4π2, convection appears in

the form of polyhedral cells for small inclination angles (φ . 15◦) and longitudinal helicoidal
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rolls for larger φ. If the influence of the side walls is ignored or in an infinitely extended

layer, the unicellular flow is x- and y-independent (i.e. kx = 0 and ky = 0 where kx and

ky are Fourier wavenumbers in x and y, respectively); and the longitudinal helicoidal cells

are x-independent (i.e. kx = 0); however, for polyhedral cells, both kx and ky are nonzero.

In addition to these three flow configurations, there also exists another type of convective

motion: y-independent transverse rolls (i.e. ky = 0) observed in experiments by Caltagirone

et al. (1971), Kaneko (1972) and Kaneko et al. (1974), and in numerical simulations by

Caltagirone and Bories (1985).

In order to investigate the transition conditions between these different flows, a series of

subsequent studies were carried out. Using linear stability analysis, Caltagirone and Bories

(1985) demonstrated that in an infinitely long and wide porous layer, the basic unicellular

flow is indeed stable for Ra cosφ ≤ 4π2, as shown in region I in Figure 2-2. Moreover, from

linear stability analysis, Caltagirone and Bories (1985) also obtained a transition criteria

from region II (kx 6= 0, corresponding to the polyhedric cells or transverse rolls) to region III

(kx = 0, ky 6= 0, corresponding to the helicoidal cells), namely the dash-dot line in Figure 2-2,

and their analysis yielded a transition angle φt ' 31.8◦ from II to III. Although these the-

oretical predictions by Caltagirone and Bories (1985) are consistent with the experimental

results, their analysis did not lead to a small enough transition angle φexp ' 15◦ which

characterizes the change from polyhedric cells to longitudinal coils in the experiments. The

preference of the polyhedral cells observed for φ . 15◦ in experiments may result from many

factors, e.g. nonlinear effects such as the variation of the viscosity and thermal diffusivity

with temperature (Weber, 1975), or spatial restrictions imposed by having a finite layer in

experiments (Rees and Bassom, 2000). Furthermore, in 3D numerical simulations, Calta-

girone and Bories (1985) and Voss et al. (2010) confirmed the existence of transverse rolls in
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Figure 2-2: Transition criteria, predicted theoretically by Caltagirone and Bories
(1985) using linear stability analysis, between different flow configurations in an
infinitely extended inclined porous layer. The label for region II, “Polyhedric cells,
kx 6= 0 and ky 6= 0”, is misleading, as pointed out by Nield (2011). Since the dash-dot
line in this plot is actually a criterion for the change from kx = 0 to kx 6= 0, and
the analysis in Caltagirone and Bories (1985) does not predict whether ky = 0 or
not when kx 6= 0, hence the transverse rolls are also possible in region II. φt is a
transition angle corresponding to the change from region II to region III. At large
Ra, Caltagirone and Bories (1985) showed φt ' 31.8◦, while the precise value is
φt ' 31.30◦ reported by Rees and Bassom (2000).

region II and helicoidal cells in region III, although Voss et al. (2010) indicated the helicoidal

cells can also exist in region II. However, it should be noted that neither Caltagirone and

Bories (1985) nor Voss et al. (2010) found hexagonal cells in the inclined porous layer. In

short, the mechanisms leading to the transitions between the different flow regimes have not

been fully understood.

More recently, a full numerical investigation of the marginal stability of the unicellular flow

was performed by Rees and Bassom (2000) in a 2D inclined porous layer. Since the transverse
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(y) direction is removed, the polyhedric cells and helicoidal rolls do not exist in the 2D layer,

and the basic unicellular flow will be linearly stable in both region I and region III. Hence,

as shown in Rees and Bassom (2000), at large Ra the 2D instability can only arise when

φ ≤ 31.30◦, while the maximum inclination below which this instability may be possible is

the slightly greater value of 31.49◦ corresponding to a critical Rayleigh number of 104.30.

Furthermore, the onset of convective instability has also been explored extensively in inclined

porous layers with an anisotropic medium (Ormond and Genthon, 1993; Trew and McKibbin,

1994; Storesletten and Tveitereid, 1999; Rees and Postelnicu, 2001; Rees et al., 2006) and

different boundary conditions, e.g. constant-flux heating problems (Alex and Patil, 2000;

Park et al., 2006; Barletta and Storesletten, 2011; Rees and Barletta, 2011).

As Ra is increased, the flow becomes unsteady: when Ra cosφ exceeds about 250, for small φ

there exists a transition to a fluctuating regime with continuous creation and disappearance

of convective cells; while for large φ the transition is to an oscillating flow characterized

by longitudinal rolls oscillating along their axis, in accord with observations by Bories and

Combarnous (1973) and as shown in Figure 2-1(b). Moreover, depending on the Rayleigh

number Ra, inclination angle φ and domain aspect ratio, multiple steady-state solutions

which appear in the form of single/multiple cell convection, or “natural”/“antinatural” uni-

cellular convection with counterclockwise/clockwise circulation, were found at small Ra in

a 2D inclined porous layer (Walch and Dulieu, 1982; Caltagirone and Bories, 1985; Moya

et al., 1987; Sen et al., 1987), and a numerical bifurcation study was conducted by Riley and

Winters (1990) to investigate the bifurcation structure of different branches of solutions.

Although numerous studies of inclined porous medium convection have been performed, they

generally focus on the onset of convection and flow patterns and transport properties at small

and moderate Ra so that the dynamics in the high-Ra regime has largely been unexplored.
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Therefore, in this chapter, two questions are addressed for the inclined problem: (1) what

flow structures are exhibited at large Ra and different inclination angles? (2) how does Nu

change as a function of Ra and tilt angle φ? To address these questions, the first systematic

numerical study of 2D porous medium convection in an inclined porous layer is performed

from Ra = 100 up to Ra ' 105. Although convection in porous media is generally 3D, under

certain conditions approximately 2D flows exist both in practice and in the laboratory.

Hence, the results of the 2D investigation could provide at least partial insight into the fully

3D problem. Moreover, in previous investigations, a sloping square porous cavity with two

opposing isothermal walls held at different temperatures and thermally insulated lateral walls

was utilized as the physical/numerical domain. In contrast, the focus of this dissertation is

on infinite-Pr convection in an inclined porous layer with L-periodic boundary conditions

in x (see Figure 2-3), as for the horizontal case in this study (see Figure 1-5b). It should

be noted that in a 2D infinitely wide layer, for which the aspect ratio of the domain is

infinite, these two systems (with thermally insulated and L-periodic boundary conditions in

x, respectively) should be equivalent.

The remainder of the chapter is organized as follows. In section 2.2, the derivation of equa-

tions governing inclined porous medium convection is summarized following Nield and Bejan

(2006) and the computational methodology is outlined. In section 2.3, the statistical results

of horizontal porous medium convection, for which φ = 0◦, are presented and compared with

the previous DNS. In section 2.4, the flow structure and transport properties in a 2D tilted

porous layer at different Rayleigh numbers and inclination angles are analyzed. Finally, the

results are summarized and discussed in section 2.5.
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Figure 2-3: Geometry for the inclined 2D porous medium convection in the
dimensionless sloping porous Rayleigh–Bénard cell.

structure and transport property in a 2D tilted porous layer at different Rayleigh

number and inclination are analyzed. Finally, the results will be summarized and

discussed in section 2.5.

2.2 Streamfunction/Vorticity Formulation and Com-

putational Methodology

Consider a sloping porous layer with an inclined angle α̃ deviating from the horizon,

as shown in Figure 2-3. For this 2D problem, the acceleration of gravity becomes

g = g sin α̃ex + g cos α̃ez where g ≈ 9.8m/s2. Then the dimensional momentum

Horizontal

Figure 2-3: Geometry for 2D convection in the inclined dimensionless porous
Rayleigh–Bénard cell.

2.2 Streamfunction/Vorticity Formulation and Com-

putational Methodology

Consider a 2D tilted porous layer with an angle of inclination φ above the horizontal, as

shown in Figure 2-3. For this problem, the acceleration of gravity g = −g sinφex−g cosφez,

where g ≈ 9.8m/s2. Then the dimensional momentum equation (1.6) becomes

ρ0ca
∂u

∂t
= − µ

K
u−∇p− ρfg(sinφex + cosφez). (2.1)

Following the first type of nondimensionalization (utilizing the diffusion time Td = αmH
2/κ)

in chapter 1.4.2, one can obtain the dimensionless momentum equation for the inclined case

γa
∂u?

∂t?
= −u? −∇?p̃? +RaT ?(sinφe?x + cosφe?z), (2.2)
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where p̃? = p? + gKH/(νκ)(sinφx? + cosφz?). In infinite Prandtl–Darcy number limit,

u +∇p = RaT (sinφex + cosφez), (2.3)

where the tilde and stars have been dropped for brevity of notation. It can be seen that

(2.3) is exactly equivalent to (1.23) when φ = 0◦. The continuity equation (1.22) and energy

equation (1.24) are unchanged for the inclined convection problem.

By taking the curl of (2.3), one can obtain the vorticity equation

Ω = −Ra(∂zT sinφ− ∂xT cosφ), (2.4)

where the scalar vorticity Ω = ∂xw − ∂zu. To solve these governing equations numerically,

it is convenient to first introduce a stream function ψ to describe the fluid velocity, so that

(u,w) = (∂zψ,−∂xψ). Then the dimensionless equations (2.4) and (1.24) can be written as

∇2ψ = Ra(∂zT sinφ− ∂xT cosφ), (2.5)

∂tθ + ∂zψ∂xθ − ∂xψ∂zθ = −∂xψ +∇2θ, (2.6)

where θ(x, z, t) = T (x, z, t)− (1− z), and θ and ψ satisfy L-periodic boundary conditions in

x and homogeneous Dirichlet boundary conditions in z. Actually, there exists a basic uni-

directional (wall-parallel) shear flow solution for this system: T = 1−z, u = Ra sinφ(1
2
−z)ex

(or ψ = Ra sinφ(z− z2)/2) and p = 1
2
Ra sinφx+Ra cosφ(z− 1

2
z2), which is consistent with

the conduction state for horizontal porous medium convection when φ = 0◦: T = 1 − z,

u = 0 (or ψ = 0) and p = Ra(z − 1
2
z2). Note that this base flow corresponds to the infinite

aspect-ratio limit of the steady unicellular base state that exists in inclined porous medium
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convection in a finite domain.

For the horizontal and inclined cases, the unsteady system (2.5)–(2.6) is solved numerically

using a Fourier–Chebyshev-tau pseudospectral algorithm. For temporal discretization, a

two-step second-order-accurate semi-implicit Adams–Bashforth/Crank–Nicolson (AB/CN)

scheme is employed for the horizontal case; while, for the inclined case, a third-order-accurate

semi-implicit Runge–Kutta (RK3) scheme is utilized for computations of the first three

steps, and then a four-step fourth-order-accurate semi-implicit Adams–Bashforth/Backward–

Differentiation (AB/BDI4) scheme is used for computation of the remaining steps. Further

details regarding the numerical algorithms can be found in appendix A.

2.3 Convection in a Horizontal Porous Layer

As Ra is increased, the previous DNS by Otero et al. (2004) and Hewitt et al. (2012)

indicate that the interior flow becomes more organized and is dominated by persistent vertical

columnar flow across the domain, driven by the chaotic mixing of small proto-plumes at the

upper and lower boundaries. This interior flow is modeled by Hewitt et al. (2012) using the

analytical heat-exchanger solution

T (x, z) = T̂ cos(kx)− k2

Ra
z +

(
k2

2Ra
+ 1

2

)
, (2.7)

w(x) = Ra T̂ cos(kx), (2.8)

u = 0, (2.9)

in which the vertical advection of a linearly-varying (interior) mean temperature field T bal-

ances horizontal diffusion of temperature anomalies (with Fourier amplitude T̂ , which must
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Figure 2-4: Nu vs. Ra for horizontal porous medium convection. Both the present
and previous DNS predict Nu ∼ 0.0068Ra in the high-Ra regime.

be determined) between neighbouring mega-plumes. Although the analytical heat-exchanger

solution exactly satisfies the governing equations and horizontal boundary conditions, it does

not satisfy the vertical boundary conditions. In this section, the time-averaged asymptotic

structure of the columnar flow is investigated at larger Ra – via new DNS – up to O(105).

The solver was thoroughly validated and gives Nu values quantitatively matching those of

previous DNS, as shown in Figure 2-4.

Figure 2-5 shows the structure of the time-averaged flow observed in DNS at Ra = 50000.

Clearly, at the given parameter values, there exist 17 very well organized columnar flows, each

consisting of a single rising and descending mega-plume. Near the heated and cooled walls,

the thermal boundary layers are extremely thin; in the interior, the mean temperature pro-

file is roughly linear in z and seems to be well approximated by the heat-exchanger model
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Figure 2-5: Time average of (a) T and (b) T for Ra = 50000 and L = 2.39. The
averaging is taken over 200 convective time units. In (a), there exist 17 vertical
columnar flows. In (b), the inset shows a magnification of the region near the lower
wall and the dashed line denotes the horizontal mean temperature of the correspond-
ing heat-exchanger solution with k = 2π/(2.39/17) ≈ 44.7.

(see Figure 2-5b). Figure 2-6 shows snapshots of the temperature fields and correspond-

ing long-time-averaged magnitudes of the (complex) Fourier amplitudes of the temperature

fluctuations (i.e. deviations from the horizontal mean) as functions of z from the DNS at

Ra = 50000 conducted in two different domains. As evident in Figure 2-6(a), 17 pairs of tur-

bulent columnar plumes with three-region structure are well organized. The time-averaged

amplitudes of the temperature fluctuations, 〈|θ̂n|〉, in Figure 2-6(c) reveal that the interior

flow is a composite of a few low-wavenumber Fourier modes but dominated by one mode.

Furthermore, at high wavenumber, the Fourier amplitudes θ̂n are strongly localized near the



Chapter 2. Direct Numerical Simulations 34

(a)

x

z

 

 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1 (b)

00.14
0

0.2

0.4

0.6

0.8

1

(c)

0 0.03 0.06
0

0.2

0.4

0.6

0.8

1

〈|θ̂n|〉

z

1 ≤ n ≤ 100

0 0.03 0.06
0

0.2

0.4

0.6

0.8

1

〈|θ̂n|〉

100 < n ≤ 2816

(d)

0 0.03 0.06
0

0.2

0.4

0.6

0.8

1

〈|θ̂n|〉

z

1 ≤ n ≤ 6

0 0.03 0.06
0

0.2

0.4

0.6

0.8

1

〈|θ̂n|〉

6 < n ≤ 192

Figure 2-6: Snapshots of the temperature fields (a,b) and corresponding time-
averaged Fourier amplitudes (c,d) of the temperature fluctuations (i.e. deviations
from the horizontal mean) from DNS at Ra = 50000. In (a,c) L = 2.39, while in
(b,d) L = 2.39/17.

upper and lower walls, where they superpose to comprise the small rolls and proto-plumes

within the thermal and vorticity boundary layers. Figure 2-6(b) and (d) show corresponding

results for DNS performed in a narrower domain, confirming that the flow has a structure

similar to that in the larger domain. In particular, the time-averaged interior flow is well

represented by only 6 Fourier modes.

As shown above in Figure 2-5(b), at large Ra, the slopes of interior mean temperature profiles

measured from DNS and predicted by the heat-exchanger model are very small and seem

to agree very well. However, Figure 2-7(a) shows that, upon closer inspection, there are

clear discrepancies. Although both the DNS and the heat-exchanger model indicate that
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Figure 2-7: Statistical structure of turbulent convection obtained from DNS. (a)
Comparison of the long time- and horizontally-averaged temperature profile 〈T 〉 from
DNS with T from the analytical heat-exchanger model. (b) Time-averaged amplitude
Ad of the dominant Fourier mode (after subtraction of the horizontal mean) at z =
0.5. For each Ra, DNS were performed in a domain with L = 10Lf so that 17
columnar flows were captured, where Lf is wavelength of the fastest growing linear
mode as defined in chapter 3. In (a), only half of the mean temperature profile (i.e.
for 0 ≤ z ≤ 0.5) is plotted owing to statistical anti-symmetry about the mid-plane.

the interior slope of the time- and horizontal-mean temperature field is negative, implying

the core is unstably stratified (colder fluid overlies hotter fluid in the interior), the interior

slope of 〈T 〉 is not well predicted by the heat-exchanger solution: compared with the slope

of T for the heat-exchanger solution, the mean temperature gradient from the DNS is more

negative. On the other hand, Figure 2-7 does suggest that the mean temperature gradient

approaches zero as Ra is increased and that the mean amplitude of the dominant Fourier

mode in the interior is almost independent of Ra at large Ra (Figure 2-7b), consistent with

the measurements in Hewitt et al. (2012) and the form of the heat-exchanger solution. In

short, the statistical structure of the turbulent columnar flow at large Ra resembles the

heat-exchanger solution in the interior, but with a modified mean temperature gradient and

more than one Fourier mode to adequately represent the fluctuations.

The mean inter-plume spacing Lm measured from the present DNS up to Ra ≈ 105 in wide
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Figure 2-8: Variation of mean inter-plume spacing with Ra. The points have
been computed from the DNS reported here; the solid line marks the fitted mean
inter-plume spacing measured from the DNS of Hewitt et al. (2012). The DNS
performed in this study were carried out in a domain with aspect ratio L = 10Lf for
39716 ≤ Ra ≤ 99763; a domain with L = 11Lf was also used for Ra = 39716. For
Ra ≤ 19905, the dominant interior horizontal mode varies (in time) within a small
range so that Lm can be determined by taking a long-time average of the inter-plume
spacing. However, for Ra ≥ 39716, the interior flow becomes very well-organized and
(apparently) can be statistically steady for a band of wavelengths (the dashed-dot
box).

domains and with long averaging times is plotted in Figure 2-8. It is seen that the new data

agree very well with the previous results only for Ra < 10000. Interestingly, for Ra ≥ 39716,

the interior flow becomes very well organized and appears to be metastable within a band of

wavelengths. For instance, at Ra = 50000, given different initial conditions, there can exist

14, 16, 17 or 18 plumes in a domain with L = 10Lf (see the definition of Lf in chapter 3).

These numerical experiments suggest that extremely long averaging times and very wide

domains are required to firmly establish the nonlinear scale selection manifested in turbulent
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Figure 2-9: Variation of Nusselt number Nu for flows with different Lm at Ra =
39716. In wide domains, the same L as in Figure 2-8 is utilized in DNS; in narrow
domains, there exists only one pair of turbulent columnar plumes, namely L = Lm.
It should be noted that in wide domains, the heat transport is nearly independent of
Lm; in narrow domains, the same amount of heat is transported as in wide domains
and the Nusselt number is almost independent of the domain aspect ratio when L is
large enough.

porous medium convection.1 In particular, the new data arguably could be fit by scaling

relations of the form Lm ∼ Raα with α 6= −0.4, the exponent proposed by Hewitt et al.

(2012). Although Lm is not unique at sufficiently large Ra, DNS reveal that the variation of

the mean inter-plume spacing in wide domains almost does not affect the value of Nusselt

number Nu, as shown in Figure 2-9. Moreover, it is also shown that in narrow domains,

where there exists only one pair of columnar plumes, the turbulent flow transports nearly

the same amount of heat, as is manifest in the wide domains, which is independent of the

1From the stability analysis of the steady convective states in chapter 3, there exists a small-growth-rate
and long-wavelength bulk instability mode which requires the simulations to be performed for long times
and in wide domains.
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aspect ratio as long as L is large enough.

2.4 Convection in an Inclined Porous Layer

In order to study the flow structure and transport for convection in an inclined porous layer,

DNS are performed in this section from the onset of convection up to Ra ≈ 105 for different

angles of inclination (φ = 1, 5, 10, 25, 30, and 35 degrees). At each Ra, the final state from

a simulation at a smaller φ is utilized as an initial condition for a simulation at a larger one.

As described above, there exists a simple solution for inclined porous medium convection:

T = 1− z, u = Ra sinφ(1
2
− z)ex and p = 1

2
Ra sinφx + Ra cosφ(z − 1

2
z2). In a 2D domain

and as shown in Figure 2-2, this solution is indeed stable in region I (Ra cosφ ≤ 4π2) and

linearly stable in region III. From III to II, this basic solution becomes linearly unstable

and the system undergoes a bifurcation along the boundary between III and II, namely the

dash-dot line in Figure 2-2.

At small Ra (just above the onset of convection), the flow exhibits steady stable O(1) aspect-

ratio large-scale convective rolls when the layer is inclined. As shown in Figures 2-10 and 2-11,

for Ra = 100 and L = 2 there exist two steady cells corresponding to counter-rotating con-

vective rolls: the counterclockwise circulation with positive ψ and the clockwise circulation

with negative ψ, hereafter referred to as natural and antinatural convective rolls, respec-

tively. For the horizontal case (φ = 0◦), the steady flow has a centro-reflection symmetry

(see Figure 2-10a). However, the reflection symmetry in x no longer exists for the inclined

case (0◦ < φ < 90◦), although the centrosymmetry is retained (see Figure 2-10b-f). Note

that the inclination of the layer modifies the boundary layer thickness of the velocity field

for the natural and antinatural rolls: the former becomes thinner while the latter becomes
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Figure 2-10: Snapshots of isotherms from DNS at Ra = 100 and L = 2. φ = 0 (a),
1 (b), 5 (c), 10 (d), 25 (e), and 30 (f ) degrees. The flow takes the form of stable
and steady convective rolls at different φ.

thicker (see Figure 2-11). Furthermore, it is seen from Table 2-1 that the ψ extremum value

of the natural roll becomes larger as φ is increased, in contrast to that of the antinatural roll,

implying that compared with antinatural convective motion, the natural convective motion

becomes more vigorous when the layer is inclined. This may be understood in following way:

since the basic counterclockwise unicellular flow arises when 0◦ < φ < 90◦, it enhances fluid

motions with the same sense of rotation and suppresses motions rotating in the opposite

sense.
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Figure 2-11: Snapshots of streamlines from DNS at Ra = 100 and L = 2. φ = 0
(a), 1 (b), 5 (c), 10 (d), 25 (e), and 30 (f ) degrees. These streamlines correspond to
the flows in Figure 2-10. Positive ψ stands for counterclockwise circulation (natural
roll) and negative ψ for clockwise circulation (antinatural roll).

HH
HHHHCell

φ
0◦ 1◦ 5◦ 10◦ 25◦ 30◦

Natural 5.37 5.45 5.76 6.14 7.19 7.52

Antinatural 5.37 5.28 4.96 4.52 2.98 2.31

Table 2-1: Magnitude of the ψ extremum values for natural and antinatural rolls
at Ra = 100 for different φ. These ψ extremum values correspond to the flows in
Figures 2-10 and 2-11.
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Figure 2-12: Snapshots of isotherms from DNS at Ra = 300 and L = 2. φ = 0 (a),
1 (b), 5 (c), 10 (d), 17.5 (e), and 25 (f ) degrees. In this case, the flows in (a)–(c) and
(f) are steady; in (d) and (e), the boundary layers of the antinatural rolls become
unstable.

As for horizontal convection, the steady rolls strengthen but remain stable as Ra is increased

up to 200. At Ra = 300, however, the antinatural roll becomes unstable first for φ & 10◦

(while the natural roll remains stable) and some small-scale proto-plumes are generated from

the upper and lower thermal boundary layers and advected around the cell by the background

roll (see Figures 2-12e and 2-13e). Moreover, this boundary layer instability becomes much

stronger as the inclination angle is increased so that the two-cell unsteady convective rolls
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Figure 2-13: Snapshots of streamlines from DNS at Ra = 300 and L = 2. φ = 0
(a), 1 (b), 5 (c), 10 (d), 17.5 (e), and 25 (f ) degrees. These streamlines correspond
to the flows in Figure 2-12.

are split into four-cell stable steady convective rolls at φ = 25◦, as shown in Figures 2-12(f)

and 2-13(f).

For Ra & 400, the steady convective rolls become unstable even at small φ, and the resulting

flow exhibits a series of transitions between periodic and quasi-periodic roll motions (see Fig-

ure 2-14), as observed in the horizontal case. However, one significant difference between

inclined and horizontal porous medium convection is that the inclination of the layer changes

the symmetry of the flow, namely, it intensifies the near-wall instability of the antinatural
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Figure 2-14: Snapshots of isotherms (left) and corresponding streamlines (right)
from DNS at Ra = 500 and L = 2. φ = 0 (a), 5 (b), 10 (c), and 15 (d) degrees.
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Ra 300 500 792 998

φ 25◦ 15◦ 10◦ 5◦

Table 2-2: Approximate angle φ at which flow transitions from two-cell convection
to four-cell convection in DNS at moderate Ra.

roll by increasing its velocity boundary-layer thickness while stabilizing the natural roll by

decreasing its velocity boundary-layer thickness. And as φ is increased, the boundary-layer

instability of the antinatural roll becomes more vigorous so that the plumes generated from

the thermal boundary layers split the original two-cell (one natural and one antinatural)

convection into multiple-cell convection, as shown in Figure 2-14. It should be noted that

as Ra is increased, the value of φ at which the flow transitions from two-cell convection to

four-cell convection decreases, as shown in Table 2-2.

In Caltagirone and Bories (1985) and Moya et al. (1987), the 2D numerical simulations re-

vealed that the system exhibits the basic unicellular flow at large φ in wide domains (e.g.

L = 10). Certainly, this base flow is linearly stable for φ > φt with φt ≈ 31.30◦ (Rees and

Bassom, 2000). However, it may become unstable when the amplitude of disturbance is

large enough since the base flow may not be energy stable. Figure 2-15 shows the snapshots

of isotherms from DNS at φ = 35◦ and L = 10 for different Rayleigh number. Interest-

ingly, given different initial conditions, the convective flow can take different forms. For

instance, at Ra = 100, the flow can exhibit a stable localized two-cell convective structure

(see Figure 2-15a); however, it can also exist as 5 replicas of a stable two-cell convective

state obtained from L = 2 (see Figure 2-15b). In this study, the flow structure for φ > φt at

small and moderate Ra will not be discussed in detail.

When Ra > 1300, the convection exhibits spatiotemporally chaotic dynamics in a horizontal
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Figure 2-15: Snapshots of isotherms from DNS at φ = 35◦ and L = 10. Ra =
100 (a) and (b), 300 (c), and 500 (d). (a) and (b) are obtained using different
initial conditions. Although the basic unicellular flow is linearly stable for φ > φt
in 2D, other types of convection are still possible by initializing with sufficiently
large-amplitude disturbances.

porous layer. In the following sections, the flow structure and transport properties at largeRa

in an inclined porous layer will be discussed. Figure 2-16 shows snapshots of the temperature

fields at Ra = 1991 for different inclination angles. For 0◦ < φ . 25◦, the flow still retains

the three-region columnar structure as is manifest in the horizontal case: spatiotemporally

chaotic plumes generated from the boundary layers are continually swept into and thus

merge with the mega-plumes. For φ & 25◦, however, the thermal plumes and, hence, the

overall flow begin to have a clear inclination toward the direction of buoyancy or the opposite

direction of gravity. Moreover, since the counterclockwise circulation of the background base

flow, which becomes more vigorous as φ is increased, intensifies the motions of the natural
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Figure 2-16: Snapshots of temperature fields from DNS at Ra = 1991 and L = 9.6.
φ = 0 (a), 1 (b), 5 (c), 10 (d), 25 (e), and 30 (f ) degrees.

rolls and suppresses those of the antinatural rolls (as will be shown in chapter 4), the latter

(antinatural rolls) begin to detach from the upper and lower walls (see Figure 2-17) at large

φ. As evident in Figure 2-17, the contact area between the antinatural rolls and two walls

is decreased as φ is increased; on the contrary, the natural rolls are attached to the walls
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Figure 2-17: Snapshots of streamlines from DNS at Ra = 1991 and L = 9.6. φ =
0 (a), 10 (b), 25 (c), and 30 (d) degrees. These streamlines correspond to the flows
in Figure 2-16. The natural rolls are in red color and antinatural rolls in blue color.

more tightly. Finally, the flow pattern is completely changed at φ = 35◦: the convection

transitions to a large-scale-roll motion with the antinatural rolls connected with the heated

and cooled walls only at certain localized points (see Figures 2-18 and 2-19).

However, unlike the quasi-coherent cellular flows at moderate Ra in the horizontal case, the

resulting large-scale convective flow at Ra = 1991, L = 9.6 and φ = 35◦ appears as one of

two types of relative periodic orbits (i.e. time-periodic orbits traveling at constant velocity

in ±x in one period) which are no longer centro-symmetric, hereafter referred to as pattern I

and II. For each pattern, there exist four large-scale (two natural and two antinatural) rolls in

L = 9.6, and the natural rolls are tightly attached to either the upper wall (see Figure 2-18)
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Figure 2-18: Snapshots of temperature fields and corresponding streamlines for
pattern I from DNS at Ra = 1991, L = 9.6 and φ = 35◦. Time evolves from (a)
to (b). For pattern I, there exist four large-scale cells in the domain: two natural
rolls (red ψ) and two antinatural rolls (blue ψ). The lower boundary layers of the
antinatural rolls are unstable: small plumes generated from the heated wall owing
to the boundary-layer instability are continually swept to the left (−x) and merge
with the large-scale hot plumes. However, the natural rolls are tightly attached to
the cooled wall, the upper boundary layer is stable, and as time evolves the entire
flow pattern moves to the right (+x).

or the lower wall (see Figure 2-19), with a stable upper or lower boundary layer, respectively.

Nevertheless, near the opposite walls (the lower for pattern I and upper for pattern II), small-

scale proto-plumes periodically grow from the unstable boundary layers, and are continually

swept into and thus merge with the large-scale plumes in the interior. Interestingly, for both
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Figure 2-19: Snapshots of temperature fields and corresponding streamlines for
pattern II from DNS at Ra = 1991, L = 9.6 and φ = 35◦. Time evolves from (a) to
(b). For pattern II, there also exist four large-scale cells in the domain: two natural
rolls (red ψ) and two antinatural rolls (blue ψ). However, unlike pattern I, the upper
boundary layers of the antinatural rolls are unstable: small plumes generated from
the cooled wall owing to the boundary-layer instability, are continually swept to the
right (+x) and merge with the large-scale cold plumes. Nevertheless, the natural
rolls are tightly attached to the heated wall, the lower boundary layer is stable, and
as time evolves the entire flow pattern moves to the left (−x).

pattern I and II, the large-scale background flow travels in the direction opposite that of the

proto-plumes.

Figure 2-20 shows the time series of the instantaneous Nusselt number nu(t) = −∂zT |z=0 and

the time- and horizontal-mean temperature profile 〈T 〉 for these two patterns at φ = 35◦.
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Figure 2-20: Time series of instantaneous Nusselt number nu (a) and time- and
horizontal-mean temperature profile 〈T 〉 (b) from DNS at Ra = 1991, L = 9.6 and
φ = 35◦. (a) nu varies periodically with time for both I (solid line with circles) and
II (dashed line). (b) Neither of the mean temperature profiles for I (solid line) and
II (dashed line) is antisymmetric about the mid-plane. Nevertheless, Nu = 7.95 for
both I and II.

Clearly, nu varies periodically for both I and II, and the mean temperature profiles for I

and II are no longer antisymmetric about the mid-plane (z = 0.5). For pattern I, the hot

plume occupies a majority of the area of the interior domain so that the magnitude of 〈T 〉

is generally greater than 0.5 in the core; on the contrary, for pattern II, the cold plume

dominates the interior so that the magnitude of 〈T 〉 is generally less than 0.5 in the core.

However, these two patterns transport the same amount of heat, as shown in Figure 2-20. It

should be noted that for φ = 35◦, these two types of patterns exist up to Ra = 3972 where

the only change is that the four-cell convective flow changes to a two-cell convective flow.

As Ra is increased, the columnar flow at small inclination becomes more well-organized

(see Figure 2-21a-d). However, the convection at φ = 35◦ changes form at Ra ≥ 5000.

Rather than the two types of flow patterns entirely traveling in one direction (+x or −x) at

Ra . 3972 (see Figures 2-18 and 2-19), the flow at Ra = 5000 exhibits a large-scale two-cell

convective pattern with the cells traveling in opposite directions. As shown in Figures 2-22

and 2-23, the hot and cold plumes are stretched under the effect of buoyancy. During the
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Figure 2-21: Snapshots of temperature fields from DNS at Ra = 5000 and L = 6.3.
φ = 0 (a), 1 (b), 5 (c), 10 (d), 25 (e), and 30 (f ) degrees. As Ra is increased, the
three-region columnar flow becomes more well-organized at small inclination. For
φ & 25◦, the flow pattern begins to exhibits a clear inclination in the direction
opposite to gravity, as observed for Ra = 1991.
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Figure 2-22: Snapshots of temperature fields from DNS at Ra = 5000, L = 6.3 and
φ = 35◦. Time evolves from (a) to (f). The arrows in (a) represent the direction of
motion of the roots of the hot and cold plumes.
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Figure 2-23: Snapshots of streamlines from DNS at Ra = 5000, L = 6.3 and
φ = 35◦. These streamlines correspond to the flows in Figure 2-22. The natural roll
is in red color and the antinatural roll in blue color.
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Figure 2-24: Time series of instantaneous (a): Nusselt number nu and (b): domi-
nant horizontal mode number nd in the core (z = 0.5) at Ra = 5000, L = 6.3 and
φ = 35◦. nu and nd vary periodically with convective time in these plots. In the
interior, the flow consists of several Fourier modes but is dominated by the first mode
(nd = 1) except when the two plumes collide.

stretching process, the root of the cold/hot plume is pushed by the hot/cold plume toward

the +x/−x direction (see Figure 2-22a). The two plumes meet at some point, then collide

and thus switch their positions (see Figure 2-22b-e). In a L-periodic domain, this process

occurs time-periodically for 5000 ≤ Ra ≤ 9976 (see Figure 2-24). Moreover, Figure 2-23

also indicates that the natural roll is tightly attached to the heated and cooled walls with

stable (lower and upper) boundary layers, while the antinatural roll is detached from the

walls and is only connected to the walls at two points (one at the lower wall and the other at

the upper wall). In short, both the DNS results from Ra = 1991 and Ra = 5000 reveal that

for 0◦ < φ . 25◦, the flow at large Ra exhibits a similar three-region columnar structure as

is manifest in the horizontal case. Nevertheless, when the inclination angle φ exceeds some

critical value φt that is independent of Ra, the columnar flow structure is completely broken

down and the flow then transitions to a large-scale traveling-wave convective roll state (see

Figures 2-18, 2-19, 2-22 and 2-23). In this dissertation study, DNS performed at other, large

values of Ra also confirm this trend. Specifically, the DNS results at Ra = 9976 indicate that

the transition angle is 30◦ < φt < 32◦, namely, for φ ≤ 30◦, the convection appears in form
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Figure 2-25: Variation of mean inter-plume spacing with Ra and φ. The solid line
marks the fitted mean inter-plume spacing Lm = (2π/0.47)Ra−0.4 measured from
the DNS of Hewitt et al. (2012) at φ = 0◦; the symbols are measured from the DNS
in present study for different φ. The same aspect ratio L as in Figure 2-8 is used
here and for each Ra the results from smaller φ are utilized as the initial conditions
for simulations at larger φ. At sufficiently large Ra (e.g. Ra & 19905), although the
final inter-plume spacing is not unique but may itself fall within some small band
in the horizontal case (see Figure 2-8), the results for only one Lm are chosen as
the initial conditions for the inclined case. It can be seen that as φ is increased the
time-mean inter-plume spacing is also substantially increased for each Ra.

of three-region turbulent flow, while for φ ≥ 32◦, the convection transitions to the large-scale

traveling-wave convective flow. Interestingly, as discussed in section 2.1, the linear stability

analysis in Rees and Bassom (2000) also predicts a transition angle φt = 31.30◦ above which

the basic state is linearly stable at large Ra in the 2D domain. Although it is still unclear

whether these two transition angles are exactly equivalent, there are indications that they

are at least very close.

As described above, the flow continues to exhibit a three-region columnar structure for
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Figure 2-26: Variation of Nu with Ra and φ. For Ra ≤ 50000, the same aspect
ratio L as in Figure 2-8 (more than 15 pairs of plumes exist at φ = 0◦) is used to
perform the DNS; however, for 50000 < Ra ≤ 99763, the DNS are conducted in
narrower domains with L = 1.76Lf (3 pairs of plumes exist at φ = 0◦). It is seen
that at large Ra, the heat transport is nearly unaffected by the inclination of the
layer until φ ≥ 25◦. The sharp changes of Nu at φ = 35◦ for 3155 ≤ Ra ≤ 5000
are due to the transitions of the flow from a four-cell pattern at Ra = 3155, as
in Figures 2-18 and 2-19, to a similar two-cell pattern at Ra = 3972, and then to
another two-cell pattern as in Figures 2-22 and 2-23 for Ra ≥ 5000. It should be
noted that for Ra ≥ 19905 and at φ = 35◦, the slow large-scale convective motions
require extremely long computing times to obtain accurate values of Nu, so error
bars are included to show the range of variation of the instantaneous Nusselt number
in the present computations (where the averaging times are not sufficiently long).

φ . 25◦ at large Ra. A natural question concerns the variation of the mean inter-plume

spacing Lm with Ra and φ in the high-Ra regime. From Figure 2-25, it can be concluded that

for fixed φ, the mean inter-plume spacing still shrinks as the Rayleigh number is increased.

Moreover, when the inclination is small enough, e.g. φ = 1◦, Lm is basically unchanged.

However, for each fixed Ra, as φ is increased the time-mean spacing between neighboring

interior mega-plumes is also substantially increased. The physics leading to this increasing
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Figure 2-27: Variations of Nu (a) and 〈T 〉 (b) with φ at Ra = 9976 and L = 5.01.
(a): Nu is almost unchanged for φ . 20◦, although it is slightly increased up to
a maximum around φ = 10◦. For φ ≥ 25◦, the columnar flow structure begins to
be destroyed and Nu decreases rapidly as φ is increased. (b): The main features of
mean temperature profiles are retained for φ ≤ 30◦.

trend of Lm with increased φ at large Ra will be discussed in detail in chapter 4.

Figure 2-26 shows the variation of Nu with Ra and φ at large Rayleigh number. For φ ≤ 10◦

(actually φ . 20◦ as shown in Figure 2-27a), Nu is almost unchanged since the flow still

exhibits a similar three-region structure as is manifest in the horizontal case. However, for

φ > 25◦, the antinatural rolls begin to detach from the upper and lower walls, so that the

organized columnar flow structure is destroyed and less heat is transported. Moreover, when

φ > φt, where 30◦ < φt < 32◦, the columnar flow structure is completely broken down: the

flow transitions to the large-scale traveling-wave convective roll state, and the heat transport

is significantly reduced. Figure 2-27 shows the detailed variations of Nu and 〈T 〉 with φ at

Ra = 9976. It should be noted that the variation of Nu with φ at large Rayleigh number

(see Figure 2-27a) exhibits a very similar trend with that at Ra = 100 in Caltagirone and

Bories (1985) except that the flow patterns reported here are quite different. For instance,

as φ is increased, the flow at large Ra is changed from turbulent columnar flow to large-scale
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traveling-wave states, while in Caltagirone and Bories (1985) the flow at Ra = 100 is changed

from multi-cellular steady states to the basic unicellular state. Furthermore, Figure 2-27(b)

indicates that the main characteristics of the mean temperature profiles are unchanged for

φ ≤ 30◦, e.g. thin thermal boundary layers and an unstably stratified core. Nevertheless,

the core becomes stably stratified at φ = 35◦.

2.5 Summary

In this chapter, a series of DNS are performed to investigate the high-Ra flow structure

for both horizontal and inclined porous medium convection. In order to obtain reliable

estimates of the statistical flow characteristics, these DNS are conducted in wide domains

and for long computational times. For the horizontal case, the new DNS up to Ra ≈ 105

confirm the remarkable tendency for the interior flow to self-organize into narrow columnar

plumes at sufficiently large Ra, with more complex spatiotemporal features being confined

to boundary layers near the heated and cooled walls. However, one key finding is that the

interior columnar exchange flow becomes very well-organized for Ra ≥ 39716 and that the

final inter-plume spacing is not unique but may itself fall within some small band. Although

more simulations are required to determine the boundaries of this band, it is clear that

the precise high-Ra scaling of the mean interior inter-plume spacing in statistically-steady

porous medium convection remains to be firmly established and will require extremely long

simulations in very wide computational domains.

For inclined porous medium convection, the first systematic studies of pattern formation and
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heat transport at different inclination angels φ and large Ra have been carried out using high-

resolution DNS. The results indicate that for 0◦ < φ . 25◦, the flow still exhibits the three-

region columnar structure as in the horizontal case, except that as φ is increased the time-

mean inter-plume spacing is also substantially increased. Nevertheless, for 0◦ < φ . 20◦,

the Nusselt number is almost unchanged. However, when φ > φt, where 30◦ < φt < 32◦,

the columnar flow structure is completely broken down: the flow transitions to a large-scale

traveling-wave convective roll state, and the heat transport is significantly reduced.

Based on these characteristics of the flow observed in DNS, some natural questions arise

concerning the physics responsible for the quasi-coherent flow patterns at large Ra: (1)

what physical mechanisms control lateral scale selection in horizontal convection? (2) why

does the inclination of the porous layer increase the mean inter-plume spacing? Given these

questions, a primary objective of this dissertation is to elucidate the flow and transport

mechanisms governing these recurring quasi-coherent motions by studying the corresponding

exact coherent states manifest in this spatiotemporally-chaotic system. Hence, in following

three chapters, the structure of steady and/or time-periodic convective solutions at large

Ra in horizontal and inclined porous medium convection will be characterized, and their

stability and nonlinear evolution will be analyzed numerically using spatial Floquet theory

and strategically initialized DNS.



CHAPTER 3

STRUCTURE AND STABILITY OF STEADY CONVECTION

IN A HORIZONTAL POROUS LAYER AT LARGE

RAYLEIGH NUMBER

3.1 Introduction

At large Ra, porous medium convection exhibits spatiotemporally chaotic (turbulent) dy-

namics. DNS indicate that the instantaneous flow self-organizes into recurrent quasi-coherent

structures (i.e. three-region columnar flows), suggesting that the basic physics of high-Ra

porous medium convection can be understood by studying the corresponding exact coher-

ent states. Exact coherent states must satisfy the following conditions: (1) they must be

(numerically) exact invariant of the dynamical system with simple (or no) time dependence,

e.g. a steady solution, periodic orbit, relative periodic orbit, traveling wave, etc.; (2) these

solutions must contain certain features of the turbulent flow, e.g. thermal boundary layers

near the heated and cooled walls or columnar structure in the interior.

60
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Actually, in order to explore the physics of turbulence, studies of exact coherent solutions

have been performed in various types of turbulent shear flows, e.g. pipe flow, plane Couette

flow and plane Poiseuille flow. The first pair of nontrivial steady solutions and the first

traveling wave in 3D plane Couette flow were found by Nagata (1990, 1997). Subsequently, a

series of investigations have been carried out to find more equilibria, traveling-wave solutions,

periodic orbits and relative periodic orbits in different shear flow turbulence configurations

(Clever and Busse, 1992; Waleffe, 1998, 2001, 2003; Itano and Toh, 2001; Kawahara and

Kida, 2001; Faisst and Eckhardt, 2003; Wedin and Kerswell, 2004; Kerswell and Tutty,

2007; Viswanath, 2007; Gibson et al., 2008, 2009; Cvitanović and Gibson, 2010; Gibson and

Brand, 2014; Brand and Gibson, 2014). The over-riding conclusion from these studies is that

these exact solutions are remarkably similar to the coherent structures observed in DNS and

experiments. Moreover, they can also capture the main statistical features of turbulent

flows, e.g. the dissipation rate, and the mean and RMS (root mean square) velocity profiles.

Some visualizations of the geometry of the state space (Gibson et al., 2008) imply that exact

coherent solutions constrain turbulent trajectories to wander from one solution to another

along specific intersecting manifolds. Therefore, studies of exact coherent states may be

expected to provide at least partial insight into the underlying physics of the real turbulent

flow.

In this dissertation study, one of the central aims is to quantify the structure, stability and

heat-transport properties of exact solutions of the Darcy–Oberbeck–Boussinesq equations as

functions of both Ra and domain aspect ratio L. In horizontal porous medium convection,

these solutions generally take the form of steady and time-periodic convective states, as will

be shown in chapters 3 and 5; in the inclined case, the structure and stability analysis of the

steady, fully nonlinear convective states will be performed (see chapter 4).
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In horizontal porous medium convection, the structure and stability of steady 2D porous

medium convection at small to moderate Rayleigh number has been discussed in detail in

many previous studies (Elder, 1967; Palm et al., 1972; Horne and OSullivan, 1974; Schubert

and Straus, 1982; Aidun and Steen, 1987; Kimura et al., 1987; Graham and Steen, 1992,

1994). The study of high-Rayleigh-number steady solutions, however, has been rather lim-

ited, in part because these solutions are unstable and exhibit fine-scale spatial structure.

Corson (2011) focuses on the asymptotic structure of the steady solution maximizing the

heat flux at large Ra: guided by numerical results, the steady governing equations are re-

duced into different forms for different regions of the flow, e.g. the interior region, and the

momentum and thermal boundary-layer regions. Following the work of Corson (2011), this

study solves the steady governing equations numerically using a Newton–Kantorovich iter-

ation scheme (Boyd, 2000) and investigates the dependence of the steady solutions on the

domain aspect ratio L. A key finding is that there exist two qualitatively distinct types of

steady convective states at large Ra: for small L, the flow has the heat-exchanger structure

in the interior identified by Hewitt et al. (2012); however, as L is increased, the steady

convection develops a stably stratified core with a horizontal structure involving multiple

Fourier modes. Comparing the steady solutions with the long-time averaged columnar flow

observed in the DNS reveals that the latter is neither a heat-exchanger nor a stably stratified

core solution but instead combines certain attributes of both types of steady solutions.

After these steady convective states are characterized as a function of Ra and L, their

stability to small-amplitude disturbances is assessed using Floquet theory. The Floquet

technique was introduced as a tool for secondary stability analysis in fluid dynamics by Kelly

(1967), who applied this method to inviscid shear flows. Since then, Floquet analysis has been

applied to numerous other shear and convective flows, including thermal convection (Busse,
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1967, 1972; Clever and Busse, 1974), viscous shear flows (Orszag and Patera, 1983; Herbert,

1983, 1988) and Langmuir circulation (Tandon and Leibovich, 1995; Chini et al., 2009).

This study follows Chini et al. (2009) by employing a Fourier–Chebyshev spectral method to

discretize the differential eigenvalue problem derived from linearizing the governing equations

of porous medium convection about the fully nonlinear steady states. The analysis in this

chapter reveals the existence of two types of instability for different L at large Ra: a bulk

instability in which the most unstable disturbance spans the convective layer, and a wall

instability in which the most unstable disturbance is strongly localized near the hot and cold

boundaries.

The nonlinear evolution of these secondary instabilities is explored here using high-resolution

DNS. Both the bulk and wall instability modes are shown to influence the mean inter-plume

spacing at large Ra. To obtain a reliable estimate of this mean spacing the aspect ratio of

the computational domain must be sufficiently large to capture long-wavelength secondary

instabilities. Moreover, the simulations indicate that the mean inter-plume spacing observed

at large Ra results from an interplay between these two types of instability so that the

interior columnar exchange flow is statistically steady.

The reminder of this chapter is organized as follows. In next section, the key results of linear

stability theory for porous medium convection are recalled. In chapter 3.3, the numerical

method used to find (generally unstable) steady high-Ra solutions is outlined, the structure

of these solutions for different aspect ratios is described, the variation of heat transport with

aspect ratio is documented, and the steady flows that maximize the heat transport as a

function of both Ra and L are identified. In chapter 3.4, the (secondary) stability of these

steady convective states is analyzed using Floquet theory. In chapter 3.5, DNS strategically

initialized with a superposition of the steady solutions and a small-amplitude contribution of
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the most unstable secondary instability eigenfunction are performed to investigate how these

steady states evolve into the statistically-steady but spatiotemporally chaotic (turbulent)

convective flow. A summary is given in chapter 3.6.

3.2 Linear Stability Analysis

One elementary solution of this system is the conduction state: T = 1 − z, u = 0 and p =

Ra(z− 1
2
z2). A linear stability analysis can be performed by setting T = (1− z) + θ∗(x, z, t)

and u = u∗ex + w∗ez, where θ∗, u∗ and w∗ are small perturbations, and linearizing (1.22)–

(1.24) about the conduction solution. As first shown by Horton and Rogers (1945) and

Lapwood (1948), the resulting (normalized) eigenfunctions are

θ∗ = cos(kx) sin(mπz)eλ
∗t, w∗ =

Rak2

m2π2 + k2
cos(kx) sin(mπz)eλ

∗t, (3.1)

with the corresponding eigenvalue

λ∗ =
Rak2

m2π2 + k2
− (m2π2 + k2) (3.2)

representing the growth rate of the given eigenmode. The eigenvalues for different Ra,

vertical mode number m ≥ 1 and (continuous) horizontal wavenumber k (in an infinitely

wide domain) are strictly real, implying the onset of convection is to steady cells, and the

largest growth rates occur for m = 1. By setting λ∗ = 0 with m = 1, an expression for the

marginal stability boundary of the conduction state can be obtained: Ra = (π2 + k2)2/k2.
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The high-wavenumber branch of marginal modes is denoted by

kc =

√
Ra+

√
Ra− 4π2

2
(3.3)

and Lc = 2π/kc is defined as the corresponding wavelength of these marginal modes. At

a given Ra > 4π2, the conduction solution will become linearly unstable for aspect ratios

L > Lc. Alternatively, by setting ∂λ∗

∂k
= 0, one can find that the wavenumber kf of the

fastest growing linear mode is given by

kf =

√√
Raπ − π2. (3.4)

Lf = 2π/kf is defined as the corresponding wavelength of this fastest growing linear mode.

In the limit Ra→∞, kf ∼
√
πRa1/4 while kc ∼ Ra1/2.

3.3 Steady Convective States

3.3.1 Newton–Kantorovich Method

Following Corson (2011), the steady version of the governing equations (1.22)–(1.24) is solved

numerically using a Newton–Kantorovich (NK) iterative scheme (Boyd, 2000). The time-

independent dimensionless equations in stream function form can be written as

∇2ψ = −Ra∂xθ, (3.5)

∂zψ∂xθ − ∂xψ∂zθ = −∂xψ +∇2θ, (3.6)
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where θ(x, z) = T (x, z) − (1 − z), and θ and ψ satisfy Ls-periodic boundary conditions in

x and homogeneous Dirichlet boundary conditions in z. To avoid ambiguity, Ls is used

here and throughout to denote the domain width associated with a given steady state. The

solution of (3.5) and (3.6) can be expressed as

 θ

ψ

 =

N/2∑
n=−N/2

 θ̂n(z)

ψ̂n(z)

 einksx =

N/2∑
n=−N/2

M∑
m=0

 amn

bmn

Tm(z) einksx, (3.7)

where ks = 2π/Ls is the fundamental wavenumber of the spatially-periodic steady solution,

M is the vertical truncation mode number, N is the horizontal truncation mode number,

and Tm(z) is the m-th Chebyshev polynomial. In each Ls× 1 computational domain steady

solutions are sought with reflection symmetry about x = Ls/2 and centrosymmetry within

each of the two Ls/2×1 sub-domains which contain a single convection cell. These symmetry

constraints require

amn is real; bmn is imaginary; amn = bmn = 0 if (m+ n) is even. (3.8)

To employ the NK algorithm, (3.5)–(3.6) are rearranged into the following form:

∇2ψ = Fψ(θx), (3.9)

∇2θ = F θ(ψx, ψz, θx, θz), (3.10)

where a subscript denotes a partial derivative with respect to the given variable. Suppose

the ith iterates θi(x, z) and ψi(x, z) in the NK scheme are good approximations to the true

solution θ(x, z) and ψ(x, z). Taylor expanding the functionals Fψ and F θ in (3.9)–(3.10)
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about these iterates yields

∇2ψ = (Fψ)i + (Fψ
θx

)i[θx − θix] +O([θx − θix]2), (3.11)

∇2θ = (F θ)i + (F θ
ψx

)i[ψx − ψix] + (F θ
ψz

)i[ψz − ψiz] + (F θ
θx

)i[θx − θix]

+(F θ
θz

)i[θz − θiz] +O([ψx − ψix]2, [ψz − ψiz]2, [θx − θix]2, [θz − θiz]2), (3.12)

where, for example, F θ
ψx

denotes the Frechet derivative of the function F θ(ψx, ψz, θx, θz) with

respect to ψx. After defining the correction terms

4ψ = ψi+1 − ψi, 4θ = θi+1 − θi, (3.13)

and evaluating the Frechet derivatives, the linear differential equations for the corrections

can be expressed as

∇24ψ +RaDx4θ = −Raθix −∇2ψi, (3.14)

[−Dx + θizDx − θixDz]4ψ + [∇2 − ψizDx + ψixDz]4θ = ψizθ
i
x − ψixθiz + ψix

−∇2θi, (3.15)

where Dx and Dz denote the first partial derivative operators with respect to x and z.

According to the symmetry constraints (3.8), the solution (3.7) has the following form

θ = θ̂0(z) + 2

N/2∑
n=1

θ̂n(z) cos(nksx), ψ = 2

N/2∑
n=1

−φ̂n(z) sin(nksx) (3.16)
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where φ̂n ≡ Im{ψ̂n} is real. Then, for a given horizontal wavenumber nks, (3.14)–(3.15)

become

−[Dzz − (nks)
2]4φ̂n − nksRa4θ̂n = nksRaθ̂

i
n + [Dzz − (nks)

2]φ̂in, (3.17)

[nks + gin]4φ̂n + [Dzz − (nks)
2 + hin]4θ̂n = f̂ in, (3.18)

where

4φ̂n = φ̂i+1
n − φ̂in, 4θ̂n = θ̂i+1

n − θ̂in, (3.19)

Dzz is the second partial derivative operator with respect to z, gin and hin can be obtained by

calculating the convolution of the non-constant coefficient terms on left-hand side of (3.15)

for each iterate, and f̂ in represents the coefficients of the right-hand side of (3.15) in Fourier

space at the ith iterate. (3.17)–(3.18) are solved numerically using a Chebyshev spectral

collocation method.

Although the NK method is only locally convergent (good initial conditions are required to

converge to the right state), the basin of attraction (in the space of initial iterates) can be

expanded by updating the variables for each iterate using

 φ̂n

θ̂n


i+1

=

 φ̂n

θ̂n


i

+ a

 4φ̂n

4θ̂n

 , (3.20)

where 0 ≤ a ≤ 1. The step-length coefficient a is reduced whenever F i+1
res > bF i

res, where F i
res

is the norm of the residual of the steady governing equations at the ith iterate and b ≈ 1 is

an adjustable parameter. The iteration is continued until F i+1
res < 10−7, and then the spatial
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resolution is increased until the relative error in Nu is less than 10−5.

Computations are performed for a discrete set of Ra = 50 · 10(̂−1)/10 from Ra = 50 to

Ra = 31548 and Ls = 0.01 · 10(k̂−1)/10 (for integer ̂ and k̂). For each Ra, the steady

governing equations are first solved for a small aspect ratio Ls that is slightly greater than

Lc, and then that solution is used as the initial guess for a case with larger Ls.

3.3.2 Solution Structure

The structure of steady convection at large Ra depends on Ls. When Ls < Lc, the only

steady solution is the conduction state. As Ls is increased, the conduction solution becomes

linearly unstable, and two thin thermal boundary layers arise near the upper and lower walls

(Figure 3-1). Unlike the unsteady flow observed in DNS, the proto-plumes are absent in the

steady solution. Near the walls there exists a boundary layer in the temperature field and

a thicker boundary layer in the stream function field. Away from these nested boundary

layers, the interior structure for small Ls is quite simple: the temperature deviation from

the horizontal mean θ′ = T − T and the stream function ψ are almost independent of z so

their z-derivatives are small (see Figures 3-1a,b and 3-2a,b), and there exists only a single

non-zero horizontal Fourier mode (Figure 3-2a,b). Indeed, this type of steady interior flow is

well-approximated using the analytical heat-exchanger solution (2.7)–(2.9) given by Hewitt

et al. (2012). By comparing T (Figure 3-2a,b), the analytical heat-exchanger and the steady-

state numerical solutions are seen to agree closely. One significant difference, of course, is

that the analytical heat-exchanger solutions do not satisfy the vertical boundary conditions.

Therefore, the numerically computed steady states at large Ra and small Ls, which not
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Figure 3-1: Temperature and stream function fields at Ra = 9976 (Lc = 0.063):
(a) Ls = 0.1; (b) Ls = 0.1585; (c) Ls = 0.3162; (d) Ls = 0.5012. The aspect ratio
in (c) is close to the mean inter-plume spacing Lm = 0.319 from DNS performed in
a domain with L = 5.01. At small Ls (a,b) the interior streamlines are independent
of z. However, as Ls is increased (c,d) the interior streamlines become z-dependent.
The ψ extremum values ψm for (a)–(d) are 14.0, 22.1, 35.4 and 47.7, respectively.

only exhibit the heat-exchanger structure in the interior but also satisfy the steady gov-

erning equations and all boundary conditions, will be denoted as numerical heat-exchanger

solutions.

Perhaps not surprisingly, as Ls is increased the steady large-Ra numerical solutions do not

retain the heat-exchanger structure in the interior. Instead, the streamlines deviate from

the vertical (Figure 3-1c,d), and multiple horizontal Fourier modes are excited, although the

fundamental mode still dominates the flow (Figure 3-2c,d). Moreover, when Ls is sufficiently
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Figure 3-2: z-dependent Fourier components of the temperature field for steady
convective states at Ra = 9976: (a) Ls = 0.1; (b) Ls = 0.1585; (c) Ls = 0.3162; (d)
Ls = 0.5012. In the plots of T , the dashed-dot line is the numerical result and the
solid line is the analytical result. At small Ls (a,b) the horizontal mean temperature
in the interior agrees closely with the analytical heat-exchanger solution; in the core,
only a single (non-mean) Fourier mode is active and the temperature fluctuations
are nearly independent of z. However, as Ls is increased (c,d) more Fourier modes
arise and the structure of the steady solutions departs from that of the analytical
heat-exchanger solution even in the interior.

large, the numerically-computed T clearly deviates from that predicted by the heat-exchanger

solution. In fact, the slope of T at the mid-plane z = 0.5 becomes positive, implying hotter

fluid overlies colder fluid in the interior. Therefore, this class of numerically-computed steady

states will be referred to as stably stratified core solutions.
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Figure 3-3: (a) Proximity of numerical solutions to the heat-exchanger solution:
γ = −(Ra/k2s)∂zT |z=0.5 versus LsRa. As Ls is increased, γ eventually departs from
unity and the interior structure of the numerical solution changes from that of the
heat-exchanger solution to that of the stably-stratified core solution. (b) Variation
with Ra of Lh, the wavelength of steady solutions with γ = 0.99 (i.e. numerical heat-
exchanger solutions). Also plotted for comparison are Lc ∼ 2πRa−0.5, the wavelength
of the marginal stability boundary; Lm ≈ (2π/0.47)Ra−0.4, the mean inter-plume
spacing measured from the DNS of Hewitt et al. (2012); and Lf ∼ 2

√
πRa−0.25, the

wavelength of the fastest growing linear mode. Interestingly, at large Ra, Lm ≈ 2Lh.

To quantify the proximity of a given numerically-computed steady solution to the analytical

heat-exchanger solution in the interior, the parameter

γ = −Ra
k2s
∂zT |z=0.5 (3.21)

measuring the ratio of the numerically-computed mean temperature gradient at the mid-

plane to the analytically-predicted (constant) vertical temperature gradient is introduced.

The solutions are identical when γ = 1, and so the steady convective state can be quantita-

tively (but arbitrarily) defined as a numerical heat-exchanger solution when 0.99 ≤ γ ≤ 1.

Figure 3-3 shows how the structure of the steady solution changes as Ra and Ls are varied.

For small Ls > Lc, one can observe that 0.99 ≤ γ ≤ 1, so these solutions belong to the class

of numerical heat-exchanger solutions. However, γ decreases appreciably as Ls increases, and
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the steady solutions assume a transitional form for 0 ≤ γ < 0.99. When Ls is sufficiently

large, γ changes sign, yielding a family of stably stratified core solutions. Note that the wave-

length Lh of solutions with γ = 0.99 (see Figure 3-3b), which separates the heat-exchanger

and non-heat-exchanger solutions, is approximately half the mean inter-plume spacing (Lm

in Figure 3-3b) measured from the DNS of Hewitt et al. (2012).

As described above, the spatial structure of steady convection varies appreciably with Ls. A

natural question concerns the difference between the structure of the steady convective states

and that of the time-averaged flow observed in DNS. As Ra increases, DNS indicate that

the interior flow self-organizes into narrow columnar plumes, which have been modelled by

Hewitt et al. (2012, 2013) using the heat-exchanger solution (2.7)–(2.9). However, the time-

averaged columnar flow (see Figure 2-5a) is not strictly equivalent to the heat-exchanger flow:

as shown in Figures 3-1(a, b) and 3-2(a, b), the heat-exchanger solution is well represented

by the interior part of steady solutions only for convective states with sufficiently small

aspect ratios; of course, the time-averaged columnar flow in DNS need not satisfy the steady

governing equations. Moreover, the interior part of the columnar flow is a composite of a few

low-wavenumber Fourier modes but is dominated by one mode (see Figure 2-6c), features

shared by the strictly steady, stably stratified core solutions. Indeed, recall that steady

convective states with Ls = Lm, the mean inter-plume spacing observed in DNS, are stably

stratified core solutions (see Figures 3-1c, 3-2c and 3-3b). Nevertheless, the columnar flow

observed in DNS does share some attributes of the heat-exchanger flow: the interior slopes

of the corresponding mean temperature fields are not positive; i.e. the core is not stably

stratified. Thus, the time-mean columnar core flow is neither an equilibrium heat-exchanger

nor a stably-stratified core solutions but, rather, an admixture of these steady convective

states.
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Figure 3-4: Contour plot of Nusselt number in (Ra,Ls) parameter space for steady
convective states. The solid line (Lmax Nu) marks the path along which Nu is maxi-
mized. Lc, Lm and Lf are as in Figure 3-3.

3.3.3 Maximizing Nu

Of particular physical importance is the relationship between the Nusselt number Nu and

the two control parameters Ra and L. Figure 3-4 shows the variation of Nu with Ra and

Ls for steady convective states (see also Corson (2011)). There is no convection when the

domain aspect ratio is smaller than the wavelength Lc of the marginal stability mode, so

Nu = 1 in this regime. Interestingly, the heat transport in steady convection is maximized

along a particular path in (Ra, Ls) parameter space (the solid black curve in Figure 3-4).

To accurately extract the scalings associated with the steady heat-flux-maximizing solutions,

greater resolution in parameter space for (Ra, Ls) pairs near the ridge along which Nu is

maximized is employed. The computations are also continued to Ra = 31548, as shown
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Figure 3-5: (a) Rayleigh-number scaling of the inverse wavelength associated with
heat-flux-maximizing steady convective states (dots). Note that at sufficiently large
Ra multiple states yield nearly the same (maximum) heat flux. The dashed line
is the best fit curve 1/Ls = 0.070Ra0.52 for Ra ≤ 12559. For reference, 1/Lh and
1/Lc are also plotted as functions of Ra. (b) Rayleigh-number scaling of the Nusselt
number for steady convective solutions (dots). The dashed line is the best fit curve
Nu = 0.155Ra0.60 + 1.213. For reference, data from various DNS and upper bound
analysis is also shown. The DNS results (Nu ∼ 0.0068Ra) are from Otero et al.
(2004), Hewitt et al. (2012) and chapter 2; the upper bound results (Nu ∼ 0.0207Ra)
are from chapter 6.

in Figures 3-4 and 3-5. When Nu is maximum and Ra is less than roughly 100, Ls scales

as Ra−1/4, the scaling for the wavelength Lf of the fastest-growing linear mode. As Ra is

increased, the ridge of maximum Nu shifts to the right and for 103 < Ra < 104 Ls ∼ Ra−0.52.

As evident in Figure 3-5(a), the heat-flux-maximizing solutions at large Ra are, in fact,

numerical heat-exchanger states. Figure 3-5(b) shows the variation of Nu with Ra for high-

Ra steady solutions on the ridge (Corson, 2011), along with results from upper bound analysis

and DNS. Both the upper bound calculation and the DNS predict Nu ∼ Ra for the unsteady

flow. Steady convection at large Ra is thus seen to transport less heat than the realized

turbulent flow, with Nu ∼ Ra0.6 for the equilibrium states (Corson, 2011). However, the

heat transported by the steady heat-flux-maximizing solutions increases substantially as the

inter-plume spacing (i.e. Ls) decreases from O(1) to asymptotically small values.
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3.4 Secondary Stability Analysis

3.4.1 Floquet Theory

To investigate the stability properties of the steady convective states described in the previous

section, a secondary stability analysis is performed using spatial Floquet theory. First, all

fields are expressed as the sum of the steady nonlinear base flow (denoted with a subscript

“s”) and a time-varying perturbation,

T (x, z, t) = Ts(x, z) + θ̃(x, z, t), (3.22)

ψ(x, z, t) = ψs(x, z) + ψ̃(x, z, t), (3.23)

where Ts = (1 − z) + θs. Then the equations governing the evolution of the presumed

small-amplitude disturbances can be expressed as

∇2ψ̃ = −Ra∂xθ̃, (3.24)

∂tθ̃ = ∇2θ̃ − ∂xθs∂zψ̃ + ∂zθs∂xψ̃ + ∂xψs∂z θ̃ − ∂zψs∂xθ̃ − ∂xψ̃, (3.25)

where the perturbation fields also satisfy the boundary conditions

θ̃(x, 0, t) = 0, θ̃(x, 1, t) = 0, ψ̃(x, 0, t) = 0, ψ̃(x, 1, t) = 0 (3.26)
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and L-periodicity (not generally Ls-periodicity) in x. Floquet theory implies that the solu-

tions may be sought having the following form:

 θ̃

ψ̃

 = eiβksx


∞∑

n=−∞

 ˆ̃
θn(z)

ˆ̃
ψn(z)

 einksx
 eλt + c.c., (3.27)

where λ is the temporal growth rate, iβks is the Floquet exponent, with the real Floquet

parameter β providing the freedom to modify the fundamental horizontal wavenumber of

the perturbation (i.e. for β 6= 0, βks is the wavenumber of the largest horizontal scale), and

c.c. denotes complex conjugate. Since (3.27) is invariant under integer shifts in β and under

reflections β → −β, one can restrict 0 ≤ β ≤ 0.5 without loss of generality. Substituting

(3.27) into (3.24)–(3.25) yields

i(n+ β)kRa
ˆ̃
θn +

[
Dzz − (n+ β)2k2

] ˆ̃
ψn = 0, (3.28)[

Dzz − (n+ β)2k2 + h̃n

]
ˆ̃
θn + [−i(n+ β)k + g̃n]

ˆ̃
ψn = λ

ˆ̃
θn (3.29)

for each n, where h̃n and g̃n can be determined by calculating the convolution of the non-

constant-coefficient terms in (3.25). After setting
ˆ̃
ψn = i

ˆ̃
φn, (3.28)–(3.29) can be written in

the form

AV = λBV, (3.30)

where A and B are real matrixes owing to the symmetries (3.8) of the base flow, and the vec-

tor V = (· · · ˆ̃θn−1, ˆ̃θn, ˆ̃θn+1 · · · ˆ̃φn−1,
ˆ̃
φn,

ˆ̃
φn+1 · · · )T . The eigenvalue λ and the corresponding

eigenvector V can be obtained by numerically solving this differential eigenvalue problem.

Note that in the following sections, the convective rather than diffusive time, τ ≡ tRa, will
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be utilized, so that the corresponding convective growth rate σ ≡ λ/Ra.

3.4.2 Secondary Stability Results

The eigensystem (3.30) is discretized using a Chebyshev collocation method and the infinite-

dimensional system is truncated to 0 ≤ m ≤ M vertically and −N/2 ≤ n ≤ N/2 horizon-

tally. Arnoldi iteration is used to solve the resulting algebraic eigenvalue problem to obtain

the leading eigenvalues and eigenfunctions. The numerical resolution is increased until the

relative error in the eigenvalue with the largest real part, σm, is less than 10−4.

Figure 3-6 shows the contours of maximum growth rate, Re{σm}, as a function of β and Ls

for various Ra. At a given Ra, the steady solution at small Ls (specifically, Lc < Ls < Lb,

where Lb is a stability boundary defined in Figures 3-8 and 3-9) is marginally stable for

β = 0 – corresponding to disturbances that simply translate the steady base flow in x –

although there is insufficient resolution around β = 0 to observe this clearly in the contour

plots. However, the solution is unstable for a range of long-wavelength perturbations (0 <

β ≤ 0.5, see Figure 3-6). The Floquet parameter β of the fastest-growing perturbation is

approximately 0.2–0.3, implying that the most unstable disturbance has a wavelength 3–5

times the wavelength of the base flow. At Ra = 1581 and 3155, the growth rate of the most

unstable mode decreases as Ls is increased and, in fact, the steady solution becomes linearly

stable for a finite range of Ls. However, as Ls is further increased, the steady state becomes

unstable, exhibiting a growth rate that is essentially independent of β. Similar phenomena

are observed at larger Ra except that the linearly stable region shrinks nearly to a point at

Ra = 5000 and vanishes completely at larger Ra.
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Figure 3-6: Contours of the maximum growth rate Re{σm} as a function of β and
Ls for various Ra: (a) Ra = 1581; (b) Ra = 3155; (c) Ra = 5000; (d) Ra = 9976.
At small Ls (Lc < Ls < Lb), the base state is stable within small domains of
size Ls × 1 (since L = Ls for β = 0), but unstable to certain long-wavelength
perturbations (0 < β ≤ 0.5); at large Ls, the base state is unstable even for β = 0,
and has the same growth rate for different β. Note that contour plot in (d) has been
annotated to indicate the parameters corresponding the bulk (“B”) and wall (“W”)
mode eigenfunctions displayed in Figure 3-7.

Figure 3-7 shows, for Ra = 9976, the 2D eigenfunctions corresponding to these two families

of secondary instabilities. At small Ls, e.g., Ls = 0.1, when the growth rate depends on

the horizontal wavenumber βks, the most unstable perturbation (occurring for β ≈ 0.2) is a

bulk mode that spans the layer (Figure 3-7a).1 However, for larger Ls, e.g., Ls = 0.1585, the

1The term “bulk mode” is used here and throughout to characterize perturbations with non-uniform
spatial structures throughout the entire domain including the near-wall and interior regions.
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Figure 3-7: Fastest-growing 2D temperature eigenfunctions at Ra = 9976 shown
in a domain with aspect ratio L = 5Ls (where Ls is the wavelength of the steady
base state): (a) Ls = 0.1, β = 0.2; (b) Ls = 0.1585, β = 0; (c) Ls = 0.1585,
β = 0.2. At small Ls, a bulk mode controls the instability, and at large Ls, a wall
mode dominates. Note that at large Ls the spatial structure of the fastest-growing
(wall) mode is nearly independent of β.

most unstable perturbation for each β has nearly the same growth rate and a very similar

spatial structure, which is strongly localized near the upper and lower walls (Figure 3-7b,c),

and hereafter is referred to as a wall mode. Figure 3-8 shows the eigenspectrum for three

different (β,Ls) combinations. Note that the bulk mode, as shown in Figure 3-7(a), occurs for

certain long-wavelength (e.g. β = 0.2) disturbances and exhibits comparably small growth

rates (σm = O(0.1)). At small Ls, the bulk modes control the instability. As Ls is increased,

however, an increasing number of wall modes becomes unstable. These wall modes, which

are born in a Hopf bifurcation associated with the advection of small-scale disturbances

within the thermal boundary layers (see Aidun and Steen (1987) and Graham and Steen

(1992, 1994)), ultimately dominate the secondary instability with growth rates 10-50 times

larger than those associated with the bulk modes. For sufficiently large Ls, the eigenspectra

for disturbances with distinct fundamental horizontal wavenumbers are very similar. This
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Figure 3-8: Leading eigenvalues at Ra = 9976: (a) Ls = 0.1, β = 0.2; (b) Ls =
0.1585, β = 0; (c) Ls = 0.1585, β = 0.2. Re σ (Im σ) is the real (imaginary) part
of σ. In each case, the inset shows a magnification of the region near the origin,
with the asterisk denoting the most unstable bulk mode(s). Lb is defined such that
when Ls < Lb (as in a) only bulk modes exist. As Ls is increased (b,c), an increasing
number of wall modes is destabilized. Note the similarity of the eigenspectrum in
(b) and (c) for the same (large) Ls.

section can be concluded by contrasting the secondary stability results of this investigation

with those of Hewitt et al. (2013). Not only does this study find two modes of instability

rather than one, but in the presence of walls the bulk modes are found to have much reduced

growth rates: specifically, O(0.1) rather than O(1).

3.5 Nonlinear Evolution of the Instability

In this section strategically initialized, high-resolution DNS in wide domains are used to

investigate the nonlinear evolution of the fastest-growing secondary instability mode for

various steady convective states distinguished by their wavelength Ls. The aim is to gain

insight into the mechanisms by which the base flow, with plume spacing Ls, evolves to the
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Figure 3-9: Schematic identifying distinct steady states and the associated sec-
ondary instability regimes at large Ra. DNS is performed for six steady base states
with aspect ratios Ls1–Ls6 to study the fully nonlinear evolution of the fastest-
growing instability modes. Lo is the aspect ratio for which the normalized horizontal
mean temperature gradient γ = 0.

final columnar flow, with mean inter-plume spacing Lm (in the bulk). The steady state at

a given Ls plus a small-amplitude contribution of the most unstable secondary instability

mode is chosen as the initial condition, and then DNS is performed in a large domain with

L = 10Ls–20Ls.

As shown in Figure 3-9, for a specific large Ra = O(104), with increasing L, generally

Lc < Lb < Lmax Nu < Lh < Lo < Lm, where: Lc is the wavelength of the neutral mode on

the right-hand marginal stability boundary of the conduction state; Lb is the largest aspect

ratio at which only the bulk instability mode exists; Lmax Nu is the wavelength of the steady

cellular flow that maximizes the heat transport; Lh is the largest aspect ratio at which the

heat exchanger solution is relevant; and Lo is the aspect ratio at which the parameter γ

vanishes (implying a steady base flow with zero mean stratification in the centre of the cell).

In the following sections, six different steady convective states, five at Ra = 9976 and one

at Ra = 50000, are considered: Ls1 is less than Lc so that the base state is the conduction

solution; Ls2 is greater than Lc but within the aspect-ratio range for which the bulk mode

controls the instability; Ls3 > Lb but is within the numerical heat-exchanger solution regime;

Ls4 is between Lh and Lm, within the stably stratified core solution regime; Ls5 is close to the
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final mean inter-plume spacing Lm; and Ls6 is much larger than Lm. Thus, for Ra = 9976,

for example, Lc = 0.063, Lb = 0.106, Lh = 0.172, Lm = 0.319 (measured from DNS in

L = 5.012), and Lf = 0.36.

3.5.1 Ls2 (Ra = 9976)

For Ra = 9976, DNS are first performed to investigate the dynamics ensuing from unstable

steady states with Ls = Ls2, which is within the bulk instability parameter regime. The

initial condition comprises 20 replicas of the steady convective state at Ls = 0.1 plus a

small-amplitude contribution of the corresponding fastest growing perturbation at β = 0.2.

Figure 3-10 depicts the nonlinear evolution from this initial state to the final turbulent

columnar flow. Initially, the dominant horizontal mode number in the interior nd = 20. In

accord with the stability analysis in section 3.4 and as evident in Figure 3-10(b) and (c),

the base state is unstable to a bulk mode. As the secondary mode grows in amplitude,

the pattern coarsens to an unsteady convective state at τ = 87.29 (Figure 3-10d) with five

times the wavelength of the initial steady cellular solution. The resulting mean inter-plume

spacing, however, is larger than the final Lm. Subsequently, some plumes growing from the

upper and lower boundary layers split the wider plumes into narrower ones (Figure 3-10e).

These proto-plumes appear to be generated by a localized instability that closely resembles

the wall-mode secondary instability of strictly steady base states having a wavelength greater

than Lb (Figure 3-10d). It should be noted that ideally, this dynamical system should retain

the L
4
-periodicity symmetry in x (see Figure 3-10b-e) as time evolves. However, due to the

numerical errors (or round-off errors), this lateral symmetry is broken after a long time, and

ultimately, the system converges to a statistically steady turbulent state (Figure 3-10f). This

“symmetry breaking” is acceptable since small numerical errors generally play the role of
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Figure 3-10: Snapshots of the temperature field from DNS showing the nonlinear
evolution of the fastest-growing secondary instability mode for Ls2 = 0.1, L = 20Ls2,
Ra = 9976. (a) τ = 0; (b) τ = 49.38; (c) τ = 54.37; (d) τ = 87.29; (e) τ = 93.28; (f )
τ = 446.94; (g) Time-evolution of the dominant horizontal mode number at z = 0.5
(solid line). The dashed line shows the time-average dominant mode number, and
the circles correspond to the times highlighted in (a) to (f).
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noise in real systems. Thus, there exist two stages of evolution: initially, the bulk instability

controls the evolution of the flow so that the background plumes merge forming a convective

flow with smaller interior wavenumber; then, as the plume spacing becomes too wide, a

variant of the boundary instability intensifies so that small plumes generated from the upper

and lower walls are able to split the wider plumes into narrower ones until the flow settles into

a statistically-steady state. It should be noted that the first stage of this process is loosely

similar to the instability and predicted nonlinear evolution of the analytical heat-exchanger

flow described in Hewitt et al. (2013), in which only the bulk instability mode is found.

3.5.2 Ls3 (Ra = 9976)

Next, a wider base flow with Ls = Ls3 = 0.1585, which also is a member of the numerical

heat-exchanger family but which is (most) unstable to wall modes, is considered. From the

stability analysis, the growth rate and spatial structure of the most unstable perturbation

is nearly independent of β (see Figures 3-6d and 3-7b,c). The initial condition for the DNS

consists of sixteen copies of this steady state plus a small-amplitude contribution of the most

unstable perturbation at β = 0. Figure 3-11 shows the nonlinear evolution from this initial

condition to the final state. By construction, the dominant horizontal mode number in the

interior is nd = 16 at τ = 0. At early times (τ = 2.49, Figure 3-11b), proto-plumes generated

in the upper and lower boundary layers because of the wall instability are continually swept

into and thus merge with the mega-plumes in the interior. However, the resulting quasi-time-

periodic flow itself evidently is unstable to a variant of the bulk mode (Figure 3-11c), causing

a coarsening of the convective pattern (Figure 3-11d,e), in rough correspondence with the first

stage of the evolution for the base flow with Ls = Ls2. The plumes generated from the walls

then split the wider plumes before the flow reaches a statistically-steady state (Figure 3-11f),
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Figure 3-11: Snapshots of the temperature field from DNS showing the nonlinear
evolution of the fastest-growing secondary instability mode for Ls3 = 0.1585, L =
16Ls3, Ra = 9976. (a) τ = 0; (b) τ = 2.49; (c) τ = 42.90; (d) τ = 57.86; (e)
τ = 82.30; (f ) τ = 349.17; (g) Time-evolution of the dominant horizontal mode
number at z = 0.5 (solid line). The dashed line shows the time-average dominant
mode number, and the circles correspond to the times highlighted in (a) to (f).

similar to the second stage of the evolution for the case for which Ls = Ls2. Interestingly,

the final state is not dominated by a unique horizontal wavenumber in the interior. In short,

there exist three evolutionary stages for the scenario with Ls = Ls3. In the linear instability
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regime, the wall mode dominates the evolution of the flow so that a series of proto-plumes

rising from the walls merge with the background mega-plumes; this process leaves the mean

inter-plume spacing unchanged from its initial value Ls. However, the modified, roughly

time-periodic flow appears to be susceptible to a bulk instability, causing the merger of

some mega-plumes. Finally, as the inter-plume spacing increases, a wall-like mode is again

activated and some of the nascent proto-plumes split the wider plumes, yielding the final

turbulent convective state. This scenario suggests that a generalization of the bulk instability

may occur for unsteady flow, and that this instability intensifies as the inter-plume spacing

is reduced.

3.5.3 Ls4 and Ls5 (Ra = 9976)

Figure 3-12 shows the time-evolution of the dominant horizontal mode number in the interior

for cases Ls = Ls4 and Ls = Ls5. For Ls = Ls4 = 0.224, the steady state belongs to the

family of stably stratified core solutions, but the inter-plume spacing is still less than that

of the final state. From Figure 3-12(a), it can be ascertained that the evolution for case

Ls4 is similar to that for case Ls3. In Figure 3-12(b), Ls5 = 0.316 is very close to Lm so

that the base state evolves directly to the final state, with the dominant interior horizontal

wavenumber fluctuating within a small range.

3.5.4 Ls6 (Ra = 9976)

Figure 3-13 shows the evolution for case Ls = Ls6 = 0.501, which is much larger than Lm.

As demonstrated using secondary stability analysis, this wide aspect-ratio convective state
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Figure 3-12: Time-evolution of the dominant horizontal mode number at z = 0.5
for the temperature field from DNS at Ra = 9976 (solid line). The dashed line
shows the time-average dominant mode number. (a) Ls4 = 0.224, L = 12Ls4; (b)
Ls5 = 0.316, L = 10Ls5.

is strongly unstable to a wall mode. At early times, a series of proto-plumes generated

from the upper and lower boundary layers continually feed the background mega-plumes

(Figure 3-13b,c), creating a quasi-periodic flow state. Moreover, for a short time, the domi-

nant interior horizontal wavenumber for this unsteady flow remains constant at Ls6, hence

the inter-plume spacing remains much larger than Lm. However, owing to the strong bound-

ary instability some proto-plumes grow and split the wider mega-plumes into narrower ones.

This process continues until the flow converges to the final state. Thus, there is only a single

stage of evolution for this case: the strong boundary instability dominates the evolution of

both the initial steady state and the ensuing unsteady flow with large Ls, generating bound-

ary plumes that ultimately split the wide aspect-ratio interior mega-plumes. This boundary

instability becomes much stronger as Ls increases.
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Figure 3-13: Snapshots of the temperature field from DNS showing the nonlinear
evolution of the fastest-growing secondary instability mode for Ls6 = 0.5012, L =
10Ls6, Ra = 9976. (a) τ = 0; (b) τ = 1.50; (c) τ = 40.40; (d) τ = 573.64; (e)
Time-evolution of the dominant horizontal mode number at z = 0.5 (solid line).
The dashed line shows the time-average dominant mode number, and the circles
correspond to the times highlighted in (a) to (d).



Chapter 3. Stability of Steady Horizontal Porous Medium Convection 90

(a)

x

z

0 0.6
0

0.2

0.4

0.6

0.8

1 (b)

x
z

0 0.6
0

0.2

0.4

0.6

0.8

1 (c)

x

z

0 0.6
0

0.2

0.4

0.6

0.8

1 (d)

x

z

0 0.6
0

0.2

0.4

0.6

0.8

1

(e)

x

z

0 0.6
0

0.2

0.4

0.6

0.8

1 (f)

x

z

0 0.6
0

0.2

0.4

0.6

0.8

1 (g)

x
z

0 0.6
0

0.2

0.4

0.6

0.8

1 (h)

x

z

0 0.6
0

0.2

0.4

0.6

0.8

1

Figure 3-14: Splitting process from a wider plume to a narrower one, Ls6 = 0.5012,
L = 10Ls6, Ra = 9976. (a) τ = 40.4; (b) τ = 43.4; (c) τ = 47.9; (d) τ = 51.4;
(e) τ = 56.4; (f ) τ = 59.9; (g) τ = 61.9; (h) τ = 68.8. Solid ellipse marks the
growing process for the hot plume; dashed ellipse marks the growing process for the
cold plume. Only the portion of the domain 0 ≤ x ≤ 0.69 is shown to highlight the
plume splitting process.

As noted above, only a fraction of the growing proto-plumes successfully split the wide mega-

plumes. Figure 3-14 shows this plume splitting process. Initially, a small (warm) proto-plume

is generated near the lower wall because of the boundary-localized instability (Figure 3-14a).

Shortly thereafter, many smaller proto-plumes generated around its root merge with the

primary proto-plume, accelerating its growth (Figure 3-14b,c). Meanwhile, another (cold)

proto-plume is generated near the upper wall and grows downward (Figure 3-14c,d). The

upward growing plume soon reaches the upper wall, forming a mega-plume (Figure 3-14e).

Near the bottom wall, this mega-plume begins to merge with its neighboring warm mega-

plume; however, the growing cold plume disrupts this merging process by splitting the wider

root into two narrower roots (Figure 3-14f). Finally, the cold plume reaches the bottom
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wall, forming another downwelling mega-plume (Figure 3-14g). Hence, the wider plume is

successfully split into two narrower ones (Figure 3-14h).

3.5.5 Ls1 (Ra = 50000)

As described in section 3.2, the conduction solution is linearly stable in domains of sufficiently

small aspect ratio (L < Lc). This solution is, of course, linearly unstable at larger L. It should

be noted that since the wavenumber of the fastest growing mode kf = ±(π
√
Ra − π2)1/2,

the corresponding wavelength 2π/kf is larger than the mean inter-plume spacing measured

from DNS at large Ra, e.g., at Ra = 50000. To illustrate the nonlinear evolution of a non-

convective base flow with very small Ls = Ls1 ≤ Lc in the high-Ra regime, the conduction

solution plus its most unstable perturbation at Ra = 50000 is used as the initial condition

for DNS in a larger domain with L = 10Lf . From Figure 3-15, it is seen that at early times

the flow evolves in accord with the predictions of linear theory (see (3.1) and Figure 3-15b,c).

However, after a short while, thermal boundary layers form near the upper and lower walls,

and in the interior the flow develops a stably stratified structure (with hot/lighter fluid

above cold/heavier fluid, Figure 3-15d). This structure is similar to that of the steady

stably-stratified core solution at large Ls. Since the inter-plume spacing is comparably large,

a boundary instability dominates the subsequent evolution, with many small proto-plumes

generated near the walls (Figure 3-15e). Unlike the previous cases in which the proto-plumes

merge into the background mega-plumes, the strong stable stratification in the core prevents

the warm and cold plumes from penetrating across the domain. Instead, these proto-plumes

impact near the mid-plane (Figure 3-15f). After a series of plume merging and splitting

events, the flow evolves to the final state (Figure 3-15g and h). Figure 3-15(i) shows the

evolution of the dominant interior mode number for this scenario.
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Figure 3-15: Snapshots of the temperature field from DNS showing the nonlinear
evolution of the fastest-growing linear instability mode for any Ls1 ≤ Lc, L = 10Lf
(Lf = 0.2387), Ra = 50000. (a) τ = 0; (b) τ = 6; (c) τ = 8.25; (d) τ = 9.5; (e)
τ = 10.5; (f ) τ = 16.5; (g) τ = 28; (h) τ = 227; (i) Time-evolution of the dominant
horizontal mode number at z = 0.5 (solid line). The circles correspond to the times
highlighted in (a) to (h).
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From the preceding discussion, it can be concluded that for large Ra the final mean inter-

plume spacing is determined by an interplay between (suitably generalized) bulk-mode and

wall-mode instabilities. When the inter-plume spacing is small, the bulk mode controls the

instability, causing plume merger and coarsening of the convective pattern; when the inter-

plume spacing is large, the wall-mode instability dominates, causing small plumes generated

from the walls to split the wider plumes into narrower ones. To find the mean inter-plume

spacing at which the effects of these two instabilities balance, DNS have been performed up

to Ra = O(105) in which Lm is measured by taking a long-time average of the inter-plume

spacing in wide domains, as shown in Figure 2-8. The results indicate that the scaling

relations of Lm ∼ Ra−0.4 proposed by Hewitt et al. (2012) is only valid for Ra ≤ 10000, and

for Ra ≥ 39716, the interior flow becomes very well organized and appears to be metastable

within a band of wavelengths.

3.6 Summary

In this chapter, the form, stability and nonlinear evolution of initially steady cellular porous

medium convection in the high-Ra regime have been examined as a function of the domain as-

pect ratio. The results show that the steady solutions capture certain features characterizing

the turbulent columnar flows observed in DNS. For steady states with small aspect ratio Ls

(but for which Ls > Lc, the linear stability boundary), the steady flow has a heat-exchanger

structure in the interior: the vertical advection of the horizontal mean temperature is pre-

cisely balanced by the lateral diffusion of the fluctuation temperature field associated with a

single horizontal Fourier mode. However, as Ls increases, the interior flow develops a stably

stratified core involving many Fourier modes; moreover, the interior fluctuation fields are
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not depth-independent, also unlike their heat-exchanger counter-parts. By comparing these

equilibrium solutions with the time-averaged columnar flow in DNS, it is found that the inte-

rior part of the mean columnar convection is neither a heat-exchanger nor a stably-stratified

core flow, but rather blends certain features of these two steady solutions. The results indi-

cate that Lh, the maximum Ls at which the strictly steady heat-exchanger solution exists,

is almost half of the mean inter-plume spacing Lm measured from the DNS. Furthermore,

heat transport in steady porous medium convection is confirmed to be less efficient than that

occurring in turbulent convection. Specifically, steady convection has a ridge of maximum

Nu in (Ra,Ls) parameter space along the curve Ls ∼ Ra−0.52, with Nu ∼ Ra0.6 along this

ridge.

Linear stability analysis of these fully nonlinear steady states indicates that the steady solu-

tions are most unstable at large Ra to one of two types of secondary modes. For small Ls, the

most unstable disturbance is a bulk mode having roughly three to five times the wavelength

of the steady convective state. The bulk instability intensifies as Ls is reduced. For large Ls,

the most unstable disturbance has a growth rate that is essentially independent of horizontal

scale and a vertical structure that is strongly localized near the walls. The growth rate of

this wall mode increases as Ls increases and is generally an order of magnitude larger than

that of the bulk mode. The nonlinear evolution of unstable steady convective states suggests

that these two types of secondary instability play a primary role in determining the mean

inter-plume spacing realized in turbulent porous medium convection. When the inter-plume

spacing is small, the bulk mode drives the instability, causing plume merger and coarsening

of the convective pattern; when the inter-plume spacing is large, the wall-mode instability

dominates, causing small plumes generated from the walls to split the wider plumes into

narrower ones. For generic initial conditions, this to-and-fro process continues until there is
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a balance between the effects of these two types of instability. It should be noted that for the

particular case in which a conduction solution is established at large Ra and then subjected

to a broad spectrum of small-amplitude disturbances, the fastest-growing linear mode will

dominate the early evolution. As shown in section 3.5.5, the flow evolves toward a steady

convective state that necessarily has a lateral scale ≈ Lf (the wavelength of the fastest grow-

ing linear mode) that is larger than the final mean inter-plume spacing. In this scenario,

too, the dominant secondary instability by which the resulting quasi-steady flow initially

approaches the final mean inter-plume spacing Lm observed in statistically steady, but tur-

bulent porous medium convection is the wall mode rather than the bulk mode identified in

Hewitt et al. (2013).



CHAPTER 4

STRUCTURE AND STABILITY OF STEADY CONVECTION

IN AN INCLINED POROUS LAYER

4.1 Introduction

As noted in chapter 3, the study of exact coherent states may facilitate understanding of the

dynamics of porous medium convection. In this chapter, both the linear stability of the basic

unicellular state and the secondary stability of the nonlinear convective state are performed

to investigate the physics of convection in an inclined porous layer. Although the 2D linear

stability analysis has been performed numerically by Rees and Bassom (2000), they mainly

focus on the neutral stability of the basic state. In this investigation, the linear stability

analysis is revisited to study the distribution of the eigenspectrum for various disturbances

with different wavelengths from the onset of convection up to Ra = 50000.

In Walch and Dulieu (1982), Caltagirone and Bories (1985), Moya et al. (1987) and Sen

et al. (1987), multiple steady convective states have been found in a tilted cavity at small

Ra. However, the secondary stability of these steady states has not been fully explored.

96
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Figure 4-1: Contour plots of temperature, stream function and velocity fields for
the basic unicellular solution at Ra = 500 and φ = 10◦. When 0◦ < φ < 90◦, the
temperature field of the basic state is still the same as it is in the horizontal case.
However, the inclination of the layer will induce a background mean flow which
strengthens as φ is increased.

Moreover, to the author’s knowledge, there have been no investigations of the structure and

stability of steady convective states arising in inclined porous medium convection at large

Ra. Hence, in this chapter, following the studies of chapter 3, steady convective states

composed of one natural roll and one antinatural roll are computed in a sloping porous

Rayleigh–Bénard cell at moderate and large Ra, and their stability is then analyzed using

Floquet theory.

4.2 Linear Stability Analysis

The basic unicellular solution for this inclined problem is T = 1− z, ψ = Ra sinφ(z − z2)/2

or (u,w) =
(
Ra sinφ(1

2
− z), 0

)
, and p = 1

2
Ra sinφx + Ra cosφ(z − 1

2
z2) (see Figure 4-1).

Although the temperature field of the base state is still the same as that in the horizontal

case, the base velocity field is nonzero and the background mean flow (in x) strengthens

as the angle of inclination φ is increased. A linear stability analysis can be performed by

setting T = (1 − z) + θ∗(x, z, t) and ψ = Ra sinφ(z − z2)/2 + ψ∗(x, z, t), where θ∗ and ψ∗

are small perturbations satisfying L-periodic boundary conditions in x and homogeneous
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Dirichlet boundary conditions in z, and linearizing (2.5)–(2.6) about the basic state:

∇2ψ∗ = Ra(θ∗z sinφ− θ∗x cosφ), (4.1)

∇2θ∗ = ∂tθ
∗ +

1

2
Ra sinφ(1− 2z)∂xθ

∗ + ∂xψ
∗. (4.2)

The solution of (4.1) and (4.2) can be expressed as

 θ∗

ψ∗

 =

N/2∑
n=−N/2

 θ̂n(z)

ψ̂n(z)

 einkxeλt + c.c., (4.3)

where λ is the temporal growth rate, nk is the horizontal wavenumber of the perturbation, N

is the horizontal truncation mode number, and c.c. denotes complex conjugate. Substituting

(4.3) into (4.1)–(4.2) yields

 Dzz − (nk)2 + inkRa sinφ(z − 1
2
) −ink

Ra(ink cosφ− sinφD) Dzz − (nk)2


 θ̂n

ψ̂n

 = λ

 I 0

0 0


 θ̂n

ψ̂n

 (4.4)

for each horizontal mode n, where D and Dzz denote the first and second partial derivative

operator with respect to z, respectively, and I is an identity matrix. After discretization

of the z coordinate using a Chebyshev spectral collocation method, this system (4.4) is

solved using a global generalized eigenvalue routine subject to the boundary conditions

θ̂n = ψ̂n = 0 at z = 0, 1. In this dissertation, computations are performed for a discrete set

of Ra = 50 · 10(̂−1)/10 from Ra = 50 to Ra = 50000 and different wavelength L = 2π/(nk) =

0.01 · 10(k̂−1)/500 from L = 0.01 to L = 100 (for integer ̂ and k̂).

Figure 4-2 shows the contours of maximum growth rate, Re{λm} (the real part of maximum

λ), as a function of nk and Ra for various φ. At φ = 0◦, all the eigenvalues are real,



Chapter 4. Stability of Steady Inclined Porous Medium Convection 99

(a)

nk

R
a

 

 

10
0

10
210

2

10
3

10
4

−4

−2

0

2

4

x 10
4 (b)

nk

R
a

 

 

10
0

10
210

2

10
3

10
4

−4

−2

0

2

4
x 10

4

(c)

nk

R
a

 

 

10
0

10
210

2

10
3

10
4

−3

−2

−1

0

1

2

3

x 10
4 (d)

nk

R
a

 

 

10
0

10
210

2

10
3

10
4

−3

−2

−1

0

1

2

3
x 10

4

(e)

nk

R
a

 

 

10
010

2

10
3

10
4

−5000

0

5000

(f)

nk

R
a

 

 

10
010

2

10
3

10
4

−1500

−1000

−500

0

500

1000

1500

Figure 4-2: Contours of the maximum growth rate Re{λm} as a function of
wavenumber nk and Ra. φ = 0 (a), 1 (b), 5 (c), 10 (d), 25 (e), and 30 (f ) de-
grees. The dashed lines denote the high- and low-wavenumber branches of marginal
modes; the solid line corresponds to the fastest growing linear mode; the dotted
line marks a boundary between pure real (left) and complex (right) eigenvalues. At
φ = 25◦ (e), the structure of the contour is more complicated: the modes between
the dotted line and the high branch dashed line are not all unstable, e.g. there
exists a long narrow band in which the growth rate is negative. At φ = 30◦ (f),
the discontinuities in these lines arise because the basic state is linearly stable to all
small disturbances for 199 . Ra . 315 and the resolution is not sufficient in Ra to
generate a smooth curve.
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as described in (3.2). Moreover, from the analysis in chapter 3.2 and as also shown in

Figure 4-2(a), the high-wavenumber branch of marginal modes has kc ∼ Ra1/2, and the

wavenumber of the fastest growing linear mode kf ∼
√
πRa1/4 as Ra→∞. However, in the

inclined case (0◦ < φ < 90◦), the linear operator on the left-hand side of (4.4) is no longer

self-adjoint and may yield complex eigenvalues. In Figure 4-2, the unstable eigenvalues (with

positive Re{λm}) between the left dashed line (corresponding to the low-wavenumber branch

of marginal mode) and the dotted line are real, and become complex between the dotted

line and the right dashed line (corresponding to the high-wavenumber branch of marginal

modes). For 0◦ ≤ φ ≤ 25◦, the high-wavenumber branch of marginal modes always has

kc growing as CRa1/2 in the high-Ra regime, but with a different prefector C for different

φ. However, the wavenumber of the fastest growing linear mode in inclined porous medium

convection asymptotes to a constant at large values of the Rayleigh number. Furthermore,

as φ is increased, the unstable region (between the two dashed lines in Figure 4-2) shrinks

and ultimately disappears when φ > φt (note that φt ≈ 31.30◦ at large Ra from the linear

stability analysis of Rees and Bassom (2000)), implying that the basic unicellular state is

linearly stable at sufficiently large inclination angle.

4.3 Steady Convective States

4.3.1 Newton–GMRES Method

The steady version of the governing equations (2.5)–(2.6) is solved numerically using a

Newton–GMRES (generalized minimal residuals) iterative scheme. Following the Newton–

Kantorovich method in chapter 3.3.1, the linear differential equations for the corrections in
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the inclined case can be expressed as

 ∇2 Ra(cosφDx − sinφDz)

−Dx + θizDx − θixDz ∇2 − ψizDx + ψixDz


 4ψ

4θ

 =

 −Fψ
res

−F θ
res


i

, (4.5)

where the correction terms 4ψ and 4θ are as in (3.13), and

Fψ
res = ∇2ψ +Ra(cosφ∂x − sinφ∂z)θ +Ra sinφ,

F θ
res = ∇2θ − (∂zψ∂xθ − ∂xψ∂zθ + ∂xψ),

correspond to the residuals of the steady governing equations, and the superscript i denotes

the ith Newton iterate. In the horizontal case, the z-dependent Fourier components θ̂n and

φ̂n of θ and ψ in (3.16) and their correction terms in (3.13) are strictly real due to the

centro-reflection symmetry of the solutions, and (3.17) and (3.18) are solved directly using a

numerical linear algebra package. However, in the inclined case, θ̂n and φ̂n are complex (as

in (3.7)) since the reflection-symmetry constraint no longer exists, so that the length of the

vector (· · · θ̂n−1, θ̂n, θ̂n+1 · · · φ̂n−1, φ̂n, φ̂n+1 · · · )T is 2 times the length in the horizontal case.

Thus, the direct method is not economical numerically since the size of the matrix problem

to be solved in the inclined case is 4 times the size in the horizontal case, which requires an

excessive amount of memory for the computations. In this section, (4.5) is solved using a

Krylov-subspace (GMRES) iterative method. To simplify the iterative scheme, Fψ
res can be

set to 0 since for a given 4θ, 4ψ can be obtained by solving

∇24ψ = Ra(sinφDz − cosφDx)4θ. (4.6)
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Thus, (4.5) becomes

[
−Dx + θizDx − θixDz ∇2 − ψizDx + ψixDz

] 4ψ

4θ

 =

[
−F θ

res

]i
, (4.7)

and the only unknown is 4θ. For a given horizontal wavenumber nks (ks is the fundamental

wavenumber of the spatially-periodic steady solution, as in chapter 3), (4.7) becomes

L̂in(4θ) = f̂ in, (4.8)

where L̂in and f̂ in represent the coefficients of the left- and right-hand sides of (4.7) in Fourier

space at the ith Newton iterate, respectively. For each Newton iterate, (4.8) is solved itera-

tively in the Krylov subspace using the GMRES method (Trefethen and Bau, 1997). Spatial

discretization in z is achieved using a Chebyshev spectral collocation method. In order to

improve the convergence rate of the GMRES iterations, a preconditioner M = ∇2 is chosen

for solving (4.8). Hence the actual computational linear algebra problem is

M̂−1
n L̂in(4θ) = M̂−1

n f̂ in, (4.9)

where M̂n is the matrix of coefficients of M in Fourier space for the horizontal wavenumber

nks, namely in this study M̂n = Dzz− (nks)
2I. Although reflection symmetry is not realized

for the inclined case, the centrosymmetry still exists and requires

amn is imaginary if (m+ n) is even; otherwise, for odd (m+ n), amn is real. (4.10)
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The above centrosymmetry constraint is enforced in the computations. Moreover, the GM-

RES iteration is stopped once the norm of the residual of (4.9) is less than 10−4, and then θ̂n

is updated following the same strategy as in (3.20). Finally, the Newton iteration is stopped

when the norm of F θ
res is less than 10−8.

4.3.2 Solution Structure

As noted in chapter 2.4, steady convective states in an inclined porous layer are stable at

small Ra (e.g. Ra ≤ 200, see Figure 2-10). However, as the Rayleigh number is increased, the

boundary layers near the upper and lower walls become unstable and small-scale features are

generated and advected around the cell by the large-scale roll, as shown in Figure 2-12(e). In

this section, the structure of the (generally unstable) steady convective states will be inves-

tigated at moderate and large values of the Rayleigh number for different angles. Figure 4-3

shows the variations in the pattern of isotherms and streamlines with the inclination angle

at Ra = 500 and Ls = 2. It is seen that the increasing inclination of the layer enhances the

motion of the background basic mean flow (Figure 4-1), thereby intensifying the natural-roll

motion and suppressing the antinatural-roll motion. Consequently, as φ is increased, the

natural rolls become more vigorous and more tightly attached to the upper and lower walls;

on the contrary, the antinatural rolls become much weaker and detached from the walls (see

Figures 4-3, 4-4 and 4-5). A similar trend is also found at Ra = 1991 and Ls = 2 (see Fig-

ure 4-6a-b and Table 4-1). Moreover, as shown in Figure 4-6, there exist at least two branches

of steady states for different inclinations at Ra = 1991. For φ . 15◦ (see Figure 4-6a-b), the

antinatural roll is gradually detached from the walls as φ is increased; however, for φ > 15◦,

the antinatural roll is completely detached from the walls and the flow exhibits a different

type of pattern (see Figure 4-6c-d).
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Figure 4-3: Isotherms and streamlines of steady convective states at Ra = 500 and
Ls = 2. φ = 0 (a), 10 (b), 20 (c), and 30 (d) degrees. The steady state at φ = 35◦

was not obtained using (d) as an initial guess with the present numerical scheme. As
the inclination angle is increased, the natural roll becomes more vigorous and more
tightly attached to the walls, while the antinatural roll is suppressed and becomes
detached from the walls.
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Figure 4-4: Magnitude of ψm for steady convective states as a function of φ at
Ra = 500 and Ls = 2. ψm denotes the ψ extremum value corresponding to the
natural roll with max(ψ) (positive) and antinatural roll with min(ψ) (negative). As
φ is increased, the natural-roll motion is intensified, while the antinatural-roll motion
is suppressed.
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Figure 4-5: Contour plots of vorticity field Ω of steady convective states at Ra =
500 and Ls = 2. (a): φ = 0◦; (b): φ = 20◦. For the inclined case, the natural roll is
tightly attached to the upper and lower walls, while the antinatural roll is detached
from the walls.
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Figure 4-6: Isotherms and streamlines of steady convective states at Ra = 1991
and Ls = 2. φ = 0 (a), 15 (b), 20 (c), and 35 (d) degrees. The same branch of
steady states as in (b) cannot be obtained continuously for φ > 15◦ with the present
numerical scheme (using the result from a lower φ as the initial guess). For φ = 35◦

(d), the steady state is stable and can be obtained from DNS. Hence, the same branch
of steady states as in (d) can be obtained continuously, using the result from a higher
φ as the initial guess, until φ ≈ 17.5◦.
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HHH
HHHCell
φ

0◦ 15◦ 20◦ 35◦

Natural 30.0 34.9 38.6 43.8

Antinatural 30.0 20.6 17.6 18.2

Table 4-1: Magnitude of the ψ extremum values for natural and antinatural rolls
at Ra = 1991 for different φ. These ψ extremum values correspond to the flows
in Figure 4-6. For the inclined case, the natural roll is more vigorous than the
antinatural roll.
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Figure 4-7: Temperature and stream function fields of steady states at Ra = 5000.
(a): φ = 0◦, Ls = 0.251; (b): φ = 0◦, Ls = 0.398; (c): φ = 0.96◦, Ls = 0.251;
(d): φ = 6◦, Ls = 0.398. Ls = 0.398 is close to the mean inter-plume spacing Lm
measured from DNS at φ = 0◦. Magnitude of the ψ extremum values for natural
rolls: (a) 19.7, (b) 27.0, (c) 20.0 and (d) 29.9; for antinatural rolls: (a) 19.7, (b) 27.0,
(c) 18.4 and (d) 25.5. For different aspect ratios Ls, the steady state is distorted
differently.
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As noted in chapter 2.4, DNS reveal that the flow at large Ra and small φ still exhibits

the three-region narrow columnar structure, as is manifest in the horizontal case. Hence, in

this chapter steady convective states are also computed in narrow domains at Ra = 5000,

as shown in Figure 4-7. It is seen from this figure the steady state is distorted differently,

depending on the aspect ratio Ls. For small Ls, the motion of the narrow rolls is too

weak to resist the impact of the background base flow. Consequently, both the natural and

antinatural rolls are distorted counterclockwise, in the same direction as the flow of the

base state. However, as Ls is increased, the motions of rolls become stronger (with higher

magnitude of the ψ extremum value, see Figures 3-1 and 4-7) and exhibit a different distorted

pattern for φ 6= 0◦: the natural roll is more tightly attached to the walls while the antinatural

roll begins to be detached from the walls, as also observed at moderate Ra. It should be

noted that these two types of patterns can be easily observed in DNS for very narrowly and

widely spaced plumes.

4.4 Secondary Stability Analysis

4.4.1 Floquet Theory

As in chapter 3.4.1, spatial Floquet analysis is also performed here to investigate the linear

stability of the fully nonlinear steady convective states in an inclined porous layer. The

linearized momentum equation (3.24) for the inclined case becomes

∇2ψ̃ = Ra(sinφ∂z − cosφ∂x)θ̃, (4.11)
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where θ̃ and ψ̃ are small-amplitude disturbances defined as in (3.22) and (3.23), while the

linearized energy equation (3.25) is unchanged. Hence, for each n, (3.28) becomes

−Ra [sinφDz − i(n+ β)ks cosφ]
ˆ̃
θn +

[
Dzz − (n+ β)2k2s

] ˆ̃
ψn = 0, (4.12)

while (3.29) is unchanged for φ 6= 0◦. Since
ˆ̃
ψn is no longer strictly imaginary (the reflection

symmetry is not realized), the resulting A and B in (3.30) are complex (not real) matrices.

4.4.2 Secondary Stability Results

The same numerical scheme as in chapter 3.4 is employed here to solve the resulting algebraic

eigenvalue problem (3.29) and (4.12) for the inclined case to obtain the leading eigenvalues

and eigenfunctions. Figure 4-8 shows the maximum growth rate, Re{σm}, as a function of

φ at moderate Ra and Ls = 2. The inclination of the layer enhances the instability of the

steady state, and for each Ra, there exists a peak in Re{σm}. Moreover, the structure of

the most unstable eigenfunction in Figure 4-9 and the results in Figure 4-10 confirm that

the antinatural rolls are more unstable than the natural rolls at moderate Rayleigh number,

as also indicated by DNS in chapter 2.4. Actually, as φ is increased, the natural roll of the

steady state strengthens and becomes more tightly attached to the walls, and thereby is

stabilized; on the contrary, the antinatural roll is suppressed and becomes detached from the

walls, and thereby is destabilized. Thus, the increase of the maximum growth rate with φ

in Figure 4-8 is attributable to the destabilization of the antinatural roll.

At large Ra, the steady state for the inclined case exhibits similar instability properties as

for the horizontal case. As shown in Figure 4-11, at small Ls, the steady states for both
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Figure 4-8: Variation of the maximum growth rate, Re{σm}, with φ at moderate
Ra, Ls = 2 and β = 0. Re σm is the real part of σm. At Ra = 300, the steady state
is marginally stable for φ < 10◦ and becomes weakly unstable at φ = 10◦. The same
branch of steady states is not obtained at large φ for Ra = 500 and 792 using the
present numerical scheme.
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Figure 4-9: The fastest-growing 2D temperature eigenfunctions at Ra = 500,
Ls = 2 and β = 0. (a): φ = 0◦; (b): φ = 20◦. For the horizontal case, reflec-
tion symmetry is satisfied and both of the natural and antinatural rolls are equally
unstable. However, as φ is increased, the natural roll is stabilized and the instability
of the antinatural roll is intensified.

of the horizontal and inclined porous layers are unstable for a range of long-wavelength

perturbations (0 < β ≤ 0.5), and this type of instability is enhanced in the inclined case.
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Figure 4-10: The leading eigenvalues at Ra = 500, Ls = 2 and β = 0. (a):
φ = 0◦; (b): φ = 20◦. All of the unstable modes for both the horizontal and inclined
cases exhibit a similar structure as that of the corresponding fastest-growing mode
in Figure 4-9.
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Figure 4-11: Variation of the maximum growth rate, Re{σm}, with β at Ra =
5000. Circle: Ls = 0.1259; square: Ls = 0.1667; diamond: Ls = 0.1995. Solid
lines: for Ls = 0.1259, φ = 0.14◦; for Ls = 0.1667, φ = 0.25◦; for Ls = 0.1995,
φ = 0.4◦. Dashed lines: φ = 0◦. At small Ls (e.g. Ls = 0.1667), the base state is
marginally stable for β = 0, but unstable to certain long-wavelength perturbations
(0 < β ≤ 0.5). The inclination intensifies this long-wavelength instability. At large
Ls, the base state is unstable even for β = 0, and has the same growth rate for
different β.
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Figure 4-12: The fastest-growing 2D temperature and stream function eigenfunc-
tions at Ra = 5000 in inclined porous medium convection. (a) and (c): Ls = 0.1667,
φ = 0.25◦, β = 0.1; (b) and (d): Ls = 0.3981, φ = 6◦, β = 0. The eigenfunctions in
(a) and (c) are shown in a domain with aspect ratio L = 10Ls. As in the horizontal
case, at small Ls (a, c), a bulk mode controls the instability, and at large Ls (b, d),
a wall mode dominates.

However, at large Ls, the maximum growth rate Re{σm} for both the horizontal and inclined

cases becomes independent of β. Figure 4-12 shows the 2D eigenfunctions corresponding to

these two families of secondary instabilities. As in the horizontal case, at small Ls, e.g.

Ls = 0.1667, when the growth rate depends on the horizontal wavenumber βks, the most

unstable perturbation is a bulk mode that spans the layer (Figure 4-12a). However, at

large Ls, e.g. Ls = 0.3981, when the growth rate is independent of β, the most unstable

perturbation for each β is a wall mode that is strongly localized near the upper and lower

walls (Figure 4-12b). It should be noted that the wall mode has a very similar spatial
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structure for each β, as in the horizontal case, and when φ is sufficiently large the fastest

growing wall mode only occurs in the antinatural roll (see Figure 4-12b), implying that the

antinatural roll is more unstable than the natural roll, consistent with the results that have

been discussed at moderate Ra.

4.5 Nonlinear Evolution of the Instability

At discussed above, two types of secondary instability are also found in inclined porous

medium convection. In this section, strategically initialized DNS are performed to investigate

the nonlinear evolution of the fastest-growing secondary instability mode at large Ra. The

aim is to gain insight into the mechanisms by which these secondary instabilities influence

the mean inter-plume spacing Lm in the inclined case. The steady state at a given Ls plus

a small-amplitude contribution of the most unstable secondary instability mode is chosen as

the initial condition, and then high-resolution DNS are performed in a wider domain.

Figure 4-13 shows the nonlinear evolution of the most dangerous secondary instability mode

for small Ls which is within the bulk instability parameter regime. It is seen that the initial

condition comprises 10 replicas of the steady convective state at Ls = 0.1667, plus a small-

amplitude contribution of the corresponding fastest-growing perturbation at β = 0.1 (see

Figure 4-12a). In accord with the stability analysis in chapter 4.4.2 and as is evident in

Figure 4-13(b,c), the base state is unstable to a bulk mode. As the secondary mode grows in

amplitude, some narrow plumes are so distorted that the cold (heavy) plumes overlie the hot

(light) ones (see Figure 4-13c). Then, these strongly distorted plumes are broken and merged

into wider plumes, as shown in Figure 4-13(d,e). However, the resulting wide plumes are

strongly unstable to the wall mode. Hence, some plumes growing from the upper and lower
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Figure 4-13: Snapshots of the temperature field from DNS showing the nonlinear
evolution of the fastest-growing secondary instability mode for Ls = 0.1667, β = 0.1,
L = 10Ls, Ra = 5000, φ = 0.25◦: (a) τ = 0; (b) τ = 69; (c) τ = 74; (d) τ = 80; (e)
τ = 97.5; (f) τ = 288.5; (g) The time evolution of the dominant horizontal mode
number nd at z = 0.5 (solid line). The dashed line shows the time-average dominant
mode number and the circles correspond to the times highlighted in (a) to (f).
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Figure 4-14: Snapshots of the temperature field from DNS showing the bulk insta-
bility for narrow columnar flows at Ra = 50000 and φ = 5◦ in L = 2.387: (a) τ = 0;
(b) τ = 47.4; (c) τ = 51.15; (d) τ = 59.25. DNS result from the horizontal case at
the same Ra and L is utilized as the initial condition. τ is the convective time as
in chapter 3. As time evolves, these narrow columnar plumes are distorted by the
background mean flow and become unstable to a bulk mode.

boundary layers split the wider plumes into narrower ones (see Figure 4-13e,f). Therefore,

in the inclined porous layer, the bulk instability will enhance the distortion of the narrowly

spaced plumes, cause plume merger and coarsen the convective pattern.

Since the nonlinear evolution of the bulk mode described above occurs at φ = 0.25◦ and

Ra = 5000, an obvious question is whether this instability still exists at larger inclinations,

e.g. φ = 5◦ or 10◦. Figure 4-14 shows the snapshots of the temperature field from DNS at

Ra = 50000 and φ = 5◦. In this case, the DNS result from φ = 0◦ at the same parameter

values is used as the initial condition, so that the narrow columnar flows are generally

straight initially (see Figure 4-14a). However, the inclination of the layer will induce a

background mean flow which distorts the narrow plumes in a counterclockwise direction

(see Figure 4-14b), similarly in the steady case (Figure 4-7c). Then, the resulting distorted
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narrow columns become unstable to a bulk mode: as is evident in Figure 4-14(c), some cold

plumes overlie hot ones as time evolves, and subsequently these narrow plumes are broken

and merged into wider ones (see Figure 4-14d).

4.6 Summary

In this chapter, linear and secondary stability analyses have been employed to study pattern

formation in inclined porous medium convection. Theoretical analysis indicates that the

inclination of the porous layer will induce a basic unicellular flow which strengthens as φ is

increased from φ = 0◦ to φ = 90◦. In an infinitely wide 2D domain, the linear stability anal-

ysis of the base state here reveals that for φ < 30◦ and at large Ra, the high-wavenumber

branch of marginal modes has kc ∼ CRa1/2 with a different prefactor C for different in-

clination angles; however, the wavenumber of the fastest growing linear mode kf becomes

independent of Ra. Moreover, at small and moderate φ (e.g. φ < 25◦), there exist two dis-

tinct unstable regions between the low- and high-wavenumber branches of marginal modes:

as the wavenumber k of the disturbance is increased from the low-wavenumber branch to the

high-wavenumber branch, the most unstable eigenvalue λm for each wavelength changes from

a real number to a complex one, implying that the bifurcation near the high-wavenumber

branch kc is not stationary.

In order to better understand the physics of inclined porous medium convection at different

φ, the structure and stability of steady nonlinear convective states are also investigated

at moderate and large values of the Rayleigh number. In the moderate-Ra regime, these

steady states appear in the form of large-scale convective rolls: one natural roll rotating

in a counterclockwise direction; and one antinatural roll rotating in a clockwise direction.
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As the inclination angle is increased, the strengthening background mean flow enhances

the motion of the natural roll and makes it more tightly attached to the upper and lower

walls, but weakens the motion of the antinatural roll and makes it detached from the walls

at sufficiently large φ. Moreover, the Floquet analysis of these steady states reveals that

before the antinatural roll is completely detached from the walls, the inclination of the

layer stabilizes the boundary layers of the natural roll, but intensifies the boundary-layer

instability of the antinatural roll.

In the high-Ra regime, DNS indicate that for 0◦ < φ . 25◦, the flow still exhibits a similar

three-region structure as is manifest in the horizontal case, except that as φ is increased the

time-mean spacing between neighboring interior mega-plumes is also substantially increased.

To explore the mechanism resulting in such a variation, a spatial Floquet analysis is per-

formed, yielding predictions of the linear stability of numerically-computed, fully nonlinear

steady convective states. The results show that there also exist two types of instability when

φ 6= 0◦: a bulk instability and a wall instability, consistent with the previous findings for

φ = 0◦. Here, however, the background flow induced by the inclination of the layer intensi-

fies the bulk instability during its subsequent nonlinear evolution, thereby favoring increased

spacing between the interior plumes relative to the φ = 0◦ scenario.



CHAPTER 5

STRUCTURE AND STABILITY OF TIME-PERIODIC

SOLUTIONS IN HORIZONTAL POROUS MEDIUM

CONVECTION AT LARGE RAYLEIGH NUMBER

5.1 Introduction

In previous chapters, the structure and stability of steady convective states have been ex-

plored as a function of Ra and L in both horizontal and inclined porous medium convection.

The results indicate that these states can capture aspects of the structure and dynamics of

typical coherent structures observed in turbulent flows at large Ra. However, one obvious

difference between the steady flow and the realized turbulent flow at the same parameter

values is that the proto-plumes are absent in the former (i.e. steady solution). Specifically,

the steady convective flows generally exhibit a two-region structure consisting of thin thermal

boundary layers near the walls and a mega-plume region in the interior. Hence, a natural

question is raised: are there any exact coherent solutions that can capture the three-region

118
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structure of the instantaneous turbulent flow including the proto-plume region, as observed

in DNS?

To capture the continually swept proto-plumes, the system must be time-dependent. In this

chapter, time-periodic solutions will be investigated numerically in horizontal porous medium

convection. As noted in chapter 1.2, the steady convective flow is destabilized by a Hopf

bifurcation to a time-periodic oscillatory flow as the Rayleigh number is increased above 400.

In the moderate Ra parameter regime, i.e. 400 < Ra < 1300, the resulting flow exhibits a

series of transitions between periodic and quasi-periodic convective roll motions, as discussed

in considerable detail by Kimura et al. (1986, 1987), Steen and Aidun (1988), Riley and

Winters (1991) and Graham and Steen (1992, 1994). It should be noted that these studies

were generally focused on the centro-reflection symmetric time-periodic solutions at moderate

Ra. In this study, a primary objective is to explore the (numerically) exact time-periodic

states at large Ra (basically in the chaotic convection regime). Moreover, besides the centro-

reflection symmetric solution, three other types of periodic orbits with different symmetries

are also found by classifying the eigenfunctions emerging from a stability analysis of the

steady convective states, The stability of the time-periodic solution with centro-reflection

symmetry is then investigated using a spatial Floquet analysis.

The remainder of the chapter is organized as follows. In section 5.2, the computational

methodology is outlined, and the symmetry and structure of the time-periodic solutions are

described. Then the stability analysis of periodic-orbit solutions with centro-reflection sym-

metry is performed using Floquet theory in section 5.3. Finally, the results are summarized

and discussed in section 5.4.
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5.2 Time-Periodic Convective Solutions

5.2.1 Computational Methodology

To seek a time-periodic solution θ?(x, z, t) = θ?(x, z, t + τ ?) with period τ ?, the unsteady

energy equation (2.6) can be rewritten as

∂tθ = F (θ) = −∂zψ∂xθ + ∂xψ∂zθ − ∂xψ +∇2θ, (5.1)

where ψ can be determined through (2.5) with φ = 0◦. Define the time-τ forward map of

equation (5.1)

f τ (θ) = θ +

∫ τ

0

dtF (θ(t)). (5.2)

Then, the exact time-periodic solutions satisfy

f τ
?

(θ)− θ = 0, (5.3)

with an unknown period τ ?.

Finally, a Newton-hookstep searching algorithm developed by Viswanath (2007) and ob-

tained from “http://channelflow.org/” is utilized to solve (5.3) numerically with the same

boundary conditions as described in chapter 2.2. In the computation, the unknown vector

consisting of the spectral expansion coefficients of θ and the period τ ? is obtained based on

Newton search, Krylov subspace methods, and an adaptive hookstep trust-region limitation
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to Newton steps. The spatial discretization is achieved using a Fourier–Chebyshev-tau pseu-

dospectral algorithm, and temporal discretization using a semi-implicit RK3 & AB/BDI4

hybrid algorithm (see details in Appendix A), yielding fourth-order accuracy in time. The

Newton iteration is continued until the norm of the residual of (5.3) is less than 10−12.

5.2.2 Symmetry

Before investigating the symmetries of the governing equations, it is instructive to analyze

the structure of the secondary stability eigenfunctions of the steady convective state, since

the unstable eigenfunctions generally represent the directions in which the dynamical system

tends to evolve. And within the linear stability regime, the steady state must go through

these directions to transition to other states. Figure 5-1 shows the eigenspectra and eigen-

functions for the steady convective state at Ra = 1991 having an aspect ratio slightly larger

than Lb so that the steady solution becomes weakly unstable to the wall mode. It can be seen

from this figure that there exist 4 pairs of unstable conjugate eigenmodes combining different

symmetries defined in Table 5-1. As described in chapters 2 and 3, the time-averaged cellular

flow and steady convective states generally satisfy a centro-reflection symmetry; however,

these unstable eigenfunctions exhibit 4 types of symmetries, as shown in Figure 5-1(c)–(f).

In this section, the steady convective state is chosen as a base state. Therefore, the time-

periodic solutions can be classified into 4 types of solutions according to the symmetries of

the perturbations. For instance, the anticentro-antireflection symmetric periodic orbit means

the steady convective base state plus an anticentro-antireflection symmetric perturbation (or

oscillation).
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Figure 5-1: Steady convective state and the corresponding leading eigenvalues and
temperature eigenfunctions at Ra = 1991 and L = 0.41: (a) temperature and stream
function fields; (b) eigenspectra; (c)–(f) unstable temperature eigenfunctions with
anticentro-antireflection symmetry, centro-antireflection symmetry, centro-reflection
symmetry, and anticentro-reflection symmetry, respectively. In (b), the asterisk,
circle, plus and square denote 4 pairs of unstable conjugate eigenmodes with different
symmetries shown in (c)–(f).

At moderate Rayleigh number (400 < Ra < 1300), the stable steady convective state under-

goes a Hopf bifurcation as Ra is increased for fixed aspect ratio (Steen and Aidun, 1988; Riley

and Winters, 1991; Graham and Steen, 1992, 1994). At large Ra, the numerical investiga-

tions here indicate that this bifurcation still exists for fixed Ra as L is increased from L < Lb

where the steady state is stable within the narrow domain, to L > Lb where the boundary

layers begin to become unstable to the wall mode. To more clearly illustrate this bifurcation,
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Symmetry Definition amn

Reflection θ(x, z) = θ(L− x, z) real

Antireflection θ(x, z) = −θ(L− x, z) imaginary

Centro θ(x, z) = −θ(L
2
− x, 1− z)

real for odd (m+ n);
imaginary for even (m+ n)

Anticentro θ(x, z) = θ(L
2
− x, 1− z)

real for even (m+ n);
imaginary for odd (m+ n)

Table 5-1: Symmetries exhibited in horizontal porous medium convection. In each
Lp × 1 computational domain, where Lp is used here and throughout to denote the
domain width associated with a given periodic orbit, time-periodic solutions are
sought with reflection/antireflection symmetry about x = Lp/2 and centro/anticen-
tro symmetry within each of the two Lp/2 × 1 subdomains which contain a single

convection cell. Recall that θ =
N/2∑

n=−N/2

M∑
m=0

amnTm(z) einkx, as shown in (3.7).

the steady state at Ra = 1991 and Ls = 0.41 plus a small-amplitude contribution of each

unstable secondary instability mode in Figure 5-1 is chosen as the initial condition, and then

DNS is performed in the same domain with L = Ls. Figure 5-2 shows how the modes a1,0

and a0,1 grow in amplitude from the steady state and evolve to various time-periodic states

with different symmetries. It should be noted that the DNS results in Figure 5-2 do not

mean that this system finally converges to some stable periodic orbit since it may deviate

from the orbit after a long time, but indeed indicate that at least initially, or in a short time,

this system (initialized with the steady state plus a certain small perturbation) approaches

a specific time-periodic state.
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Figure 5-2: Evolution of the magnitudes of modes a1,0 and a0,1 from DNS showing
the Hopf bifurcation from a steady state (“S”) to a time-periodic state (“P”) at Ra =
1991 and L = 0.41: (a) anticentro-antireflection symmetry; (b) centro-antireflection
symmetry; (c) centro-reflection symmetry; (d) anticentro-reflection symmetry. For
each plot, the steady state at the given Ra and L plus a small-amplitude contribution
of the unstable secondary instability mode with a certain symmetry is chosen as the
initial condition.

5.2.3 Solution Structure

As noted above, four types of time-periodic solutions with different symmetries can be ob-

tained through the Hopf bifurcation of the unstable steady convective state at Ra = 1991

and Lp = 0.41 (see Figure 5-2, and Lp is defined in the caption of Table 5-1). In this section,

numerical continuation is utilized to compute these periodic orbits at the same Rayleigh

number but in larger Lp. Figures 5-3–5-6 show snapshots of the temperature field and and

time series of the instantaneous Nusselt number nu for the four types of periodic orbits at
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Figure 5-3: Snapshots of the temperature field and time series of the instanta-
neous Nusselt number for the time-periodic solution with anticentro-antireflection
symmetry in one period at Ra = 1991 and Lp = 0.64. The dots in the bottom plot
correspond to the times highlighted in the snapshots. The Nusselt number for this
time-periodic solution is Nu = 18.9 (DNS: Nu = 16.3; steady state: Nu = 11.3).
It should be noted that the proto-plumes with the centrosymmetry about the point
(x = Lp/2, y = 1/2) or the reflection symmetry about the plane x = Lp/2 always
appear with a half-period time delay.
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Figure 5-4: Snapshots of the temperature field and time series of the instantaneous
Nusselt number for the time-periodic solution with centro-antireflection symmetry
in one period at Ra = 1991 and Lp = 0.64. The dots in the bottom plot correspond
to the times highlighted in the snapshots. The Nusselt number for this time-periodic
solution is Nu = 19.3 (DNS: Nu = 16.3; steady state: Nu = 11.3). It should be
noted that the proto-plumes with the centrosymmetry about the point (x = Lp/2,
y = 1/2) always appear at the same time, while those with reflection symmetry
about the plane x = Lp/2 always appear with a half-period time delay.
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Figure 5-5: Snapshots of the temperature field and time series of the instantaneous
Nusselt number for the time-periodic solution with centro-reflection symmetry in one
period at Ra = 1991 and Lp = 0.64. The dots in the bottom plot correspond to
the times highlighted in the snapshots. The Nusselt number for this time-periodic
solution is Nu = 18.0 (DNS: Nu = 16.3; steady state: Nu = 11.3). It should be
noted that the proto-plumes with the centrosymmetry about the point (x = Lp/2,
y = 1/2) or the reflection symmetry about the plane x = Lp/2 always appear at the
same time.
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Figure 5-6: Snapshots of the temperature field and time series of the instantaneous
Nusselt number for the time-periodic solution with anticentro-reflection symmetry
in one period at Ra = 1991 and Lp = 0.64. The dots in the bottom plot correspond
to the times highlighted in the snapshots. The Nusselt number for this time-periodic
solution is Nu = 18.1 (DNS: Nu = 16.3; steady state Nu = 11.3). It should be
noted that the proto-plumes with the centrosymmetry about the point (x = Lp/2,
y = 1/2) always appear with a half-period time delay, while those with reflection
symmetry about the plane x = Lp/2 always appear at the same time.
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Ra = 1991 and Lp = 0.64. It should be noted that the domain aspect ratio Lp = 0.64 is

equal to the mean inter-plume spacing Lm measured from DNS with L = 9.6 and all the

times appearing in these plots are in convective time units. As shown in these figures, the nu-

merical time-periodic solutions capture the three-region structure of the turbulent columnar

flow, including the proto-plume region. In the centro- or reflection-symmetry subspace, the

proto-plumes which are symmetrical about the point (x = Lp/2, y = 1/2) or plane x = Lp/2,

respectively, always appear and disappear at exactly the same time; on the contrary, in the

anticentro- or antireflection-symmetry subspace, the proto-plumes always appear and disap-

pear with a half-period time delay. It should be noted that this phenomenon (appearance

of different symmetries) can be easily and frequently observed in the evolution of the sta-

tistical turbulent state in DNS, implying that the turbulent state generally wanders among

these symmetric subspaces. Moreover, the heat transport accomplished by the time-periodic

solutions is (much) closer to that observed in the DNS than is the heat transport achieved

by steady convective states without proto-plumes.

The discussion above concerns the instantaneous structure of the periodic-orbit solutions

with different symmetries. Next, their time-averaged mean structure will be investigated.

If all the variables are decomposed into a time-averaged mean field plus a time-dependent

perturbation term, i.e.

ψ(x, z, t) = 〈ψ〉(x, z) + ψ”(x, z, t), (5.4)

T (x, z, t) = 〈T 〉(x, z) + T”(x, z, t), (5.5)
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then the long time-averaged governing equations are

∇2〈ψ〉 = −Ra∂x〈T 〉, (5.6)

∂z〈ψ〉∂x〈T 〉 − ∂x〈ψ〉∂z〈T 〉 = ∇2〈T 〉+Q, (5.7)

where the effective heat source Q or negative “Reynolds stress divergence” R is given by

R = 〈∂zψ”∂xT”− ∂xψ”∂zT”〉 = −Q. (5.8)

As shown in Figure 5-7, the time-averaged periodic-orbit flows essentially exhibit a vertical

columnar structure in the interior. Moreover, all of the time-averaged flows exhibit a centro-

reflection symmetry and the proto-plumes are absent after averaging (see Figure 5-7a-b),

consistent with the steady convective state at these parameters (see Figure 5-7c). However,

unlike the steady solution, the time-averaged flows become nearly independent of z in the

interior, and their mean temperature profile 〈T 〉 (dashed lines in Figure 5-7d) is (much) closer

to that observed in the DNS (solid line in Figure 5-7d) than is the mean profile achieved by

the steady convective state (dashed-dot line in Figure 5-7d). It should be noted that these

time-averaged flows cannot be obtained directly from DNS through infinite-time averaging,

since chaotic lateral movement of the mega-plumes will yield a horizontally uniform (1D)

temperature field in the limit of infinitely long time.

Figure 5-8 shows time-averaged magnitudes of the (complex) Fourier amplitudes of the tem-

perature fluctuations (i.e. deviations from the horizontal mean) as functions of z for the

time-periodic solution and turbulent flow in DNS. As is evident in this figure, the time-

averaged amplitudes of the temperature fluctuations, 〈|θ̂n|〉, for both the time-periodic and
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Figure 5-7: Time-averaged temperature (a) and stream function (b) fields of
periodic-orbit solutions at Ra = 1991 and Lp = 0.64. Symmetries of the cor-
responding solutions in (a) and (b) (from left to right): anticentro-antireflection,
centro-antireflection, centro-reflection and anticentro-reflection. For reference, the
temperature and stream function fields of the steady convective state at the same
parameter values are shown in the left and right plots of (c), respectively. (d): Hori-
zontal and time-averaged temperature profiles for periodic orbits (dashed lines), DNS
(solid line) and steady state (dashed-dot line).
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Figure 5-8: Time-averaged Fourier amplitudes of the temperature fluctuations (i.e.
deviations from the horizontal mean) at Ra = 1991 and L = 0.64. (a): Time-periodic
solution with centro-reflection symmetry; (b): DNS.

turbulent states reveal that the interior flow is a composite of a few low-wavenumber Fourier

modes but is dominated by one mode, consistent with the structure observed at Ra = 50000

in Figure 2-6. Furthermore, in the narrow domain (L = 0.64), the time-averaged interior

flow is well represented by only six Fourier modes, and at high wavenumber, the Fourier

amplitudes θ̂n are strongly localized near the upper and lower walls, where they superpose

to comprise the small rolls and proto-plumes within the thermal and vorticity boundary

layers.

Figure 5-9 shows the Reynolds stress divergence of time-periodic solutions with different

symmetries at Ra = 1991 and Lp = 0.64. One obvious observation is that all of the Reynolds

stress divergence for different solutions exhibits a centro-reflection symmetry and is strongly

localized near the upper and lower walls (see the upper plots in Figure 5-9). Moreover, the

horizontal mean of the Reynolds stress divergence R (or −Q) for both periodic orbits and

the turbulent state is generally positive near the lower wall and negative near the upper wall

(see the lower plot in Figure 5-9), implying that the time-periodic motion and the convective

turbulence act like an effective sink that takes the heat out in the bottom boundary layer and
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Figure 5-9: Reynolds stress divergence of time-periodic solutions at Ra = 1991
and Lp = 0.64. Symmetries of the corresponding solutions for the top plots (from
left to right): anticentro-antireflection, centro-antireflection, centro-reflection and
anticentro-reflection; bottom: horizontal and time-averaged Reynolds stress diver-
gence (DNS: solid line; periodic orbits: dashed lines). It should be noted that the
Reynolds stress divergence for both periodic-orbit solutions and the turbulent state
is localized near the walls and independent of z in the interior.

re-deposits it as an effective source in the top boundary layer. It should be noted that given

a specific 2D Reynolds stress divergence R in Figure 5-9, the corresponding time-averaged

temperature field in Figure 5-7(a) is actually a steady solution of (5.7).

As noted in chapter 3, at large Ra, the steady convective flows can be broadly categorized

into two distinct forms: for small Ls (close to the linear stability threshold) the flow in

the interior can be well predicted using the heat-exchanger model given by Hewitt et al.

(2012); for larger Ls, the convective state changes form, exhibiting a stably stratified core.

In this section, the aspect-ratio dependence of time-periodic states is investigated at Ra =
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Figure 5-10: Snapshots of the temperature field and time series of the instantaneous
Nusselt number for the time-periodic solution with centro-reflection symmetry in one
period at Ra = 3155 and Lp = 0.375. The dots in the bottom plot correspond to
the times highlighted in the snapshots. The Nusselt number for this periodic-orbit
solution is Nu = 25.97 (DNS: Nu = 24.52; steady state: Nu = 17.07). Note that
the mean inter-plume spacing at Ra = 3155 is Lm = 0.54 measured from DNS with
L = 8.

3155. Figures 5-10 and 5-11 show snapshots of the temperature field and time series of the

instantaneous Nusselt number for the time-periodic solution with centro-reflection symmetry

at Lp = 0.375 and 1.1. As also observed in Figures 5-3–5-6, the small proto-plumes generated

from the upper and lower walls are continually swept into and thus merge with the mega-

plumes spanning the height of the porous layer. Meanwhile, the heat taken by these hot

(red) proto-plumes from the bottom boundary layer is advected to the upper boundary layer

through the vertical channel (mega-plume). One obvious difference between the narrow and

wide domain solutions is that the narrow periodic orbit exhibits a vertical columnar structure
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Figure 5-11: Snapshots of the temperature field and time series of the instantaneous
Nusselt number for the time-periodic solution with centro-reflection symmetry in
one period at Ra = 3155 and Lp = 1.1. The dots in the bottom plot correspond to
the times highlighted in the snapshots. The Nusselt number for this periodic-orbit
solution is Nu = 24.87 (DNS: Nu = 24.52; steady state: Nu = 11.63).

in the interior, consistent with the turbulent columnar flow observed in DNS at large Ra,

while the wide one exhibits a “V”-type core structure, as found at moderate Ra. Moreover,

between the hot and cold channels (i.e. the outer edge of the neighbouring mega-plumes),
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Figure 5-12: Time-averaged temperature and stream function fields of periodic-
orbit solutions with centro-reflection symmetry at Ra = 3155 in narrow and wide
domains: (a): Lp = 1.1; (b): Lp = 0.375; (c): temporal and horizontal mean tem-
perature profiles of the time-periodic solutions for Lp = 1.1 (dashed-circle line) and
0.375 (dashed line), the turbulent state from DNS performed with L = 8 (solid
line), and the steady states at Lp = 1.1 (dashed-square line) and 0.375 (dashed-dot
line). The mean temperature gradient at the mid-plane ∂z〈T 〉|z=0.5 is −0.0348 for
Lp = 0.375 and 0.109 for Lp = 1.1 for the time-periodic solutions reported here,
−0.0504 for Ls = 0.375 and 0.247 for Ls = 1.1 for the steady solutions, and −0.0780
for the turbulent columnar flow from DNS. Note that the mean temperature profile
for the smaller Lp (dashed line) agrees very well with that obtained from DNS (solid
line).

there exists a zone where the temperature field is almost invariant and the flow becomes

stationary even for this unsteady system. Actually, within this region, part of the heat is

transported laterally (toward the two sides) by pure diffusion.
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Figure 5-12 shows the time-averaged temperature and stream function fields and the mean

temperature profiles corresponding to the periodic orbits discussed above. It can be seen

from these plots that the time-averaged periodic solutions exhibit different structures as

the aspect ratio Lp is changed. For large Lp (see Figure 5-12a), a V-type flow is exhibited

in the interior and the flow at the center of the natural/antinatural rolls is nearly at rest;

for small Lp (see Figure 5-12b), a vertical columnar flow is exhibited in the interior, as is

manifest in DNS. Moreover, Figure 5-12(c) indicates that in both narrow and wide domains,

the horizontal- and temporal-mean temperature profiles of the time-periodic flows are closer

to that of the real flow obtained from DNS than do those of steady flows. Interestingly,

the mean temperature profile of the time-periodic solution at Lp = 0.375 almost completely

coincides with the corresponding profile obtained from DNS performed in a domain with

L = 8. Furthermore, as in the steady case, for the time-periodic solution the negative value

of ∂z〈T 〉|z=0.5 at Lp = 0.375 reveals that the interior flow is unstably stratified in the narrow

domain, while the positive value at Lp = 1.1 indicates that the interior flow becomes stably

stratified in the wide domain. Figure 5-13 shows that the Reynolds stress divergences of

these time-periodic solutions in narrow and wide domains exhibit a very similar structure:

both are localized near the upper and lower walls, consistent with those in Figure 5-9.

5.3 Secondary Stability Analysis

5.3.1 Floquet Theory

In previous sections, several time-periodic solutions with different symmetries and in various

domain aspect ratios have been presented. The results indicate that these periodic orbits
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Figure 5-13: Reynolds stress divergence of time-periodic solutions at Ra = 3115
for two different aspect ratios: (a) Lp = 0.375; (b) Lp = 1.1; (c) horizontal-mean
profiles with dashed line corresponding to (a) and dashed-dot line corresponding to
(b).

contain certain features characterizing the turbulent columnar flows observed in DNS. A

natural question concerns the stability of these time-periodic states, e.g. whether the wall and

bulk instability modes continue to exist in such unsteady flows and how large the magnitudes

of their growth rates are if indeed they do exist. In this section, to address these questions,

a secondary stability analysis is performed at large Ra using spatial Floquet theory.

Let θ?, τ ? be a time-periodic solution satisfying (5.3), namely, θ? = f τ
?
(θ?). Given a small

random perturbation dθ, the unstable state will deviate from the orbit after one period

through certain unstable eigenfunctions/directions, while the stable one will be still attracted

onto the orbit since all the disturbances will be damped as time evolves. Hence, the linear

stability operator A can be defined as

Adθ = f τ
?

(θ? + dθ)− f τ?(θ?) = f τ
?

(θ? + dθ)− θ?, (5.9)
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where the right-hand side corresponds to the deviation of the flow, due to the initial pertur-

bation, from the orbit after one period (or one time-τ ? map). Namely, the right-hand side

of (5.9) will grow with time for unstable orbits while it will tend to zero for stable ones.

Rewrite (5.9) as

AV = ΛV, (5.10)

where V is the eigenvector of operator A and Λ is the corresponding eigenvalue. For a

slightly disturbed time-periodic solution, i.e. θ = θ? + εV where ε is a small number, the

corresponding time-τ ? map can be approximated using a Taylor series expansion:

f τ
?

(θ) = f τ
?

(θ? + εV) ≈ f τ
?

(θ?) + ∂θf
τ?|θ?εV = θ? +AεV = θ? + εΛV. (5.11)

Similarly, the time-nτ ? forward map of equation (5.1) can be approximated as

fnτ
?

(θ) ≈ θ? + εΛnV. (5.12)

Therefore, the relative norm of the deviation of the flow (with the small initial perturbation)

from the orbit after time-nτ ? forward map becomes

||fnτ?(θ)− θ?||
||θ − θ?|| ≈ ||εΛ

nV||
||εV|| = |Λ|n. (5.13)

Hence, |Λ| gives the growth rate of the disturbance after the one-period forward map: for

|Λ| < 1, the perturbed state will converge back to the original orbit as n → ∞, i.e. the

time-periodic state is linearly stable; otherwise (|Λ| > 1), the state is linearly unstable.

To make the results compatible with those obtained from the previous stability analysis of
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steady convective states, rewrite Λ as

Λ = eλτ
?

. (5.14)

Then, λ = ln Λ/τ ?. Thus, in convective time units, the growth rate becomes σ = ln Λ/(τ ?Ra).

5.3.2 Secondary Stability Results

In this study, Arnoldi iteration is utilized to solve the resulting algebraic eigenvalue problem

(5.10) to obtain the leading eigenvalues and eigenfunctions. To explore the growth rate of

small perturbations with different wavelengths, the stability analysis is performed in domains

with different aspect ratios L = χLp with integer χ ≥ 1, as shown in Figure 5-14. For χ = 1,

the fundamental horizontal wavenumber of the perturbation is same as that of the base state;

for χ > 1, the fundamental horizontal wavenumber of the perturbation becomes 1/χ times

the wavenumber of the base flow so that some long-wavelength disturbances are introduced.

Figures 5-15 and 5-16 show the eigenspectrum and 2D eigenfunctions corresponding to the

periodic orbit shown in Figure 5-14. It can be seen from Figure 5-15 this time-periodic solu-

tion is unstable, exhibiting the same fastest growth rate Re{σm} at χ = 1 and 4. Actually,

the results (not reported here) also indicate that Re{σm} is also unchanged for other χ,

implying that the fastest growth rate is essentially independent of χ. However, the imagi-

nary part of the eigenvalue in Figure 5-15, i.e. Im{σ}, is meaningless, and the flat-boundary

structure of the maximum (or minimum) Im{σ} is because an arctangent function, whose

range is restricted to (−π/2, π/2) in computations, is used to translate Λ to σ. Figure 5-16(a)
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Figure 5-14: Stability analysis of the time-periodic solution at Ra = 5000 with
centro-reflection symmetry in domains with different aspect ratios L = χLp. (a):
Lp = 0.21, χ = 1, the fundamental horizontal wavenumber of the perturbation is
same as that of the base state; (b): Lp = 0.21, χ = 4, the fundamental horizontal
wavenumber of the perturbation is 1/4 the wavenumber of the base flow; namely,
some long-wavelength disturbances are introduced.
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Figure 5-15: The leading eigenvalues from stability analysis of the time-periodic
solution with centro-reflection symmetry at Ra = 5000: (a) Lp = 0.21, χ = 1; (b)
Lp = 0.21, χ = 4. In each case, the dot denotes the fastest growing (wall) mode and
the square marks the bulk mode. It should be noted that the maximum growth rate
is essentially independent of χ and the growth rate of the bulk instability is much
less than that of the wall instability.
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Figure 5-16: The 2D temperature eigenfunctions at Ra = 5000 shown in a domain
with aspect ratio L = χLp (Lp = 0.21): (a) χ = 1, fastest growing mode; (b)
χ = 4, fastest growing mode; (c) χ = 4, bulk mode corresponding to the squares
in Figure 5-15(b).

and (b) reveal that both of the most unstable perturbations for different χ have a very sim-

ilar wall-mode structure. Moreover, Figure 5-16(c) indicates that there also exists a bulk

instability when χ > 1. This bulk mode always occurs for a long-wavelength disturbance

and has a much lower growth rate than the fastest growing wall modes (see the squares

in Figure 5-15b). It should be noted that all of these results are consistent with those ob-

tained in the stability analysis of steady convective states: namely, for each Lp or sufficiently

large Ls, the fastest growing mode is a wall mode; the bulk mode generally corresponds to

long-wavelength perturbations and has a smaller growth rate.

5.4 Summary

In this chapter, the physics of horizontal porous medium convection is explored by investi-

gating the structure and stability of (numerically) exact time-periodic solutions. Four types

of periodic-orbit states with different symmetries are obtained through the Hopf bifurcation
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– associated with certain wall-mode disturbances – of the steady convective state. These

time-periodic states retain the 3-region structure of the turbulent columnar flow, including

the proto-plume region, and thereby exhibit very similar heat transport and statistical struc-

ture as turbulent flow at large Ra. Comparisons of a series of qualitative and quantitative

features of the time-periodic solution and the turbulent state indicate the periodic orbits

could be used to elucidate the heat-transport process exhibited in time-dependent turbulent

flow. Namely, near the lower/heated wall, the heat is effectively absorbed by a sink, then ad-

vected upward through the interior vertical channel (mega-plume), and finally re-deposited

by an effective source near the upper/cooled wall. Moreover, the stability analysis of the

time-periodic solution at large Ra shows there still exist two types of instability in the time-

dependent flow: a bulk instability and a wall instability, although the former, which usually

corresponds to long-wavelength disturbances, is generally much weaker than the latter.



CHAPTER 6

HEAT TRANSPORT IN A HORIZONTAL POROUS LAYER

AT LARGE RAYLEIGH NUMBER

6.1 Introduction

In previous chapters, the structure and stability of exact coherent states and the dynamics

of porous medium convection have been explored using the 2D Darcy–Oberbeck–Boussinesq

equations in the infinite Darcy–Prandtl number limit. This mathematical model com-

bines Darcy’s law for incompressible flow in a fluid-saturated porous medium and buoyancy

forces incorporated through the Boussinesq approximation together with a time-dependent

advection-diffusion equation for the temperature field (see chapter 1.4). The sole nonlinear-

ity arises from temperature advection, and consequently this system is considerably simpler

than the full Oberbeck–Boussinesq equations.

One crucial phenomenological distinction between Rayleigh–Bénard convection of a pure flu-

id and that occurring in a fluid-saturated porous layer is the observed mean spacing between

adjacent rising and falling thermal plumes, which decreases with increasing Ra in porous

144
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medium but not in classical Rayleigh–Bénard convection (von Hardenberg et al., 2008; John-

ston and Doering, 2009; Goluskin and Spiegel, 2012). Indeed, for porous medium convection,

linear stability analysis of the purely conducting state reveals that the horizontal wavelength

of the high-wavenumber marginal mode scales as Ra−1/2 while that of the fastest-growing

disturbance decreases as Ra−1/4 (see details in chapter 3.2). Remarkably, direct numerical

simulations in Hewitt et al. (2012) and chapter 2 of this dissertation not only indicate that

the mean inter-plume spacing decreases markedly with Ra, scaling approximately as Ra−2/5

for Ra < 10000, but also that the flow actually becomes more organized in the interior (i.e.

away from the upper and lower thermal boundary layers) as Ra is increased. Moreover, com-

plementary numerical and matched asymptotic investigations of steady cellular solutions in

porous medium convection in Corson (2011) and chapter 3 also confirm that those solutions

with the highest heat transport decrease in lateral scale – approximately as Ra−1/2, just

slightly larger than the smallest horizontal scale capable of sustaining convection. Thus, all

these investigations confirm the trend toward compression of horizontal scales.

Motivated by these studies, one following crucial question will be addressed in this chapter: is

there a smallest domain aspect ratio L(Ra) above which the Nusselt number Nu, the volume-

and time-averaged heat flux normalized by the conduction value, becomes independent of L?

This question is analogous to that of determining the minimal flow unit in wall-bounded

shear flow turbulence, the smallest physical domain (with horizontally periodic boundary

conditions) in which (low-dimensional) turbulence may sustain itself. Although the above

question was addressed empirically via highly-resolved DNS utilizing a Fourier–Chebyshev

pseudospectral algorithm in Dianati (2013), it is revisited here using upper bound analysis.

A robust theoretical approach for analyzing turbulent thermal convection is to derive using

rigorous analysis – without directly simulating the governing equations – bounds on Nu that
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all flow solutions (whether steady, unsteady, turbulent, etc.) must satisfy. Lower bounds are

easy: Nu ≥ 1 and this bound is mathematically sharp, being saturated by the stationary

(albeit often unstable) no-flow conduction state that exists for all parameter values. The

derivation of upper bounds on flow quantities was first given by Howard (originally motivated

by the ideas of Malkus (1954)) for Rayleigh–Bénard convection of a pure fluid layer (Howard,

1963) and extended by Busse et al. to various other thermal convection processes as well as

to shear flow turbulence (Busse, 1969, 1970; Busse and Joseph, 1972). The Malkus–Howard–

Busse (MHB) variational formulation is strictly true for stationary flows but is presumed

to be valid in an infinite (rather than finite) horizontal layer owing to the hypothesis of

statistical stationarity, i.e. the technical assumption that horizontal averages, and thus also

volume averages, are time independent (Doering and Constantin, 1996). Several decades

later a background field method was proposed by Doering and Constantin (1992, 1994, 1996,

1998), Constantin and Doering (1995) and Doering and Hyman (1997) to produce rigorous

upper bounds on energy dissipation and heat transport in various turbulent flows without

any statistical hypotheses, scaling assumptions, or closure approximations. This approach is

based on Hopf’s method for producing a priori estimates for solutions of the Navier–Stokes

equations with inhomogeneous boundary conditions (Hopf, 1941), and hereafter is referred to

as the Constantin–Doering–Hopf (CHD) variational formalism. The link between the MHB

and CDH variational schemes has been discussed in detail by Kerswell (1998, 2001).

In porous medium convection, rigorous analyses of the Darcy–Oberbeck–Boussinesq equa-

tions by Doering and Constantin (1998) and Otero et al. (2004) show that Nu ≤ cRa1

with different prefactors c. However, since piecewise linear functions were utilized as the

background profiles, these upper bounds are not the optimal ones within the CDH varia-

tional framework. The aim of this study is to compute the optimal upper bound on Nu as
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a function of Ra and L by numerically solving the full background problem using a novel

two-step algorithm in which time is introduced into the variational formulation. Generally,

numerical continuation is required to solve the “multi-mode” optimization problem arising

from the upper bound analysis (Plasting and Kerswell, 2003), but here it will be shown that

this two-step algorithm does not require continuation. Moreover, it is also proved that the

only steady state to which the numerical method can converge is the true (globally opti-

mal) solution of the variational problem. Using the new two-step algorithm, Nu is bounded

and estimated using a combination of upper bound and generalized energy stability theory,

thereby providing a systematic exploration of the dependence of Nu on L at large Ra.

The reminder of this chapter is organized as follows. In the next section, the fundamental

concepts of upper bound theory and energy (nonlinear) stability theory are reviewed, the

Euler–Lagrange equations for the relevant variational optimization problem are derived, the

numerical scheme to solve these equations is outlined, and it is proved that the only steady

state to which the numerical algorithm can converge is the true solution. The upper bound

computations for varying Rayleigh number and aspect ratio are described and analyzed in

section 6.3, and a summary is given in section 6.4.

6.2 Computational Methodology

6.2.1 Upper Bound Theory (CDH Formalism)

In the CDH upper bound theory the temperature T (x, z, t) is decomposed into a time-

independent background profile τ(z) carrying the inhomogeneous boundary conditions plus

a (arbitrarily large) nonlinear fluctuation θ(x, z, t) satisfying periodic boundary conditions
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in x and homogeneous Dirichlet boundary conditions in z:

T (x, z, t) = τ(z) + θ(x, z, t), (6.1)

where τ(0) = 1, τ(1) = 0, and θ(x, 0, t) = θ(x, 1, t) = 0.1 It should be noted that the

background field (or, in the case of Rayleigh–Bénard convection, background temperature

profile) is neither a steady solution of the governing equations nor a horizontal/long-time

mean. Ensuring that appropriate test background profiles satisfy a certain spectral constraint

produces rigorous upper bounds on global transport properties of the flow.

Upper bound analysis in Doering and Constantin (1998) and Otero et al. (2004) shows that

for any τ(z), a ∈ (0, 1) and Ra ≥ 4π2,

Nu ≤ 1 +
nu− 1

4a(1− a)
, (6.2)

where nu =
∫ 1

0
τ ′(z)2dz, if and only if the spectral constraint

0 ≤ min
ϑ

{
1

L

∫ L

0

dx

∫ 1

0

dz
[
a |∇ϑ|2 + τ ′Wϑ

]}
(6.3)

holds for all test functions ϑ(x, z) satisfying L-periodic boundary conditions in x and ho-

mogeneous Dirichlet boundary conditions in z where W (x, z) solves ∇2W = Ra∂2xϑ with

L-periodic boundary conditions in x and homogeneous boundary conditions in z as well. In

section 6.2.2 it will be shown that for a = 1 the spectral constraint (6.3) is tantamount to

enforcing energy stability about the background profile τ(z) as if it were a steady solution

of the Darcy–Oberbeck–Boussinesq equations with suitable sources and sinks.

1In chapters 6 and 7, τ denotes the one-dimensional background profile, not the convective time; moreover,

it will be shown after (6.2) that nu denotes
∫ 1

0
τ ′(z)2dz, not the instantaneous Nusselt number.
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In this study, the upper bounds are optimized over the “balance parameter” a. First, this

parameter can be scaled out of the problem by defining ra = Ra/a and ϑ̃ = a ϑ, implying

∇2W = ra ∂2xϑ̃, so that the spectral constraint (6.3) becomes

0 ≤ min
ϑ̃

1
L

∫ L
0

∫ 1
0 ϑ̃

2dxdz=1

{
1

L

∫ L

0

dx

∫ 1

0

dz
[
|∇ϑ̃|2 + τ ′Wϑ̃

]}
(6.4)

which means the functional

Hτ =
1

L

∫ L

0

dx

∫ 1

0

dz
[
|∇ϑ̃|2 + τ ′Wϑ̃

]
= Hτ{ϑ̃(x, z)} (6.5)

is positive semi-definite for all test functions ϑ̃(x, z) satisfying certain boundary conditions.

Since W is a linear non-local function of ϑ̃, Hτ is indeed a quadratic form in terms of ϑ̃.

The positivity constraint for this quadratic form is equivalent to a spectral constraint for the

self-adjoint operator inside Hτ , namely the non-negativity of the ground state eigenvalue λ0

of the self-adjoint problem (Otero et al., 2004):

− 2∇2ϑ̃+ τ ′W − ∂2xγ = λϑ̃, (6.6)

∇2W − ra∂2xϑ̃ = 0, (6.7)

∇2γ + raτ ′ϑ̃ = 0, (6.8)

where γ(x, z) is the Lagrange-multiplier field enforcing the local constraint (6.7). To obtain

the optimal upper bound, nu is minimized subject to this rescaled spectral constraint λ0 ≥ 0,

which is independent of a, for a range of ra. Finally, varying a for each (ra, nu) pair produces

a family of curves in the Ra–Nu plane whose lower envelope yields the best bound.



Chapter 6. Transport of Horizontal Porous Medium Convection 150

For a given background profile τ(z), a group of orthogonal eigenfunctions, satisfying homo-

geneous Dirichlet boundary conditions in z, can be obtained by substituting the following

decompositions

ϑ̃(x, z) =
∞∑

n=−∞

∞∑
m=0

Θmn(z)einkx, (6.9)

W (x, z) =
∞∑

n=−∞

∞∑
m=0

Wmn(z)einkx, (6.10)

γ(x, z) =
∞∑

n=−∞

∞∑
m=0

Γmn(z)einkx (6.11)

into (6.6)–(6.8) and solving this self-adjoint eigenvalue problem

− 2
[
D2 − (nk)2

]
Θmn + τ ′Wmn + (nk)2Γmn = λmnΘmn, (6.12)[

D2 − (nk)2
]
Wmn + (nk)2raΘmn = 0, (6.13)[

D2 − (nk)2
]

Γmn + raτ ′Θmn = 0 (6.14)

for each horizonal wavenumber nk. It will be shown in chapter 7 that these eigenfunctions,

i.e. Θmn, Wmn and Γmn in (6.12)–(6.14), can be utilized as a basis to build low-dimensional

models.

6.2.2 Energy (Nonlinear) Stability Theory

In this section, the CDH formalism discussed above will be interpreted using energy stability

theory. Consider a 2D steady solution Ts(x, z), Us(x, z) and Ps(x, z) (for temperature,
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velocity and pressure fields, respectively) to the system

∇ ·Us = 0, (6.15)

Us +∇Ps = RaTsez, (6.16)

Us · ∇Ts = ∇2Ts. (6.17)

Then the equations governing the evolution of the presumed arbitrary-amplitude distur-

bances θ̃(x, z, t), ũ(x, z, t) = ũ(x, z, t)ex + w̃(x, z, t)ez and p̃(x, z, t) can be expressed as

∇ · ũ = 0, (6.18)

ũ +∇p̃ = Raθ̃ez, (6.19)

θ̃t + ũ · ∇θ̃ + Us · ∇θ̃ + ũ · ∇Ts = ∇2θ̃. (6.20)

Multiplying equation (6.20) by θ̃ and integrating over the domain yields

d

dt

[
1

L

∫ L

0

dx

∫ 1

0

dz
(1

2
θ̃(x, z, t)2

)]
= − 1

L

∫ L

0

dx

∫ 1

0

dz
(
|∇θ̃|2 + θ̃ũ · ∇Ts

)
. (6.21)

For any one-dimensional steady solution Ts = Ts(z), (6.21) becomes

d

dt

[
1

L

∫ L

0

dx

∫ 1

0

dz
(1

2
θ̃(x, z, t)2

)]
= − 1

L

∫ L

0

dx

∫ 1

0

dz
(
|∇θ̃|2 + T ′sw̃θ̃

)
≡ −HTs{θ̃(x, z, t)}. (6.22)

As long as the right-hand side of (6.22) is negative (i.e. HTs ≥ 0), arbitrarily large pertur-

bations of the base state will vanish as t → ∞. Similarly as in section 6.2.1, the positivity
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constraint for the quadratic form of HTs is equivalent to a spectral constraint for the self-

adjoint operator inside HTs , namely the non-negativity of the ground state eigenvalue λ̃0 of

the self-adjoint problem

− 2∇2θ̃ + T ′sW − ∂2xγ = λ̃θ̃, (6.23)

∇2W −Ra∂2xθ̃ = 0, (6.24)

∇2γ +RaT ′sθ̃ = 0. (6.25)

Therefore, in the energy stability formulation the spectral constraint λ̃0 ≥ 0 means the

steady solution Ts is energy stable for any perturbation θ̃(x, z) at the given Ra. However,

in the upper bound formulation, the spectral constraint λ0 ≥ 0 indicates for any given

0 < a < 1, the right-hand side of (6.2) is a rigorous upper bound on Nu at Ra; moreover,

from a comparison between (6.6)–(6.8) and (6.23)–(6.25), λ0 ≥ 0 also implies τ(z) is energy

stable at ra ≡ Ra/a as if it were a steady, exact solution (which it is not!). Hence, for a = 1

(ra = Ra), the spectral constraint λ0 ≥ 0 requires all fluctuations to the background profile

τ(z) to be energy stable at the current Ra as if τ(z) were a steady solution of the governing

equations.

It should be noted that for a = 1, the right-hand side of (6.2) is no longer a rigorous bound on

Nu. Nevertheless, in following sections, it will be shown that this procedure (i.e. minimizing

the functional nu subject to λ0 ≥ 0 with a = 1) can result in a useful prediction of Nu at

Ra: the minimum value of nu will be shown to fall below the upper bound and even closer

to the true heat flux. Moreover, the background profile τ(z) specified in this way is much

closer to the mean temperature profile 〈T 〉 obtained from DNS.
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6.2.3 Euler–Lagrange Equations

From the previous upper bound and energy stability analysis, to obtain an upper bound on or

a prediction of Nu, nu should be minimized subject to the spectral constraint λ0 ≥ 0, corre-

sponding to a condition of neutral energy stability. To obtain optimal bounds the background

variational problem generally must be solved numerically. Here a novel scheme is proposed

to do this accurately and efficiently. Following Plasting and Kerswell (2003), consider the

corresponding Euler–Lagrange equations derived by identifying a Lagrange functional for

this optimization problem:

L =

∫ 1

0

τ ′(z)2dz − 1

L

∫ L

0

dx

∫ 1

0

dz[|∇ϑ|2 + τ ′Wϑ]

− 1

L

∫ L

0

dx

∫ 1

0

dz[γ(
1

ra
∇2W − ∂2xϑ)], (6.26)

where tildes have been dropped for brevity of notation. The first term in L is the objective

functional to be extremized, the second term enforces the neutral energy stability condition,

and the third term relates W to ϑ through the introduction of the Lagrange multiplier field

γ(x, z) that, like θ, satisfies periodic boundary conditions in x and homogeneous boundary

conditions in z. The first variations of this functional with respect to τ , ϑ, W , and γ,

respectively, yield the Euler–Lagrange equations

δL
δτ

= 0 ⇒ −τzz +
1

2
(Wϑ)z = 0, (6.27)

δL
δϑ

= 0 ⇒ −2∇2ϑ+Wτz − γxx = 0, (6.28)

δL
δγ

= 0 ⇒ ∇2W − raϑxx = 0, (6.29)

δL
δW

= 0 ⇒ ∇2γ + raτzϑ = 0, (6.30)
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where (·) = 1
L

∫ L
0
dx(·) and a subscript denotes a partial derivative with respect to the

given variable. Solving the Euler–Lagrange equations (6.27)–(6.30) subject to the spectral

constraint λ0 ≥ 0 yields the optimal background profile τ and the prediction nu for Nu at

ra = Ra. Then, varying a for each (ra, nu) pair produces a family of curves in the Ra–Nu

plane whose lower envelope yields the best bound.

Before solving these equations, it is instructive to analyze their structure. First, it can

be observed that a subset of the Euler–Lagrange equations (6.28)–(6.30) is identical to the

marginally stable eigenvalue system, i.e. (6.6)–(6.8) for λ0 = 0. Moreover, the Euler–

Lagrange equations derived here have a similar mean-field (or quasi-linear) structure to

those in Plasting and Kerswell (2003). In particular, using a Fourier series representation,

the solution can be expressed as


ϑ

W

γ

 =
N∑
n=1


ϑ̂n(z)

Ŵn(z)

γ̂n(z)

 cos (nkx), (6.31)

where n and k = 2π/L are the (integer) horizontal mode number and fundamental wavenum-

ber, respectively, and N is the (generally) finite truncation mode number, i.e. the series in

(6.31) generally terminates. The true solution, which not only satisfies the Euler–Lagrange

equations but also the spectral constraint, is unique and determined solely by the critical

modes nck, i.e. ϑ̂n = Ŵn = γ̂n ≡ 0 for n 6= nc. In contrast, the solution of the Euler–

Lagrange equations is generally not unique: the true solution, or global optimal, includes

all the critical modes and yields an admissible τ(z) satisfying the spectral constraint, while

the spurious solutions, or local optimals, omit certain critical modes and/or include incor-

rect modes and yield an inadmissible τ(z) for which the ground state eigenvalue becomes
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Figure 6-1: Ground state eigenvalue distribution for the true (solid) and spuri-
ous (dashed) solutions of the Euler–Lagrange equations at ra = 998, L = 2. Both
solutions satisfy the Euler–Lagrange equations. However, the true solution, which
includes all three critical modes (nc1, nc2, nc3) for this case, also satisfies the spectral
constraint λ0 ≥ 0; in contrast, the spurious solution, which captures only two of
the critical modes (nc1, nc3), does not satisfy the spectral constraint, e.g. λ0 < 0 at
horizontal wavenumber nc2k.

negative at some horizontal wavenumber, as shown in Figure 6-1. In the context of Rayleigh–

Bénard convection, this sort of eigenstructure was first computed in early numerical work

by Doering and Hyman (1997), who used a finite-difference relaxation method to solve the

single-critical-mode Euler–Lagrange equations; see in particular their Figure 2.

Thus, one of the central challenges in the numerical solution of the Euler–Lagrange equations

is the determination of the a priori unknown critical modes, which usually requires the use

of Newton iteration plus continuation (Plasting and Kerswell, 2003). Here this difficulty is

overcome by utilizing a two-step algorithm in which time is introduced into the variational

formulation. In the following sections, it will be demonstrated that the two-step algorithm
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can indeed be successfully applied to background optimization problems without numerical

continuation. Moreover, it is also proved that the only steady state to which this numerical

approach can converge is the global optimal.

6.2.4 Two-Step Algorithm

The key idea of the first step is to convert the time-invariant Euler–Lagrange system into

a time-dependent dynamical system by incorporating certain specific time derivatives into

(6.27)–(6.28); viz.,

∂tτ − τzz +
1

2
(Wϑ)z = 0, (6.32)

∂tϑ− 2∇2ϑ+Wτz − γxx = 0. (6.33)

Then the solutions of the original Euler–Lagrange equations, which correspond exactly to

the steady states of the “time-dependent” Euler–Lagrange equations, can be easily obtained

by solving the extended equations numerically using a time-marching method with non-zero

initial data for all horizontal modes 1 ≤ n ≤ N . Using the Fourier series representation

(6.31), (6.32) can be expressed as

∂tτ −D2τ = −1

4
D(

N∑
n=1

Ŵnϑ̂n), (6.34)
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where: (Wϑ) = 1
2

N∑
n=1

Ŵnϑ̂n and D ≡ d
dz

. For a given horizontal wavenumber nk, (6.33),

(6.29) and (6.30) become

∂tϑ̂n − 2[D2 − (nk)2]ϑ̂n = −(Dτ)Ŵn − (nk)2γ̂n, (6.35)[
D2 − (nk)2

]
Ŵn = −ra(nk)2ϑ̂n, (6.36)[

D2 − (nk)2
]
γ̂n = −ra(Dτ)ϑ̂n. (6.37)

In the computations, temporal discretization is achieved using the Crank–Nicolson method

for the linear terms and a two-step Adams–Bashforth method for the nonlinear terms, while

a Chebyshev spectral collocation method is used for spatial discretization. It is observed

that for instantaneously “frozen” τ(z, t), solutions to (6.35)–(6.37) can be found that are

proportional to exp(−λnt), where the energy stability eigenvalues λn are associated with

eigenfunctions with horizontal wavenumber nk. With this identification, it can be seen that

the solution to the (steady) Euler–Lagrange equations (6.27)–(6.30) is determined solely by

those critical modes (denoted with subscript c) in (6.31) for which λnc = 0; thus, ϑ̂n = Ŵn =

γ̂n ≡ 0 for n 6= nc. The strategy for identifying these modes is as follows. First, a non-zero

initial condition is given for all modes fitting in the L-periodic domain; i.e. for all 1 ≤ n ≤ N ,

where Nk is a pre-determined maximum wavenumber exceeding that of the critical mode

with the largest wavenumber. Specifically, τ(z, 0) = 1 − z and ϑ̂n(z, 0) = z(1 − z) for all

1 ≤ n ≤ N . As shown in Figure 6-2, as time evolves, the λn-spectrum becomes marginally

stable (i.e. λn ≥ 0 for all n). As the computation proceeds, then, those modes for which λn

is close to zero, or even negative, are likely candidates for the critical modes. Indeed, it is

found that ϑ̂n, Ŵn, and γ̂n for n = nc converge to the critical mode eigenfunctions associated

with the true solution, while ϑ̂n, Ŵn, and γ̂n for n 6= nc converge to zero. (For example, nc1,
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Figure 6-2: Time-evolution, for ra = 998 and L = 2, of the lowest branch of
eigenvalues λn as a function of horizontal wavenumber nk for the eigensystem (6.6)–
(6.8). As t increases the spectrum becomes marginally stable (λn ≥ 0), with the
critical modes occurring at those wavenumbers for which λn = 0.

nc2 and nc3 denote critical modes in Figure 6-2).

The second step of the algorithm is to numerically compute solutions of the Euler–Lagrange

equations using only the critical modes. The computational issue is that although the time-

marching method is robust (given non-zero initial data for all the modes, it converges to the

true solution), for large ra a very small time step must be employed to guarantee numerical

stability, which dramatically slows the rate of convergence to the steady state. To overcome

this difficulty, it is convenient to employ the time-marching method strictly to locate the

critical modes and to provide a suitable initial guess for a Newton–Kantorovich (NK) it-

erative method (Boyd, 2000), which is then used to compute the true solution. Although

quadratically convergent, the NK method is very sensitive to the form of the initial iterate:

generally, when the initial guess is not sufficiently close to the desired (true) solution, the

algorithm will not converge to that solution, particularly at large values of ra. This difficulty

usually is overcome by employing numerical continuation, in which solutions determined at



Chapter 6. Transport of Horizontal Porous Medium Convection 159

modest values of ra provide a natural first guess for the solutions at incrementally larger

values of this control parameter. One virtue of the new approach used here is that numeri-

cal continuation need not be employed, since the output from the time-marching scheme is

sufficiently close to the true solution to be used as an initial condition for the NK method.

More details about the Newton–Kantorovich algorithm for this problem can be found in the

appendix. For purposes of a posteriori verification, the eigenvalue problem (6.6)–(6.8) is

then solved using the τ(z) computed from the NK routine to confirm that the associated

λn–spectrum is everywhere non-negative and, hence, that this τ(z) is, indeed, the unique

optimal solution.

6.2.5 The Global Optimal as the only Steady Attractor

In Wen et al. (2015), R. Kerswell (from the University of Bristol) proves that the global

attractor is the only steady attractor of the time-augmented variational problem, as shown

below. Let (τ, ϑ,W, γ) satisfy the Euler–Lagrange equations (6.27)–(6.30) and be made up

of J x-wavenumbers ncjk so that

τ = τ(z),


ϑ

W

γ

 =
J∑
j=1


ϑ̂ncj

(z)

Ŵncj
(z)

γ̂ncj
(z)

 cos (ncjkx). (6.38)

As discussed previously, there are many such solutions but only one, the true solution or

global optimal, satisfies the spectral constraint (λ0 ≥ 0 from the spectral problem, (6.6)–

(6.8)). These solutions – the global, true solution and the local, spurious optimals – are
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steady-state solutions of the time-derivative-enhanced equations: (6.29)–(6.30) and (6.32)–

(6.33). In this section, it can be demonstrated that all of the spurious (locally optimal)

solutions are linearly unstable in the time-dependent system and so can never be attracting

endstates of the time-dependent system. It is further shown that the globally optimal solution

is linearly stable and therefore an attractor. Hence, if the time-dependent system converges

to a steady state, then this steady state is the global optimal. The method of proof is

relatively straightforward and, since it exploits the spectral constraint, generalizes easily to

other canonical upper bound problems including plane Couette flow (Plasting and Kerswell,

2003) and stress-free Rayleigh–Bénard convection (Wen et al., 2015).

To establish this result, let (τ̃ , ϑ̃, W̃ , γ̃) be a small disturbance away from this solution. Then

the linearized temporal evolution equations for this disturbance are

∂tτ̃ = τ̃zz − 1
2
(W̃ϑ+Wϑ̃)z, (6.39)

∂tϑ̃ = 2∇2ϑ̃− W̃ τz −Wτ̃z + γ̃xx, (6.40)

0 = ∇2W̃ − ra ϑ̃xx, (6.41)

0 = ∇2γ̃ + ra (τ̃zϑ+ τzϑ̃). (6.42)

where the perturbation fields satisfy L-periodic boundary conditions in x and homogeneous

boundary conditions in z (in particular, τ̃(0) = τ̃(1) = 0). Then, the volume integral of

τ̃ × (6.39) + 1
2
ϑ̃× (6.40) yields

∂

∂t

[
1

L

∫ L

0

dx

∫ 1

0

dz
(

1
2
τ̃ 2 + 1

4
ϑ̃2
)]

=
1

L

∫ L

0

dx

∫ 1

0

dz

[
− τ̃ 2z − |∇ϑ̃|2 +

1
2

(
W̃ϑτ̃z − W̃ ϑ̃τz + ϑ̃γ̃xx

)]
, (6.43)
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which can be simplified by noticing that the volume integral of W̃ × (6.42) − γ̃ × (6.41)

together with integration by parts and the homogeneous boundary conditions in z gives

1

L

∫ L

0

dx

∫ 1

0

dz
(
ϑ̃γ̃xx

)
= − 1

L

∫ L

0

dx

∫ 1

0

dz
(
W̃ ϑ̃τz + ϑW̃ τ̃z

)
. (6.44)

Hence the equation (6.43) becomes

[
1

L

∫ L

0

dx

∫ 1

0

dz

(
τ̃ 2

2
+
ϑ̃2

4

)]
t

=
1

L

∫ L

0

dx

∫ 1

0

dz

[
− τ̃ 2z −

(
|∇ϑ̃|2 + W̃ ϑ̃τz

)]
, (6.45)

where W̃ is related to ϑ̃ via (6.41). Interestingly, the second term on the right-hand side

of (6.45) is the spectral constraint on the steady background field τ , which is negative

semidefinite if and only if τ satisfies the spectral constraint λ0 ≥ 0 in (6.6)–(6.8). At this

point it is worth noting that eigenfunctions of the linearized evolution operator in (6.39)–

(6.42) take one of two distinct forms: either

Type I : τ̃ = 0,


ϑ̃

W̃

γ̃

 =


ϑ∗(z)

W ∗(z)

γ∗(z)

 cos (nkx), (6.46)

where n /∈ {nc1, nc2, . . . , ncJ}, i.e., the perturbation shares no common wavenumber with the

underlying steady state (see (6.38) ), or

Type II : τ̃ = τ̃(z) 6= 0,


ϑ̃

W̃

γ̃

 =
J∑
j=1


ϑ∗ncj

(z)

W ∗
ncj

(z)

γ∗ncj
(z)

 cos (ncjkx). (6.47)

The crucial observation is that Type I eigenfunctions are also eigenfunctions of the spectral
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constraint operator defined by (6.6)–(6.8). Hence if the spectral constraint is not satisfied

as is the case for all spurious (local optimal) solutions, there is a temporally unstable Type

I eigenfunction: hence the spurious solutions are not attracting states. Moreover, this linear

instability persists when the balance parameters are also allowed to vary because Type I

eigenfunctions cannot contain balance parameter perturbations (perturbations in the balance

parameters are solely carried by Type II eigenfunctions).

In the case of the global optimal, the spectral constraint is satisfied and all Type I eigen-

functions are temporally damped (stable) since they have a spectral constraint eigenvalue λ0

that is strictly positive. For perturbations spanned by Type II eigenfunctions, it is formally

possible for the spectral constraint to be marginally satisfied and for
∫ 1

0
τ̂ 2z dz to vanish at

some instant: i.e. strict monotonic decay of the functional on the left-hand side of (6.45) is

not assured. However, if this happens (requiring


ϑ∗ncj

(z)

W ∗
ncj

(z)

γ∗ncj
(z)

 = αj


ϑ̃ncj

(z)

W̃ncj
(z)

γ̃ncj
(z)

 ∀j ∈ {1, . . . , J} (6.48)

where αj are some real scalars), (6.39) indicates that (
∫ 1

0
τ̂ 2z dz)tt > 0 so this situation cannot

persist, i.e. there is no neutral Type II eigenfunction. Thus, all Type II eigenfunctions

are also temporally damped and the global optimal is an attractor of the time-dependent

problem.

The overall conclusion is that the spurious (local optimal) solutions can never be attractors

of the time-dependent system whereas the global optimal is. Put another way, if a steady



Chapter 6. Transport of Horizontal Porous Medium Convection 163

solution is reached as the endstate of the time-dependent system it will be the global opti-

mal. This, of course, does not prove that the time-stepping approach will always converge

to the global optimal as there may be other attractors (e.g. periodic orbits) but it does

retrospectively prove that the steady state reached by the numerical computations reported

here must be the desired global optimal.

6.3 Results and Discussion

Computations are performed for a discrete set of Ra = 50 · 10(i−1)/10 (for integer i) from

Ra = 50 to Ra = 39716. As Ra is increased the number of Chebyshev modes used in the

vertical discretization is increased from 61 to 381. Initially, the aspect ratio L = 2 is fixed

independently of Ra. In Figure 6-3, the intricate structure of the optimal solution to the

background variational problem for porous medium convection at Ra = 5000 is evident: from

left to right are plotted the optimal background profile τ(z), the λn-spectrum associated with

the ground and first two excited states, and a set of eigenfunctions corresponding to the third

and sixth critical modes. The optimal background profile is reminiscent of a horizontally-

and long-time averaged temperature profile at large Ra observed in DNS, exhibiting a nearly

isothermal core and thin boundary layers near the upper and lower walls. The spectra confirm

that the pattern first recorded in Chini et al. (2011) for moderate Ra persists at large Ra,

with the ground and first excited states being nearly degenerate and a clear spectral gap

emerging between these and higher states. For the given L and Ra, there are 7 critical modes.

The associated eigenfunction plots are suggestive of a nested boundary layer structure, in

accord with snapshots of the dynamical fields taken from DNS; indeed, the highest critical



Chapter 6. Transport of Horizontal Porous Medium Convection 164

(a)

0 1
0

1

τ

z

0 120
0

200

nk

λ
0
,1
,2

n

(b)

−2 0 2
0

0.5

1

θ̂0,1nc3

z

0
0

0.5

1
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Figure 6-3: Optimal background profile τ(z) and corresponding eigenvalues and
eigenfunctions at Ra = 5000 and L = 2: (a) optimal background profile and the low-
est 3 eigenvalue branches λ0n, λ1n, and λ2n; (b) critical eigenfunctions corresponding to
eigenvalues λ1nc3

≈ λ0nc3
= 0 and λ1nc6

≈ λ0nc6
= 0. The ground state eigenfunctions are

even symmetric about z = 1/2 (solid curves), while the eigenfunctions corresponding
to the first excited state (i.e. to the second lowest branch of eigenvalues) are odd
symmetric (dashed curves).

mode corresponds to miniature, nearly isotropic convection cells confined to the O(Ra−1)

thick thermal boundary layer.

Figure 6-4(a) shows the distribution of the critical modes obtained from the first step of

the two-step algorithm. As has been observed in other upper bound analyses of convec-

tion (Vitanov and Busse, 1997; Plasting and Kerswell, 2003), the incoming critical modes

emerge low in the wavenumber spectrum and exhibit a repeated bifurcation structure as Ra

is increased. Figure 6-4(b) compares the optimal upper bound, obtained numerically, with

a previously obtained rigorous (i.e. strictly analytical) upper bound and with DNS data of

Otero et al. (2004) and Hewitt et al. (2012). Clearly, relative to the DNS data, the new

upper bound constitutes a quantitative improvement over the analytical bound, although in

pre-factor only; the optimal scaling exponent in the Nu–Ra relationship predicted by both

the analytical and the numerical bound is unity, in accord with the latest available DNS re-

sults. Moreover, the new bound is computed up to Ra ≈ 26500, and this order-of-magnitude
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Figure 6-4: Bifurcation diagram showing the number and values of the critical
modes and logarithmic Nu–Ra plot as a function of Ra for L = 2. In (a), the
largest critical mode number nc ∼ Ra at large Ra, same as that of the inverse
O(Ra−1) thermal boundary-layer thickness in the large-Ra limit. In (b), the new
upper bound (Nu ∼ 0.0207Ra) is compared with the previously obtained analytical
bound (Nu ∼ 0.0352Ra) from Doering and Constantin (1998) and two sets of DNS
data from Otero et al. (2004) and Hewitt et al. (2012) (Nu ∼ 0.0068Ra). It should
be noted that both of the DNS are performed in L = 2.

increase in Ra for which the background problem can be solved is only made feasible with

the new numerical scheme.

As discussed in previous chapters, DNS reveal that the horizontal spacing of the plumes

decreases as Ra is increased, suggesting that certain global properties of the convective flow

might be quantitatively captured in small domains, at least at sufficiently large Ra. Mo-

tivated by this observation, the influence of the domain aspect ratio on the optimal upper

bound on Nu is investigated by considering several scenarios in which L(Ra) is decreased as

Ra is increased. The specific functional relations between L and Ra are motivated by both

linear stability analysis and analysis of DNS data. Specifically, bounds on Nu are computed

as a function of Ra with: L = 2
√
πRa−0.25, corresponding to the wavenumber (i.e. 2π/L) of

the fastest growing linear mode; L = 4πRa−0.4, corresponding to the measured inter-plume

scaling in the DNS by Hewitt et al. (2012); and (a) L = (4π/0.15) · (
√
Ra+

√
Ra− 4π2)−1,
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Figure 6-5: The influence of domain aspect ratio L: (a) upper bounds on and (b)
predictions of Nu versus Ra for various L = L(Ra) scenarios.

(b) L = (4π/0.45) · (
√
Ra +

√
Ra− 4π2)−1, and (c) L = 4π · (

√
Ra +

√
Ra− 4π2)−1, cor-

responding to the largest wavenumber at which linear instability is possible. For this last

scenario, L ∼ CRa−1/2 for large Ra, and the effect of the prefactor C on the optimal bound

is considered.

Figure 6-5(a) reveals that although the domain aspect ratios for L = O(Ra−0.25), L =

O(Ra−0.4) and L = O(Ra−0.5) (a) are less than L = 2 (for large Ra), they evidently are still

sufficiently large to capture the major transport properties of the flow. Thus, the bounds

for these scenarios are nearly identical. For L = O(Ra−0.5) (c), the prefactor 2π (for large

Ra) is exactly that required for marginal linear stability. In this case, the aspect ratio is

too small for sustained finite-amplitude convection: τ(z) = 1 − z is marginally stable and

the single critical mode is nc = 1. Hence, the bound plummets to Nu = 1. Interestingly,

for L = O(Ra−0.5) (b), the prefactor gives a noticeable improvement in the optimal bound

when compared to DNS performed in a much larger domain (i.e. L = 2).

As noted in section 6.2.2, the solution of the Euler–Lagrange equations (6.27)–(6.30), in

which the balance parameter a = 1, does not, in fact, produce a bound on Nu (again see

(6.2)). For this reason, the raw data pairs (ra, nu) have been further manipulated to obtain
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the bounds on Nu as a function of Ra shown in Figure 6-5(a). However, the raw nu data

themselves, for a = 1, may be interpreted as a prediction of Nu obtained by enforcing

generalized marginal energy stability about the optimal background profile (as defined in

section 6.2.2). For purposes of comparison, the results of these predictions are shown in

Figure 6-5(b). Generally, the data seem to be shifted monotonically to larger values of Ra

relative to the upper bound curves, bringing the predictions closer to the DNS results at

large Ra. In particular, the prefactor for the scenario with L = O(Ra−0.5) (b) is chosen so

that the corresponding prediction of Nu matched the DNS data as closely as possible in the

turbulent regime (Ra > 1300). What is surprising, perhaps, is that the mean inter-plume

spacing measured in the DNS by Hewitt et al. (2012) is much larger than the value L/2 used

to compute the optimal Nu bound and Nu prediction in this scenario.

To further investigate this issue, Dianati (2013) developed and implemented a DNS solver

based on a Fourier–Chebyshev pseudospectral algorithm. The code was thoroughly validated

and, indeed, gives Nu values quantitatively matching those of both Otero et al. (2004) and

Hewitt et al. (2012) for the fixed aspect ratio case (L = 2). In Dianati (2013), DNS were

employed to systematically study the influence of aspect ratio on the heat transport in porous

medium convection. The results of the numerical investigation are displayed in Figure 6-6(a),

a color map of the re-normalized Nusselt number as a function of Rayleigh number and

inverse domain aspect ratio (1/L). Specifically, the colors indicate the value of the Nusselt

number normalized by the value obtained for each Ra at L = 2. The plot is generated by

cubic interpolation between 558 data points on two overlapping lattices of logarithmically-

equispaced points in the Ra–L−1 plane. One lattice has larger spacing and accounts for low

Ra values. The second lattice has a smaller spacing and covers all ranges of Ra, and large

1/L, including the large-variation area that marks the transition to fully realized convection.
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(a)

(b)

Figure 6-6: A color map of Nu(Ra, 1/L)/Nu(Ra, 1/2) obtained from (a) DNS
(Dianati, 2013) and (b) prediction (i.e. for a = 1) using the upper bound algorithm.
The dark solid line shows the mean inter-plume spacing nonlinearly selected by the
intrinsic convection dynamics in the DNS of Hewitt et al. (2012), performed in a
domain with L = 2; the (blue) dashed line corresponds to the scenario labeled (b) in
Figure 6-5; the (red) solid line in the lower right-hand corner indicates the boundary
for linear instability of the conduction profile. Relative to the DNS, the renormalized
Nusselt contours computed using the upper bound algorithm are uniformly shifted
toward larger values of L. The predicted slopes of the 0.6, 0.7, and 0.8 contour levels
are seen to agree well with the DNS results at large Ra: see the three additional
dashed lines in the DNS color map. In the lower plot, the slope of the 0.99 contour
line slowly increases to 0.338 at Ra = 31548.
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(One part of the plot is entirely an extrapolation: Nu(Ra, 1/L)/Nu(Ra, 1/2) in the low

1/L and large Ra regime in the upper left portion is assumed to be unity, as the trend

strongly indicates.) The relative error in the re-normalized Nusselt number is estimated to

be everywhere less than 5%, and much less for most data points.

Clearly, for sufficiently large Ra, the aspect ratio has little impact on the realized Nu until

the domain becomes sufficiently small. More precisely, for (Ra, 1/L) pairs falling to the right

of the thick dashed line near the 0.8 contour, Nu decreases markedly until the convection is

extinguished (the black triangular region in the lower right-hand corner) for domains smaller

than the boundary for linear instability of the conduction profile. As noted on the figure,

the thick dashed line corresponds to L = (4π/0.9)Ra−1/2; i.e. to the scenario labeled (b)

in Figure 6-5. For reference, the observed mean inter-plume spacing, for a fixed box width

L = 2, in the DNS of Hewitt et al. (2012) is demarcated by the solid line. Although the

0.90 and 0.95 contours of the re-normalized Nusselt number do not exhibit a clean 1/L

versus Ra scaling (likely owing to insufficient data points and to the very long integration

times required to reliably extract from the DNS an accurate re-normalized Nusselt value

close to unity), these contours are not inconsistent with the conjecture that the asymptotic

(i.e. large Ra) inter-plume spacing nonlinearly selected by the intrinsic dynamics of porous

medium convection coincides with the minimum spacing at which the Nusselt number differs

negligibly from that realized in larger boxes – the minimal flow unit.

For completeness, in this section the new upper bound algorithm is used to predict (i.e. for

a = 1) the Nusselt number over a wide swath of (L, Ra) parameter space. The results, shown

in Figure 6-6(b), may be compared directly with the corresponding DNS results from Dianati

(2013). Specifically, data pairs are computed for 15 logarithmically-equispaced values of Ra

and 25 values of L (from L = 0.01 to L = 2) for each value of Ra. One advantage of this
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approach is that long time-averaging is not necessary for estimating the re-normalized Nusselt

number. The results are broadly similar to those obtained from the DNS, but there is less

variability in the contours and the entire field seems to be shifted leftward; that is, relative

to the DNS, the renormalized Nusselt contours computed using the upper bound algorithm

are uniformly shifted toward larger values of L. Importantly, there is evident quantitative

agreement between the predicted slopes of specific contours and the slopes of corresponding

contours computed using DNS: see the thin dashed lines in Figure 6-6(a) that align well with

the 0.6, 0.7 and 0.8 contours from the DNS. (For fixed L, e.g. for L = 2, the predicted slope

again agrees with the DNS since both correspond to Nu ∼ cRa for some constant c.) This

agreement lends confidence to the proposition that the L(Ra) relationship corresponding to a

given re-normalized Nusselt value may be reliably obtained from the upper bound algorithm

as a surrogate for the corresponding result from the DNS. This correspondence is important

since, as noted above, it is difficult to use DNS to compute sufficiently accurate contours

of the re-normalized Nusselt number with values close to unity. Adopting this perspective,

it should be noted that slope of the 0.99 contour in Figure 6-6(b) has a value of 0.338 at

Ra = 31548, although it is not clear whether the slope converges to this value for larger Ra.

6.4 Summary

Theoretical considerations and numerical simulations both show that there is a dramatic

compression of horizontal scales in porous medium convection at large Ra. In this study the

first systematic investigation of the influence of domain aspect ratio (L) on the computed

heat transport in “turbulent” porous medium convection was performed using upper bound

theory, thereby identifying a lateral scale L = L(Ra) above which the realized heat transport
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is effectively independent of L; in this sense, a minimal flow unit for this phenomenon has

been identified. The effects of L on the best available upper bounds on and predictions of

Nu have been simultaneously explored by developing a novel approach for the computational

solution of the background variational problem. Theoretical analysis indicates that the only

steady state to which the numerical method can converge is the true (globally optimal)

solution of the variational problem in porous medium convection, so that this numerical

scheme should be equally useful for other problems to which the background formalism is

applicable.

Based on this robust two-step numerical algorithm, the best available bounds on Nu have

been computed up to Ra ≈ 26500 and directly compared with the available DNS results,

showing that the bounds lie within a factor of 3 of the DNS data. The optimal bounds

are little affected by variations in L until L = O(Ra−1/2), the scaling boundary for linear

instability. Adjustments in the prefactor of this L(Ra) scaling result in significant variations

in the computed bounds on Nu; indeed, for a carefully chosen prefactor, the bounds could

be made to lie within a factor of 2 of the results from DNS performed in a domain with fixed

L = 2. This discrete improvement in the optimal bound is associated with a concomitant

reduction in the number of critical modes owing to the (carefully prescribed) narrowing of

the domain width. It should be noted that although the mean inter-plume spacing is not

unique but may itself fall within some small band at very large Ra (see Figure 2-8), the

variation of Lm in wide domains almost does not affect the value of Nusselt number Nu (see

Figure 2-9). Thus, based on the DNS and upper bound calculations, it can be conjectured

that the lower boundary of the band of Lm measured in wide domains in the DNS coincides

with the minimal flow unit at sufficiently large Ra.



CHAPTER 7

REDUCED MODELING IN A MINIMAL FLOW UNIT AT

LARGE RAYLEIGH NUMBER

7.1 Introduction

As discussed in chapters 1 and 2, DNS reveal that at large Ra porous medium convection

exhibits a three-region asymptotic structure: adjacent to the upper and lower walls are

extremely thin thermal boundary layers; the interior region is dominated by nearly vertical

columnar exchange flow (mega-plumes) spanning the height of the domain; and between

these regions, a series of small proto-plumes grow from the boundaries and merge with the

interior mega-plumes. As the Rayleigh number is increased, the mean inter-plume spacing

Lm shrinks as a power-law scaling of Ra, e.g. Lm ∼ Ra−2/5 has been proposed by Hewitt

et al. (2012). Moreover, the studies described in Dianati (2013) and chapter 6 indicate that

at large Ra the mean inter-plume spacing Lm approaches the minimal flow unit, above which

the Nusselt number Nu becomes independent of L. In short, all the above investigations

imply that the basic physics of high-Ra porous medium convection can be investigated in a

narrow domain, where: the flow retains the three-region columnar structure but only consists

172
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of a single rising and descending mega-plume; and the same amount of heat is transported

as in wide domains.

The complexity of turbulent flows, even in the simpler case like high-Ra porous medium

convection, generally necessitates hundreds of thousands or millions of degrees of freedom

to resolve all the spatial and temporal scales. Hence it is desirable to construct models with

a reduced number of degrees of freedom, but that still capture the essential nonlinear inter-

actions over different space and time scales. One explicit approach to reducing the number

of degrees of freedom in turbulent flows is to study the dynamics in a small domain/box

where the turbulence can sustain itself. Of course, the use of small domains eliminates long-

wavelength interactions, but in many cases the fundamental features of the turbulent flow

are still retained. For instance, as shown in following sections, in a minimal flow unit high-Ra

porous medium convection still exhibits the three-region columnar structure and produces

the same heat transport as is manifest in wide domains, although the long-wavelength modes

are filtered out. Thus, in this chapter, one primary objective is to explore a reduced model-

ing strategy in which the minimal flow is used for simulations of porous medium convection

at large Ra. It should be noted that although very long computing times and very wide

domains are required for DNS to firmly establish the nonlinear lateral scale selection, these

requirements are no longer necessary for studying the reduced dynamics of high-Ra porous

medium convection in narrow domains.

A primary technique known as Proper Orthogonal Decomposition (POD) was developed

in recent decades to build low-dimensional models. In this method, an eigenfunction basis

whose modes can be ordered in terms of decreasing average energy content is obtained from

analysis of either experimental or numerical data. Then, Galerkin projection of the governing

partial differential equations (PDEs) onto this POD basis produces a system of ordinary
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differential equations (ODEs). Finally, truncations of the infinite set of ODEs yield low-

dimensional models. Although POD has been used for model reduction for various turbulent

flows (Aubry et al., 1988; Berkooz et al., 1993; Cazemier et al., 1998; Moehlis et al., 2002;

Ma and Karniadakis, 2002; Smith et al., 2005; Kalb and Deane, 2007), it is clearly limited:

extensive data sets are required from experiments or DNS before the reduced model can

be constructed and its dynamics investigated. Moreover, although a small number of POD

modes may capture most of the “energy” of the infinite-dimensional dynamics, dynamically

important modes having low average energy content may be omitted in the usual ordering

employed in the construction of POD models (Chini et al., 2011).

In Chini et al. (2011), a priori eigenfunctions drawn from energy stability and upper bound

theory were utilized to construct low-dimensional models in low-Ra porous medium con-

vection. Unlike the general Fourier and Chebyshev basis, this upper bound eigenbasis is

extracted directly from the governing equations and is thereby naturally adapted to the

dynamics at the given parameter values. For instance, as shown in Figure 6-3(b), certain

upper bound eigenfunctions at large Ra exhibit boundary-layer structures. In this regard,

recall that DNS at large Ra reveal that porous medium convection self-organizes into narrow

columnar plumes, with more complex spatiotemporal features being confined to boundary

layers near the walls. Moreover, it has also been shown that the interior flow is a composite

of a few low-wavenumber Fourier modes but is dominated by one mode, and the Fourier

amplitudes of the fluctuation θ at high wavenumber are strongly localized near the upper

and lower walls, where they superpose to comprise the small rolls and proto-plumes within

the thermal and vorticity boundary layers. Inspired by this specific spectral structure of the

columnar flow exhibited at large Ra, two independent strategies will be presented in the fol-

lowing sections to reduce the degrees of freedom in numerical simulations of porous medium
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convection. First, a domain decomposition method (Boyd, 2000) is used: the domain is split

into different regions in which different resolutions are employed for a Fourier–Chebyshev

collocation numerical scheme; secondly, a hybrid reduced model is built: in horizontal Fourier

space, PDEs are solved at low wavenumbers using the regular Fourier–Chebyshev collocation

method, while at high wavenumbers ODEs with only wall eigenmodes obtained from upper

bound analysis are solved to capture the near wall dynamics within the boundary layers.

The reminder of this chapter is organized as follows. In the next section, two separate

strategies for reducing the degrees of freedom in numerical simulations are outlined. In

section 7.3, computations using these two approaches are performed at large Rayleigh number

in the minimal flow unit, and their results are compared with those from resolved and under-

resolved DNS. Finally, a summary is given in section 7.4.

7.2 Reduced Modeling Strategies at Large Ra

7.2.1 Domain Decomposition Method

Figure 7-1 shows a snapshot of the temperature field and its corresponding horizontal mean

(i.e. T ) and magnitudes of (complex) Fourier amplitudes of the temperature fluctuations (i.e.

|θ̂n|, the deviations from the horizontal mean) as functions of z from DNS at Ra = 20000

in a narrow domain. As is evident in this figure, the flow which consists of a single rising

and descending mega-plume has a similar structure as is observed in wide domains. In

particular, the interior flow is controlled by only a few low-wavenumber Fourier modes and

the Fourier amplitudes θ̂n are strongly localized near the walls at high wavenumbers (e.g.

n > 10). According to this specific structure, the domain can be decomposed into at least



Chapter 7. Reduced Modeling at Large Rayleigh Number 176

x

z

0 0.2
0

0.2

0.4

0.6

0.8

1

0 1
0

0.2

0.4

0.6

0.8

1

T
0 0.1

0

0.2

0.4

0.6

0.8

1

|θ̂n|

1 ≤ n ≤ 10

0 0.1
0

0.2

0.4

0.6

0.8

1

|θ̂n|

10 < n ≤ 128

Figure 7-1: A snapshot of the temperature field and the corresponding Fourier
amplitudes from DNS at Ra = 20000 and L = 0.24. The resolution for this case is
256 Fourier modes in x and 321 Chebyshev modes in z.
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Figure 7-2: Schematic showing decomposition of the domain in Fourier space at
large Ra. The plot only shows the positive wavenumber regime (0 ≤ n ≤ N/2), since
the Fourier amplitudes are complex conjugates at negative wavenumbers. Region I:
0 ≤ z < Z1; region II: Z1 ≤ z ≤ Z2 with Z2 = 1 − Z1; region III: Z2 < z ≤ 1. In
region II, (a) represents the low-wavenumber region with 0 ≤ n ≤ N1/2, and (b) the
high-wavenumber region with N1/2 < n ≤ N/2.
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three subregions at large Ra as schematically shown in Figure 7-2: I and III represent

the near-wall regions in which high resolution in both x and z is required to resolve the

small-scale motions in the boundary layers; II represents the interior region in which coarse

resolution in z can be used to capture the relatively large-scale advective motions. Since the

interior flow is controlled by only a few low-wavenumber Fourier modes in region II(a), the

high-wavenumebr region can be shut down by setting all the variables in II(b) to zero, as

shown below.

The idea underlying the domain decomposition method is simple: at each time step, nu-

merical simulations are preformed separately in each subdomain (I, II, III), and then the

solutions in each subdomain are matched using patching along their common boundaries

(z = Z1 and z = Z2) by requiring that the variable and a finite number of normal derivatives

are equal along the interfaces. Below, it is shown how this method is utilized to solve the

momentum equation (2.5) in horizontal parous medium convection (φ = 0◦).

For a given horizontal wavenumber nk, (2.5) becomes

[
D2 − (nk)2

]
ψ̂[j]
n = −inkRaθ̂[j]n , (7.1)

where the superscript “[j]” denotes to the j-th subdomain, and both ψ̂n and θ̂n satisfy the

homogeneous Dirichlet boundary conditions at the heated and cooled walls (i.e. z = 0, 1).

The general solution in the j-th subdomain, ψ̂
[j]
n (z), can always be written as the sum of a

particular integral ψ̂
[j]
np(z) plus two homogeneous solutions, namely

ψ̂[j]
n (z) = ψ̂[j]

np
(z) + Ψ[j−1] · h[j]L (z) + Ψ[j] · h[j]U (z), (7.2)
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where Ψ[j−1] and Ψ[j] are the undetermined values of ψ̂n at the boundaries of the j-th

subdomain, and the particular integral ψ̂
[j]
np and homogeneous solutions h

[j]
L and h

[j]
U are

defined by

[
D2 − (nk)2

]
ψ̂[j]
np

= −inkRaθ̂[j]n , ψ̂[j]
np

(dj−1) = 0, ψ̂[j]
np

(dj) = 0, (7.3)[
D2 − (nk)2

]
h
[j]
L = 0, h

[j]
L (dj−1) = 1, h

[j]
L (dj) = 0, (7.4)[

D2 − (nk)2
]
h
[j]
U = 0, h

[j]
U (dj−1) = 0, h

[j]
U (dj) = 1, (7.5)

where dj denotes the boundary between (j−1)-th subdomain and j-th subdomain. It can be

seen that one always has the freedom to choose the ψ̂
[j]
np so that it vanishes at both subdomain

boundaries, and one may similarly choose h
[j]
L so that it is equal to one at the lower boundary

and zero at the upper boundary, while h
[j]
U is one at the upper boundary but zero at the

lower boundary.

One advantage of the decomposition is that the uncoupled equations (7.3)–(7.5) can be solved

independently for each subdomain. However, to obtain the elemental solution ψ̂
[j]
n (z) in (7.2),

one needs to compute (M+ 1) unknown Ψ[j], the values of ψ̂n at the subdomain boundaries,

where M denotes the total number of subdomains in the entire domain (e.g. M = 3 in

Figure 7-2). The two end values of Ψ[j] can be determined by the boundary conditions at

the upper and lower walls: Ψ[0] = ψ̂n|z=0 = 0; Ψ[M] = ψ̂n|z=1 = 0. The remaining (M− 1)

domain boundary values of ψ̂n are determined by the requirement of continuity of the first

derivative at each of the interior interfaces, which gives

h
[j]′
L Ψ[j−1] + [h

[j]′
U − h

[j+1]′
L ]Ψ[j] − h[j+1]′

U Ψ[j+1] = ψ̂[j+1]′
np

− ψ̂[j]′
np
, j = 1, · · · ,M− 1, (7.6)

where the prime denotes the first derivative with respect to z, and all of these derivatives
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are computed at the interior interfaces (z = dj) once the particular integral and homoge-

neous solutions are obtained by solving (7.3)–(7.5). Another advantage of the decomposition

method is that the grid can be distributed more reasonably in each subdomain and the con-

dition number is also decreased since the size of the matrix in each subdomain is reduced,

compared with the single matrix for the entire domain. Furthermore, according to the spe-

cific columnar flow structure at large Ra, the region II(b) can be omitted in the domain

decomposition method, with homogeneous Dirichlet boundary conditions enforced directly

on its upper and lower interfaces.

7.2.2 Hybrid Reduced Model

In this section, the temperature field is decomposed such that T (x, z, t) = τ(z) + θ(x, z, t),

as in (6.1). Then from (1.29), the temperature fluctuation θ(x, z, t) satisfies

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= −τ ′w +∇2θ + τ ′′, (7.7)

which is identical to (2.6) only if τ ≡ 1 − z. However, here τ is obtained from the upper

bound analysis in chapter 6 by minimizing nu ≡
∫ 1

0
τ ′(z)2dz subject to the spectral constraint

(6.4).

The idea behind the hybrid reduced model is somewhat similar to that of domain decompo-

sition. Upper bound analysis in chapter 6 produces a fully a priori eigenbasis (i.e. Θmn(z),

Wmn(z) and Γmn(z), see (6.9)–(6.14)) which is naturally adapted to the dynamics of porous

medium convection at given parameter values. Then, Galerkin projection of the govern-

ing PDEs onto the upper bound eigenfunction basis yields a system of ODEs. As shown
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Figure 7-3: (a) Upper bound eigenfunctions for 0 ≤ m ≤ 11 at Ra = 20000 and
n = 50. (b) Time-averaged relative error of the projection of θ̂n from DNS onto the
wall eigenmodes as a function of n at Ra = 20000. For both (a) and (b), L = 0.24.
In (a), at large horizontal mode number n, the eigenfunctions Θmn(z) exhibit a near-
wall structure for 0 ≤ m ≤ M1 (M1 = 5 in this case), but an interior structure for
m > M1; in (b), ζ is defined in (7.9).

in Figure 7-3(a), the upper bound eigenfunctions generally exhibit two types of structures

at large Ra: for small vertical mode number m (e.g. 0 ≤ m ≤ 5), the eigenfunctions are

strongly localized near the upper and lower walls, hereafter referred to as wall eigenmod-

es/eigenfuntions; for larger m (e.g. m > 5), the eigenfunctions have most of their support

in the interior, hereafter referred to as interior eigenmodes/eigenfuntions. It should be not-

ed that this mode separation is more obvious at large horizontal wavenumber. Recall that

at large Ra, the high x-wavenumber motions always occur near the upper and lower walls

(see Figure 7-1). Therefore, one may naturally expect that these upper bound wall eigen-

modes might be utilized to effectively capture the small-scale near-wall dynamics. Before

pursuing dynamical modeling, the performance of these wall eigenmodes can be evaluated

by performing the following projection:

θ̂Pn =

(∫ 1

0

θ̂DNS
n Θ0ndz

)
·Θ0n +

(∫ 1

0

θ̂DNS
n Θ1ndz

)
·Θ1n + · · · , (7.8)
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where the DNS data θ̂DNS
n are projected only onto the wall eigenmodes at a given horizontal

wavenumber nk. If the time-averaged relative error of the projection

ζ =

〈 ||θ̂DNS
n − θ̂Pn ||
||θ̂DNS

n ||

〉
(7.9)

is a small value at each n, where ‖·‖ denotes a 2-norm and 〈(·)〉 denotes temporal aver-

aging, then these upper bound wall eigenfunctions should be able to concisely capture the

dynamics. Figure 7-3(b) shows the variation of ζ with mode number n. Clearly, these wall

eigenfunctions have very good performances at large n (high wavenumbers): instead of using

321 Chebyshev modes at each n for Ra = 20000 in DNS, 6 wall eigenmodes could accurately

represent more than 70% of the fluctuation fields for n ≥ 30. However, these wall eigen-

functions do not work very well at low and moderate wavenumbers, because: (1) the flow

also exhibits some interior structure (mega-plumes) for small n (e.g. n ≤ 6); (2) the mode-

separation feature of the upper bound eigenfunctions is not very obvious for n < 30, and

thus certain interior eigenmodes which actually exhibit boundary-layer structure near the

walls are ignored. Based on these observations, a hybrid model can be constructed as follows:

for small and moderate n, PDEs are solved to resolve the low- and moderate-wavenumber

dynamics, namely, the motions of interior mega-plumes and near-wall proto-plumes; for large

n, ODEs with only the wall eigenmodes are solved to model the small-scale motions within

the thermal boundary layers, as schematically shown in Figure 7-4.

As discussed in chapter 6, the self-adjoint operator inside Hτ (6.5) associated with the

nonlinear stability condition for the background profile τ(z) produces a complete set of

orthogonal eigenfunctions which can be used as a natural basis. In Chini et al. (2011), a

6-mode model was derived (as shown below) using these eigenfunctions in porous medium
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Figure 7-4: Schematic showing hybrid modeling in Fourier space at large Ra.
The plot only shows the positive wavenumber regime (0 ≤ n ≤ N/2), since the
Fourier amplitudes conjugates complex conjugates at negative wavenumbers. For
0 ≤ n ≤ N2/2, PDEs are solved; for N2/2 < n ≤ N/2, ODEs with only the upper
bound wall eigenmodes are solved.

convection at Ra = 100. First, all the time-dependent fields are decomposed according to

θ(x, z, t) =
∞∑

n=−∞

∞∑
m=0

amn(t)Θmn(z)einkx, (7.10)

w(x, z, t) =
∞∑

n=−∞

∞∑
m=0

bmn(t)Wmn(z)einkx, (7.11)

u(x, z, t) =
∞∑

n=−∞

∞∑
m=0

cmn(t)Umn(z)einkx, (7.12)

where amn, bmn and cmn are, respectively, the time-dependent coefficients of temperature

fluctuation, vertical and horizontal velocities, and the vertical eigenfunctions Θmn(z) and

Wmn(z) satisfy (6.6)–(6.8) subject to the following orthonormalization condition:

∫ 1

0

Θmn(z)Θpn(z)dz = δmp (7.13)
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with the delta function δmp = 1 for m = p and δmp = 0 for m 6= p, and

cmn(t)Umn(z) =
−1

ink
bmn(t)DWmn(z), (7.14)

for n 6= 0 from the divergence free condition on the velocity field. Moreover, (6.7) and (6.13)

also imply that bmn(t) = amn(t) for n 6= 0.

Substituting (7.10)–(7.12) into the temperature fluctuation equation (7.7) and forming the

inner product of each term with Θpr(z)exp(irkx) yields a system of ODEs for n 6= 0:

ȧmn = µmnamn +
∞∑
p=0

(p6=m)

µpmnapn +
∞∑

j=−∞
(j 6=n)

∞∑
p=0

∞∑
q=0

Λjpq
mnaqjap(n−j), (7.15)

where the linear coefficients are

µmn = −λmn/2 ≤ 0, (λmn is from (6.12)) (7.16)

µpmn =

(
n2k2

2

)∫ 1

0

[ΘmnΓpn −ΘpnΓmn] dz, (7.17)

and the nonlinear coefficients are

Λjpq
mn =

∫ 1

0

Θmn

[(
j

n− j

)
DWp(n−j)Θqj −Wp(n−j)DΘqj

]
dz. (7.18)

For n = 0, the eigenfunctions can be obtained analytically from (6.12)–(6.14):

Θm0(z) =
√

2 sin ((m+ 1)πz) ; Wm0(z) = Um0(z) = 0. (7.19)
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Then, Galerkin projection of the horizontally averaged (7.7) onto Θp0(z) yields the amplitude

equations for am0(t):

ȧm0 = µm0am0 +
∞∑

j=−∞
(j 6=0)

∞∑
p=0

∞∑
q=0

Λjpq
m0aqja

∗
pj + fm, (7.20)

where the asterisk denotes complex conjugation and the coefficients satisfy

µm0 = −(m+ 1)2π2, (7.21)

Λjpq
m0 =

√
2(m+ 1)π

∫ 1

0

WpjΘqj cos((m+ 1)πz)dz, (7.22)

fm =
√

2(m+ 1)π

[
1− (m+ 1)π

∫ 1

0

τ(z) sin((m+ 1)πz)dz

]
. (7.23)

Finally, the low-dimensional models are obtained by suitably truncating the sums in (7.15)

and (7.20).

At large Ra, the PDEs are solved for 0 ≤ n ≤ N2/2 using a Fourier–Chebyshev collocation

method, while the ODEs in (7.15) with only wall eigenfunctions are employed for n >

N2/2 to model the high-wavenumber near-wall motions. Hence, for n > N2/2, the Fourier

components of the temperature field can be approximated as

θ̂n(z, t) ≈
M1∑
m=0

amn(t)Θmn(z), (7.24)

where all the eigenfunctions Θmn(z) for 0 ≤ m ≤M1 exhibit a near-wall structure (see Fig-

ure 7-3a). However, the computations will be extremely inefficient if the ODEs are solved

by directly integrating (7.15), since in this way the nonlinear terms need to be determined

by computing the convolution of the modes included in the relevant sums. Actually, these
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nonlinear terms in the ODE governing the evolution of mode amn are obtained by projecting

the nonlinear terms in the governing PDEs onto the upper bound eigenfunctions Θmn, viz.

NODE
mn =

∞∑
j=−∞
(j 6=n)

∞∑
p=0

∞∑
q=0

Λjpq
mnaqjap(n−j) =

∫ 1

0

N̂ PDE
n Θmndz, (7.25)

where N̂ PDE
n denotes the Fourier components of the nonlinear terms (−u∂xθ − w∂zθ) for a

given horizontal wavenumber nk. Since the Fast Fourier Transform (FFT) algorithm can be

used to efficiently compute N̂ PDE
n , the nonlinear terms NODE

mn are determined here according

to the following steps. Suppose the coefficients of the ODE modes amn and bmn are given

initially. First, the Fourier components of the temperature fluctuation and velocity fields are

computed, respectively, through (7.24) and

ûn =

(−1

ink

) M1∑
m=0

bmnDWmn, (7.26)

ŵn =
M1∑
m=0

bmnWmn. (7.27)

Then, N̂ PDE
n is computed using the standard pseudo-spectral method for solving PDEs.

Finally, NODE
mn is obtained by projecting N̂ PDE

n onto Θmn using (7.25). Compared with the

pseudospectral numerical solution of the governing PDEs, there exist two obvious advantages

in solving ODEs: first, it is not necessary to solve the momentum equation (2.5) in each time

step once the eigenfunctions are obtained; secondly, since only 4 or 6 wall eigenfunctions are

retained for each horizontal mode n, the number of modes is significantly reduced. Although

the projection step (7.25) leads to some extra calculations, the total operation count is still

decreased since the number of ODE modes used for each n is so small.
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For a given horizontal mode n, these ODEs can be written in matrix form



ȧ0n

ȧ1n

ȧ2n

ȧ3n
...


=



µ0n µ1
0n µ2

0n µ3
0n · · ·

µ0
1n µ1n µ2

1n µ3
1n · · ·

µ0
2n µ1

2n µ2n µ3
2n · · ·

µ0
3n µ1

3n µ2
3n µ3n · · ·

...
...

. . .





a0n

a1n

a2n

a3n
...


+



N0n

N1n

N2n

N3n

...



ODE

, (7.28)

or in vector form

~̇an = An~an + ~NODE
n , (7.29)

whereAn is matrix of linear coefficients and ~Nn is vector of nonlinear terms. In computations,

for both the PDEs and ODEs, the temporal discretization is achieved using the Crank–

Nicolson method for the linear terms and a two-step Adams–Bashforth method for the

nonlinear terms, yielding second-order accuracy in time. Moreover, in the computations

employing the domain decomposition method, the domain is split into three regions with

Z1 = 0.1 and Z2 = 0.9, and the the interior high-wavenumber region II(2) is completely

omitted.

7.3 Results and Discussion

In this chapter, L = 4πRa−0.4 is utilized as approximate width of the minimal flow unit,

although it has been shown in previous chapters that the appropriate scaling exponent is still

unclear at very large Ra. Figure 7-5 shows the snapshots of the temperature fields obtained
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Figure 7-5: Snapshots of the temperature fields from (a) DNS, (b) domain de-
composition method and (c) hybrid model at Ra = 20000 and L = 0.24. These
three cases correspond to the “resolved DNS”, “domain decomposition” and “hybrid
model 1”, respectively, in Table 7-1.

from DNS, the domain decomposition method and the hybrid model in the minimal flow

unit at Ra = 20000. It can be seen that both the domain decomposition method and hybrid

model capture the main features of the turbulent columnar flow, with well organized mega-

plumes in the interior and more complex spatiotemporal features near the heated and cooled

walls. The corresponding resolution and Nusselt number for these three cases are shown in

Table 7-1. Remarkably, compared with the DNS, the domain decomposition method yields

nearly the exact value of the Nusselt number (with a relative error less than 1%), confirming

that the interior high-wavenumber region (II(b) in Figure 7-2) can generally be ignored in

high-Ra porous medium convection.

As discussed in previous sections, at large horizontal mode number (e.g. n > 40 at Ra =

20000 and L = 0.24), the Fourier amplitudes of the temperature fluctuations are strongly

localized near the upper and lower walls, where they superpose to comprise the small rolls
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Method N1/2 or N2/2 N/2 M # Modes Nu Error

Resolved DNS 128 128 320 82176 139.7 0

Unresolved DNS 40 40 320 25680 213.1 52.5%

DD region I 10 128 64 16640

138.9 0.57%DD region II(a) 10 10 128 2580

DD region III 10 128 64 16640

Hybrid model 1 40 128 PDE:320; ODE:5 26736 168.6 20.7%

Hybrid model 2 6 128 PDE:320; ODE:5 5316 185.7 32.9%

Table 7-1: Resolution and Nusselt number for different computational schemes at
Ra = 20000 and L = 0.24. For reference, an unresolved (i.e. under-resolved) DNS
with high wavenumbers removed is shown in the third row, and “DD” in the fourth
row denotes the domain decomposition method. The resolved DNS is treated as
the “truth” for computing the error in the Nusselt number obtained with the other
methods. Note that the “hybrid model 2” in which only less than one-tenth of the
number of modes used in the DNS is retained still produces an estimate of the Nusselt
number with a relative error of only about 30%.

within the thermal boundary layers. To investigate the effects of the small-scale motions on

heat transport, an “unresolved DNS” with only low and moderate wavenumbers retained

(e.g. n ≤ 40) is also shown in Table 7-1. Evidently, the heat flux Nu is increased by

nearly 50% due to the exclusion of the small-scale motions within the thermal boundary

layers. However, for the “hybrid model 1” in which a very small number of upper bound wall

eigenfunctions (ODEs) are utilized to model the thermal-boundary-layer dynamics, this error

is reduced to about 20%; even for the hybrid model 2 in which only 7 PDEs (including the

horizontal-mean equation) are used to resolve the very low-wavenumber large-scale motions,

the error is still reduced to 30%. Figure 7-6 shows the variation of Nu as a function of
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Figure 7-6: Nu vs. Ra for different computing strategies at large values of Rayleigh
number. All the simulations in this plot are performed in the minimal flow unit
L = 4πRa−0.4 except the studies of Otero et al. (2004) and Hewitt et al. (2012). In
domain decomposition, the high-wavenumber interior region II(b) (n > 10) is shut
down for each Ra; in hybrid mode, 6 ODEs for each horizontal mode number n are
employed to capture the small-scale dynamics within the thermal boundary layers.

Ra for the various approaches. This figure confirms that convection in a minimal flow

unit produces the same amount of heat transport as that in wide domains. Moreover, the

domain decomposition method with the interior high-wavenumber region omitted is seen to

be able to nevertheless adequately resolve the dynamics. Furthermore, the upper bound wall

eigenmodes can efficiently represent the small-scale motions within the thermal boundary

layers, which indeed play a significant role in heat transport in high-Ra porous medium

convection.

Although computations utilizing either of these two approaches (i.e. the domain decompo-

sition method or the hybrid model) are generally 2–3 times faster than the DNS, they (the
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former) will increase the programming complexity, and in the hybrid model, many prepro-

cessing steps (e.g. computing the background profile τ , solving the corresponding eigenvalue

problems to obtain the eigenbasis, and computing the coefficients for the ODEs) are re-

quired at given parameter values before simulations can be performed. However, the results

for these two strategies reported above are still meaningful since they indeed reveal that the

flow should be treated differently in each subdomain according to its specific characteristics

in that subdomain. And the physics revealed by these results should provide at least partial

insight into the construction of more efficient reduced models in the future.

7.4 Summary

In this chapter, two different strategies have been presented to reduce the degrees of freedom

in numerical simulations of high-Ra porous medium convection: a domain decomposition

method and a hybrid model using an upper bound eigenbasis. In the first strategy, the entire

domain is decomposed into three subdomains according to the specific structure of the flow

at large Ra. Although only a few low wavenumbers are kept in the interior by shutting down

the high-wavenumber region II(b), the dynamics can still be well resolved. In the second

strategy, a set of a priori eigenfunctions obtained from upper bound analysis of the system

is used to model the small-scale-roll motions within the upper and lower thermal boundary

layers. Since these eigenfunctions are directly extracted from the governing equations, they

inherently contain certain characteristics of the system at the given parameter values. The

results indicate that the upper bound wall eigenmodes can efficiently represent the small-

scale motions of rolls near the upper and lower walls. However, compared with DNS, the

computational efficiency of these two approaches is not remarkably improved. To achieve
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a significantly high computational efficiency, there is a pressing need for building a multi-

scale asymptotically-reduced model which successfully couples the large-scale (slow) interior

dynamics with the small-scale (fast) near-wall dynamics in the asymptotic limit of large

Rayleigh number.



CHAPTER 8

CONCLUSIONS

Buoyancy-driven convection in fluid-saturated porous media is a key environmental and tech-

nological process, with numerous geoscientific and engineering applications ranging from

carbon dioxide storage in terrestrial aquifers to the design of compact heat exchangers.

Moreover, as a paradigm for forced-dissipative infinite-dimensional nonlinear dynamical sys-

tems, porous medium convection also displays much (though not all) of the rich dynamics

of Rayleigh–Bénard convection in a pure fluid layer, including a hierarchy of instabilities

and bifurcations, pattern formation, and spatiotemporally chaotic dynamics (if not “true”

fluid dynamical turbulence). To thoroughly understand the underlying flow and transport

mechanisms governing this spatiotemporally-chaotic system, this dissertation characterizes

the coherent structure, transport properties and reduced dynamics of turbulent convective

states at large Ra using a complement of DNS, secondary stability and dynamical system

theory, and variational analysis.

Previous DNS by Otero et al. (2004) and Hewitt et al. (2012) show that 2D convection in

a horizontal porous layer self-organizes into narrow columnar plumes at sufficiently large

values of the Rayleigh number, with more complex spatiotemporal features being confined

192
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to boundary layers near the heated and cooled walls. In particular, Hewitt et al. (2012)

also point out that as Ra is increased, the interior columnar exchange flow becomes increas-

ingly well organized, and the time-mean inter-plume spacing Lm shrinks in proportion to

Ra−0.4. However, the relevance of this scaling remains an open question as Ra → ∞, since

these DNS were generally conducted up to Ra = 4 × 104 and in domains with L ' 2. In

chapter 2, new DNS of horizontal porous medium convection are performed up to Ra ' 105

using long averaging times and in wide domains to characterize the statistical structure of

spatiotemporally-chaotic convective states. The new DNS confirm the remarkable tendency

for the interior flow to self-organize into narrow columnar plumes at sufficiently large Ra;

however, the results show that the scaling Lm ∼ Ra−0.4 is only valid for Ra ≤ 104, and

for Ra ≥ 39716 the final inter-plume spacing is not unique but may itself fall within some

small band. In addition to the horizontal case, the first systematic high-resolution DNS

have been carried out for porous medium convection in an inclined layer at large Ra up to

Ra ' 105. When the layer is inclined, theoretical analysis indicates that the inclination will

induce a background mean flow which becomes more vigorous as the angle of inclination φ

is increased. The DNS results here reveal that this basic state strengthens the natural-roll

motions while weakening the antinatural-roll motions, thereby modifying the flow patterns

at different φ. For 0◦ < φ < 25◦, the convective flow still exhibits the narrow columnar

structure but with a larger mean inter-plume spacing compared with φ = 0◦. However, as

the angle is increased, the antinatural rolls becomes too weak to remain attached to the

upper and lower walls. Finally, when φ & φt = 31.30◦ above which the basic state becomes

linearly stable, the antinatural rolls are completely detached from the walls and the flow

then transitions to large-scale traveling-wave motions.

To gain insight into the mechanisms of pattern formation in high-Ra horizontal and inclined
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porous medium convection, the structure, stability and transport properties of exact coherent

states are characterized using Newton iteration and (Floquet) secondary stability theory in

chapter 3 to chapter 5. First, a systematic investigation of unstable steady-state solutions

of the Darcy–Oberbeck–Boussinesq equations is performed for φ = 0◦ in domains of varying

aspect ratio L in chapter 3. The steady convective states are shown to transport less heat

than the statistically steady turbulent flow realized at the same parameter values: the Nusselt

number Nu ∼ Ra for turbulent porous medium convection, while Nu ∼ Ra0.6 for the

maximum heat-transporting steady solutions. A key finding is that the lateral scale of the

heat-flux-maximizing solutions shrinks roughly as L ∼ Ra−0.5, reminiscent of the decrease

of the mean inter-plume spacing observed in turbulent porous medium convection as the

thermal forcing is increased. A spatial Floquet analysis is performed to investigate the

linear stability of the fully nonlinear steady convective states, extending a recent study by

Hewitt et al. (2013) by treating a base convective state – and secondary stability modes –

that satisfy appropriate boundary conditions along plane parallel walls. As in that study, a

bulk instability mode is found for sufficiently small aspect-ratio base states. However, the

growth rate of this bulk mode is shown to be significantly reduced by the presence of the

walls. Beyond a certain critical Ra-dependent aspect-ratio, the base state is most strongly

unstable to a secondary mode that is localized near the heated and cooled walls. Direct

numerical simulations, strategically initialized to investigate the fully nonlinear evolution of

the most dangerous secondary instability modes, suggest that the (long time) mean inter-

plume spacing in statistically-steady porous medium convection results from an interplay

between the competing effects of these two types of instability.

In chapter 4, the structure and stability of steady convective states in an inclined porous

layer are explored. Unlike the horizontal case, the inclination of the layer destroys the
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reflection symmetry of the natural and antinatural rolls. At moderate Ra, the background

basic state enhances the strength of the large-scale natural rolls and causes them to become

more tightly attached to the upper and lower walls; however, the large-scale antinatural-roll

motions are greatly suppressed and become detached from the walls at large φ. Consistent

with this observation, the stability analysis also indicates that the inclination will stabilize

the natural rolls but destabilize the antinatural rolls. At large Ra, the steady convective flow

exhibits two distinct forms for different aspect ratios Ls: for small Ls, the narrow plumes are

distorted in the same direction as the background base flow; however, as Ls is increased, the

plumes are distorted oppositely to the basic flow. It should be noted that for large Ls, the

steady flow at large Ra exhibits a similar structure as observed at moderate Ra: the natural

rolls become more vigorous and then more tightly attach to the walls, and the antinatural

rolls become much weaker and thereby start to detach from the walls. Secondary stability

analysis of these steady convective states at large Ra reveals that the inclination of the layer

will intensify the bulk instability, thereby making it difficult for the narrowly spaced plumes

to survive.

Although these steady convective states share certain attributes of the columnar flows seen

in the DNS, e.g. thermal boundary layers and mega-plumes, they do not capture the proto-

plumes. Precisely due to their failure to represent this structure, the steady unicellular

solutions only achieve Nu ∼ Ra0.6, less than Nu ∼ Ra obtained from DNS. To capture

the time-dependent, small-scale motions within the thermal and vorticity boundary layers,

unstable periodic-orbit solutions are computed at large Ra in the horizontal porous layer

using a Newton-hookstep searching algorithm in chapter 5. By classifying the eigenfunctions

emerging from the stability analysis of the steady convective states, four types of time-

periodic states with different symmetries are obtained through the Hopf bifurcation from the
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fixed-point solution. These solutions retain the three-region structure of turbulent columnar

flow, including the proto-plume region, thereby exhibiting very similar instantaneous and

statistical structure as the real turbulent flow and accomplishing heat transport close to

that observed in the DNS. Moreover, the motions of the time-periodic solutions ideally reveal

the heat-transport processing of the turbulent state: the heat is effectively absorbed by a

sink near the lower/heated wall, then advected upward through the interior vertical channel

(mega-plume), and finally re-deposited by an effective source near the upper/cooled wall.

Stability analysis of the unsteady exact coherent states shows that two types of instabilities

are (again) found: the bulk instability always corresponds to long-wavelength disturbances

and is generally much weaker than the wall instability. In short, all the results in chapter 3

to chapter 5 confirm that studies of exact coherent states does, indeed, shed light on the

development of spatiotemporally chaotic convection.

As discussed above, DNS show that the instantaneous flow self-organizes into recurring quasi-

coherent structures, suggesting that basic physics of high-Ra porous medium convection can

be understood in terms of these building blocks and the patterns they form. An important

natural question concerns the existence of the minimal flow unit in which the turbulence can

sustain itself and above which domain size the Nusselt number becomes independent of the

aspect ratio L. This question is addressed by computing upper bounds on and predictions

of Nu as a function of Ra and L in chapter 6. To solve the optimization problem arising

from the energy stability and upper bound analysis, an accurate and efficient two-step al-

gorithm in which time is introduced into the variational formulation is developed, so that

the computations can proceed up to Ra ∼ O(104) and then the results are directly com-

pared with the DNS results from Dianati (2013). It has been theoretically demonstrated
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that in porous medium convection (and other upper bound problems including plane Cou-

ette flow and stree-free Rayleigh–Bénard convection, see the proofs in Wen et al. (2015)),

the only steady state to which the numerical method can converge is the true solution of

the variational problem. Hence, this computational approach should be widely applicable to

other systems to which the background formalism can be applied. The results reveal that

the upper bound algorithm produces a reliable L(Ra) relationship corresponding to a given

re-normalized Nusselt value, relative to the corresponding results from DNS. Moreover, the

mean inter-plume spacing measured in the DNS by Hewitt et al. (2012) appears to approach

the minimal flow unit at sufficiently large Ra.

In chapter 7, two strategies are presented to reduce the degrees of freedom in numerical

simulations of porous medium convection in the minimal flow unit by exploiting the specific,

well-organized structure of the high-Ra columnar flow. Both approaches utilize the idea of

decomposition since the flow exhibits different dynamics in different regions of the domain.

For instance, the small-scale-roll motions are generally localized within the thermal and

vorticity boundary layers near the upper and lower walls, and in the interior, the flow always

exhibits large-scale structures and only a few low-wavenumber Fourier modes are active.

Hence, in the first strategy, the domain is decomposed directly into three regions: two near-

wall regions (I and III) and one interior region (II). The results show that shutting down

the interior high-wavenumber region (IIb) will not change the essential flow features and

transport properties. In the second strategy, a hybrid reduced mode is constructed by using

the fully a priori eigenfunctions drawn from energy stability and upper bound theory, thereby

extending the previous model reduction strategy developed by Chini et al. (2011) to large

Ra. The results indicate that the wall upper bound eigenmodes can efficiently represent the

small-scale rolls within the thin thermal boundary layers.
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In short, one important extension of this work is to quantitatively characterize the dynam-

ics and heat transport in horizontal and inclined porous medium convection at large values

of the Rayleigh number by using DNS, secondary stability and dynamical systems theory,

and variational analysis. As mentioned at the beginning of this dissertation, efficient and

reliable reduced dynamical models are pressingly needed for high-Ra porous medium convec-

tion. Nevertheless, the computational cost of the reduced modeling strategies investigated

in this dissertation suggests that to achieve significantly increased efficiency, a multi-scale

asymptotically-reduced model, which successfully couples the large-scale interior flow with

the small-scale near-wall dynamics in the asymptotic limit Ra→∞, may be a promising and

necessary direction for future research. It is hoped that the physics elucidated here for high-

Ra porous medium convection will provide at least partial guidance into the construction of

such a multi-scale reduced model.
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APPENDIX A

NUMERICAL ALGORITHMS FOR SOLVING THE

DARCY–OBERBECK–BOUSSINESQ EQUATIONS

In a horizontal porous layer, the non-dimensional Darcy–Oberbeck–Boussinesq equations in

the infinite Darcy–Prandtl number limit are

∇2ψ = −Raθx, (A.1)

∂tθ = −∂zψ∂xθ + ∂xψ∂zθ − ∂xψ +∇2θ, (A.2)

where the solution can be expressed as

 θ

ψ

 =

N/2∑
n=−N/2

 θ̂n(z, t)

ψ̂n(z, t)

 einkx =

N/2∑
n=−N/2

M∑
m=0

 amn(t)

bmn(t)

Tm(z̃) einkx, (A.3)

where Tm(z̃) is the standard m-th Chebyshev polynomial with z̃ ∈ [-1, 1], amn(t) and bmn(t)

are the corresponding m-th Chebyshev coefficients for θ̂n(z, t) and ψ̂n(z, t), respectively, and

z = (z̃ + 1)/2 is projection of the Chebyshev–Lobatto points z̃ in [-1, 1] onto [0, 1]. Since
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D ≡ d
dz

= 2 d
dz̃
≡ 2D̃, for a given horizontal wavenumber nk, (A.1) and (A.2) become

[
4D̃2 − (nk)2

]
ψ̂n = −inkRaθ̂n, (A.4)

∂tθ̂n = N̂n +
[
4D̃2 − (nk)2

]
θ̂n, (A.5)

where N̂n is the Fourier coefficient of the nonlinear term (−∂zψ∂xθ + ∂xψ∂zθ − ∂xψ). Next,

Chebyshev-tau method and different temporal discretizations (Peyret, 2002) will be utilized

to numerically solve (A.4) and (A.5).

A.1 Chebyshev-tau Method

In this section, (A.4) is solved as an example using Chebyshev-tau method; then, (A.5) can

be solved following the same strategy. In Fourier and Chebyshev spectral space and for each

mode (m,n), (A.1) becomes

4b(2)mn − (nk)2bmn = −inkRaamn, (A.6)

where b
(2)
mn is the m-th Chebyshev coefficient of the second-order derivative of ψ̂n(z̃, t) with

respect to z̃, namely,

∂2θ̂n(z̃, t)

∂z̃2
=

M∑
m=0

b(2)mn(t)Tm(z̃). (A.7)

For each n, the expansion coefficients satisfy the following recurrence relation

Pmb
(2)
m−2 +Qmb

(2)
m +Rmb

(2)
m+2 = bm, 2 ≤ m ≤M (A.8)
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with

Pm =
cm−2

4m(m− 1)
, Qm =

−em+2

2(m2 − 1)
, Rm =

em+4

4m(m+ 1)
, (A.9)

where

em =
{ 1 if m ≤M

0 if m > M
, cm =

{ 2 if m = 0

1 if m ≥ 1
. (A.10)

Hence, (A.6) can be rewritten as

Pm

(
4b

(2)
m−2 − (nk)2bm−2

)
+Qm

(
4b

(2)
m − (nk)2bm

)
+Rm

(
4b

(2)
m+2 − (nk)2bm+2

)
=

−inkRa (Pmam−2 +Qmam +Rmam+2) . (A.11)

Therefore, (A.8) and (A.11) yield

(nk)2Pmbm−2 +
[
(nk)2Qm − 4

]
bm + (nk)2Rmbm+2 =

inkRa [Pmam−2 +Qmam +Rmam+2] , 2 ≤ m ≤M. (A.12)

Let P̃m = (nk)2Pm, Q̃m = (nk)2Qm − 4 and R̃m = (nk)2Rm, then the matrix form of (A.12)

can be expressed as

A~b = ~y, (A.13)

where the (M + 1) × 1 vector ~b = (b0, b1, · · · , bM−1, bM)T, the (M − 1) × 1 vector ~y =

inkRa(P2a0 +Q2a2 + R2a4, · · · , Pmam−2 +Qmam + Rmam+2, · · · , PMaM−2 +QMaM)T, and
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the (M − 1)× (M + 1) matrix

A =



P̃2 0 Q̃2 0 R̃2 0 0 · · · 0

0 P̃3 0 Q̃3 0 R̃3 0 · · · 0

0 0 P̃4 0 Q̃4 0 R̃4 · · · 0

0 0 0
. . . 0

. . . 0
. . . 0

0 0 0 0 P̃M−2 0 Q̃M−2 0 R̃M−2

0 0 0 0 0 P̃M−1 0 Q̃M−1 0

0 0 0 0 0 0 P̃M−1 0 Q̃M−1



. (A.14)

To take the Dirichlet boundary conditions into account, the coefficients must satisfy

M∑
m=0

(−1)mbm = 0,
M∑
m=0

bm = 0. (A.15)

These two constraints in (A.15) can be added as two rows into the matrix A, so that the

new matrix becomes



1 −1 1 −1 1 −1 1 · · · (−1)M

1 1 1 1 1 1 1 · · · 1

P̃2 0 Q̃2 0 R̃2 0 0 · · · 0

0 P̃3 0 Q̃3 0 R̃3 0 · · · 0

0 0 P̃4 0 Q̃4 0 R̃4 · · · 0

0 0 0
. . . 0

. . . 0
. . . 0

0 0 0 0 P̃M−2 0 Q̃M−2 0 R̃M−2

0 0 0 0 0 P̃M−1 0 Q̃M−1 0

0 0 0 0 0 0 P̃M−1 0 Q̃M−1



(M+1)×(M+1)

(A.16)
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and the vector ~y becomes inkRa(0, 0, P2a0+Q2a2+R2a4, · · · , Pmam−2+Qmam+Rmam+2, · · · ,

PMaM−2 +QMaM)T. Finally, due to the quasi-tridiagonal form of matrix (A.16), the linear

equation (A.13) can be solved in O(M) steps by employing the Thomas algorithm (Press

et al., 2001), in contrast to O(M3) steps to solve a (dense) matrix equation arising in a

Chebyshev collocation formulation. It should be noted that even accounting for the cost of

the FFTs/IFFTs associated with Chebyshev spectral transformations, the Chebyshev-tau

algorithm described here requires only O(M logM) computing steps.

A.2 Temporal Discretization

In this dissertation, various temporal discretizations are utilized to perform DNS and com-

pute periodic-orbit solutions.

A.2.1 Semi-Implicit 2nd-Order Adams–Bashforth/Crank–Nicolson

(AB/CN) Scheme

The two-step AB/CN scheme for the time-discretization of (A.5) is

θ̂s+1
n − θ̂sn
4t =

1

2

(
3N̂ s

n − N̂ s−1
n

)
+

1

2

[
4D̃2 − (nk)2

] (
θ̂s+1
n + θ̂sn

)
, (A.17)

where the superscript s refers to the step number, i.e. ts+1 = ts +4t, the Crank–Nicolson

method is used for the linear terms (i.e. terms linear in the variable being advanced), and

the two-step Adams–Bashforth method for the nonlinear (i.e. remaining) terms. Generally,

the AB/CN scheme yields second-order accuracy in time.
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A.2.2 Adams–Bashforth/Backward–Differentiation Semi-Implicit

4th-Order (AB/BDI4) Scheme

For a time-dependent partial differential equation

∂tu = N(u) + L(u), (A.18)

where N(u) is a nonlinear first-order term and L(u) is a linear second-order term, the general

high-order AB/BDIk (k-th order) scheme is of the form

1

4t
k∑
j=0

cju
s+1−j =

k−1∑
j=0

djN(us−j) + L(us+1) (A.19)

with specific coefficients cj and dj.

The fourth-order AB/BDI scheme for the time-discretization of (A.5) is

4∑
j=0

cj θ̂
s+1−j
n = 4t

3∑
j=0

djN̂ s−j
n +4t

[
4D̃2 − (nk)2

]
θ̂s+1
n (A.20)

with coefficients

c0 =
25

12
, c1 = −4, c2 = 3, c3 = −4

3
, c4 =

1

4
;

d0 = 4, d1 = −6, d2 = 4, d3 = −1. (A.21)

Finally, (A.20) can be solved numerically using the Chebyshev-tau method described in

section A.1.
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A.2.3 Semi-Implicit Four-Stage 3rd-Order Runge–Kutta (RK3)

Scheme

One common feature for the AB/CN and AB/BDI4 schemes is that both of them belong to

the multistep method, so that for each step information of the previous few steps is required.

In DNS, some low-order accurate, one-step schemes (e.g. Euler method) can be employed to

compute the first one or three steps to provide initial conditions for the mutistep schemes,

and the temporary reduction of time accuracy generally will not affect the final statistical

results. However, in seeking periodic-orbit solutions, high-order time-discretization scheme is

needed for each step to accurately compute the time period. Therefore, in order to maintain

the high accuracy in time, for the first few steps it is very necessary to utilize some high-order

one-step schemes. In this section, a four-stage (one-step) third-order-accurate semi-implicit

Runge–Kutta scheme, developed by Nikitin (2006), is used in numerical simulations of porous

medium convection.

Let Ĥn denote the right-hand side of (A.5), namely

∂tθ̂n = Ĥn = N̂n +
[
4D̃2 − (nk)2

]
θ̂n. (A.22)

Then, the first stage of the semi-implicit Runge–Kutta scheme is

θ̂s1n − θ̂sn
4t =

2

3
Ĥs
n + χL̂n

(
θ̂s1n − θ̂sn

)
, (A.23)
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where χ is an arbitrary positive number and L̂n is the Fourier component of a linear operator

L at the n-th mode; the second stage is

θ̂s2n − θ̂sn
4t =

1

3
Ĥs
n +

1

3
Ĥs1
n + χL̂n

(
θ̂s2n − θ̂s1n

)
; (A.24)

the third stage is

θ̂s3n − θ̂sn
4t =

1

4
Ĥs
n +

3

4
Ĥs1
n + χL̂n

(
θ̂s3n − ˜̂

θn

)
, (A.25)

where

˜̂
θn =

3

2

[
ξθ̂s1n + (1− ξ) θ̂s2n

]
− 1

2
θ̂sn; (A.26)

the fourth stage is

θ̂s+1
n − θ̂sn
4t =

1

4
Ĥs
n +

3

4
Ĥs2
n + χL̂n

(
θ̂s+1
n − θ̂s3n

)
. (A.27)

In these four stages, three evaluations of Ĥn, i.e. Ĥs
n, Ĥs1

n and Ĥs2
n are conducted, and the

whole scheme (A.23)–(A.27) possesses a third-order accuracy irrespective of the values of

χ and ξ, and of the operator L. It should be noted that χ = 1/3, ξ = 3/2 and L = ∇2

are chosen here for the computations of porous medium convection. Moreover, in DNS of

inclined porous medium convection and studies of periodic-orbit solutions, this third-order-

accurate Runge–Kutta scheme is only employed for computations of the first three steps; then

the AB/BDI4 scheme is utilized for the remaining steps. Hence, generally the fourth-order

accuracy in time is still retained.
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NEWTON–KANTOROVICH ALGORITHM FOR SOLVING

THE EULER–LAGRANGE EQUATIONS

The Euler–Lagrange equations (6.27)–(6.30) can be rewritten as

τzz = F τ (ϑ,W, ϑz,Wz), (B.1)

2∇2ϑ+ γxx = F ϑ(W, τz), (B.2)

∇2W − ra · ϑxx = FW = 0, (B.3)

∇2γ = F γ(ϑ, τz). (B.4)

Suppose the iterates τ i(z), ϑi(x, z), W i(x, z), and γi(x, z) are good approximations to the

true solution τ(z), ϑ(x, z), W (x, z), and γ(x, z). Taylor expanding the functionals F τ , F ϑ,

FW and F γ in (B.1)–(B.4) about the ith iterate yields

τzz = (F τ )i + (F τ
ϑ )i[ϑ− ϑi] + (F τ

W )i[W −W i] + (F τ
ϑz)

i[ϑz − ϑiz] + (F τ
Wz

)i[Wz

−W i
z ] +O([ϑ− ϑi]2, [W −W i]2, [ϑz − ϑiz]2, [Wz −W i

z ]
2), (B.5)
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2∇2ϑ+ γxx = (F ϑ)i + (F ϑ
W )i[W −W i] + (F ϑ

τz)
i[τz − τ iz] (B.6)

+O([W −W i]2[τz − τ iz]2),

∇2W − raϑxx = 0, (B.7)

∇2γ = (F γ)i + (F γ
ϑ )i[ϑ− ϑi] + (F γ

τz)
i[τz − τ iz] (B.8)

+O([ϑ− ϑi]2, [τz − τ iz]2),

where, for example, F τ
ϑ denotes the Frechet derivative of the function F τ (ϑ,W, ϑz,Wz) with

respect to ϑ. By defining correction terms

4τ = τ i+1 − τ i, 4ϑ = ϑi+1 − ϑi, 4W = W i+1 −W i, 4γ = γi+1 − γi, (B.9)

and computing the Frechet derivatives, the linear differential equations for the corrections

can be expressed as

4τ
zz − (F τ

ϑ )i4ϑ − (F τ
ϑz)

i4ϑ
z − (F τ

W )i4W − (F τ
Wz

)i4W
z = (F τ )i − τ izz, (B.10)

−(F ϑ
τz)

i4τ
z + 2∇24ϑ − (F ϑ

W )i4W +4γ
xx = (F ϑ)i − 2∇2ϑi (B.11)

−γixx,

−ra4ϑ
xx +∇24W = raϑixx −∇2W i, (B.12)

−(F γ
τz)

i4τ
z − (F γ

ϑ )i4ϑ +∇24γ = (F γ)i −∇2γi. (B.13)

Let

4̂ϑ = ϑ̂i+1 − ϑ̂i, 4̂W = Ŵ i+1 − Ŵ i, 4̂γ = γ̂i+1 − γ̂i; (B.14)
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then (B.10) becomes

D24τ − 1

4

N∑
n=1

[(DŴ i
n + Ŵ i

nD)4̂ϑ
n]− 1

4

N∑
n=1

[(Dϑ̂in + ϑ̂inD)4̂W
n ] = −D2τ i +

1

4
D[

N∑
n=1

(Ŵ i
nϑ̂

i
n)].

(B.15)

For a given nk, (B.11), (B.12) and (B.13) become

− Ŵ i
nD4τ + 2[D2 − (nk)2]4̂ϑ

n −Dτ i4̂W
n − (nk)24̂γ

n = −2[D2 − (nk)2]ϑ̂in (B.16)

+Dτ iŴ i
n + (nk)2γ̂in,

ra(nk)24̂ϑ
n + [D2 − (nk)2]4̂W

n = −ra(nk)2ϑ̂in (B.17)

−[D2 − (nk)2]Ŵ i
n,

raDτ i4̂ϑ
n + raϑ̂inD4τ = −raDτ iϑ̂in (B.18)

−[D2 − (nk)2]γ̂in.

Although the Newton-Kantorovich method is only locally convergent, the basin of attraction

can be expanded (in the space of initial iterates) by updating the variables for each iterate

using 

τ

ϑ̂n

Ŵn

γ̂n



i+1

=



τ

ϑ̂n

Ŵn

γ̂n



i

+ a



4τ

4̂ϑ
n

4̂W
n

4̂γ
n


, (B.19)

where 0 ≤ a ≤ 1. The step length is reduced whenever F i+1
res > bF i

res, where F i
res is the norm

of the residual of the Euler–Lagrange equations at the ith iterate, and b ≈ 1 is an adjustable

parameter.



APPENDIX C

TABLE OF ACRONYMS

2D – two-dimensional

3D – three-dimensional

AB/BDI4 – 4th-order-accurate semi-implicit Adams–Bashforth/Backward–Differentiation

AB/CN – Adams–Bashforth/Crank–Nicolson

CHD – Constantin–Doering–Hopf

CO2 – carbon dioxide

DNS – direct numerical simulations

GMRES – generalized minimal residual

MHB – Malkus–Howard–Busse

NK – Newton–Kantorovich

ODE – ordinary differential equation

PDE – partial differential equation

POD – Proper Orthogonal Decomposition

r.e.v. – representative elementary volume

RK3 – 3rd-order-accurate Runge–Kutta
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