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Abstract

DIAMAGNETIC STABLIZATION OF DOUBLE-TEARING MODES IN MHD

SIMULATIONS

by

Stephen Richard Abbott

University of New Hampshire, September, 2015

Double-tearing modes have been proposed as a driver of ‘off-axis sawtooth’ crashes in

reverse magnetic shear tokamak configurations. The DTM consists of two nearby rational

surfaces of equal safety factor that couple to produce a reconnecting mode weakly dependent

on resistivity and capable of nonlinearly disrupting the annular current. In this dissertation

we examine the linear and nonlinear growth of the DTM using the extended magnetohydro-

dynamic simulation code MRC-3d. We consider the efficacy of equilibrium diamagnetic drifts,

which emerge in the presence of a pressure gradient when ion inertial physics is included, as

a means of stabilizing DTM activity. In linear slab simulations we find that a differential

diamagnetic drift at the two resonant surfaces is able to both interfere with the inter-surface

coupling and suppress the reconnection process internal to the tearing layers. Applying these

results to a m=2, n=1 DTM in cylindrical geometry, we find that asymmetries between the

resonant layers and the presence of an ideal MHD mode result in stabilization being highly

dependent on the location of the pressure gradient. We achieve a significant reduction in

the linear DTM growth rate by locating a strong diamagnetic drift at the outer resonant

surface. In nonlinear simulations we show that growth of the magnetic islands may enhance

the pressure gradient near the DTM current sheets and significantly delay disruption. Only

by locating a strong drift near the outer, dominant resonant surface are we able to saturate

the mode and preserve the annular current ring, suggesting that the appearance of DTM

activity in advanced tokamaks may depend on the details of the plasma pressure profile.

xv



Introduction

Magnetic confinement of plasmas remains the best candidate for sustained fusion en-

ergy. Tokamaks, stellerators, and reverse field pinches (RFPs) use strong magnetic fields

to maintain the densities and pressures necessary to achieve fusion. Stellerators have good

stability but require topologically complex fields which are difficult to design and maintain.

RFPs, in contrast, use relatively weak and simple fields but are prone to instability. The

more successful tokamak design is a median route. Geometrically a tokamak is a torus with

a strong, externally applied magnetic field around the major axis (Btoroidal). A strong in-

ternal plasma current is driven within the torus, generating a field circling the minor axis

(Bpoloidal). Typically the ratio Bt/Bp is of the same order as the aspect ratio, A = R0/a

where R0 and a are the major and minor radii of the torus. Together the external toroidal

and self-generated poloidal fields create helical magnetic surfaces wrapping the torus that

confine the hot plasma core needed for fusion.

The ITER reactor currently under construction will use a 5 T external field with a major

radius of R0 = 6.2 m and minor radius of a = 2.0 m, for an aspect ratio of approximately 3.2.

An 830 m3 volume of plasma will be confined with an average electron density 1.1×1020 m−3

at an average temperature of 8.9 keV [24]. In this regime the plasma will be dominated largely

by the dynamics of the magnetic field. A good indicator of this behavior is the measure:

〈β〉 =
pplasma

pmagnetic

=
nkbT

(B2/2µ0)

From the above parameters, ITER is expected to operate at 〈β〉 ≈ 0.014. The device is

expected to sustain 500 MW of fusion power for 400 s using an input power of 50 MW,

making ITER a promising prototype for widespread fusion energy [24]. Sustained fusion is,

however, still dependent on advances in material science, engineering, and plasma physics.

1



The presence of a current within the plasma results in the tokamak being susceptible to

instabilities which can lead to disruptions. The scalar safety factor q(r) = rBt(r)/R0Bp(r),

where r is the local minor radius, is an effective measure of the susceptibility of an equi-

librium to current driven instabilities. Surfaces with rational q values resonate with linear

perturbations of the form F (r, θ, φ) = f(r) exp ı(mθ − nφ), where m and n are the poloidal

and toroidal modes numbers such that q = m/n. Generally, higher safety factors are less

vulnerable to current driven modes. Unfortunately, the safety factor is lowest near the in-

ternal plasma current. If unstable modes arise in this region and disrupt the current, they

can lead to a loss of plasma confinement and potentially damage the device. In this thesis

we will consider one such mode.

The conventional tokamak design features a single, strong current channel which lies

along the magnetic (major) axis of the torus. In such configurations the safety factor is

monotonic within the plasma, rising from its lowest value near the plasma core until the

edge. If q drops below one at the core it may become unstable the m = 1, n = 1 kink-tearing

mode, a well understood instability. The kink-tearing mode is a reconnecting instability,

meaning it is able to change the magnetic topology and release the energy stored in the

field. In doing so, it disrupts the core current and allows the plasma to collapse outward,

resulting in a ‘sawtooth crash’ [34]. When kinetic physics is included, however, the presence

of a plasma pressure gradient creates equilibrium diamagnetic drifts. Such drifts interfere

with the reconnection process and can stabilize the m = 1, n = 1 kink-tearing mode [41].

It is this success of diamagnetic drifts at stabilizing and even saturating the kink-tearing

mode that has motivated the work in this thesis, where we examine a similar instability in

tokamaks with reversed magnetic shear.

The reversed-shear configuration was developed to avoid many of the problems of con-

ventional designs. Instead of a single plasma column, the internal current is driven in an

annular ring surrounding the magnetic axis. The safety factor profile is non-monotonic with

the minimum q near the current ring. This design typically results in higher minimum safety
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factors, but it also results in two surfaces with the same safety factor being close to each

other, bracketing the current annulus. These two surfaces may couple to form a single re-

connecting instability, called the double-tearing mode (DTM). Some experimental [17, 22,

46] and numerical [17] results suggest that low mode number DTMs (m = 2, 3) may be

responsible for ‘off-axis sawteeth’, in which the annular current ring is disrupted and core

temperature collapses. Frequently, however, reversed-shear devices feature steep pressure

profiles peaked at the magnetic axis [59], know in the literature as internal transport barri-

ers (ITBs). These pressure profiles will result in diamagnetic drifts in the neighborhood of the

annular current, and thus may impact the double-tearing mode. Motivated by similarities

in the nonlinear evolution of DTMs and the m = 1 kink-tearing mode we have performed a

simulation study to examine what role diamagnetic drift effects have in stabilizing an m = 2,

n = 1 double-tearing mode in cylindrical geometry.

The dynamics of the double-tearing mode under the influence of diamagnetic drifts exhibit

a complex interaction of several different mechanisms. In order to understand the final,

cylindrical simulation results we will begin with the simplest manifestation of the DTM and

build toward the full nonlinear behavior. Many characteristics of the double-tearing mode

are poorly understood, and there are significant gaps in the existing literature. Only the

simplest linear instabilities are well explored analytically. A plethora of linear and nonlinear

simulation simulation studies exist, but their relationship both to each other and to the

linear theory is not well defined. Therefore in order to provide sufficient context for our

nonlinear simulation results, much of this thesis consists of original work interspersed with

reviews of existing literature as necessary to chart a complete path. To achieve this goal,

this thesis is structured as follows. Chapters 1 and 2 will review necessary background

material for our study. In Chapter 1 we will introduce the the magnetohydrodynamics

model implemented in our simulation code MRC-3d and explain its relationship to both the

kinetic description of plasmas and to the two field reduced approximation commonly used for

analysis. Utilizing these basic model equations, Chapter 2 will define the necessary conditions
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for MHD equilibrium and introduce the magnetic configurations used for the simulations in

this work. The manifestation of diamagnetic currents and drifts will follow naturally from

this discussion.

Our first introduction to the double-tearing mode instability itself will be in Chapter 3,

where we will review the existing boundary layer analysis of Pritchett et al. [39] in the

comparatively simple force-free Cartesian slab and confirm that linear MRC-3d simulations of

the DTM follow this theory. In Chapter 4 we will show that an equilibrium sheared flow can

interfere with the coupling between the two reconnecting surfaces and slow the mode growth.

We present a new boundary layer analysis that shows the emergence of a new singular layer

structure, and use linear MRC-3d simulations to both confirm our analysis and connect it

to prior linear simulation studies. In Chapter 5 we introduce kinetic physics through the

Hall term and confirm that the double-tearing mode singular layers experience the same

modifications with finite ion mass as do other reconnecting instabilities. We then show that

the diamagnetic drifts allowed by the Hall term provide a decoupling mechanism similar to

shear flow while also providing additional stabilization. We close our linear discussions in

Chapter 6 by examining in what ways the cylindrical DTM does or does not resemble its

more tractable Cartesian counterpart, reviewing the existing force-free linear literature and

presenting new observations of ideal MHD instability and diamagnetic drift stabilization.

The nonlinear behavior of the double-tearing mode is defined largely by how it differs

from other reconnecting instabilities, so in Chapter 7 we will review the fundamental termi-

nology and classification of the more approachable single-tearing mode. With this foundation

established, we will review the current understanding of nonlinear DTM evolution in Chap-

ter 8, identifying the various phases of evolution and potential final states. We will conclude

this chapter by categorizing the cylindrical DTM that is the focus of this work. In Chap-

ter 9 we will reintroduce Hall MHD physics and present our nonlinear simulation study of

the cylindrical DTM in the presence of diamagnetic drifts. Building on our linear study of

Chapter 6, we will show that equilibrium diamagnetic drifts can nonlinearly stabilize the
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double-tearing mode and even result in a saturated state. Their efficacy depends strongly,

however, on where the pressure gradient is located.

Finally, in Chapter 10 we will summarize the important results of this thesis, and identify

several avenues of research which we feel will be beneficial to understanding and stabilizing

the double-tearing mode.
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Chapter 1

Fundamental magnetohydrodynamics

This thesis examines the evolution of the reconnecting double-tearing mode using the

magnetohydrodynamic (MHD) plasma model, which treats a plasma as a single conducting

fluid. This approximation neglects significant domains of the relevant physics, in particu-

lar the two-fluid differential behavior of electrons and ions and the motions of individual

particles. Despite these limitations MHD serves as a useful first order approximation in

many physical systems, including magnetic reconnection. Typically the gross dynamics of

reconnecting plasmas are described by the simplest magnetized-fluid model (ideal MHD)

except in a very narrow region of the domain. Within this thin layer the different variants

of magnetohydrodynamics implement approximations to microscopic particle physics while

remaining analytically and computationally approachable.

In this chapter we will briefly review the fundamental extended-MHD model used by the

simulation code MRC-3d and discuss its relation to the many-particle kinetic physics which

more accurately describes plasmas. Particular detail will be paid to the ‘generalized Ohm’s

law’ (which governs the relationship between the electric field and plasma), and how higher

order terms may have a significant effect on reconnection processes. We will then heuristically

derive the common incompressible, resistive, reduced MHD (rMHD) model that we will use

for linear analysis. These two discussions will form the basis of the simulation and analytic

work in this thesis.
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1.1 The MRC-3d model

The collective kinetic properties of a plasma can be described by the Boltzmann equation:

∂f

∂t
+ v · ∇f +

F

m
· ∇vf =

δcf

δt
(1.1)

which describes the evolution of a distribution function f with some collisionality described

by the operator δcf/δt and under the influence of some force F. The operator F typically

includes the Lorentz force and (if significant) gravity. The MHD approximation can be

derived from the velocity space moments of the equations governing each species s of the

plasma:

∂

∂t

∫
V

d3vMnfs =

∫
V

d3v

(
−Mn ⊗ v · ∇fs −Mn(

F

m
· ∇v)fs + Mn δcfs

δt

)
(1.2)

Mn ≡ v ⊗ v · · · ⊗ v
n

(1.3)

The first term on the r.h.s. of Equation 1.2 results in the time evolution of the n-th moment

being dependent on the moment of order n + 1. Thus at some point a closure must be

assumed to truncate the system. The set of equations used in the MRC-3d simulation code

correspond to truncation after the first order moment, leaving the 2nd order moment (or

pressure tensor) undefined. We chose the common closure of a scalar pressure governed

by a polytropic equation of state. This approximation, together with several concerning

the electron and ion distributions that we will address later, results in a set of equations

commonly termed Hall MHD.
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∂ρ

∂t
= −∇ · (ρU) (1.4)

∂P

∂t
= −∇ · [ρUU−BB + I(p+B2/2)− ρν∇U] (1.5)

∂Te
∂t

= −U · ∇Te − (γ − 1)Te∇ ·U (1.6)

ps = ρTs (1.7)

p = pe + pi = (1 + τ)ρTe (1.8)

E = −U×B +
di
ρ

(J×B−∇pe) + ηJ (1.9)

∂B

∂t
= −∇× E (1.10)

J = ∇×B (1.11)

The dynamic variables are scalar fields ρ and Te representing the mass density and electron

temperature, the magnetic field B, and the bulk plasma momentum field P = ρU. As written

this model is fully dimensionless [16], with the normalization set by choosing a characteristic

length scale L, magnetic field strength B0, and density ρ0. Velocities are then normalized

by the characteristic Alvén speed vA = B0/
√
µ0ρ and times by the Alfvén time τA = L/vA.

Normalizations for temperature and the diffusion parameters follow from these stipulations.

Worthy of particular comment is the ion-inertial length di, as it is a reintroduction of

kinetic physics to the MHD model. In the microscopic picture di represents the characteristic

length scale of ion motions in response to an electrostatic perturbation:

di =
c

ωpiL
=

1

L

√
m2
i

ρ0e2
(1.12)

where c is the speed of light, ωpi is the ion plasma frequency, mi is the ion mass, e is the

ion charge (assuming protons), ρ0 is the characteristic density, and L is the length scale

normalization. Thus in the MHD model di is a characteristic length scale fixed by the ion
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mass and characteristic density. In the kinetic picture any local variations in density modify

the ion plasma frequency and thus formally modify the ion inertial length, but in MHD it is

customary to handle these variations via the factor of 1/ρ in Equation 1.9.

As a final comment we note that Equation 1.5 is known as the equation of motion or the

momentum equation, and is written here as a single divergence to emphasize the conservation

properties. Its more common form better illustrates the balance of J×B Lorentz forces and

∇p pressure forces, as well as being somewhat easier to manipulate:

ρ
∂U

∂t
= −ρU · ∇U + J×B−∇p (1.13)

where U is the mean plasma velocity field and we have used the mass conservation equa-

tion (1.4) to re-order the time derivative. When considering reductions of this model and

equilibrium conditions we will typically prefer Equation 1.13. The divergence form of Eqn. 1.5

is, however, used numerically.

The full derivation of the extended MHD equations from moments of the Boltzmann

equation (1.1) is widely available in reference texts (see Ref. [25, 43], for example) and will

not be reproduced here. Instead we will briefly comment on the assumptions required to

achieve this comparatively simple set of equations and consider the restrictions they place on

the validity of the MRC-3d model, and thus on any conclusions drawn from its simulations.

1.1.1 Fluid equations

The mass and momentum conservation of each independent particle species s has been

reduced to the single set of Equations 1.4 and 1.5 describing the bulk plasma density ρ

and momentum P. Reducing to the form above requires assuming a plasma composed of

electrons and massive ions such that me � mi, which is valid in most physical domains of

interest. As a consequence, the lowest order expression of the plasma momentum depends
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only on the ion fluid:

P =
∑
s=i,e

ρsus ' ρiui (1.14)

This reduction of the momentum contains the implicit assumption that the electron and

ion densities are approximately equal. MHD validity requires that the stronger ‘quasi-

neutrality condition’ hold across the entire domain, i.e. qin(x)i − en(x)e ' 0 where ni,e

is the ion/electron number density, qi the ion charge, and −e the electron charge. Quasi-

neutrality removes the contribution of the electric field E to the momentum equation and

reduces the number of dynamic variables. For this assumption to be valid, however, the

scale of motions must be much larger than the Debye length λD =
√
ε0T/n0e2, which is

the characteristic length at which electrons within a plasma screen charge inhomogeneities.

MHD is valid only as at scales much larger than these microscopic variations.

With these limiting assumptions the momentum equation can be derived from the first

order moments of the Boltzman equation and should contain the pressure tensor, which de-

pends on the next highest order moment. To truncate the moment expansion the MRC-3d

variant of MHD replaces this tensor with a scalar p, which restricts this model to isotropic

pressures. Rather than evolving p directly, Equation 1.6 advances the electron temperature

Te and, together with the definitions of Eqns. 1.7 and 1.8, acts as the fluid closure. Taking the

polytropic index γ to be 5/3 results in a formulation equivalent to an adiabatic equation of

state. This particular choice of scalar pressure evolving adiabatically is arguably the weakest

in the MHD model, as it fundamentally presumes that the plasma distribution function be

sufficiently thermalized that it is approximately Maxwellian. Typical magnetospheric and

(to a lesser degree) fusion plasmas are nearly collisionless and frequently magnetized, which

results in strong anisotropy. Furthermore, kinetic simulations have shown that reconnection

processes such as the DTM result in and are affected by these non-Maxwellian distributions.
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Despite these limitations the scalar, adiabatic pressure closure has been successful in repro-

ducing many of the observed feature of reconnection [11], and in this work we will be focusing

on the large scale characteristics of double-tearing modes rather than detailed microscopic

features.

The particular variant of MHD used in MRC-3d makes a concession to low plasma colli-

sionality: the electrons and ions are allowed to have different temperatures via the parameter

τ = Ti/Te, and thus different pressures. This ratio, however, is fixed across the entire domain

and the temperatures are not allowed to evolve separately, so in practice is most useful for

simulating the cold-ion regime τ = 0. Note that the momentum equation (1.5) depends only

on the bulk pressure p = pe + pi, and the only instance where the electron and ion pressures

act separately is Equation 1.9.

1.1.2 Ohm’s law

The dynamics of the fluid variables ρ, P, and T are important to studies of magnetic

reconnection, however the additional physics introduced by relaxing the assumptions dis-

cussed above typically results in higher order effects such as structural changes or stability

thresholds. While these are important for accurately predicting and understanding observa-

tions, additions to Equation 1.9 directly govern (via Eqn. 1.10) the evolution of the magnetic

field and have a more dramatic impact. As such, for the purpose of reconnection studies

the particular ‘flavor’ of magneto-hydrodynamics is frequently named after which terms are

included in this equation, called ‘Ohm’s law’. To examine the effects of the various physical

processes included and omitted from the MRC-3d model we will consider a more generalized

expression. In MHD models Ohm’s law is the remnant of the electron momentum equation

that was largely neglected by assuming mi � me in Eqn. 1.5. Considering higher order

contributions in this limit allows the reintroduction of some kinetic physics to the system.
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The most common terms are labeled below.

E = −U×B
Convection

+

FLR

di
ρ

(J×B−∇pe) + ηJ

Resistive

+

Electron Inertia

d2
e

ρ

dJ

dt
− η2∇2J

Hyper-resistive

(1.15)

If only the convection term is present the model is labeled ‘ideal MHD’ and treats the

plasma as a perfectly conducting fluid. This lowest order approximation results in the ‘frozen-

in-flux’ theorem which states that the plasma and magnetic field are bound together. The

Finite Larmor Radius (FLR) term relaxes this assumption by treating the ions as having

finite mass, and thus they gyrate around the magnetic field with a finite radius. In particular,

the Hall current term diJ × B/ρ has a dramatic impact on reconnection physics [11] and

we will frequently refer to inclusion of FLR effects as ‘Hall MHD’, although the electron

pressure gradient ∇pe must be included at this order for the approximation to be consistent.

If only these first two terms of Ohm’s law (convective and FLR) are present reconnection

is not possible. Due to the ideal MHD frozen-in theorem and mass conservation, the topology

of the magnetic field cannot change. FLR effects only result in the field being bound to the

electron fluid rather than the bulk plasma. Therefore at least one of the remaining terms (or

some other physical mechanism) must be included to allow the magnetic fields to decouple

from the plasma and undergo topology changes.

The resistive term is the simplest to implement but requires the assumption of some

collisional process to generate a significant resistivity η, which is often not physically cor-

rect for the system of interest. A better approximation requires one to allow that electrons

have finite mass, which results in the electron inertia term. The magnetic field is then no

longer frozen into the electron fluid and reconnection can occur. This term is, however,

computationally challenging in that the time derivative of the magnetic field ∂tB acquires

an implicit dependence on the convective derivative of the current dtJ = dt(∇ × B). Fur-

thermore, electron inertia driven reconnection occurs on the scale of the electron skin depth
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de = c/ωpe, where ωpe is the electron plasma frequency. The relative size of this scale com-

pared to the ion inertial length di = c/ωpi is directly dependent on the the ion/electron mass

ratio di/de = ωpe/ωpi =
√
mi/me. For a simple proton-electron plasma the realistic ratio

mi/me ≈ 1836 results in a scale separation di/de ≈ 43. Large scale plasma motions (such as

Alfvén waves) typically occur on scales much larger than di, so one is required to simulate

widely disparate lengths. As a consequence, it is common to use unphysical mass ratios

to reduce computational costs, though more sophisticated techniques (e.g. adaptive mesh

refinement) can alleviate this effect. Finally, the hyper-resitive term represents a dissipa-

tive effect that occurs near electron scales. A formal definition of the dissipative coefficient

η2 shows it depends on a viscosity coefficient and the electron mass, however this term is

frequently included even when de is taken to be zero under the justification that η2 can be

enhanced anomalously due to small scale turbulence or magnetic stochasticity [13].

Many more minor variations on one-fluid MHD exist, and frequently the choice of model

and included terms depends on what physics is expected in the problem. The current study

of double-tearing mode reconnection will use Equations 1.5-1.8 for the plasma dynamic vari-

ables and Equation 1.9 to evolve the magnetic field. This variant of Ohm’s law includes

finite Larmor radius effects (when di 6= 0) and uses resistivity to break field lines and allow

reconnection. We will refer to simulations and analysis which include these FLR effects as

‘Hall MHD’, and when they are not present we will refer to ‘resistive MHD’. This implicit as-

sumption of collisionality is better justified in high density fusion plasmas than other regimes

(for example, magnetospheric) but the challenges of numerical simulation will frequently re-

quire unphysically large values of η. Though many of the details of the reconnection process

will be incorrect, previous simulation studies [11] have shown that resistive Hall MHD is the

minimal set to correctly reproduce many of the broad characteristics of fully kinetic recon-

nection. In particular the current sheet morphology and outflow are approximately correct,

as well as potential stabilizing effects such as the diamagnetic drift that we are considering

in this work. In later chapters we will show that even in this simplified model there is much
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that is not understood about double-tearing mode evolution.

1.2 Reduced MHD

The full set of MRC-3d MHD equations describe two scalar fields (ρ and T ) and two vector

fields (P and B) for a total of eight independent variables in three dimensions. While modern

computational techniques allow the use of this full set of MHD equations in simulations, it is

somewhat unwieldy for analytic work. In this section we derive a two dimensional, two field

reduced MHD (rMHD) model that we will use for the linear analysis of the double-tearing

tearing mode in this thesis. This rMHD model will only be valid in the presence of a large,

mean magnetic field (or ‘guide field’) and will only encapsulate resistive MHD. Finite Larmor

radius effects cannot be included in this model without introducing additional dynamic

variables (see, for example, the Hazeltine four-field model [26]). The impact of FLR physics

on the double-tearing mode has not (to the authors’ knowledge) been addressed analytically.

A rigorous derivation of the rMHD equations is somewhat involved (see Ref. [61]) and outside

the scope of this work. Our goal in this section is to provide a basic understanding of the

regime in which the reduced model is valid and the origin of its various components. To that

end we will follow a heuristic derivation similar to that found in References [12] and [43].

We assume the plasma is embedded in a strong, nearly uniform field. For simplicity we

choose to use Cartesian geometry and orient the ẑ axis along this strong, mean, guiding

magnetic field. This reduction is also appropriate to tokamak fusion devices, where the ratio

of the toroidal to poloidal fields is typically on the order of the device aspect ratio. In either

geometry we assume that the magnetic fields in the perpendicular (x-y or poloidal) plane

are much smaller than the guide field:

Bz � B⊥ ∼ ε (1.16)
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Furthermore, we assume the dynamics lead to approximate equipartition of the energy

sources within the plane such that:

|P⊥|2

2ρ
∼ |B⊥|

2

2
∼ p ∼ ε2 (1.17)

In a rigorous derivation the the in- and out-of-plane derivatives can be ordered by restrict-

ing the timescales of interest [61]. We will instead consider the following heuristic argument.

The magnetic field lines in this high guide field regime lie predominantly in ẑ direction, with

a small in-plane component. Imagine perturbing a field line in a fashion similar to plucking

a string. The scale of motion along the guide field direction will be of a much longer wave-

length than the in-plane motions. This conceptual model informs the derivative ordering

ansazt:

∇⊥ ∼ 1, ∂z ∼ ε (1.18)

In the presence of a strong guide field, therefore, the plasma is two dimensional to lowest

order.

Equations 1.16, 1.17 and 1.18 are the fundamental ordering assumptions of reduced MHD,

and are generally appropriate to the slow (compared to Alfvén wave timescales) motions of

high-guide field, low β plasmas such as those found in fusion devices. We will now apply

them to the MHD equations to derive the two-field model.

Any variation of the plasma in the ẑ direction will quickly be propagated along the guide

field by magnetosonic waves. Therefore we may assume that on the timescales of the in-plane

dynamics the plasma maintains approximate pressure balance in the out-of-plane direction:

∂z

(
p+

B2

2

)
≈ 0 (1.19)
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The momentum equation (1.13) then implies that the velocity Uz in this direction is constant

to lowest order, and we set Uz = 0 for simplicity.

We write the out-of-plane magnetic field as

Bz = Bz0 + δBz (1.20)

where Bz0 is large and constant, and δBz is nonconstant and of (currently) indeterminate

small magnitude. Expanding Eqn. 1.19 and substituting for Bz:

∂

∂z

(
B2
⊥

2
+BzδBz +

δB2
z

2
+ p

)
≈ 0 (1.21)

Applying Eqn. 1.17 yields

δBz ∼ ε2 (1.22)

We have now fixed the relative magnitudes of all the original MHD dynamic variables

with the exception of the density ρ. This oversight will be address shortly. First, however,

we write B⊥ in terms of the gradient of a scalar:

B ≈ ∇ψ × ẑ +Bz ẑ (1.23)

The scalar ψ is called the magnetic flux function (or commonly just ‘flux function’), and

is equal (to lowest order) to the out-of-plane vector potential, i.e. ψ = Az + O(ε3). Thus

this expression for the magnetic field no longer exactly satisfies the constraint that B be

divergence free, with corrections emerging at order ∇ ·B ∼ ε3.

The scalar field ψ describes the in-plane magnetic configuration in rMHD, and is constant

along magnetic field lines. In fact, any quantity f can be considered a ‘flux function’ if it

is constant along field lines, B · ∇f = 0. However generally ψ is meant by this term, as it
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emerges naturally in 2D systems. Calculating the current density J = −∇×B we see that

Jz = −∇2
⊥ψ ∼ ε (1.24)

J⊥ ∼ ε2 (1.25)

Recall Faraday’s law (Eqn. 1.10) in resistive MHD:

∂B

∂t
= −∇× E = ∇× (U×B− ηJ) (1.26)

Integrating both sides and considering the in-plane components we get

∂A⊥
∂t

= (U×B)⊥ − ηJ⊥ −∇⊥χ (1.27)

where A and χ are the vector and scalar potentials. Considering the definition Bz = ẑ ·

(∇⊥ × A⊥), and recalling that the nonconstant portion of Bz is δBz ∼ ε2, then Eqn. 1.27

can be reduced to an ordered form:

U×Bz0ẑ −∇⊥χ = ε2 (1.28)

To lowest order, therefore, the in-plane velocity can be described by a scalar stream function

φ = χ/Bz0 such that

U⊥ = ẑ ×∇φ (1.29)

Equation 1.29 implies that the plasma flow is incompressible, ∇·U = 0. We have, therefore,

ordered out the original equation of state (1.6) and replaced it with incompressibility. As a

consequence, we can set the plasma density to a constant ρ = ρ0 and it will not evolve (see

Eqn. 1.4), and thus have removed it as a dynamic variable.
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We can now return to Faraday’s law (Eqn. 1.10) and consider the ẑ component of the

integrated expression:

∂Az
∂t

= ẑ · (U×B)− ηJz +
∂χ

∂z
(1.30)

Expanding in terms of ψ and φ and keeping only the lowest order contributions, we arrive

at an expression for the time derivative of ψ involving only the reduced fields.

∂ψ

∂t
= − [φ, ψ] + η∇2

⊥ψ (1.31)

where the Poisson bracket is defined as [f, g] = (∇⊥f ×∇⊥g) · ẑ.

All that remains is to find a similar expression for the stream function φ. To do so, we

take the curl of the momentum equation (1.13) and consider the out-of-plane component

ρ0ẑ ·
[
∂ω

∂t
−∇× (U× ω)

]
= ẑ · ∇ × (J×B) (1.32)

where we have defined the vorticity ω = ∇×U and applied the vector calculus identity

U · ∇U = ∇ (U ·U/2)−U× (∇×U) (1.33)

Expanding the convective term and recalling that the velocity is incompressible (∇ ·U = 0)

and confined to the plane (Uz = 0):

ẑ · ∇ × (U× ω) = ẑ · (ω · ∇U−U · ∇ω) (1.34)

= −U⊥ · ∇⊥ωz (1.35)
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A similar process can be applied to the r.h.s. of Eqn. 1.32.

ẑ · ∇ × (J×B) = ẑ · (B · ∇J− J · ∇B) (1.36)

= B⊥ · ∇⊥Jz +Bz
∂Jz
∂z
− J · ∇Bz (1.37)

≈ B⊥ · ∇⊥Jz (1.38)

where we have kept only the lowest order terms. Assembling these expansions we arrive at

an equation for the vorticity

ρ0

[
∂ωz
∂t

+ U⊥ · ∇ωz
]

= B⊥ · ∇⊥Jz (1.39)

Using the definitions ωz = ∇2φ and Jz = −∇2ψ we can collect the vorticity equation (1.39)

and the induction equation (1.31) to get a complete set of resistive reduced MHD equations

in terms of the flux function ψ and stream function φ.

∂∇2φ

∂t
= −

[
φ,∇2φ

]
+
[
ψ,∇2ψ

]
(1.40)

∂ψ

∂t
= − [φ, ψ] + η∇2

⊥ψ (1.41)

where again the Poisson bracket is defined as [f, g] = (∇⊥f ×∇⊥g) · ẑ.

Formally the model of Equations 1.40 and 1.41 is termed incompressible, low β, resistive

reduced MHD. This precise name reveals what effects have been removed from the model,

either by assumption or by ordering them out. The fundamental restriction of rMHD, even in

a more rigorous derivation (e.g. Ref. [61]), is that the plasma is embedded in a strong mean

field, or ‘guide field.’ To this we added the assumptions that variations along the guide

field occur on a much larger spatial scale and much shorter time scale than the in-plane

motions, and that the in-plane dynamics lead to approximate energy equipartition. From

these constraints we were able to order out the pressure, out-of-plane magnetic field, and

out-of-plane velocity, as well as show that the system is approximately 2D and introduce the
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flux function ψ. As a consequence, the in-plane fluid flow is nearly incompressible and we

introduced the stream function φ. We then manipulated the MHD induction and momentum

equations (1.13) and 1.10) to arrive at the closed set of Equations 1.40 and 1.41, which are

more tractable for linear analysis than the full MHD equations. We will use this model for

the analytic portions of Chapter 3 and 4, and show that they accurately represent the full

MRC-3d MHD model in the presence of strong guide field.

1.3 Discussion

In this chapter we have introduced the Hall MHD model we will use for simulation work

in this thesis and discussed its relation to the fully kinetic plasma model. The MRC-3d model

accurately represents the plasma dynamics at and above the characteristic scale of ion mo-

tions, but neglects microscopic effects related to electrons. Generally the small scale electron

physics becomes important only in the immediate neighborhood of the reconnection site, and

we will see in later chapters that the unique properties of the double-tearing mode occur at

much larger, ideal MHD lengths. Even within the regime of resistive MHD much of the DTM

behavior is currently poorly understood, and thus it is useful to examine the resistive and

Hall MHD behavior of the DTM before introducing higher-order electron physics. We will

see that even in Hall MHD it is challenging to accurately resolve the resistive, ion-inertial,

and ideal MHD length scales, and thus future work in kinetic or two-fluid models will require

the inclusion of more advanced numerical techniques (such as adaptive mesh refinement) into

the MRC-3d code.

We have also introduced the two-field, resistive, incompressible, reduced MHD model

which is used for analytic theories in both this work and the existing literature [37, 39].

This simplified model is an established tool for examining linear reconnection, and we have

shown how it emerges from the full MHD model in the presence of a strong guide field

with constraints on the in-plane variations. We have benchmarked MRC-3d against analytic
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growth rates for many linear reconnecting modes and found excellent agreement, although

we do not include these validation results here. In Chapter 3 we will explicitly compare the

predictions of Pritchett et al.’s linear DTM theory and show that it accurately describes the

DTM in MRC-3d simulations in the high guide field regime. Based on this validation we will

propose an rMHD theory of double-tearing mode evolution in the presence of equilibrium

sheared flows, and again confirm our analysis with simulation results. Thus the relatively

simple reduced model given here is a good descriptor of the lowest order behavior of DTMs in

the resistive MRC-3d model, although it must be abandoned when we introduce FLR effects

in Chapter 5.
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Chapter 2

Equilibrium properties

Both initial value and eigenmode simulations require establishing an equilibrium unstable

to the mode of interest. As we will see in Chapter 3, reconnection is fundamentally a

boundary layer problem with large scale, smooth ideal MHD processes dominating the system

behavior except in a narrow region of the domain. The location of this layer is determined

by where the interaction of a perturbation with wave vector k and the equilibrium magnetic

field B is negligible. This requirement can be expressed as a resonance condition:

k ·B = 0 (2.1)

The double-tearing mode requires that Equation 2.1 be true at two independent surfaces in

the domain. In this chapter we will review the conditions that a field and plasma configura-

tion must satisfy in order to be considered an MHD equilibrium, and define the profiles we

will use in Cartesian and cylindrical geometries that satisfy the DTM resonance condition.

The diamagnetic effects needed for our stabilization studies emerge from the properties of

the equilibrium so we will also explain their appearance in the MRC-3d model and the mod-

ifications necessary to our equilibria for their inclusion.

2.1 MHD equilibrium conditions

In principle the time derivatives of the MHD dynamic variables B, U, ρ and T must

be zero for a given configuration to be consider in equilibrium, i.e. the right hand sides of

Equations 1.4, 1.5, 1.6, and 1.9 must vanish. For the slab and cylindrical geometries that we
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consider in this work, however, only the momentum equation (1.5) and Ohm’s law (Eqn. 1.9)

are non-trivial to satisfy.

Our primary concern when constructing an equilibrium is that the total time derivative

of the fluid momentum is zero. Static equilibria require that the plasma flow be zero, which

reduces this requirement from dtP = 0 to ∂tP/∂t = 0. In arbitrary geometries it is difficult

to prescribe flow profiles such that the convective derivative is zero, so we will generally

focus on static equilibria except in Chapter 4 when we specifically consider the effects of

background flow in a highly symmetric system.

From the MHD momentum equation (1.13) with v0 = P0 = 0 we derive a static equilib-

rium condition.

0 = J0 ×B0 −∇p0 (2.2)

Exploiting the constraint ∇ ·B = 0 and the definition J = ∇×B yields a condition for the

equilibrium magnetic field B0 and pressure p0:

∇
[
B2

0

2
+ p0

]
= −B0 · ∇B0 (2.3)

The left hand side of Equation 2.3 is the gradient of the ‘total pressure’, which consists of the

magnetic (B2
0/2) and plasma (p0) pressures. The ratio of these pressures is a good measure

of whether the system is dominated by the dynamics of the fluid or the magnetic field, and

we will reference it frequently throughout this work.

β =
p

pB
=

p

(B2/2)
(2.4)

Commonly we will refer to ‘force-free’ equilibria that require that the plasma pressure

be constant, ∇p0 = 0. When this gradient is non-zero the plasma pressure force must be
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balanced by the magnetic forces, hence the term ‘force-balanced’. In this work we will gener-

ally treat static force-free equilibria as our initial baseline system, as a constant background

pressure simplifies much of the analytic theory and instabilities in this regime are better un-

derstood. The stabilization mechanisms we explore, however, will require adding equilibrium

pressure gradients that will need to satisfy the force-balanced condition.

Ideal MHD equilibria are difficult to calculate without a convenient symmetry to ex-

ploit. In this work we are concerned with two-dimensional Cartesian and helically symmetric

cylindrical configurations, which are more approachable. For a Cartesian slab we reduce the

equilibrium to 1D by requiring that all dynamic variables depend only on the x coordinate

which, due to the constraint ∇ ·B0 = 0, forces the x̂ component of the field to be constant.

The contribution of magnetic curvature (r.h.s. of Eqn. 2.3) is removed by setting B0x = 0,

leaving only the requirement that the total pressure B2
0/2 + p0 = constant. This freedom is

not generally available in curvilinear coordinates, and the curvature must be balanced. In

cylindrical geometry we will take the fields to depend only on the radius r and set B0r = 0,

so that the equilibrium condition becomes

∂

∂r

[
B2

0θ

2
+
B2

0z

2
+ p

]
= −B

2
0θ

r
(2.5)

Outside of these highly symmetric configurations ideal MHD equilibria become extremely

difficult to calculate. For example, the study of three-dimensional tokamak equilibria is a

field unto itself. To avoid these complications we will restrict our study to slab Cartesian

and periodic cylindrical geometry.

Static equilibria are more complicated when physics beyond ideal MHD is included. In

particular the addition of resistivity in Ohm’s law (Eqn. 1.15) tends to smooth out magnetic

field variations through Ohmic decay of currents. At realistic values of η this decay time is

much longer than the growth time of reconnecting instabilities, but may become an issue

when larger resistivities are used for numerical reasons. One means of enforcing a resistive
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MHD equilibrium is by imposing an external electric field to counter balance ηJ in Ohm’s

Law. MRC-3d uses a mechanism built into ‘the source term’ to optionally provided this forced

equilibrium, which is discussed in detail in Appendix A. When reporting simulation results

we will note whether or not we have allowed the equilibrium to decay, as this can have an

impact on long time behavior.

Additional terms in Ohm’s law and the other dynamical equations can have consequences

for the equilibrium. In this work, where we focus on resistive Hall MHD, we will primarily

ensure the force balanced condition is met and consider whether or not resistive decay should

be important. A non-zero ion inertial length does not invalidate the standard MHD equi-

librium requirements but does reintroduce some kinetic physics, in particular complications

related to the diamagnetic drift.

2.2 Diamagnetic systems

In the presence of magnetic fields the constituent particles of the plasma, being electrically

charged, will gyrate around field lines. The magnetic moment of this motion opposes the

external magnetic field, and as such plasmas are diamagnetic. In the presence of a plasma

pressure gradient this can be observed by the manifestation of a diamagnetic current that

has consequences for plasma flows and magnetic evolution in force-balanced equilibria.

Consider the force-balanced equilibrium condition (Eqn. 2.2) that we obtained from the

MHD momentum equation (1.13) under the restriction dP0/dt = 0. Taking the cross product

of this equation with the magnetic field B0 we obtain:

J0⊥ = J0 −
B0(J0 ·B0)

B2
0

=
B0 ×∇p0

B2
0

(2.6)

This perpendicular current results from pressure gradients of the plasma and represents a

reduction to the applied field compared to its force-free configuration. As such, it is known

as the diamagnetic current.
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The reintroduction of kinetic physics via the Hall term couples this diamagnetic current

directly into the plasma motion. Considering the Hall MHD Ohm’s law (Eqn. 1.9) for this

force-balanced equilibrium, and recalling the definition of the bulk pressure p = pi + pe, we

observe that the di scale contributions can be reduced using Equation 2.2.

J0 ×B0 −∇pe0 = +∇pi0 (2.7)

Making this substitution, taking the cross product of the entire equation with B0, and

reorganizing we find an expression for the plasma velocity perpendicular to the magnetic

field.

U0⊥ =
E0 ×B0

B2
0

+
di
ρ0

B0 ×∇pi0
B2

0

(2.8)

Here we have neglected the diffusive terms η and η2, which are much smaller than those we

have kept. The first term is present even in ideal MHD and is the fluid generalization of the

E×B particle drift. This motion is independent of the charge of the particle, and thus both

electrons and ions drift together perpendicular to any magnetic and electric fields.

The second term is of the same form as the diamagnetic current, and is known as the ion

diamagnetic drift.

v∗i = di
B×∇pi
ρB2

(2.9)

Because it includes the pressure gradient it is manifestly a fluid drift, but we can gain some

understanding of its kinetic analog by considering how it relates to the diamagnetic current.

In a microscopic picture the current is generated by relative average motions of positively

and negatively charged components of the plasma.

J = ne(ui − ue) (2.10)
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For simplicity we have assumed the ions and electrons have charges ±e and that the number

densities are approximately equal (ni ≈ ne ≈ n). By examining the part of this drift perpen-

dicular to the magnetic field we can understand the relationship between the diamagnetic

current, diamagnetic drift, and the Hall term.

ne(ui⊥ − ue⊥) =
B×∇pi + B×∇pe

B2
(2.11)

In the MHD approximation the ion mass is much larger than the electron, and thus fluid

flow is dominated by the mean ion velocity U ' ui. In the ideal limit (di = 0) the only

perpendicular fluid flow is that provided by the E×B drift, which is independent of particle

type and thus cannot produce a current. As a consequence, the current is carried entirely by

the electrons. Physically this corresponds to treating the ions as infinitely more massive than

the electrons, i.e. it is the zeroth order approximation in the small parameter me/mi � 1.

For non-zero di, however, there is a clear association between v∗i and the ion pressure gradient

contribution to the diamagnetic current.

ui⊥ =
B×∇pi
neB2

(2.12)

In the MRC-3d normalization (Sec. 1.1) the pre-factor becomes (ne)−1 → di/ρ, thus estab-

lishing that

ui⊥ = v∗i = di
B×∇pi
ρB2

(2.13)

Finite di corresponds to the first order term in me/mi, i.e. ions are treated as having finite

mass while leaving electrons as a nearly massless fluid. Therefore the ions must carry part

of the diamagnetic current and an equilibrium cannot be maintained without a bulk plasma

velocity U⊥ = v∗i.

As an important consequence of this analysis we can infer the electron diamagnetic drift
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velocity in the presence of a pressure gradient, even though they are not explicitly treated

as a separate fluid in the MHD model.

v∗e = −di
B×∇pe
ρB2

(2.14)

The addition of the Hall term adds information into the model about the motion of both the

ion and electron fluids, though it is not as complete as a full two fluid theory. It is particularly

important to note that the diamagnetic drifts are fluid drifts and not kinetic drifts of the

particle guiding centers. The inhomogeneities the particle distribution functions that result

in a pressure gradient also cause a mean velocity in the diamagnetic magnetic drift direction.

The inclusion of FLR effects in Ohm’s law allows this mean flow to manifest as a drift of the

electron and ion fluids. These effects can have a large impact on reconnecting instabilities

that we will address in Chapter 5. At present this analysis shows that if di 6= 0 then the

force-balanced condition given by Equation 2.2 is not sufficient to assure equilibrium, but we

must rather require that the ion diamagnetic drift v∗i is consistent. To avoid the challenges of

guaranteeing that the convective derivative of the bulk momentum is zero we will commonly

use the cold ion approximation, which assumes τ = Ti/Te = 0 and sets pi (and thus v∗i) to

zero. The electron drift v∗e is, however, accounted for by the static force-balanced condition

(Eqn. 2.2) and will be treated as a property of the equilibrium configuration.

2.3 Cartesian DTM unstable equilibria

In Chapter 1 we discussed how a large guide field allows Cartesian geometry to be treated,

to lowest order, as a two dimensional slab. Within this work we will take the out-of-plane

field to be Bz ≈ 10 and the in-plane fields will be order one, so that the system has (unless

otherwise stated) β = 0.02. To satisfy equilibrium condition (Eqn. 2.2) we specify the in-

plane field and, if appropriate, pressure profile, and vary Bz as necessary to balance the
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pressures. This variational part of Bz will be small compared to the in-plane fields (see

Sec. 1.2).

With the symmetry provided by the guide field the resonance condition (Eqn. 2.1) reduces

to a simple constraint on the in-plane field.

kxBx(x, y) + kyBy(x, y) = 0 (2.15)

We choose the x coordinate to be bound by conducting walls with periodic boundaries in

y. The natural choice for the instability wave vector in such a domain is k = kŷ. Resonant

layers will then occur when By(x) = 0, where we have taken the in-plane field to be one

dimensional for simplicity. In Cartesian slabs we will always constrain the reconnecting field

to be symmetric about x = 0, though this bilateral symmetry is not typically possible in

more complicated geometries. Subject to these restrictions there are two equilibria which

are commonly used for DTM simulation studies: a scaled sech; and the sum of two tanh

functions.
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(a) The sech equilibrium excels at free modification of the
tearing surface spacing xs while keeping the local shear
at each surface constant. B′y(±xs) = π/2 in all the plot-
ted curves. It produces, however, large variations in the
magnitude of the magnetic field between the surfaces, es-
pecially at large separations.
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(b) Holding the tearing surface separation constant (xs =
0.8 above) while changing the local magnetic shear pro-
duces large changes in the equilibrium field. This large
variation in magnetic energy between the surfaces, es-
pecially at steep gradients, can be troublesome in DTM
studies.

Figure 2-1: Variations of spacing and shear for the sech equilibrium.
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The majority of existing simulation work uses a reconnecting field shaped as a scaled and

shifted sech, popularized by the foundation linear DTM work of Pritchett et al. [39]:

By(x) = 1− (1 +Bc) sech(ζx) (2.16)

Bc and ζ are free parameters chosen to set specific locations for the tearing layers and the

magnetic shear. Specifying that tearing layers occur at x = ±xs requires that By(±xs) = 0,

giving the condition

ζxs = sech−1

[
1

1 +Bc

]
(2.17)

The remaining parameter Bc is then calculated using a root-finding algorithm to set the

derivative of the magnetic field at x = ±xs. A typical choice is B′y(±xs) = ±π/2. Examples

of this equilibrium for various scalings of separation and shear are shown in Figure 2-1 and

clearly illustrate both the benefits and detriments of this choice. The equilibrium is always

smooth and symmetric, and the simple inversion used to find ζ guarantees that the tearing

surfaces will occur at ±xs. Increasing either the separation or the shear, however, requires

also increasing the amplitude of the magnetic field between the surfaces. This restriction can

make scaling studies that depend on the free magnetic energy between the surfaces difficult.

The double-tanh field is less widely used. It is based on the Harris sheet equilibrium

commonly used for single tearing mode studies and is sometimes called ‘double-Harris’.

By(x) = B0

[
1 + tanh

(
x+ x+

λ+

)
− tanh

(
x+ x−
λ−

)]
(2.18)

Symmetric examples of this field are plotted in Figure 2-2 with x± = ±x0 and λ± = λ0. At

wide separations (large x0) and steep gradients (small λ0) the asymptotic flatness of the tanh

allows the free parameters to map directly to the locations of the tearing layers (xs ' x0) and

magnetic shear (B′y(±xs) ' λ−1
0 ). When this property holds the amplitude of the magnetic
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(a) At wide enough separation, variations in x0 for the
double tanh equilibrium will result in peak magnetic field
and local shear that are constant outside of exponentially
small corrections. The plotted curves, all using λ−1

0 = 2π,
show that there is a minimum x0 for a given λ such that
B′y(±xs) ' ±λ−1

0 and xs = x0, and below this value
the corrections at each surface from the tanh at the other
become significant.
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(b) The magnetic shear at each surface can be freely
modified by varying λ0 provided that the tanh centers
±x0 are large enough. In the above curves the spacing
xs ' x0 = 0.8 is constant and the shear at each surface
can be represented as B′y(±xs) ' ±λ−1 for steep gradi-
ents. Large values of λ, however, produce unpredictability
in both separation (xs 6= x0) and shear (B′0 6= λ−1

0 ).

Figure 2-2: Variations of x± and λ for the double-tanh equilibrium.

field between the surfaces remains constant. In the opposite case, however, the nonconstant

regions of each tanh overlap and these beneficial properties are lost.

The utility of an equilibrium in scaling studies depends on how easily one can change

a single parameter while keeping other relevant factors constant. It will be shown in later

chapters that the linear and nonlinear behavior of the double-tearing mode depends primarily

on the separation of between the tearing layers, the magnetic free energy between them, and

the local magnetic shear. With respect to these parameters the above two equilibria are

desirable in different regimes. The sech is advisable when magnetic shears are low and layers

are close together. In contrast, the double-tanh field is recommended when surfaces are

far apart and the steep gradients are desired. Furthermore, the double-tanh equilibrium

supports asymmetric field configurations, which is necessary for accurate comparison to

tokamak plasmas. Most of the Cartesian simulations presented in this work, however, are

conducted using the sech equilibrium to allow easier comparison to existing work. We will

use the double-tanh only when directly comparing to cylindrical simulations.
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2.3.1 Pressure gradients

To consider the effects of diamagnetic drifts we will add a density gradient that follows

the symmetry of the magnetic field.

ρ(x) = ρ0 + ∆ρ

[
1 + tanh

(
(x− xs)
λρ

)
− tanh

(
(x+ xs)

λρ

)]
− ρshift (2.19)

ρ0 is the constant background density, which we typically take to be 1. The gradient prop-

erties are controlled by the scale height (∆ρ) and width (λρ) of the density shear. To avoid

potential issues with changing the normalization parameters within the resonant layers we

add a density shift parameter ρshift that is found via an iterative method at simulation ini-

tialization to ensure that ρ(±xs) = ρ0. An example of this profile is shown along with a

typical xs = 1.0, B′y(±xs) = ±π/2 sech magnetic field in Figure 2-3.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

By(x)

0.0

0.5

1.0

1.5

2.0

P(x)

Figure 2-3: Example xs = 1.0 DTM sech equilibrium magnetic field (black) and pressure gradient (red). The reconnecting
field By(x) is found from eqn. 2.16 with B′y(±xs) = ±π/2. The pressure profile is found from 2.19 with ρ0 = 1, ∆ρ = 0.8, and
λρ = 0.1. The density gradients are steep enough that a ρshift correction is not needed. For this plot electron temperature is
constant Te = 1 with cold ions Ti = 0.

Choosing the pressure gradient and magnetic field profiles to depend only on x results

in a diamagnetic drift v∗i which automatically satisfies the convective part of the MHD

equilibrium condition (i.e. U · ∇U = 0), thus it would be straight forward to include ion
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drifts in these Cartesian simulations. None the less we will use the cold ion approximation

(τ = Ti/Te) to eliminate the ion pressure and ion drift. Primarily we choose this regime to

allow easier comparison to our later cylindrical simulations for which equilibrium flows can

potentially cause numerical issues at the r = 0 coordinate singularity. The cold-ion limit

is also more tractable analytically, though it is not strictly applicable to newer tokamak

designs.

2.4 Cylindrical DTM unstable equilibria

Curvilinear field geometries do not typically feature zeros of a magnetic field component

within the plasma; the tokamak configuration in particular relies on an internal plasma

current to provide confinement. Thus to examine reconnecting instabilities we must consider

the full k ·B = 0 condition for resonant modes.

The magnetic field lines in a torus lie either on a rational or irrational surface. From an

initial point on a rational surface one can follow a field line and traverse the torus m times

around the major axis and n times around the minor (following the helical field line) and

arrive at the starting location. The ratio ι = n/m corresponds to the twist of the helical

magnetic field. Following an field line on an irrational surface, in contrast, will ergodically

sample points in a given region without ever returning to the starting location.

When discussing stability the inverse of the twist is commonly used, and can be calculated

from the toroidal field Bt, poloidal field Bp, and major radius R for minor radius 0 ≤ r ≤ a

by q(r) = rBt/RBp. The quantity q(r) is called the ‘safety factor’ as it is a useful marker

of the stability of the configuration; lower values of q are more susceptible to disruptive

instabilities. The resonance condition k ·B = 0 can only be satisfied (for finite wave vectors)

along rational surfaces, which correspond to rational values of the safety factor. (We will

commonly use the terms ‘rational’ and ‘resonant’ surface interchangeably.) Perturbations

resonant at a given surface q(r) = m/n will have wave vectors k = m/rθ̂−n/Rẑ, where θ and
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z are the poloidal and toroidal coordinates respectively, leading to the common terminology

of m and n as the poloidal and toroidal mode numbers. If the aspect ratio of the torus is

sufficiently large (major radius R is much greater than minor radius a) the configuration can

be modeled as a periodic cylinder. In this simplified geometry the helical symmetry of the

field reduces (for low mode number instabilities) the available degrees of freedom and allows

two dimensional simulations. Although toroidal corrections (which occur at order a/R) can

have significant impacts on stability, we will use the simpler 2D cylindrical geometry in this

study and leave higher order corrections for future works.

Double-tearing unstable configurations in cylindrical geometry therefore require two nearby

rational surfaces of the same safety factor. Such configurations are non-trivial to derive, so

our simulations use the q(r) profile from Ref. [10], defined in Equation 2.20.

q(r) = q0F1(r)
{

1 + (r/r0)2w(r)
}1/w(r)

r0 = rA|[m/(nq0)]w(rA) − 1|−1/[2w(rA)]

w(r) = w0 + w1r
2

F1(r) = 1 + f1 exp
{
−[(r − r11)/r12]2

}
(2.20)

Several parameters are required to determine the profile.

rA = 0.655, w0 = 3.8824, w1 = 0

f1 = −0.238, r11 = 0.4286, r12 = 0.304

(2.21)

We choose to simulate a m = 2, n = 1 DTM, and q0 may be varied near 2.5 to change the

separation D between two q = 2 surfaces. MRC-3d requires the magnetic field components

(rather than the safety factor q(r)) which we calculate by assuming Bz0 = Rmajor = 10 and

then performing an iterative refinement of the equilibrium fields Bθ(r) and Bz(r) to converge

to the input q(r) over the domain 0 ≤ r ≤ a = 1. This iterative method is also used to

guarantee that the force-balanced condition (Eqn. 2.2) is satisfied by the final magnetic fields

and, if present, the pressure gradient.
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Figure 2-4: Example cylindrical safety factor(black) and pressure gradient(red) profiles. q(r) is calculated using Eqn. 2.20
with the parameters 2.21 and q0 = 2.5, which results in two q = 2 rational surfaces at r = rs[1,2] separated by a distance
D ≈ 0.26. The pressure gradient is found using Eqn. 2.22 with parameters N0 = 1, Nb = 0.8, δN = 0.1, r0 = (rs1 + rs2)/2,
constant electron temperature Te = 1, and assuming cold ions τ = 0.

For this work we fix q0 = 2.5, giving D ≈ 0.26. The resultant safety factor profile, with

two q = 2 DTM unstable surfaces, is shown in Figure 2-4.

2.4.1 Pressure gradients

To establish the pressure gradient necessary for diamagnetic drifts we use the following

density profile from Ref. [64].

ρ(r) = N0

{
1− (1−Nb)

tanh(r0/δN) + tanh[(r − r0)/δN ]

tanh(r0/δN) + tanh[(1− r0)δN ]

}
(2.22)

The form of this function is designed to mimic the profile of pressure gradient structures ob-

served in tokamak configurations, particularly reverse-magnetic shear designs, called internal

transport barriers (ITBs) [59]. Typically ITBs feature both core density and temperature

enhancements, but here we restrict our study to nonuniform ρ so as to avoid certain phys-

ical processes associated with steep temperature gradients that the MHD model does not
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accurately capture. N0 represents the core maximum, Nb the outer minimum, δN the charac-

teristic width, and r0 the location of peak gradient of the density profile. These parameters

will be varied based on the strength and location of the desired diamagnetic drifts. An

example pressure profile with the peak gradient centered between the two rational surfaces

is shown in red on Figure 2-4.

Cylindrical simulations in MRC-3d are prone to issues near the r = 0 coordinate singularity

when equilibrium flows are included. To avoid this problem we will restrict our cylindrical

simulations to the cold-ion regime (τ = 0) so that the ion diamagnetic flow (Eqn. 2.9) is

zero.

2.5 Discussion

Full toroidal equilibria are significantly more complicated than those presented here,

though they still must satisfy the resonance (Eqn. 2.1) and MHD equilibrium (Eqn. 2.2)

conditions and will exhibit diamagnetic drift behavior (Eqns. 2.9 and 2.14). Asymmetries

of the geometry and field strength generally require non-trivial equilibrium flows, and the

addition of gravity further complicates the equilibrium. Our goal in using these simplified

Cartesian and cylindrical field configurations is to isolate, as much as possible, the various

stabilizing and destabilizing effects on the double-tearing mode. The set of equilibrium con-

ditions and manifestation of diamagnetic effects should be taken as a minimal set necessary

to establish simulation initial conditions in MRC-3d for these two geometries. In addition

to the toroidal complications we have also avoided any discussion of kinetic or two fluid

equilibrium conditions, which are required for models more advanced than MHD. The study

of equilibrium reconstruction and design for fusion devices is an established field in its own

right and well beyond the scope of this work. In the following we will instead restrict ourself

to the simplified equilibria of this chapter and focus on the fundamental understanding of

the double-tearing mode instability itself and possible mechanisms for stabilizing it.
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Chapter 3

Cartesian force-free DTMs

Reconnection is fundamentally a multi-scale process whereby changes in topology within

a narrow current layer produce large scale fluctuations in both the plasma and the magnetic

field. This interaction between a thin active region and a global mode is an ideal system

for boundary layer analysis, which is a fruitful tool for examining the linear behavior of

many reconnecting instabilities. In particular the single-tearing mode [20] and the m = 1

cylindrical kink-tearing mode [3] have been comprehensively studied using this tool in MHD

and kinetic models. In this chapter we will show the linear double-tearing mode shares many

characteristics with these two systems. Depending on the spacing between the resonant

surfaces the DTM may have as either as two STMs or a faster growing single kink-tearing

mode. The presence of two singular layers admits a marginally stable ideal MHD mode that

determines the transition between these two behaviors.

The majority of this thesis will consist of introducing different physical mechanisms, for

example equilibrium sheared flows or diamagnetic drifts, in order to slow the growth of the

DTM and mitigate the risk of disruption in fusion plasmas. It is important, however, to

first understand why the DTM is so strongly driven and how the spacing between the two

surfaces interacts with the various scales inherent to reconnection. To do so we begin with a

prototype system: the linear, resistive, force-free double-tearing mode in 2D Cartesian slab

geometry on a symmetric equilibrium. The asymptotic solution of this system by Pritchett

et al. [39] is the fundamental framework on which most recent investigations of the DTM

rely, and we will review it detail.

The analysis of this chapter relies on a simplified boundary layer method that we will

compare with simulations using a linearized version of MRC-3d. Boundary layer theory is a
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well codified method of global asymptotic approximation to ordinary differential equations,

and can be viewed as a specialized application of WKB theory. We will begin with a linearized

form of the reduced MHD equations (Eqns. 1.40 and 1.41) and define a new normalization

based on the characteristic width of the equilibrium current channel Jz0 of a DTM unstable

system, so as to make explicit the similarity properties of the resulting solution. The key

to asymptotic analysis is identification of small parameters in which the solution can be

expanded, be they explicit factors or narrow regions of coordinate space. The presence of

boundary layers is typically (but not always) indicated by small factors multiplying the

highest derivative of an ODE, and we will identify these and predict where they will be

significant. At all stages we will evaluate the ‘dominant balance’ of the ODE, i.e. consider

the relative magnitudes of various terms so as to discard those that are not significant and

to generate a solvable approximation. Outside of the boundary layers this balance will be

determined by the naive limit of taking all small parameters to zero. Within the layer we will

rescale the coordinates to amplify derivatives and identify a new dominant balance, thereby

finding the behavior of the internal solution. The solution within and outside of the boundary

layer must then be matched in some intermediate regime where the original coordinate goes

to zero and the rescaled coordinate to infinity, fixing undetermined constants in the process.

The final result is a description of the global mode that is uniformly asymptotic to the true

solution. Our analysis of the DTM will be somewhat more complicated, as there are multiple

small parameters to consider and will require several successive reductions.

3.1 Symmetric boundary layer theory

For simplicity we will assume that the equilibrium is symmetric such that By0(±xs) = 0,

which will allow for two linear eigenmodes: one which is even over the domain and one which

is odd. Of these two solutions the symmetric mode is not only the fastest growing but also

most easily obtainable via an asymptotic boundary layer analysis. In this section we will
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review the initial theory of Pritchett et al. [39] for this even mode and explore the different

domains of coupling between the two surfaces. Discussion of the antisymmetric mode, which

is less well understood, will be delayed until later in this chapter.

We linearize Equations 1.40 and 1.41 and apply the assumption φ0 = 0 to consider the

static, force-free, resistive DTM. In linear MHD theory it is useful to replaced the stream

function φ with the plasma displacement ξ:

U = ẑ ×∇φ =
∂ξ(x, y, z, t)

∂t
(3.1)

Under the Fourier ansatz only the x̂ component is needed, which we write as:

ξ(x) = −ikφ(x)

γ
(3.2)

Working in a 2D Cartesian slab periodic in y we apply the Fourier ansatz F (x, y, t) =

f(x) exp (γt+ iky) for the perturbed quantities. We choose as normalization parameters (Chap. 1.1)

the current channel scale width ab, constant density ρ0, asymptotic in-plane field strength

B0, and Alvèn time τA = ab/va, and obtain the dimensionless equations:

γ̃2(ξ̃′′ − α2ξ̃) = −α2B̃eq(ψ̃
′′ − α2ψ̃) + α2ψ̃B̃′′eq (3.3)

γ̃ψ̃ − γ̃B̃eq ξ̃ = S−1(ψ̃′′ − α2ψ̃) (3.4)

where primes indicate differentiation with respect to the dimensionless length x̃ = x/ab and

the normalized variables denoted by tildes are defined as

γ̃ = γτA, α = kab, B̃eq = By/B0

ψ̃ = ψ/abB0, ξ̃ = ξ/ab,

τA =
√
ρ0ab/B0, τR = a2

b/η, S = τR/τA

(3.5)

In this dimensionless form one can readily identify several indicators of boundary layer
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activity. Particularly relevant to reconnection is the inverse Lundquist number S−1 that

multiplies the highest order derivative of the flux ψ. The Lundquist number represents the

relative timescales of resistive, and thus collisional, processes in the plasma compared to

ideal MHD effects such as waves and fluid flows. As most plasmas are nearly collisionless we

take S−1 � 1, and this term will only be significant in a narrow region where gradients of the

eigenfunctions are large. These parts of the domain will be the diffusion regions responsible

for changes in magnetic topology. We have marked the locations of this resistive region by

red dashed lines on a schematic of the DTM boundary layer structure in Figure 3-1. Outside

of this resistive layer the system is described, to lowest order, by the physics of ideal MHD.

We will therefore begin by taking S−1 → 0 and considering the outer region ideal solutions.

Henceforth we will discard the tildes for clarity, with the understanding that the normal-

ized variables are used.

Ideal MHD
Exterior Region

Ideal MHD
Interior Region

Ideal MHD
Exterior Region

-∞ +∞

δΔ

Figure 3-1: Sketch of the double-tearing mode boundary layer structure on a characteristic Beq magnetic equilibrium. Away
from the resonant surfaces the system is described by the lowest order ideal MHD behavior (Eqn. 3.7). The DTM differs from
the single-tearing mode in having an additional ideal region between the two surfaces. Near each resonant surface two boundary
layers emerge: a layer of width δ (black dashed lines) where small scale ideal MHD processes dominate (Eqn. 3.13); and a layer
of width ∆ (red dashed lines) where resistivity is significant (Eqn. 3.18). Note the ordering of these nested boundary layers is
not necessarily as shown in this schematic.

3.1.1 Ideal regions

Neglecting the resistive term in Equation 3.4 reduces it to the relation ψ = Beqξ. We

combine it with Equation 3.3 to form a single second order ODE for the plasma displacement
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ξ describing the ideal MHD behavior of the system:

d

dx

[
(α2B2

eq + γ2)
dξ

dx

]
= α2(α2B2

eq + γ2)ξ (3.6)

Consider the magnitude of the growth rate γ. We are searching for a reconnecting

instability and the only mechanism for field line breaking is resistivity, therefore the growth

rate must somehow depend on the Lundquist number. Furthermore, we are only interested

in modes which grow faster than the resistive decay time, which is very long in realistic

plasmas. Therefore we assume γ ∝ S−θ (0 < θ < 1) and as a consequence γ2 � α2B2
eq

except in a narrow regions around x = ±xs where the in-plane magnetic field approaches

zero and Eqn. 3.6 becomes singular. These narrow regions form ideal MHD boundary layers,

which we denote schematically as black dashed lines in Figure 3-1.

Away from the singular layers we can neglect γ to lowest order and write:

d

dx

[
B2
eq

dξ

dx

]
= α2B2

eqξ (3.7)

Or, integrating both sides:

B2
eq

dξ

dx
= α2

∫ x

0

B2
eq(X)ξ(X)dX + C (3.8)

This differential equation is not exactly solvable except for highly constrained equilibrium

fields. Two possible routes for further asymptotic expansion exist. The normalized wave

number α appears as an explicit parameter, and is commonly considered in single-tearing

mode solutions[20]. Choosing to expand in α, however, neglects the spacing between the

singular surfaces which is the defining feature of the DTM. Furthermore, assuming α � 1

restricts the validity to very small wave numbers and generates a more complicated expansion

with exponential tails. We instead consider that Equations 3.7 and 3.8 are valid everywhere
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except in the immediate neighborhood of the singular surfaces, therefore they are also valid

between the surfaces. This interior region is disconnected from the boundaries at x→ ±∞

and is unique to the DTM. We therefore expect the behavior in this interior domain to

influence the global evolution of the mode when matched through the boundary layers. The

appropriate expansion parameter, assuming the layers are closely spaced compared to the

system size, is α2x2
s. This choice has the advantage of capturing the relative scale of variation

along and between the surfaces. It abandons, however, the comparison between k and ab,

thereby neglecting the actual properties of the magnetic shear local to each surface. We will

examine the consequences of this choice later in this section when considering this theory’s

domain of validity.

Expanding ξ in the ideal outer regions as a power series in α2x2
s (Eqn. 3.9) and sub-

stituting into the outer region differential equation (3.8) allows us to match powers of the

expansion parameter.

ξ = ξ(0) + α2x2
sξ(1) + α4x4

sξ(2) + · · · (3.9)

To lowest order we find that dξ(0)/dx = C/B2
eq. In the exterior region (|x| > xs) we must

choose the constant C = 0 to satisfy the requirement that ξ be bounded as x → ∞. This

condition does not apply to the interior region |x| < xs. In this region, however, C 6= 0

would yield an antisymmetric solution for ξ(0), which we delay until later in this chapter.

Therefore the lowest order displacement ξ0 must be constant in both the interior and exterior

ideal MHD regions. At the outer boundaries (|x| → ∞) we require the eigenmode to vanish,

but no such restriction exists between the two resonant surfaces.

ξ(0) = 0 |x| > xs

ξ(0) = ξ∞ |x| < xs

(3.10)
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where ξ∞ 6= 0 is a constant. This solution represents a rigid displacement of the plasma

between the two tearing surfaces, similar to the m = 1 kink mode in cylindrical geometry [3].

Proceeding to the first order solution we again neglect the antisymmetric contribution

and obtain an expression for the derivative of ξ(1) [39].

(ξ∞)−1

(
dξ(1)

dx

)
=

(
α

Beq

)2 ∫ x

0

B2
eq(X)dX |x| < xs

(ξ∞)−1

(
dξ(1)

dx

)
=

(
α

Beq

)2 ∫ xs

0

B2
eq(X)dX |x| > xs

(3.11)

The above solutions are valid far away from the tearing surfaces when α2B2
eq � γ2. Near

the zeros of the in-plane field (x = ±xs) we assume that the equilibrium field is approximately

linear such that Beq(x) ≈ ±B′0 (x∓ xs) and, keeping factors of γ (which are now significant

as Beq → 0), obtain an equation for the ideal MHD behavior around the x = xs singular

surface.

d

dx

[
(x− xs)2 +

γ2

α2B′20

]
dξ

dx
= α2

[
(x− xs)2 +

γ2

α2B′20

]
ξ (3.12)

Rescaling the coordinate x within the boundary layer such that x = xs + δχ for some small

parameter δ and χ = O(1) we find

d

dχ

[
χ2 +

γ2

δ2α2B′20

]
dξ

dχ
= α2

[
δ2χ2 +

γ2

α2B′20

]
ξ (3.13)

Evaluating the dominant balance of terms in Equation 3.13 shows that the only valid scaling

is δ2 = γ2α2B′20 . The entire r.h.s. is thus ignorable to lowest order and the zeroth order
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solution within this ideal MHD layer has a closed form.

ξ =

∫ χ

0

dζ
E

1 + ζ2

= E arctan(χ) +D

= E arctan

(
αB′0(x− xs)

γ

)
+D

(3.14)

The constants E and D are fixed by taking the limits as x → ±∞ and matching the the

outer region solutions (Eqn. 3.10) to give the lowest order ideal MHD layer solution.

ξ(x) =
ξ∞
2

[
1− 2

π
arctan

(
αB′0(x− xs)

γ

)]
(3.15)

Differentiating Equation 3.15 and matching to the first order outer region derivative found

in Eqn. 3.11 results in an expression for the ideal MHD growth rate γH of this configuration,

which can be identified as the slab double-kink mode [39].

γH = −
(
πα3

B′0

)∫ xs

0

dxB2
eq(x) (3.16)

This mode is always stable (γH ≤ 0). Based on the pre-factor α3/B′0 we may observe that

either decreasing α or increasing the local magnetic shear trends towards marginal ideal

stability γH ≈ 0. The integral on the r.h.s. of Equation 3.16 behaves as x3
s and thus the

double-kink mode can approach the marginal stability threshold as α3x3
s → 0 [39]. This

behavior strongly suggests that the closely-coupled double-tearing mode may resemble the

marginally stable m = 1 kink-tearing mode in cylindrical geometry. The DTM is, however,

always ideal MHD stable, and thus we must reintroduce resistivity to achieve growth.

3.1.2 Resistive layer

To describe the resistive layer (red dashed lines in Fig. 3-1) we replace the full mag-

netic field in Equations 3.4 and 3.3 with the approximate form local to the singular surface

44



Beq(x) ≈ B′0 (x− xs). Introducing the small parameters λ = γ/αB′0 and ε = 1/SαB′0 this

set of equations can be written as [19]:

ξ′′ − α2ξ = −(x− xs)
λ2

(
ψ′′

B′0
− α2 ψ

B′0

)
ψ

B′0
= (x− xs)ξ +

ε

λ

(
ψ′′

B′0
− α2 ψ

B′0

) (3.17)

Following standard boundary layer procedure we define a scaled variable x = xs + ∆χ and

substitute to obtain:

d2ξ

dχ2
−∆2α2ξ = −∆

χ

λ2

(
1

B′0

d2ψ

dχ2
−∆2α2 ψ

B′0

)
∆2 ψ

B′0
= ∆3χξ +

ε

λ

(
1

B′0

d2ψ

dχ2
−∆2α2 ψ

B′0

) (3.18)

All explicit factors of α2 are order ∆2 and added to order one derivatives, therefore are

insignificant to lowest approximation within the resistive layer. Neglecting them we obtain

a compact set of equations for the displacement ξ and magnetic flux ψ which describe the

lowest order behavior near the singular points.

d2ξ

dχ2
= −

[
∆

λ2

]
χ

1

B′0

d2ψ

dχ2

ψ

B′0
= [∆]χξ +

[
1

∆2

ε

λ

]
1

B′0

d2ψ

dχ2

(3.19)

The elements of Equation 3.19 which are highlighted by square brackets are pre-factors

involving the scale width ∆ that can be tuned to change the interaction of different terms in

these equations. Unlike the ideal MHD layer (Eqn. 3.13) the appropriate expression for ∆

cannot be fixed without first specifying the relative magnitudes of ξ and ψ/B′0. Fortunately

the substitutions ξ → −ξ and ψ/B′0 → ψ transform [19, 39] this set of equations into those

describing the m = 1 kink-tearing mode resistive layer analyzed by Ara et al. in Ref. [3], in

which they consider appropriate balances and complete the matching to the exterior layer.

The solution and matching process is rather complicated, so we do not reproduce it here.
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Instead we summarize the results of Pritchett et al. in Ref. [39] where they have performed

the appropriate transformations to find two limiting expressions for γ valid within specific

regimes of the DTM parameter space.

Provided that the fundamental assumption α2x2
s � 1 holds, so that the outer ideal MHD

solutions (Eqns. 3.10 and 3.11) are valid, and that the resistive scale width ∆ is small enough

to allow matching in the region between the singular layers (∆� xs), the DTM dispersion

relation can be expressed in terms of Γ-functions.

λ̂5/4λ̂HΓ
[
(λ̂3/2 − 1)/4

]
Γ
[
(λ̂3/2 + 5)/4

] = 8 (3.20)

where

λ̂H = γH

(
S

α2B′20

)1/3

(3.21)

is a measure of the ideal MHD driving energy and

λ̂ = γ

(
S

α2B′20

)1/3

(3.22)

is a measure of the resistive mode instability.

By numerically mapping the dependence of λ̂ on λ̂H via the dispersion relation, approx-

imate analytic growth rates can be found in two limits [39]. When the singular surfaces are

very near to each other the slab kink-mode is marginally stable (γH → 0−, see Eqn. 3.16) and

|λ̂H | � 1, resulting in λ̂ ' 1 and the double-tearing mode growth rate is γ ' (α2B′20 /S)1/3.

The scaling of this growth rate with Lundquist number/resistivity (γ ∼ S−1/3 ∼ η1/3) is

consistent with the marginally stable m = 1 kink-tearing mode [3] and other such ‘strongly

nonconstant ψ’ tearing modes. In the opposite limit, when the system is deeply ideally

stable, |λ̂H | � 1, λ̂ � 1, and the growth rate scales like γ ∝ (α2B′20 /S)3/5. This scaling
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(γ ∼ S−3/5 ∼ η3/5) is that of a ‘constant ψ’ tearing mode [20], and calculations of the resis-

tive layer width and diffusion time are consistent with this picture [39]. Mapping this deeply

ideally-stable regime to the system parameters requires some care. One can conclude from

Eqn. 3.16 that γH → −∞ as xs → ∞, but the dispersion relation (Eqn. 3.20) is valid only

under the assumption that α2x2
s � 1. Pritchett [39] considered the respective domains of va-

lidity for the S−1/3 and S−3/5 scaling predictions and concluded that the boundary between

the two behaviors occurs in the neighborhood of αxs ≈ (α2/S)1/9. When the modes are close

enough to be below this threshold they behave as coupled, reconnecting, slab kink-modes.

At larger separations they resemble decoupled single tearing modes. The product αxs can

therefore be consider a sort of ‘linear coupling parameter’ within the domain of validity for

the above boundary layer theory.

3.1.3 Domain of validity

It is important to note that we have only considered the growth rate scaling of the DTM

with resistivity in two asymptotic regimes, labeled with the specialized names ‘constant ψ’

and ‘strongly nonconstant ψ’. These terms refer to the behavior of the perturbed magnetic

flux within the tearing layer, and will be used to classify tearing modes throughout this

thesis. If the growth of the instability is slow compared to the resistive diffusion time across

the resonant layer than the lowest order magnetic perturbation may be consider constant

with the layer, i.e. one may assume constant ψ in the resistive layer. This approximation is

only valid when the system is deeply ideally stable, and results in a growth rate which scales

as γ ∼ η3/5. For single-tearing modes this regime typically corresponds to the large α limit

near the tearing stability boundary [20]. Away from this deeply stable region the magnetic

perturbation within the layer cannot be taken as constant. Such nonconstant ψ modes

have growth rates which scale like γ ∼ ηθ where 1/3 ≤ θ ≤ 3/5 depending on the instability

wavenumber and equilibrium parameters. The marginally ideal MHD stable asymptotic limit

corresponds to the γ ∼ η1/3 scaling and here we have used the term ‘strongly nonconstant ψ’.
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Isolated single tearing modes have access to these regimes based on the magnetic shear local

to the resonant layer and wavenumber. The remarkable feature of the double-tearing mode

is that interaction between the resonant surfaces is able to drive nonconstant ψ behavior for

tearing layers which would otherwise be deeply ideally stable.

The parameter αxs is a good indicator of the coupling strength between the two resonant

surfaces, and thus of the influence of the slab-kink mode on evolution, but not sufficient

to uniquely determine the growth rate scaling of the DTM. Because it is a product of the

normalized wavenumber and a normalized length it no longer contains information on how

the wavelength relates to the current channel width. Consider the measure of the ideal MHD

driving energy λ̂H , which depends more strongly on α than on xs:

λ̂H ∼ α11/3x3
s (3.23)

If α � 1 the mode remains marginally ideally stable (λ̂H ≈ 0) for all values of xs, even if

xs ∼ 1/α when there will be a region of exponential decay between the singular layers and

we cannot reasonably expect the resonant surfaces to be coupled (see Ref. [20] for discussion

of the low α tearing mode limit). Such a low α system will behave like two isolate single

tearing modes, each in the strongly nonconstant ψ limit.

There exits, therefore, an important restriction on how we may appropriately use this

linear analysis to categorize double-tearing modes. If the two tearing surfaces are sufficiently

close that αxs � (α2/S)1/9 it follows that they are strongly coupled and γ ∼ η1/3. A growth

rate which scales as η1/3 is not, however, sufficient to claim that the modes are strongly

coupled; the value of α must also be considered. The reverse is true in the weakly coupled

limit: γ ∼ η3/5 =⇒ αxs � (α2/S)1/9. With these considerations in mind it is generally

valid to consider αxs as a ‘linear coupling parameter’ with the provision that it does not

uniquely determine the growth rate but, as we will show later in this chapter, describes the

basic eigenmode structure.
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3.2 Symmetric simulations

The scaling behavior of the linear symmetric double-tearing mode with resistivity, es-

pecially in the strongly coupled limit, has been verified in many simulation regimes [9, 10,

31, 39]. In this section we will show that the eigenfunctions and growth rates of Pritchett’s

analysis [39] can be reproduced in a special linearized version of MRC-3d with a strong guide

field, thus confirming that reduced-MHD boundary layer theory represents the compressible

MRC-3d model in this limit.

3.2.1 Linear simulation methods

The linearized version of MRC-3d uses the same fundamental plasma model as the fully

nonlinear version. A modified version of the code generator applies the Fourier ansatz

F (x, y, t) = f(x, t) exp (iky) to the fields ρ, T , B, and U. The real and imaginary parts

of each field are stored separately and symbolic manipulation is used to generate numerical

expressions discretized in x. This process is described in more detail in Appendix A.

-2.0 -1.5 −ab -0.5 0.0 0.5 ab 1.5 2.0
2.0

1.5
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1.5

2.0

Beq

Jz0

Figure 3-2: An example of the current profile for the sech equilibrium with B′0(±xs) = ±π/2 and xs = 0.25. The current (Jz0)
channel scale width ab is approximately 1 in MRC-3d coordinates.

All simulation results presented here use the ‘sech’ equilibrium described in Section 2.3

for the reconnecting field By, with the choice ∂xBy(±xs) = ±π/2. This configuration has the

beneficial property that the current channel width at each surface is approximately equal to
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one for most separations (xs) of interest, so that the MRC-3d normalization closely matches

that of the linear boundary layer theory, as shown in Figure 3-2. We will not exactly define or

measure ab for the simulation equilibrium as the asymptotic theory is not precise enough to

require such rigor. The normalized wave number is then approximately the same as the code

wave number, i.e. α ≈ k = ky. Finally we choose the magnitude of out-of-plane magnetic

field to be Bz0 = 10 far away from the singular surfaces, with small variations across the

domain as necessary to maintain a force-free equilibrium. At this magnitude of guide field

and a constant equilibrium temperature and pressure of T = ρ = 1 the compressible MRC-3d

model should behave, to lowest order, as incompressible reduced-MHD.

In choosing boundary conditions for numerical simulations one must balance the desire

to minimize the length of the domain (and hence computational costs) against the need to

ensure that the boundaries are far enough from the non-zero portions of the eigenmode to not

influence its evolution. Unless otherwise noted simulations in this section have conducting

walls at x = ±4.0. At wavenumbers on the order of α ∼ 0.1 the symmetric DTM is

sufficiently well confined that this location for the boundaries does not impact the mode.

MRC-3d is an initial value code, even in its linearized form. As such some post processing

is required to obtain growth rates and eigenfunction information. At user-defined intervals

during a simulation, the code writes a sequence of diagnostic quantities to a file. The quan-

tities include the peak values of dynamic variables, calculated currents, and the integrated

kinetic energy. This diagnostic data is fitted to an exponential in time via a least-squares

method provided by the curve fit function of the scipy Python package. Because the

initial perturbation is not an exact eigenmode of the system there is a period of noise early

in the simulation. As time advances the fastest growing mode begins to dominate and the

diagnostic output shows a steady exponential growth, from which a range is selected for

fitting.

Full outputs of the simulation state at every grid point occur less frequently than the

diagnostics, in order to minimize storage requirements and execution time. To compare to
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the linear theory we are primarily interested in the reduced variables ξ and ψ, which must

be calculated from the MRC-3d fields P and B.

ξ =
ikφ

γ
=

Px
ρ0γ

(3.24)

ψ = −
∫ x

x0

dx′By(x
′)− i

ky
Bx(x) (3.25)

(3.26)

3.2.2 Simulation results

To verify the boundary layer theory we choose α = k = 0.5, similar to Ref. [39], and

tearing layer spacings of xs = 0.25 and xs = 1.0. Even at these relatively large values of the

coupling parameter αxs = 0.128 and 0.5 the boundary layer theory quite accurately predicts

dependence of the growth rate γ on resistivity η, which is shown in Figure 3-3. A separation

of xs = 0.25 produces a double-tearing mode with scaling γ ∼ η0.36, which is close to the

expected η1/3 behavior. Furthermore the eigenfunction (Fig. 3-4a) is approximately that of

the slab-kink mode described in Section 3.1.1. At the larger spacing of xs = 1.0 the mode

instead scales like a constant ψ tearing mode (γ ∼ η3/5). The corresponding eigenfunction

shown in Figure 3-4b behaves as a combination of slab-kink and ordinary tearing modes.

To lowest order the displacement ξ between the singular surfaces is constant, as would be

expected from the asymptotic analysis. Near the tearing surfaces, however, the mode begins

to resemble an isolated tearing mode. From this behavior one can conclude that the two

surfaces are weakly coupled, rather than entirely independent. It is important, therefore,

to recognize that γ ∼ η3/5 scaling does not imply a completely decoupled double-tearing

mode. In fact, we will discover in Chapter 8 that these weakly coupled modes are capable

of generating strong nonlinear explosive growth.
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Figure 3-3: Scaling of the growth rate γ with resistivity η for the weakly coupled (xs = 1.0) and strongly coupled (xs = 0.25)
symmetric DTM.

3.3 Antisymmetric eigenmodes

While the symmetric double-tearing mode has been extensively studied as case of fast,

self-driven reconnection the antisymmetric solution has been largely ignored because the

interaction between the singular surfaces does not appear to strengthen the growth, and may

even slow it. As we introduce various stabilization mechanisms in the following chapters we

will see that the antisymmetric DTM solution emerges as an important part of a hybrid,

sheared eigenmode. In preparation for this future discussion we will briefly consider the

results of MRC-3d simulations targeting this antisymmetric mode. The appropriate analytic

solution for the odd DTM solution is not currently known.

The scaling of the antisymmetric mode growth rate with resistivity is shown in Figure 3-

5 for the same values of α = 0.5 and xs = [0.25, 1.0] as used previously. Both separations

exhibit γ ∼ η3/5 behavior and have nearly identical magnitudes. As expected the growth

rates are much slower the symmetric mode (Fig. 3-3) for both separations, though this

disparity is less at larger xs. The strong dependence of the growth rate on resistivity suggests
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(a) xs = 0.25 α = 0.5 eigenmode at resistivity η =
1× 10−7. Between the resonant surfaces (vertical dashed
lines) the displacement ξ is non-zero and nearly constant.
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(b) xs = 1.0 α = 0.5 eigenmode at resistivity η =
1× 10−7. The displacement between the resonant sur-
faces is nearly zero and constant. Near the boundary lay-
ers the displacement ξ and the magnetic flux ξ resemble
single-tearing modes.

Figure 3-4: Eigenmodes for the strongly coupled (left) and weakly coupled (right) linear force-free DTM.
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Figure 3-5: Scaling of the growth rate γ with resistivity η for the xs = 1.0 and xs = 0.25 antisymmetric DTMs. Both spacings
have nearly the same growth rate at all resistivities, and scale like constant ψ tearing modes.

that the constant ψ assumption is valid within the resonant layers of both separations.

The shapes of the corresponding eigenmodes are shown in Figure 3-6. The regions to

the left and right of the singular surfaces resemble decaying exponentials rather than con-

stants, which is consistent with isolated single-tearing modes (which are expanded in α)

rather than the symmetric DTM solution (expanded in α2x2
2). Between the layers, however,

the eigenfunctions remain connected, suggesting that the two-resonance structure remains

important.

These measurements of scalings and eigenmodes suggest that the antisymmetric boundary

layer analysis may involve a constant ψ singular layer, a DTM like expansion between the

surfaces, and a STM solution outside. The interaction between the resonant surfaces that

drove the even eigenmode toward marginal ideal stability may force the odd mode deeper

into the ideally stable regime.
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(b) xs = 1.0 α = 0.5 eigenmode for resistivity η =
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Figure 3-6: Examples of linear antisymmetric double-tearing eigenmodes
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3.4 Discussion

The asymptotic analysis and simulations of this chapter are not a complete description

of even the force-free, resistive double-tearing mode, but they form the fundamental basis

for our current understanding of this instability’s self-driving behavior. Two nearby singular

surfaces will couple together and form a marginally stable ideal MHD mode based on their

separation and the perturbation wave number. This marginal stability results in a recon-

necting mode which depends weakly on resistivity, thus making it a candidate for ‘fast’ field

line breaking even in the absence of kinetic effects. Unless the wave number is very long the

disturbance associated with strongly coupled DTMs is highly localized between the tearing

layers. Nonlinearly we will see that all but the slowest growing, constant ψ double-tearing

modes can results in disruptive late time behavior.

This linear theory forms the foundational understanding of the DTM that we will rely on

throughout this work. Unfortunately, it lacks several key features that would aid future study

of both linear stabilization mechanisms and nonlinear instability. We will see in the next

chapter that the antisymmetric solution plays a key roll in determining how equilibrium

sheared flows (and later diamagnetic drifts) impact DTM growth. Without an analytic

understanding of the the odd eigenmode, and simulation methods better able to extract the

slower growing instabilities, future progress on a linear theory of DTM stabilization will be

difficult. Similarly the lack of a clear metric to define DTM stability (akin to the ∆′ tearing

stability index) will make the comparison of nonlinear behavior challenging. In principle

the normalized wave number α and ‘coupling parameter’ αxs serve as strong indicators of

whether the mode behaves as constant or nonconstant ψ reconnecting mode, but they neglect

the details of the magnetic field away from the layer. The ideal MHD driving energy (λ̂H)

and resistive mode instability (λ̂) parameters (Eqns. 3.21 and 3.22) may serve well in this

respect, but their reliability as indicators of nonlinear behavior has not been explored.

In the absence of any agreed upon measure of the DTM classification we will treat the

analysis of this chapter as a first indicator of coupling strength, i.e. smaller αxs means
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stronger interaction. Beyond this we will rely on subjective evaluations of the perturbed

fields such as the plasma flow, linear displacement, and magnetic structure.
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Chapter 4

Linear sheared flow equilibria

The interaction between two tearing surfaces causes the symmetric double-tearing mode

to be less dependent on resistivity and more strongly driven than the standard single tearing

mode (STM) case. In this chapter we will see our first indication that the coupling of the

DTM can be suppressed by applying an equilibrium flow along the reconnecting magnetic

field to shear the layers apart. The symmetric, two-boundary layer eigenmodes found in

Chapter 3 will be unable to survive in the presence of this background flow and will be

forced to acquire an odd component in the complex plane before completely separating into

single tearing layer solutions. This effect will not, however, be sufficient to stabilize the

DTM below some finite threshold, but it will be a vital component to our later application

of diamagnetic drifts.

We will begin by considering the foundations of a reduced MHD boundary layer theory

in the presence of equilibrium flow and mapping which regions of parameter space have

interesting behavior that we should target with simulation studies. This analysis will yield

several new classes of singular layers which are not present in the static DTM theory. In

particular, we discover a class of singular layer that is manifestly complex, which we show

is associated with a bifurcation point in linear DTM behavior caused by an antisymmetric

equilibrium flow. A complete asymptotic theory is not currently available, but we will

predict the approximate critical flow amplitude at which this bifurcation occurs and how

the DTM eigenmodes behave above and below this threshold. These predictions will then

be confirmed by linear MRC-3d simulations. To conclude we will sketch a road-map for the

remaining theory and consider the implications for the nonlinear DTM stabilization.
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4.1 Boundary layer analysis

Some preliminary understanding of the effect of shear flow on DTMs can be gained from

a linear boundary layer analysis similar to that of Chapter 3. We begin by returning to

the resistive reduced-MHD model of Equations 1.40 and 1.41 and linearizing, but this time

retaining an equilibrium flow. In the incompressible limit the velocity must be divergence-

free, and we choose to ensure this condition by requiring U0 = veq(x)ŷ so that the equilibrium

flow is parallel to the reconnecting magnetic field at all times. The linearized rMHD equations

are then:

∂t∇2
⊥φ = −veq∂y∇2

⊥φ+ ∂yφ∂xveq +Beq∂y∇2
⊥ψ − ∂yψ∂2

xBeq (4.1)

∂tψ = −veq∂yψ +Beq∂yφ+ η∇2
⊥ψ (4.2)

We again apply the Fourier ansatz F (x, y, t) = f(x) exp (γt+ iky) to all perturbed quantities.

The normalizations listed in Equation 3.5 apply to this set of PDEs as well, though the

presence of equilibrium flow requires the additional definition:

ω̃0 = kveqτA (4.3)

Substituting in normalizations, and rearranging, we recover a normalized form.

γ̃(γ̃ + iω̃0)(ξ̃′′ − α2ξ̃) = iγ̃ω̃′′0 ξ̃ − α2B̃eq(ψ̃
′′ − αψ̃) + α2ψ̃B̃′′eq (4.4)

(γ̃ + iω̃0)ψ̃ − γ̃B̃eq ξ̃ = S−1(ψ̃′′ − α2ψ̃) (4.5)

Henceforth we will drop the tildes for clarity.

Consider the repeating quantity Γ = γ+ iω0. Where the equilibrium flow is constant this

expression would correspond to a Doppler shift of the (now complex) eigenfrequency γ, in

which case we could transform it out and proceed as in Chapter 3. The more interesting case,
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however, is to treat the equilibrium flow as nonconstant and sheared, such that ω0 = ω0(x)

and the imaginary part of Γ depends on x. It is important to remember, therefore, that

while Γ may resemble an eigenvalue in the coming analysis it cannot properly be treated

as such. With this identification we can further simplify this set of equations by defining a

sheared form of the plasma displacement z = ξ/Γ and, following a similar manipulation to

Ofman in Reference [38], obtain a compact set of sheared equations:

γ
[
α2Γ2z + (Γ2z′)′

]
= −α2

[
Beq(α

2ψ − ψ′′) + ψB′′eq
]

(4.6)

ψ − γBeqz =
S−1

Γ
(ψ′′ − α2ψ) (4.7)

As before, we will begin by considering the regions outside of the diffusive layers under the

assumption that S−1 � 1 to obtain a single ODE for z describing the ideal MHD behavior

of the system.

d

dx

[
(α2B2

eq + Γ2)
dz

dx

]
= α2

[
α2B2

eq + Γ2
]
z (4.8)

Though this differential equation is ostensibly the same as Equation 3.6 with the substitu-

tions ξ → z and γ → Γ, it is somewhat more complicated. Firstly, because Γ is complex we

cannot assume that z is purely real; in fact it most certainly will not be. Second, and more

subtly, we cannot immediately identify the region where Equation 4.8 is singular. Previously

we had assumed that γ � 1, and therefore Equation 3.6 became singular in the neighbor-

hood where Beq → 0. The equilibrium flow is not, however, required to be small thus Γ can

potentially have a large complex part which varies across the domain.

Because Equation 4.8 is manifestly complex we must also allow that the eigenvalue have

an imaginary part γ = γR+ iγI . Thus to evaluate the singular layers we must first transform

to the eigenvalue rest frame. Defining the purely real growth rate γ̂ = γR and Doppler

shifted equilibrium flow profile ω̂0(x) = ω0(x) − γI , we write Γ̂ = γ̂ + iω̂0 and consider the

zeros of the complex function F (x) = α2B2
eq + Γ̂2. These zeros will, in general, be complex
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and so we expand F (x) into its real and imaginary parts.

<{F (x)} = [αBeq(x)]2 + γ̂2 − [ω̂0(x)]2 (4.9)

={F (x)} = 2γ̂ω̂0(x) (4.10)

We assume that the instability is slowly growing compared to Alfvénic timescale such that

γ̂ � 1. Furthermore, we will bound the magnitude of the equilibrium flow such that

max |ω̂0(x)| . O(1), which implies the physical restriction that the maximum flow is, at

most, on the order of the maximum MHD mode in-plane propagation speed. These two as-

sumptions force ={F (x)} ∼ γ̂ � 1 across the entire domain, so that we need only evaluate

the real expression.

Thus far we have only restricted the equilibrium flow profile to being sheared in x and

bounded by the in-plane Alfvén speed. The case of symmetric profiles has been examined

by Ofman in Ref. [38]. If the flow shear is not very large anywhere in the domain then

the analysis is essentially the static solution of Chapter 3 convected with the equilibrium

flow at the zeros of the in-plane magnetic field, i.e. γI ≈ ω0(±xs). When the flow shear is

strong near x = ±xs the internal layer is disrupted and the DTM growth rate decreases.

The velocity gradient needed for this stabilization is, however, close to the threshold for

the Kelvin-Helmholtz instability. Therefore symmetric flow is not a particularly efficient or

desirable method to slow DTM growth.

Antisymmetric flow profiles, such as that in Fig. 4-1, are somewhat more complicated

to analyze because there is no frame where ω̂0(xs) = ω̂0(−xs) = 0. The analytic theory in

this system has not, to the authors’ knowledge, been completed. In the remainder of this

chapter we will report our current work on classifying and constraining the outer region ideal

MHD eigenmode solutions, then use simulation studies to predict the remaining theory. We

will constrain the equilibrium flow profile ω0(x) to be antisymmetric about x = 0 such that

ω0(−x) = −ω0(x). Unlike Ref. [38] this system will have no frame in which the flow is
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stationary around both field reversal points at x = ±xs, thus we do not expect to be able to

Doppler shift it away in all cases.
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Figure 4-1: An example of an antisymmetric shear flow profile of the form Vy = v0 tanh(κx). This particular profile, with
κ = 2, results in a flow difference of ∆ω0 = ky [Vy(xs) − Vy(−xs)] = 0.2 between the two zeros of the sech magnetic field at
x = ±xs.

The simplest ordering to consider is that of very weak flow, |ω0(x)| � γ ∀ x. In this case

two tearing-like singularities are evident in the lab frame where Beq → 0, i.e. x = ±xs, as

shown schematically in Figure 4-2a. We expect, therefore, the eigenmode to be stationary in

the lab frame and resemble the static analysis of Chapter 3 with the ‘sheared eigenvalue’ Γ

being dominantly real with a small imaginary perturbation. Provided that ={Γ}/<{Γ} � 1

this perturbation will result in higher order complex corrections within the tearing layers

but not significantly change the analysis. This is the simplest case, and we will not consider

it further here.

The second class of singularity to consider is the opposite limit of large amplitude equi-

librium flow across the domain such that ω0(±xs)� γ. In the lab frame the points x = ±xs

are not singular, thus there cannot be stationary tearing layers. Instead let us assume an
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(a) When |ω0(x)| � γ ∀ x the singular layers occur at their normal DTM locations in the lab frame near zeros of
the in plane field. The lab frame is pictured in this sketch.
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(b) When |ω0(±xs)| ≈ γ � 1 the singularities in the pictured lab frame occur near the usual DTM locations but
include the effect of both the real γR and imaginary ω0. This singularity structure is associated with the decoupling
point of the DTM.
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(c) When |ω0(±xs)| � γ no singularities are evident in the lab frame. This sketch instead shows a frame moving
with the equilibrium flow ω0(+xs), where a tearing-type singularity emerges at x = xs. No such singularity emerges
at x = −xs, however. Instead Alfvén resonance layers appear where α2B2

eq − ω̂2
0 = 0

Figure 4-2: Schematic diagrams of the three classes of singularities evident in the DTM ideal MHD equations in the presence
of equilibrium sheared flow. Lines represent the relative magnitudes of the three contributions in Eqn. 4.9: the positive
contributions from growth rate (γ̂2) and equilibrium magnetic field (α2B2

eq), and the negative contribution from sheared flow

(ω̂2
0). Singularities occur when the contributions add to be nearly zero.
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eigenmode drifting at γI = ω0(+xs), so that in the eigenmode frame there is a standard

tearing-like singularity at x = +xs where ω̂0(xs)→ 0, Beq(xs)→ 0, and γ̂ � 1. The various

contributions to <{F (x)} in this moving frame are sketched in Figure 4-2c. In this frame

Equation 4.9 is not zero at x = −xs as ω̂0(−xs) = −2ω0(xs)� γ, and we cannot expected a

simple Doppler shifted DTM solution. It is, in fact, possible that the singularity at x = xs is

the only one in this frame so that the eigenmode should behave like a single-tearing mode,

albeit with a complicated outer region solution.

The more interesting case, however, is when the flow profile allows points of α2B2
eq ≈ ω̂2

0.

These singular layers are fundamentally ‘Alfvén resonances’ [40] and result in current sin-

gularities which can interact with the tearing layer around x = xs. One might postulate,

therefore, the appearance of two growing eigenmodes: one which resembles a tearing layer

at x = xs propagating in the ω0(xs) frame and coupling to Alfén resonance layers some-

where in the x < 0 half of the domain; and a second tearing mode at x = −xs moving

with ω0(−xs) and coupling to singularities in the x > 0 half. Recent computational studies

have show this prediction is, to lowest order, correct [37]. Depending on the location of the

Alvfén resonances their interaction with the tearing layer can either strengthen or weaken

the instability. Linearly this type of eigenmode may have growth rates as fast or faster

than the standard static double-tearing mode, which consists of two coupled reconnecting

surfaces. Nonlinearly, however, Afvén resonance layers do not produce the magnetic struc-

ture needed for explosive growth and may result in stabilization [54]. The equilibrium flow

profiles necessary for these structures to appear are often close to the threshold for shear-

flow driven instabilities such as Kelvin-Helmholtz [37, 38, 48], and as such present their own

complications. We are motivated, therefore, to find other stabilization mechanisms.

There is a clear disconnect between the global eigenmode solutions for the two classes

of singularity we have discussed thus far. When ω̂0 � γ̂ we claimed solutions should be

approximately the static eigenfunctions where the two available degrees of freedom result

in a pair of even and odd global modes each with two reconnecting layers. In contrast
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the opposite ordering of γ̂ � ω̂0 produces (in the antisymmetric flow case) two modes

with opposite drifts and one reconnecting layer. There must, therefore, be some transition

between these two general forms. We will argue in the remainder of this chapter that this

transitional behavior is associated with the third class of ideal MHD singularities.

Consider the intermediate case where |ω0(±xs)| ≈ γ � 1. This limit is similar to that of

the standard DTM in that F (x) still approaches zero in the lab frame near x = ±xs where

Beq(±xs)→ 0, shown schematically in Figure 4-2b. The ‘sheared eigenvalue’ Γ = γ+ iω0(x)

is, however, manifestly complex near the tearing layers, so we cannot reasonably expect the

static boundary layer analysis to hold as it did in the weak flow case. Neither can we follow

the strong flow case and transform to a frame where the singularity at one surface becomes

that of a standard tearing mode and the other vanishes. Instead this singularity represents

some sort of intermediate regime where the sheared displacement z is manifestly complex

with boundary layers near x = ±xs. If, however, we assume that the eigenmode is static in

the lab frame (γ = γR) then we can postulate a general outline for the analysis.

For a static mode we can take Γ2 = (γR+ iω0(x))2 → 0 far away from the singular layers,

giving an ODE for the ideal MHD outer region.

d

dx

[
B2
eq

dz

dx

]
= α2B2

eqz (4.11)

This equation is fundamentally the same as the one found for the static mode in Chapter 3

with the substitution ξ → z, thus we expect the same outer region symmetric and anti-

symmetric solutions expanded in powers of α or α2x2
s. These must then be matched to the

interior layers at x = ±xs. Consider the ideal MHD layers where Beq(x) ≈ ±B′0 (x∓ xs)

but we continue to ignore resistivity (S−1 → 0). If these layers are sufficiently narrow and

the equilibrium flow profile is not steeply sheared then we can expand ω0(x) ≈ ±ω0(xs) and
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treat the ‘sheared eigenvalue’ as a constant within them:

Γ(x→ ±xs) ≈ γR ± iω0(xs)

' Γ±

(4.12)

We can immediately see a deviation from the standard analysis. The real part of Γ is

symmetric at the two singular layers whereas the imaginary part is antisymmetric. Thus for

the intermediate flow region we should not expect eigenmodes to be either purely symmetric

or antisymmetric, but rather some linear combination of the two.

It is currently unclear how to solve the ideal MHD layer for complex Γ±, much less the

resistive layer described by Equations 4.1 and 4.2. As such, we cannot carry this analysis

further. This cursory examination has, however, provided several predictions as to the

behavior of the double-tearing mode in the presence of antisymmetric sheared flow. We

identified three different classes of singularities based of the ordering of the mode growth

rate γR and flow amplitude ω0. In the simplest case, when the equilibrium flow is negligible,

we find singularities in the lab frame of the standard DTM type and therefore expect growing

modes of the even and odd forms discussed in Chapter 3. When the plasma flow is very

strong, in contrast, we observed no tearing-like singularities in the lab frame. Transforming

into a frame moving with the plasma at a given zero of the in-plane magnetic field allowed

us to recover a tearing layer there, but also allowed the emergence of a new class of ‘Alfvén

resonance’ layer elsewhere in the domain. The proposed eigenmodes in these two limits

have very different characteristics, and we postulated that the transition between the two

forms may occur somewhere in the region where γ ≈ ω0 and the ideal MHD outer region is

manifestly complex.

Let us pause for a moment to consider the implications of these predictions in our broader

discussion of the double-tearing mode, and to specifically prescribe our goals in examining

these shear flow effects. The coupling between the two reconnecting surfaces of the double-

tearing mode cause it to be strongly driven and weakly dependent on resistivity, even when
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the magnetic shear is not large. This analysis of the singularity structure of the sheared DTM

raises the possibility that by applying an equilibrium drift we can split the eigenmodes such

that we produce two oppositely traveling reconnecting layers. Linearly these two eigenmodes

cannot interact, thus we will have removed the coupling and potentially weakened the DTM.

Going forward our goal will be twofold: first we will confirm the analysis given thus far

and show that the transformation from displacement ξ to ‘sheared displacement’ z = ξ/Γ

is correct; second we will numerically examine the transition from coupled DTM to drifting

uncoupled STM. This transition will be particularly important in later chapters when we

replace the equilibrium flow with the two fluid diamagnetic drift effect.

4.2 Numerical behavior of the sheared DTM

Several recent works have performed simulation studies of double-tearing modes in the

presence of shear flow, though the focus has largely been on the utility of Alfvén resonance

layers nonlinearly [48, 54, 57]. In this section we will build on one of the few linear studies

by Mao et al. [37] in which they have used both initial value simulations and an eigensolver

to map the behavior of a slab DTM with various amplitudes of sheared flow profiles. Al-

though our equilibria will be similar to theirs, we will focus our investigation primarily on

confirming the analytic discussion of the previous section and informing its possible con-

tinuation. Ref. [37] focuses largely on strong flow effects such as the Alfvén resonance and

Kelvin-Helmholtz instability, which are the best candidates for nonlinear stabilization in the

purely resistive regime. Outside of verifying the emergence of these high shear effects in

our linearized MRC-3d simulations we will focus primarily on the intermediate flow regime,

specifically on understanding the transition of the sheared DTM from ‘coupled’ to ‘decou-

pled’ behavior. It is this small (compared to Alfvén speeds) amplitude domain of parameter

space which will be most applicable to our coming diamagnetic drift investigations.

67



4.2.1 Equilibrium and analysis methods

As our basic magnetic equilibrium we choose to use the sech reconnecting field profile (Sec-

tion 2.3) in the same configurations as our examination of the static DTM in Chapter 3.2.

The magnetic shear at the tearing surfaces x = ±xs is set at ∂xBy(±xs) = ±π/2 and the

out-of-plane guide field is again be Bz0 = 10, so that the compressible MRC-3d model is in the

incompressible reduced MHD limit. In addition to the magnetic configuration we must also

specify a profile for the equilibrium flow, which we take to be antisymmetric and parallel to

the reconnecting field.

Uy(x) = v0 tanh(κx) (4.13)

Similar to Ref. [37] we fix κ = 2 and vary the amplitude v0 to scale the shear. With

these choices the native MRC-3d normalization is the same as that used for for the above

analysis, so that we can take ab ≈ τA ≈ 1 for simplicity. Therefore the equilibrium drift is

ω0(x) = kyUy(x). An example of this flow profile is shown together with the magnetic field

and current in Figure 4-1.

In Section 4.1 we showed that the appearance of singular layers depends on the frame

in which the Doppler shifted eigenvalue γ̂ and background flow ω̂0 are considered. We

hypothesized that if the growth rate is not purely real (i.e. if γI 6= 0 in the lab frame) then

the eigenmodes will resemble single tearing modes convected in opposite directions with the

equilibrium flow at the surfaces x = ±xs. If this is true then in the frame of the tearing

layer at x = xs the appearance of a singularity at the x = −xs surface will be determined by

ω̂0(−xs) = (ω0(−xs)− ω0(xs)), and visa-versa. Thus the behavior of the eigenmodes should

be determined by the difference between the equilibrium flow at the two zeros of the in-plane

magnetic field.

∆ω0 = ω0(xs)− ω0(−xs) (4.14)
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Pursuant to this presumption we will not set the amplitude of the flow v0 directly, but rather

set it from a specified value for ∆ω0. Simulation results will also be presented in this fashion.

The analysis of Section 4.1 predicted that the type and effect of singular layers would

change based on the magnitude of the equilibrium flow. Choosing the same separations of

xs = 0.25, 1.0 that we used in Chapter 3 allows us to compare the sheared flow cases to the

better understood static regime. We set the resistivity at a relatively high value η = 1× 10−4

for stability and computing cost reasons. The values of the growth rate γR are fitted from

diagnostic output in much the same fashion as for the static system (Section 3.2). Calculating

the imaginary part of the eigenvalue γI involves processing the full time-series output using

a discrete Fourier transform. This method is computationally intensive and requires long

simulations with a high output cadence in order to ensure both that the frequency resolution

is high enough to distinguish different modes and that the Nyquist frequency of the DFT is

well above γI . To mitigate the storage and run-time cost we only calculate γI for a subsample

of ∆ω0 values. Errors in the extracted frequencies are estimated by taking the larger value

of the DFT resolution and fitted width of maximum amplitude γI peaks.

4.2.2 Numerical results

In Figure 4-3 we show the resulting values of the growth rate γR and oscillation frequency

γI for increasing values of ∆ω0 in xs = 1.0 and xs = 0.25 magnetic fields. For both sep-

arations the simulation results confirm one of our analytic predictions: when ∆ω0 � γR

the imaginary part of the eigenvalue will be determined by the equilibrium flow at the two

zeros of the in-plane field, i.e. γI ≈ ±ω0(±xs) = ±∆ω0/2. We would also expect, there-

fore, the appearance of Alfvén resonance layers coupled to single tearing layers. Comparison

of the static xs = 1.0 DTM eigenmode (provided for reference in Figure 4-4) to drifting

eigenmodes confirms this prediction. Figure 4-5 shows two modes extracted via DFT from

a simulation run with ∆ω0 = 0.2. The two modes are drifting in opposite directions with

γI = ±(0.1010 ± 0.0034), which is equal to the predicted γI = ±0.1 within the DFT error.
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Furthermore, the positive frequency mode exhibits a tearing-like structure in ψ surrounding

the x = +1 surface, and likewise for the negative frequency mode and x = −1 surface. Ex-

amining the out-of-plane current Jz shows a strong, narrow structure at the tearing surface

and two smaller peaks in the neighborhood of the opposite zero of the magnetic field. Mao et

al. [37] found very similar results using a combination of eigensolver and initial value codes

and determined that these secondary peaks match Alfvén resonance layers. Their proximity

to and interaction with the tearing layer generates the increase in γR near ∆ω0 = 0.5 shown

in Figure 4-3a. This high flow regime is not particularly relevant to the diamagnetic drift

mechanism which is the final purpose of this work, and is covered extensively in Ref. [37].

We consider it here only as a verification of the singularity analysis given in Section 4.1. The

more tightly coupled xs = 0.25 modes exhibit very similar behavior and structures, with the

additional complication that γR increases sharply above ∆ω0 ≈ 0.3 due to the emergence of

the Kelvin-Helmoltz instability at strong flow shear, which then dominates over the tearing

mode behavior [37, 38, 48].

Figures 4-3b and 4-3a both show an initial drop in growth rate from the static case

followed by an extended period where increasing the equilibrium flow amplitude seems only

to impact γI . Mao et al. [37] argue that this is the region of ∆ω0 where the Alvfén resonance

points are not sufficiently close to the tearing-like layers to drive or interfere with them. As

we are primarily interested in stabilization mechanisms, this flat region is not of great interest

at present. The small flow regime, however, where the growth rate decreases from the static

value will prove to be of vital importance. In Figure 4-6 we plot the behavior of γR and γI

for xs = 0.25, 1.0 in the small amplitude region using smaller steps of ∆ω0. We are now well

positioned to answer the question posed at the end of Section 4.1: How does the sheared

DTM transition from a static (γI = 0) eigenmode with two coupled tearing surfaces into two

oppositely drifting eigenmodes with one tearing surface each? It is immediately clear from

these simulation results that the coupled, static mode undergoes a smooth decrease in γR

with increasing ∆ω0 until some critical value is reached, at which point the system transitions
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(a) Dependence of the xs = 1.0 DTM growth rate γR and drift frequency γI on the equilibrium flow difference
between the zeros of the magnetic field ∆ω0 = ω0(+xs)−ω0(−xs). After an initial decrease in growth at low flow
amplitudes, γR is unaffected by increasing ∆ω0 until Alfvén resonance interactions become significant. The drift
frequencies are equal to γI = ω0(±xs) = ∆ω0/2 to within DFT frequency resolution. Error bars on γR and γI are
too small to be observed in this plot.

0.00

0.02

0.04

0.06

0.08

0.10

γR

xs=0.25

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
∆ω0

0.15
0.10
0.05
0.00
0.05
0.10
0.15

γI

(b) Dependence of the xs = 0.25 DTM growth rate γR and drift frequency γI on the equilibrium flow difference
between the zeros of the magnetic field ∆ω0 = ω0(+xs) − ω0(−xs). Above ∆ω0 ≈ 0.3 the equilibrium becomes
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Figure 4-3: Behavior of the complex eigenvalue γ = γR + iγI with changes in shear flow amplitude ∆ω0 for xs = 1.0 and
xs = 0.25 DTMs. All data is obtained with resistivity η = 1e− 4 and wave number α = k = 0.5
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Figure 4-4: An example of the static (∆ω0 = 0), even, η = 1× 10−4 DTM with separation xs = 1.0. The sheared displacement
z = ξ/Γ is, in this case, merely a rescaling of the standard plasma displacement by Γ = γR. z, perturbed magnetic flux ψ, and
perturbed out-of-plane current Jz are all symmetric and purely real (black lines), and thus imaginary parts (red lines) are zero.

72



200

0

200

400

600

800

1000

1200

z

γI=0.101±0.0034

1200

1000

800

600

400

200

0

200

400
γI=−0.101±0.0034

0.4

0.2

0.0

0.2

0.4

0.6

0.8

ψ

0.8

0.6

0.4

0.2

0.0

0.2

0.4

4 3 2 1 0 1 2 3 4
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Jz

4 3 2 1 0 1 2 3 4
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 4-5: Examples of drifting, xs = 1.0, η = 1× 10−4 eigenmodes obtained via DFT from a simulation with ∆ω0 = 0.2.
Real parts of the sheared displacement z, perturbed magnetic flux ψ and out-of-plane current Jz are shown in black, imaginary
parts in red. The measure drift frequencies γI = ±0.1010 are equal to the equilibrium flow at the x = ±xs surfaces of
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tearing mode near the x = +xs surface, and likewise for the negative frequency mode (vertical dashed lines). Jz shows the
appearance of smaller Alfvén resonance current layers for each mode in addition to the tearing layer.
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to the drifting states. Merely counting the number of observed eigenmodes before and after

this transition reveals that our simulation results are incomplete: we are only able to resolve

one type of eigenmode when 0 < ∆ω0 ≤ ∆ωc0, and two after. The study of Ref. [37] using

an eigensolver code demonstrates that this is a limitation of initial value methods such as

MRC-3d. In general the fastest growing mode will dominate the simulation and thus we lose

the second type of sheared DTM. The slower mode emerges from the antisymmetric static

solution and the faster from the symmetric [37], therefore using our preliminary simulations

from Chapter 3.3 we are able to estimate the lower branch using the static odd mode growth

rate. This prediction (sketched in red on Figures 4-6a and 4-6b) cannot be verified without

the use of an eigensolver code.

The observed behavior of the growth rate γR and mode drift γI strongly suggests some

form of bifurcation associated with increasing flow amplitude ∆ω0. Furthermore, we note

that for both xs = 1.0 and xs = 0.25 this transition occurs when ∆ω0 = O(γR), which

corresponds to the third class of singular layer we identified in Section 4.1. We also argued

that in this regime the eigenmodes could not be purely even or odd. Because the equilibrium

flow causes the imaginary part of the ‘sheared eigenvalue’ Γ to be antisymmetric across

the domain we expect some mixture of the two DTM parities. To confirm this prediction

we examine the magnetic flux ψ and ‘sheared displacement’ z for two different values of

0 < ∆ω0 < ∆ωc0 ≈ 0.0066 using the xs = 1.0 magnetic equilibrium. Figure 4-7a is well below

the decoupling threshold with ∆ω0 = 0.004, and Figure 4-7b is just below with ∆ω0 = 0.0065.

In both cases we have seeded the simulation with an initial perturbation in ψ which is purely

real and symmetric, and the real and imaginary parts of the resultant eigenmodes are shown

in black and red respectively.

We first note that we have plotted the sheared displacement z = ξ/Γ in Figure 4-7 rather

than the standard plasma displacement ξ, and that for both ∆ω0 = 0.004 and ∆ω0 = 0.0065

the real part of z, ψ, and Jz are of same form as the static eigenmode (Figure 4-4). This cor-

respondence is not, in general, true of ξ. The transformation ξ → z is thus the appropriate

74



0.000
0.002
0.004
0.006
0.008
0.010
0.012

γR

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
∆ω0

0.008
0.006
0.004
0.002
0.000
0.002
0.004
0.006
0.008

γI

(a) xs = 1.0

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

γR

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
∆ω0

0.015
0.010
0.005
0.000
0.005
0.010
0.015

γI

(b) xs = 0.25

Figure 4-6: Behavior of the sheared DTM growth rate γR and drift frequency γI near the critical decoupling flow ∆ωc0 for
separations xs = 1.0, 0.25. Black lines represented data fitted from linear MRC-3d simulations. Red dashed lines are predictions
of the slower, dominantly antisymmetric mode branch drawn from measurements of the static, odd DTM growth rate and the
eigensolver results of Ref. [37]. The transition from opposite parity static coupled modes to isolated drifting modes resembles
a pitchfork bifurcation. The critical shear ∆ωc0 is different for the two separations.
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Figure 4-7: Examples of DTM eigenmodes for flow amplitudes significantly and marginally below the critical decoupling point
∆ωc0.
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means to make contact with the original boundary layer theory of Chapter 3. Furthermore,

the imaginary parts of the eigenfunctions are purely antisymmetric and resemble the odd,

static DTM (see Figure 3-6). At small amplitude (Fig. 4-7a) the imaginary (odd) part is

significantly smaller than the real (even) part. Near the decoupling threshold (Fig. 4-7b),

however, they are approximately equal in magnitude. The eigenvalue simulations of Ref. [37]

show that the reverse is true for the slower branch originating from the antisymmetric DTM:

the odd part of the mode is greater than the even, with the disparity decreasing with prox-

imity to the decoupling flow.

These simulation results present a possible explanation for the effect of antisymmetric

equilibrium sheared flow on the DTM, and a possible mechanism to determine the value of

∆ωc0 at which the system bifurcates. Provided that the equilibrium flow is less than or on

the order of the mode growth rate (∆ω0 . γR) the singular layers of Equation 4.8 occur in

the neighborhood of the zeros of the equilibrium field, Beq(x → ±xs) → 0. Then the only

allowable solutions for z and ψ in the ideal MHD outer region that include both singular layers

are of the same form as the even and odd DTM solutions found in Chapter 3 for ξ and ψ.

Thus any static eigenmode with γI = 0 must be a linear combination of these two solutions.

The real part of the ‘sheared eigenvalue’ <{Γ} = γR is symmetric across the domain whereas

={Γ} = ω0(x) is antisymmetric, therefore the real and imaginary parts of the outer region

must have opposite parities. The relative magnitudes of the even and odd parts should be

related to arg{Γ(x = ±xs)}. We propose that the critical flow ∆ωc0 corresponds to the point

at which the eigenmodes on the symmetric and antisymmetric become degenerate, i.e. when

the dominantly even DTM has gained a significant enough odd part, and vice versa for the

dominantly odd DTM, such they are related by a simple similarity transformation. At this

point the system will bifurcate into two oppositely drifting modes with one tearing-type layer

each. This decoupling behavior has important consequences for DTM stability, and we will

now examine this bifurcation point in more depth.
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4.3 Properties of the bifurcation point

If the above explanation of the sheared DTM behavior is correct then there should be a

consistent relationship between the growth rate γcR and equilibrium flow amplitude ∆ωc0 at

which the modes decouple. Understanding this relationship may give us a better idea how to

formulate either a bifurcation theory for the decoupling point or a complete boundary layer

analysis of the sheared DTM via Equations 4.7, 4.6, and 4.8. To that end we will attempt to

determine scaling of the critical decoupling growth rate and flow amplitude with resistivity

η for the xs = 0.25, 1.0 equilibria, thus adjusting the mode growth rate while keeping the

form of the outer region solutions fixed.

4.3.1 Bisection search methodology

In order to find the approximate value of ∆ω0 at which the sheared DTM behavior

changes we exploit the interoperability of MRC-3d with the Python programming language.

We assume that the appearance of two equal magnitude modes with non-zero drift γI is

a sufficient indicator that a given ∆ω0 > ∆ωc0. If a discrete Fourier transformation on

the output data of a simulation shows that the largest amplitude modes have a non-zero

frequency we mark them as being above the critical point. By automating the initialization

and analysis of simulations we are able to use a simple bisection method to determine the

value of ∆ωc0 for a given xs and η within the DFT frequency resolution δω = 2π/tmax.

Unfortunately, we cannot run the linearized version of MRC-3d to arbitrarily long simulation

times. Though the analytic model forces the mode to evolve consistent with the linearizing

assumption δf � feq even when the magnitude of the state vector is, in reality, much

larger than the equilibrium values, floating point precision errors cause the time integration

algorithm to not converge and halt the simulation at some finite amplitude. We find the

simulation time at which this occurs for the static, ∆ω0 = 0 symmetric DTM at a given

resistivity and use this as the maximum time for a subsequent sheared simulations at the
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same η. Because these sheared growth rate is, for the initially even mode, less than the static

γR we avoid non-convergence of the time-stepper while minimizing the resultant δω. Likewise

we use our hypothesis that the critical decoupling flow is associated with the ∆ω0 ≈ γR class

of singular layer to ensure that the simulations output at a high enough cadence such that

the Nyquist frequency of the DFT is well above any value of γI which we might encounter.

In this fashion we are able to design a Python script which automatically sets up, runs, and

analyzes linear MRC-3d simulations, performing a bisect search in ∆ω0 over a range of η to

determine the critical values ∆ωc0 and γcR.

4.3.2 Numerical behavior of the decoupling point

The results of our bisection search are shown in Figure 4-8 for the separations xs = 1.0

and xs = 0.25. Two relations are important for our present discussion. The critical flow

amplitude required for decoupling (∆ωc0) is found to be proportional to the growth rate of the

even, static (∆ω0 = 0) mode in both cases: ∆ωc0 = Msγ
0
R. The constant of proportionality

is, however, different between the two separations: M1.0 ≈ 0.39 and M0.25 ≈ 1.0. This

finding is primarily useful as a means to predict the necessary decoupling flow for future

nonlinear studies. More relevant to understanding the bifurcation behavior is the scaling of

the measured growth rate at the point of decoupling γcR as a function of the critical decoupling

amplitude ∆ωc0. For both separations the data follows linear scaling (i.e. γcR ∝ ∆ωc0) as shown

by the dashed trend-lines. To understand the behavior of the differential equations near the

bifurcation point we fit the constant of proportionality Ns between the decoupling growth

rate and flow assuming that γcR = Ns∆ω
c
0. We find N0.25 = 0.538 ± 0.008 for the tightly

coupled xs = 0.25 modes and N1.0 = 1.447± 0.007 for the more weakly interacting surfaces.

It is difficult to draw any definitive conclusions from this limited sampling of the decou-

pling frequency and our cursory analysis. At most we can state that for a given magnetic field

profile there appears to be fixed relationship between the mode growth rate and equilibrium

flow amplitude at the decoupling point. This relationship is independent of the resistivity
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Figure 4-8: Preliminary results from a bisection study of the xs = 1.0 (left) and xs = 0.25 (right) double tearing mode
decoupling points. Plotted are the scaling behavior of the critical flow amplitude ∆ωc0 with the maximum (static) symmetric
DTM growth rate γ0R(top) and relationship of the growth rate at the decoupling point γcR to ∆ωc0 (bottom). In all cases the
behavior is approximately a linear relationship, shown by the dashed trend-lines, though the constants of proportionality are
different in each instance. At larger growth rates the xs = 0.25 results show significant deviation from the trend, suggesting
that in these higher η values the resistive boundary layers are too large for a standard boundary layer analysis to be valid.
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(and thus actual measured grown rate) in the simulation. Let us presume, for the moment,

that this statement is true, and consider it’s implications on the boundary layer analysis we

began in Section 4.1. Based on our examination of sheared eigenvalues (Sec. 4.2.2) we pro-

posed the decoupling point is related to the argument of the complex sheared eigenvalue at

the tearing surfaces Γ± = γ±ω0(xs). In our numerical study we found that the growth rate

and equilibrium sheared flow at the decoupling point are directly proportional, γcR = Ns∆ω
c
0,

with the constant of proportionality Ns that depends on xs but not η. This behavior suggests

that the bifurcation behavior emerges from the ideal MHD regions of the boundary layer

theory, and it may not be necessary to solve the resistive layer equations (Eqn. 3.17) for a

complex eigenvalue. The linear relationship between γcR and ∆ωc0 also confirms our hypoth-

esis that decoupling depends on the ratio <{Γ±}/={Γ±}, although there is some additional

contribution which varies based on the equilibrium field properties.

Ultimately, we expect that to understand the decoupling process we will need to com-

plete the boundary layer analysis at least as far as the ideal MHD layer. In doing so we

might find a threshold where the solutions within the layers cannot be matched to the outer

regions without a nonzero drift, or the emergence of an additional singularity which results

in bifurcation. Completing this task would require, however, first understanding the full

antisymmetric DTM solution encountered in Chapter 3 and then considering the internal

layer solutions to Equations 4.6 and 4.7. For the purposes of our current work it is sufficient

to have determined that, within an order one constant of proportionality, the flow ampli-

tude needed for decoupling is approximately the static, symmetric DTM growth rate. This

will allow us to initialize nonlinear simulations that are initially coupled or decoupled and

examine their differing evolution.
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4.4 Discussion

In Chapter 3 we showed how the coupling between the two singular layers of the double-

tearing mode drive each other to produce an instability which depends weakly on resistivity.

In later chapters we will observe how nonlinearly this interaction can result in explosive

growth and catastrophic disruption. Any mechanism which can interfere with the coupling

between the two surfaces should be explored as a useful stabilization mechanism, and the

addition of antisymmetric equilibrium sheared flow is our first indication that such a decou-

pling is possible. We have presented the foundations of a linear theory to describe the various

behaviors observed in the sheared DTM including the appearance of Alfvén resonance layers

and the changes in eigenmode behavior. Recent work has explored the stabilization proper-

ties of Alfvén resonances nonlinearly [48, 54], however these effects require relatively large

equilibrium flows or self generated drifts and thus present their own complications. For our

coming application of kinetic effects via the diamagnetic drift we are more interested in the

apparent bifurcation point at which the eigenmodes transition from global modes spanning

both zeros of the magnetic field into drifting single-tearing layers.

In this discussion we have characterized the behavior of the sheared, coupled DTM as

a mixing of symmetric and antisymmetric modes in the complex plane. This approach

makes explicit the relationship between γcR and ∆ωc0 and will provide the best framework

for understanding the bifurcation behavior. An equivalent (and perhaps more physically

intuitive) description is to view the linear modes in 2D space. In Figure 4-9 we have plotted

the linear, complex, 1D eigenmodes of the flux function ψ from Figs. 4-4, 4-7a, and 4-7b

as contours in the x − y plane, as well as an example of the static, odd eigenmode from

Chapter 3. The composite sheared eigenmodes on the symmetric DTM branch resemble the

static even eigenmode sheared in y between the two surfaces, with the amplitude of this shift

increasing with ∆ω0. Mao et al. [37] found similar behavior along the antisymmetric branch,

and concluded that the decoupling point occurs when the phase shear between the surfaces

is the same for the even and odd branches. It may be more natural, in this framework, to
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examine the balance between the convective forces that attempt to drag the singular surfaces

along with the equilibrium flow and the coupling forces that keep them locked together, and

to derive some relation for the maximum shear Θc. It should be clear, however, that this

view of sheared 2D eigenmodes is entirely equivalent to the approach we have taken above,

which relates the bifurcation of the mode to the argument of the complex sheared eigenvalue

Γ. The primary difference between these conceptualizations is that they lend themselves

more readily to different analysis frameworks.

Ultimately our analysis of the influence of equilibrium sheared flow on the linear DTM

is not our end in and of itself, but rather a means to understand processes we will see

when kinetic effects are introduced. Once the critical shear is achieved and the surfaces are

decoupled, further increases in ∆ω0 do not have any effect until flows large enough to produce

Alfvén resonance coupling are present. As we will see in the next chapter, diamagnetic drifts

are able to produce this same decoupling. They will also continue to slow the growth past the

bifurcation point, which results in them being a much more effective stabilization mechanism.
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Figure 4-9: Projection of the ψ component of the 1D linear eigenmodes plotted in figs. 4-4, 4-7a, and 4-7b onto the 2D plane,
as well as an equivalent static odd DTM at the same resistivity η = 1× 10−4 and separation xs = 1.0. The static DTM appears
to be sheared between the two tearing surfaces, with this effect increasing at higher ∆ω0.
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Chapter 5

FLR effects on the linear DTM

The simplest means to reintroduce some kinetic plasma behavior to the resistive MHD

model is to keep the di scale contributions in the generalized Ohm’s law (Eqn. 1.15), which are

the Hall and electron pressure gradient terms. In terms of physical ordering this corresponds

to the first order term of an expansion in the electron-ion mass ration me/mi, and can be

conceptualized as allowing the ions to have a small, finite mass while the electrons remain

massless. As a consequence, the ions have a finite gyro-radius in the presence of a magnetic

field, leading to the common name ‘Finite Larmor Radius’ (FLR) effects.

This closer approximation to the true kinetic model allows for physical processes which

are excluded from the standard MHD model. For example, in ideal MHD the wave behav-

ior is dominated by the Alvén wave dispersion relation at all values of the wave number

k and frequency ω. FLR effects allow the emergence of the whistler wave branch of the

dispersion relation, although this branch continues as k, ω → ∞ rather than saturating at

the electron-cyclotron resonance. Electron resonance behavior requires finite electron mass,

which is excluded from the Hall MHD description. This partial step towards kinetic physics

is, however, enough to introduce two new processes critical to accurate reconnection model-

ing. Firstly, if the characteristic scale of ion motions is larger than the reconnecting current

layer, the ion fluid cannot participate in the reconnection process. In systems without an

out-of-plane equilibrium field this decoupling occurs at the ion inertial length di (see Chap-

ter 1.1). If a mean, ‘guide’ magnetic field is present the ions will gyrate around it, and the

characteristic scales becomes the ion gyro- or ‘Larmor’ radius ρi. Finally, if the guide field

is very strong compared to the pressure and in-plane fields such that the ratio of the bulk
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plasma pressure to magnetic pressure β = 2p/B2 is much less than one, then the magne-

tosonic mode is the fastest wave in the system [13] and the ion decoupling scale becomes the

ion-sound Larmor radius [60]:

ρs =
cs
Ωci

=
√
βdi (5.1)

where cs is the sound speed and Ωci the ion gyro-radius. The latter low-β, strong guide field

limit is that most applicable to tokamaks. Linearly this decoupling creates a nested boundary

layer structure which increases the growth of the reconnecting instability and triggers a

nonlinear collapse of the current sheet into a compact point. Although this effect aids the

reconnection process it is not sufficient to produce it alone; the magnetic fields remain tied

to the massless electron fluid and some additional mechanism, such as resistivity, is required

to change the magnetic topology.

Not all FLR effects are beneficial to the reconnection process; the diamagnetic drift effects

discussed in Chapter 2.2 can inhibit growth. When ions are allowed to have finite mass they

must also participate in carrying the diamagnetic current, and thus the ion diamagnetic drift

v∗i = diB×∇pi/B2ρ is required in the model. This addition indirectly couples the electron

drift v∗e = −diB × ∇pe/B2ρ into the MHD equations. These drifts are able to reduce the

growth rate of reconnecting instabilities; equivalently represented as a forced mixing of the

mode in the complex plane [3] or as an interference with the re-coupling of the electron flow

to the ion flow in the down-stream regions of reconnection sites [44]. These diamagnetic

drift stabilization mechanisms are critically important in the understanding of the m = 1

kink-tearing mode in cylindrical geometry [3, 41], and are capable of completely saturating

the instability and leaving finite sized islands nonlinearly [34]. Because of the similarities

between double-tearing eigenmodes and m = 1 kink-tearing modes (Chap. 3) v∗ effects are

a strong candidate for DTM stabilization.

Our primary goal in this chapter is to understand how the introduction of diamagnetic
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drifts will affect the linear double-tearing mode in Cartesian geometry. To accomplish this

task we will rely almost entirely on simulation results from the linearized version of MRC-3d.

Because drift stabilization requires di 6= 0, the Hall effect beneficial to reconnection growth

will also be manifest. To separate the growth enhancing properties from the v∗ suppres-

sion we will first consider the scaling of growth rate with di and the impact on resistivity

dependence. After isolating the enhancing properties we will replicate the sheared scaling

studies of Chapter 4 using an electron diamagnetic drift frequency ω∗e = kv∗e in place of

the equilibrium flow. We will see that the general trend of mode mixing and bifurcation

remains, however the diamagnetic effects local to the tearing layer will continue to slow the

growth after decoupling is achieved.

5.1 Force-free Hall

In this section we will focus specifically on the effects of the Hall term on the Cartesian

double-tearing mode in the presence of a strong out-of-plane magnetic field Bz. In the linear

phase the growth rate behavior is largely dependent on the ordering of the various boundary

layers, specifically the ion-sound Larmor radius ρs, which represents the characteristic scale

of ion motions about the guiding magnetic field, and the resistive layer width δη, which we

first encountered as the inner-most layer width ∆ in Chapter 3.1.2. For the kinetic effects

to have a significant impact on the mode, the ion fluctuations must occur on a scale larger

than the tearing layer so that the ion fluid is decoupled from the reconnecting magnetic field.

Thus the strong Hall regime is characterized by ρs � δη, the weak Hall regime by ρs � δη,

and the ‘moderate’ Hall regime when they are approximately equal and the boundary layers

cannot be considered strictly nested.

In the strong guide field regime (Bz ≈ 10Beq) the ions have a small gyroradius around

the large out-of-plane magnetic field and the plasma beta (β = B2/2p) is likewise small,

therefore ρs is very small unless di is large. As a consequence it is difficult to observe the
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strong Hall regime of the double-tearing mode while keeping the separation xs larger than

the layer widths unless the Lundquist number is very large (S−1 � 1) so that the resistive

layer is very small. To illustrate the FLR transition we use a small resistivity (η = 1× 10−7)

and step di to generate the scalings in Figure 5-1. Our equilibrium for these examples is the

same as that used in Chapter 3.2, which has β = 0.02 so that ρs ≈ 0.14di.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
di

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055
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0.0065

γ

(a) xs = 0.25

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
di

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

γ

(b) xs = 1.0

Figure 5-1: The growth rate γ of the symmetric double-tearing mode increases with increasing ion inertial length di. At low
values (di < 0.04) the resistive layer is much larger than the ion-sound gyro-radius ρs =

√
βdi and γ is weakly effected by the

Hall term in Ohm’s law. The transition between moderate and strong Hall regimes is not readily apparent in the scaling of γ
with di.

Both the xs = 0.25 (Fig. 5-1a) and xs = 1.0 (Fig. 5-1b) double-tearing modes exhibit

an increase in linear growth rate as di is increased. The transition from weak to moderate

Hall behavior occurs in the neighborhood of di = 0.04 for this equilibrium and resistivity.

Below this value the mode is not strongly impacted by changes in the ion-inertial scale. The

boundary between moderate and strong Hall is not readily apparent in the di scalings during

the linear phase. Comparing the plasma displacement (ξ) near the boundary layers of the

xs = 1.0 DTM for di = 0 and di = 0.15 shows the appearance of a nested structure when

ρs becomes significantly larger than the resistive scale (Fig. 5-3), which indicates that the

transition does occur. The out-of-plane current Jz becomes more strongly peaked when FLR

effects are present, which explains the increase in the linear growth rate γ as the diffusive

ηJ term in Ohm’s law is the mechanism responsible for field-line breaking and reconnection.

88



10-8 10-7 10-6 10-5 10-4 10-3

η

10-3

10-2

10-1
γ η0.23

di=0.1

di=0

(a) xs = 0.25

10-8 10-7 10-6 10-5 10-4 10-3

η

10-5

10-4

10-3

10-2

10-1

γ η0.45

di=0.1

di=0

(b) xs = 1.0

Figure 5-2: When the ion sound Larmor radius ρs is larger than the resistive layer the DTM growth rate γ depends less
strongly on the resistivity η. For an ion inertial length of di = 0.1 (ρs = 0.014) this transition occurs near η = 1× 10−6 for
both the xs = 0.25 (left) and xs = 1.0 (right) separations. At larger resistivities the modes are in the weak Hall regime and
the growth rates behave as in resistive MHD (red lines).

This nested boundary layer structure disconnects the internal resistive layer from the

outer ideal MHD regions. The dependence of the growth rate on resistivity is modified

based on the relative ordering of FLR and diffusive terms. Fixing di = 0.1 (ρs = 0.014)

we scale the resistivity for both the xs = 0.25 (Fig. 5-2a) and xs = 1.0 (Fig. 5-2b) DTMs.

At low resistivities (η . 1× 10−6) the dependence of γ on η is significantly reduced from

the purely resistive case (γxs=0.25 ∝ η0.23 compared to η1/3 for the resistive, and likewise

γxs=1.0 ∝ η0.45 rather than η3/5). This weakened dependence indicates that the resistive

layer is much smaller than the FLR layer and the system can be considered in the ‘strong

Hall’ regime. At very large values of η the growth rate begins to follow the standard resistive

behavior (shown in red for both separations in Fig. 5-2), indicating a transition to the ‘weak

Hall’ behavior.

For the remainder of this chapter (and all future Hall MHD simulations) we will use

this value of di = 0.1 and a resistivity on the order of η ≈ 1× 10−5. This value of the

ion inertial length, and the corresponding ion-sound Larmor radius, is (when translated

to dimensional coordinates) at least an order of magnitude larger than that expected in

actual fusion plasmas [24]. Our choice of this value is largely motivated by the numerical

challenges of simulating small resistivities. A large value of η allows for less computationally

89



0.96 0.98 1.00 1.02 1.04

0.5

0.0

0.5

1.0

ξ

0.96 0.98 1.00 1.02 1.04
12

10

8

6

4

2

0

2

Jz

(a) di = ρs = 0

0.96 0.98 1.00 1.02 1.04

0.5

0.0

0.5

1.0

ξ

ρs

0.96 0.98 1.00 1.02 1.04

100

80

60

40

20

0

20

Jz
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Figure 5-3: The introduction of FLR effects results in a nested boundary layer structure. When di = 0 the singular layer of
an xs = 1.0 DTM exhibits one boundary layer transition (left). A ion inertial length of di = 0.15 introduces an outer boundary
layer at ion-sound gyro-radius scales ρi =

√
βdi = 0.021 with the resistive layer nested inside (right), visible predominantly

in the linear plasma displacement ξ. The perturbed out-of-plane current Jz is much more strongly peaked than in the purely
resistive case. In order for this nested structure to be clearly visible, ρs must be significantly larger than the resistive layer
width. Thus we have used a small resistivity η = 1× 10−7 to generate these examples.
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expensive simulations, however a larger value of di is required for FLR effects to be significant.

We require, however, that the ordering of ρs be less than the spacing between the tearing

surfaces xs so that there is an asymptotically ideal MHD region between the two DTM

nested boundary layers, thus di cannot be arbitrarily large. Based on the scaling studies of

Figures 5-1 and 5-2 this combination of di and η results in a ‘moderate Hall’ mode where the

FLR effects are significant and the linear mode growth is increased, but the scale separation

will not cause numerical issues.

5.2 Diamagnetic drift effects

The addition of a pressure gradient to a Hall MHD system introduces an equilibrium

diamagnetic drift for both the ions and electrons by forcing the ions to participate in the

diamagnetic current, as discussed in Chapter 2.2. Within the MHD model the ion drift

manifests as a bulk fluid flow, and thus can advect eigenmodes in the same fashion as an

externally applied flow (Chap. 4). In this work we will, however, choose to work in the cold-

ion approximation (Ti = pi = 0) for analytic and numerical simplicity. The ion diamagnetic

drift will not appear in our simulations. Although the electron fluid is not strictly present in

Hall MHD, the di scale terms in Ohm’s law couple the diamagnetic current directly into the

advancement of the magnetic field. As we will see in the following simulations, this results

in the magnetic modes acquiring a drift determined by the electron diamagnetic frequency.

In this sense the Hall MHD model is a half-step between two fluid models, for which a mode

can formerly be considered as advected with the electron fluid [3, 41], and the resistive MHD

model where diamagnetic drifts are absent.

Our goal in this section is to demonstrate linear stabilization of the DTM through elec-

tron diamagnetic drift effects. This task has two components. Firstly, by establishing the

electron drift in opposite directions at the two singular layers we will demonstrate that the

mode decoupling first observed with sheared equilibrium flows (Chap. 4) can also occur as a
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consequence of v∗e drifts. Secondly, we will demonstrate that diamagnetic drifts can continue

to stabilize the reconnection process after decoupling. In this sense they are more effective

than equilibrium sheared flows. Strongly coupled modes, however, may require extremely

steep pressure gradients to achieve appreciable stabilization, and these large shears may lead

to other instabilities. The nature of these instabilities is outside the scope of this work,

but we will show that for the most nonlinearly dangerous class of modes (moderately cou-

pled DTMs) there is an extended range of pressure profiles where the tearing surfaces are

decoupled and the growth rate is strongly suppressed.

A globally sheared diamagnetic drift of the same form as as the tanh equilibrium sheared

flow profiles used in Chapter 4 is not physically or numerically realistic, as it would require

an unbounded pressure profile. Fortunately the decoupling behavior of the DTM, which

occurs in the low amplitude regime, depends on the drift local to the two resonant surfaces

(see the analysis of Sec. 4.1 and simulation work of Ref. [37]). To generate peaked drift

profiles local to the layers we use the double-tanh density profile describe in Section 2.3.

ρ(x) = ρ0 + ∆ρ

[
1 + tanh

(
(x− xs)
λρ

)
− tanh

(
(x+ xs)

λρ

)]
− ρs (5.2)

The equilibrium electron diamagnetic drift frequency in MRC-3d can be calculated from this

gradient, assuming a strong guide field Bz(x), reconnecting field By(x), and constant electron

temperature T0, and is confined to the ŷ direction.

ω∗e = k · v∗e = −kdi
T0Bz∂xρ

ρB2
(5.3)

In following with the sheared flow study, we will define the parameter ∆ω∗ as the difference

between the electron diamagnetic drift at the two surfaces.

∆ω∗ = |ω∗(xs)− ω∗(−xs)| = 2|ω∗(xs)| (5.4)
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This difference is an effective marker of decoupling and drift behavior for the symmetric

pressure profile we use. Unlike the sheared flow case, however, we cannot take this to be

a generic indicator of the DTM response for arbitrary drift profiles. The interaction of the

diamagnetic drift with the reconnecting mode is not a simple advective process [3] but rather

involves a more complex interaction between the current, electric, and magnetic fields. As a

consequence we cannot Doppler shift to an arbitrary frame without introducing an additional

equilibrium electric field that will have an effect on the mode growth. The parameter ∆ω∗

can therefore only be taken as a characteristic measure for this symmetric pressure where

ω∗(xs) = −ω∗(−xs). We will not explore any additional profiles in Cartesian geometry, but

this distinction will be important in cylindrical equilibria when symmetric profiles are not

possible.

One limitation of the high guide field regime is that the drift frequency varies inversely

with Bz so that large drifts require steep pressure gradients. To mitigate this we will use, for

this Cartesian study, a larger electron temperature of T0 = 10. This change will increase the

plasma β to 0.2, as opposed the β = 0.02 we used in the previous chapters. While still small,

this may present a further complication for any direct comparison of these simulation results

to some future analytic theory. In simulation work the important impact is that increased β

at the current layer will cause an increase in the measured growth rate both due to changes

in normalization and because of an increase in ρs =
√
βdi. These changes will need to be

more carefully accounted for if, at some future point, we are able to compare to theoretical

predictions.

An example drift profile along with the pressure gradient that generates it is plotted in

Figure 5-4. Holding di and ρ(±xs) fixed, we decrease λρ to increase the pressure gradient and

generate the desired differential drift ∆ω∗, similar to the sheared flow scalings of Chapter 4.

The mode shearing and decoupling effects of the diamagnetic drift, together with the

additional plasma waves allowed by the FLR terms in Ohm’s law, have an unfortunate

tendency to introduce and support small scale spurious oscillations which can cause numerical
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Figure 5-4: Example pressure gradient (red) formed by a density given by Eqn. 5.2 with ρ0 = 1.0, ∆ρ = 0.8, λρ = 1.32, and
ρshift = 0.074, multiplied by a constant electron temperature of T0 = 10. When di = 0.1 and there is a strong guide field
Bz = 10 this profile results in an equilibrium electron diamagnetic drift ω∗ (black) which is antisymmetric across the domain.
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instability even in linear simulations. At larger resistivities (η & 1× 10−4) these oscillations

are quickly damped, however the resistive boundary layer is too large in this region to allow

sensible study. To allow simulation at lower values of η we use the additional dissipation

terms in the MRC-3d model: the particle diffusivity D (Eqn. 1.4); viscosity ν (Eqn. 1.5);

and temperature diffusivity DT (Eqn. 1.6). While these parameters are less important to

the reconnection process than resistivity, we further reduce their impact by setting them an

order of magnitude lower than η:

D = ν = DT = 10−1 × η (5.5)

In our experience this ordering is sufficient to damp spurious oscillations in linear simulations

while minimally effecting the growth rate of the tearing mode.

The effects of the differential diamagnetic drift ∆ω∗ on xs = 1.0 and xs = 0.25 double-

tearing modes for parameters η = 1× 10−5 and di = 0.1 are shown in Figures 5-5 and 5-9

respectively. Both separations experience a reduction of the growth rate and decoupling

behavior which was observed with the equilibrium sheared flow (Figure 4-6). There are,

however, some substantial differences. In order to illustrate the variations we will conduct a

detailed comparison between the two stabilization mechanism in three regimes of the xs = 1.0

DTM: near decoupling (small ∆ω); decoupled (moderate ∆ω); and strong drift (high ∆ω).

5.2.1 Near decoupling

In order to compare the effects of diamagnetic drifts and sheared equilibrium flow we

run a subset of the scaling from Chapter 4 using a force-free equilibrium with T0 = 10 and

the same resistivity and ion inertial length as used for the ω∗ runs. The estimated critical

decoupling frequencies ∆ωc and growth rates γcR are shown in Table 5.1 for both ω∗ drifts

and sheared flow. For the xs = 1.0 DTM the equilibrium diamagnetic drift is less effective

at decoupling the modes than plasma flow and requires a frequency difference of ∆ω∗ =
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Figure 5-5: (Top): Increasing differential diamagnetic drift ∆ω∗ continues to decrease the growth rate γR of the xs = 1.0,
η = 1× 10−5, di = 0.1 DTM after decoupling until a new type of instability triggers at large drifts. Comparing the diamagnetic
drift (bottom, black) to an equilibrium sheared flow differential (bottom, red) reveals that the diamagnetic effects are less
effective at mode decoupling. The decoupled mode frequencies γI are less than the ω∗ drift local to each surface, which is
consistent with the decreased decoupling efficiency.
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Run Type ∆ωc γcR
Diamagnetic (ω∗) 6× 10−3 ± 0.5× 10−3 2.18× 10−3 ± 0.28× 10−3

Sheared Flow (ω0) 2.2× 10−3 ± 0.25× 10−3 2.26× 10−3 ± 0.06× 10−3

Resistive Prediction ≈ 2.0× 10−3 ≈ 2.8× 10−3

Table 5.1: Comparison between decoupling points for the differential diamagnetic drift and sheared flow mechanisms for
xs = 1.0, η = 1× 10−5, di = 0.1 DTMs with initial, force-free growth rates of γ0R = 3.34× 10−2. Values for the critical
frequency difference ∆ωc and growth rate γcR are estimated from Figure 5-5b. For comparison we also include the predicted
values using the resistive, sheared flow bisection study (Fig. 4-8a).

0.006, roughly three times larger than the flow value of ∆ω0 = 0.0022. The post-decoupling

measurements of the eigenmode frequencies γI (Fig. 5-5a) show that after separation the

two layers drift with frequencies less than the local equilibrium diamagnetic drift. Both

the larger decoupling frequency and lower eigenmode drift are consistent with the more

complicated means by which the perturbation couples to the electron diamagnetic frequency.

As mentioned previously, the diamagnetic drift is not a simple advective process but rather

a higher order effect and therefore the local equilibrium ω∗ value does not map directly

to the expected frequency of a given mode and cannot simply be Doppler shifted away.

A more detailed reconciliation of the critical decoupling drifts and eigenmode frequencies

would require a Hall MHD analysis of the DTM boundary layer problem in force-balanced

equilibria, which is unavailable at this time.

Despite the differences in decoupling drift ∆ωc, the growth rate of the DTM at decoupling

(γcR) is approximately the same for both the diamagnetic and sheared flow mechanisms. The

structure of the eigenmodes before (Fig. 5-6) and after (Fig. 5-7) decoupling follows the

behavior established in Chapter 4 for the sheared flow decoupling mechanism, i.e. mixing of

the symmetric and antisymmetric solutions prior to decoupling and isolation of the tearing

layers after. This correspondence seems to indicate that although the interaction of the

equilibrium diamagnetic drift with the perturbation is more complicated than in the sheared

flow case the fundamental physical process behind DTM decoupling and the linear mode

bifurcation is the same.
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5.2.2 Decoupled

The major advantage of equilibrium diamagnetic drifts as a stabilization mechanism

appears after the xs = 1.0 mode is decoupled. As the drift increases in the range 0.005 <

∆ω∗ < 0.024 the growth rate γR continues to decrease. This behavior is preferable to that

of the equilibrium flow, which cannot influence the growth rate post-decoupling until Alfvén

resonances become important (Chap. 4). The diamagnetic drift local to each decoupled

tearing layer has a stabilizing effect on the reconnection process [3, 41] that is absent for

equilibrium plasma flow.

5.2.3 Strong drift

At large diamagnetic drifts (∆ω∗ & 0.024) the eigenmodes transition to a new regime.

The growth rate γR begins to increase with increasing equilibrium drift and the mode fre-

quencies decrease to follow a new trend line (Fig. 5-5a). We have conducted sufficient

convergence testing to ensure that this behavior is not numerical. The eigenmodes in this

regime extracted via Fourier analysis are shown in Figure 5-8 and exhibit very strongly de-

fined singular layers. Several mechanisms may be responsible for this change in the mode

characteristics. The most likely candidate is a transition to a DTM analogue of the drift-

tearing regime [23] where the electron diamagnetic drift becomes strong enough to alter the

nature of the singular layers. In this case the extra dissipation coefficients we are adding for

numerical stability (Eqn. 5.5) may be driving the mode growth at these high ∆ω∗ values.

Alternatively, the density profile needed to produce the strong drift may be causing some

pressure driven instability. In either case, our present understanding of the double-tearing

mode in the model and equilibrium conditions necessary to achieve this faster growing mode

is inadequate to determine the physical mechanism. For the purposes of this thesis we will

restrict our consideration to the moderate drift regimes where the diamagnetic drift is suf-

ficient to decouple the DTM and slow its growth but not to initiate this new instability.
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Figure 5-6: Differential diamagnetic drift (∆ω∗) produces the same mixing of symmetric and antisymmetric DTM eigenmodes
seen for equilibrium sheared flows in Chap. 4. Near decoupling (right) the antisymmetric, imaginary part of the mode (red) is
closer in magnitude to the symmetric, real part (black) than for smaller values of ∆ω∗ (left). Note that the functional form
of the plasma displacement ξ is the same as for force-free DTMs (Chap. 3) suggesting that the transformation to a ‘sheared
displacement’ z (Chap. 4) is not appropriate for equilibrium diamagnetic drifts.
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Figure 5-7: xs = 1.0, η = 1× 10−5, di = 0.1 eigenmodes decoupled by a differential diamagnetic drift of ∆ω∗ = 0.02 show
the same isolated tearing layer structure with finite mode frequency as observed for equilibrium sheared flow DTMs in Fig. 4-5.
The plasma displacement ξ and current jz tearing layers (marked with vertical dashed lines) are strongly enhanced by FLR
effects. The mode measured frequency γI = 0.0037 is less than the ω∗ = 0.01 drift local to each tearing layer.
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At smaller, more realistic resistivities the DTM growth rate will be small enough that this

desirable regime should be broader than for our current large η simulations.

5.2.4 xs = 0.25 variations

The above characteristics of the widely separated double-tearing mode also apply to the

strongly coupled xs = 0.25 DTM. The closely spaced surfaces have, however, a stronger

growth rate with a weaker dependence on resistivity. Due to the higher growth rate, equilib-

rium diamagnetic drifts are a much less effective stabilization mechanism. The scaling results

in Figure 5-9 show that the differential drift ∆ω∗ necessary for decoupling is so large that

once the surfaces are separated they immediately transition into the high drift instability.

The intermediate regime, where the tearing surfaces have been separated and the growth

rate decreases with increasing drift, is completely absent. In contrast, the better decoupling

properties of equilibrium shear flow result in more effective stabilization at low ∆ω0. Similar

to the widely spaced mode, the differential drift needed for decoupling is also much larger

that the differential flow (Table 5.2). The growth rate of the closely coupled DTM depends

very weakly on resistivity, especially when FLR effects are included (Fig. 5-1a), so the dia-

magnetic drift does not appear to be an effective stabilization mechanism for double-tearing

modes with small inter-resonant distances.

We note an unexpected feature of the sheared flow scalings (red line) in Fig. 5-9: the

growth rate continues to decrease past decoupling with increasing ∆ω0. The mechanism

behind this decrease, and the large flow behavior, is not currently understood. Two likely

candidates are modification of the Alfvén resonance locations due to changes in the plasma

β, or a more complicated interaction between the various singular layers when FLR effects

are included. This behavior suggests that future examination of sheared flow equilibria in

two-fluid models might yield new means of stabilizing the strongly coupled DTM.
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Figure 5-8: At large values of the diamagnetic drift (∆ω∗ = 0.050 for this xs = 1.0, η = 1× 10−5, di = 0.1 example) the
system eigenmodes change to some currently unidentified form of instability that grows with increasing drift. The layers at the
rational surface with the same sign as the local ω∗ drift (marked with dashed vertical lines) are strongly enhanced.

Run Type ∆ωc γcR
Diamagnetic (ω∗) 6.4× 10−2 ± 0.1× 10−2 1.09× 10−2 ± 0.05× 10−2

Sheared Flow (ω0) 2.25× 10−2 ± 0.25× 10−2 1.3× 10−2 ± 0.2× 10−2

Resistive Prediction ≈ 2.12× 10−2 ≈ 1.2× 10−2

Table 5.2: Comparison between decoupling points for the differential diamagnetic drift and sheared flow mechanisms for
xs = 0.25, η = 1× 10−5, di = 0.1 DTMs with initial, force-free growth rates of γ0R = 2.12× 10−2. Values for the critical
frequency difference ∆ωc and growth rate γcR are estimated from Figure 5-9. For comparison we also include the predicted
values using the resistive, sheared flow bisection study (Fig. 4-8b).
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5.3 Discussion

In introducing finite Larmor radius effects we have moved a step closer to understanding

the behavior of the linear double-tearing mode in an actual fusion plasma. The additional

layer scale generated by the Hall term in Ohm’s law increases the growth rate of the DTM

and decreases its dependence on resistivity, consistent with other, better understood recon-

necting systems. Moving to force-balanced equilibria, we have demonstrated that equilibrium

diamagnetic drifts can slow the instability through a combination of global mode shearing

and layer-local effects. These ω∗ drifts are, however, not as efficient at decoupling the two

tearing surfaces as the equilibrium sheared flows of Chapter 4, and have the potential to

enhance the growth of the instability when steep pressure gradients are required. If the

critical decoupling differential drift ∆ωc∗ is sufficiently small compared to the point at which

the high-drift instability triggers, such as for the xs = 1.0 mode we have examined above,

the diamagnetic drift can slow the growth of the separated, drifting, tearing surfaces. In

this regime the diamagnetic drift is preferential to the equilibrium sheared flow. When the

tearing surfaces are strongly coupled, such as for the xs = 0.25 DTM considered above,

the eigenmodes follow the faster, high-drift instability growth everywhere above ∆ωc∗. The

equilibrium sheared flow is, overall, a much more effective stabilization mechanism for these

strongly coupled modes. If the source of this high-drift instability can be identified, however,

it may be possible to design pressure profiles that are recover the beneficial ω∗ effects.

We neglected many potential avenues for interesting future work. The Hall MHD code

we have used to conduct our simulations is the minimal model to exhibit diamagnetic effects.

It is reasonable to expect two-fluid and kinetic physics to have an impact on these results,

though we believe the lowest order behavior is exhibited here. Even within this model

one could move outside of the cold-ion approximation and allow Ti 6= 0, thus introducing

ion diamagnetic flows. This additional differential shearing could improve the decoupling

efficiency, as it would combine both the internal layer stabilizing effects of ω∗ drifts and the

large scale advective properties of an equilibrium sheared flow. The results of Section 5.2
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suggest that a combination of using sheared flows to decouple the DTM and diamagnetic

drifts to continue stabilization may be the most effective route. This combination may also

avoid the new class of instability which emerges at high ∆ω∗, which we have not explored in

depth and currently places limits on how low the growth rate can be decreased for a given

equilibrium. A better understanding of the analytic theory, both of sheared flow decoupling

and two-fluid DTMs, would significantly aid determining the best stabilization mechanism.
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Figure 5-9: Differential electron diamagnetic drifts (black) are less effective decoupling a xs = 0.25, η = 1× 10−5, di = 0.1
DTM than equilibrium sheared flows (red). Immediately after decoupling the growth rate γR begins to increase with increasing
∆ω∗, indicating the onset of the high drift instability and removing the stabilized region of decoupled tearing surfaces observed
in more widely separated modes.
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Chapter 6

Linear cylindrical modes

Our discussion of the double-tearing mode thus far has been confined to Cartesian slabs.

DTMs have been most widely studied in this geometry and the fundamental properties,

including the sheared flow/diamagnetic drift decoupling mechanism, can most easily be un-

derstood in highly symmetric equilibria. Tokamak devices are, in contrast, toroidal systems

with many asymmetries. Defining equilibria in full three dimensional device simulations is

a difficult process, and they are generally unstable to a wide variety of modes. Our focus in

this work is, however, to study the influence of equilibrium diamagnetic drifts on the non-

linear DTM, which will require variation of the pressure gradient and magnetic field profile.

Performing this scaling study in periodic cylindrical geometry allows for greater flexibility

than in toroidal, as well as being more numerically tractable. Even in devices for which

the central plasma core is sufficiently confined to resemble a cylinder there will be higher

order toroidal contributions which we cannot capture in MRC-3d. We will discuss the possible

neglected effects in more depth at the end of this chapter.

In preparation for our later nonlinear, cylindrical simulations this chapter will be devoted

to translating our previous discussions of the double-tearing mode to cylindrical geometry.

To do so, we must first define the two dimensional plane in which rMHD is valid. In periodic

cylindrical geometry we do not assume that the ẑ derivative is zero, but rather that the

system is symmetric along a helix defined by the invariant

u = θ − n

m

z

R
(6.1)
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where n is the axial (toroidal) mode number, m the poloidal mode number, and 2πR the

length of the cylinder along the axis (which approximates a torus of major radius R). Per-

turbations have wave vectors k = m/rθ̂ − n/Rẑ (Chap. 2.4), where 0 ≤ r ≤ 1 is the minor

radius of the cylinder. Locations where the resonance condition k ·B = 0 is satisfied will not,

generally, be zeros of Bθ. While analysis is possible in this coordinate system, it is simpler

to define the helical coordinates:

r̂ = r̂ (6.2)

û =
1√

1 + n2

m2
r2

R2

[
θ̂ − n

m

r

R
ẑ
]

(6.3)

ĥ =
1√

1 + n2

m2
r2

R2

[
ẑ +

n

m

r

R
θ̂
]

(6.4)

which we will henceforth refer to as the radial, poloidal, and axial directions respectively.

The axial Bh is the equivalent of the Cartesian guide field Bz, thus the perpendicular (or

poloidal) plane is that defined by r̂ and û. The poloidal field Bu will be zero at resonant

surfaces, and it is in these helical coordinates that we can compare to the Cartesian examples.

We define the helical flux function ψ∗ as:

B⊥ = ∇ψ∗ × ĥ (6.5)

The other variables needed for comparison to slab geometry are the linear displacement

ξ = Ur/γ and axial current Jh = −∇2ψ∗. For our equilibrium (Fig. 6-1) the poloidal field Bu

is positive between the two resonant surfaces and negative outside, opposite our standard

Cartesian sech equilibrium. Thus the relationship between ξ and ψ∗ (ψ∗ = Beqξ, Sec. 3.1.1)

will be reversed in plots compared to the Cartesian examples. With these basic definitions,

we can now examine the correspondence between the cylindrical DTM and the Cartesian

theory.

We will first show that for nearby rational surfaces the force-free cylindrical DTM follows
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the behavior of Chapter 3 with the modification that the equilibrium shear at the tearing

layers is asymmetric. The addition of a pressure gradient will, however, introduce an ideal

MHD instability that is not present in slab modes. We will then move directly to the

impact of finite Larmor radius effects on the cylindrical DTM, showing that both the Hall

enhancement effects and diamagnetic drift stabilization are present. Sheared flow equilibria

are more challenging in curvilinear simulations, and as they are not directly germane to

the goal of this thesis we will not examine them for cylindrical modes. We will see that

the electron diamagnetic drift is an effective means of slowing double-tearing mode growth

in cylindrical geometry, however due to asymmetric equilibria and the presence of an ideal

instability the impact varies greatly with the location of the pressure gradient.
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Figure 6-1: Example cylindrical safety factor(black) and pressure gradient(red) profiles. q(r) is calculated using Eqn. 2.20
with the parameters in Eqn. 2.21 and q0 = 2.5, which results in two q = 2 rational surfaces at r = rs[1,2] separated by a distance
D ≈ 0.26. The pressure gradient is found using Eqn. 2.22 with parameters N0 = 1, Nb = 0.8, δN = 0.1, r0 = (rs1 + rs2)/2,
constant electron temperature Te = 1, and assuming cold ions τ = 0.
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6.1 Force-free resistive

The resistive double-tearing mode is strongly localized, provided that the surfaces are suf-

ficiently close to each other that the analysis of Chapter 3 holds. Our cylindrical equilibrium,

described by Equation 2.20 and shown in Figure 6-1, has two q = 2 surfaces at rs1 and rs2

which will be unstable to m = 2, n = 1 resonant modes. If the separation between these two

surfaces is sufficiently small compared to the minor radius of the cylinder (D = rs2−rs1 � 1)

then between the surfaces the system will be Cartesian to the lowest order with curvilinear

corrections. Cylindrical modes will then resemble the slab DTM solution wrapped around

an annulus. To better illustrate this, we have used a 2D plot of the widely spaced, symmetric

double-tearing mode flux function and projected it on the annulus of a cylinder (repeated

twice to account for the m = 2 mode number) using image manipulation software. Figure

6-2 shows the original slab mode and its cylindrical projection, and will serve as prediction

of the cylindrical eigenmode.

Figure 6-2: The perturbed flux function ψ of a widely space (xs = 1.0) slab DTM (Chap. 3) is mapped onto the annular
region of a cylinder bound by the q = 2 rational surfaces as a prediction of the cylindrical DTM eigenmode. To lowest order
this transformation reproduces the actual cylindrical result (Fig. 6-3).

In practice the largest deviation from the previous analytic theory emerges from the
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asymmetry of the system. For simplicity the boundary layer theory assumed that the equi-

librium magnetic field, and thus the singular layers, were symmetric [39]. The safety factor

profile we have chosen (Fig. 6-1) has steeper shear at the outer (rs2) surface than the inner

(rs1). This asymmetry is common to the tokamak design due to the use of a hot, core plasma

current to generate the poloidal magnetic field. Despite this imbalance several simulation

studies have established that cylindrical and toroidal double-tearing modes exhibit the same

coupling and scaling behavior as the slab theory, i.e. the dependence of the growth rate scales

with resistivity like γ ∼ ηα for 1/3 ≤ α ≤ 3/5 based on the coupling parameter kD, where

the system asymmetry requires that the full inter-resonant spacing D replace symmetric

current sheet space xs [9, 10, 64].

With regard to these studies we note that the γ ∼ η3/5, constant ψ DTM behavior, which

we observed in Cartesian geometry with widely separated modes, is rarely the fundamen-

tal (lowest m) instability in the system. It may instead be present as a higher harmonic.

The constant ψ approximation requires both widely spaced modes and low magnetic shear

such that the system is deeply ideally stable. In curvilinear configurations the confined ge-

ometry restricts the maximum spacing, thus one must rely on large wave numbers in order to

achieve this regime. In our helically symmetric system, however, k is dependent on the mode

number m and n, and thus directly proportional the safety factor k ∝ q = m/n. Therefore

the dependence of the mode on resistivity increases with increasing m. The magnetic shear

reversal, which allows two nearby surfaces with the same safety factor, typically occurs (in

tokamaks) near the center of the plasma where q is small, thus the lowest m on a rational

surface is generally not a constant ψ DTM mode. Our equilibrium has two q = 2 surfaces

spaced a distance D ≈ 0.26 apart, which results in the fundamental m = 2, n = 1 mode

being the fastest growing instability. The growth rate of this DTM is somewhere in the

intermediate regime with γ ∼ η0.48 (Fig. 6-4).

The intermediate coupling regime of this DTM results in a mode which is more tightly

confined between the two rational surfaces than the prediction made in Fig. 6-2 using a
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Figure 6-3: The helical flux function ψ∗ and axial current Jh of a force-free, m = 2, n = 1 double-tearing eigenmode in
cylindrical geometry with an inter-resonant distance of D ≈ 0.26. The larger equilibrium magnetic shear at the outer resonant
surface results asymmetry in the eigenmode favoring the rs2 layer. This example is in the intermediate DTM coupling regime,
resulting in a more localized mode than the prediction drawn from the xs = 1.0 slab DTM in Figure 6-2.
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Figure 6-4: Resistive scaling of the force-free cylindrical double-tearing mode with spacing D ≈ 0.26. At this inter-resonance
distance the growth rate γR increases with resistivity η as γR ∝ η0.48, placing it in the intermediate coupling regime when
compared to the boundary layer theory of Chapter 3.
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Cartesian xs = 1.0 mode, however the large scale features of the actual helical eigenmode

(plotted in Fig. 6-3) are consistent with our claim that the cylindrical, force-free DTM is, to

lowest order, described by the slab theory. The flux function ψ∗ shows a clear asymmetry

favoring the outer surface, which we expect based on the steeper shear of the safety factor

profile at rs2. To better examine the mode structure, Fig. 6-5 compares the 1D linear eigen-

functions of plasma displacement ξ, flux ψ∗, and out-of-plane/axial current Jh for the close

and wide symmetric slab double-tearing mode and the D = 0.26, m = 2, n = 1 cylindri-

cal DTM. The asymmetric cylindrical eigenmode shares characteristics with both Cartesian

separations. The weaker shear at the inner most cylindrical surface has the features of the

constant ψ xs = 1.0 Cartesian mode, whereas the outer surface more closely resembles the

nonconstant ψ xs = 0.25 mode. In cylindrical geometry the eigenfunction is weighted toward

the surface with greater magnetic shear, but despite the asymmetry the mode evolution is

consistent with the boundary layer theory of the symmetric Cartesian DTM.

6.2 Ideal instability

The primary goal of tokamak research is to achieve fusion by confining a hot, dense

core of plasma using magnetic fields. Pressure gradients naturally occur in the plasma as a

necessary byproduct. Such profiles are generally peaked in both density and temperature at

the central core of the plasma column and fall off toward the edge of the device. In this work

we approximate this pressure curve with the density gradient plotted in red on Fig. 6-1 and

of the tanh form introduced in Equation 2.22, reproduced below:

ρ(r) = N0

{
1− (1−Nb)

tanh(r0/δN) + tanh[(r − r0)/δN ]

tanh(r0/δN) + tanh[(1− r0)δN ]

}
(6.6)

This function is modeled after that in Ref. [64] and designed to resemble the profiles which are

seen to accompany internal transport barriers (ITBs) in reverse-shear devices [59]. For this
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Figure 6-5: Near the inner surface the cylindrical DTM eigenfunction (center) has features of the constant ψ Cartesian singular
layers (left). The outer surface, which has greater magnetic shear, more closely resembles the closely coupled, nonconstant ψ
slab mode (right). Globally the eigenfunction is a combination of the two, with the stronger nonconstant ψ features dominating.
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study we work in the cold-ion regime (τ = 0) and take the equilibrium electron temperature

to be constant. This configuration sacrifices some features of the observed device profiles

(particularly finite ion temperature and temperature gradients) in favor of better numerical

stability and greater flexibility to conduct scaling studies. The cold ion approximation is

chosen to avoid equilibrium plasma flows when the diamagnetic drift is introduced, which

are numerically challenging in the MRC-3d code. Equilibrium electron temperature is taken

as a constant both to allow easier shaping of the pressure profile (since p will depend only on

ρ(r)) and to avoid certain classes of high wavenumber instabilities which can be driven by

steep temperature gradients. These approximations are not expected to impact the general

results of our DTM analysis, though they will not allow direct comparison to experimental

data.

In Cartesian geometry introducing a pressure gradient within the framework of resistive

MHD may impact the reconnection process by changing the normalization or causing asym-

metries in the plasma flow, but the character of the instability is not significantly affected.

The variable curvature of the equilibrium magnetic field in cylindrical geometry may, how-

ever, interact with a pressure gradient to form an unstable ideal MHD mode. Our reversed

shear DTM equilibrium appears to be unstable to such an ideal instability.

The prototype example of the interaction between an ideal MHD instability and a recon-

necting layer is the m = 1 kink-tearing mode [3, 60]. This particular instability plays a large

role in the ‘sawtooth oscillation’ process commonly observed in conventional tokamaks with

core safety factors less than q = 1, and has been extensively studied. Fundamentally the

linear instability is composed of two parts: the current driven ideal MHD kink mode (which

is marginally stable when force-free and driven unstable by a finite pressure gradient) and

the resistive tearing mode. The interaction between these two mechanisms can, in the linear

phase, be interpreted as an ordering of two boundary layers. The kink mode has a singular

layer width of λH , which can be calculated in a fashion similar to the ideal region analysis of

the double-tearing mode in Section 3.1.1. In fact, the outer region analysis of the Cartesian
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boundary layer theory is based on treating the DTM as a slab-kink mode. We had found

that the slab-kink mode was always stable, γH ≤ 0. The opposite is true for the m = 1 kink

mode in cylindrical geometry. It is, in the absence of a pressure gradient, marginally stable

(γH = 0), which corresponds to a layer width λH = 0. A non-uniform pressure profile results

in a finite layer and growth rate, so that λH ≥ 0. When resistivity η is finite, therefore,

the evolution of the mode is governed by the ordering of the resistive layer width δη and

the ideal kink mode layer width λH . If λH = 0 the kink mode is marginally stable, the

mode growth is governed entirely by the resistive tearing mode, and we recover the γ ∼ η1/3

nonconstant ψ scaling. If, however, λH is larger than δη the width of the current layer is

determined by ideal instability alone and the growth rate of the mode is independent of

resistivity (γ ∼ η0). The latter case allows us to develop an effective marker of ideal MHD

instability using resistive scaling studies; if at some finite value of resistivity the growth rate

and current sheet width no longer change with variations in η then the system is ideal MHD

unstable. Furthermore, if the mode is driven unstable by the pressure gradient we expect

that variations in the density profile will change the η cutoff point and current sheet width.

Introducing a pressure profile to our cylindrical DTM equilibrium shows clearly, based

on the above criterion, the emergence of an ideal MHD instability. With the center of the

pressure gradient between the two surfaces at r0 = (rs1 + rs2)/2, we run a full resistivity

scaling at several different values of the pressure gradient width δN . The density scale height

is held fixed at Nb = 0.8, and the electron temperature is a constant T0 = 2.0 (for this

section only). Figure 6-6 shows the results of this scaling study. For each given pressure

profile, as denoted by the gradient width δN , there is a clear cutoff η below which the growth

rate does not depend on resistivity. The measured asymptotic ideal growth rates increase

as the steepness of the pressure gradient increases (δN decreases). This independence from

resistivity can also be observed when comparing the scaling of the outer resonant surface

current layer with η for the force-free and δN = 0.05 equilibria (Fig. 6-7). Whereas the

force-free layer continually narrows with decreasing η, in the presence of a pressure gradient
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Figure 6-6: Measured linear growth rates of the resistive, D ≈ 0.26 cylindrical DTM in the presence of a pressure gradient
centered between the two surfaces at r0 = (rs1 + rs2)/2. At low resistivities γ no longer depends on resistivity, suggesting
an ideal MHD instability. The location and magnitude of the asymptotic ideal growth rate increase with increasing pressure
gradient (decreasing gradient width δN ).

a minimum width is evident. This width is analogous to the λH parameter of the m = 1

kink mode.

Based on analogy to the m = 1 kink-tearing mode, it is clear that the introduction of

a pressure gradient to our cylindrical, reversed shear equilibrium couples the m = 2, n = 1

double-tearing mode to some form of ideal MHD instability with the same mode numbers.

At present the nature of this instability is not understood, nor the mechanism by which it

couples to the resistive DTM. A sample eigenmode (Fig. 6-8) appears to be fundamentally of

the same form as the standard DTM mode, with several modifications. The inner resonant

surface now bears more resemblance to a nonconstant ψ tearing mode than in the force-free

DTM (Fig. 6-3) and the eigenfunction between the layers is closer to the strongly coupled

xs = 0.25 slab DTM. These changes reinforce the analysis of Chapter 3, which concluded

that the DTM coupling is related to the stability of an ideal MHD kink mode.

The discovery of this ideal MHD mode complicates but does not invalidate possibility of

FLR effects stabilizing the double-tearing mode. Diamagnetic drifts have been shown to be

strongly nonlinearly stabilizing for the ideally unstable m = 1 kink-tearing modes around

which we have framed this discussion [41], and are a likely candidate for DTM stabilization
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Figure 6-7: In the presence of a pressure gradient the singular layers of the cylindrical DTM exhibit a minimum, ideal layer
width for decreasing resistivity(right). The force-free layers (left) to not show this saturation. These plots show the layers via
the axial current Jh at the outer q = 2 rational surface (rs2, though the same behavior is evident in the dynamic variables ξ
and ψ∗ and at the interior surface (rs1).

as well.

6.3 Diamagnetic drifts

Now that we have established the similarities and differences between our m = 2, n = 1

cylindrical DTM and the Cartesian boundary layer theory, we are prepared to reintroduce

FLR effects and consider the effect of diamagnetic drifts. Due to the inherent radial asym-

metry between the q = 2 resonant surfaces we need to account for three important factors

not present in the symmetric slab analysis of Chapter 5. First we must contend with the

differing magnetic shears, and thus singular layer characteristics, at the inner and outer

q = 2 rational surfaces. Secondly the ω∗ drifts resulting from the monotonic pressure profile

(Fig. 6-1) will all be counter-clockwise poloidal rotations with a single peak frequency:

ω∗(r) = k · v∗e = −mdiT0Bh

rρB2

∂ρ

∂r
(6.7)
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Figure 6-8: Linear eigenmodes for the D ≈ 0.26, η = 1× 10−5 DTM in the presence of a δN = 0.05, Nb = 0.8 density
gradient centered at r0 = (rs1 + rs2)/2. The presence of an ideal instability causes this mode to more closely resemble the
closely coupled Cartesian slab DTM.
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Note that to an order r/R correction the poloidal unit vector û, in which direction the mode

rotates, is aligned with the coordinate unit vector θ̂ (see Eqn. 6.3). Thus we cannot produce

a differential drift ∆ω∗ without also having the magnitudes of the drifts be different at each

surface. Finally, any modifications to the pressure profile (necessary to produce variable ω∗

at fixed di) will also modify the characteristics of the underlying ideal MHD instability.
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Figure 6-9: Example electron diamagnetic drift profiles (black lines) and the pressure profiles (red lines) that produce them.
Type 1 profiles (left) produce equal drifts at both surfaces; type 2 (center) only produce significant drift at the inner surface;
type 3 (right) only produce significant drift at the outer surface. All pictured pressure gradients are chosen to produce a drift
of ω∗ = 0.04 at the specified surface(s) when di = 0.1.

In order to simplify our analysis we will consider only three possible locations for the

center, and thus maximum gradient, of the P (r) pressure profile: (1) equidistant between

the two rational surfaces (r0 = (rs1 + rs2)/2); (2) centered on the inner resonant surface

(r0 = rs1); and (3) centered at the outer resonant surface (r0 = rs2). To be consistent with

our study in slab geometry (Chap. 5) we will maintain the definition of the differential drift

as the magnitude of the ω∗ difference between the two surfaces, i.e. ∆ω∗ = |ω∗(rs1)−ω∗(rs2)|.

Only profiles of type (2) and (3) can generate appreciable differential drift, and to minimize

the necessary pressure gradients we will focus on tightly confined profiles with δN values of

0.1 and 0.05 that result in negligibly small ω∗ values at the surface opposite the gradient

peak, i.e. a density shear centered at r0 = rs2 will produce a negligibly small diamagnetic

drift at rs1. Profiles of type (1) cannot produce significant differential drift and we will

instead use a wide value of δρ = 0.2 to set ω∗(rs1) ≈ ω∗(rs2), allowing a comparison between
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the efficacy of differential drift versus uniform diamagnetic stabilization. Examples of all

three types of profile are plotted in Figure 6-9.

The exact equilibrium pressure profiles for our study are generated via an iterative initial-

ization script. The core plasma density (maximum of the profile) is held fixed at N0 = 1.0.

We choose the cold ion regime (τ = 0) with a constant electron temperate of T = 1.0 and

ion skin depth of di = 0.1. For each of the profiles described above δN is held fixed and Nb is

chosen to give the desired values of ω∗(rs1) and ω∗(rs2). As the dependence of the ideal MHD

instability (Section 6.2) on the pressure profile is not well understood, we also run each pro-

file in the resistive MHD regime (di = 0.0) to separate diamagnetic effects from the pressure

driven behavior. The results of this study for the equal drift (type (1)) and differential drift

(type (2) and (3)) profiles are shown in Figures 6-10, 6-11, and 6-12 respectively.
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Figure 6-10: A pressure profile with δN = 0.2 centered between the two rational surfaces at r0 = (rs1 + rs2)/2.0 results in an
equal diamagnetic drift at both layers. The solid lines are fitted growth rates (γr) and eigenmode drifts (γI) of simulations with
increasing pressure gradient for di = 0.1, plotted as a function of the resultant drift at the layers (ω∗). The stabilizing FLR
effects within the singular layers result in a uniformly lower growth rate compared to the resistive MHD modes for equivalent
pressure gradients (dashed lines), which are dominated by enhancement of the ideal MHD instability.

Only by centering the pressure profile at the outer rs2 resonant surface are we able to

achieve any appreciable decrease in the growth rate γR. In all three cases there is an apparent

competition between the stabilizing effects of the diamagnetic drifts and the destabilization
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Figure 6-11: Pressure profiles centered at the inner resonant surface (r0 = rs1) with narrow widths δN = 0.1 (black lines)
and δN = 0.05 (red lines) produce, for di = 0.1 (solid lines), a differential diamagnetic drift between the two surfaces of ∆ω∗.
Compared to the resistive MHD (di = 0) growth rates for equivalent pressure profiles (dashed lines) the growth rate γR is
enhanced by FLR effects. Only the inner, weaker surface experiences any stabilizing diamagnetic drift, thus the dominant outer
surface is enhanced by the nonzero di and increases the mode growth.
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Figure 6-12: Pressure profiles centered at the outer resonant surface (r0 = rs2) with narrow widths δN = 0.1 (black lines) and
δN = 0.05 (red lines) produce, for di = 0.1 (solid lines), a differential diamagnetic drift between the two surfaces of ∆ω∗. The
fitted growth rates γR feature an inflection point in the neighborhood of ∆ω∗ ≈ 0.03, suggesting decoupling of the resonant
surfaces. By locating the diamagnetic drift at the stronger, outer singular layer we are able to achieve substantial reductions in
the growth rate compared to equivalent pressure profiles in resistive MHD (di = 0, dashed lines).
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of the ideal MHD mode with increasing pressure gradient. Above some value of the imposed

drift the variation in growth rates tracks that the of the resistive mode, for which the ω∗

effects are absent. The critical ω∗ at which this transition occurs is different for each profile

type. Equal drifts exhibit a flat growth rate up to ω∗ ≈ 0.06, and the Hall MHD growth

rates are uniformly lower than their resistive counterparts for the same equilibrium. When

the drift is centered at the inner surface, however, γR is dominated by the scaling of the

pressure driven mode above ∆ω∗ ≈ 0.03, and the FLR growth rates are uniformly higher

than their resistive counterpoints. Only drifts centered at the outer rational surface exhibit

behavior similar to that observed in slab, with a smooth decrease in the growth rate until a

large pressure gradient is present.

When examining the force-free resistive instability (Sec. 6.1) we noted that the eigen-

modes favored the outer most rational surface, and that this was consistent with the shear

(and thus magnetic free energy) being stronger near rs2. The observed differences between

centering the diamagnetic drift at each surface may also be explained by this asymmetry.

When the inner, weaker surface is suppressed the increasing pressure gradient strengthens the

outer layer and the growth rate increases. Locating the drift at rs2, however, stabilizes the

primary driving surface of the instability and results in a significant decrease in γR. At large

drifts (∆ω∗ & 0.1), however, the pressure driven mode seems to again control the instability,

though at a greatly reduced growth rate compared to the resistive MHD counterpart.

In slab geometry we concluded that decoupling of the two tearing layers is a crucial

element of any stabilization mechanism. The eigenmode drift frequencies γI extracted via

Fourier analysis (lower plots in Figs. 6-10, 6-11, and 6-12) show, however, evidence of only

a single drifting mode. For profiles without any differential drift (type (1)) this behavior is

expected as there is no decoupling mechanism. The single mode behavior of type (2) and (3)

differential drift profiles is again a consequence of the magnetic asymmetry; when the modes

are decoupled the outer, more strongly sheared surface has a much larger growth rate and

thus is the only mode observed in the initial value simulations of MRC-3d. The dominance of
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the outer rs2 surface can be seen clearly in γI measurements for the differential drift profiles.

When the peak diamagnetic drift is located at the inner surface (Figure 6-11) the drift at the

outer surface is negligible and thus the measured eigenmode frequency of the most unstable

mode remains at 0 for all profiles. In contrast, when the peak ω∗ is at the outer surface

(Figure 6-12) a finite γI appears.

The diamagnetic drift effects on the eigenmodes are significantly more complicated than

in the symmetric slab case, and cannot be easily parsed in the context of odd and even parity

mixing until some bifurcation point is reached. Much can be learned, however, by comparing

the Hall MHD eigenmodes for a given pressure profile to their resistive counterparts.

The most straight-forward case is the equal drift (type (1)) modes, shown in Figure 6-

13. The general form of the eigenfunction is the same for both the resistive and Hall MHD

modes. Some variations are evident near the current layers due to finite Larmor radius

effects. Without a differential drift between rs1 and rs2 the diamagnetic drift can, to lowest

order, only impact the internal layer solution. The observed deviations near the resonant

surfaces are therefore a combination of ρs scale enhancements and local ω∗ interference.

When the pressure gradient is centered at the outer resonant surface the fitted growth

rates γR show an inflection point in the neighborhood of ∆ω∗ ≈ 0.03 (see Fig. 6-12), which

is the asymmetric cylindrical analog to the decoupling point observed in slab geometry. In

support of this interpretation, Figure 6-14 compares the resistive and Hall MHD modes

for the more localized δN = 0.05 profile at a differential drift of ∆ω∗ = 0.02, below the

inflection point. In the presence of FLR effects the resistive eigenfunction remains the

dominant contribution to the DTM, though due to finite rotation frequency it appears as

the imaginary part of the eigenmode (extracted via Fourier analysis). Taking the place of

the antisymmetric mode is a new form with two peaks near the resonant surfaces for all the

dynamic variables but a reduced connection between the two layers. This double peaked

structure may be a slower growing eigenmode of the system, as we found in slab geometry,

or may indicate a more complicated decoupling mechanism in asymmetric configurations.
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Figure 6-13: Resistive (left) and Hall MHD (right) DTM eigenmodes in the presence of a pressure gradient centered between
the two rational surfaces at r0 = (rs1 + rs2)/2 with δN = 0.2 and Nb = 0.381. For di = 0.1 this produces a diamagnetic drift
of ω∗ = 0.08 at both singular layers. The drifting eigenfunctions are largely the same as the resistive except near the resonant
layers where FLR effects are significant. The eigenmode frequency of the Hall MHD mode, extracted via Fourier analysis, is
γI = 0.007± 0.002, significantly less than the equilibrium drift.
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Figure 6-14: Resistive (left) and Hall MHD (right) DTM eigenmodes in the presence of a pressure gradient centered at the
outer rational surface r0 = rs2 with δN = 0.05 and Nb = 0.949. For di = 0.1 this produces a diamagnetic drift of ω∗ = 0.02
at the outer layer and no drift at the inner, resulting in a differential drift of ∆ω∗ = 0.02. The imaginary part of the drifting
eigenmode (red) is of the same form as the resistive, and the real (black) shows a new behavior with less coupling between
the surfaces, suggesting the asymmetric cylindrical analog to the pre-decoupling sheared modes of Chapters 4 and 5. The Hall
eigenfunction has a measured mode frequency of γI = 0.006± 0.001.
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Figure 6-15 shows a strongly stabilized DTM with the pressure gradient at the outer

surface and a differential drift of ∆ω∗ = 0.08. The eigenmodes show a strong departure from

the resistive modes in the same pressure profile, analogous to the ‘decoupled’ regime. Unlike

the slab modes, however, the inner surface still features a current layer of the same order of

magnitude as the outer. The flux function ψ∗ near rs1 is, for the Hall mode, substantially

different than its resistive counterpart, indicating that the character of this singularity has

changed. Although the layer at the rs2 surface has been strongly stabilized by the local

diamagnetic drift it still resembles, locally, the nonconstant ψ tearing layer seen in the

resistive simulation, and it is unclear how the steeper magnetic shear and coupling to an

ideal MHD instability affect the ‘coupled’ and ‘decoupled’ transition and layers.

To better understand how the DTM decoupling might manifest in this equilibrium, Figure

6-16 shows a sample of the resistive and Hall MHD modes for ∆ω∗ = 0.08 when the pressure

profile is centered at the inner resonant surface. In this case the outer surface, which has

no local diamagnetic drift, strongly resembles its resistive counterpart, as does the mode

in the ideal MHD region between the two layers. The eigenfunction at the inner layer is,

however, substantially different and no longer presents the characteristics of either a constant

or nonconstant ψ tearing layer, though it does share some characteristics with the inner layers

from Fig. 6-15. Based on this comparison, this mode is also a ‘decoupled’ DTM. Because

the stronger, outer surface is not stabilized it maintains many of the characteristics of its

undrifted form.

Two clear conclusions can be drawn from our growth rate scaling studies and the eigen-

mode examination. The outer surface is, as expected from the steeper magnetic shear, the

dominant layer in the system. Substantially decreasing the linear growth rate requires some

disruption of the resonant layer at rs2. Our most effective results come from combining

the stabilization of the outer surface with the mode decoupling effects initially observed in

Cartesian geometry. Applying an equal drift at both q = 2 rational surfaces does counterbal-

ance the pressure driven component of the mode, leaving the growth rate γR constant with
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Figure 6-15: Resistive (left) and Hall MHD (right) DTM eigenmodes in the presence of a pressure gradient centered at the
outer rational surface r0 = rs2 with δN = 0.05 and Nb = 0.81. For di = 0.1 this produces a diamagnetic drift of ω∗ = 0.08 at
the outer layer and no drift at the inner, resulting in a differential drift of ∆ω∗ = 0.08. Neither the real (black) nor imaginary
(red) parts of the drifting eigenmode are of the same form as the resistive mode except in a localized region near the outer
resonant surface. This mode is of the ‘decoupled’ form, though the dominant outer layer is also strongly suppressed by the
diamagnetic drift within the layer. The Hall eigenfunction has a measured mode frequency of γI = 0.010± 0.001
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Figure 6-16: Resistive (left) and Hall MHD (right) DTM eigenmodes in the presence of a pressure gradient centered at the
inner rational surface r0 = rs1 with δN = 0.1 and Nb = 0.81. For di = 0.1 this produces a diamagnetic drift of ω∗ = 0.08 at
the inner layer and no drift at the outer, resulting in a differential drift of ∆ω∗ = 0.08. Because the outer, dominant surface
does not experience any diamagnetic drift the fastest growing eigenmode does not have a finite frequency (γI = 0 ± 0.001).
Hall eigenfunction shows little variation from the resistive near the rs2 surface but the inner rs1 layer is significantly modified,
suggesting that this mode is in the ‘decoupled’ DTM regime.
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increasing gradient for a short range of ω∗. This local stabilization is not, however, sufficient

to reduce the DTM growth rate from its force-free value, either due to stronger driving of

the ideal instability for pressure gradients located between the two surfaces or because of

the absence of surface decoupling.

6.4 Discussion

The cylindrical m = 2, n = 1 double-tearing mode shares many of the fundamental

features of the slab DTM we examined in previous chapters. The inherent asymmetry of

the magnetic geometry causes, however, several significant differences. We have clearly

identified that the singular layer at the outer rational surface is the strongest driver of

the instability, which results in fundamentally asymmetric eigenmodes and requires any

stabilization mechanism to target this surface in particular. Unlike the slab mode, therefore,

the details of the pressure profile must be understood in order to predict DTM stability.

The coupling of an ideally unstable mode to the DTM for finite pressure gradients is a

further complication for our diamagnetic drift study. Understanding the nature and behavior

of this ideal instability should be a primary goal of any future work. In Chapter 3 we noted

that the Cartesian force-free DTM is coupled to a slab kink mode which can, in the strongly

coupled case, be only marginally stable (γ → 0−). Given the similarities between the slab and

force-free cylindrical DTMs (Section 6.1), and the connections between our observed force-

balance DTMs and the m = 1 kink-tearing mode (Section 6.2), we suspect the underlying

ideal instability is a cylindrical kink-mode. Beyond understanding the dependence of the

ideal growth rate on the pressure profile two important questions remain. Firstly, is this

ideal instability particular to the m = 2, n = 1 equilibrium we use in this simulations? We

have conducted preliminary studies not reported here that show the pressure driven mode

persists regardless of the spacing of the tearing surfaces, but it is possible that higher mode

number instabilities will not feature this instability. Were this the case the diamagnetic
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drift stabilization mechanism may be more effective in equilibria with larger safety factors.

The second question is fundamentally more important: does this ideal instability persist in

toroidal geometry or is it particular to periodic cylindrical? Though toroidal corrections to

the cylindrical model are (in the small aspect ratio/high guide field regime) small, they are

known to impact the stability of ideal MHD kink modes [14]. Answering both these questions

will require both analysis and simulation outside the scope of this thesis, but are important

to understanding the actual impact of DTMs in fusion devices. We note, however, that even

if the ideal MHD mode stability is impacted by higher safety factor equilibria or toroidal

geometry, the pressure gradient will likely remain a source of destabilizing free energy and

the DTM growth rate may be enhanced in a fashion similar to our study here.

We have observed that in cylindrical geometry the differential drift remains an impor-

tant factor in slowing the growth of the reconnecting DTM, although the system asymmetry

results in a less clear distinction between coupled and decoupled modes. A combination

of equilibrium flows and diamagnetic drifts will likely be the most effective route to sta-

bilization. This combination may, in fact, be naturally realized in toroidal geometry as

the system asymmetry tends to drive intrinsic plasma rotation. The best understanding

of double-tearing mode stabilization in reverse-shear tokamaks would, therefore, come from

fully toroidal simulations that take into account both the intrinsic plasma motion and FLR

effects.

In this chapter we have established the commonalities and differences between the well

studied slab and more complex cylindrical double-tearing modes, and shown that diamag-

netic drifts can (for certain pressure profiles) slow the growth of the linear instability. With

this foundational understanding of the interaction (and decoupling) of the two resonant sur-

faces, we will proceed to the nonlinear regime where the DTM takes on a more disruptive

character.
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Chapter 7

Nonlinear reconnection processes

Linear analysis is import to understanding general stability thresholds and to ascertain

the dominant behavior but evaluating the disruptive potential of a mode requires understand-

ing its nonlinear development. Reconnection is not, however, an instability type in-and-of

itself, but rather a physical mechanism by which an unstable plasma can transit to a lower

energy state. The included physical processes, topology, symmetry, and magnetic configu-

ration can all have a dramatic effect on the manifestation of reconnecting modes. To better

navigate the complicated DTM parameter space we will first establish what features are

common to all two dimensional tearing-mode type reconnecting modes, and establish a link

between certain nonlinear characteristics and our prior boundary layer theory. Finally, we

will consider the substantial impact of finite ion mass on nonlinear tearing modes. Our goal

in this chapter is not to provide an exhaustive account of reconnection physics but rather to

lay the groundwork for later discussions of the unique double-tearing mode features.

The bulk of this chapter will feature examples and descriptions of isolated single tearing

modes simulated from a two dimensional Cartesian ‘Harris sheet’ reconnecting field.

By0(x) = B0 tanh
(x
λ

)
(7.1)

We will embed this profile in a guide field with asymptotic strength Bz = 10B0 so that the

reduced MHD approximation is valid, and will largely consider force-free configurations with

constant ρ = T = 1.0, so that β = 0.02. The Harris sheet equilibrium is popular because it

is possible to construct an equivalent form that is an exact kinetic equilibrium, thus it allows
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for easy comparison between different models. Furthermore, the inherent symmetries make

this something of a minimal example to discuss common features.

7.1 General characteristics of 2D reconnection

As reconnection is a change in magnetic topology it is natural to characterize the nonlin-

ear state by the apparent magnetic structures. In two dimensions this is best accomplished

by examining the scalar ‘flux function’, which we encountered in the rMHD approximation.

B = ∇ψ × ẑ +Bz ẑ (7.2)

Mathematically the reduction of the magnetic topology to a scalar component (ψ) describing

the reconnecting field and another (Bz) describing the guide field is always possible when

there is an inherent symmetry in the problem to reduce the number of degrees of freedom.

Note that henceforth we use ψ to represent the total flux function, i.e. the sum of the

perturbation and equilibrium. Nonlinearly these are, by assumption, of the same order.

Thus in the remaining chapters the distinction between equilibrium and perturbation will

not be useful, and all variables are to be considered representative of the total quantities

unless otherwise stated. Lines of constant flux function ψ(x, y) represent projections of

magnetic field lines onto the plane. For clarity we will henceforth refer to these projections

as ‘field lines’, though it should be understood that in the presence of a guide field the actual

field lines have an out-of-plane component.

As the linear instability grows the magnetic flux of the equilibrium field lines, which are

initially parallel, is reconnected within the singular tearing layer and stored within magnetic

islands. An example of this structure can be seen in the late time state of a nonlinear Harris

sheet tearing mode, plotted in Figure 7-2. The island is bound by a separatrix, indicated by

a solid black line. The place at which the two branches of the separatrix meet is the diffusion

region where the ideal MHD frozen-in condition breaks down and reconnection is possible.
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This region is the nonlinear manifestation of the singular, resonant surface that enabled our

prior boundary layer analysis.

Consider a fluid packet on an unreconnected field line at point ‘A’ in Figure 7-2. In

this outer region the plasma is governed, to lowest order, by ideal MHD and thus the fluid

packet is frozen onto the field line. Together they are advected toward the point ‘x’, which

lies on the separatrix within the diffusion region. As they enter this layer the resistivity η

allows plasma and magnetic field to decouple and reconnection to occur. The fluid packet

is carried downward toward point ‘B’ by the strong outflow jets emerging from the diffusion

region. During this journey downstream the branches of the separatrix widen, the strong

gradients defining the diffusion region flatten, and ideal MHD again becomes the dominant

physical ordering. Thus the plasma and magnetic field recouple and advect together into

the magnetic island. This continuing reconnection process causes the magnetic island to

grow until the forces exterior to separatrix surface balance those within and the instability

saturates.

All tearing modes will have the above fundamental characteristics. More generally any

2D nonlinear reconnection site will consist of an inflow domain feeding a diffusion region

where field line breaking occurs. The energy released by reconnection generates the outflow

jets, which recouple to the magnetic field downstream. The topology of the separatrix surface

between reconnected and unreconnected flux (and thus inflow and outflow plasma) will not,

however, necessarily be describable as an island. In particular, magnetic islands themselves

may be reconnected to produce lower energy parallel magnetic field configurations. This

secondary process is not possible for an isolated single tearing mode, but will emerge at late

times for the DTM. Whatever the initial and final magnetic configuration, the structure of

the diffusion region and separatrix are critical to the reconnection process and therefore an

area of intense study. Certain common terminology has emerged for 2D systems. The point

at which the two branches of the separatrix meet within the diffusion region is known as

the ‘X-point’, and is a saddle point of the global flux function ψ(x, y). Note that the term
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Figure 7-1: A nonlinear constant ψ tearing mode from a Harris sheet equilibrium with λ = 0.6. The out-of-plane current Jz
is a function of the flux ψ at all points, and the separatrix (black line) has an X-point geometry. Point A lies upstream of the
reconnection site; point B downstream.
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‘X-point’ is also commonly used in the literature to describe the global separatrix geometry.

We will endeavor to make it clear by context whether we are describing the saddle point

of the flux function or separatrix morphology. A saddle point of the stream function must

also occur within the diffusion region and is called the ‘stagnation point’. For symmetric

configurations the X-point and stagnation point are typically co-located, however they may

be offset from each other (within the diffusion region) when asymmetries exist [15]. The

center of the magnetic island is the ‘O-point’ and is an extremum of ψ. Other important

boundaries and characteristics emerge when physics beyond resistive MHD is considered,

and in three dimensions the taxonomy of reconnection sites becomes much more complex,

but for the purposes of this work the above is sufficient.

7.2 Classification of tearing modes

The symmetry of the single tearing mode configuration has allowed the development of

quasilinear theories that relate the nonlinear diffusion region structure to the linear boundary

layer theory. Specifically, the separatrix morphology and appearance of an extended current

layer near the reconnection site can be associated with whether the linear instability is in

the constant or nonconstant ψ regime. Both these characteristics are of critical importance

to the triggering (or absence) of an explosive growth regime for the nonlinear double tearing

mode, so we will briefly review the quasilinear theory of single tearing modes. In this section

we focus on the analyses of Rutherford [42] and Waelbroeck [49] that address slower constant

ψ and faster nonconstant ψ STMs respectively.

As discussed in Chapter 3, when the growth time of the instability is sufficiently small

compared to the time for the perturbation to diffuse across the singular layer the flux function

can be treated as constant within. Use of this constant ψ assumption results in a growth

rate that depends strongly on resistivity as γ ∼ η3/5. This assumption can be extended

nonlinearly to estimate the growth rates of magnetic islands. During the linear phase the
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separatrix is contained entirely within the singular tearing layer and the growth of the

instability is determined by the balance of first order magnetic forces and the bulk fluid

inertia. As the magnetic island grows larger than the singular layer the inertia term is

replaced by higher order magnetic forces due to nonlinear eddy currents. To lowest order,

therefore, the out-of-plane current Jz is a function of the total magnetic flux ψ(x, y):

Jz(x, y) ≈ Jz(ψ) (7.3)

This relation must hold everywhere except on the singular surface where Jz(ψ) is not analytic,

i.e. the magnetic separatrix. Using the constant ψ approximation, however, one can match

the solutions along this layer to those within and outside the island and directly calculate the

current via averaging Ohm’s law along flux surfaces [42]. The nonlinear perturbations in this

system remain dominated by the fundamental harmonic of the system, resulting in islands

that span the entire resonant surface and meet only at a single point. An example of this

type of nonlinear, constant ψ tearing mode is shown in Figure 7-1. Note, in particular, the

sharp X-point configuration of the magnetic separatrix and direct mapping of the current Jz

to the flux ψ at all points. Both these features are hallmarks of nonlinear constant ψ tearing

modes. In this regime the growth of the magnetic perturbation changes from exponential

to algebraic such that the perturbed flux function ψ1 grows like t2. The width w of the

corresponding magnetic island then grows like w ∝ ηt [42]. This behavior continues until

the island saturates at finite amplitude due to the balancing of forces interior and exterior

to the magnetic island [56].

The constant ψ approximation is valid only for the most slowly growing tearing modes,

and outside of this domain we must seek additional simplifications in order to perform

nonlinear analysis. One such method involves considering the magnetic helicity K, which

is a measure of field complexity defined as the product of the magnetic field and vector
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potential integrated around a region of closed field or ‘flux tube’.

K =

∫
A ·BdV (7.4)

Waelbroeck [49] used the hypothesis that helicity is conserved during reconnection to extend

Rutherford’s description into the ‘nonconstant ψ’ tearing mode regime. In this more general

theory the higher order harmonics of the system are not ignorable, and consequentially the

islands do not span the entirety of the resonant surface. Instead they span a fixed length

∆y such that k∆y < 2π. The space between these endpoints, along which the separatrix

lies, then forms a current layer as seen in Figure 7-2. This layer is a clearly defined diffusion

region where reconnection can occur, and the separatrix geometry in this class of tearing

mode is commonly considered to be two ‘Y-points’ fixed to either end of a current sheet. A

prediction of the island growth can be found by assuming this current sheet is described by

the Sweet-Parker model such that ψ̇1 ∝ η1/2. From this one can find the nonlinear behavior

of the magnetic island width to be w ∝ ηt2 [49].

Both these nonlinear, algebraic island growth regimes, while analytically tractable, are

difficult to realize in practice for single tearing modes. The constant ψ approximation applies

only to a narrow region of the STM dispersion relation, specifically equilibria which are deeply

ideally stable (∆′ → 0+) and produce slowly growing instabilities. Furthermore, Rutherford

type islands generally saturate at small amplitudes [56] and thus are not typically responsible

for large scale disruptive behavior. Nonconstant ψ tearing modes that follow Waelbroeck’s

description are nonlinearly faster growing, and have a greater impact on the equilibrium

plasma. As a consequence, however, they tend to rapidly evolve outside this theory’s validity,

due either to geometric changes triggering non-algebraic growth [51], triggering of secondary

instabilities (such as plasmoid tearing), or onset of two fluid reconnection effects (see below).

Together, however, these theories provide a framework for relating the linear boundary layer

properties to nonlinear island morphology. In Chapter 8 we will see that understanding
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Figure 7-2: A nonlinear nonconstant ψ tearing mode from a Harris sheet equilibrium with λ = 0.1. The magnetic island does
not span the entirety of the resonant surface, resulting in an extended current sheet defining the diffusion region. The separatrix
(black line) forms a Y point configuration on either end of the current sheet and delineates the inflow (A) and outflow (B)
regions.
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the development of magnetic islands in the double tearing mode is a critical component of

predicting the nonlinear stability, and that the Rutherford and Waelbroeck nonlinear theories

will be an important tool to this end.

7.3 Hall MHD reconnection

Nonlinear single tearing modes, especially those that form an extended current sheet in

the resistive regime, are strongly impacted by the addition of finite Larmor radius (FLR)

effects. In Chapter 5 we showed how the additional ion inertial length scale di results in a

nested boundary layer surrounding the resonant surfaces. The introduction of a secondary

layer of thickness ρs (for non-zero guide field) decoupled the innermost, reconnecting layer

from the outer, ideal MHD region and allowed for steeper gradients and enhanced out-of-

plane current density (Fig. 5-3). These enhancements caused the growth rate to increase

compared to resistive MHD and to be less dependent on η (Fig. 5-2).

Nonlinearly this nesting occurs in the neighborhood of the current sheet, which is the

remnant of the singular layer. The magnetic field decouples from the upstream ion fluid

at the ion-sound Larmor radius (ρs) scale and is advected into the diffusion region by the

electrons. The reconnected magnetic fields must then recouple to the ion fluid downstream

of the current sheet. This process results in an enhancement of the magnitude of the current

sheet and a collapse of the separatrix geometry from a Y-point towards an X-point. At

sufficiently large values of di the current layer begins to resemble a current point [36]. A

combination of effects results in Hall MHD nonlinear tearing modes having significantly

higher reconnection rates than their resistive counterparts (Figure 7-4). Predominantly the

enhancement of the current layer due to the ion decoupling enhances the resistive ηJ field line

breaking in Ohm’s law (Eqn. 1.9). Furthermore, the shortening current layer results in the

Hall MHD separatrix having a larger opening angle than resistive islands of the same width,

resulting in broader outflow jets and thus a greater mass flow rate through the reconnection
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site. Both these effects are evident when comparing the state of the single tearing mode for

equivalent island widths in the resistive (Figure 7-2) and Hall MHD (Figure 7-3) simulations.

Figure 7-3: When Hall MHD physics is included (di = 0.2) the growth of λ = 0.1 tearing mode is significantly enhanced
compared to resistive simulations (Fig. 7-2). The FLR effects result in a collapse of the current sheet toward a current singularity,
and the separatrix (black line) approaches an X point geometry. The broader opening angle of the separatrix allows for wider
outlow jets into the magnetic island, and faster reconnection.

We note that although the X-point separatrix structure of the nonlinear Hall tearing

mode is topologically similar to the deeply ideally stable tearing modes of Rutherford’s

theory (Fig. 7-1) the two regimes are fundamentally different. Nonlinear constant ψ STMs

exhibit an X-point because the out of plane current remains, at all times, a function of the
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Figure 7-4: The addition of FLR effects when di = 0.2 allows for larger reconnection rates, as shown by the out-of-plane
electric field at the X point Ez(~xX) (left). As a consequence, the width of the islands, measured as the distance between the
separatrix branches at the O point (right), grows significantly faster.

magnetic flux. This property does not hold for the Hall tearing mode, as indicated by the

presence of a current singularity at the reconnection site (Fig. 7-3). In principle, therefore,

one cannot treat the morphology of the separatrix as a sufficient indicator of the type of

nonlinear reconnection. In practice, however, because constant ψ tearing modes saturate at

relatively small amplitudes, have slow growth rates, and occupy a very narrow region of the

dispersion relation they are rarely important for nonlinear reconnection studies. Thus the

distinction between Y-point separatrices with extended current sheets and X-point topologies

with current singularities is a good indicator of ion inertial effects being significant.

7.4 Discussion

In this chapter we have focused on the general features of nonlinear tearing mode recon-

nection that are most essential to our discussion of double tearing modes. Nearly all of the

elements described above for STM examples will persist when a second tearing surface is

added, however we have isolated them here to better distinguish the characteristics unique
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to the DTM. Pursuant with this goal we have neglected a substantial body of work on non-

linear reconnection. The topic is a very active area of research, and even a cursory summary

is well beyond the scope of this work. We do wish, however, to briefly mention two topics,

guide field and asymmetric reconnection, that have not been extensively studied as a factor

in DTM evolution but are likely important.

The theories described in this chapter and all accompanying simulations have assumed

a strong guide field regime. This limit is that most applicable to rational surfaces near the

plasma core in tokamak devices, and is the limit in which our prior reduced MHD linear

work is valid. We have neglected, therefore, a wide variety of important effects which are

suppressed by the guide field. In particular, we have omitted discussion of the quadrupolar

magnetic field which is a hallmark of FLR effects in the small Bz regime [11]. The Hall

magnetic field (or rather, its absence) is merely one of many modifications that a strong

out-of-plane magnetic field imposes on 2D reconnection. Because we are focused primarily

on applications to tokamak configurations we will forgo this discussion.

Considering an individual resonant surface (rather than, for example, the two layer DTM

system) asymmetries in magnetic field and plasma density on either side of the current sheet

have a significant impact on the nonlinear reconnection rate and development of islands. A

magnetic asymmetry, for example, can modify the observed reconnection rate for resistive

Sweet-Parker like current sheets and cause the islands to bulge preferentially toward the

weak field side [15]. The double tearing equilibria we use in this work feature this field

asymmetry across each layer as a fundamental element, as well as an additional density

inequality in our force-balanced systems. Except in strongly constrained systems this cross-

sheet asymmetry cannot be removed. Such highly symmetric systems are unlikely to occur

in reality, especially in curvilinear geometries. For this reason our study (and the bulk of

currently published research) does not explicitly examine the nonlinear DTM variation with

cross sheet imbalances, focusing instead on the coupling between the two layers. It is likely,

however, that a full understanding of DTM behavior will require accounting for asymmetric
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reconnection effects.

Excluding these two topics, we have now broadly characterized the features of single

tearing mode reconnection that are essential to our study of nonlinear DTMs. We will now

proceed to examine how the addition of a second resonant surface can produce large scale

disruptive behavior.
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Chapter 8

Force-free nonlinear DTMs

In the linear theory of the double-tearing mode we focused primarily on the interaction of

boundary layers in asymptotically strongly and weakly coupled systems, where the analysis

is tractable. Nonlinearly the important dynamics occur when the two tearing surfaces are

only intermediately coupled. Analysis in this regime is much more difficult and current

understanding is drawn almost entirely from numerical studies. In this chapter we will

describe the simplest and best understood nonlinear configuration, the force-free (∇p = 0),

resistive double-tearing mode in 2D Cartesian slab geometry. We will show that there are

significant parameters space boundaries where the nonlinear behavior of the DTM changes,

and summarize the current understanding of these domains. Using this information we

will then classify the nonlinear state of the cylindrical q = 2 mode that we introduced in

Chapter 6.

Most works on nonlinear DTM evolution [27, 29, 55] characterize the mode primarily by

the behavior of the total kinetic energy of the system and the magnetic energy stored in the

perturbation.

Ek =

∫
1

2
ρU ·UdV (8.1)

Em = −
∫

1

2
(δB · δB + 2δB ·B0) dV (8.2)

Here U is the plasma velocity field, ρ the density, B0 the equilibrium magnetic field, and

δB the perturbed magnetic field. We will use the evolution of Ek (which is outputted as

a diagnostic in MRC-3d) to categorize both the stage and type of double-tearing mode, and

examine Em (which is obtained via post-processing) as a marker of island development.
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The prototype DTM in Figure 8-1 shows the multi-stage evolution of Ek and Em in a

system that exhibits a pronounced ‘explosive growth’ phase. Contours of the flux function

ψ(x, y) are inset to show the state of the magnetic islands at each stage of the kinetic energy

evolution. As the widths of the islands become comparable to the singular layer width

the growth of the kinetic energy decreases sharply. The evolution of the magnetic fields

decouples from that of the plasma flows, as shown by the evolution of the kinetic (solid

line) and magnetic (dashed line) energies between points B and C on Fig. 8-1. For many

systems this process is similar to that seen in single tearing instabilities [42, 49]. Certain

classes of equilibria, however, maintain their exponential linear growth even as nonlinear

islands develop. We will discuss these variations of the ‘island growth regime’ in Section 8.1.

Following the period of slow growth the DTM suddenly releases a large burst of kinetic

energy and undergoes significant qualitative change (points C, D, and E). This ‘explosive

regime’ is the feature most responsible for the recent interest in the double-tearing mode,

since it represents not only the potential for damaging disruptive events in fusion plasmas but

also an occurrence of self generated fast reconnection. It can be observed in resistive MHD

without kinetic effects (such as ion or election inertia) or external driving. In Section 8.2

we will discuss a how this phase is triggered and summarize the available (and conflicting)

studies examining the dynamics of fast reconnection during explosive growth, and propose

a connection between explosive and exponential types of nonlinear DTMs. When all the

available equilibrium free energy between the surfaces is consumed, either via an explosive

phase or through steady reconnection, the plasma is characterized by strongly sheared flows

and intermittent reconnection activity as the islands are consumed and the magnetic field

profile is flattened between the two surfaces. We will briefly describe this final state in

Section 8.3. In Section 8.4 we will use this discussion of DTM evolution to classify our m = 2,

n = 2 cylindrical DTM. Finally, we will conclude this chapter by discussing the outstanding

issues that should be resolved in order to better understand the nonlinear DTM.
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8.1 The island growth regime

The development of large magnetic islands is believed to be a crucial factor in the onset

of explosive growth in the nonlinear double-tearing mode. In this section we will use the

quasilinear framework established in Chapter 7.2 to examine several different DTMs during

the ‘island growth regime’ that immediately follows the linear phase for moderately coupled

modes (between points B and C in Fig. 8-1). The detailed behavior of the mode growth

during this period has only been studied in a limited regime of parameter space [31, 58],

so our description of this phase will rely largely on MRC-3d simulations of characteristic

modes. We will begin with an example of a weakly coupled DTM and progress toward

strongly coupled modes. The most interesting class of nonlinear double-tearing mode occurs

somewhere between these two extremes.

The examples we present in this section will (unless otherwise noted) use a sech type

equilibrium (Chap. 2.3) with resonant surfaces at ±xs = ±0.8 and a magnetic shear of

B′0(±xs) = ±π/2. We change the length of the simulation domain in y to set the wavenumber

k and simulate DTMs with different coupling parameters kxs while keeping the inter-resonant

spacing and magnetic shear constant. As per our discussion in Chapter 3.2, decreasing k will

also force the layer at each resonant surface into the nonconstant ψ regime. This method

of varying the wavenumber (and leaving the surface separation constant) is common in

nonlinear DTM simulation studies and we use it here to make contact with the existing

literature. We will leave discussion of the consequences of this choice until the end of the

chapter.

In the large k regime the DTM behaves as two very weakly coupled single tearing modes

and the nonlinear mode growth is approximately that of a constant ψ, Rutherford-like [42]

island. Janvier et al. [31] mapped a stability threshold in k and xs above which the island

growth halts at finite time without triggering the explosive phase. An example of a DTM

just above this boundary with k = 1.43 and xs = 0.8 is shown in Figure 8-2, with energy

evolution as plotted in Figure 8-6. The asymmetric magnetic field on either side of each
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resonant layer causes significant changes in the mapping of the out-of-plane current Jz to

the flux function ψ(x, y) when compared to the symmetric constant ψ tearing mode (Fig. 7-

1). The separatrix structure is, however, X-point shaped and a visible current sheet does

not develop at the reconnection site. These features suggest that the current remains a

piece-wise function of the flux function everywhere in the domain (i.e. Jz(x, y) = Jz(ψ))

even along the singular layer. This function is not, however, analytic along the separatrix.

The STM Rutherford solution has all these same properties [56] but they are accentuated

by the system asymmetry in Fig. 8-2. It is expected, therefore, that a systematic study

of this weakly coupled, nonlinearly saturated DTM regime would show the w ≈ ηt island

width growth found by Rutherford [42]. To the authors’ knowledge such a study has not

been conducted. Ref. [32] conducted a survey of saturated DTM island widths for fixed k

and variable separation and found that the maximum island width increases linearly with

xs, suggesting that for widely spaced modes the coupling between the two resonant surfaces

still plays a role in the nonlinear island growth. The STM quasi-linear theories of growth [42]

and saturation [56] would therefore likely need to be modified to account for the magnetic

free energy between the tearing layers.

Decreasing the wavenumber to k = 1.0 pushes the DTM below the stability threshold.

During the island growth regime, plotted in Figure 8-3, the separatrix at each surface main-

tains its X-point like structure. Close examination of the current near the reconnection site

reveals, however, a slight increase in the axial current of about 15% when the separatrix en-

ters the resonant layer. The current is not, therefore, everywhere a function of the magnetic

flux. Streamlines of the in-plane plasma velocity in Fig. 8-3 show significantly more flow

between the two resonant surfaces than in the saturated mode (Fig. 8-2). This DTM is not,

therefore, strictly within the constant ψ, Rutherford nonlinear regime. These deviations are,

however, small enough that to lowest order one expects the island growth to have the same

characteristics the previous, saturated mode, with the clear exception that the triggering of

an explosive growth regime is evident in the kinetic energy (Fig. 8-6).
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Figure 8-2: In a sech type equilibrium with xs = 0.8 a DTM with wavenumber k = 1.43 saturates during the island growth
regime. The separatrix (black line) has been masked in the region of the X-point on the Jz current plot to show the absence
of any current sheet structure, suggesting this mode is an asymmetric, DTM generalization of the Rutherford [42], constant ψ
quasilinear STM theory. Note the absence of strong plasma flow between the two resonant surfaces. (simulation time t = 8800,
resistivity η = 1× 10−4, D = DT = ν = 0.1η)
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Figure 8-3: When the wavenumber is decreased to k = 1.00 the explosive phase will be triggered when the magnetic structure
develops sufficiently. During the island grown regime the separatrix (black line) has an X point structure similar to a Rutherford
mode but an enhancement of the current Jz is evident at the reconnection site, indicating that the constant ψ approximation
is not valid. Streamlines of the plasma flow show weak coupling between the two resonant surfaces. (simulation time t = 925,
resistivity η = 1× 10−4, D = DT = ν = 0.1η)
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The classification of the DTM changes substantially when k = 0.67. In Figure 8-4 it is

evident that an extended current sheet has formed at the reconnection site and the separatrix

is trending towards a Y-point geometry. The example plotted in Fig. 8-4 shares many features

with the nonconstant ψ, Waelbroeck STM (Fig. 7-2) with the additions of coupling between

the tearing layers and asymmetry across them. Streamlines of the plasma velocity show that

there is significant flow between the two tearing layers and the outflow jets are biased toward

the interior region. It is not reasonable, therefore, to expect that these islands follow the

Rutherford growth behavior. The flow between the two surfaces suggests, however, that the

Waelbroeck w ∼ t2 solution is not appropriate either, as it assumes a Sweet-Parker current

sheet [49] that does not account for either the magnetic asymmetry or the outflow from

each surface driving inflow at the other. Whatever the details of the analytic theory, it is

clear from the appearance of a current sheet that the constant ψ nonlinear scaling theory no

longer applies.

The three previous examples are DTMs which show a pronounced island growth regime

in their kinetic and magnetic energies with a much lower growth rate than the linear phase.

With the exception of the k = 1.43 saturated case they also develop into a disruptive

explosive growth phase, as shown on Figure 8-6. Very strongly coupled surfaces, however,

lead to complete reconnection without passing through these phases. Instead they develop

large islands while the growth of the kinetic energy remains linear. Examining the islands

during this exponential nonlinear phase shows structure that does not clearly fall into the

establish STM categories. To achieve this regime we use an equilibrium known from our

linear study (Chap. 3) to result in a strongly coupled mode. Figure 8-5 represents the state

of a DTM on a sech equilibrium with xs = 0.25 and k = 0.5 at time t = 140, which shows

exponential growth of Ek in Fig. 8-6. The out-of-plane current Jz is not a function of ψ except

far away from the resonant surfaces where ideal MHD dominates. There is not, however, any

clearly defined current sheet. Instead the mode exhibits a large region of enhanced current

near the X point and a decrease in Jz within the islands. Thus this mode can be consider
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Figure 8-4: A sech DTM with xs = 0.8 and k = 0.667 is firmly within the nonconstant ψ regime during the island growth
phase. The separatrix (black line) has a more Y point and an extended current sheet is visible at the reconnection site.
Streamlines of the plasma flow show strong coupling between the two resonant surfaces. (simulation time t = 480, resistivity
η = 1× 10−4, D = DT = ν = 0.1η)
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neither Rutherford-like nor Waelbreock-like. To the author’s knowledge this region of the

DTM parameter space has not been extensively studied, and the theoretical mechanism

behind this strongly coupled nonlinear phase is unclear. We recall from Chap. 3, however,

that in this system the slab kink mode is marginally stable. The nonlinear development of

strongly coupled DTMs may, therefore, be governed by the nonlinear evolution of the ideal

MHD mode. This interpretation is supported by the streamlines of the plasma velocity in

Fig. 8-5 which show extremely strong coupling between the fluid flows created by the two

reconnecting layers. It is not, in this case, appropriate to consider the DTM within the

framework of two nonlinear STM modes, as we have for weak and intermediate coupling.

Instead we should consider it a single reconnecting instability.

In this section we have presented only a cursory overview of the island growth regime.

Although the presence of this phase of DTM evolution is a necessary precursor to later disrup-

tive explosive growth, very few comprehensive studies of its behavior exist. We have shown

that at smaller wavenumbers the separatrix structure transitions from saturated Rutherford-

type X-points to Waelbroeck-like current sheets and Y-points. These results show that it

is inappropriate to apply the term ‘Rutherford regime’ to the island growth phase (as is

common in the literature) except in very specific cases. In fact, we suspect all truly constant

ψ double-tearing modes (for which the theory of Ref. [42] might apply) will saturate before

the explosive phase. A comprehensive scaling study of the island growth regime would allow

better understanding of how the mode develops throughout this phase. Such an effort would,

however, face several significant hurdles which we will address at the end of this chapter.

When the coupling parameter kxs is very small the island growth regime is absent. In-

stead exponential growth continues until the free energy between the surfaces is consumed

and complete reconnection is achieved. This branch of the nonlinear DTM has not been well

studied, and the boundary between closely coupled behavior and nonconstant ψ intermediate

modes is unexplored. Based on our work in the linear and nonlinear phases thus far, however,

we believe that a clear threshold between the two behaviors may not exist. From the linear
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Figure 8-5: The strongly coupled k = 0.5, xs = 0.25 DTM does not resemble either the Rutherford of Waelbroeck tearing
mode theories. The current Jz is not a function of the magnetic flux ψ except far away from the resonant surfaces. Current
sheets are not clearly visible anywhere in the domain, and streamlines of the plasma flow show significant interaction between
the two tearing layers. (simulation time t = 140, resistivity η = 1× 10−4, D = DT = ν = 0.1η)
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Figure 8-6: Integrated kinetic (Ek solid lines) and magnetic (Em dashed lines) for the Cartesian double-tearing modes plotted
in Figures 8-2(top left), 8-3(top right), 8-4(bottom left), and 8-5(bottom left) representing the different classes of island growth
regime. Vertical dash-dot lines indicate the time at which the 2D images are plotted. These time series terminate during the
explosive phase as simulating through this regime is numerically challenging.
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theory it is known that as the wavenumber of the DTM decreases the eigenfunctions broaden

and the coupling increases. Examining the nonlinear evolution of the kinetic energy for the

nonconstant ψ mode (Figure 8-6) we observe that development of the mode during the is-

land growth phase occurs at an appreciable fraction of the linear rate, and the onset of the

explosive growth is smooth compared to the higher wavenumber modes. It is possible, there-

fore, that as the DTM wavenumber decreases and the coupling strength increases the island

growth regime develops exponential growth and smoothly transitions in the form shown in

Fig. 8-5. This transition would be consistent with the short lived behavior of the Waelbroeck

regime in m = 1 kink-tearing modes [51]. As we will see, the current understanding of the

explosive growth triggering mechanism may also support this hypothesis.

8.2 Explosive growth

Moderately coupled DTMs that do not saturate feature an inflection point in energy

evolution during the island growth regime, after which the system accelerates into explosive

growth. Using sech type equilibria Janvier et al. [31] found that the maximum wavenumber

kc at which the explosive phase occurs is independent of resistivity for a given xs. By

comparing the shape of the magnetic islands at the inflection point for DTMs of different size

but equivalent kxs, they found that the separatrices have structural similarity independent

of the absolute island width. From this result they concluded that the explosive phase is

triggered by a secondary instability dependent on the separatrix geometry, later confirmed

via quasilinear analysis and simulations [32]. This secondary mode appears, in the weakly

coupled limit, to be independent of resistivity. A detailed account of MHD forces above

and below the stability threshold shows that at this late stage the pressure forces (∇π,

π = B2/2 + p) dominant the dynamics, with convective (U · ∇U) and field-line bending

(B · ∇B) terms being of a lower order [33]. In particular, the appearance of the secondary

instability seems to correlate with an imbalance in magnetic pressure on two sides of an
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island. In cases leading to explosive growth the magnetic pressure at the ‘inner’ separatrix

of an island (between the two tearing surfaces) is less than at the ‘outer’ (the side open

to the boundary). This imbalance is generated by the development of triangular separatrix

structure between the two resonant surfaces and is not evident in cases leading to saturation.

We note that the strongly coupled islands in Fig. 8-9 are highly asymmetric at small island

widths, suggesting that this pressure imbalance develops at small amplitudes and the distinct

island growth and explosive regimes are replaced by a single fast reconnection phase. This

strong coupling regime has not, however, been well studied and we will restrict our current

discussion to Janvier’s study of the marginally unstable domain.

Based on this description of the triggering mechanism we can now develop a picture of

how the explosive growth regime emerges from the island growth phase in moderately cou-

pled double-tearing modes. As the DTM enters the island growth regime the reconnection

process slows but continues to reduce the magnetic field between the two tearing surfaces. If

the structure of the mode is such that enough flux is reconnected before saturation is reached

(k < kc for a given xs) the pressures on both sides of the island boundary become imbal-

anced and a secondary instability is triggered. A key feature of this description (that the

dominant behavior of the secondary instability is evident in the momentum equation) is con-

sistent with observations that the kinetic energy growth increases before the magnetic [32].

The remaining flux is then driven into the current sheets by island motion, increasing the

reconnection rate and generating a feedback loop that further decreases the pressure. The

manifestation of this feedback loop is the explosive growth regime.

While the islands begin to bulge outward toward the opposite tearing surface the current

sheets are compressed and the outflow jets are directed along the separatrices (point D in

Fig. 8-1), resulting in large shears. As the remaining magnetic flux between the surfaces

is reconnected the pressure within the islands becomes large enough to drive the center of

the island toward the opposite tearing layer, causing a large increase in the system kinetic

energy. After this shift the inner separatrices merge (point E) and the islands are slowly
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consumed by the reconnection sites.

The explosive regime presents several challenges to numerical simulations. In particular

the compression of current sheets as the islands bulge outward requires very small grid scales

to resolve, and the dynamic motions require this enhancement over a significant portion of

the domain (compare the Y-point positions at times C, D, and E in Fig. 8-1). These factors

have limited the number of detailed simulations of this phase, and the physical mechanism

and role of magnetic resistivity are currently unclear.

Despite these challenges several authors have been successful examining the behavior of

this regime across one of more decades of resistivity η. These studies find, however, different

scalings of growth rate on resistivity (γ ∝ ηα) and thus draw different conclusions about the

primary driving mechanism. Ishii et al. [27–30] examine an m = 3, n = 1 double tearing

mode with kxs ≈ 2.8 across one decade of resistivity (3× 10−6 ≤ η ≤ 2× 10−5) and find

a scaling exponent α ∼ 0, from which they conclude a structure driven instability. Using

the common sech slab equilibrium (Chap. 2.3) with kxs ≈ 0.785 Wang et al. [52] find the

very different scaling of α ∼ 1/5 across the region 2× 10−6 ≤ η ≤ 2× 10−4, leading them

to propose a flow driven process [52] as the primary driver. Finally Zhang and Ma [62]

choose the ‘double-tanh’ equilibrium (Chap. 2.3) with coupling kxs ≈ 0.785, which results

in a stronger magnetic shear at the tearing layer compared to the common sech equilibrium

(B′0 = 5.0 and B′0 = π/2 respectively). They vary the out of plane magnetic field from

BG = 0→ 5 times the asymptotic in-plane field instead of assuming a strong guide field as

in the previous studies. Over this range, and varying resistivity 2× 10−5 ≤ η ≤ 3× 10−4,

they find the scaling exponent decreases monotonically from α ≈ 0.06 for BG = 0 to α ≈ 0

when BG = 5. Ref. [62] does not discuss the consequence of their results with regards to the

underlying physical mechanism.

Assuming that the differences between the above three studies are not a result of fitting

methodology, they indicate that there are multiple mechanisms for the explosive phase de-

pending on either the DTM configuration or the underlying model. The available information
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does not, however, allows us to identify the domain for each mechanism. Ishii et al. use an

incompressible reduced MHD model in curvilinear geometry with an assumed strong guide

field; Wang et al. have compressible rMHD in slab geometry also with a strong guide field;

and Zhang and Ma use compressible MHD with a variable guide field. The incompressible

model is the weakest of the three, but its results match those of the Zhang and Ma model in

the high guide field limit where one expects incompressibility to be approximately valid. It

does not seem likely, therefore, that the choices of simulation models are responsible for the

differences. The factor kxs, which is an indicator of the linear coupling strength (Chap. 3),

is the same for the latter two papers (kxs ≈ π/4), and thus cannot account for the difference

in measured resistivity scaling. Therefore neither the model nor the coupling parameter can

be used to explain the variation.

The best remaining candidate is properties of the tearing layer local to each surface,

i.e. the wave number k and magnetic shear. Together these determine whether the linear

tearing layer is in the constant or nonconstant ψ regime, and we propose that they may also

be responsible for variation in the explosive phase. If it can be shown that the character of

the explosive phase changes with changing wavenumber and coupling it would support our

proposal that the transition between the explosive and strongly coupled DTM behavior is

smooth. We currently lack, however, a clear metric by which to catagorize nonlinear DTMs,

as these studies of the explosive regime show that the coupling kxs is insufficient. Identifying

such a measure is outside the scope of this thesis, but we will discuss it in more depth at the

end of this chapter.

8.3 Decay phase

Both the strongly coupled and explosive variants of the double tearing mode are trou-

blesome for fusion devices. Both evolution paths lead to a flattening of the magnetic field
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between the tearing surfaces [53] which would, in a tokamak, result in a loss of plasma con-

finement. The additional violent evolution of the explosive-type DTMs present a further

danger of disruptive events which could damage hardware. As a consequence, much of the

research has been dedicated to understanding and halting the mode’s evolution. Several

authors have, however, proposed that DTM activity may have beneficial characteristics by

generating strong sheared flows [35, 53] and turbulence [9] which could affect the transport

properties of a configuration. Although our focus on this work is to stabilize the DTM we

will, for completeness, briefly discuss how these sheared flows develop.

Typically during reconnection the strongest plasma flows are downstream of the tearing

location. The reconnection process releases stored magnetic energy and accelerates plasma

along the separatrix. In the late nonlinear, the separatrices on both tearing surfaces are

highly deformed and the outflow jets from both reconnection sites can interact. Wang

et al. [53] examined the evolution of these flows in detail and found that during the explosive

phase strong, large scale vortices form between the two surfaces. When the initial flux

between the two surfaces is consumed, the inner separatrices of each island merge and lines

of strongly sheared flow are created that connect the reconnection sites to each other. As the

decay regime continues, the islands are consumed at the opposite tearing surface from which

they were born and the flow profiles relax into layered shear flows spanning the space between

the surfaces. Xia et al. [35] investigated the strength of these residual flows by varying the

resistivity for a fixed equilibrium and found that although the instability evolved much slower

with smaller η the generated flows were the same in all simulations. These results suggest

that the plasma motion in the final state of the DTM depends primarily on the free energy

available in the initial magnetic field configuration. Supporting this conclusion, Wang [53]

found that varying the initial magnetic shear and separation of the resonant surfaces has a

significant impact on both the magnitude and shear of the resultant surfaces.
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These sheared flow patterns may have some beneficial characteristics in tokamak de-

vices [53], but it is unclear whether they outweigh the loss of stability. The complete con-

sumption of the magnetic islands leads to a flattened magnetic field and a loss of confine-

ment [17, 29, 53]. Additional coupling to higher order modes may also lead to a turbulent

collapse of the annular current ring [9], the consequences of which are unknown. Therefore

we will focus, for the remainder of this work, on stabilizing (or at least slowing) the double-

tearing mode, which is beneficial to so called ‘advanced tokamaks’ that exploit the reverse

magnetic shear configuration.

8.4 Classification of the m = 2, n = 1 cylindrical DTM

The above framework (drawn mostly from symmetric, slab Cartesian simulations) repre-

sents our current understanding of the DTM nonlinear growth. Based upon this description

we will now classify the q = 2, D ≈ 0.26 cylindrical mode examined in Chapter 6, which

we will use for the remainder of this work. We argued that the linear eigenmodes of this

system are an asymmetric mixing of the strongly and moderately coupled Cartesian DTMs

on the outer and inner rational surfaces respectively. One might expect, therefore, that the

nonlinear evolution of the system will be an intermediate form between Figures 8-4 and 8-5.

Plotting our resistive m = 2, n = 1 mode at finite island size confirms this prediction.

Both the inner and outer rational surfaces in Figure 8-7 show extended current sheet struc-

tures. Following the separatrix at the inner surface, however, shows that even away from the

singular layer the axial current Jh is not strictly a function of the magnetic flux ψ∗. Further-

more, the kinetic and magnetic energies (Fig. 8-10) maintain exponential growth while the

islands are finite sized, akin to the closely coupled Cartesian mode. This cylindrical DTM

may, therefore, be a mode between the intermediate and strong regimes, as is indicated

linearly by its growth rate scaling as γ ∼ η0.48.

The peculiarities of cylindrical geometry, however, prevent us from asserting the presence
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or lack of an explosive phase in this system. As exhibited by streamlines of the plasma flow

in Fig. 8-7, the magnetic pressure near the axis is insufficient to prevent the inner rational

surface from coupling to itself across r = 0. This interior flux continues to decrease as the

mode reconnects, thereby further decreasing the magnetic pressure and causing the current

sheets on the inner rational surface to approach across the axis. By the time at which the

separatrices merge (Fig. 8-8) the interior region is small and deformed, and subsequently

vanishes all together as the outer islands drive the inner current sheets together (Fig. 8-9).

Although our simulations are well resolved throughout this current sheet merging event the

unphysically high degree of symmetry in our cylindrical domain means that past this point

the applicability of our results to realistic devices is suspect. We note, however, that other

simulations of q = 2 DTMs have found the same behavior and good agreement to Tokamak

Fusion Test Reaction (TFTR) discharges [17], suggesting that this consumption of the flux

interior to the rs1 surface is a challenge for low safety factor reverse shear plasmas. Studies

of higher mode number instabilities have not found this behavior [9, 29].

The late time behavior of our m = 2, n = 1 cylindrical simulations should not, therefore,

be treated as characteristic of DTM behavior in every application. At times prior to merging

of the separatrices (Fig. 8-8), however, our results agree broadly with studies of more narrow

current rings [9, 29]. The q = 2 example we have chosen is, in some sense, a worst case

scenario for cylindrical DTM activity. Higher mode numbers are generally less strongly

coupled (see Chap. 6.1), and will have a strong enough field near the axis to prevent the

merging of the inner current sheets. Our mode will therefore be more difficult to decouple

via differential drifts (see Chap. 5.2) and stabilization will be more easy to detect. Thus we

expect the stabilization mechanisms explored in this work to be more effective for higher

safety factor equilibria.
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Figure 8-7: The m = 2, n = 1 cylindrical DTM is an asymmetric example of the transitional regime between moderate and
strong coupling. Current sheets are visible at both rational surfaces but the island growth regime exhibits exponential energy
growth. (simulation time t = 600, resistivity η = 2× 10−5, D = DT = ν = 0.5η)
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Figure 8-8: By the time at which the inner and outer separatrices merge the rs2 islands push the rs2 current sheets toward
each, resulting in significant deformation of the magnetic field near the axis. Note that separatrix locations (solid black lines)
plotted here are approximate due to the merging event interfering with our usual numerical saddle-point location technique.
(simulation time t = 690, resistivity η = 2× 10−5, D = DT = ν = 0.5η)
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Figure 8-9: As reconnection continues the magnetic pressure along the axis is insufficient to prevent the inner current
sheets from merging into a single structure. This behavior is likely an artifact of the unrealistically high symmetry in our
simulations. The islands are consumed and confinement has been degraded. (simulation time t = 770, resistivity η = 2× 10−5,
D = DT = ν = 0.5η)
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Figure 8-10: Evolution of kinetic (solid) and magnetic (dashed) energies for the m = 2, n = 1 cylindrical DTM. Dot-dashed
lines indicate times for Figures 8-7 (black), 8-8 (red), and 8-9 (blue). The mode continues to evolve at the linear growth rate
until the separatrices merge.

8.5 Discussion

In this chapter we have summarized the current understanding of the nonlinear double-

tearing mode, from the slow island growth regime to the onset of explosive growth and finally

complete reconnection. From this discussion it should be clear that much is not known about

DTM evolution. Two important factors make studying this instability difficult. Numerically

the nonlinear DTM is extremely challenging. The presence of two current sheets requires

high resolution in at least two regions of the simulation domain, and during the explosive

phase the current sheets commonly move as the islands drive them outwards. Furthermore,

the explosive phase typically triggers at very late times, which is computationally expensive.

These numerical challenges may, in principle, be overcome but doing so requires sophisticated

techniques that are not widely available.

The second, and more difficult, challenge to DTM study is the wide parameter space. We

have, at minimum, three potential final states of the nonlinear double-tearing mode: satura-

tion at finite sized islands; explosive growth leading to complete reconnection; exponential
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growth until complete reconnection without an explosive phase. It is unclear whether there

are multiple classes of explosive phases or saturated islands, and the relationship between

strongly coupled modes with and without an explosive phase has (to the author’s knowledge)

not been studied. To further complicate matters, both the sech and double-tanh equilibrium

types are common, and thus there are significant variations in magnetic shear, spacing, and

free energy in nearly all studies. Fundamentally, the problem reduces to an over-reliance

on the linear coupling parameter kxs as a descriptor of the double-tearing mode. A cru-

cial component of nonlinear DTM work, going forward, should be a systematic mapping of

the evolution with regards to spacing, magnetic shear, and free energy between the tearing

surfaces. The recent work of Janvier et al. [31–33] has begun this process by exploring the

boundary between saturated and explosively unstable DTMs in the constant ψ branch of

the linear dispersion relation, but much of the parameter space remains unexplored. Such

studies will require, however, addressing the numerical problems mentioned above so that

scalings over resistivity may be conducted.

Despite the gaps in our understanding of the nonlinear DTM, some predictions can still be

made concerning effective stabilization techniques. Our goal is to prevent complete collapse

of the annular current ring due to either an explosive phase or fast exponential growth, both

of which are weakly dependent on resistivity. Because it is not strongly current driven, it is

not likely that a mechanism such as differential diamagnetic drifts will be able to stop the

explosive phase once it is triggered. We will focus our efforts, therefore, on using diamagnetic

drifts to slow the island growth regime and prevent development of structural instability and

merging of the separatrices at each surface. As we will see in the following chapter, this will

require overcoming not only the reconnection enhancements caused by the Hall term but

also the tendency of the islands to re-lock the tearing surfaces nonlinearly.
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Chapter 9

FLR effects on nonlinear DTMs

We have now categorized the nonlinear state of our force-free, resistive, m = 2, n = 1

cylindrical double-tearing mode and shown how the nonlinear growth of magnetic islands can

lead to collapse of the annular current ring. In this chapter we will investigate the effect of

electron diamagnetic drifts on this process. Linearly we found that differential diamagnetic

drifts can significantly decrease the growth rate through a combination of global decoupling

and local stabilization effects. We will see that finite sized magnetic islands modify this

mechanism in both beneficial and detrimental ways. Growth of large islands tend to recouple

the tearing surfaces (allowing faster evolution), but can also enhance the pressure gradients

(and thus ω∗ drifts) and increase stabilization. The competition between these two processes,

as well as the ideal MHD destabilizing properties of the pressure gradient, will determine

the final state of the Hall MHD DTM.

Using the machinery developed in previous chapters we will dissect the cylindrical m =

2, n = 1 double-tearing mode to understand the benefits and shortcomings of ω∗ drifts as a

stabilization mechanism. To begin we examine the impact of the FLR effects on the force-

free DTM we categorized in Chapter 8.4. Using this force-free Hall MHD mode as a baseline

we will then consider configurations with equal equilibrium ω∗ at both rational surfaces. In

Chapter 6 the linear growth rate of this class of profile increased with increasing pressure

gradient, but we will show that the growth of large magnetic islands can enhance the local

diamagnetic drift and stabilize the DTM. In light of this discovery we will briefly examine

equilibria with ∇p localized at the inner rs1 rational surface, which are the most linearly

unstable systems, and find that without an initial ω∗ drift at the rs2 surface the outer islands

disrupt the annular current ring before the nonlinear pressure enhancements can develop.
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Finally we consider the class of DTMs with a steep pressure gradient at the rs2 rational

surface, which we found to be most linearly stabilized. We will show two examples that

have significantly slower nonlinear development compared to the force-free mode. Of these

two examples, one will progress toward complete reconnection and the other will effectively

saturate. We will propose an explanation for this different behavior.

In this chapter we will closely follow the linear work of Chapter 6, choosing characteristic

equilibria to simulate nonlinearly. As before, we will run in the cold-ion regime (τ = 0) and

set the equilibrium electron temperature constant at T = 1. Initial diamagnetic drifts will

be generated by equilibrium density profiles of the form:

ρ(r) = N0

{
1− (1−Nb)

tanh(r0/δN) + tanh[(r − r0)/δN ]

tanh(r0/δN) + tanh[(1− r0)δN ]

}
(9.1)

This density is the same introduced in Equation 2.22 and used throughout Chapter 6.

9.1 Nonlinear simulation techniques and analysis

The simulations in this chapter are generated, as before, by the MRC-3d simulation code

using helically symmetric, two-dimensional, periodic cylindrical geometry. The behavior of

the double-tearing mode changes substantially during its nonlinear evolution and simulating

to the important late times at sufficient resolution is computationally expensive. To alleviate

this cost somewhat we follow the common practice of seeding a large initial perturbation,

typically 1× 10−4 times the equilibrium field. We have verified, for a subset of equilibria, that

the final behavior of the mode is the same whether we use this large perturbation or allow

the system to develop linearly. To further reduce the computational cost we rely heavily on

MRC-3d’s implicit time-integration capabilities, which allows us to take comparatively large

time steps. Our implicit solver is not adaptive and manual adjustment of ∆t is necessary

when the algorithm fails to converge. To save computation time we will typically not continue

a simulation if the we observe that the inner and outer separatrices have merged, as we
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consider this point to be a sufficient marker of disruption. All important simulation results

have been tested for convergence in both time and spatial resolution, and we are confident

these techniques do not affect the validity of our results.

Nonlinear simulations at realistic resistivities require unfeasibly high spatial resolution

and we follow the common practice of using a larger value (η = 2× 10−5 for this study).

To further enhance stability, we also exploit the additional diffusion parameters available in

MRC-3d by setting them to half the resistivity (D = DT = ν = 1× 10−5). These parameters

may have a physical impact (in particular for the locking of magnetic islands [50]), however

in our experience their primary effect is a small reduction in observed growth rates. The

more substantial consequence of these large parameters (including resistivity) is that the

characteristic timescales of the DTM growth and diffusion of the equilibrium are not as

widely separated as in a more realistic system. To balance this we enable the MRC-3d ‘source

term’ (see Appendix A), which is equivalent to introducing an external electric field that

drives the system toward equilibrium. The evolution of the DTM at early times is sufficiently

fast and depends weakly enough on resistivity that our results remain physically relevant.

After complete reconnection, however, or when a saturated state is reached this source

electric field has the effect of ‘pumping’ the system with energy. When we feel this effect is

important to our results we will discuss it explicitly.

Before presenting our results it is useful to explain one feature of our data analysis

technique and plot generation. In previous chapters we have used a numerical saddle-point

identification algorithm to determine the magnetic separatrices and plot them explicitly. The

strong diamagnetic drifts examined in this chapter interfere with this technique. When pos-

sible we have determined the saddle points via inspection, but this process is time consuming

and frequently impractical. In any event, our two-dimensional, cylindrical simulations in-

volve enough approximations that direct quantitative comparison to true tokamak devices is

not possible. Therefore when automatic separatrix tracking fails we will instead plot contours

of the flux function through the region of interest. This method will still allow qualitative
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evaluation of the state of the DTM evolution and discernment of important characteristics.

Having established the basic techniques and caveats we may now proceed to our Hall

MHD simulation results.

9.2 Nonlinear Hall DTMs

The evolution of the current layers during the multiple phases of nonlinear DTM recon-

nection allow for the Hall term to have a time-dependent influence normally absent from

steady state STM systems. As the magnetic islands grow, they compress the current sheet

at the opposite resonant surface. If the layer thickness falls below the characteristic ion

scale (ρs for non-zero guide field, otherwise di) the reconnection site will collapse from a

current sheet (Y-point geometry) toward the characteristic Hall current point (X-point con-

figuration) [18]. The associated acceleration of the reconnection rate will not only hasten

the onset of the explosive phase but also increase its maximum growth rate and the amount

of kinetic energy generated. This effect has been confirmed in systems both with [1] and

without [63] guiding magnetic fields. In force-free systems, therefore, the addition of Hall

physics alters the seperatrix morphology and allows more efficient conversion of magnetic

energy to kinetic but does not fundamentally alter the progression of the DTM, though it is

unclear how quasilinear stability thresholds might be affected.

While these accelerating properties of the Hall term will likely be a factor in advanced

tokamaks with high safety factor and small aspect ratio (and therefore weaker toroidal field)

we find that the current sheets in our m = 2, n = 1 cylindrical DTM do not undergo collapse

for the parameters of η = 2× 10−5 and di = 0.1 that we use for nonlinear simulations. Due

to the strong guide field in this equilibrium the ions decouple a distance ρs =
√
βdi = 0.014

away from the rational surfaces, which is not large enough to cause enhancement unless the

resistivity is very small. As a consequence the linear and early nonlinear growth of the Hall

MHD mode is only barely faster than the resistive system, as shown in Figure 9-1.
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Figure 9-1: Evolution of kinetic (solid) and magnetic (dashed) energies for the m = 2, n = 1 force-free cylindrical DTM.
Dot-dashed lines indicate times for Figures 9-5 and 9-6 (black), 9-7 (red), and 9-8 (blue). The ion inertial length of di = 0.1
results in a Hall DTM with slightly faster growth than the resistive DTM.

The separatrix and current morphology in the early nonlinear show weaker FLR effects

than those discussed for STMs in Section 7.3. Figures 9-5 and 9-6 show the state of the

resistive (di = 0.0) and Hall MHD (di = 0.1) systems at time t = 110 in each simulation,

indicated by the dashed line in Fig. 9-1 where Ek is equal for both models. The axial current

Jh, separatrix geometry, and plasma flow are nearly identical in both cases, with the caveat

that the current sheets at the inner and outer reconnection sites are slightly more peaked

in the Hall MHD run. As the islands grow, therefore, this systems stays in the weak to

moderate Hall regime.

As the inner and outer separatrices merge the two models begin to deviate more sub-

stantially. The small enhancement of the reconnection rate in the Hall MHD simulation is

sufficient for the total Ek and perturbed Em to rise above their resistive MHD counterparts.

In particular the peak Ek occurs earlier in the simulation, and the merging of the inner

current sheets is accelerated. However the overall magnetic field and current sheet geometry

during the merging of the inner and outer seperatrices (Fig. 9-7) and after the collision of the

inner current sheets (Fig. 9-8) is not significantly impacted by the presence of FLR effects.

172



Our force-free m = 2, n = 1 can be considered, therefore, to be in the weak or moderate

Hall regime throughout the entirety of its evolution. We will use this case as the baseline

DTM for our nonlinear stabilization study.

9.3 Equal drifts at both q = 2 rational surfaces

In order to isolate the effects of diamagnetic drifts without considering the complications

of DTM decoupling we will begin by introducing a broad pressure profile that generates

equal ω∗ at both q = 2 rational surfaces. Linearly the destabilizing contribution of the

pressure gradient dominated over the FLR effects local to tearing layers (Fig. 6-10). In other

reconnecting systems, however, the nonlinear growth of the magnetic islands has been shown

to steepen the pressure gradients local to each layer and increase the stabilizing diamagnetic

drift [41]. To examine whether such an effect is present for the double-tearing mode we

consider two example equilibria: a shallow profile which produces a drift of ω∗ = 2× 10−2

and has a linear growth rate only marginally greater than the force-free value (Fig. 6-10);

and a steep profile with ω∗ = 1× 10−1 that resulted in stronger liner growth. For reference

the 2D shapes of these pressure profiles are shown in Figure 9-9.

The kinetic and magnetic energy growth for these two drift values is plotted together with

the force-free Hall MHD mode growth in Figure 9-2. Let us first consider the ω∗ = 2× 10−2

mode. The system kinetic energy (red line) is nearly an order of magnitude larger than the

non-drifting mode (black line) at all times. Em, in contrast, has approximately the same

growth rate and magnitude until t ≈ 100, after which the ω∗ = 2× 10−2 DTM grows slightly

faster. Because the electron diamagnetic drift is the same at both rational surfaces the mode

is rotating, which results in a larger integrated kinetic energy. Em better represents the

comparative evolution of the DTM, and its behavior is consistent with the growth rates of

the linear modes being approximately the same. The state of the drifting simulation near the

merging of the inner and outer separatrices is shown in Figure 9-11, and can be compared
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Figure 9-2: Evolution of kinetic (Ek) and perturbed magnetic (Em) energies for the m = 2, n = 1 cylindrical DTM with
equal initial electron diamagnetic drifts at both rational surfaces. The black and red dot-dashed lines indicate the separatrix
merging point for the force-free (ω∗ = 0) and weak drift (ω∗ = 2× 10−2) DTMs respectively, and the states of the simulations
at these times are shown in Figures 9-7 and 9-11. The blue dot-dashed indicates the approximate time at which the growth of
the ω∗ = 1× 10−1, strong drift DTM slows, and is plotted in Figure 9-12. This time is not indicative of the separatrix merging
event. Instead nonlinear enhancement of the pressure gradients local to each layer have stabilized the mode. Even at time
t = 390 (black dashed line, Fig. 9-13) some flux remains unreconnected between the inner and outer separatrices.

to a similar state of the force-free equilibrium in Figure 9-7. Although the overall structure

of the magnetic islands is similar, the diamagnetic drift has several important impacts. The

outflow jets from the reconnection sites are biased strongly in the direction of the diamagnetic

drift (û ∼ θ̂, see Eqn. 6.7), and the magnetic structures are sheared with the drift local to

the surfaces. This elongation is, however, not uniform. Considering the upper half plane,

the peaks of the inner and outer current sheets are separated by an angle of 76◦ rather than

the 90◦ observed in the force-free case. Radials of the pressure across the two current sheets

(Figure 9-10) show that the growth of the magnetic islands flattens the pressure gradient

between the q = 2 rational surfaces and steepens it asymmetrically at the current sheets,

introducing a slight differential drift and shearing the DTM structure. This effect is not,

however, sufficient to either decouple the two surfaces or locally stabilize the reconnection

process.

The nonlinear evolution of the pressure gradient becomes more important in the case of

174



the steeper profile that gives a drift of ω∗ = 1× 10−1 at both surfaces. Previously we found

the linear growth rate of this system to be faster than both the force free and ω∗ = 2× 10−2

equilibria (Sec. 6.3). The DTM eigenmode, however, emerges slowly from the initial nonlinear

perturbation, as shown by the early fluctuations in Em on Figure 9-2. It eventually develops

with a growth rate comparable to the other two equilibria (Fig. 9-2), suggesting that the

quasilinear evolution is significantly different than the linear. The growth of the kinetic and

magnetic energies slow near simulation time t = 250, and at a lower amplitude than the

previously examined systems. At this rollover point a significant region of unreconnected

flux exists between inner and outer separatrices (Fig. 9-12), thus this change in behavior is

not associated with the separatrix merging event observed in the previous examples. Plotting

radials of the pressure profile at this time (Fig. 9-10) we observe a substantial increase in the

gradient at both the inner and outer surfaces as the growing islands drive the core plasma

toward the opposite reconnection site. The resulting enhancement to the local diamagnetic

drift significantly slows the growth the instability. This process has been observed in other

reconnecting systems [41] and has been proposed as a mechanism for the appearance of large,

saturated magnetic islands during incomplete m = 1 sawtooth crashes [8].

The inner and outer separatrices have not merged as of time t = 390 (Fig. 9-13) even

though the kinetic and magnetic energies have grown larger than the force-free DTM (Fig. 9-

2). Development in this late stage is sufficiently slow that the source electric field is likely

significant and may be driving the continued growth of Ek and Em. We cannot, therefore,

claim that the state of this system is representative of the DTM behavior in a true reactor.

It is apparent, however, that amplification of the pressure gradient has had a strong stabi-

lizing effect on the double-tearing mode evolution. Further investigation may show that this

mechanism can result in saturated, finite size double-tearing mode islands. As this enhance-

ment of the pressure gradient only occurs in the late nonlinear phase, however, the DTM

has already generated strong current sheets and large magnetic islands. The impact these

structures may have on confinement and stability is unclear. Continuing this work further
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will require better modeling of tokamak conditions, and is outside the scope of this thesis.

We will instead proceed to configurations with differential drift, which were linearly more

fruitful, and consider the implications of nonlinear pressure gradient enhancement there.

9.4 Concentrated ω∗ at the inner surface

Linearly we found that localization of a pressure gradient (and thus diamagnetic drift)

at the inner rational surface increased the growth rate of the double-tearing mode (Sec. 6.3).

The energy growth of two example profiles with ∆ω∗ of 2× 10−2 and 1× 10−1 generated by

a pressure gradient of width δN = 0.10 are plotted in Figure 9-3, and show that this class of

profile is similarly destabilizing for the nonlinear DTM. It holds nonlinearly, therefore, that

some mechanism must be applied near the dominant, outer rational surface in order to slow

the mode growth.
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Figure 9-3: Evolution of kinetic (Ek) and perturbed magnetic (Em) energies for the m = 2, n = 1 cylindrical DTM with a
pressure gradient localized at r0 = rs1, on the inner rational surface. The inner surface experiences an equilibrium diamagnetic
drift and the outer surface does not, resulting in a differential drift ∆ω∗. Both dot-dashed vertical lines indicate times for which
we have generated 2D plots of the ∆ω∗ = 1× 10−1 DTM: red is time t = 155 and the early nonlinear state plotted in Fig. 9-14;
blue is time t = 255 and shows the system state just prior to the inner current sheets colliding across the r = 0 axis, shown in
Fig. 9-15. We have chosen not to extend the simulations once it is clear that the annular current has been disrupted.
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As the focus of this work is primarily on stabilization mechanisms we will not examine

this type of profile in great detail. We will note, however, that the evolution of the pressure

gradient also affects the DTM final state in this class of equilibrium. At time t = 155 the

state of the ∆ω∗ = 1× 10−1 (Fig. 9-14) resembles the force-free mode (Fig. 9-6) except that

the diamagnetic drift at the inner surface causes the current sheets to be elongated and the

islands to be sheared. The core plasma remains, at this time, bound by the inner separatrix.

At the later time of t = 255, however, the separatrices have merged and the inner islands are

being reconnected at the outer rational surface (Fig. 9-15). The pressure profile spans the

entire diameter between θ = 0 and π, and as such is able to impact the current sheets at rs2

and may slow the progression towards complete reconnection. This state requires, however,

a merging of the separatrices and the disruption of the pressure core and annular current.

9.5 Concentrated ω∗ at the outer surface

We have consistently found that the steeper magnetic shear at the outer rational surface

of this q = 2 cylindrical equilibrium results in the rs2 layer dominating the DTM evolution.

The most effective linear stabilization came from localizing a strong pressure gradient at this

outer surface (Sec. 6.3), exploiting both differential drift and local ω∗ properties. In this

section we choose two equilibrium pressure profiles centered on the outer rational surface

that produce the same differential diamagnetic drift of ∆ω∗ = 1× 10−1. Recall that in our

linear study we found that increasing ∆ω∗ localized at the rs2 would decrease the growth rate

until some threshold, after which an ideal MHD instability would begin driving the growth

(Fig. 6-12). For the gradient width δN = 0.1 a differential drift of ∆ω∗ = 1× 10−1 is above

this threshold, and has a γ less than the force-free value but increasing. For δN = 0.05,

however, this drift is the minimum of γ, as well as being the lowest growth rate achieved in

our linear study. Nonlinearly the promising stabilization features of this class of equilibrium

persist, and we find the growth of the kinetic and magnetic energies to be significantly slower
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than the force-free DTM.
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Figure 9-4: Evolution of kinetic (Ek) and perturbed magnetic (Em) energies for the m = 2, n = 1 cylindrical DTM with a
pressure gradient localized at r0 = rs2, on the outer rational surface. The outer surface experiences an equilibrium diamagnetic
drift and the inner surface does not, resulting in a differential drift ∆ω∗. Linearly the two surfaces are decoupled by differential
drift and the magnetic energy growth shows that some time is required before the islands at the outer, suppressed rational
surface grow large enough to lock the mode. Both the drifting DTMs are stabilized with respect to the force-free example.
The black dot-dashed vertical line indicates simulation time t = 400 at which we plot the state of both the broad δN = 0.1
(Fig. 9-16) and localized δN = 0.05 (Fig. 9-17) simulations. The red and blue dot-dashed lines indicate important times for
the broad δN = 0.1 simulation: red is near the separatrix merge point (t = 500, Fig. 9-18); blue is just after the inner current
sheets collide across r = 0 (t = 600, Fig .9-19). Neither of these events occur within our δN = 0.05 simulation.

The perturbed magnetic energy of the drifting profiles is highly oscillatory in the early

nonlinear (Fig. 9-4), with the apparent frequency decreasing as the mode grows. These fluc-

tuations can be related to the (de)coupling of the magnetic islands. Linearly the differential

drift is sufficient to decouple the two reconnecting surfaces. As the islands reach finite size,

however, they interlock [50] and again drive each other. At late times our simulations also

show higher frequency oscillations of the energies, in particular for the δN = 0.1 profile. In-

spection of time series plots and comparison to similar behavior for strongly stabilized ‘equal

drift’ runs (Fig. 9-2) suggests these fluctuations are caused by intermittent reconnection as

the pressure gradients around each tearing layer shift, however we have not examined this

phenomenon in detail.

Comparing both the δN = 0.10 (Fig. 9-16) and δN = 0.05 (Fig. 9-17) DTMs at simulation

time t = 400, we observe that the outer magnetic islands are highly elongated while the inner
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islands are merely sheared, consistent with the relative diamagnetic drifts at each surface.

In both simulations the nonlinear locking of the inner and outer surfaces has ‘spun-up’ the

islands at rs1, but because the pressure gradient is not significant at the inner reconnection

sites they do not experience the ω∗ effects which cause the biased outflow jets and elongation

seen at rs2. We note, however, that the current peaks and outflow jets at each surface of the

δN = 0.05 DTM appear to have split. Two reconnection sites are visible for each wavelength.

This suggests that the elongated current sheets may have become unstable to some secondary

process such as plasmoid instability, which has been observed in DTMs previously [62]. Our

ability to determine and track the separatrices is not, however, precise enough in this high

drift regime to confirm this conclusion.

Although its growth is slowed significantly, the δN = 0.10 is not completely stabilized.

Near time t = 500 (Fig. 9-18) the inner outer and separatrices merge, and at t = 600 (Fig. 9-

19) the magnetic field near the r = 0 axis is consumed and the inner current sheets approach

each other. The steeper δN = 0.05 profile is, by contrast, intact even at time t = 750 (Fig. 9-

20). The kinetic energy has saturated, and the magnitudes of the current sheets and max-

imum plasma flows are less than or equal their counterparts at time t = 400 (Fig. 9-17).

Finite sized magnetic islands are visible, but because the inner and outer separatrices have

not merged the pressure profile remains intact. Accounting for the source electric field (which

slowly pumps magnetic energy into the simulation, attempting to restore equilibrium) we

consider this system a nonlinearly saturated DTM.

The key to understanding why the δN = 0.05 profile saturates and the δN = 0.10 system

does not may lie in understanding how the ideal MHD stability depends on the details of the

pressure profile, and how the∇p driving changes with the nonlinear evolution. The islands at

time t = 400 of the δN = 0.10 profile are of approximately the same size as the saturated t =

750 state of the more localized δN = 0.05 DTM, however radials of the pressure at the extrema

of the current on each surface reveal substantial differences (Fig. 9-21). For the unstable

δN = 0.10 mode the gradient at rs2 is steeper than its equilibrium counterpart, and the
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growth of the outer islands has broadened the profile wide enough to have finite gradient at

the inner surface. The more localized, stabilized δN = 0.05 mode, in contrast, does not show

significant enhancement of ∇p at rs2 and the outer magnetic islands are not large enough to

cause enhanced ω∗ at the inner surface. We cannot, therefore, attribute the stabilization to

nonlinear steepening of the pressure profiles as in Section 9.3. We propose, therefore, that

for both the linear and nonlinear cylindrical DTM the efficacy of diamagnetic drifts can be

characterized as a competition between the stabilizing, reconnection site local FLR effects

and the destabilizing, ideal MHD mode. Without understanding how the pressure gradient

drives the DTM growth it is difficult to determine how these modes will behave in actual

tokamak reactors.

9.6 Discussion

Building on the linear work of Chapter 6 we have identified two profiles which are good

candidates for nonlinear DTM stability. The most successful of these is a steep equilibrium

pressure gradient with δN = 0.05 centered at the rs2 rational surface. In our simulations

an initial differential drift of ∆ω∗ = 1× 10−1 results in a saturated mode that maintains

good confinement of the core plasma and preservation of the annular current ring. A similar

differential drift produced by a wider δN = 0.1 profile is also suppressed but does not saturate.

The difference between the evolution of these two double-tearing modes, and their relevance

to realistic tokamak configurations, will require a better understanding of the ideal MHD

behavior.

A broad pressure profile with equal diamagnetic drifts of ω∗ = 1× 10−1 at both rational

surfaces was shown to be unexpectedly stable nonlinearly, given that the linear growth

rate of this DTM was higher than the force-free baseline. As the magnetic islands grew

they enhanced the pressure gradients, and thus diamagnetic drifts, at the current layers.

This enhancement drastically reduced reconnection in the system, although it is unclear
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whether this DTM can be considered saturated. The pressure gradients needed to generate

this stability are only able to form at late times when the magnetic islands have grown

to substantial size. It is possible, therefore, that the continued growth of the kinetic and

perturbed magnetic energies in this example is due to a structure driven secondary instability

similar to that discussed in Chapter 8. If this is the case then this nonlinear enhancement of

the drifts may not be sufficient to prevent disruption. Regardless, this unexpected stability

of an equal drift mode suggest that (contrary to the linear predictions) a sufficiently strong

diamagnetic drift may be able to stabilize the DTM without first decoupling the tearing

surfaces.

These nonlinearly stabilized profiles are the primary result of this thesis and their rele-

vance to actual tokamak configurations relies on the validity of the work presented in the

previous chapters. We will delay, therefore, further analysis and discussion of future work

until the final chapter.
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Figure 9-5: State of the resistive (di=0) DTM at time t = 110 (black dot-dashed line in Fig. 9-1).

Figure 9-6: State of the Hall (di=0.1) DTM at time t = 110 (black dot-dashed line in Fig. 9-1).
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Figure 9-7: State of the Hall (di=0.1) DTM at time t = 195 (red dot-dashed line in Fig. 9-1), at which point the inner
and outer separatrices merge. The magnetic field and current geometry is not significantly different than the resistive DTM
(Fig. 8-8).

Figure 9-8: State of the Hall (di=0.1) DTM at time t = 265 (blue dot-dashed line in Fig. 9-1) after the current sheets at the
inner rational surface have collapsed across the r = 0 axis.
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Figure 9-9: Two dimensional form of the equilibrium pressure profiles used to generate an equal diamagnetic drift at both
q = 2 rational surfaces. The peak pressure gradient is centered at r0 = (rs1 + rs2)/2, the profile width is set at δN = 0.2,
and the core pressure is fixed at N0 = 1. We adjust the edge pressure Nb to achieve the desired electron diamagnetic drifts of
ω∗ = 2× 10−2 (left) and ω∗ = 1× 10−1 (right).
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Figure 9-10: Radials of the pressure profile at the seperatrix merging time of the ω∗ = 2× 10−2 equal drift DTM (Fig. 9-11),
and the time at which the energy growth of the ω∗ = 1× 10−1 slows (Fig. 9-12). Vertical dashed lines indicate radii of the
current sheets: black are the equilibrium q = 2 rational surface positions; red is peak of the inner current sheet at the later
time; blue is the peak of the outer current sheet at the later time. Solid red lines are radial cuts across the inner current sheet,
solid blue lines are cuts across the outer current sheet, and black lines are the equilibrium profiles. Nonlinear growth of the
magnetic islands increases the pressure gradient at the reconnection sites for both simulations.
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Figure 9-11: ω∗ = 2× 10−2 equal drift DTM at simulation time t = 240 (red dot-dashed line in Fig. 9-2). The inner and
outer separatrices are merging together, which decreases the growth the kinetic and magnetic energies.

Figure 9-12: ω∗ = 1× 10−1 equal drift DTM at simulation time t = 250 (blue dot-dashed line in Fig. 9-2). A significant
amount of flux remains between the inner and outer separatrices, showing that the decrease in perturbed energy growth is not
related a seperatrix merging event. Instead the nonlinear growth of the magnetic islands has significantly increased the pressure
gradient, and thus diamagnetic drift, near the inner and outer reconnection sites.
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Figure 9-13: ω∗ = 1× 10−1 equal drift DTM at simulation time t = 390 (black dashed line in Fig. 9-2). At this late time
the plasma pressure and magnetic fields are highly deformed but the inner and outer separatrices still have not merged. The
nonlinear enhancement of the diamagnetic drifts has resulted in a significant reduction in the reconnection rate of this DTM.
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Figure 9-14: ∆ω∗ = 1× 10−1 differentially drifting DTM with the equilibrium pressure gradient localized near the inner
rational surface. In this early nonlinear plot (t = 155, red dot-dashed line in Fig. 9-3) the inner and outer tearing surfaces,
which are linearly decoupled, have been locked by the growing magnetic islands. The inner surfaces shows shearing and island
elongation due to the local diamagnetic drift but the outer surface is unaffected.

Figure 9-15: ∆ω∗ = 1× 10−1, δN = 0.10 differentially drifting DTM with the equilibrium pressure gradient localized near
the inner rational surface. At time t = 335 (the final output time of this simulation, indicated by the blue dot-dashed line in
Fig. 9-3) the inner current sheets are nearing collision across the r = 0 axis. The growth of the inner magnetic islands has been
strongly suppressed by the local diamagnetic drift and the current sheets at this surface are elongated.
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Figure 9-16: State at simulation time t = 400 (black dot-dashed line in Fig. 9-4) of the m = 2, n = 1 DTM with a broad
equilibrium pressure gradient (δN = 0.10) centered at the outer, rs2 rational surface. This profile results in an equilibrium
differential diamagnetic drift of ∆ω∗ = 1× 10−1.

Figure 9-17: State at simulation time t = 400 (black dot-dashed line in Fig. 9-4) of the m = 2, n = 1 DTM with a localized
equilibrium pressure gradient (δN = 0.05) centered at the outer, rs2 rational surface. This profile results in an equilibrium
differential diamagnetic drift of ∆ω∗ = 1× 10−1.
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Figure 9-18: Near the separatrix merge time of DTM with a broad equilibrium pressure gradient of δN = 0.1 centered at the
rs2 rational surface, producing a differential diamagnetic drift of ∆ω∗ = 1× 10−1. The simulation time of this plot is t = 500
and corresponds to the red dot-dashed vertical line on Figure 9-4.

Figure 9-19: Near the time at which the inner current sheets collide across r = 0 for a DTM with a broad equilibrium pressure
gradient of δN = 0.1 centered at the rs2 rational surface, producing a differential diamagnetic drift of ∆ω∗ = 1× 10−1. The
simulation time of this plot is t = 500 and corresponds to the blue dot-dashed vertical line on Figure 9-4.
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Figure 9-20: The saturated state of the ∆ω∗ = 1× 10−1, δN = 0.05, r0 = rs2 DTM at time t = 750 (the last time we
simulate). The magnetic islands are not significantly larger than they were at t = 400 (Fig. 9-17) and the current sheets have
decreased in amplitude. The pressure profile is still well confined, and has not changed substantially from its equilibrium form
(see Fig. 9-21).
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Figure 9-21: Radial cuts across the peaks of the inner and outer current sheets of the ∆ω∗ = 1× 10−1 inner-drift DTM with
the two equilibrium pressure profiles: broad δN = 0.1 at time t = 400 (left, 2D plot in Fig. 9-16) and localized δN = 0.05 at
time t = 750 (right, 2D plot in Fig. 9-20). The magnetic islands are approximately the same size in both simulations at the
given times. The saturated δN = 0.05 mode does not show significant enhancement of the pressure gradients at the current
sheets, whereas the unstable δN = 0.10 DTM does.
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Chapter 10

Conclusion

The promising confinement properties of reverse-magnetic shear tokamak configurations

has lead to recent interest in the double-tearing mode instability. The reversal of the poloidal

magnetic field generates a non-monotonic safety factor profile with two rational surfaces of

the same q spanning the annular current ring. If these two surfaces are close enough they

can linearly couple and form the reconnecting DTM, which is a quickly growing instability

only weakly dependent on resistivity. Nonlinearly the two reconnecting surfaces consume

the magnetic flux separating them, resulting in the merging of their magnetic separatrices,

disruption of the annular current ring, and loss of plasma confinement. The avoidance of this

catastrophic nonlinear state is important to the future use of such advanced tokamak profiles,

and there has been significant recent exploration of methods to stabilize the DTM. In this

work we have examined the use of equilibrium diamagnetic drifts, which have been effective

at slowing and saturating similar reconnecting instabilities in conventional tokamak designs.

Understanding the impact of the diamagnetic drifts on the nonlinear DTM first requires

understanding how the interaction of the two resonant surfaces impacts the mode growth,

and then considering how the introduction of ω∗ drifts may interfere with this growth.

10.1 Summary of important linear results

The linear behavior of the double-tearing mode is well understood in the simplest limit

of symmetric, static, force-free, Cartesian systems. In Chapter 3 we reviewed the existing

boundary layer theory and verified that it accurately describes DTM behavior in the MRC-3d

simulation code. The presence of two resonant surfaces couples the reconnecting tearing
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mode to a slab kink mode that is deeply stable when the surfaces are far apart and marginally

stable when they are close. The driving energy of this underlying ideal MHD structure

affects the dependence of the DTM linear growth rate on resistivity, with the instability

growing as γ ∼ η3/5 in the weakly coupled, deeply ideally stable regime and as γ ∼ η1/3

in the strongly coupled, marginally stable domain. This behavior has also been confirmed

in numerous cylindrical and toroidal simulation studies, where the interaction between the

resonant surfaces is sufficiently strong that the annular region containing the DTM is (to

lowest order) Cartesian.

The key to slowing the growth of the linear DTM relies, therefore, in decoupling the two

resonant surfaces so that they cannot drive each other. In Chapter 4 we showed how an

equilibrium antisymmetric sheared flow can force the DTM tearing layers to decouple and

drift. Provided that there exists a differential equilibrium flow at the resonant surfaces, they

cannot interact while drifting and tearing layers become isolated, thereby behaving more like

single tearing modes with much lower growth rates. We showed through linear boundary layer

analysis and simulations that the critical differential flow required to decoupling the resonant

surfaces is directly related to the growth rate of the mode, and proposed a continuation of

the existing linear theory in order to determine this critical point analytically. Past this

decoupling point, however, the equilibrium sheared flow is not able to further decrease the

DTM growth rate until Alfvén resonance layers appear at large velocities.

The inability of equilibrium flows to decrease the linear growth rate after DTM decoupling

motivates the introduction of diamagnetic drifts, which can produce not only differential drift

at the resonant surfaces but also interfere with reconnection within the resonant layers. In

Chapter 5 we enabled the finite Larmor radius terms in the MRC-3d Ohm’s law and introduced

electron diamagnetic drifts via an equilibrium pressure gradient. These differential ω∗ drifts

were less effective than sheared flow at decoupling the tearing surfaces, but continued to

slow the mode growth after decoupling. At very high drift values, however, we observed

that the growth rate again began to increase. For strongly coupled xs = 0.25 DTMs we
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found that the diamagnetic drift necessary to decouple the surfaces was so large that the

growth began to climb immediately after separation. Thus diamagnetic drifts are not the

most effective linear stabilization mechanism in every system, but are more effective than

equilibrium sheared flows for weak and moderately coupled double tearing modes.

These Cartesian analytic and numerical results are important from a theoretical stand-

point, but predicting the efficacy of diamagnetic drifts in tokamak devices requires under-

standing the DTM behavior in asymmetric, curvilinear equilibria. In Chapter 6 we applied

the prior slab linear results to a cylindrical DTM with poloidal and toroidal mode numbers

m = 2, n = 1 and found several differences. The asymmetric magnetic shear at the two

q = 2 rational surfaces results in the eigenmode resembling a strongly coupled DTM near

the outer, dominant surface. Around the less sheared, sub-dominant, inner surface, however,

the mode resembles a weakly coupled DTM. By examining these eigenmodes and measuring

the resistive scaling of the growth rate to be γ ∼ η0.48, we concluded that this cylindrical

double-tearing mode is in the moderately coupled regime.

Additional deviations from the Cartesian DTM emerge from the pressure gradients in

tokamak configurations. We chose to use a density profile peaked at the magnetic axis which

falls off with increasing radius, in order to represent the profiles associated with internal

transport barriers (ITBs) in reverse-shear tokamak devices. We found that applying this

pressure gradient to our q = 2 cylindrical equilibrium destabilized an ideal MHD mode.

This couples to the reconnecting DTM, similar to the m = 1, n = 1 kink-tearing mode

in conventional tokamaks. The nature of this instability is not currently understood, nor

whether it will be stabilized by higher order toroidal corrections. In our simulations, however,

its presence means the pressure gradients necessary to generate diamagnetic drifts will have

an additional, ideal MHD destabilizing component not present in Cartesian geometry.

Our choice of a monotonic, ITB-like pressure profile only generates electron diamagnetic

drifts in the û (∼ θ̂) direction. Therefore we were not able to consider equal and opposite

drifts at both resonant surfaces, as in Chapter 5. We instead considered three classes of
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pressure gradient centered at different points in the domains, and compared their behavior

in resistive (no diamagnetic drifts) and Hall MHD (diamagnetic drifts) simulations. In order

to isolate the efficacy of local diamagnetic stabilization without a differential drift we centered

a broad pressure profile between the two rational surfaces, so that the ω∗ drift was equal

at both tearing layers. We found that the local diamagnetic drift resulted in lower growth

rates compared to the resistive MHD simulations, but in both cases increasing the pressure

gradient increased γ. Therefore in the absence of differential rotation the diamagnetic drifts

are not able to overcome the destabilizing contributions of the pressure gradient.

Reintroducing differential rotation effects, we then localized a pressure gradient near the

inner, weaker rational surface. The influence of the ideal MHD instability was felt even more

strongly in this case, and the measured Hall MHD growth rates were uniformly larger than

their resistive counterparts. We also found that although the system showed signs of mode

decoupling, we were only able to extract a single, stationary eigenmode via Fourier analysis.

Taken together, these observations indicate that the growth of the system was controlled

by the outer resonant surface, which experienced the destabilizing effects of the pressure

gradient without any of the beneficial drift effects.

Our lowest linear growth rates came from localizing a pressure gradient near the outer

rational surface. These simulations showed decoupling behavior similar to that of Chapter 5,

as well as significant decreases in γ after decoupling. At higher values of ω∗ the ideal

MHD instability again began to control the mode evolution, but the growth rates remained

significantly lower than their resistive counterparts. The outer surface is clearly the dominant

layer in this cylindrical equilibrium, and decreasing the linear growth rate requires that this

surface be stabilized.

Some elements of our linear study may not persist in actual tokamak experiments. In

particular, the ideal MHD instability observed in this work may not play as large a role in

toroidal geometry. The most important result of our cylindrical simulations is, however, that

the efficacy of diamagnetic drifts as a stabilization mechanism depends largely on where the

194



pressure gradient is located. The asymmetry inherent in curvilinear geometry results in one of

the rational surfaces being the dominant driver of the mode evolution. The outer surface was

dominate in our equilibrium, and we were able to observe slower linear growth (compared

to resistive MHD) when this surface experienced a diamagnetic drift. Our best results

came from combining differential drift decoupling effects with local stabilization of the outer

surface, in which case the growth rate was reduced compared to the force-free configurations.

These variations in stability based on the location of the pressure profile may explain why

some reverse-shear tokamak discharges show DTM activity and others don’t, and possibly

even provide a mechanism to prevent disruptions. We were not, however, able to reduce the

linear growth rate to zero, so the utility of these results will depend on how well they predict

the nonlinear DTM behavior.

10.2 Summary of important nonlinear results

There are many different paths of evolution available to the nonlinear double-tearing

mode, and very few analytic theories of its behavior are available. Most of our current un-

derstanding of large amplitude DTMs comes from simulation studies, and the lack of a clear

classification mechanism makes them difficult to compare. In Chapters 7 and 8 we reviewed

the existing DTM and STM literature in order to summarize the current understanding of

nonlinear double-tearing mode evolution. We identified three distinct phases of growth: the

island growth regime; the explosive phase; and the decay regime. Rather than reviewing this

entire discussion here, we will instead highlight the key parts of our analysis which we feel

have not been stated elsewhere in the literature.

The period of slow island growth, which we call the ‘island growth regime’ in this work,

is commonly referred to as the ‘Rutherford’ regime elsewhere in the literature, in refer-

ence to the existing single-tearing mode quasilinear theories that we reviewed in Chapter 7.

Based on examination of MRC-3d simulation results, we argued that the constant ψ singular
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layer behavior required by Rutherford’s quasilinear analysis [42] is not evident in nonlinear

double-tearing modes except in cases leading to saturation. DTMs marginally below the

nonlinear stability threshold may, to lowest order, be described by this theory, but small

mode wavenumbers or closer spacings results in the formation of extended current sheets.

The formation of this sheet is described by Waelbroeck’s nonconstant ψ tearing mode the-

ory [49], but the asymmetry of the magnetic fields and DTM inter-resonant driving should

modify his predictions of the reconnection rate. We also showed that for strongly coupled

surfaces the kinetic and magnetic energy growth does slow as the islands reach finite size,

and we proposed that the nonlinear behavior of the slab kink mode should be considered

a fundamental element of the DTM evolution. The underlying physics of early nonlinear

DTM growth is currently undetermined, and thus we prefer the more general label of ‘island

growth regime’.

We also briefly considered the explosive growth regime, which is the period of fast, highly

disruptive evolution that has attracted interest to the double-tearing mode. Simulation

studies addressing this late nonlinear phase are somewhat limited, as the dynamics involved

are numerically challenging. The few available studies do not, unfortunately, agree on the

behavior of the DTM during this period, with particular disagreements revolving around the

dependence of the mode evolution on resistivity. We proposed that there may be different

mechanisms underlying the explosive phase, and that the DTM transitions between regimes

smoothly based on the coupling between the resonant surfaces, instability wave number, and

local magnetic shear. Verifying this prediction will, however, require additional analytic or

simulation studies. Thus we delay discussion until the following section.

Based on this review of the literature we classified our m = 2, n = 1 cylindrical DTM as a

moderate to strongly coupled nonlinear DTM, which is consistent with our linear evaluations.

Normally double-tearing modes are classified by whether or not they feature an explosive

growth phase, but it is not possible to observe this stage in our q = 2 equilibrium. The

magnetic flux interior to the inner rational surface is rapidly consumed in our simulations.
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By the time the inner and outer separatrices merge together, the interior flux is significantly

reduced. Eventually the inner rational surfaces reconnect all the axial flux, and they merge

across the axis. After this point we do not feel our simulations accurately reflect DTM

behavior in any laboratory device, as our equilibrium is unrealistically symmetric. Prior to

the current sheet collision, however, our results are similar to simulations of TFTR, off-axis

sawtooth behavior [34]. While the islands are growing (but before the separatrices merge)

the kinetic and magnetic energies continue to increase at the linear growth rate, similar to

the Cartesian strongly coupled mode. Extended current sheets are, however, visible at each

surface, similar to nonconstant ψ Cartesian modes that do feature an explosive phase. We

cannot, therefore, precisely determine the classification of the m = 2, n = 1 DTM. In our

Cartesian study of drifting DTMs (Chaps. 4 and 5) we found that more strongly coupled

modes are harder to decouple and stabilize, thus we expect our stabilization study will be

even more effective for higher mode number, less strongly coupled double-tearing modes.

In Chapter 9 we extended the linear, cylindrical diamagnetic drift study of Chapter 6,

using the same pressure gradients and locations in the nonlinear. We will not discuss the

class of pressure gradients localized near the inner resonant surface any further, as they

performed as poorly in the nonlinear as they did linearly. Instead we briefly review the equal

and outer drift cases that were strongly nonlinearly stabilized, albeit for different reasons.

The DTM with equal diamagnetic drifts of ω∗ = 1× 10−1 at both rational surfaces was

unexpectedly stabilized in the nonlinear regime, given that its linear growth rate was larger

than the force-free case. As the magnetic islands grew they steepened the pressure profile

local to the tearing layers. The increased gradient resulted in a faster diamagnetic drift,

which was then sufficient to prevent the inner and outer separatrices from merging. This

nonlinear drift enhancement process has been observed in other reconnecting systems, in

particular it is known to be an important factor in the appearance of saturated m = 1

islands in conventional tokamaks [8]. In our simulations, however, the islands must grow

very large before this effect becomes significant. As a consequence, the magnetic fields and
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pressure profile are highly deformed. It is not clear whether this state is preferential to

complete reconnection.

Using a differential diamagnetic drift of ∆ω∗ = 1× 10−1 localized with δN = 0.05 at the

outer rational surface, we were able to nonlinearly saturate the double-tearing mode. In

this case enhancement of the pressure gradient does not appear to be a significant factor.

Instead, the differential drift and suppression of the dominant, outer surface work to delay

locking of the rational surfaces until a late time. Even after the tearing layers recouple, the

outer surface is so strongly stabilized that it does not form large islands and appears unable

to drive the inner surface. Without this strong coupling, the inner surface saturates at finite

time, even though it does not experience a significant ω∗. Magnetic islands are visible, but

the core plasma is largely intact and undeformed. Although this particular configuration

may not manifest in actual tokamaks, we feel this result is strong evidence that the DTM

can be avoided in reverse magnetic shear configurations. Stabilization requires, however,

that the pressure profile be in the appropriate location to suppress the dominant rational

surface. It is outside the scope of this thesis to speculate whether such control is possible in

an actual device, but we suspect this result will be more useful to explain why DTM activity

is or is not present in a given experiment.

10.3 Future directions

In this thesis we have focused largely on the underlying mechanisms behind double-tearing

mode growth, and how equilibrium diamagnetic drifts can be used to suppress DTM activity.

Much is not understood about the double-tearing mode, and there are many opportunities

for future research. To conclude this thesis we will describe a small number of topics which

we feel are important to explore.

In Chapter 4 we laid the foundations of a boundary layer theory describing the effect of

equilibrium sheared flows on diamagnetic drifts. Expanding this theory would be beneficial
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not only to future investigations of diamagnetic stabilization but also to work on differential

rotation and Alfvén resonance techniques. The use of an eigensolver code would allow us to

better resolve the antisymmetric branch of the DTM system, and perhaps gain insight into

how this solution emerges from the boundary layer analysis. If the boundary layer theory

can be completed, at least as far at the ideal MHD layer, we expect that the decoupling

point will emerge. We cannot currently predict whether the decoupling behavior will be

associated with a bifurcation, a failure to match across the boundary layers, or some other

mechanism.

Whether or not the decoupling behavior can be understood, another useful research

direction would be to combine equilibrium sheared flows and diamagnetic drifts. Equilibrium

flows are more effective at decoupling the resonant layers, but diamagnetic drifts can continue

to stabilize the isolated layers without the large amplitudes needed for Alfvén resonances.

In slab Cartesian geometry these two effects could be achieved either by considering both

equilibrium flows and pressure gradients, or by considering higher ion temperatures so that

the ion diamagnetic drift is present.

In linear curvilinear geometry, it is important to understand what the observed ideal

MHD instability is and how the pressure gradient affects it. The best way to approach

this problem is likely through a variational principle or δW method, similar to the earliest

m = 1 kink mode theories. The toroidal corrections should be evaluated, and it should be

determined whether they are stabilizing or destabilizing. We expect that even if the ideal

MHD mode is not linearly unstable in full toroidal geometry it will still play a role in driving

DTM activity both linearly and nonlinearly.

Nonlinearly we suggest two different types of studies. The first of these focuses on the

fundamental understanding and classification of double-tearing mode behavior. Even with

the recent abundance of nonlinear DTM simulation work, we currently lack a method to

predict whether or not an equilibrium will support an explosive DTM. The work of Janvier

et al. [31] has explored the saturation threshold for equilibria with weak magnetic shears, but
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a significant region of the parameter space remains unexplored. We suggest that conducting

a survey of the DTM behavior in k, xs, and magnetic shear B0 might illuminate the possible

behaviors of the island growth and explosive regime. At first such a study could be conducted

at fixed resistivity, as the existing work consistently shows that the triggering of explosive

growth is independent of η. Once the boundaries between stabilized, explosive, and strongly

coupled systems are determined, however, the resistivity dependence of the linear, island

growth, and explosive phases should be determined for characteristic modes. Such a study

could be conducted in slab geometry, but will still require significant computational resources.

A simulation code with implicit time integration and adaptive mesh refinement would be a

large benefit. If possible, the double tanh equilibrium should be used in order to avoid the

unpredictable variations in magnetic free energy cause by the sech profile.

The second nonlinear direction is to make better contact with experimental tokamak

results. We feel it is not productive to continue with cylindrical simulations of this q = 2

equilibrium, as it does not reproduce enough features of tokamak geometry to be directly

comparable to laboratory experiments. Some utility may exist in higher mode number

simulations, but it would be better to move toward toroidal geometry. New reactors are

trending towards smaller aspect ratios where toroidal corrections become more significant.

Even in systems where the plasma core is approximately cylindrical plasma rotation caused

by gravity and variations in magnetic curvature will likely play a roll in decoupling the DTM.

We note, however, that toroidal equilibria are less flexible than cylindrical, and it may be

difficult to isolate the contributions of the various effects. An important starting point for

toroidal simulations would, therefore, be to establish how diamagnetic stabilization of the

m = 2, n = 1 DTM in toroidal geometry is different from the cylindrical results we have

presented here. We expect that the overall behavior of the nonlinear DTM is the same in

both geometries, and this would allow the flexibility of cylindrical simulations to inform

future toroidal studies.
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Appendix A

The MRC-3d simulation code

The MRC-3d simulation code was originally written by Kai Germaschewski and updated

to use the LIBMRC [21] library for data management, output, and time-stepping by Stephen

Abbott. In this appendix we will briefly summarize the primary structure and features of

the code. Full documentation, including information on how to obtain and use the code, is

available at Reference [2].

MRC-3d is built on the LIBMRC library developed at the University of New Hampshire.

LIBMRC provides the capability to define objects in parallel for use on high performance com-

puting clusters. MRC-3d is designed using this object orientated programming model. Data

objects are distributed in parallel across many processors with LIBMRC handling communi-

cation. It also writes output of simulation data using the HDF5 hierarchical data format [47],

which allows for portability and efficient storage. Time integration is implemented using the

Portable, Extensible Toolkit for Scientific Computation (PETSc) [4–6] via the unified LIBMRC

time-stepping interface. PETSc provides a wide variety of algorithms useful for scientific

computing. In MRC-3d we use, in particular, its explicit and implicit nonlinear methods and

distributed, sparse matrix linear solvers.

The MRC-3d model is variant of the conservative, ∇ · B = 0 preserving, finite-volume

MHD model given in Ref. [16], modified to include the Hall and electron pressure gradient

terms. This model is written in a manifestly covariant form so that it applies in arbitrary

curvilinear geometries. To exploit this flexibility, MRC-3d uses a Python based code generator

built around the SymPy [45] package for symbolic mathematics. Metric tensors and differential

operators are defined symbolically. The model equations are then written in simple pseudo-

code. Symbolic manipulation is used to generate the full discretized equations in C, which are
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then wrapped in a function and attached to a MRC-3d object. These objects can be chosen

at run-time, allowing a single build of MRC-3d to perform simulations in many different

coordinate systems. This code generation process has many benefits. First, the model

pseudo-code is substantially simpler than the full discretized equations. For example in the

current version of MRC-3d the right hand side equations require 729 characters of pseudo-

code. The resulting C code is 23,336 characters in Cartesian geometry and 53,047 characters

in cylindrical. Second, boundary conditions can also be handled in this fashion, and at

boundaries where no data is exchange (e.g. conducting walls) the code generator can back-

substitute the boundary condition into the r.h.s. equations. Finally, and most importantly,

this symbolic manipulation process is also used to generate a full Jacobian of the discretized

system that is necessary for the use of the PETSc implicit time-steppers.

One feature of MRC-3d is particularly useful for studies of reconnecting systems. The

‘source term’ is a mechanism for forcing an equilibrium to not decay, and is equivalent to

applying a weak external electric field driving the system toward equilibrium. In physical

systems the characteristic timescales of reconnection are much faster than the resistive decay

time. In simulation studies, however, it is common to use unrealistically high values for the

resistivity so that current layers are wider and lower spatial resolutions may be used. In

these more diffusive systems the growth and decay timescales are much closer. The source

term mitigates this by evaluating the r.h.s. equations on the equilibrium at initialization,

then subtracting this contribution from each time step. In this fashion the equilibrium is

prevented from decaying. Care should be taken in the use of this term, however, as it does

represent an external electric field and may change results. When the instability growth is

fast the source term does a good job of preventing anomalous decay due to high resistivity,

and we have verified in select simulations that at very low resistivity the difference between

runs with and without the forced equilibrium is minimal. However when the mode growth is

very slow (either because the system is decaying or a saturated state has been reached) then

the external electric field effectively ‘pumps’ the simulation back toward equilibrium. When
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considering certain laboratory plasmas this situation may, in fact, be appropriate, but it is

not desirable in every case. Thus this feature of MRC-3d can be disabled by a command line

option at runtime.

In addition to the full, nonlinear Hall MHD model, MRC-3d also contains a one-dimensional

linear simulation code. This linear model uses the same discretization as the full model in

one dimension and applies the Fourier ansatz (F (x) = exp(k · x)) to the other two. This

capability is also enabled by the code generation process. The usual 8 component MHD

state vector is expanded to 16 components to contain both the real and imaginary parts of

each field. A new complex field type is defined in the code generator as the sum of the real

part of each field plus i times the imaginary, where i is the imaginary unit. The linearized

equations are then written in pseudo-code using differential operators which encapsulate the

Fourier decomposition. SymPy is capable of symbolic manipulation of complex numbers and

we use it to expand the pseudo-code to the full discretized equations.

The final major feature of MRC-3d is its analysis package pymrc. We use the Cython

utility [7] to wrap the top level MRC-3d objects within Python classes. Data can then be

loaded directly into Python scripts for analysis. To aid in this process we have also wrapped

a variety of useful functions. For example, the discretized expression for the current density J

can be called from a script so that the returned field can be calculated during analysis in the

same fashion as it was during the simulation. This ability is of particular important when

the metric tensor is non-trivial. This package has many useful features, and we recommend

consulting the documentation at Ref. [2] for more information.

203



List of References

[1] S. Abbott, K. Germaschewski, and A. Bhattacharjee, “Diamagnetic Effects on Double
Tearing Modes in Hall-MHD and PIC Simulations,” in APS Meeting Abstracts, Oct.
2011, 9019P.

[2] S. Abbott and K. Germaschewski. (2014). The Magnetic Reconnection Code (MRC)
documentation, [Online]. Available: http://fishercat.sr.unh.edu/mrc-v3 (visited
on 05/28/2015).

[3] G. Ara et al., “Magnetic reconnection and m = 1 oscillations in current carrying
plasmas,” Annals of Physics, vol. 112, pp. 443–476, 1978.

[4] S. Balay et al., “Efficient management of parallelism in object oriented numerical
software libraries,” in Modern Software Tools in Scientific Computing, E. Arge, A. M.
Bruaset, and H. P. Langtangen, Eds., Birkhäuser Press, 1997, pp. 163–202.
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